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Abstract: Transportation infrastructure is critical for the advancement of society. Bridges are vital
for an efficient transportation network. Bridges across the world undergo variable deformation/
displacement due to the Earth’s dynamic processes. This displacement is caused by ground motion,
which occurs from many natural and anthropogenic events. Events causing deformation include
temperature fluctuation, subsidence, landslides, earthquakes, water/sea level variation, subsurface
resource extraction, etc. Continual deformation may cause bridge failure, putting civilians at risk,
if not managed properly. Monitoring bridge displacement, large and small, provides evidence of
the state and health of the bridge. Traditionally, bridge monitoring has been executed through
on-site surveys. Although this method of bridge monitoring is systematic and successful, it is not the
most efficient and cost-effective. Through technological advances, satellite-based Persistent Scatterer
Interferometry (PSI) and Geographic Information Systems (GIS) have provided a system for analyzing
ground deformation over time. This method is applied to distinguish bridges that are more at risk
than others by generating models that display the displacement at various locations along each bridge.
A bridge’s health and its potential risk can be estimated upon analysis of measured displacement
rates. In return, this process of monitoring bridges can be done at much faster rates; saving time,
money and resources. PSI data covering Oxnard, California, revealed both bridge displacement and
regional ground displacement. Although each bridge maintained different patterns of displacement,
many of the bridges within the Oxnard area displayed an overall downward movement matching
regional subsidence trends observed in the area. Patterns in displacement-time series plots provide
evidence for two types of deformation mechanisms. Long-term downward movements correlate with
the relatively large regional subsidence observed using PSI in Oxnard. Thermal dilation from seasonal
temperature changes may cause short-term variabilities unique to each bridge. Overall, it may be
said that linking geologic, weather, and groundwater patterns with bridge displacement has shown
promise for monitoring transportation infrastructure and more importantly differentiating between
regional subsidence and site-specific displacements.

Keywords: bridge; transportation network; InSAR

1. Introduction

Within recent history, researchers have embarked on a road to find a more efficient system to
monitor the displacement/deformation of infrastructures around the world. The most common
method of monitoring bridges currently involves repeated visual inspections of the exterior condition
of bridges. This method of monitoring restricts complete structural analysis due to the limited amount
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of information it provides [1]. While visual inspection delivers a detailed assessment of the external
health of bridges, it fails to reveal vital information concerning the internal health of bridges and is
laborious. Only a few bridges around the world have site-based instrumentation, which includes
surface or embedded sensors [2]. In other words, most bridges and other human-made structures
across the globe lack continuous structural inspection.

Recent developments have highlighted the application of Unmanned Aerial Vehicles (UAV) or
Unmanned Aircraft Systems (UAS) and Structure from Motion (SfM) for quantitative monitoring of
infrastructure [3–7]. The UAS systems use different sensors including optical, thermal, and Light
Detection and Ranging (LiDAR) to quantify the infrastructure condition. Although the UAS systems
are valuable in monitoring individual bridges, these methods are not suitable when regional processes
need to be understood to explain the behavior of infrastructure in a region. While monitoring of
individual infrastructure is critical, the regional-scale monitoring of infrastructure is hypercritical for
land use planning and sustainable development. Studies have shown the application of satellite-based
Interferometric Synthetic Aperture Radar (InSAR) for monitoring bridges and critical infrastructure as
well as regional-scale displacement from tectonics and other processes [8–12]. This study builds on
those efforts to demonstrate how InSAR based (particularly Persistent Scatterer Interferometry (PSI))
monitoring and Geographic Information System (GIS) based analysis can be helpful to understand
the performance of an individual infrastructure as well as evaluate whether regional scale processes
control these performances.

2. Background

Visual inspection is the default approach to monitoring of bridges [1]. An FHWA report [1]
summarized the limitation of visual inspection. The fundamental limitations being the timing,
subjectivity, and accessibility [1]. In the past years, there have been several Structural Health
Monitoring (SHM) methods developed for bridge monitoring [13,14]. These methods include the use
of strain gauges, accelerometers, load testing, and displacement measurements.

In many cases, it is meaningful to monitor displacement to detect structural damage. However,
measuring displacement can be problematic because of the need for stable reference points. The use of
remote sensing based methods from aerial and satellite-based platforms provide a vital solution for
measuring the displacement of bridges [15–18]. When the displacement of a bridge is measured, it can
be from structural deficiencies of the bridge or regional ground subsidence. Therefore, displacement
measurement of bridges and other critical infrastructure must be compared with the regional subsidence
to verify the cause for the displacement.

This study focuses on the use of ENVISAT C-band Synthetic Aperture Radar (SAR) data, which
has been collected for the area encompassing Oxnard, California. The impetus behind this work was
established from a study for the mapping of slow landslides on Palos Verdes Peninsula using PSI [19].
Satellite-based radar sensors provide millimeter-level displacement monitoring, and coverage over
large areas, with the ability to collect data during all weather conditions, day or night [20]. Further
detail and explanation of PSI technicalities can be found in the SAR-Guidebook [21–23]. With this
application, the continually changing ground conditions on earth and human-made structures across
the world may be monitored with applied differentiation between ground subsidence and site-specific
bridge/infrastructure deformation. The topics that will be covered include analysis of ENVISAT
data, the sensitivity of SAR measurements, the use of ArcGIS for modeling and interpretation, land
subsidence due to groundwater pumping in California, and cause of bridge displacement through
regional displacement.

3. Study Location

The city of Oxnard is located along the coast of southern California, roughly 60 miles west of Los
Angeles (Figure 1). Geology of this plain includes a variation of wash, beach, coastal, stream, alluvial,
and alluvial fan deposits. These deposits cover the area in an intermingled pattern of units, which
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consist of various combinations of unconsolidated silt, clay, sand, gravel, as well as submerged silty
clay and sand from both aeolian and estuarine environments [24].

Forwarding to more recent geologic history, California has been facing subsurface deformation
due to several anthropogenic events. These events include, peat loss, oil extraction, and groundwater
pumping, which cause land subsidence. The primary causes for land subsidence across the world
include aquifer-system compaction, drainage of organic soils, underground mining, hydro-compaction,
natural compaction, sinkholes, and thawing permafrost [25]. The leading cause for land subsidence
in the Oxnard plains of California is excessive groundwater pumping. Historically, high rates of
subsidence have been recorded to be more than 1 foot per year. Although there have been attempts
to recover the aquifers, which decreased the subsidence in this area, subsidence continues to occur
today [26].
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4. Data

4.1. Radar Imagery

Twenty-three descending, single-look complex (SLC) synthetic aperture radar (SAR) images were
acquired from the Advanced SAR (ASAR) sensor onboard the ENVISAT satellite (operated by the
European Space Agency) between August 2005 and January 2010. These ENVISAT data were processed
using PSI, a radar stacking technique capable of measuring ground deformation with an accuracy of
1 mm/year [27–29]. Processing was performed following the five-step Interferometric Stacking PS
workflow in ENVI SARscape using default input parameters for ERS-1/-2 and ENVISAT SAR data [22].
Ground deformation results (e.g., displacement and velocity) include a positive or negative sign to
indicate vector direction: positive deformation is towards the satellite (either upward or significantly to
the east) and negative deformation is away from the satellite (either downward or significantly to the
west). PSI has successfully measured ground deformation across a myriad of geotechnical structures
and assets, including buildings [30–32], dams and reservoirs [33–35], bridges [36–41], and unstable
slopes [42–46].
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4.2. Bridges

Figure 2 is a schematic of the method followed in this study to monitor the impact of groundwater
pumping on bridges. In summary, bridges that showed the most displacement with patterns that
could be of concern were sought out. For example, if a bridge is exhibiting high rates of displacement
on one end while the opposite end is experiencing little to no movement, a number of structural issues
could arise.
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Figure 2. Chart summarizing the steps taken throughout the research process for monitoring the
impact of groundwater pumping on infrastructure using GIS and PSI.

Three bridges that display asymmetrical patterns of differential displacement have been detected.
Santa Clara River Bridge is a pre-stressed concrete continuous box beam/girder bridge, spanning the
length of 230.2 m, with a width of 58.0 m. This bridge lies on the northern edge of Oxnard, serving as a
connection to Ventura California, over the Santa Clara River. Pleasant Valley Road Overcrossing is also
a pre-stressed concrete continuous box beam/girder bridge, which spans a length of 77.9 m, with a
width of 26.3 m. This bridge lies on the southeast edge of Oxnard, serving as an overcrossing for South
Rice Avenue. The final bridge displaying noticeable displacement in the Oxnard area is the Third Street
Overcrossing. This bridge along with the others is a pre-stressed concrete continuous box beam/girder
bridge, which spans the length of 202.4 m with a width of 22.3 m. This bridge is located in the heart of
Oxnard, serving as an overcrossing for South Oxnard Boulevard. The location, dimensions, and type
of these bridges was found using Caltrans, Structure Maintenance & Investigations, Log of Bridges on
State Highways (SM & ILBSH) [47].

To compare the patterns seen in the bridges of concern to those that are not of concern, three
bridges were analyzed that display patterns with little movement. Victoria Avenue Overcrossing is a
concrete continuous box beam/girder bridge, spanning the length of 90.2 m, with a width of 33.5 m.
This bridge lies just inside the northwest boundary of land subsidence displayed in Figure 3, which
is just northwest of the Santa Clara River Bridge. Seaward Avenue Overcrossing is a pre-stressed
concrete continuous box beam/girder bridge, which spans the length of 68.6 m, with a width of 32.3 m.
This bridge lies just outside the northwest boundary of land subsidence (Figure 3), less than a mile
from the coast. The last bridge analyzed was the Carmen Drive Overcrossing. This bridge is also
characterized as a pre-stressed concrete continuous box beam/girder bridge, spanning a length of
60.0 m, with a width of 26.2 m. Carmen Drive Overcrossing is located within the east boundary of
land subsidence, just south of an area that is not experiencing land subsidence (Figure 3). The location,
dimensions, and type of these bridges was also found using Caltrans, (SM & ILBSH) [47].
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Figure 3. Regional displacement velocity map, made using ArcGIS. Colored scale indicates the average
ground displacement velocity across Oxnard, CA. White arrows indicate the bridges of focus. The area
within the black line is the area experiencing land subsidence.

5. Methodology

The main elements of the bridge displacement detection include the following steps. InSAR PSI
data, which covered the Palos Verdes Hills, and Oxnard area along the southwest coast of California
was obtained from a study for the mapping of slow landslides on Palos Verdes Peninsula using
persistent scatterer interferometry [19]. The next step included organizing and analyzing data from
the ENVISAT satellite, using ArcGIS to seek out zones of max ground-displacement. It was found
that the Oxnard area, ENVISAT data, displayed the most ground displacement regionally and locally.
In order to pin point bridges within these large data sets, polygon files and PSI results, a large point
cloud measuring line-of-sight (LOS) deformation at individual persistent scatterers (PS), were overlaid
on the map of Oxnard to view the location of locally, and state-owned bridges across the area of study.
This file not only displayed the visual and coordinate location of each bridge on ArcGIS, but also
included the length and width measurements, number, name, and other various bridge related details.
Knowing the name and number of each bridge allowed for defining the types of bridges through state
records [47]. Once the local and state bridges were displayed over the InSAR data, large and small
ground displacement zones were sought out. In order to provide reasonable evidence of displacement
patterns along each of the bridges, bridges were only selected if they obtained ample PS along the
bridge. Bridges with scarce PS could provide misleading and uncomprehensive results. Only the PS
along the bridge structure were then collected and the data were converted into a text file for further
analysis. PS were plotted along each bridge to display the variation in displacement at different points.
Subtraction of regional displacement trends from displacement measurements at each bridge allow
for the calculation of a local (site-specific) bridge displacement analysis. Finally, the cause of ground
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displacement can be identified through the regional coverage of ground displacement, and further
research of the subsurface geology, hydrogeology, seismic activity, and anthropogenic events.

6. Results and Discussion

6.1. Bridge Displacement

Results displaying the complete PS point cloud, land subsidence area outline, and locations of
stable and settling bridges can be seen in Figure 3. Distinguishing between the negative and positive
velocity values is important, because each signifies a different direction of ground movement.

The area of interest for this study remained where the bridges were experiencing the most
differential movement. As seen in Figure 3, the bridges that displayed noticeable movement were
located within the area of highest velocity, while the bridges that displayed more stable conditions
were in areas where the velocity of ground movement was minimal. It can be noted that the area
displaying highest velocities in Oxnard contains most of Oxnard’s structural development: bridges,
buildings, roads, houses and other anthropogenic structures.

Following this analysis, it was seen that each bridge displaying higher displacement velocities
had unique patterns of displacement along the span of the bridge. Displacement time series, spanning
roughly four years, were plotted in correlation to the span of each bridge, depending on its orientation
(Figures 4–6). The north-most of these bridges, Santa Clara River Bridge, presents displacement
patterns, which indicate that the west-most section of the bridge is moving at greater velocities
(~12 mm/year) than the middle and east section of the bridge. With a total displacement measuring at
~20–30 mm more than the middle and east sections of the bridge, the west section measures at ~50 mm
total downward displacement within ~4 years. This indicates that the west section of the bridge is
experiencing twice the amount of displacement than the east and middle sections of the bridge.

The southern-most bridge displaying movement, Pleasant Valley Road Overcrossing, presents
displacement patterns indicating that the eastern section of the bridge is moving at a greater velocity
(~10 mm/year) than the middle and west section of the bridge. With a total displacement measuring
at ~15–25 mm more than the middle and west sections of the bridge, the east section of the bridge
measures at ~50 mm total displacement within ~4 years. Similar, but in contrast to the north most
bridge, the east section of the bridge is experiencing almost twice the amount of displacement than the
middle and west sections of the bridge.
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Figure 5. Pleasant Valley road overcrossing displacement model. (A) Aerial view of the bridge;
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Figure 6. Third street overcrossing displacement model. (A) Aerial view of the bridge; (B) Displacement
time series; (C) Elevation view of the bridge. Source: Images for Figure 6A,C were obtained from
Google Earth [48].

Third Street Overcrossing, the final bridge that displayed movement, is in the center of the
high velocity area in Oxnard. This bridge exhibits displacement patterns that indicate that the full
length of the bridge is experiencing downward movement. With an average velocity of 6.6 mm/year,
reaching max velocities of ~8 mm/year, the bridge returns a total downward displacement average
of ~27 mm/year. Although this bridge did not display a large difference in displacement from one
section of the bridge to the other, the bridge did reflect a slightly larger displacement in the middle
section of the bridge, compared to the west and east sections.

In further examination of the PSI data covering the Oxnard area, regional displacement patterns
were observed, which reflected and confirmed the patterns of downward displacement each bridge is
experiencing. Although each bridge is experiencing overall downward displacement, they present
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unique displacement patterns across the bridge itself. These unique displacement patterns discussed
above and displayed in Figures 4–6 can potentially be linked to structural movement upon each bridge.
This was concluded by the minimum downward displacement measured across each bridge. In further
explanation, each of the bridges within the high displacement area (Figure 3) are exhibiting a minimum
displacement of ~20 mm measured across the bridge, and the regional subsidence reflects a similar
average displacement across this high velocity area. The total displacement across the high velocity
area of Oxnard is displayed in Figure 7, presenting an average total displacement of 28.6 mm of
downward displacement. Therefore, any additional displacement (past ~20–30 mm) across each bridge
is potentially due to structural movement. An example of this regional and structural displacement for
Santa Clara River Bridge is presented in Table 1. Further investigation is required to determine the
overall downward regional displacement trend observed at Oxnard, California.
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Figure 7. Total displacement across the area of high displacement velocity in Oxnard, California. Plot
displays the trend of total displacement values from the west to the east of the high displacement zone
in Oxnard, California. This longitudinal axis is based on GPS location. Total displacement average and
standard deviation are indicated in the top left corner.

Table 1. Distinguishing between regional and site-based/structural displacement along the Santa Clara
River Bridge.

Location on
Bridge

Displacement due to
Regional Patterns (mm)

Site-Based/Structural
Movement (mm)

Total Displacement (mm)
(Downward Direction)

East End ~20–30 ~5 25–35
Middle 20 0 20

West End ~20–30 ~20 50

6.2. Regional Ground Displacement & Subsidence

Proceeding with the investigation of bridges displaying movement, influences of groundwater
pumping presented a direct cause for the overall downward displacement trend occurring in Oxnard,
California. Displayed in Figure 3 is the average ground subsidence velocity across Oxnard due to
groundwater pumping. The interrelationship between regional displacement and land subsidence
in California discloses the idea that regional displacement occurring within the Oxnard area can be
linked to land subsidence due to groundwater pumping. Figure 3 further shows the spatial correlation
between land subsidence and PSI velocity results: areas that experienced subsidence (orange and
red PS) are mapped as such, while relatively stable areas (green PS) are either near the subsidence
boundary or outside the mapped subsidence area. Thus, a portion of Oxnard was actively subsiding
up to a rate of 22 mm/year between August 2005 and January 2010.
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6.3. Stable Bridges

In order to compare unstable bridges to stable bridge conditions, results were generated in
similar fashion. Below in Figures 8–10 are examples of bridges in the Oxnard area displaying
little displacement. Victoria Avenue Overcrossing is a concrete continuous box beam/girder bridge,
spanning the length of 90.2 m, with a width of 33.5 m. This bridge lies northwest of the Santa Clara
River Bridge in an area presenting velocities ~0–4 mm/year. The average total displacement of this
bridge is ~7 mm in the upward direction. Compared to the displacement that bridges are experiencing
in the high velocity areas (~20–50 mm downward), this displacement of ~7 mm is considerably small
and is in opposite direction.
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(B) Displacement time series; (C) Elevation view of the bridge. Source: Images for Figure 9A,C were
obtained from Google Earth [48].
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Figure 10. Carmen Drive overcrossing displacement model. (A) Aerial view of the bridge;
(B) Displacement time series; (C) Elevation view of the bridge. Source: Images for Figure 10A,C
were obtained from Google Earth [48].

Seaward Avenue Overcrossing is a pre-stressed concrete continuous box beam/girder bridge,
spanning 68.6 m in length, with a width of 32.3 m. This bridge also lies just northwest of the Santa Clara
River Bridge, roughly 600 m from the coast. It also lies just outside of the area where land subsidence
is outlined in Figure 3. It presents velocities of ~0–4 mm/year, and an average total displacement of
~3 mm in the downward direction. The low displacement (~3 mm) that this bridge is experiencing
indicates that the bridge is stable.

Carmen Drive Overcrossing is a pre-stressed concrete continuous box beam/girder bridge,
spanning 60.0 m in length, with a width of 26.2 m. This bridge lies east outside of Oxnard city
limits in Camarillo, CA. It presents velocities of ~0–4 mm/year, and an average total displacement of
~13 mm in the downward direction. The displacement of ~13 mm is less than a third of the magnitude
of the bridge displacement in high velocity areas.

The minimal amount of displacement these stable bridges display is in alignment with the regional
displacement trends. For example, the Victoria Avenue Overcrossing is located along the outer limits
of the land subsidence area (Figure 3) and has significantly lower ground displacements compared to
the center of Oxnard.

7. Limitations

Throughout the process of monitoring bridge and regional displacement using GIS and PSI there
were a few limitations which caused gaps in data and potential error in the results. As stated, the
data covering the Oxnard area were obtained using ENVISAT, which collected radar images with a
spatial resolution of ~20 m. The 20-m resolution is quite coarse and utilizing a satellite with better
spatial resolution (e.g., COSMO-SkyMed or TerraSAR-X) would increase PS point density. Using
a resolution coarser than many bridge components also causes uncertainty as to which part of the
bridge is experiencing the measured deformation. The data along just outside of the bridge could
be potentially be data collected from the bridge deck, but due to the resolution, there is a chance
the data could just be from the beams holding the bridge in place or the surrounding ground below
the bridge. Another limiting factor of this method is related to the sensor LOS direction. When the
satellite collects its data, it sends a radar beam to the surface of the earth at an incidence angle of ~21◦

from vertical and at N85◦W azimuth direction, limiting the displacement measurements to just the
LOS [5]. The last major limiting factor this monitoring method experiences is temporal decorrelation
due to significant changes in ground target location, geometry, and geophysical properties. PSI
works well over relatively slow-moving areas, experiencing deformation rates less than ~2.5 cm/year;
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areas experiencing a relatively large deformation will decorrelate due to significant location (X, Y)
change between two radar images and are unmeasurable with this technique [5]. Vegetation will also
cause decorrelation and create gaps in PS coverage (significant changes in geometry and geophysical
properties to ground targets in vegetated areas). As displayed in Figure 3, there are areas where the
ENVISAT satellite did not measure ground deformation.

8. Conclusions

The purpose of this paper is to explore the option of using the satellite-based remote sensing
data to monitor ground displacement and transportation infrastructure monitoring. PSI technique
with ENVISAT imagery was used to measure ground displacement in Oxnard, California, which was
used to monitor not only the bridges in Oxnard but also the regional subsidence encompassing the
area. Using GIS and PSI data, three of the many bridges displaying movement were further analyzed
for displacement patterns along each bridge. The displacement of these bridges as well as bridges
displaying more stable conditions demonstrated the regional subsidence that the area of Oxnard is
experiencing. Unique displacement within each bridge that exceeded the regional subsidence patterns
was linked to structural displacement within each bridge.

Beyond the demonstration of how PSI technique can be used to monitor bridges and regional
displacement, the study showed how regional and structural displacement components could be
differentiated with GIS-based analysis. In this case, through the geological and hydrological study
of the Oxnard area and regional displacement patterns found through PSI technique, the cause for
regional and structural displacement in Oxnard, California, can be linked to land subsidence due to
groundwater pumping.
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