17 research outputs found

    Wire-driven mechanism and highly efficient propulsion in water.

    Get PDF
    自然生物的杰出表现往往令人们叹为观止。正因为如此,在机器人研究中对自然界动植物的模仿从未间断。本文受动物肌肉骨骼系统(尤其是蛇的脊柱以及章鱼手臂的肌肉分布)的启发,设计了一种新型的仿生拉线机构。该机构由柔性骨架以及成对拉线组成。柔性骨架提供支撑,拉线模拟肌肉将驱动器的运动和力传递给骨架,并控制骨架运动。从骨架结构分,拉线机构可分为蛇形拉线机构以及连续型拉线机构;从骨架分段来看,拉线机构可分为单段式拉线机构以及多段式拉线机构,其中每段由一或两对拉线控制。拉线机构的主要性能特征包括:大柔性,高度欠驱动,杠杆效应,以及远程传力。机构的柔性使得它可以产生很大的弯曲变形;欠驱动设计极大地减少了驱动器的数目,简化了系统结构;在杠杆效应下,骨架末端速度、加速度与拉线的速度、加速度相比得到数十倍放大;通过拉线将驱动器的运动和力远程传递给执行机构,使得拉线机构结构简单紧凑。基于以上特征,拉线机构不仅适合工作于狭窄空间,同时也适合于摆动推进,尤其是水下推进。论文系统地介绍了拉线机构的设计,运动学,工作空间,静力学以及动力学模型。在常曲率假设下分别建立了蛇形拉线机构以及连续型拉线机构的运动学模型,在此基础上建立了一个通用运动学模型,以及工作空间模型。与传统避障相反,本文提出了一种利用现有障碍或主动布置约束来拓展工作空间的新方法。通过牛顿-欧拉法以及拉格朗日方程建立了蛇形拉线机构的静力学模型以及动力学模型。在非线性欧拉-伯努利梁理论下结合汉密尔顿原理建立了连续型拉线机构的静力学模型以及动力学模型。论文中利用拉线机构设计了一系列新型水下推进器。与传统机器鱼推进器设计方法(单关节,多关节以及基于智能材料的连续型设计)相比,基于拉线机构的水下推进器的优点在于:所需驱动器少,能更好地模拟鱼的游动,易于控制,推进效率高,以及容易衍生新型推进器。设计制作了四条拉线驱动机器鱼,以此为平台验证了拉线推进器的性能以及优点。实验结果表明,基于蛇形拉线机构的推进器可以提供较大推力;基于连续型拉线机构设计的推进器受摩擦影响较小;基于单段式拉线机构的推进器可以模仿鱼类摆动式推进,具有很好的转弯性能;基于多段式拉线机构的推进器可以同时模仿摆动式推进和波动式推进,具有更好的稳定性以及游速。此外,基于拉线机构制造了一种新型矢量推进器。该推进器可以提供任意方向的推力,从而提高机器鱼的机动性能。实验中,在两个额定功率为1瓦的电机驱动下,机器鱼的最大游速为0.67 体长/秒;最小转弯半径为0.24倍体长;转弯速度为51.4 度/秒;最高推进效率为92.85%。最后,采用拉线推进器制作了一个室内空中移动机器人,取名为Flying Octopus。它由一个氦气球提供浮力悬停在空中,通过四个独立控制的拉线扑翼驱动可在三维空间自由运动。Attracted by the outstanding performance of natural creatures, researchers have been mimicking animals and plants to develop their robots. Inspired by animals’ musculoskeletal system, especially the skeletal structure of snakes and octopus arm muscle arrangement, in this thesis, a novel wire-driven mechanism (WDM) is designed. It is composed of a flexible backbone and a number of controlling wire groups. The flexible backbone provides support, while the wire groups transmit motion and force from the actuators, mimicking the muscles. According to its backbone structure, the WDM is categorized as serpentine WDM and continuum WDM. Depending on the backbone segmentation, WDM is divided into single segment WDM and multi-segment WDM. Each segment is controlled by one or two wire groups. Features of WDM include: flexible, highly under-actuated, leverage effect, and long range force and motion transmission. The flexibility enables the WDM making large deformation, while the under-actuation greatly reduces th number of actuators, simplifying the system. With the leverage effect, WDM distal end velocity and acceleration is greatly amplified from that of wire. Also, in the WDM, the actuators and the backbone are serperated. Actuator’s motion is transmitted by the wires. This makes the WDM very compact. With these features, the WDM is not only well suited to confined space, but also flapping propulsion, especially in water.In the thesis, the design, kinematics, workspace, static and dynamic models of the WDM are explored systematically. Under the constant curvature assumption, the kinematic model of serpentine WDM and continuum WDM are established. A generalized model is also developed. Workspace model is built from the forward kinematic model. Rather than avoiding obstacles, a novel idea of employing obstacles or actively deploying constraints to expand workspace is also discussed for WDM-based flexible manipulators. The static model and dynamic model of serpentine WDM is developed using the Newton-Euler method and the Lagrange Equation, while that of continuum WDM is built under the non-linear Euler-Bernoulli Beam theory and the extended Hamilton’s principle.In the thesis, a number of novel WDM based underwater propulsors are developed. Compared with existing fish-like propulsor designs, including single joint design, multi-joint design, and smart material based continuum design, the proposed WDM-based propulsors have advantages in several aspects, such as employing less actuators, better resembling the fish swimming body curve, ease of control, and more importantly, being highly efficient. Also, brand new propulsors can be easily developed using the WDM. To demonstrate the features as well as the advantages of WDM propulsors, four robot fish prototypes are developed. Experiments show that the serpentine WDM-based propulsor could provide large flapping force while the continuum WDM-based propulsor is less affected by joint friction. On the other hand, single segment WDM propulsor can make oscillatory swim while multi- segment WDM propulsor can make both oscillatory and undulatory swims. The undulatory swimming outperforms the oscillatory swimming in stability and speed, but is inferior in turning around. In addition, a novel robot fish with vector propulsion capability is also developed. It can provide thrust in arbitrary directions, hence, improving the maneuverability of the robot fish. In the experiments, with the power limit of two watts, the maximum forward speed of the WDM robot fishes can reach 0.67 BL (Body Length)/s. The minimum turning radius is 0.24 BL, and the turning speed is 51.4°/s. The maximum Froude efficiency of the WDM robot fishes is 92.85%. Finally, the WDM-based propulsor is used to build an indoor Lighter-than-Air- Vehicle (LTAV), named Flying Octopus. It is suspended in the air by a helium balloon and actuated by four independently controlled wire-driven flapping wings. With the wing propulsion, it can move in 3D space effectively.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Li, Zheng.Thesis (Ph.D.)--Chinese University of Hong Kong, 2013.Includes bibliographical references (leaves 205-214).Abstracts also in Chinese.Abstracth --- p.i摘要 --- p.iiiAcknowledgement --- p.vList of Figures --- p.xiList of Tables --- p.xviiChapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Background --- p.1Chapter 1.2 --- Related Research --- p.2Chapter 1.2.1 --- Flexible Manipulator --- p.2Chapter 1.2.2 --- Robot Fish --- p.10Chapter 1.3 --- Motivation of the Dissertation --- p.13Chapter 1.4 --- Organization of the Dissertation --- p.14Chapter Chapter 2 --- Biomimetic Wire-Driven Mechanism --- p.16Chapter 2.1 --- Inspiration from Nature --- p.16Chapter 2.1.1 --- Snake Skeleton --- p.18Chapter 2.1.2 --- Octopus Arm --- p.19Chapter 2.2 --- Wire-Driven Mechanism Design --- p.20Chapter 2.2.1 --- Flexible Backbone --- p.20Chapter 2.2.2 --- Backbone Segmentation --- p.26Chapter 2.2.3 --- Wire Configuration --- p.28Chapter 2.3 --- Wire-Driven Mechanism Categorization --- p.31Chapter 2.4 --- Summary --- p.32Chapter Chapter 3 --- Kinematics and Workspace of the Wire-Driven Mechanism --- p.33Chapter 3.1 --- Kinematic Model of Single Segment WDM --- p.33Chapter 3.1.1 --- Kinematic Model of the Serpentine WDM --- p.34Chapter 3.1.2 --- Kinematic Model of the Continuum WDM --- p.39Chapter 3.1.3 --- A Generalized Kinematic Model --- p.43Chapter 3.2 --- Kinematic Model of Multi-Segment WDM --- p.47Chapter 3.2.1 --- Forward Kinematics --- p.47Chapter 3.2.2 --- Inverse Kinematics --- p.51Chapter 3.3 --- Workspace --- p.52Chapter 3.3.1 --- Workspace of Single Segment WDM --- p.52Chapter 3.3.2 --- Workspace of Multi-Segment WDM --- p.53Chapter 3.4 --- Employing Obstacles to Expand WDM Workspace --- p.55Chapter 3.4.1 --- Constrained Kinematics Model of WDM --- p.55Chapter 3.4.2 --- WDM Workspace with Constraints --- p.61Chapter 3.5 --- Model Validation via Experiment --- p.64Chapter 3.5.1 --- Single Segment WDM Kinematic Model Validation --- p.64Chapter 3.5.2 --- Multi-Segment WDM Kinematic Model Validation --- p.66Chapter 3.5.3 --- Constrained Kinematic Model Validation --- p.70Chapter 3.6 --- Summary --- p.73Chapter Chapter 4 --- Statics and Dynamics of the Wire-Driven Mechanism --- p.75Chapter 4.1 --- Static Model of the Wire-Driven Mechanism --- p.75Chapter 4.1.1 --- Static Model of SPSP WDM --- p.75Chapter 4.1.2 --- Static Model of SPCP WDM --- p.81Chapter 4.2 --- Dynamic Model of the Wire-Driven Mechanism --- p.88Chapter 4.2.1 --- Dynamic Model of SPSP WDM --- p.88Chapter 4.2.2 --- Dynamic Model of SPCP WDM --- p.92Chapter 4.3 --- Summary --- p.94Chapter Chapter 5 --- Application I - Wire-Driven Robot Fish --- p.95Chapter 5.1 --- Fish Swimming Introduction --- p.95Chapter 5.1.1 --- Fish Swimming Categories --- p.95Chapter 5.1.2 --- Body Curve Function --- p.96Chapter 5.1.3 --- Fish Swimming Hydrodynamics --- p.101Chapter 5.1.4 --- Fish Swimming Data --- p.103Chapter 5.2 --- Oscillatory Wire-Driven Robot Fish --- p.104Chapter 5.2.1 --- Serpentine Oscillatory Wire-Driven Robot Fish Design --- p.105Chapter 5.2.2 --- Continuum Oscillatory Wire-Driven Robot Fish Design --- p.110Chapter 5.2.3 --- Oscillatory Robot Fish Propulsion Model --- p.114Chapter 5.2.4 --- Robot Fish Swimming Control --- p.116Chapter 5.2.5 --- Swimming Experiments --- p.118Chapter 5.3 --- Undulatory Wire-Driven Robot Fish --- p.125Chapter 5.3.1 --- Undulatory Wire-Driven Robot Fish Design --- p.125Chapter 5.3.2 --- Undulatory Wire-Driven Robot Fish Propulsion Model --- p.130Chapter 5.3.3 --- Swimming Experiments --- p.131Chapter 5.4 --- Vector Propelled Wire-Driven Robot Fish --- p.136Chapter 5.4.1 --- Vector Propelled Wire-Driven Robot Fish Design --- p.136Chapter 5.4.2 --- Tail Motion Analysis --- p.140Chapter 5.4.3 --- Swimming Experiments --- p.142Chapter 5.5 --- Wire-Driven Robot Fish Performance and Discussion --- p.144Chapter 5.5.1 --- Performance --- p.144Chapter 5.5.2 --- Discussion --- p.147Chapter 5.6 --- Summary --- p.149Chapter Chapter 6 --- Aplication II - Wire-Driven LTAV - Flying Octopus --- p.151Chapter 6.1 --- Introduction --- p.151Chapter 6.2 --- Flying Octopus Design --- p.152Chapter 6.2.1 --- Flying Octopus Body Design --- p.152Chapter 6.2.2 --- Wire-Driven Flapping Wing Design --- p.153Chapter 6.3 --- Flying Octopus Motion Control --- p.156Chapter 6.3.1 --- Propulsion Model --- p.156Chapter 6.3.2 --- Motion Control Strategy --- p.157Chapter 6.3.3 --- Motion Simulation --- p.159Chapter 6.4 --- Prototype and Indoor Experiments --- p.161Chapter 6.4.1 --- Flying Octopus Prototype --- p.161Chapter 6.4.2 --- Indoor Experiments --- p.163Chapter 6.4.3 --- Discussion --- p.165Chapter 6.5 --- Summary --- p.166Chapter Chapter 7 --- Conclusions and Future Work --- p.167Chapter Appendix A - --- Publication Record --- p.170Chapter Appendix B - --- Derivation --- p.172Chapter Appendix C --- Matlab Programs --- p.176References --- p.20

    Aerial Robotics for Inspection and Maintenance

    Get PDF
    Aerial robots with perception, navigation, and manipulation capabilities are extending the range of applications of drones, allowing the integration of different sensor devices and robotic manipulators to perform inspection and maintenance operations on infrastructures such as power lines, bridges, viaducts, or walls, involving typically physical interactions on flight. New research and technological challenges arise from applications demanding the benefits of aerial robots, particularly in outdoor environments. This book collects eleven papers from different research groups from Spain, Croatia, Italy, Japan, the USA, the Netherlands, and Denmark, focused on the design, development, and experimental validation of methods and technologies for inspection and maintenance using aerial robots

    Nautilus ROV Robot Manipulator

    Get PDF
    Global warming and climate change are prevalent issues in today’s society. As a result, research in the ocean, our world’s biggest ecosystem, is imperative in efforts to protect the environment. Santa Clara University’s Robotic Systems Lab contributes to this field through work and developments on remotely operated vehicles (ROVs). An existing ROV system called Nautilus consists of a robot arm, end effector, and storage system in order to collect various types of sediments at a depth of 300 feet. However, the previous system does not meet that requirement. In direct collaboration with researchers within the Monterey Bay Aquarium Research Institute, we were able to create and accomplish a set of deliverables to improve our ROV. Our team’s main goal was to make the system functional and more efficient by redesigning the manipulator arm and soft gripper in order to retrieve samples, as well as creating a sample storage container that is in view of the camera or workspace to document and record the location of those samples. Our project gives researchers a cheaper alternative compared to existing sample collection methods, which are relatively more expensive, so that they can continue to explore and document stretches of the ocean far more easily. The project was done with the guidance of faculty in the Robotic Systems Lab as well as researchers from the Monterey Bay Aquarium Research Institute (MBARI)

    Snake Robots for Surgical Applications: A Review

    Get PDF
    Although substantial advancements have been achieved in robot-assisted surgery, the blueprint to existing snake robotics predominantly focuses on the preliminary structural design, control, and human–robot interfaces, with features which have not been particularly explored in the literature. This paper aims to conduct a review of planning and operation concepts of hyper-redundant serpentine robots for surgical use, as well as any future challenges and solutions for better manipulation. Current researchers in the field of the manufacture and navigation of snake robots have faced issues, such as a low dexterity of the end-effectors around delicate organs, state estimation and the lack of depth perception on two-dimensional screens. A wide range of robots have been analysed, such as the i2Snake robot, inspiring the use of force and position feedback, visual servoing and augmented reality (AR). We present the types of actuation methods, robot kinematics, dynamics, sensing, and prospects of AR integration in snake robots, whilst addressing their shortcomings to facilitate the surgeon’s task. For a smoother gait control, validation and optimization algorithms such as deep learning databases are examined to mitigate redundancy in module linkage backlash and accidental self-collision. In essence, we aim to provide an outlook on robot configurations during motion by enhancing their material compositions within anatomical biocompatibility standards

    Robotic manipulators for in situ inspections of jet engines

    Get PDF
    Jet engines need to be inspected periodically and, in some instances, repaired. Currently, some of these maintenance operations require the engine to be removed from the wing and dismantled, which has a significant associated cost. The capability of performing some of these inspections and repairs while the engine is on-wing could lead to important cost savings. However, existing technology for on-wing operations is limited, and does not suffice to satisfy some of the needs. In this work, the problem of performing on-wing operations such as inspection and repair is analysed, and after an extensive literature review, a novel robotic system for the on-wing insertion and deployment of probes or other tools is proposed. The system consists of a fine-positioner, which is a miniature and dexterous robotic manipulator; a gross-positioner, which is a device to insert the fine-positioner to the engine region of interest; an end-effector, such as a probe; a deployment mechanism, which is a passive device to ensure correct contact between probe and component; and a feedback system that provides information about the robot state for control. The research and development work conducted to address the main challenges to create this robotic system is presented in this thesis. The work is focussed on the fine-positioner, as it is the most relevant and complex part of the system. After a literature review of relevant work, and as part of the exploration of potential robot concepts for the system, the kinematic capabilities of concentric tube robots (CTRs) are first investigated. The complete set of stable trajectories that can be traced in follow-the-leader motion is discovered. A case study involving simulations and an experiment is then presented to showcase and verify the work. The research findings indicate that CTRs are not suitable for the fine-positioner. However, they show that CTRs with non-annular cross section can be used for the gross-positioner. In addition, the new trajectories discovered show promise in minimally invasive surgery (MIS). Soft robotic manipulators with fluidic actuation are then selected as the most suitable concept for the fine-positioner. The design of soft robotic manipulators with fluidic actuation is investigated from a general perspective. A general framework for the design of these devices is proposed, and a set of design principles are derived. These principles are first applied in a MIS case study to illustrate and verify the work. Finite element (FE) simulations are then reported to perform design optimisation, and thus complete the case study. The design study is then applied to determine the most suitable design for the fine-positioner. An additional analytical derivation is developed, followed by FE simulations, which extend those of the case study. Eventually, this work yields a final design of the fine-positioner. The final design found is different from existing ones, and is shown to provide an important performance improvement with respect to existing soft robots in terms of wrenches it can support. The control of soft and continuum robots relevant to the fine-positioner is also studied. The full kinematics of continuum robots with constant curvature bending and extending capabilities are first investigated, which correspond to a preliminary design concept conceived for the fine-positioner. Closed-form solutions are derived, closing an open problem. These kinematics, however, do not exactly match the final fine-positioner design selected. Thus, an alternative control approach based on closed-loop control laws is then adopted. For this, a mechanical model is first developed. Closed-loop control laws are then derived based on this mechanical model for planar operation of a segment of the fine-positioner. The control laws obtained represent the foundation for the subsequent development of control laws for a full fine-positioner operating in 3D. Furthermore, work on path planning for nonholonomic systems is also reported, and a new algorithm is presented, which can be applied for the insertion of the overall robotic system. Solutions to the other parts of the robotic system for on-wing operations are also reported. A gross-positioner consisting of a non-annular CTR is proposed. Solutions for a deployment mechanism are also presented. Potential feedback systems are outlined. In addition, methods for the fabrication of the systems are reported, and the electronics and systems required for the assembly of the different parts are described. Finally, the use of the robotic system to perform on-wing inspections in a representative case study is studied to determine the viability. Inspection strategies are shortlisted, and simulations and experiments are used to study them. The results, however, indicate that inspection is not viable since the signal to noise ratio is excessively low. Nonetheless, the robotic system proposed, and the research conducted, are still expected to be useful to perform a range of on-wing operations that require the insertion and deployment of a probe or other end-effector. In addition, the trajectories discovered for CTRs, the design found for the fine-positioner, and the advances on control, also have significant potential in MIS, where there is an important need for miniature robotic manipulators and similar devices.Open Acces

    Robotic Minimally Invasive Tools for Restricted Access Confined Spaces

    Get PDF
    A study has been performed in the design and fabrication of deployable borehole robots into confined spaces. Three robot systems have been developed to perform a visual survey of a subterranean space where for any reason humans could not enter. A 12mm diameter snake arm was designed with a focus on the cable tensions and the failure modes for the components that make the snake arm. An iterative solver was developed to model the snake arm and algorithmically calculate the snake arms optimal length with consideration of the failure modes. A robot was developed to extend the range capabilities of borehole robots using reconfigurable borehole robots based around established actuation and manufacturing techniques. The expected distance and weight requirements of the robot are calculated alongside the forces the robot is required to generate in order to achieve them. The whegged design incorporated into the tracks is also analysed to measure the capability of the robot over rough terrain. Finally, the experiments to find the actual driving forces of the tracks are performed and used to calculate the actual range of the robot in comparison to the target range. The potential of reconfigurable mobile robots for deployment through boreholes is limited by the requirement for conventional gears, motors, and joints. This chapter explores the use of smart materials and innovative manufacturing techniques to form a novel concept of a self-folding robotic joint for a self-assembling robotic system. The design uses shape memory alloys fabricated in laminate structures with heaters to create folding structures

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 05)

    Get PDF
    Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems
    corecore