285 research outputs found

    Surface displacement of the Mw 7 Machaze earthquake (Mozambique): Complementary use of multiband InSAR and radar amplitude image correlation with elastic modelling.

    No full text
    International audienceIn this paper we investigate the surface displacement related to the 2006 Machaze earthquake using Synthetic Aperture Radar Interferometry (InSAR) and sub-pixel correlation (SPC) of radar amplitude images. We focus on surface displacement measurement during three stages of the seismic cycle. First, we examined the co-seismic stage, using an Advanced SAR (ASAR) sensor onboard the Envisat satellite. Then we investigated the post-seismic stage using the Phase Array L-band SAR sensor (PALSAR) onboard the ALOS satellite. Lastly, we focussed on the inter-seismic stage, prior to the earthquake by analysing the L20 and JERS-1 SAR data. The high degree of signal decorrelation in the C-band co-seismic interferogram hinders a correct positioning of the surface rupture and correct phase unwrapping. The post-seismic L-band interferograms reveal a time-constant surface displacement, causing subsidence of the surface at a ~ 5 cm/yr rate. This phenomenon continued to affect the close rupture field for at least two years following the earthquake and intrinsically reveals a candidate seismogenic fault trace that we use as a proxy for an inversion against an elastic dislocation model. Prior to the earthquake, the JERS interferograms do not indicate any traces of pre-seismic slip on the sismogenic fault. Therefore, slip after the earthquake is post seismic, and it was triggered by the Machaze earthquake. This feature represents a prominent post-seismic slip event rarely observed in such a geodynamic context

    Time-variable 3D ground displacements from High-Resolution Synthetic Aperture Radar (SAR). Application to La Valette landslide (South French Alps).

    No full text
    International audienceWe apply an image correlation technique to multi-orbit and multi-temporal High-Resolution (HR) SAR data. Image correlation technique has the advantage of providing displacement maps in two directions; e.g. the Line of Sight direction (LoS) and the Azimuth direction. This information, derived from the two modes of data acquisition (ascending and descending), can be combined routinely to infer the three dimensional surface displacement field at different epochs. In this study, a methodology is developed to characterize the displacement pattern of the large La Valette landslide (South French Alps) using TerraSAR-X images acquired in 2010. The results allow mapping the dynamics of different units of the La Valette landslide at high spatial resolution. The study demonstrates the potential of this new application of High Resolution SAR image correlation technique for landslide ground surface deformation monitoring

    Three-dimensional surface displacement of the 2008 May 12 Sichuan earthquake (China) derived from Synthetic Aperture Radar: evidence for rupture on a blind thrust

    Get PDF
    International audienceThe Sichuan earthquake,Mw7.9, struck the Longmen Shan (LMS) range front,China, on 2008 May 12, affecting an area of moderate historical seismicity where little active shortening has been previously reported. Recent studies based on space geodesy have succeeded in retrieving the far field surface displacements caused by the earthquake, but the near field (±25 km from the faults) coseismic surface displacement is still poorly constrained. Thus, shallow fault geometry and shallow coseismic slip are still poorly resolved. Here, for the first time for this earthquake, we combine C and L-band Synthetic Aperture Radar offsets data from ascending and descending tracks to invert for the 3-D surface displacement in the near coseismic field of the Sichuan earthquake. Our data, coupled with a simple elastic dislocation model, provide new results strongly suggesting the presence of a blind thrust striking along the range front and being active at depth during the earthquake. The presence of a rupture on a blind thrust brings new evidence for an out-of-sequence thrusting event and new elements for interpreting the tectonic strain partitioning in the LMS, which has important implications both for seismic hazard assessment and long-term evolution of the mountain belt

    Evaluation of InSAR and TomoSAR for monitoring deformations caused by mining in a mountainous area with high resolution satellite-based SAR

    Get PDF
    Interferometric Synthetic Aperture Radar (InSAR) and Differential Interferometric Synthetic Aperture Radar (DInSAR) have shown numerous applications for subsidence monitoring. In the past 10 years, the Persistent Scatterer InSAR (PSI) and Small BAseline Subset (SBAS) approaches were developed to overcome the problem of decorrelation and atmospheric effects, which are common in interferograms. However, DInSAR or PSI applications in rural areas, especially in mountainous regions, can be extremely challenging. In this study we have employed a combined technique, i.e., SBAS-DInSAR, to a mountainous area that is severely affected by mining activities. In addition, L-band (ALOS) and C-band (ENVISAT) data sets, 21 TerraSAR-X images provided by German Aerospace Center (DLR) with a high resolution have been used. In order to evaluate the ability of TerraSAR-X for mining monitoring, we present a case study of TerraSAR-X SAR images for Subsidence Hazard Boundary (SHB) extraction. The resulting data analysis gives an initial evaluation of InSAR applications within a mountainous region where fast movements and big phase gradients are common. Moreover, the experiment of four-dimension (4-D) Tomography SAR (TomoSAR) for structure monitoring inside the mining area indicates a potential near all-wave monitoring, which is an extension of conventional InSAR

    Spatiotemporal evolution of surface creep in the Parkfield region of the San Andreas Fault (1993-2004) from synthetic aperture radar.

    Get PDF
    International audienceThe Parkfield section of the San Andreas Fault (SAF) is defined as a transitional portion of the fault between slip-release behavior types in the creeping section of the SAF to the northwest and the apparently locked section to the southeast. The Parkfield section is characterized by complex frictional fault behavior because it represents a transition zone from aseismic creep to stick-slip regime. At least six historic earthquakes of Mw ~6 have occurred in this area in 1881, 1901, 1922, 1934, 1966, and 2004. It was observed in the 2004 Mw 6.0 Parkfield earthquake that ~70% of the total (coseismic and postseismic) moment release occurred aseismically. To understand the SAF behavior in this area, it is of particular interest to measure and analyze, not only the spatial evolution of the surface displacement in this area, but also its evolution over time. Using radar data acquired by the European Space Agency's European Remote Sensing (ERS1-2) satellites, we constructed descending interferograms and retrieved time series of surface displacements along the central SAF for the decade preceding the 2004 Parkfield earthquake. We focus on characterizing the space and time evolution of surface creep in the Parkfield and Cholame sections. The spatial pattern of the interseismic displacement rate indicates that tectonic strain was not uniformly distributed along the strike of the fault between 1993 and 2004. Our data indicate not only a decrease in the creep rate from the Parkfield section to south of Highway-46 from 1.4 ±0.3 cm/y to 0.6 ±0.3 cm/y, but also a small but significant creep-rate increase in the Cholame section to 0.2 ±0.1 cm/y. The evidence for episodic creep in the Cholame section of the SAF south-east of Parkfield is in contrast with previously published interpretations of GPS and trilateration data. The Cholame section of the SAF merits close monitoring because it was likely the nucleation site of the 1857 Fort Tejón earthquake and because it has shown recent evidence of deep slow slip as revealed by deep tremors

    The interferometry technics applied on residual subsidence analysis measurement of closure coal mines, example from Nord-Pas-de Calais coal mine, France

    Get PDF
    International audienceThis paper describes the residual movements associated with deep coalmines (France). The Nord-Pas-de Calais basin has been monitored since 10 years by traditional method. The interferometry technics are applied on Nord-Pas-de-Calais coal basin. In this study, both differential SAR Interferometry (DINSAR) and Persistent Scaterrers Interferometry (PSI) are used to estimate the induced deformations during 12 years (1992 to 2004) after the end of exploitation. 88 images of ERS scenes, distributed on two adjacent tracks, are processed, using DIAPASON software for DInSAR and GAMMA-IPTA for PSI. The area undergoes high temporal decorrelation due to the high amount of vegetation. Deformations are well detected; they present low amplitude with a maximum rate of only 1 cm/year during 7 years after the end of the exploitation. They show a good agreement with the traditional methods of levelling. A robust methodology can be developed to use Interferometry for surveying surface above abandoned minesL'article décrit les mouvements résiduels induit par l'exploitation de mines de charbon profondes (France). La surface est suivie depuis plus que 10 ans par la méthode de nivellement classique. La méthode d'interférométrie a également été utilisée dans le basin du Nord et du Pas-de-Calais, les deux techniques (SAR et PSI) ont été utilisées pour estimer les mouvements résiduels durant 12 ans (1992-2004) après l'arrêt de l'exploitation. 88 images de ERS ont été analysées en utilisant le code DIAPASON pour la méthode DInSAR et le code GAMMA-IPTA pour la méthode PSI. La zone étudiée est caractérisée par une couverture végétale très dense, ce qui induit une forte décorrélation temporelle. Les mouvements ont été bien détectés, ils présentent une amplitude de 1 cm/an pendant les 7 ans après l'arrêt des travaux miniers. Les résultants de l'interférométrie ont montré une cohérence avec les mesures par la méthode de nivellement traditionnel. Une méthodologie robuste peut-être développée pour suivre les mouvements induits par les exploitations minières abandonnée

    Ground deformation detection of the greater area of Thessaloniki (Northern Greece) using radar interferometry techniques

    Get PDF
    In the present study SAR interferometric techniques (stacking of conventional interferograms and Permanent Scatterers), using images from satellites ERS-1 and 2, have been applied to the region of Thessaloniki (northern Greece). The period covered by the images is 1992–2000. Both techniques gave good quantitative and qualitative results. The interferometric products were used to study ground surface deformation phenomena that could be related to the local tectonic context, the exploitation of underground water and sediments compaction. <br><br> The city of Thessaloniki shows relatively stable ground conditions. Subsidence in four locations, mainly in the area surrounding the city of Thessaloniki, has been detected and assessed. Two of the sites (Sindos-Kalochori and Langadhas) were already known from previous studies as subsiding areas, using ground base measurements. On the contrary the other two sites in the northern suburbs of Thessaloniki (Oreokastro) and in the south-east (airport area) were unknown as areas of subsidence. A further investigation based on fieldwork is needed in these two areas. Finally, an attempt to interpret the observed deformation, according to the geological regime of the area and its anthropogenic activities, has been carried out

    Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt?

    Get PDF
    Delta margins are subject to relatively high rates of land subsidence and have the potential to significantly exacerbate future changes in sea levels predicted by global warming models used in impact studies. Through a combined analysis of GPS and persistent scatterer interferometry data, we determine that most of the coastline of Alexandria has been subject to moderate land subsidence over the past decade (0.4 mm/yr on average and up to 2 mm/yr locally). This contrasts to previous studies that suggested subsidence in excess of 3 mm/yr. Based on our findings, we infer that on multi-century to millennia timescales, land subsidence in the area of Alexandria is dominated by tectonic setting and earthquakes or gravitational collapse episodes of a growth fault, whereas on shorter interseismic decadal to century timescales, subsidence rates are likely steady and moderate, in agreement with natural compaction and dewatering of the observed Holocene sediment layer. Key Points Use of a combined analysis of GPS and PSI data Alexandria coastal are has been subject to moderate land subsidence Important considerations for local planning and policy development ©2013. American Geophysical Union. All Rights Reserved.The work presented in this article was supported by the French Research National Agency (ANR) through the CEP-2009 program under the grant number ANR-09-CEP-001-01 (Project CECILE or “Coastal Environmental Changes: Impact of sea LEvel rise”). Universitat de les Illes Balears provided a visiting professor grant for G. Wöppelmann, whereas M. Marcos acknowledges a “Ramon y Cajal” contract funded by the Spanish Ministry of SciencePeer Reviewe
    corecore