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Abstract 

Attracted by the outstanding performance of natural creatures, researchers have 

been mimicking animals and plants to develop their robots. Inspired by animals' 

musculoskeletal system, especially the skeletal structure of snakes and octopus 

arm muscle arrangement, in this thesis, a novel wire-driven mechanism (WDM) is 

designed. It is composed of a flexible backbone and a number of controlling wire 

groups. The flexible backbone provides support, while the wire groups transmit 

motion and force from the actuators, mimicking the muscles. According to its 

backbone structure, the W D M is categorized as serpentine W D M and continuum 

W D M . Depending on the backbone segmentation, W D M is divided into single 

segment W D M and multi-segment W D M . Each segment is controlled by one or 

two wire groups. Features of W D M include: flexible, highly under-actuated, 

leverage effect, and long range force and motion transmission. The flexibil i ty 

enables the W D M making large deformation, while the under-actuation greatly 

reduces the number of actuators, simplifying the system. Wi th the leverage effect, 

W D M distal end velocity and acceleration is greatly amplified from that of wire. 

Also, in the W D M , the actuators and the backbone are serperated. Actuator's 

motion is transmitted by the wires. This makes the W D M very compact. Wi th 

these features, the W D M is not only well suited to confined space, but also 

flapping propulsion, especially in water. 

In the thesis, the design, kinematics, workspace, static and dynamic models of the 

W D M are explored systematically. Under the constant curvature assumption, the 

kinematic model of serpentine W D M and continuum W D M are established. A 

generalized model is also developed. Workspace model is built from the forward 

kinematic model. Rather than avoiding obstacles, a novel idea of employing 

obstacles or actively deploying constraints to expand workspace is also discussed 

for WDM-based flexible manipulators. The static model and dynamic model of 

serpentine W D M is developed using the Newton-Euler method and the Lagrange 

Equation, while that of continuum W D M is built under the non-linear Euler-

Bernoulli Beam theory and the extended Hamilton's principle. 

In the thesis, a number of novel W D M based underwater propulsors are 

developed. Compared with existing fish-like propulsor designs, including single 



jo int design, multi- joint design, and smart material based continuum design, the 

proposed WDM-based propulsors have advantages in several aspects, such as 

employing less actuators, better resembling the fish swimming body curve, ease 

of control, and more importantly, being highly efficient. Also, brand new 

propulsors can be easily developed using the W D M . To demonstrate the features 

as well as the advantages of W D M propulsors, four robot fish prototypes are 

developed. Experiments show that the serpentine WDM-based propulsor could 

provide large flapping force while the continuum WDM-based propulsor is less 

affected by joint friction. On the other hand, single segment W D M propulsor can 

make oscillatory swim while multi- segment W D M propulsor can make both 

oscillatory and undulatory swims. The undulatory swimming outperforms the 

oscillatory swimming in stability and speed, but is inferior in turning around. In 

addition, a novel robot fish wi th vector propulsion capability is also developed. It 

can provide thrust in arbitrary directions, hence, improving the maneuverability 

of the robot fish. In the experiments, wi th the power l imit of two watts, the 

maximum forward speed of the W D M robot fishes can reach 0.67 B L (Body 

Length)/s. The minimum turning radius is 0.24 BL, and the turning speed is 

51.40/s. The maximum Froude efficiency of the W D M robot fishes is 92.85%. 

Finally, the WDM-based propulsor is used to build an indoor Lighter-than-Air-

Vehicle (LTAV), named Flying Octopus. It is suspended in the air by a helium 

balloon and actuated by four independently controlled wire-driven flapping wings. 

Wi th the wing propulsion, it can move in 3D space effectively. 



摘要 

自然生物的杰出表现往往令人们叹为观止。正因为如此，在机器人研 

宄中对自然界动植物的模仿从未间断。本文受动物肌肉骨豁系统（尤其是 

蛇的脊柱以及章鱼手臂的肌肉分布）的启发，设计了一种新型的仿生拉线 

机构。该机构由柔性骨架以及成对拉线组成。柔性骨架提供支撑，拉线模 

拟肌肉将驱动器的运动和力传递给骨架，并控制骨架运动。从骨架结构分， 

拉线机构可分为蛇形拉线机构以及连续型拉线机构；从骨架分段来看，拉 

线机构可分为单段式拉线机构以及多段式拉线机构，其中每段由一或两对 

拉线控制。拉线机构的主要性能特征包括：大柔性，高度欠驱动，杠杆效 

应，以及远程传力。机构的柔性使得它可以产生很大的弯曲变形；欠驱动 

设计极大地减少了驱动器的数目，简化了系统结构；在杠杆效应下，骨架 

末端速度、加速度与拉线的速度、加速度相比得到数十倍放大；通过拉线 

将驱动器的运动和力远程传递给执行机构，使得拉线机构结构简单紧凑。 

基于以上特征，拉线机构不仅适合工作于狭窄空间，同时也适合于摆动推 

进，尤其是水下推进。 

论文系统地介绍了拉线机构的设计，运动学，工作空间，静力学以及 

动力学模型。在常曲率假设下分别建立了蛇形拉线机构以及连续型拉线机 

构的运动学模型，在此基础上建立了一个通用运动学模型，以及工作空间 

模型。与传统避障相反，本文提出了一种利用现有障碍或主动布置约束来 

拓展工作空间的新方法。通过牛顿-欧拉法以及拉格朗日方程建立了蛇形拉 

线机构的静力学模型以及动力学模型。在非线性欧拉-伯努利梁理论下结合 

汉密尔顿原理建立了连续型拉线机构的静力学模型以及动力学模型。 

论文中利用拉线机构设计了一系列新型水下推进器。与传统机器鱼推 

进器设计方法（单关节，多关节以及基于智能材料的连续型设计）相比， 

基于拉线机构的水下推进器的优点在于：所需驱动器少，能更好地模拟鱼 

的游动，易于控制，推进效率高，以及容易衍生新型推进器。设计制作了 

四条拉线驱动机器鱼，以此为平台验证了拉线推进器的性能以及优点。实 

验结果表明，基于蛇形拉线机构的推进器可以提供较大推力；基于连续型 
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拉线机构设计的推进器受摩擦影响较小；基于单段式拉线机构的推进器可 

以模仿鱼类摆动式推进，具有很好的转弯性能；基于多段式拉线机构的推 

进器可以同时模仿摆动式推进和波动式推进，具有更好的稳定性以及游速。 

此外，基于拉线机构制造了一种新型矢量推进器。该推进器可以提供任意 

方向的推力，从而提高机器鱼的机动性能。实验中，在两个额定功率为1 

瓦的电机驱动下，机器鱼的最大游速为0.67体长/秒；最小转弯半径为0.24 

倍体长；转弯速度为51.4度/秒；最高推进效率为92.85%。最后，采用拉线 

推进器制作了一个室内空中移动机器人，取名为Flying Octopus。它由一个 

氦气球提供浮力悬停在空中，通过四个独立控制的拉线扑翼驱动可在三维 

空间自由运动。 
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Chapter 1 Introduction 

In this chapter, the background of this research is presented. Related work and the 

status of current research are reviewed, which is followed by the motivations of 

this research. A t the end, the organization of the thesis is given. 

1.1 Background 

Robots are considered as the solution to many of the world's hot issues, such as 

labor shortage, medical care, nuclear safety, extreme environment exploration, etc. 

The United States sees robotics as one of its key strategies to promote the 

industry [1]. In 2011, the manufacturing tycoon Foxconn announced its robot plan 

- b u i l d i n g one mil l ion robots to perform the repetitive tasks and to address the 

labor issue [2]. In 2011, N A S A launched the Curiosity to Mars [3]. In 2012 China 

sent the deep-sea submersible Jiao Long down to the Mariana Trench, reaching a 

depth of 7,062 meters [4]. A l l these show that robotics research is entering into a 

new era. 

From the structural point of view, robots are categorized as discrete robots, 

serpentine robots and continuum robots [5]. Both serpentine robots and 

continuum robots are flexible. Compared with discrete rigid robots, the flexible 

robots have more degrees of freedom (DOF) and are well suited to confined 

spaces. They have wide applications, such as nuclear reactor inspection, 

minimally invasive surgery, disaster relief, etc. The research of flexible robots, 

including mechanism design, modeling and control has grown rapidly recently, 

especially after the Fukushima disaster in 2011. In flexible robot development, 

researchers tend to seek inspiration from nature, such as snakes, elephant trunks, 

octopus arms, mammal tongues, etc. On the other hand, with the growing desire 

for ocean exploration and water quality monitoring, highly efficient underwater 

robots, e.g. robot fish, are of great interest. Compared with traditional screw 

propellers, fish-like flapping propulsion is advantageous in aspects such as, 

efficiency, maneuverability, noise, etc. Europe launched the SHOAL project in 

2009 to develop autonomous robot fish to inspect the harbors around the 
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Mediterranean [6]. The Mexico gulf oil spill in 2010 further promoted the 

research of robot fish to perform water quality monitoring and treatment [7]. 

Mechanism design is fundamental in robot development. It determines the motion, 

as well as the task a robot can perform. Robot fish's flapping tail deforms itself to 

interact wi th water. From the mechanism point of view, it is the same as that of a 

flexible robot. However, this seems to be ignored by most researchers. In the past, 

the researches of these two types of robots have little overlap. 

1.2 Related Research 

Research related to this work includes that focusing on the flexible manipulator, 

especially underactuated flexible manipulator (UFM), and robot fish. 

1.2.1 Flexible Manipulator 

The flexible manipulator usually has tens of DOFs. Its body is flexible and 

capable of large deformation. It was generally regarded as firstly introduced by 

Anderson and Horn in 1967 [8]. Their robot is named “tensor arm manipulator”, 

and the patent was authorized in 1970 [9]. When the number of actuators is less 

than the flexible robot's DOFs, it is underactuated and is called an underactuated 

flexible manipulator (UFM). The structure of the U F M can be serpentine or 

continuum. The actuation method of a U F M is diverse. Some typical actuation 

methods are: Pneumatic Art i f icial Muscle (PAM); Shape Memory Al loy (SMA); 

Electro Active Polymer (EAP), especially Iron Polymer Metal Composite (IPMC); 

Cable/Tendon/Wire driven [10-12] and concentric tubes. The fol lowing shows 

some well-known fexible manipulators. 

The Tensor A rm Manipulator [8, 9] was developed in 1967 by V. C. Anderson 

and R. C. Horn. It comprises a series of plates which are interconnected by 

universal joints. The plates have a number of apertures through which the tendons 

can pass by. The tendons are connected to the plates. The plates can be pivoted to 

various positions by pulling the tendons. In this design, the manipulator is ful ly 

actuated, as shown in Figure 1-1. As a result, the number of tendons needed is 

enormous. The structure of the manipulator is complicated and the control of this 

manipulator is very difficult. 
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Figure 1-1 Tensor Arm Manipulator: Side View of the Tensor Arm Manipulator 

(left) and Partial Cross-Section View of the Plate (right) [8] 

Figure 1-2 Amadeus: Grasping Objects (left); Bellow Configuration (right) [13] 

The Amadeus [13, 14] (advanced manipulator for deep underwater sampling) is 

an international subsea manipulator project, funded by the European Union 

Marine Science and Technology Research Program. The first Amadeus prototype 

was completed in 1996 by G. Robinson, J. Davies and J. Jones. It has a three 

fingered hydraulic end-effector. The fingers have a continuum structure without 

moving parts. The finger motion is generated by the elastic deformation of the 

bellows. The compliant continuum fingers can grasp irregularly shaped objects. 

Also, they passively react to disturbances within the environment. This increases 

the grasping stability and reduces the risk of contact damage. In this project, 

applications are studied for the continuum manipulator, such as the “dual-trunk 

inspection device” and the “FLAPS fin-ray”. Figure 1-2 shows the Amadeus 

robot. The left-hand figure shows it grasping an apple, the middle figure shows it 

grasping a can, and the right-hand figure is the bellow configuration of the 
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manipulator. In this configuration, the three actuators are evenly displaced. The 

angular spacing is 120°. This actuator spatial configuration is adopted by most of 

the subsequent continuum robots. In this configuration, the number of actuators 

needed for 3D bending is three, which is the minimum. However, in the bending 

actuators' motions are coupled. 

Figure 1-3 The Elephant Trunk Robot: Hook Configuration (left); Schematic of 

the Manipulator Section (right) [15] 

The Clemson Elephant Trunk Robot [15-30] is a 4-section, 8-DOF manipulator 

developed by I. D. Walker and M. W. Hannan in 1999. Figure 1-3 shows the 

manipulator. The overall motion of the manipulator is controlled by a tendon 

servo system. There are in total 16 joints and each joint has two DOFs. Among all 

the 32 DOFs, only eight DOFs are controlled by the tendons. The remaining 

DOFs are constrained by the springs. The total length of the manipulator is 83.32 

cm and the total mass is 4.0 Kg. Diameters of the four sections are 10.16 cm, 8.89 

cm, 7.62 cm and 6.35 cm respectively. It is underactuated and the structure is 

simpler compared with the Tensor Arm Manipulator. However, the system is still 

very complicated and the positioning error is large. 

Figure 1-4 Tentacle Manipulator: Spatial (left); Planar (right) [31, 32] 
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The Clemson tentacle manipulator [31, 32] is a multi-segment cable-driven 

manipulator with a continuum backbone. It was first introduced by I. A. Gravagne, 

C. D. Rahn and I. D. Walker in 2000. Figure 1-4 shows the robot. Wi th this 

manipulator, the kinematics, vibration and manipulability of the continuum robot 

are studied [16, 31-36]. Compared with the elephant trunk robot, the number of 

moving parts is greatly reduced. However, the deformation is l imited by the 

backbone's elasticity. When the deformation is large, the kinematics model is 

highly nonlinear. Also, the payload capability is small. 

Figure 1-5 OctArm: OctArm V Prototype (left); Muscle Configuration (right) [37] 

The OctArm is a continuum robot developed by M. D. Grissom, I. D. Walker et al. 

in the early 2000s [18, 37]. Several OctArms were developed, such as OctArm I V 

has four sections and OctArm V has three sections. Figure 1-5 shows the OctArm 

V. It is actuated by the pneumatic artificial muscle. Each segment has three 

muscles. The muscle configuration is similar to that of the Amadeus robot. The 

load capacity of the OctArm is large compared with other continuum robots. For 

OctArm I V the vertical load capacity is 90 N and the transverse load capacity is 

16 N; for OctArm V these are 220 N and 70 N respectively. However, the 

response time is long. For OctArm V the extension time is 2.5 s. 

Figure 1-6 Air-Octor: Air-Octor Prototype (left); Cable Configuration (right) [38] 
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Air-Octor is a two-section continuum robot developed by W. McMahan, B. A. 

Jones and I. D. Walker in 2005 [36, 38-46]. Figure 1-6 shows the Air-Octor 

prototype. Its backbone is a pneumatically pressurized chamber. It uses a 

combination of motors and pneumatic pressure regulators for actuation. Each 

section has three DOFs: two bending DOFs and one extension DOF. The bending 

is controlled by three cables, and the extension is controlled by the air pressure. 

The outer diameter of the Air-Octor is 9 cm and the length can be controlled 

between 31 cm and 95 cm. For this robot, compliance is also controllable. 

However, precision motion control is difficult. Also, air leakage is a concern. 

Figure 1-7 Octopus Arm: Muscle Configuration (left); Prototype (right) [47] 

Inspired by the octopus arm, in 2009, Laschi, C. and his group proposed a robot 

arm [47]. It could bend in all directions, elongate, contract and control the 

stiffness. The robot uses the muscular hydrostat phenomenon, in which the 

volume does not change during the muscle contraction, to achieve these motions. 

Figure 1-7 shows the robot. The left-hand figure shows the muscle arrangement 

and the right-hand figure shows the robot prototype. There are two types of 

muscles: the longitudinal muscle and the transversal muscle. The bending is 

controlled by the longitudinal muscle and the elongation is controlled by the 

transversal muscle. When the transversal muscle contracts, the diameter of the 

arm reduces. Due to the hydrostat, the length of the robot increases. In this design, 

the muscle is a stack of EAP. 

Guglielmino, Emanuele, Caldwell et al. introduced a continuum manipulator in 

2010 [48]. The robot has 15 actuated degrees of motion (DOM) and eight DOFs 

as shown on the left of Figure 1-8. The actuation is achieved by pneumatic 

artificial muscles, which imitate the octopus arm's longitudinal muscle and 

transversal muscle. The robot has two sections. Different from the previous robots, 
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this robot not only has two bending DOFs and one translation DOF but is also 

capable of controlling the radial diameter. The diameter is controlled by the three 

transversal muscles. The problem with this robot is that it is soft wi th very limited 

payload capacity. Also, positioning and control is problematic. Another octopus 

arm-like robot was introduced in 2012 [49] as shown in the right-hand part of 

Figure 1-8. The bending motion of this robot is controlled by the cables and the 

diameter is controlled by the SMA. 

Figure 1-8 Octopus Arm Inspired Robots in Caldwell's group [48] [49] 

In the industry, OC robotics developed a snake arm robot [50]. It has as a similar 

structure as in the tensor arm manipulator and the elephant trunk robot. The 

connections between the links are universal joints. The bending motion is 

controlled by the tendons. The snake arm is placed on a moving platform, which 

provides the translation motion. It is used to inspect the engineering parts, such as 

engines, aircraft, etc. A simulator was also developed for better operation. The 

snake arm won the Queen's Award for Enterprise: Innovation in 2009. This is the 

most successful U F M at that time. 

Figure 1- 9 Snake Arm Robots and Simulator Developed by OC Robotics [50] 

Another successful industrial example is the Bionic Handling Assistant made by 

Festo [51]. It is a compliant, pneumatically actuated continuum manipulator for 
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cooperative manipulation. It has three sections and each section has two bending 

DOFs, as shown in Figure 1-10. The configuration is similar to that of the 

OctArm. It won the 2010 German Future Award. This again shows the world's 

recognition of UFMs. 

Figure 1-10 Bionic Handling Assistant [51] 

In recent years, UFMs have been of great interest especially in medical device 

development. Compared with the previous UFMs, the size of medical UFMs is 

small. Hence, the continuum structure is more frequently chosen. Also, the 

structure material and actuation method need to be bio-compatible. Therefore, 

tendon, cable or wire driven and concentric tube designs are the most frequently 

selected. Researchers such as Nabil Simaan, Pierre E. Dupont and Robert J. 

Webster I I I have been frequent contributors in this field. 

Figure 1-11 Continuum Robots Introduced by Nabil Simaan's Group [52] 

Nabil Simaan and his team developed several insertable continuum robotic end-

effectors for single port access surgery [52-64], as shown in Figure 1-11. These 

robots have a continuum backbone. Along the backbone are a couple of discs to 

guide the tendons. The backbone is partitioned into several segments. Each 

segment has two bending DOFs. The bending motions of each segment are 

controlled by pull ing and pushing the three tendons. The tendon configuration is 
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the same as that of the tensor arm manipulator. These tendons also serve as the 

secondary backbone. Wi th these robotic end-effectors, configuration estimation, 

kinematics, statics, force sensing capabilities, etc. are studied. 

Figure 1-12 Continuum Robots Introduced by Pierre E. Dupont's Group [65] 

Pierre E. Dupont and his team's continuum robots employ the concentric tube 

design [65-74]. As shown in Figure 1-12, the robot backbone is composed of 

three concentric elastic tubes. Each tube is pre-curved. The shape of the backbone 

is a combination of the three tubes' deformation. The end effector position and 

orientation are controlled by the rotation and insertion of the tubes with respect to 

each other. Wi th this novel design, the robot is very compact and the size can be 

very small, which is well suited for medical applications. However, precise 

positioning and trajectory control is not easy. Also, material fatigue is a concern. 

Figure 1-13 Robert Webster's Active Cannulas [75] 

Robert J. Webster I I I and his team also worked on concentric tube robots [5, 75-

88]. This type of robot is also named active cannulas. As shown in Figure 1-13, 

the outer diameter of the robot is less than 2.5 mm. Wi th this robot, they worked 

on the kinematics, mechanics, calibration, visual sensing, path planning, Jacobian 

and compliance matrices, etc. 
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1.2.2 Robot Fish 

Inspired by fish and other aquatic species, people have been building robot fishes 

for two decades since the robot tuna [89]. People are surprised by the efficiency 

and agility of their models. It is believed that fish's propulsion efficiency could 

reach 90% [89]. The speed of a sailfish could exceed 110 km/h [90], and the 

maximum recorded acceleration of a pike is 249 m/s，which is over 25 g [91]. 

The outstanding performance is achieved by multiple aspects, such as flapping 

tail, streamlined body, mucous surface, etc. Among all these factors, the most 

important one is their flapping tail, which is their actuation system, and also is the 

main target that people have been imitating. 

In fish, there are two types of propulsions, i.e. body and/or caudal f in (BCF) 

propulsion and medium and/or paired f in (MPF) propulsion [14]. BCF accounts 

for 85% of fish species. With in BCF, the motion modes are further divided into 

four categories, i.e. thunniform, carangiform, subcarangiform and anguilliform. 

Roughly speaking, the thunniform is viewed as oscillatory form and the other 

three are viewed as undulatory form. BCF is adopted by most of the fast 

swimmers, such as sailfish, tuna, pike, etc. Examples for MPF are manta ray and 

box fish. Compared wi th BCF swimmers, fish swimming by MPF is agile. In 

robot fish development, high speed and high efficiency are the main targets. 

Therefore, most current robot fishes adopt BCF, especially the undulatory form as 

the way to generate propulsion. 

The fundamental motion of BCF propulsion is flapping. There are a couple of 

ways to generate the flapping motion. One method is by using traditional 

mechanisms, e.g. crank, four-bar mechanism, etc. It transforms rotation to back 

and forth motion, and then to the tail 's flapping motion. In this method, the 

control is simple and the flapping is powerful. The drawback is that the tail is 

rigid and the flapping motion is far unlike the fish's swimming motion and lowers 

the propulsion efficiency. To better approximate the fish's swimming body curve, 

passive flexible fins can be used for this method. But the improvement is limited. 

Another way is by controlling the motion of serially linked motors, such as the 

robot fish introduced by [89, 92-97]. This is a widely used method in robot fish 

development. In this method, the fish body curve is fitted by a polyline, which 

contains several straight line segments. Compared wi th the single jo int method, 
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the motion in this method is closer to the fish's swimming body curve. However, 

motor synchronization is important. Also, the system becomes complicated with 

the increasing number of motors, and the energy consumption is high. Smart 

materials, such as Ionic Polymer Metal Composite (IPMC) [98-100], Shape 

Memory Al loy (SMA) [101-105] and Piezoelectric Material (PZT) [106-109] 

could also be used to generate the flapping motion. These materials can bend into 

a circular arc under control. The deformed shape can be very close to that of a 

swimming fish segment. However, deficiencies also exist. For IPMC flapping fins, 

they are soft and the force generated is limited. For SMA flapping fins, due to the 

heating and cooling process, the frequency is limited. Also, it is diff icult to 

control the flapping amplitude and motion. For PZT material, high voltage is 

needed and the strain is small. As a result, an additional mechanism to amplify 

the motion is needed. Another common drawback of the smart materials is that 

the material itself is highly energy inefficient. 

Table 1-1 Typical Macro-Scale Robot Fish 

M I T - Robot Tuna [110] Essex - G8 [111] 

BUAA-SPC I I [112] CAS Robot Fish [92] 
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IPMC Actuated Robot 
Fish - M S U [99] 

SMA Actuated Robot 
Fish - HIT [101] 

PZT Actuated Robot Fish 
- K U [106] 

Table 1-2 shows some representative meso-scale robot fishes driven by smart 

materials. Their working principle is also shown in the table, such as the robot 

fish developed by Michigan State University employs IPMC as the flapping tail. 

The maximum speed of this robot fish is 2.2 cm/s, or 0.096 BL/s. The robot fish 

developed in Harbin Institute of Technology employs SMA to drive the caudal fin. 

The maximum speed of this robot fish is 11.2 cm/s or 0.767 BL/s and the 

minimum turning radius is 0.952 BL. The Strouhal number at maximum speed is 

12 

Table 1-1 shows some famous macro scale robot fish. They all have multiple 

links and are actuated by motors. For example, M IT ' s robot tuna has seven links 

and is driven by six actuators. It was the world's first robot fish and was tested 

with a strut in the water tank. The propulsion efficiency is reported close to 90%. 

The Essex G8 robot fish has four links and is driven by four motors. It was 

famous for its resembling a real fish, and was exhibited in the London acquarium. 

The maximum instantaneous turning speed of this robot is 4507s. The SPC I I 

developed by Beihang University (BUAA) has two joints and is driven by two 

motors. The maximum speed of this robot fish is 1.5 m/s, or 1.22 BL/s. It was 

used to inspect a sunk warship in Taiwan Strait in 2004. During the task, it 

patrolled a 4000 m2 water area in 6 hours. The robot fish developed by the 

Chinese Academy of Science (CAS) also has four links and is driven by four 

motors. The maximum speed is 0.32 m/s, or 0.8 BL/s, when the flapping 

frequency is 2 Hz. The maximum turning speed is 68.8°/s. 

Table 1-2 Typical Meso-Scale Robot Fish 
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0.58. The robot fish built by Konkuk University uses PZT to actuate the caudal 

fin. The maximum speed of this robot fish is 2.5 cm/s or 0.093 BL/s, and the 

Strouhal number is between 0.8 and 1.6, which means the swimming is inefficient. 

、 Figure 1-14 Compliant Robot Fish Developed by M I T [113] 

In recent years, robot fish wi th compliant body is of interest. One example is the 

robot fish proposed by Pablo and Kamal in 2007, as shown in Figure 1-14 [113]. 

The robot fish's body is soft and is actuated by one motor. By tuning the body 

rigidity and placing lumped masses, the mode shape of the body is changed. As a 

result, the tail flapping can be controlled by the body excitation. Compared with 

the previous designs, this underactuated design reduces the number of actuators 

needed and simplifies the robot fish's structure. The drawback is that the flapping 

curve is related to the flapping frequency. This constrains the control of flapping 

curve. Besides, when the flapping frequency is high, the power consumption 

increases sharply. The maximum cruising speed of this robot fish is 1 BL/s, and 

the maximum hydrodynamic efficiency is less than 60%. However, due to the low 

motion transmission efficiency, the total propulsive efficiency is less than 0.15%. 

1.3 Motivation of the Dissertation 

Flexible robots have many advantages over traditional rigid discrete robots, such 

as being well-suited to confined spaces. However, the mechanisms suitable for 

flexible robots are limited. Also, the theoretical modeling of UFMs is not ful ly 

studied. On the other hand, fish-like flapping propellers are typical flexible 

structures. However, there is little overlap between these two researches. These 

motivated the research herein. The research contents include: 
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• Designing a mechanism capable of large deformation for UFMs. 

• Studying the kinematics, workspace, statics and dynamics model of the 

mechanism. 

• Designing fish-like flapping propellers using the proposed mechanism. 

• Developing the propulsion model of the flapping propellers. 

• Evaluating the performance of the flapping propellers. 

1.4 Organization of the Dissertation 

The remainder of the dissertation is organized as follows: 

Chapter 2 presents the biomimetic Wire-Driven Mechanism (WDM) design. The 

nature inspiration is presented at first. Then the design is described from three 

aspects: backbone structure, backbone segmentation and wire configuration. A t 

last, W D M categorization and coding is given. One important categorization is by 

the backbone type, from which the W D M is categorized as serpentine W D M and 

continuum W D M . 

Chapter 3 presents the forward kinematics, inverse kinematics and workspace 

models of the serpentine W D M and continuum W D M . A generalized kinematics 

model suitable for the two types of W D M is proposed subsequently. Constrained 

kinematics model is proposed as well. Furthermore, a novel idea of expanding the 

workspace by actively deploying constraints is proposed. Finally, the models and 

ideas are validated using two wire-driven robot arm prototypes. 

Chapter 4 develops the static model and dynamic model of serpentine W D M and 

continuum W D M . For serpentine W D M , the static model is built using the 

Newton-Euler method and the dynamic model is developed using the Lagrange 

method. For continuum W D M , the nonlinear Euler-Bernoulli Beam theory is used 

to develop both the static model and the extended Hamiltonian principle is used in 

developing the dynamic model. 

Chapter 5 presents the underactuated wire-driven robot fishes, including design, 

propulsion modeling and experiments. Four robot fishes with different wire-

driven flapping propulsors are designed and prototyped. A simplified propulsion 

model is developed based on Lighthi l l 's Elongated Body Theory. Cruise speed, 
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Froude efficiency and Strouhal number are used to evaluate the performance of 

the wire-driven robot fishes. A t last, the performance of the robot fishes is 

compared with that of real fish. 

Chapter 6 shows another application of the wire-driven flapping propulsor. An 

indoor Lighter-Than-Air-Vehicle (LTAV), named Flying Octopus, propelled by 

four independently controlled wire-driven flapping wings is designed and 

prototyped. Motion simulation and indoor experiments are also carried out. 

Chapter 7 summarizes the contributions of this dissertation and suggests a few 

future research topics. 
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Chapter 2 Biomimetic Wire-Driven 

Mechanism 

In this chapter, the biomimetic Wire-Driven Mechanism (WDM) is introduced. It 

is a highly underactuated flexible mechanism. The design is inspired by the 

skeleton of snakes and octopus arm muscle arrangement. It is composed of a 

flexible backbone and controlling wire pairs. The design of the W D M is 

presented in three aspects: backbone structure, backbone segmentation and wire 

configuration. Finally, the categorization and coding of the W D M is presented. 

2.1 Inspiration from Nature 

Nature is ful l of flexibil ity. L iv ing creatures, whether animals or plants, are hardly 

rigid. As an example, snakes, octopus, caterpillars, plant tentacles, etc. are ful ly 

flexible. For some creatures, take the monkey as an example, even though some 

parts of the body, such as elbow and thigh, are somewhat rigid, some appendages 

are flexible, like the fingers, spinal column, tongue and tail. It is noted that, in the 

above examples, the flexibil i ty falls into two categories. Snakes, monkey fingers, 

spinal columns and tails are composed of a series of short bony links, with 

adjacent links forming a joint. Although the rotation of each jo int is small, the 

deformation of the structure can be very large due to the large number of joints. It 

can deform into complex shapes, such as an S shape or the like, but cannot extend 

or change the cross-sectional size. Octopus arms, caterpillars, plant tentacles and 

mammal tongues are continuous without any apparent joints. The f lexibi l i ty 

comes from the material itself, such as octopus arm muscle, caterpillar tissue and 

plant tentacle fiber are all soft. They can deform largely under external load or 

internal actuation. 

Figure 2-1 shows some examples of flexible l iv ing creatures or their appendages. 

Figure 2-1 (a) shows the white lined sphinx moth caterpillar [114]. Its body is soft 

and it can move around by deforming itself actively. Figure 2-1 (b) shows the 

octopus [115]. Its body, especially its arms, is highly flexible. By using the arms, 

the octopus can even open a jar and squeeze into it. Figure 2-1 (c) shows a giraffe 

grabbing tree leaves using its tongue [116]. Figure 2-1 (d) shows a climbing 
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morning glory [117]. It climbs along the tree branches by coiling its body. The 

caterpillar and octopus are soft animals, while the giraffe tongue and the glory 

tentacle are soft appendages. In these examples, there are no apparent joints. The 

flexibil i ty of the whole body or the appendages comes from the compliance of 

materials. 

(a) White Lined Sphinx Moth [114] 

(c) Giraffe Tongue [116] 

(e) Rattle Snake [118] 

(b) Octopus [115] 

(d) Climbing Morning Glory [117] 

(f) Human Finger [119] 

(g) European Eel [120] (h) Monkey Tail [121] 

Figure 2-1 Examples of Flexible Parts in Nature 
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Figure 2-1 (e) shows a rattle snake coiling its body. Figure 2-1 (f) shows a human 

figure flexion. Figure 2-1 (g) shows a European eel swimming. Figure 2-1 (h) 

shows a monkey wrapping its tail and fingers around a horizontal bar. In these 

four examples, the flexible skeleton is composed of a series of short r igid bones. 

Adjacent bones form a joint, and the skeleton is covered by soft muscles and skin. 

The joint revolution is controlled by muscle contraction. A t the same time, the 

muscle and skin deforms along with the joint motion. 

These are just a few examples, there are a lot more. Among all the examples from 

nature, there are two examples of special interest to us. One is the snake skeleton 

and the other is the octopus arm. 

2.1.1 Snake Skeleton 

Figure 2-2 shows the skeleton of a sliding snake and coiling snake. From an 

anatomical point of view, the snake body is composed of four major parts: 

vertebral column, muscle, skin and viscera. The muscle, skin and viscera are all 

soft. The snake body curve is shaped by the vertebral column. It consists of a 

series of similar bony vertebras extending from the skull occipital to the tail tip. 

Two successive vertebras together wi th the interposed intervertebral disc form a 

joint. These joints can rotate in both yaw direction and pitch direction. Although 

the rotation of each joint is small, the overall snake body deformation is large. As 

shown in Figure 2-1 (e) and Figure 2-2, a snake can easily bend over 360°. 

Figure 2-2 Skeleton of a Rattle Snake [122, 123]: (left) Sliding; (right) Coiling 

It is interesting to note that when a snake slides, its body has several apparent 

circular arcs. The joint rotations in each circular arc segment are nearly the same. 

Also, when the snake coils, its body is spiral. In Figure 2-2, the coiling shape is 

almost a circle. Again, the joint rotations are close to each other. In both cases, 
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the joint rotations change gradually. There is no abrupt change in adjacent joint 

rotation. This implies that the joint rotations are correlated, or there exists some 

constraints between the joint rotations. Where do these constraints come from? 

The vertebral column is composed of tens of rigid bony vertebras. Mechanically, 

the joints are free of rotation. Therefore, we can infer that the constraints come 

from the intervertebral disc, or from the muscle and skin. They are all compliant. 

When deformed, they generate a restoring force like a spring. For all the 

intervertebral discs their dimensions are similar. The muscle and skin are 

continuous. Also, there is no abrupt change in cross-section dimension. Hence, 

the restoring forces acting on each joint are similar. It should be noted that the 

major function of the muscle is to actively deform the vertebral column. On the 

other hand, the ribs connected to the vertebras form the body cavity which holds 

all the viscera. They provide a conduit, allowing food, water, etc. to pass by. 

2.1.2 Octopus Arm 

Octopus arms are slender and highly flexible wi th infinite degrees of freedom. It 

can bend, twist as well as elongate. Figure 2-3 shows an octopus arm and its 

muscle arrangement. It is seen that there are three types of muscles in an octopus 

arm: longitudinal muscle (L), transversal muscle (T) and external oblique muscle 

(O). There are four bundles of longitudinal muscles. They are separated by the 

transversal muscle and are orthogonally distributed. The oblique muscles wrap 

around the longitudinal muscles and transversal muscle. The shape is like a helix. 

Figure 2-3 Octopus Arm and Its Muscle Arrangement[ 124] 

From the picture, the longitudinal muscles make up the major part of the arm. 

They are responsible for the bending motion. As an example, when the left 
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muscle contracts the octopus arm bends to the left; when the right muscle 

contracts, the octopus arm wi l l at first recover to the initial straight state and then 

bend to the right. Octopus arm elongation is achieved by transversal muscle 

contraction. Muscles are hydrostatic, which means that the volume does not 

change during the contraction. When the transversal muscle contracts, the 

longitudinal muscle is squeezed. As a result, the cross-sectional area of the 

longitudinal muscle is reduced and its length is increased. Wi th the longitudinal 

muscle being elongated, the octopus arm extends as well. The oblique muscle is 

responsible for the twisting. As it spirals along the longitudinal muscle, when it 

contracts, the force exerted on the octopus arm has a tangent component and an 

axial component. This makes the octopus arm twist about its own axis. 

2.2 Wire-Driven Mechanism Design 

The snake skeleton and octopus arm muscle arrangement inspired the design of 

the wire-driven mechanism (WDM). The W D M has two parts: one is the flexible 

backbone and the other is the controlling wire pairs. The backbone structure 

follows the snake's skeleton, while the wire configuration is similar to an octopus 

arm's longitudinal muscle arrangement. 

2.2.1 Flexible Backbone 

As indicated previously, in nature, there are two categories of flexible structures: 

one is serpentine and the other is continuum. For the W D M backbone, it is the 

same. The backbone type is determined by the vertebra articulation. When the 

vertebras are articulated by joints, the backbone is serpentine. I f the vertebras are 

connected by a continuous flexible beam, the backbone is continuum. 

(b) Flexible Beam Connection 

Figure 2-4 Two Types of Vertebra Articulations 
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Figure 2-4 illustrates the two types of vertebra articulations. Figure 2-4 (a) shows 

the joint connection and Figure 2-4 (b) shows that the vertebras are connected by 

a continuous flexible beam. In the serpentine backbone, the vertebras are the main 

body. In the continuous backbone, the vertebras are degenerated to a spacing disc. 

The flexible beam is the major part of the backbone. 

In nature, the motion of these flexible structures has two types. One is planar 

bending, such as finger flexion, and the other is spatial, such as monkey tail 

wrapping. This brought about the design of the planar backbone and spatial 

backbone. Considering the backbone structure, there are four flexible backbone 

categories: 1) planar serpentine backbone; 2) spatial serpentine backbone; 3) 

planar continuum backbone and 4) spatial continuum backbone. 

1) Planar Serpentine Backbone Design 

For serpentine backbone, vertebras are critical as they are the main body and 

determine the joint type. For planar serpentine backbone, the vertebra motion is 

confined to a plane. The vertebras are articulated by revolute joints. Figure 2-5 

shows an example of planar vertebra design. 

Figure 2-5 Vertebra Design - Planar Serpentine Backbone 

The cross-section of the vertebra is elliptic. On the top and bottom of the vertebra, 

there is a semicircular stage. The positioning hole in the middle of the stage is 
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used to fasten the joint connection. It is also the joint rotation center. As shown in 

the A - A cross-section view, there are two pilot holes in the vertebra. The wires 

penetrate the vertebra via the pilot holes. A t the middle of the vertebra, there is a 

central hole. A l l the central holes of the vertebras form a central cavity. Just like 

the body cavity of a snake, it provides a passage for water, or other tools. 

Figure 2-6 Planar Serpentine Backbone 

By connecting all the joints together, the planar serpentine backbone is formed as 

shown in Figure 2-6 (a). Theoretically, there is no limitation on the joint number. 

In the figure, 10 vertebras are shown. In the figure, the joint connection is also 

shown. Figure 2-6 (b) shows the joint in the rest position and Figure 2-6 (c) 

shows the joint rotates to the right. In this design, the vertebra is symmetrical. 

Hence, the left rotation and right rotation are the same. The maximum joint 

rotation is l imited by the vertebra dimensions. To constrain the joint motion as in 

the snake skeleton, a compliant rubber tube is placed in the center cavity. Wi th 

uniform cross section area, the tube constrains all the joint motion equally. 

2) Spatial Serpentine Backbone Design 

In the spatial serpentine backbone, the joints rotate in both yaw and pitch 

directions. A straightforward design is to use spherical joints to articulate the 

vertebras. Figure 2-7 shows a design example. 

The cross-section of the vertebra is a circle. A convex spherical surface is at the 

top of the vertebra. A t the bottom, there is a concave spherical surface. The two 

surfaces have the same radius. Hence, two adjacent vertebras form a spherical 

joint. The roll ing is mechanically constrained. As a result, each joint has two 

DOFs, one is the yawing, and the other is the pitching. To control the two 
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motions, at least three wires are needed, i.e. at least three pilot holes are required. 

In this design, fol lowing the octopus arm longitudinal muscle arrangement, we 

use four wires to control the two DOFs. Each wire corresponds to a pilot hole on 

the vertebra. Therefore, the pilot holes are orthogonally distributed. Compared 

with the commonly used three-wire configuration, the four-wire configuration can 

decouple the two bending motions, simplifying the control. Considering that there 

can be more than one set of wires, the number of pilot holes is 4 X , where X is the 

number of wire sets. In this example, the number of pilot holes is 12. The same as 

the planar vertebra design, in the spatial vertebra there is a central hole, which can 

hold elastic rod or tube. 

Jyp View Isometric View 

Figure 2-7 Vertebra Design - Spatial Serpentine Backbone 

Figure 2-8 Joint Motion - Spatial Serpentine Backbone 
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Two successive vertebras form a spherical jo int as shown in Figure 2-8. Figure 2- 

8 (a) shows the joint in the rest position. Figure 2-8 (b) shows the joint yawing 

and Figure 2-8 (c) shows the joint pitching. The motions are illustrated in Figure 

2-8 (a). As the vertebra is circularly symmetric, the yawing motion and pitching 

motion is basically the same. Similarly, by connecting more vertebras together, 

the spatial serpentine backbone is formed. A compliant rubber tube is placed in 

the central cavity to constrain the joints' rotations. 

3) Planar Continuum Backbone Design 

Besides joint connection, another vertebra connection method is the flexible beam. 

For planar motion, the beam deflection is constrained in a plane. To eliminate the 

deflection in other directions, the second axial moment of area of the beam in the 

bending direction should be much smaller than the other two directions. Figure 2- 

9 shows an example of planar continuum backbone design using a flexible beam 

with rectangular cross-section. Figure 2-9 (a) shows the backbone in the rest 

position. Figure 2-9 (b) shows the backbone being deflected. The cross-section 

view of the beam is shown in Figure 2-9 (c). A number of cylindrical vertebras 

are evenly distributed along the flexible beam. The same as that in the planar 

serpentine backbone, two pilot holes penetrate the vertebras to guide the wires. 

Figure 2-9 Planar Continuum Backbone 

24 



For the beam, the ratio of second axial moment of area in the X and Y directions is: 

Ratio •• ly b h 12 
4 12 h b 

(2-1) 

The larger the ratio, the better the selection of deflection of the beam. In the given 

example, the width is 10 mm, and the height is 2 mm. The ratio is 25. This means 

the beam is 25 times easier to bend about the Y axis. 

4) Spatial Continuum Backbone Design 

For spatial motion, deflections in both directions are necessary. To ensure easy 

control of the beam deflection in arbitrary directions, the ideal cross-section of the 

beam is circularly symmetric, e.g. circle and ring. In this case, the second axial 

moment of area in all directions is the same. 

Figure 2-10 Spatial Continuum Backbone 

The second axial moment of area of the beam with a circular cross-section is: 

64 
(2-2) 

The second axial moment of area of the beam with a ring cross-section is: 

D4 - “ 4 ) 

64 
(2-3) 

25 

4 



where, D is the outer diameter and d is the inner diameter of the beam. 

Figure 2-10 (a) shows a spatial continuum backbone in the rest position, while 

Figure 2-10 (b) shows the backbone deflecting in an arbitrary direction. The 

cross-section of the flexible beam can be circular as shown in Figure 2-10 (c), or 

ring shaped as shown in Figure 2-10 (d). The circular vertebras are evenly 

distributed along the beam. On each vertebra, there are four pilot holes to guide 

the wires. The angular spacing between each hole is 90 degrees. One can also 

change the number of pilot holes. However, to control the beam deflection in 

arbitrary directions, at least three wires are needed. It is the same as spatial 

serpentine backbone design. 

2.2.2 Backbone Segmentation 

The deflection of the backbone is controlled by the controlling wires. For the 

serpentine backbone, the number of DOFs is proportional to the joint number. For 

the continuum backbone, theoretically, there are infinite DOFs. Each pair of wires 

controls one DOF. To ful ly control all the DOFs, the number of wires needed is 

enormous. As discussed in the previous section, the snake skeleton is segmented. 

Hence, we could divide the backbone into several segments. The motion of each 

segment is controlled by one pair of wires. From the segmentation point of view, 

the W D M is categorized as single segment W D M and multi-segment W D M . 

1) Single Segment WDM 

In the single segment W D M , only one set of wires is used. For the planar W D M , 

each set contains one pair of wires; for the spatial W D M , each set contains two 

pairs of wires. For each wire, one end is connected to the actuator, and the other 

end is fastened to the end of the backbone, i.e. to the last vertebra. Each pair of 

wires control only one bending DOF of the backbone. 

Figure 2-11 shows a single segment W D M example. In this example, the W D M 

has a continuum elastic beam as the backbone and one pair of wires. Along the 

beam are a number of evenly distributed spacing discs, which are the degenerated 

vertebras. The wires are guided by the pilot holes in the spacing discs, from the 

backbone base to the distal end. The end of the wires is fastened to the last 

spacing disc. Figure 2-11 (a) shows a single segment planar W D M in the rest 

position. As shown in Figure 2-11 (b), the backbone is deformed into a C shape 
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by the wires. The distal end position and orientation is determined by the 

deformed backbone curve. This bending motion is fundamental in the WDM. 

When there are two pairs of wires orthogonally arranged, we get the single 

segment spatial W D M . 

Figure 2-11 Single Segment W D M with Continuum Backbone 

2) Multi-Segment WDM 

In the multi-segment W D M , the backbone is segmented into several sections. 

Each section is a single segment W D M . The number of segments is determined 

by the number of wire sets. Figure 2-12 shows a two-segment planar W D M . As 

shown in the figure, the backbone structure is similar to that in the previous 

example and the number of wires is increased. There are two sets of wires. Each 

set contains one pair of wires. Wire pair 1's ends are connected to the last spacing 

disc of the first segment. Wire pair 2 passes by the first segment and their ends 

are fastened to the last spacing disc of the second segment. Figure 2-12 (a) shows 

the W D M in the rest position, which is the same as that of the single segment 

W D M . In Figure 2-12 (b) the backbone is deformed by the wire pairs. The 

bending directions of the two segments are the same. For both segments the wire 

at the bottom contracts. The deflected backbone curve is the same as that of the 
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single segment W D M . When the contracted wire in each pair is opposing, as 

shown in Figure 2-12 (c), the bending directions of the two segments are opposite. 

The deformed backbone curve is S shaped. 

Figure 2-12 Multi-Segment W D M with Continuum Backbone 

2.2.3 Wire Configuration 

The backbone design is important. It determines the deflection type of the W D M . 

On the other hand, the wire configuration is of equal importance. The wire pairs 

control the deflection of the backbone. Also, the wire configuration influences the 

kinematics as well as the statics properties of the W D M . Details w i l l be discussed 

in subsequent chapters. In the W D M , the wires are guided by the pilot holes in the 

vertebras. In the previous section, one wire configuration was shown. In this 

section, the wire configuration is presented systematically. There are three types 

of wire configurations: parallel, tapered and spiral. 

1) Parallel Wire Configuration 
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The parallel wire configuration is the most commonly used wire configuration. In 

this configuration, the pilot holes are of equal distance to the backbone. As a 

result, the wires are parallel to the backbone all the time. Also, the two wires and 

the backbone are coplanar, wi th the backbone between the two wires. In this 

configuration, when the backbone deforms, the extension of one wire is the same 

as the contraction of the other wire. The parallel wire configuration is shown in 

Figure 2-13. In the figure, the red curve is the contracted wire, the blue curve is 

the extended wire and the dark green curve is the backbone. As shown in the 

figure, during the deflection, the wires are always parallel to the backbone. The 

length changes of the two wires could be viewed as the same. 

Figure 2-13 Parallel Wire Configuration 

2) Tappered Wire Configuration 

The tappered wire configuration is similar to the parallel wire configuration. The 

difference is that there is an inclined angle y between the wires and the backbone, 

as shown in Figure 2-14. In the rest position, the two wires are symmetrically 

located at the two sides of the backbone. When the backbone is deflected, the 

length changes in the two wires are not the same as previously. Figure 2-14 (b) 

shows the deflected backbone as well as the wires. In this configuration, the wire 

length changes are different. The discrepancy is determined by the incline angle y, 

and joint rotation angle 6. When y and 9 are small, e.g. less than 10°, the 

approximation error is small and length changes can be treated as the same. This 

is shown in Chapter 5. 
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Figure 2-14 Tapered Wire Configuration 

3) Spiral Wire Configuration 

In the previous two configurations, the wires and the backbone were coplanar. 

The wires control the backbone bending in the plane without twisting. In the 

spiral wire configuration the wires spiral around the backbone, similar to the 

octopus arm oblique muscles or the double helix structure in DNA. 

Figure 2-15 Spiral Wire Configuration 

Figure 2-15 shows the spiral wire configuration. The two wires in a pair are 

opposed to each other. When one of the wires contracts, the force exerted on the 

backbone has an axial component and a tangent component. The axial force bends 

the backbone, while the tangent component twists the backbone. The deformed 
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backbone curve is complicated. Also, the length changes in the two wires 

different. There is no simple analytical representation available. 

2.3 Wire-Driven Mechanism Categorization 

From the previous description, the W D M is composed of two parts: the flexible 

backbone and the wire pairs. However, there are various designs of the W D M 

according to the deflection type, backbone structure, backbone segmentation and 

wire configuration. It is beneficial i f we can know the design information from 

the name. In this section, the W D M categorization and coding are introduced. 

Figure 2-16 Wire-Driven Mechanism Categories 

Figure 2-16 lists the categories of the W D M according to the backbone 

segmentation, deflection type, backbone structure and wire configuration. Based 

on the backbone segmentation, the W D M is categorized as single segment W D M 

(S) and multi-segment W D M (M). From the backbone deflection type, the W D M 

is categorized as planar W D M (P) and spatial W D M (S). From the backbone 

structure, it can be categorized as serpentine W D M (S) and continuum W D M (C). 

From the wire configuration wi th respect to the backbone, the W D M is 

categorized as parallel W D M (P), tapered W D M (T) and spiral W D M (S). 

To simplify the naming of different WDMs, the nomenclature is introduced. Four 

characters are used to code the W D M as follows: “ X X X X W D M ” . The first 

character represents the backbone segmentation: there are two selections, i.e. S 

and M, as shown in Figure 2-16. The second character means the deflection type: 



there are two selections, i.e. P and S. The third character denotes the backbone 

structure: there are two selections, i.e. S and C. The last character shows the wire 

configuration: there are three selections, i.e. P, T and S. For example: “SPSP 

W D M ” represents “Single segment Planar Serpentine Wire-Driven Mechanism 

with Parallel wire configuration”; “MSCT W D M ” denotes “Multi-segment 

Spatial Continuum Wire-Driven Mechanism with Tapered wire configuration”. In 

case there is no information of one category, the “ X ” character is used. Such as, 

“SPSX” represents “Single Segment Planar Serpentine Wire-Driven Mechanism”; 

“SXSX W D M ” represents “Single Segment Serpentine Wire-Driven Mechanism”. 

When there are three categories' information unknown, the W D M is named by 

the ful l information of the remaining category. Such as “ S X X X W D M ” is named 

“Single Segment Wire-Driven Mechanism”; and “ X X S X W D M ” is named 

“Serpentine Wire-Driven Mechanism” directly. 

2.4 Summary 

In this chapter, the biomimetic W D M is introduced. The design follows nature. It 

is composed of a flexible backbone and a number of wire pairs. For the serpentine 

W D M , the backbone is composed of several serially linked vertebras, with 

adjacent vertebras forming a joint. For the continuum W D M , the backbone is a 

flexible beam. The vertebras degenerated to a spacing disc. The wires control the 

backbone deflection. Following the octopus arm muscle arrangement, each 

bending DOF is controlled by a pair of wires. W D M coding is introduced, i.e. 

“ X X X X W D M ” . The four characters represent the backbone segmentation, 

backbone deflection type, backbone structure and wire configuration respectively. 

W D M information is straightforwardly understood from the name. 
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Chapter 3 Kinematics and Workspace of 

the Wire-Driven Mechanism 

In this chapter, the kinematic models of the XXSP W D M and XXCP W D M are 

developed. Geometry analysis is used for single segment W D M , while the 

extended D - H method is used for building the multi-segment W D M kinematic 

model. Workspace is obtained from the forward kinematic model. A novel idea of 

expanding the W D M workspace via obstacles or actively deploying constraints is 

proposed. Finally, the models are validated using a SPSP W D M manipulator and 

a MSSP W D M manipulator. 

3.1 Kinematic Model of Single Segment WDM 

In the W D M , the flexible backbone deformation is controlled by the wire pairs, 

and the wire lengths are controlled by the actuators , i.e., motors. Mot ion is 

transmitted from the actuators to the backbone via the wires. In general, position, 

orientation and velocity of the backbone distal end (or end effector) are of interest. 

When the backbone configuration or deformed shape is given, the position and 

orientation can be obtained. Velocity can also be determined from the time 

derivative of the distal end displacement. As a result, the kinematics can be 

divided into two parts [5, 125], as shown in Figure 3-1. 

Figure 3-1 Kinematics Defined by Mappings between the Spaces 

The first part is the mapping between the actuator space (i.e. wire length l ) and 

the configuration space (i.e. W D M bending angle 0 and bending direction angle 

O ). In this part the forward kinematics and inverse kinematics are defined as /1 
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and/1 -1 respectively. Wire configuration is important in this part as it determines 

the joint kinematics. The second part is the mapping between the configuration 

space and the task space (i.e. distal end position (x, y, z) and orientation (n, o, a)). 

In this part, the forward kinematics and the inverse kinematics are defined as f 

and / 2 - 1 respectively. The mapping is related to the backbone structure. In the 

fol lowing subsections, the kinematic model of the SXSP W D M and SXCP W D M 

are developed. 

3.1.1 Kinematic Model of the Serpentine WDM 

In this section, forward kinematics and inverse kinematics models of the SXSP 

W D M are presented. They are divided into two parts as shown above. 

1) Mapping between the Actuator Space and the Configuration Space 

In the SXSP W D M , the backbone is made up of multiple vertebras, with two 

successive vertebras forming a revolute joint. Figure 3-2 shows the joint rotation. 

The blocks represent the vertebras, while the red line and blue line denote the 

wire pair. In the figure, D is the outer diameter of the vertebra; H is the vertebra 

height; d is the wire spacing distance; h0 is the initial jo int gap distance. 

(c) Wire Length Variation in Joint Rotation 

Figure 3-2 Joint of the SXSP W D M 
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The wire is divided into two parts: the first part is inside the vertebra. Its length is 

equal to the vertebra height H. It does not change with joint rotation. The second 

part is between the two vertebras. Its length is related to the joint rotation angle 9. 

In the rest position, the length is equal to the initial jo int gap distance h) , as 

shown in Figure 3-2 (a). When the joint rotates, for the two wires, their lengths 

are h and % respectively, as shown in Figure 3-2 (b). 

For each vertebra, the corresponding wire length is / 〇 = H + hg. Assuming that 

there are N vertebras, the initial wire length inside the serpentine W D M is: 

A0 = L20 = L0 = N • (H + Jh) (3-1) 

It should be noted that, in the W D M , the first joint is formed by the base and the 

first vertebra. When the joint rotates 9 to the left as in Figure 3-2 (b), the length of 

the left wire is shortened to /1 = H + h1, and the length of the right wire is 

increased to /2 = H + h2. The geometry relationship between the wire length and 

joint rotation is as shown in Figure 3-2 (c). From the figure, it is shown that after 

rotation, the length variations are per Equation (3-2). 

JJ =  h0-辟=h0 -

h = K+AJ = h + 

d • sin 

d • sin 

2, 

色 
2 

2K • sin2  

-2h0 • sin2 

(3-2) 

By summation, the total wire length after bending is shown by Equation (3-3). 

A = L0 - N 

L, = L0 + N 

d • sin 

d • sin 

+ 2K • sin2 

-2K • sin2 

4, 

(I 
4 

(3-3) 

From Equation (3-3), the overall bending angle of the backbone in terms of wire 

length is: 

0 = N .0 = 2 N • arcsin 
2 N • d 

(3-4) 

For compultaiton, one can use arctan instead of arcsin. Detailed derivation of 

these equations is shown in appendix B. 
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Particularly, the maximum joint rotation angle, i.e. ^max, is constrained by the 

joint parameters, D and h0. The relationship between and the vertebra 

parameters could be found from Figure 3-2 (c) as: 

凡ax =
 2 肌 如 (3-5) 

It is worth mentioning that, in Equation (3-2), Ahj and Ah2 are the joint gap 

distance variations. For the serpentine WDM, the joint rotation is typically small. 

Hence, it is reasonable to make the following approximation: cos(沒）«1-0.5-0 

and s i n ( 0 ) « 0 . By approximation, the variations of joint gap distance are 

A h « A h ~ 0.5 -d-0 = Ah. For example, for joint with d=15 mm and ho=2.5 mm, 

when the joint rotation angle 0=10°, A h =1.317 mm, A h =1.298 mm, and the 

approximation is Ah=1.309 mm. The relative errors of the length approximation 

are 0.596% and 0.861% respectively. 

Figure 3-3 W D M Bending in Arbitrary Direction 

arbitrary 

wires as 

Figure 3-3 shows the wire configuration of a serpentine W D M with 

deflection direction. As shown in the figure, there are two pairs of 

represented by Pi, P2, P3 and P4. They are evenly distributed on the vertebra. Pi 

and P3 form the horizontal pair; they control the backbone deflection about the Y 

axis. P2 and P4 make up the vertical pair; they control the backbone deflection 

about the X axis. As the two wire pairs are orthogonal, the two deflections are 

independent. Their combination allows the backbone to bend in any arbitrary 
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directions. For example, when the backbone bends about the Y' axis, the bending 

direction angle is 0 . Although, the backbone is flexed by the four wires Pi, P2, P3, 

P4, it is equivalent to Pi and P3 controlling the backbone bending while P2 and 

P4 lie in the neutral plane. The wire length change is proportional to the distance 

between the wire and the neutral plane. From the figure, after bending, the length 

change magnitude of Pi and P3 is the same; the length change magnitude of P2 

and P4 is identical. The overall lengths of the four wires after bending are: 

Pi L = L + 2N • sin -K • sin2 
4 

(3-6) 

P2： L = L + 2N • sin -K • sin2 
4 

(3-7) 

P3 L = L - 2 N b • sin 
2 

-K • sin2 

4 
(3-8) 

P4 4 = L0 - 2N • sin 
2 

"K • sin2 
4 

(3-9) 

where, a = 0.5^-sin(0) is the distance from P2 and P4 to the neutral axis Y' and b 

0.5d-cos(0) is the distance from P1 and P3 to Y' 

From the wire length, the backbone bending direction angle (少）and the backbone 

bending angle (0) can also be determined: 

0 = arctan 
A - L3 

(3-10) 

0 = N •6" = 2 N • arcsin > / ( A - L ) 2 +(L - L4 
2 N • d 

(3-11) 

For serpentine W D M with two pairs of wires, Equations (3-6)〜(3-9) define the 

inverse mapping between the actuator space and the configuration space, i.e. /!—工； 

the forward mapping, i.e./1, is given by Equation (3-10) and Equation (3-11). For 

serpentine W D M with one pair of wires, the mapping is similar. Such as keeping 

the horizontal wire pair, we have L2=L4, and 0=0 in the above equations. 
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2) Mapping between the Configuration Space and the Task Space 

The distal end position and orientation of the serpentine backbone can be derived 

from the D - H method [126]. However, there may be tens of vertebras, which 

makes the process very complicated [125]. An alternative way is to use geometry 

analysis. As the backbone lies in the neutral plane its length remains unchanged 

during the bending process. Also, the constant curvature assumption is adopted in 

the analysis, which means that all the vertebras have the same bending angle. This 

is reasonable as indicated in Chapter 2. The constant curvature assumption 

provides much convenience in deriving the kinematic model. 

Figure 3-4 shows the inertial coordinate frame of a single segment serpentine 

W D M . The origin of the frame is set at the first jo int rotation center. In the rest 

position, the backbone is coincident wi th the Z axis. In the figure, the red polyline 

represents the vertebra axes (as an example, five vertebras are shown). By the 

constant curvature assumption, each vertebra axis is one side of a regular polygon, 

whose exterior angle is 6 and side length is H + 办0. The backbone bending plane 

is OX'Z. The angle between the bending plane and X axis is the bending direction 

angle 0. 

Figure 3-4 Mapping between Configuration Space and Task Space - Serpentine 

Based on simple geometry, the distal end position is found as Equation (3-12): 
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X = (H sin ( i • 6) • cos(①) 
i=1 

N 

y = (H sin (i ‘ 6) • sin(①） 
i=1 

N 

z = (H +h。)Z cos (i -6) 

(3-12) 

！=1 

Note that, 

Z s i n ( i-6 )： 

s i n ( N 6丨 2 ) - s i n [ ( N + 1 ) 6 / 2 

N 

Z cos ( i-6) 

s inZ / 2) 

sin( N6丨 2) • cos [ ( N +1)6/2 

s i n ^ / 2) 

(3-13) 

(3-14) 

The orientation of the distal end can also be determined from 0 and The 

一 r iT 

original direction of the end effector in the ineitial frame is A: = [0 0 I j . After 

the deflection, the end effector orientation is: 

Rot^ (O ) • Roty ( - 0 ) • k = [s in (0) sin ( O ) sin (0) cos (O ) cos (0)了 (3-15) 

From the distal end position, it is not diff icult to f ind the backbone bending angle 

and bending direction: 

2 N 
0 = N-6 = arctan 

N +1 
VX +y 

• arctan Z 

(3-16) 

(3-17) 

In short, Equations (3-12)〜（3-15) give the forward mapping between the 

configuration space and the task space, i.e.力.Equation (3-16) and Equation (3-17) 

give the inverse mapping, i.e. /2"1. 

3.1.2 Kinematic Model of the Continuum WDM 

In the continuum W D M , the kinematics model can also be established by the 

mappings among the actuator space, configuration space and task space. 

1) Mapping between the Actuator Space and the Configuration Space 
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In the continuum W D M , the wires are guided by the spacing discs. There is no 

apparent jo in t as in the serpentine case. However, in the analysis, we can treat the 

middle range of two adjacent discs as the joint , and analyze i t similarly. 

Figure 3-5 shows the jo in t o f XPCP W D M . In the figure, D is the outer 

dimension of the disc, whi le d is the spacing distance between the two wires. In 

the rest position, as shown in Figure 3-5 (a), the backbone is straight and the 

distance between two adjacent discs is h. The thickness of the disc is small 

compared wi th h. Therefore, i t is neglected in the fo l lowing analysis. For the two 

wires, the init ial lengths wi th in the jo int are the same. When one of the wires 

contracts (as shown by the red line) and the other extends (as shown by the blue 

line), the backbone deflects. The relationship between jo in t rotation ( 9) and wire 

length variation (Al.^ and Al .2) is shown in Figure 3-5 (b). In the analysis, the 

constant curvature assumption is adopted as well. 

liO-^^lil 

(a) Continuum WDM - Joint at rest (b) Continuum WDM - Joint rotated 

Figure 3-5 Joint o f the SXCP W D M 

From the figure, the wire length after backbone deflection is given by Equation 

(3-18). Similar to the serpentine W D M , the rotation angle of each jo in t in the 

continuum W D M is typically small. As a result, the length variations in the two 

wires can be treated as the same. For example, when the jo in t rotation 沒 = 1 0 。 ， 

d=15 mm and h=5 mm, the wire length changes are Al.1=1.314 mm and Al.^ 

=1.301 mm. The approximation is Al. =1.309 mm. The relative errors o f the 

approximation are 0.357% and 0.615% respectively. 
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( h d \ 
�e 2) 

2 = l i 0 + A l r 2 = l,0 - h - 2 
(h d、 —+— 
l e 2 , 

sin 

sin 

(e: \ 
(e 

2 

"•i 0 

"i 0 

ed 

ed_ 
(3-18) 

Theoretically, for each joint the rotation is limited by the disc dimension and 

spacing distance. Unti l the two discs collide, the joint can keep on rotating. Hence, 

for the joint in the continuum W D M , the maximum joint rotation is: 

e m a ; 

2h 
(3-19) 

Assume that there are N joints in the backbone. Initially, the wire length within 

the W D M is: 

丄10 = 丄 2 0 = L0 = N • h 

After deflection, the lengths of the two wires are: 

‘ ：• d 

(3-20) 

A= K - N 

L = L + N • 

2 
：• d  
丁 

(3-21) 

From Equation (3-21), the overall bending angle of the backbone in terms of wire 

length is: 

0 = N e h - A 
d 

(3-22) 

Similarly, when there are two pairs of wires orthogonally arranged as that in the 

serpentine W D M , the lengths of the four wires are: 

Pi 

P) 

P3 

P4 

L - h + N•：• d • c o s ( � ) 

h - h + N•：• d • s i n ( � ) 

h - h -N•：• d • c o s ( � ) 

h - L - N •： • d • sin(①） 

(3-23) 

(3-24) 

(3-25) 

(3-26) 
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From the wire length, the bending direction angle ( 0 ) and the bending angle ( 0 ) 

can be determined as: 

O = arctan 
A - L3 

0 = N-e 水 A - L ) 2 + ( h - L4) 

d 

(3-27) 

(3-28) 

Equations (3-23) ~ (3-26) define the inverse mapping between the actuator space 

and the configuration space, i.e. / j - 1 , for the continuum W D M with two pairs of 

wires. The forward mapping, i.e. / 1 , is given by equations (3-27) and (3-28). For 

continuum W D M with one pair of wires, the mapping is similar. As an example, 

keeping the horizontal wire pair, we have L2=L4, and 0=0 in the above model. 

2) Mapping between the Configuration Space and the Task Space 

For the continuum backbone, the mapping between the configuration space and 

the task space is shown in Figure 3-6. In the figure, the coordinate frame is set at 

the base of the flexible backbone. Initially, the backbone is coincident wi th the Z 

axis. The cyan curve shows the deflected backbone. It is a circular arc wi th radius 

R and the center angle is 0 . It is tangential to the Z axis. The angle between the 

bending plane OX'Z and OXZ is 0 . 

Figure 3-6 Mapping between Configuration Space and Task Space - Continuum 
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The distal end position can be found 

x = R • [1 - cos ( © ) ] - cos(①) 

y = R - [ 1 - cos ( © ) ] • sin(①） 

z = R - sin (0 ) 
(3-29) 

In the equation R=L/0 is the radius of the deflected backbone. The distal end 

orientation in the inertial frame is the same as that in Equation (3-15). From the 

distal end position, it is not diff icult to f ind the backbone bending angle and 

bending direction: 

0 = 2 - arccos 

:arctan 

+ y + z 

Z 

(3-30) 

(3-31) 

In short, Equation (3-29) gives the forward mapping between the configuration 

space and the task space, i.e. /2 . Equation (3-30) and Equation (3-31) give the 

inverse mapping, i.e. f—1. 

3.1.3 A Generalized Kinematic Model 

From the previous two subsections, it is seen that the kinematic models for the 

serpentine W D M and continuum W D M are similar. Indeed, i f the number of 

vertebras is infinity, a serpentine backbone turns into a continuum backbone. In 

this section, a more generalized kinematic model suitable for the two types of 

W D M is presented. 

From the previous analysis, the backbone deflection is similar for planar W D M 

(two wires) or spatial W D M (four wires). The only difference is the bending 

direction angle 少 ， w h i c h can be determined from the wire lengths. It does not 

influence the in-plane bending. The spatial bending can be treated as: rotate the 

bending plane OXZ about the Z axis 少 counter clockwise; then, the backbone 

bends & in the new OXZ plane. In the fol lowing analysis, we consider the in-

plane bending only. 
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Figure 3-7 Comparison of Serpentine W D M and Continuum W D M 

As shown in Figure 3-7, the bending motion is constrained in the OXZ plane. The 

cyan curve is the continuum backbone while the blue polyline represents the 

serpentine backbone. The red dashed arc is the circumcircle of the polygon. In the 

analysis, the constant curvature assumption is still adopted. Suppose for the two 

backbones, the joint number (N) and joint rotation ( 6 ) are the same. This means 

that the total bending angle 0 of the two backbones are equal. The overall length 

of the backbone is L, and the length for each vertebra is l. From the previous 

section, the distal end displacement for the continuum backbone is: 

'R(1 - cos(0))' 
R sin(0) 

(3-32) 

The distal end displacement for the serpentine backbone is: 

l - j r sin (i -6) 
i=1 

l • j j cos (i -6) 
(3-33) 
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From Figure 3-7 the distal end of the serpentine backbone is coincident with the 

endpoint of arc OE'. For the orientation, the direction of the serpentine backbone 

distal end is parallel to the tangent line of arc OE as shown in the figure. As a 

result, the position of the distal end can be represented by arc OE’, while the 

orientation can be represented by arc OE. In the figure arc OE is tangential with 

axis OZ, and arc OE’ is tangential with axis OZ’. The radius of both arcs are R. 

The arc lengths are both L. The angle between the two axes is 0 /2 . The distal end 

position and orientation of the serpentine backbone can be represented as: 

(3-34) 
x ‘cos(0/2) s in(0/2)“ “R [1 - cos(0): 
z _-sin(0/2) cos(0/2)_ R sin(0) 

R= 
/ 

(3-35) 
2 • sin(0/2) 

0 = © / N (3-36) 

1 = L / N (3-37) 

In the above equations, when N — � the joint angle Q — 0 and sin(0) — 0 , 

cos(0) — 1 . Hence, Equation (3-34) turns into Equation (3-32). Meanwhile, 

when the vertebra length l — 0 , by L'Hopital's rule, the radius of the arc is 

R=L/0. Since Equation (3-33) and Equation (3-34) are two representations of the 

same point, we can rewrite Equation (3-34) as: 

L sin(Q/2) • s in(Q(N +1) /2N)“ 
N ‘ sin(®/2N) 
L sin (0/2) • cos (0 ( N +1) /2N) 
N ‘ s in(0/2N) 

-38) 

From Equation (3-38), the distal end orientation or the bending angle is solved as: 

(3-39) 
^ 2N 
0 = arctan 

N +1 

For the single segment WDM, the end effector position and orientation are related 

to each other. The distal end position can be represented by the backbone 

parameters and orientation, i.e. the forward mapping between the configuration 

space and the task space f2. It is shown by Equation (3-34) or Equation (3-38). 
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When the distal end position is known, the orientation can also be determined as 

Equation (3-39). This is the inverse mapping between the configuration space and 

the task space, i.e. /—i. 

The first derivation of Equation (3-38) with respect to time gives the velocity of 

the W D M distal end: 

. L N sin ( 0 2 N ) sin「( 2N +1 ) .® /2 N1-sin2 ( 0 2 ) . X ^ 」 o 
sin2 (@I2N) 

^ 丨 ‘ ( 3 - 4 0 ) 

L N sin ( 0 2 N ) cos「( 2 N +1).®/2 N ] - 0 . 5 s i n ( 0 ) . 
sin^ (©/2iV) 

The second derivation of Equation (3-38) with respect to time gives the 

acceleration of the W D M distal end. In Equation (3-41) and Equation (3-42) 

P = @/2 N . 

•• L® [ 2 , 2 s i n 3 ( " ) c o s ( " + 0 ) 
sin4 {J3) 

+N sin (^)(s in ( 2 ^ + 0)-sin(0)) 

-Nsin{p)sin(2广)sin(广+ 0) + sin (2广)sin2 (0 .50)} 

(3-41) 

+ N sin2 ( p ) (cos (2p + 0 ) - c o s ( 0 ) ) 

+ N sin ( p) sin ( 2p) cos (p + 0 ) - 0.5 sin ( 2p) sin (0) } 

(3-42) 

One important characteristic of the W D M is the leverage effect. Assume that the 

W D M bending velocity is 0 = ; t rad/s, Z=150 mm, jV=10, and d=\Q mm. From 

Equation (3-40), the distal end velocity is as shown in Figure 3-8 (a). The wire 

velocity can be found from Equation (3-3) or Equation (3-21). The velocity ratio 

with respect to the wire velocity is shown in Figure 3-8 (b). In this example, the 

wire velocity is constantly 0.0157 m/s. From the figure, the distal end velocity is 

over ten times the wire velocity. Also, the amplification ratio varies with bending 

angle. In the rest position, the amplification ratio is the largest. This shows the 

leverage effect of the WDM. 
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Figure 3-8 W D M Distal End Velocity and Leverage Effect 

3.2 Kinematic Model of Multi-Segment WDM 

Similar to traditional serial manipulators, the multi-segment W D M is composed 

of several serially linked single segment WDMs. The common approach used for 

manipulator kinematic modeling is the D - H method [126]. In this method, the end 

effector position and orientation is obtained by multiplying several homogeneous 

transformation matrixes T.. Each transformation matrix is represented by the l ink 

length, l ink twist, l ink offset and joint angle. For the multi-segment W D M , each 

segment has three DOFs. Therefore, the traditional D - H method is not applicable. 

In this section, the kinematic model is developed using an extended D - H method. 

3.2.1 Forward Kinematics 

The forward kinematic model of the multi-segment W D M is developed based on 

the single segment W D M model. Each segment is treated as a link. However, the 

l ink here is different from the l ink in traditional manipulators. In the D - H method, 

each l ink has one DOF. They can either rotate about one axis or translate along 

the axes. For the W D M segments, they have three DOFs, i.e. two bending DOFs 

and a translation DOF. As a result, the traditional D - H method is not applicable 

for the multi-segment W D M . I D. Walker developed a modified D - H method for 

multi-section continuum robots [40]. The robot has a similar structure to that of a 

continuum W D M . Hence, the modified D - H method can be used for continuum 

W D M . However, for serpentine WDMs, further modification is needed. In this 

section, the forward kinematics of multi-segment W D M is developed by 

integrating geometry analysis and the modified D - H method. 
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Figure 3-9 Single Segment W D M Coordinate Transform 

As shown in Figure 3-9, the local coordinate frame (or inertial coordinate frame) 

OL={ XL, YL, ZL } is set at the center o f the first joint. The first jo in t is composed 

of the W D M base and the first vertebra. The W D M distal end coordinate frame 

OT={ XT, YT, ZT }, is located at the distal end of the backbone. When the W D M 

segment bends 0 , and the bending direction angle is 巾,(the backbone bending is 

wi th in the plane O L X ' L Z L ) , the W D M distal end moves to O ' T = { X'T, Y'T, Z'T } .  

As shown in Figure 3-9, the transformation between O'T and 0L involves four 

steps: (1) translation of the coordinate origin from 0L to O'T; (2) rotation of the 

coordinate frame about the new Z axis wi th angle 少 ； （ 3 ) rotation about the new Y 

axis wi th angle 0 ； and (4) rotation about the new Z axis w i th angle - 少 . T h e 

overall transformation is described as Equation (3-43). 

. = TramiSx, Ay, Az) - Rot ( z , ① ) - R o t ( y , 0 ) - Rot ( z , — ① ） ( 3 - 4 3 ) 

In the equation, Ax , Ay and Az are the displacements along XL, YL , and ZL 

directions. They are also the distal end coordinates in the local coordinate frame 
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OL-XLYLZL. As the vertebra axis is the side of a regular polygon, the distal end 

position can be represented by Equation (3-12) and Equation (3-29) for serpentine 

W D M s and continuum W D M s respectively. Or, by the generalized kinematic 

model for single segment WDMs, the three translations can be represented by 

Equation (3-44). In the equation, L is backbone length, 0 is the W D M segment 

bending angle, and 0 is the W D M segment bending direction as defined 

previously. The derivation is similar to that of appendix B. 

L s in(0 / 2 ) 
N ‘ s i n(0 / 2 N ) 

sin (0 (N +1) /2N)cos (①)— 
s i n ( 0 ( N +1) /2N)sm (① ) 

c o s ( 0 ( N +1) / 2 N ) 

(3-44) 

Therefore, for each segment, the distal end position and orientation in the local 

coordinate frame can be defined by the backbone structure parameters, i.e. 

vertebra number N and backbone length L; and backbone deflection parameters, 

i.e. bending angle 0 a n d bending direction angle 0 . 

As shown in Figure 3-10, once the transformation of each segment is determined, 

the forward kinematics of multi-segment W D M s can be solved using the chain 

rule, similar to that of the traditional D - H method. Assuming that the W D M has 

M segments, the distal end position and orientation in the inertial coordinate 

frame is: 

Qrji _ Qrji \rTi M—7/Ji 
^M ~ ‘ ^M-l • IM (3-45) 

where 卜 T- is the transformation between segment /-1 and i， a s shown in 

Equation (3-46). In the equation, C© = cos(0), S© = sin(0), C0= cos(0) and So = 

sin(0). 

C 0 C 0 + S 0 
( C 0 - 1 ) C 0  S0 
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(3-46) 

The overall transformation matrix is a four by four matrix. The first three 

columns give the orientation of the distal end, while the fourth column gives the 

position in the inertial coordinate frame. 
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Figure 3-10 Multi-Segment W D M Coordinate Transform 

Up to now, the forward mapping from the configuration space to the task space 

has been established. For multi-segment WDMs, the mapping between the 

actuation space and the configuration space is basically the same as for the single 

segment W D M . 

For WDMs whose wire pairs of the posterior segment do not interact wi th the 

previous segments, the wire length variation for each segment is independent. 

They can be calculated by the method used in the single segment W D M . For 

WDMs whose wire pairs of the posterior segment go through the previous 

segments, the wire length variation has two parts. The first part is the variation 

within the segment. The second part is the length variation induced by the former 

segments. The overall length variation is the summation of the two parts. In 

determining the second part, the shift angle a shall be added to 0 for the latter 

segments. As shown in Figure 3-11, the shift angle is defined as the angular 

spacing among the wire pairs in different segments. 

Figure 3-11 Wire Pair Shift Angle 

50 



3.2.2 Inverse Kinematics 

The same as for a traditional robot with many DOFs, the inverse kinematics of a 

multi-segment W D M is complex. In most cases there is no unique solution as that 

can be solved for single section WDMs. I. D. Walker and his colleagues proposed 

a closed-form inverse solution for multi-section continuum robots [25]. In his 

method, the distal end position as well as the lengths of each section (i.e. di, d2, d3 

in Figure 3-10) need to be known in advance. However, in general, these lengths 

cannot be predetermined. Since there are many ways to reach a desired position, 

we propose a method in which closed form inverse kinematics can be solved. It is 

called the uniform bending scheme. 

In this scheme, the backbone radius for each segment is the same, i.e., R1 = . . . = 

Rm = R. Also, all the bending is in the same plane, i . e . , 釣 = . . . = 0 m = 少 For the 

design in which each segment has the same number of vertebras, we have 01 = . . . 

= 0 M =0 . From Equation (3-43) to Equation (3-47), the multi-segment W D M 

forward kinematics in this scheme becomes: 

x 
M 

R - sin ( j --1 /2 )- 0][1 - c o s(0)] - c o s ( 0 ) 

y R - sin [(j -- 1 / 2 )- 0][1 - c o s(0)] - s i n ( 0 ) (3-47) 

z J=1 R - c o s [(_/+-

- 1 / 2 ) -0]- s i n ( 0 ) 

By solving this equation, it follows that: 

y 
--arctan(—) x 

(3-48) 

R: 
x + y + z 

(3-49) 

0 
1 
M 

-arcsin 
z 
R 

(3-50) 

After the configurations of each segment are determined, the wire lengths can be 

solved as previously. It is interesting to note that, since each segment has the 

same length and bending angle 0, they can be treated as a vertebra as in the 

single segment WDM. Hence, the multi-segment W D M inverse kinematic 

problem becomes the inverse kinematic problem of single segment WDMs, which 
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has a unique closed-form solution. Although this simple case is one of many, i t is 

useful in wire-driven robot manipulation. 

3.3 Workspace 

The W D M is a type of underactuated flexible mechanism. The workspace here 

denotes the positions that the distal end can reach. The workspace is derived from 

the forward kinematic model. 

3.3.1 Workspace of Single Segment WDM 

For serpentine WDMs, the jo in t rotation is l imited by the vertebra structure. From 

the forward kinematic model o f single segment serpentine W D M s the workspace 

is expressed as Equation (3-51). 

= _ 。 ) • ^ I ^ I P e 中 丄 ] ( 3 - 5 1 ) 

For the single segment continuum W D M , the workspace is expressed as: 

+ y y + z z = • s i n f 县 ] 0 孝 腿 , 0 腿 ] ( 3 - 5 2 ) 2 N 

The workspace can also be obtained from the generalized kinematic model. 

4 x 2 + y 2 + z 2 = L.Js^^L 腿，0腿] (3-53) 
� 少 N s i n ( 0 / 2 N ) [ 腿 ’ 腿 I ) 

In the equations, L is the total length of the W D M , N is the number of joints, 0 is 

the overall bending angle and 6 is jo in t rotation angle. For continuum W D M , Nis 

① .The jo in t rotation l imits are as described in section 3.1. 

From the models, i t is seen that the workspaces of the two types o f W D M are 

both spheroidal surfaces. In planes parallel to the X-Y plane, the locus of the distal 

end is a circle, whose radius depends on the jo int rotation angle and the vertebra 

parameters. As an example, Figure 3-12 shows the workspace of a SSSX W D M 

wi th parameters L=150 mm, N=10 and ： e [ -14.25°,14.25°]. The workspace of a 

SSCX W D M has a similar shape. Note that the workspace is circularly symmetric. 

It can be obtained by rotating the distal end trajectory in the X -Z plane about the Z 

axis 180°. 
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Figure 3-12 Workspace of a Single Segment Spatial W D M 

Figure 3-13 Trajectories of the W D M Distal End with Increased Joint Number 

Figure 3-13 shows the trajectories of the W D M s in the X^Z plane using the 

generalized workspace model. The dashed lines represent the vertebra axis, and 

the curves show the trajectories. In the simulation, the length of the W D M is 

L=150 mm, and the rotation angle of the distal end is from -90° to 90°. From the 

figure, it is seen that wi th an increasing number of vertebras, the trajectory of the 

serpentine W D M becomes closer to the trajectory of the continuum W D M . When 

N is 100, the two trajectories almost overlap. This also validates the generalized 

kinematics model. 

3.3.2 Workspace of Multi-Segment WDM 

From the previous section, the workspace of a single segment planar W D M is a 

curve, and that of a single segment spatial W D M is a surface. The workspace of a 
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multi-segment planar W D M is expanded to a 2D face, and that of a multi-

segment spatial W D M is expanded to a 3D volume. In general, the analytical 

expression is very complicated and not easy to obtain. However, it can be solved 

numerically. 

Figure 3-14 Workspace of a Three-Segment W D M in the X-Z Plane. (a) N=10, 

Simulation Interval is 2.5° ； (b) N=10, Simulation Interval is 10。；（c) N=8, 

Simulation Interval is 2.5° ； (d) N=12, Simulation Interval is 2.5°. 

Figure 3-14 (a) shows the workspace of a three-segment planar W D M . Its motion 

is in the X-Z plane. Each segment has 10 vertebras and the length is 90 mm. The 

rotation range of each joint is 0 e -14.25〇,14.25° . In the simulation, the 

bending interval A0 is 2.5。. The blue curves indicate the reachable positions of 

the distal end while the red dot is the W D M base. It is seen that the workspace is 

symmetric about the Z axis. Figure 3-14 (b) shows the same workspace when the 

bending interval used in the simulation is increased to 10° . It is noted that the 

trajectory distribution of the W D M distal end is not uniform. The density of the 

curve plot indicates the number of ways of reaching the position. The denser the 

plot, the more ways the W D M can reach the same position, or more dexterous the 
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W D M is in this location. From the simulation, it is shown that the W D M is more 

dexterous around the second segment. 

It is also noted that there is a bl ind zone inside the workspace, where the distal 

end cannot reach. The existence and size of the bl ind zone is determined by the 

backbone structure, i.e. maximum bending angle of each segment. When there are 

eight vertebras in each segment and the jo int rotation range remains the same, the 

bl ind zone is as shown in Figure 3-14 (c). It is larger than the previous bl ind zone. 

When the vertebra number in each section is increased to 12, the bl ind zone 

vanishes, as shown in Figure 3-14 (d). One necessary condition of i l luminating 

the bl ind zone is that the W D M can reach its base, or the maximum bending angle 

of the whole W D M is larger than 360°. 

3.4 Employing Obstacles to Expand WDM Workspace 

The wire-driven mechanism is a type of underactuated flexible mechanism. The 

backbone deformation and the distal end motion is actively controlled by the wire 

pairs. However, when there is an external load acting on the backbone, its shape 

can also be changed, such as when there are obstacles in its way, the backbone 

deformation is codetermined by the wire control and obstacle location. This raises 

the idea of employing obstacles to expand the workspace of WDMs. 

3.4.1 Constrained Kinematics Model of WDM 

In the confined space, there are two types of obstacles. One is the bilateral 

constraint and the other is the unilateral constraint. Figure 3-15 shows the W D M 

bending motion in three cases: a) without constraint； b) wi th bilateral constraint； c) 

wi th unilateral constraint. As shown in the figure, when the W D M is under 

constraint, i t is segmented into the anterior constrained section and the distal free 

section. The bilateral constraint confines the constrained section two-sided, whi le 

the unilateral constraint confines the constrained section one-sided. In this section, 

the kinematic models of W D M s under the two types of constraints are developed. 

In practice, there are several ways to f ind the constraint's position, such as stereo 

vision [76], magnetic sensor [58], etc. Therefore, in the analysis, we assume that 

the position of the constraint in the W D M local coordinate (x。，z。) is known. 
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Figure 3-15 Three Types of W D M Motion: (a) without Constraint; (b) wi th 

Bilateral Constraint; (c) wi th Unilateral Constraint 

Figure 3-16 Process of Kinematics under Constraint 

The kinematics under constraint can be obtained by three steps as shown in 

Figure 3-16. First, f ind the position and orientation of the constrained joint; 

second obtain the position and orientation of the free section wi th respect to the 

constrained joint; third, superpose the two parts to determine the final position 

and orientation of the distal end. 

1) Constrained Forward Kinematics 

In the analysis, assume that there is only one constraint in the bending plane. 

Figure 3-17 shows the W D M under constraint. In the figure, C is the constraint 

position. Assume for the constrained section the number of joints involved is N ' ; 

the joint rotation is 9’ ； the length is L = N 1 ； the bending angle is A0^‘ ； and 

the location of the constraint on vertebra PN-IPN' is l ‘ . For the free section, the 
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number of joints involved is N"; the joint rotation is 0" ； the length is L" = L - L 

The overall bending angle of the W D M is A 0 . 

Figure 3-17 W D M with Constraint 

To find the end effector position under constraint, the first step is to identify the 

constrained joint PN’. Assume that the position of the constraint is (xc，zc) and 

the robot base is (xb，zb). Then, the distance from the constraint to the base is: 

d = � (- x b ) 2 + ( ( z -zb (3-54) 

The bending angle of the constraint section cannot be found directly. However, 

from Figure 3-17, it can be approximated as Equation (3-55). It is obvious that the 

approximated bending angle is between and . 

A0^,=;r-2arctan 
-z. 

(3-55) 

Also, the length of the constrained section is close to the corresponding arc length 

of the circumcircle: 

V-
d 

2-s in(A0^, /2) 
A 0 . (3-56) 

It can be shown that L ' is between Z' and L !+ l . As a result, the fixed joint 

number is the quotient of L ' and I as shown in Equation (3-57). 
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N'= floor {L'/1) (3-57) 

When the constrained joint number is known, the joint rotation angle can be 

solved from Equation (3-58). 

l • sin ( N sin [ ( N ' 部 

Xc cos (2N’P’、-Zc sin ( 2 N 
= sin ⑷ (3-58) 

where, P‘=6‘/2. The rotation of the constrained joint is A0N , = 2N ' P‘ 

The location of the constraint on the W D M is: 

(Xc (3-59) 

The constrained joint position is: 

sin(N p ‘) 
sin(P ‘) 

sin(N p ‘) 
sin(P ‘) 

cos 

sin 

(N ‘ + 1 )p ‘ 

( N ‘ +1)P' 

(3-60) 

(3-61) 

The constrained joint PN' is now the new base of the WDM. The free section 

becomes the new WDM. The forward kinematics model of the new W D M is the 

same as for the previous unconstrained kinematics, with the length L“ = L - L‘ 

and joint number N ” = N - N , . 

2) Constrained Inverse Kinematics 

The inverse kinematics aims to answer the question of how to reach a position 

with given orientation. In the constraint inverse kinematics, the problem becomes 

how to deploy constraints/obstacles to enable the W D M to reach the position with 

given orientation. 

Assume that the target distal end position is (x, z) and the desired rotation is A © . 

From Figure 3-17, it is seen that as long as the constraints lie on vertebra PN'-IPN', 

the position and orientation of PN' is the same. As a result, in practice, we can 

deploy the constraints on the joint, i.e. C is coincident with PN'. The position and 

orientation of PN' is determined by and 6‘. Furthermore, i f 6 is known, the 
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end effector position and orientation can be determined. Let P' = / 2 and 

P" = e " / 2 . From Figure 3-17, the formulas are established as Equation (3-62). 

N = N +N" 
A0 = 2( N 'P' + N ’"p) 

X = L s i n ( N ‘ P ) sin [(N‘+1)P‘] + L s i n ( N “ P ) sin [2N’ p‘+(N“+1)P“] (3-62) 
N sin(P') N sin(P") 

Z = L s i n ( N P ) cos [(N+1)P ’ ] + L s i n ( N c o s [ IN’ P ‘+(N "+1)P “] 
N sin(P') 炉 J N sin(P") ^ ‘ 

There are four unknowns and four independent equations. Mathematically, there 

is a unique solution. However, due to the constraint of the W D M structure, the 

joint rotation is bounded. As a result, only the solution that has valid joint rotation 

is effective. In other words, when the end effector reaches the target position, its 

orientation has only N-1 choices. In practice, we can set the constraint joint N' 

from 1 to N-1 manually and then find all the effective orientations. Or, when 

orientation is more important, we can also find the N-1 effective positions. It is 

not certain that we can always meet the two requirements simultaneously. We can 

meet one first and make the other as close as possible. 

Figure 3-18 gives an example. In the example, N=10, l=15 mm and 0max=2.48 rad. 

In the figures, the red dashed curve is the trajectory of the end effector without 

constraint. The left and right green polylines are the backbone at two bending 

limits. The circles denote the joints and the solid square is the constrained joint. 

Yellow represents the solution is effective, and cyan means in the solution the 

joint rotation violates the limit. The desired position and orientation are X=66.1 

mm, Y=120.7 mm and 0=1.32 rad. 
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Figure 3-18 Inverse Kinematics: (a) Solution wi th Exact Position; (b) Solution 

wi th Exact Orientation and Exact Xposit ion; (c) Solution with Exact Orientation 

and Exact Z position 
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In Figure 3-18 (a), bilateral constraint is deployed at joints 1 to 9 successively. In 

all the cases, the end effector attains the desired position. The enlarged view 

shows the last vertebra of the W D M . Among the 9 cases, exact solution exists 

when the sixth jo in t is fixed, as shown by the red line. For the f ixed joints, the 

rotation is 0.03 rad; the rotation of other joints is 0.12 rad. The curves in yel low 

represent that the solution is wi th in the maximum jo in t rotation. Together w i th the 

exact solution, there are six possible orientations for the end effector to reach the 

target position. The curves in cyan denote that the solution violates the W D M 

structure constraint. 

Figure 3-18 (b) shows the solutions wi th exact distal end orientation and X 

position. From the simulation results, there are f ive configurations (lines in 

yel low and red) that meet the requirement. Figure 3-18 (c) shows the solutions 

wi th exact orientation and Z position. From the simulation results, there are four 

configurations (lines in yel low and red) that meet the requirement. It should be 

noted that, for WDMs, an exact solution does not always exist. W i th increased 

number of vertebras, i t is more l ikely to have an exact solution. When N is 

inf ini ty (i.e. continuum W D M ) , an exact solution is certain. 

3.4.2 WDM Workspace with Constraints 

The workspace of the W D M is obtained from the forward kinematics. The 

bilateral constraint and unilateral constraint l imi t the jo int rotation differently. 

Hence, the corresponding workspaces are different. 

1) Workspace with Bilateral Constraint 

When the W D M is f ixed in the middle, the constrained section is fixed. The free 

section turns into a new W D M , taking the constrained jo in t as the base. The distal 

end position and orientation can be determined as in the previous section. For the 

free section, the maximum jo in t rotation remains the same. The distal end 

trajectory is shown by Equation (3-63). 

( x - % ' ) + ( z - z N ' 
广 s i n (鄉 " / 2 ) 、 2 

N “ - sm(e “/2) 
emin ^ emax ( 3 - 6 3 ) 

In the equation, ^nin and e^ax are the min imum and maximum jo in t rotation. The 

constraint position is arbitrary. Therefore, the workspace wi th bilateral constraint 
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is the collection of all the possible trajectories. The joint rotation is confined by 

the W D M vertebra structure. In general Q^in = -0max. 

Figure 3-19 Workspace with Single Bilateral Constraint 

Figure 3-19 shows the workspace of a W D M with a single bilateral constraint. 

The green lines show the two bending limits of the W D M . The blue circles 

represent the joints. The red line is the W D M in the rest position. The red dashed 

curve is the W D M end effector trajectory without constraint. The blue region 

shows the W D M workspace with single bilateral constraint. It is obvious that the 

workspace of the W D M is expanded a lot (blue region VS red dashed curve). It 

should be noted that for a specific bilateral constraint, the distal end trajectory 

remains a curve. The workspace is the collection of all trajectories wi th 

permissible constraint. 

2) Workspace with Unilateral Constraint 

When there is a unilateral constraint, such as a stone, the W D M cannot cross over 

the constraint but can return freely. The free section motion is partitioned into 

forward bending and backward bending. The forward bending is the same as that 

with bilateral constraint and the backward bending is the same as that without 

constraint. Assume that the unilateral constraint is located in the right plane, i.e. 

0 ' > 0 , the end effector trajectory wi th unilateral constraint is represented as 

Equation (3-64). In the equation, Q̂ ax and Qmin are the maximum and minimum 
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jo int rotation, and 9' is determined as in the previous section. When the 

constraint is located in the left plane, i.e. 9 ' < 0 , the workspace has the same form 

with joint rotation range of: 9 m i n < 9 " < 9 ' i n the first part and 9 ' < 9 < 9 m a x in the 

second part. The workspace with unilateral constraint is also the collection of all 

the possible trajectories. 

(x -XN )2+(z-z N )2 

(x-Xb )2+(z-zb )2 : 

“ - s in (N "9 ’“ /2) 
、 N “ - sin (9“ /2) 

L • sm(N0/2)、2 

N - s in(9/2) 

2 

< I < 9 m a 

(3-64) 

<6><‘ 

Figure 3-20 shows the workspace of a W D M with a single unilateral constraint. 

In the simulation, a single obstacle is placed on the bending plane of the W D M . 

The legend is the same as that in the previous figure: blue region shows the 

workspace with constraint; the red dashed curve is the distal end trajectory 

without constraint; the green lines are the two bending limits of the W D M ; the 

blue circles represent the W D M joints; and the red line in the middle is the W D M 

in the rest position. In this case the workspace is also expanded a lot. It is noted 

that the workspace under unilateral constraint is bounded by the free path. From 

the representation as well as the simulation, it is known that the workspace with 

unilateral constraint is a subspace of the workspace with bilateral constraint. 

X Position (mm) 

Figure 3-20 Workspace with Single Unilateral Constraint 
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The W D M workspace with unilateral constraint and bilateral constraint are both 

symmetric. When the U F M is confined by multiple constraints or hybrid 

constraints the forward kinematics, inverse kinematics and workspace can be 

solved in a similar way. In this case, the W D M is divided into multiple sections. 

As long as the constrained joints are found, distal end position and orientation can 

be solved, as well as the workspace. 

3.5 Model Validation via Experiment 

To validate the kinematic models, two W D M manipulators were designed and 

built. One was a SPSP W D M , and the other a MSSP W D M , with three segments. 

3.5.1 Single Segment WDM Kinematic Model Validation 

To validate the single segment W D M kinematic model, a SPSP W D M based 

manipulator was built as shown in Figure 3-21. 

Figure 3-21 Manipulator wi th SPSP W D M 

The vertebras were built using Rapid Prototyping (RP). There are 10 vertebras 

and 10 joints. The maximum rotation angle of the manipulator is 0 = 142.5o 

(14.25o for each joint). It is noted that the friction of the joints can be uneven, 

which makes the bending non-uniform. To eliminate this problem, a rubber tube 

is placed through the central cavity of each vertebra. It provides a restoring spring 

force and distributes the joints' rotations. The vertebras together with the rubber 

tube serve as the backbone of the manipulator. The deformed backbone is close to 
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a constant curvature circular arc. The motion of the manipulator is planar, hence, 

only one pair of wires was used. The wires are fishing lines, and are fastened onto 

a wire coiler, which is driven by a servo motor. The motor is controlled by a 

M C U (Model: A V R ATmega 16). 

The backbone is coincident wi th Z axis when in the rest position. During the 

experiment, the distal end positions are recorded at different bending angles using 

a grid paper. In the experiment, the distal end moved from the left extreme 

position to the right l imit. The experiment result is summarized in Figure 3-22. In 

the figure, the red line is the predicted trajectory using the derived kinematic 

model, while the blue stars are the recorded positions. It is noted that the actual 

position is very close to the predicted one. As shown in Figure 3-23, the relative 

positioning error is generally within 2% (black dashed line). More specifically, 

the position error in the Z direction (red line) and error in the X direction (blue 

line) are less than 3% with few exceptions, such as at the two bending limits. A t 

these positions, the absolute value is small. Although the discrepancy is small, the 

relative error is large. Compared to traditional rigid discrete manipulators, the 

positioning error is large. This may be attributed to a number of factors, such as 

prototyping error, modeling simplification error, non-uniform friction among the 

joints, etc. Nonetheless, this validates the developed kinematic model. 

Figure 3-22 Trajectory of the W D M Manipulator End Effector 
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Figure 3-23 Relative Positioning Error of the Manipulator 

3.5.2 Multi-Segment WDM Kinematic Model Validation 

To validate the proposed multi-segment W D M kinematic model, a multi-segment 

manipulator was designed and built, as shown in Figure 3-24. It is based on the 

MSSC W D M . 

Figure 3-24 Three-Segment W D M Manipulator 
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It has three segments, and each segment has 10 vertebras. The vertebras are made 

by RP. The outer diameter of the vertebra is D = 20 mm, while the pilot holes are 

evenly distributed on a circle wi th a diameter of d = 15 mm. The height of each 

node H = 6.5 mm, and the initial gap distance h = 2.5 mm. In this design, the 

maximum rotation angle for each joint is 14.25o. A 5 mm diameter rubber tube is 

used as the returning spring for each joint. Six groups of steel wires wi th 0.475 

mm diameter are used to control the robot. These wires are pulled by servomotors, 

whose maximum torque is 13 kg.cm. The controller is developed using the 

commercial M C U (Model: A V R ATmega 128). 

The manipulator has six controllable DOFs. Bending shapes of the manipulator 

can be various. Figure 3-25 (a) shows the manipulator in the rest position and 

Figure 3-25 (b) to Figure 3-25 (l) show various bending cases. 

In particular, four cases, i.e., (b), (c), (d) and (e) are studied in detail. In these 

cases, three segments all bend in the X-Z plane. The bending angles for each 

segment are shown in Table 3-1. In case (b), only the segment near the 

manipulator base bends. The other two segments remain still. In case (c) only the 

second segment bends, and in case (d) only the third segment bends respectively. 

In case (e), the three segments bend together, and their bending angles are the 

same. 

Figure 3-25 Three-Segment W D M Manipulator Bending Cases 
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Table 3-1 Segment Bending Angles in the Experiment 

Segment 1 Segment 2 Segment 3 

Case (b) 0 ~ 142.5o 0 0 

Case (c) 0 0 ~ 142.5o 0 

Case (d) 0 0 0 ~ 142.5o 

Case (e) 0 ~ 142.5o 0 ~ 142.5o 0 ~ 142.5o 

In the test, no payload was applied to the manipulator. The power consumption of 

the manipulator is affected by the motion type and manipulator configuration. 

Generally, the power consumption of each motor is less than 1W, and the power 

consumption of the control system is around 0.5W. At larger bending angles, a 

bigger moment is needed to maintain the configuration of the manipulator. The 

more motors involved in the motion and the larger the bending angle, the higher 

the power consumption of the manipulator. In the four cases, the trajectories of 

the distal end were measured using grid paper, as shown in Figure 3-25, and then 

compared with the model predictions. 

300 
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- 1 0 0 
.2 

• 1 0 0 

-150 
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100 150 
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Figure 3-26 Trajectories Comparison of the Distal End 
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Figure 3-27 Relative Positioning Error of the Distal End 

The results are shown in Figure 3-26. The curves are the predicted distal end 

trajectory, while the dots are the measured positions along the trajectory. Case (b) 

is shown in red; Case (c) is in green; Case (d) is in blue and Case (e) is in 

magenta. The experiment results and the model prediction match reasonably well. 

Figure 3-27 shows the relative positioning error. The curves show the error in 

each measured position, while the dashed lines show the average error. From the 

figure, it is seen that the average positioning errors in the four cases are 2.372%, 

1.627%, 0.871% and 3.581% respectively. These results are consistent wi th the 

results for the single segment manipulator. It should be pointed out that the 

positioning error is smaller than that of the continuum robot. As reported in [25], 

the average prediction error of OctArm V using the piecewise constant curvature 

model is nearly 50% of the robot length. A close examination reveals that the 

longer the moving part, the larger the error. The reason is: on one hand the 

flexibil i ty of the robot increases with increasing moving part length; on the other 

hand the error near the robot base is accumulated and amplified at the distal end. 

Compared with traditional rigid descrete robots, the positioning accuracy of the 

wire-driven robot is low. Also, it is more affected by the robot configuration and 

external perturbations. Meanwhile, gravity also impairs the accuracy of the 

piecewise constant curvature assumption. As a result, such a robot is more 
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suitable for inspection applications, e.g. endoscopy, and applications where 

gravity is trivial, e.g. space robots, underwater robots, etc. 

3.5.3 Constrained Kinematic Model Validation 

The single segment W D M manipulator shown in Figure 3-21 was also used to test 

the constrained kinematic model. Two experiments were carried out. In the first 

experiment, the trajectory of the end effector under bilateral constraint is recorded 

and compared with model predictions. In the second experiment, the end effector 

trajectory under unilateral constraint is compared with simulated trajectory. 

1) End-effector Trajectory with Bilateral Constraint 

In this experiment, the trajectory wi th bilateral constraint is measured and 

compared with model predictions. The bilateral constraint can be applied to the 

manipulator internally (through the tube) or externally (bilateral from outside). In 

the experiment, internal bilateral constraint is applied to the manipulator by 

inserting a steel bar into the rubber tube. External bilateral constraint is applied by 

pinning a needle to the joint, as shown in Figure 3-28. When the manipulator 

moves to a position, the joint is pinned to the bending plane by the needle. 

Figure 3-28 W D M Manipulator Moving with External Bilateral Constraint 

Figure 3-29 shows three trajectories of the manipulator end effector with internal 

bilateral constraint. In the figure, curves represent the simulated trajectories; 

diamonds are the recorded positions on the end effector trajectories; poly lines are 
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Figure 3-29 End Effector Trajectory Comparison - Internal Bilateral Constraint 

71 

the vertebras of the manipulator at two bending limits； circles denote the joints of 

the backbone； the constraints are represented by squares. Three cases are shown 

in the same figure using different colors. Trajectory without constraint is shown 

in blue； trajectory wi th the third jo int f ixed is shown in green； trajectory wi th the 

f i f th jo int f ixed is shown in red. From the results, i t is seen that the proposed 

algorithm predicts the trajectory of the end effector well. Meanwhile, it is shown 

that wi th the constraint, the trajectory is different from the free path. It is noted 

that wi th internal bilateral constraints, the number of movable vertebras is 

reduced. Hence, the trajectories are shortened. Also, the trajectories wi th internal 

bilateral constraint are bounded by the free path. 

Figure 3-30 shows three cases of the manipulator end effector trajectory. In this 

test, the constraints are external bilateral constraints. The same as before, the 

curves are the simulated trajectories； the diamonds are the measurements； the 

lines are the manipulator vertebras； the circles are the joints； the squares are the 

constraints. Manipulator trajectory without constraint is in blue； trajectory wi th 

the third jo int f ixed is shown in green； trajectory wi th the sixth jo int fixed is 

shown in red. In the test, the W D M flexes into a configuration at the beginning. 

Thereafter, the jo int is pinned to the work plane by the needle as shown in Figure 

3-28. The trajectory of the end effector is recorded using grid paper. 
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Figure 3-30 End Effector Trajectory Comparison - External Bilateral Constraint 

From the results, it is seen that the proposed algorithm predicts the end effector 

trajectory wi th external bilateral constraint well. Also, the changed trajectory 

shows that the workspace is expanded by the constraint. However, different from 

that of internal bilateral constraint, the trajectory under external bilateral 

constraint is not bounded by the free path any more. This means that wi th external 

bilateral constraint the workspace can be expanded even more. In fact, when the 

external bilateral constraint is located in the W D M rest position, the end effector 

trajectory is the same as that under internal bilateral constraint. As a result, the 

workspace with internal bilateral constraint is a subspace of the workspace with 

external bilateral constraint. 

2) End-effector Trajectory with Unilateral Constraint 

In this experiment the algorithm of predicting the end effector trajectory wi th 

unilateral constraints is tested. The simulated end effector trajectory is compared 

with the measurements. In the simulation, multiple constraints are applied. 

The results are as shown in Figure 3-31. Unilateral constraints are randomly 

placed on the bending plane as shown by the squares. A t the beginning, the 

manipulator is in the rest position as shown by the magenta lines. By controlling 

the wire pair, the manipulator bends to both sides. When colliding wi th the 

constraint, the joints between the constraint and the manipulator base stop 
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Figure 3-31 End Effector Trajectory Comparison - Unilateral Constraint 

3.6 Summary 

In this chapter, kinematic models of single segment serpentine W D M and single 

segment continuum W D M are developed from geometry analysis. The continuum 

W D M is a special case of serpentine W D M with an infinite number of vertebras. 

As a result, a more generalized kinematic model is established. The multi-
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rotating. The other joints rotate continuously until they reach the l imit. The green 

poly lines show the two limits of the manipulator under unilateral constraints. As 

shown in the figure, in the left half plane, the first three vertebras are confined by 

the unilateral constraints; in the right half plane, the first five vertebras are 

confined by the unilateral constraints. The trajectory of the end effector under 

unilateral constraint is as shown by the red curve. The blue curve is the trajectory 

without constraint. In the figure, the diamonds are the recorded positions. The 

blue ones are for the free path and the red ones are for the trajectory wi th 

constraint. Experiment results show that the model predicts the end effector 

trajectory wi th unilateral constraint well. The new trajectory is also bounded by 

the free path. A l l the trajectories wi th possible block constraints make up the 

workspace. The workspace with unilateral constraint is also a subspace of the 

workspace with external bilateral constraint. 
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segment W D M kinematics model is established by the extended D - H method, in 

which the single segment W D M is treated as a l ink wi th two rotation DOFs and 

one translation DOF. The workspace model of the W D M is developed from the 

forward kinematics model. For single segment W D M , the workspace is a 

spheroidal surface. For multi-segment W D M , the workspace is expanded to a 3D 

space. There may have a blind zone inside the workspace, depending on the 

W D M maximum bending angle. The W D M is highly underactuated and flexible. 

By this property, a novel idea of employing obstacles to expand the W D M 

workspace is proposed. The kinematic models are validated by two wire-driven 

manipulators. Results show that, the proposed models can predict the distal end 

trajectory well. The averaged relative error is less than 3.6%. 
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Chapter 4 Statics and Dynamics of the 

Wire-Driven Mechanism 

In this chapter, the static model and dynamic model of both SPSP W D M and 

SPCP W D M are developed. In the static and dynamic analysis, the multi-segment 

W D M can be treated as a single segment W D M with different loading conditions. 

4.1 Static Model of the Wire-Driven Mechanism 

In this section the static models of two representative WDMs, i.e., SPSP W D M 

and SPCP WDM, are derived. The SPSP W D M is modeled as a multi-l ink 

structure with a torsion spring on each joint. The SPCP W D M is modeled as a 

Euler-Bernoulli cantilever beam, as the backbone is thin and bends only. For 

other WDMs, such as multi-segment WDM, spatial WDM, and W D M with 

tapered wire configuration, their modeling are similar. The major difference is in 

the boundary conditions. 

4.1.1 Static Model of SPSP WDM 

The SPSP W D M is a N-l ink manipulator with constraints on each joint. In this 

example, the constraint is applied via a uniform elastic tube, as shown in Figure 

4-1 (a). As shown in the figure, the backbone has two parts. One is the rigid 

vertebras and the other is the elastic tube. The elastic tube serves as the torsion 

spring on each joint. It constrains the joint rotations. The tube is uniform. As a 

result, the constraint on each joint is the same. On the other hand, the elastic tube 

deformation is also confined by the vertebras' movement. In the rest position, the 

tube and the vertebra axis are colinear. When the backbone bends, the tube is 

coincident with the neutral axis. The tube deformation is pure bending. Its length 

does not change during the backbone bending, as the vertebras are all rigid. In the 

analysis, the wires are not considered as they are soft and massless. 

There are two categories of forces acting on the backbone. One is the external 

load, and the other is the controlling forces from the wires. In practice, the 

external load applied on the backbone can be various, such as distributed force, 

lumped force, and moment. From the theorem of reciprocal displacements [127], 
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any arbitrary external load can be viewed as a concentrated force and a pure 

moment at the backbone distal end. The deformations under these two loading 

conditions are also equivalent. Hence, in the analysis, only one external loading 

condition is considered, that is, a concentrated force Fex, a concentrated force Fey, 

and a pure moment Me are applied to the distal end of the backbone. The 

backbone bending is actively controlled by the wires. The two wires are equally 

pretensioned. Therefore, in the rest position, the resultant controll ing force on the 

backbone is an axial force without bending moment. When the two wires change 

lengths, the tensions in the wires are also diferent. Also, when external loads are 

applied, the tensions in the wires increase. The resultant controll ing forces applied 

to the backbone are a concentrated force and a bending moment. Figure 4-1 (b) 

shows the loading condition of the SPSP W D M . In the figure, Fex, Fey and Me are 

the external loadings, and T1 and Tz are the wire tensions. 

(c) Free Body Diagram 

Figure 4-1 SPSP W D M Static Analysis 
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Figure 4-1 (c) shows the free body diagram of the vertebras. In the figure, , 

F b y and Mb are the forces and moment from the W D M base; , F and M . 

are the forces and moments among the joints. When distal end jo in t rotation is a n , 

or 0, the actuation moment Mis: 

M = AT • d (4-1) 

where, A T = T — T and d is the wires' spacing distance. 

Assume the Young's modulus of the elastic tube is E, and in the bending direction 

the second axial moment o f area is Iz. For each joint, the rotation is small. 

Therefore, the torque applied on the joints by the tube is as per Equation (4-2). A t 

the first jo int , the torque is Mb = EIz - a j h 0 . 

M = EIz • (a, — a—1)/h , 1=2 to n (4-2) 

From the free body diagram, we can f ind the static model o f the SPSP W D M as: 

For the first vertebra, i.e. 1=1: 

Fx =— F x 

Fy = -F y 

Mb = M2 + ( H + h0) F2x sin ( a ! ) — F2y cos ( 

(4-3) 

For the middle vertebras, where i f rom 2 to n-1: 

Fx 

F. 
-F i + 1 x 

F i • + 1 y 

M , = M , + 1 + ( H + h 0 ) [ F,+ixsin (a)—F,+1 y c o s ( a ) 

(4-4) 

For the last vertebra, n: 

Fnx =(T1 + T2) cos (an) — Fx 

Fny = ( T 1 + T2) s i n (an)-Fey 

M n =  M e +
 M + ( H

 + h0 ) � F x sin (an ) —
 Fey cos 

(4-5) 

1) Deformed Backbone Curve 

In the statics analysis, the general concern is the deformed shape o f the backbone 

under given loading conditions. Assume all the forces, including the external 
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loads and actuation forces applied on the backbone are known. From Equation 

(4-2) to Equation (4-5), there are 4n unknowns (Mi, Fix, Fy, a. ) and 4n 

independent equations. Mathematically, there is a unique solution. The deformed 

backbone shape is determined by the joint rotations. In the solution, the forces 

and moments can be viewed as intermediate variables. 

Figure 4-2 SPSP W D M Static Analysis: (a) Deformed Backbone Curve; (b) Joint 

Rotations 
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The above shows one simulation example. In the simulation, the backbone has 10 

vertebras. For each vertebra H=12.5 mm and 办 0 = 2 . 5 mm. For the elastic tube, 

£=1.5 GPa. The cross-section is ring shaped. The outer radius is r尸2.5 mm, and 

the inner radius is r2=2.0 mm. Three loading conditions are simulated: i ) Mn=0.1 

Nm, Fnx=0 N, Fny=0 N; i i ) Mn=0.1 Nm, Fnx=1 N, Fny=0 N; i i i )风= 0 . 1 Nm, Fnx=0 

N, Fny=1 N. Here, Mn is the resultant bending moment; Fnx and Fny are the 

resultant horizontal force and vertical force. 

The results are shown in Figure 4-2. Figure 4-2 (a) shows the deformed backbone 

curve and Figure 4-2 (b) shows the jo int rotations. From the results, when the 

backbone is deformed by a pure moment, as shown by the first loading condition, 

the rotations of each jo int are the same. Under this loading condition, the constant 

curvature assumption is valid. However, the constant curvature assumption is 

invalid when there are other loadings. As shown in loading conditions i i ) and i i i), 

when Mn =0.2 N m and Fnx =1 N, the jo int rotations increase gradually, and when 

Mn =0.2 N m and Fny =1 N, the jo int rotations decrease constantly. 

2) Controlling Forces 

In the above example, the external loadings and actuation forces are all known. In 

practice, one may be more concerned about how to manipulate the backbone tip 

into a desired position under given external loading conditions. In other words, 

when the tip position and external loadings are known, what are the controlling 

forces, and what are the jo int rotations or the deformed backbone shape? 

Let P=T1+T2; combined wi th Equation (4-1) we have: 

T=0.5 ( P + Mjd ) 

T = 0.5 (P - Mjd ) 

The backbone tip position is: 

‘ n 

x = S ( H + h0 ) • c o s { ^ i ) 
i=1 

< 
n 

y = Z ( H + h0 )• sin (Mi) 
� i=1 

From Equation (4-2) to Equation (4-5), we have: 

(4-6) 

(4-7) 
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Fnx = P • c o s ( ^ n ) - F e x 

Fry = P • sin ( « n ) - F e y 

Let K = E^lh . For each vertebra, the moment equations 

(4-8) 

For 

K = K . ( a , - a ^ ) + ( H + h�)�Fnx sin(汉丄)—F„y (4-9) 

For i=2 to n-] 

K (a,-a,—1 ) = K .(《,+1 - a ) + ( H + h0 )[「x sin (a,) — F cos (a,)] (4-10) 

For /+=n: 

K (an-an—1) = Me + M + (H + h^Fex sin ( a ) - F ( 4 - 1 1 ) 

From Equation (4-7) to Equation (4-11) there are in total n+4 unknowns (i.e. a , , 

M , P , F： , and Fny ) and n+4 independent equations. Mathematically, a unique 

solution exists. The wire tensions T̂  and T^ can be solved from Equation (4-6). 

An example is shown in Figure 4-3. In the simulation, the desired backbone distal 

end position is x=125 mm, and y=75 mm. Four external load conditions are 

considered: i) without external load; i i ) Fex=1 N; i i i ) Fey=1 N; and iv) Me=0.1 Nm. 

Figure 4-3 (a) shows the deformed backbone curve, and Figure 4-3 (b) shows the 

rotation angle of each joint. In the four loading conditions, the actuation forces 

are: case i) 7\=-1.595 N, 72=10.7042 N; case i i ) 7\=-4.7125 N, 72=11.0142 N; 

case i i i ) 7^=1.3336 N, 72=0.0413 N; and case iv) 7\=-3.1473 N, 72=2.3146 N. In 

the simulation results, some of the wire tensions are negative. As we know, wires 

can pull and cannot push. This means wires can only provide positive tension. As 

a result, although a solution can be found mathematically, in reality the SPSP 

W D M backbone tip cannot reach arbitrary positions with external loads. 
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Figure 4-3 SPSP W D M Backbone Reaches a Desired Position: (a) Deformed 

Backbone Curve; (b) Joint Rotations 

4.1.2 Static Model of SPCP WDM 

For the SPCP W D M , the backbone is a thin beam. The deformation of the beam 

is pure bending. The static model of a single segment continuum W D M is 

established based on the nonlinear Euler-Bernoulli Beam Theory and Elastica 

Theory. From the theory, curvature of the deformed backbone is proportional to 

the bending moment. Elastica is the exact shape of the deflection curve of a 

flexible member [128]. From the Elastica Theory, the backbone is inextensible, or 
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the beam length after deflection is unchanged. In the statics analysis, the 

backbone is viewed as a cantilevered Euler-Bernoulli beam. 

(b) Backbone Static Analysis (c) Free body Diagram 

Figure 4-4 SPCP W D M Static Analysis 

Figure 4-4 (a) shows the backbone subjected to general loading conditions. The 

structure parameters of the continuum backbone are: Young's modulus E, second 

axial moment of area I, cross-section area A(x), length L and density p. The 

vertebras or the spacing discs are the added mass m：; their distributions along the 

backbone are as shown in the figure. Figure 4-4 (b) shows the statics analysis of 

the SPCP W D M , and Figure 4-4 (c) shows the free body diagram of the backbone 

segment. Similarly, forces acting on the backbone are divided into external load 

and controlling forces. External loads include the distributed force q{x, t), the 

gravity of the vertebras F： and the concentrated forces Fex, Fey at the distal end. 

Controlling forces are the concentrated force F and bending moment M at the 

distal tip. Two coordinate frames are set. One is at the backbone base OXbYb, and 

the other is at the distal end OXeYe. 

The deflection of the W D M backbone is large. In the analysis, the distal end 

horizontal displacement Ax cannot be neglected. Assume after deflection the 
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distal end in the base frame is (L-Ax, -Ay). In frame OXeYe, the distal end position 

is (0, 0). In the following analysis, the frame OXeYe is used. From the Euler-

Bernoulli beam theory, the deflected backbone is described as: 

y 

1+(y')2 
3/2 

M (x) 
~Er 

义 (x) (4-12) 

In the equation, the bending moment M(x) is assumed to vary in an arbitrary 

manner. Young's modulus E and second axial moment of area I are assumed to be 

constant. In the equation, y and y " are the first and second derivative to x. To 

find the deformed backbone curve, we need to find x) and integrate the 

nonlinear differential equation. 

Let y y" = p' 
y = p , then we have: 

dp / dx 
1 + p2 

:义(x) 

By multiplying both sides by dx and integrating once, we have: 

dp 
x)dx 

p 

Furthermore, let p = tan0. Then we have: 

dp = sec2 0d0 

cos0 
1 

1 + pp 
1/2 

(4-13) 

(4-14) 

(4-15) 

(4-16) 

sin 没 : 
p 2 

1/2 (4-17) 

By substituting Equations (4-15) , (4-16) and (4-17) into Equation (4-14), we 

have: 

c o s 0 d 0 =义 ( x ) d x (4-18) 
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Let (p(x) be the integration of x) . By integrating Equation (4-18) once, 

together with Equation (4-17) we have: 

- y — - U 2 = ( ( X) + C (4-19) 
1 +(y ' ) 2 

In the equation, C is a constant. It can be determined from the boundary condition. 

In the W D M , the backbone is assumed to be a cantilever beam. As a result, at the 

base or at L — Ax the slope y' = 0, or C = —((L — Ax). 

Let G(x) = ( ( x ) + C, then the slope along the backbone is: 

G( x) 
y ( x )= I , 

小—G( x)2 

The vertical displacement of the backbone at x is: 

】"小—G(")2 

(4-20) 

(4-21) 

Hence, as long as G(x) is known, both y ' and y can be solved thereafter. In the 

Elastica theory, it is assumed that the beam length after deflection does not 

change. This yields: 

L = 1； [ 1 + (y ' ) 2 ] dx (4-22) 

In the equation, L0 = L—Ax and Ax is the backbone tip horizontal displacement. 

In the kinematics analysis, it is assumed the deformed backbone is a circular arc. 

Here, we first assume that the horizontal translation is the same as that of circular 

deformation as shown in Equation (4-23), where 0 is the backbone tip orientation. 

From the initial estimate, we can find the deformed backbone length L from 

Equation (4-22) accordingly. It is certain that error exists. However, we can adjust 

Ax according to L and repeat the process again. By several iterations, Ax can be 

obtained with given precision. 

Ax = L 
sin ( 0 ) 

0 (4-23) 
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In the solution, another issue is to determine x). It is dependent on the load 

condition. Without losing generality, the backbone is assumed to be subject to all 

kinds of loads, as shown in Figure 4-4 (b). The tip position in the base frame is 

(Lo, -Ay), and the orientation is 0. The moment is: 

M(x) = -M + ( F • s i n 0 + F^)• x - ( F • c o s 0 - F ^ ) • y - : f ( " ) d ” (4-24) 

In the equation, the distributed load is f (x) = x) + q{x,t) + F^-Six-x,), 

pA(xx) is the mass distribution along the backbone from the tip to the base, 

q(x,t) is the distributed load, F, is the concentrated force, x, is the location of 

F and S(x) is the Dirac Delta Function. As a result, we have: 

G( x ) =义 ( x ) d x 
EI 

Mx — ( F s i n 0 + F ) - Fcos0tan — -F议 
V 2 

(4-25) 

7 (") didx\ + C 

By applying the boundary condition: G(L - A x ) = 0 , we have: 

C = 1 �L -Ax) 

M ( L -Ax) -丄 (L -Ax )2 (F sin 0 + ̂  ) - F cos 0 tan 二 - F ^ ^ 
EI 

(4-26) 

+ f (") d"dxj 

The deformed backbone curve can be solved in the following steps: 

“ F i r s t assign an initial value to Ax. Then the length of the deflected beam 

is: L 
—Ax - 1 / 2 

G(x) dx. As the backbone is inextensible, it should 

be the same as the initial length, i.e. L = L. The horizontal displacement 

Ax can be solved by iteration with given accuracy. 

After Ax is solved, the slope along the beam y'(x) can be solved. 

By integration, the deformed shape as well as the distal end position and 

orientation can be solved. 
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During the integration, Simpson's one-third rule can be used. It states that: 

= t (凡+ 4 j ; i + 2 j ; 2 + 4«y3+... + 2凡—2+4凡—1 +凡)，where a and b are 

the integration limits, n is an even number and 会 = ( b -a)/n . 

The fol lowing shows some simulation examples. In the simulation, the continuum 

backbone length is L=0.5 m, the Young's modulus is £=1.5 Gpa, the backbone 

thickness is 1 mm, and the width is 40 mm. The W D M is manipulated in the 

horizontal plane, and as a result, in the simulation, gravity is ignored. 

In the first simulation, a pure moment M=0.01 Nm is applied at the distal end. 

The deformed backbone curve is predicted using the nonlinear Euler-Bernoulli 

model as shown by the red solid curve of Figure 4-5. 

Figure 4-5 Validity of Constant Curvature Assumption at Pure Moment Loading 

Condition 

In the figure, the red solid curve is the predicted backbone using the derived 

nonlinear Euler-Bernoulli model. The backbone distal end position in the base 

frame is x=0.422 m, and y=-0.2319 m. The backbone distal end rotation angle is 

0=57.6°. In the constant curvature model, assume the backbone has the same 

bending angle. The deflected backbone is as shown by the blue dashed curve. 

From Figure 4-5, the two curves are very close. In the constant curvature model, 

the backbone tip position is x=0.420 m, and y=-0.2308 m. Compared with the 

nonlinear Euler-Bernoulli model, the relative errors are 0.4739% and 0.4734%, 
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respectively. The error is trivial and can be ignored. The result is consistent with 

that in the SPSP W D M analysis. It also supports the constant curvature 

assumption in the kinematic analysis. 

In the second simulation, three loading conditions are simulated. In the first case, 

a pure moment M=0.01 Nm is applied at the distal end. In the second case, an 

additional force F=0.05 N is applied at the distal end. The direction of the force is 

tangent to the backbone, pointing to the base, as shown in Figure 4-6. In the third 

case the magnitude of the force is increased to 0.1 N. The simulation results are 

shown in Figure 4-6. In the first case, the backbone distal end coordinate is: 

x=0.422 m, y=-0.2319 m and the rotation angle is 0=57.57°. In the second case, 

the backbone distal end coordinate is: x=0.4736 m, y=-0.1340 m and the rotation 

angle is 0=38.34°. In the third case, the backbone distal end coordinate is: 

x=0.4861 m, y=-0.0811 m and the rotation angle is 0=28.69°. From the results, it 

is clear that with additional axial force, the deformed backbone is not a circular 

arc any more. With the force pointing to the base, the resultant moment is reduced. 

As it can be seen from the figure, although the incrementals are both 0.05 N, the 

rate of shape changing is very different. Due to the large deformation, the system 

is nonlinear, which means superposition is invalid. The backbone deformation 

needs be solved case by case. 

Figure 4-6 SPCP W D M Backbone Deformation under Different Loading 

Conditions 
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For more complicated loading conditions, the deformed backbone curve can also 

be solved using the above method. Also, for the multi-segment W D M , the statics 

model is similar to that of the single segment W D M . The deformed curve can be 

viewed as a single segment W D M under different loading conditions. 

4.2 Dynamic Model of the Wire-Driven Mechanism 

In this section, dynamic models of the SPSP W D M and SPCP W D M are 

developed. The SPSP W D M dynamic model is developed using the Euler-

Lagrange method. Theoretical basis of the SPCP W D M dynamic model is 

Hamilton's principle and Euler-Bernoulli beam theory. The dynamic models of 

other WDMs are similar. The main difference is the boundary condition. 

4.2.1 Dynamic Model of SPSP WDM 

The backbone of the SPSP W D M is modeled as an # - l i nk structure with revolute 

joints and torsional springs in between, as shown in Figure 4-1 (b). The Euler-

Lagrange method is used to develop the dynamic model. 

(a) Coordinate Setting (b) Joint Rotation 

Figure 4-7 Dynamic Modeling of Serpentine W D M 

Figure 4-7 (a) shows the coordinate setting. The generalized coordinate is set as 

the joint rotation q. = 0.. From Figure 4-7 (a), the inertial frame OOXQYO is set at 

the base. For each vertebra, a local coordinate frame OiXiY, is set at the joint. The 

Xax is is along the vertebra axis and Z axis is perpendicular to the plane of motion. 

For each vertebra, the length is /,, the mass center is at /„•, the mass is m, and the 
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moment o f inertia is I：. The rotation in the inertial frame is a：, and in the local 

frame is 6：, which is also chosen as the generalized coordinate. 

To develop the dynamics model, the kinetic energy and potential energy of the 

system need to be found first. For each vertebra, the kinetic energy has two parts: 

one relates to the translation and the other relates to the rotation energy. As the 

W D M is in the horizontal plane, gravitation is ignored. The potential energy is 

f rom the elastic beam. 

For each vertebra, the kinetic co-energy is: 

( 4 - 2 7 ) 

where m： is the total mass of the vertebra, v̂ .̂ is the linear velocity vector, a . is 

the angular velocity vector, and Ii is the inertia tensor expressed in the inertial 

frame. 

We can also express the inertia tensor in the local frame as: 

I, = R. ( 4 - 2 8 ) 

The rotation matrix between the local frame and inertial frame is: 

RR = 
- ̂ ^

 0 

^ a： C^： 0 

0 0 1 

( 4 - 2 9 ) 

where, Z qk=X9k，、=sin ( a j ) ，
a n d Ca 

The linear velocity o f the vertebra mass center is: 

The jo in t angular velocity is: 

( 4 - 3 0 ) 

( 4 - 3 1 ) 
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「 ‘ * 

where, Jv. and J吟 are the geometric Jacobians, and q = [0i 

the planar serpentine W D M , their representations are: 
！-1 ！-1 

J fj〗Ca】+lCiCai …fj】Ca】+lCiCai … I c f ^ , 0 

0 0 0 0 

On For 

(4-32) 

」3xw 

J. 

0 0 
0 0 
1 0 

Especially, when i=1 and i=n the Jacobian is: 

J vc\ 

却
0 

l c 1 c a 1
 0  

0 0 

3 x « 

3xn 

(4-33) 

(4-34) 

J,, 

- Z l j s a j - l c i s a 

0 0 

-K^an 

K^an 

0 J3xn 

(4-35) 

J, ®1 

0 ••• 0 

0 ••• 0 

0 ... 0 

(4-36) 

J 
0 

0 

3xn 

Then, the total kinetic energy of the SPSP W D M is represented 

K{q,q) = ^eD{q)q 

where D ( q ) is the inertia matrix: 

(4-37) 

(4-38) 
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D ( q )= t {mJ (q ) Jvc ( q ) ( q ) R, ( q ) m (q ) •J ( q ) } (4-39) 

For the diagonal term of D ( q ) , we have: 

du = t m「Jvck Ĉ i). 
n-f+1 

」 (4-40) 

For]>,, we have: 

n-j+1 

d j =dj, = t mk「Jvck (:,,)• Jvck ( : j ) ] + 1 (4-41) 

The potential energy is: 

2
0
-

份
《
。
 

1
 2
 

I

I
 

The Lagrangian of the Serpentine W D M is: 

L = K{q,q)-P{q) 

The partial derivatives of the Lagrangian with respect to and % 

dL 1 • dd . . dP 
2 ,’，dq, d q , 

and 

'dtW, 

�dd tj 

J ij ^Hi 

(4-42) 

(4-43) 

(4-44) 

(4-45) 

(4-46) 

Referring to Figure 4-1 (b), assume the virtual displacement of each joint is 5qk . 

The virtual work done by the external loading and controlling forces are: 

狐 = M e t ^ q , +(Fex -71 - 7 2 ) 知 + F x S y (4-47) 
,=1 

with 
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sx=Z•cos Z^qj (4-48) 

sy=Zsin Z s j (4-49) 

Hence, the generalized forces 

Qk = Me +(Fx — T — T2)Zh s in{ak ) + FZl cos (a^ ) k = 1,2,...n (4-50) 

EI 
LetPk(q)=——=EIz -qk . Then, the Euler-Lagrange equation is: 

匆 K 

讲 ( 9 m , = Qk k = \,2,…n (4-51) 
=1 7=1 

where cjjk is the Christoffel symbol: 

cjk: 
1 礼 5d,j 
2 dq, dqj dqk 

(4-52) 

4.2.2 Dynamic Model of SPCP WDM 

The SPCP W D M backbone can be treated as a cantilevered Euler-Bernoulli beam 

as shown in Figure 4-4 (a). The dynamic model under controlling force is derived 

from the Euler-Bernoulli Beam theory and the extended Hamilton's principle: 

J":2 (SK — SV + SW�)dt = 0 (4-53) 

where SK is the variation of kinetic energy, SV is the variation of potential 

energy, and SWc is the virtual work done by non-conservative forces. 

Potential energy of the SPCP W D M is: 

1 r； 
V = - EI 

2 J0 dx^ dx (4-54) 

Hence, 
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“ t2 SVdt =-(•t, - E I 
f -a \ 

d y S fdy 1 
L 

Ct2 dt + EI (d' y、 
^ y 

t1 t1 V d X ' J IdX J t1 
0 l d X ' J 

^ y dt 
(4-55) 

rt rL 
2 EI (d 4 y 

t1 0 dX' 
Sydxdt 

Compared with the backbone, the dimensions of spacing discs are generally small. 

Hence, in the analysis, the rotational kinetic energy of the spacing discs is 

neglected. As a result, kinetic energy of the SPCP W D M is: 

K 1 
2 

pA + 艺 m^5( X - x!) dx (4-56) 

Hence, 

Ct2 rti rL f “ “ 
^ SKdt =—丄 j � p A + ̂  m.S(X - x) 

Virtual work done by the controlling force is: 

dt 2 
dydxdt (4-57) 

NC f (X, t t)5ydx + M •S ' d y 

dX 
-Fey •Sy (4-58) 

Hence: 

’.SWNCdt f (X, t )SydXdt + 
' t 2 

M •S (dy 1 
t1 ^dX J -Fey •^y dt (4-59) 

Applying the extended Hamilton's principle, we have: 

-EI 

PA + Z miS( X - Xi) 

d2 y 

d2 y 
EI 

dc ‘ f (X, t) SydX 

dX2 S 
生
&
 + EI 

d y 
dX3 Sy +M •S 

生
&
 

(4-60) 

dt = 0 

Hence, for the continuum W D M , the equation of motion is 

' d 2 / (d4 y、 + 
IdX 4 J 

EI 

The boundary condition is: 

BC I: at X=0 

PA + Z mS( X - X) 
dt2 =f ( X, t) (4-61) 

93 

L 

0 

L 

0 

0 

0 

L 

0 0 



y ( x, t) = 0 and M f ^ = 0 
dx 

( 4 - 6 2 ) 

BC II: at x=L 

EI a 3 y 
ax3 F = 0 and EI fa

2 y � S 
f a y � 

Vax \ lax j 
-M = 0 ( 4 - 6 3 ) 

This is a partial differential equation. One can use the Galenkin's Finite Element 

method to discretize i t to a group of ordinary differential equations, and solve for 

the mode frequencies and corresponding mode shapes. Or, Rayleigh's method can 

be used to solve for the mode frequencies. 

4.3 Summary 

In this chapter, the static models o f SPSP W D M and SPCP W D M are studied. 

From the results, when the W D M is subjected to pure moment, the deformed 

shape is a circular arc. When there are other forces, such as gravity, the constant 

curvature assumption does not stand anymore. Dynamics models are also derived 

for the two WDMs. For SPSP W D M , the dynamics is studied using the Euler-

Lagrange method, considering the backbone as an N-link structure. For SPCP 

W D M , the dynamics is studied wi th reference to Hamilton's principle and the 

Euler-Bernoull i beam. For other W D M s , static model and dynamic model are 

similar, the main difference being the boundary conditions. 
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Chapter 5 Application I - Wire-Driven 

Robot Fish 

In this chapter, based on the W D M , the designs of several underactuated wire-

driven flapping propulsors are described. Four wire-driven robot fishes were built 

and experimented with. Compared with traditional robot fish designs, the wire-

driven robot fish requires less actuators and can better resemble fish movement. 

5.1 Fish Swimming Introduction 

Fish are the species selected by nature to dominate water. The major reason is that 

fish can move effectively and efficiently in water. For a long time, fish's excellent 

performance has attracted researchers' attention greatly. It is known that the 

propulsion efficiency of fish can exceed 90% [129], the cruising speed of a 

sailfish can exceed 110 km/h [130], and the recorded startup acceleration of pike 

is higher than 249 m/s2 [91]. Also, fish 

can turn sharply without decelerating. 

Furthermore, fish swim silently. In this section, the fish swimming categories, 

propulsion model, body curve model, and swimming data are reviewed. 
5.1.1 Fish Swimming Categories 
Fish swim in water by actively deforming their body and/or fins. Through the 

interaction wi th water fish gain thrust. On a fish's body, there are five types of 

fins, i.e. caudal fin, anal fin, dorsal fin, pectoral fin, and pelvic fin. Although the 

caudal f in is indisputably the most common f in for propulsion, there are still a lot 

of species which move around using other fins. Fish swimming is divided into 

two major categories: the body and/or caudal f in (BCF) propulsion and median 

and/or paired f in (MPF) propulsion, as shown in Figure 5-1 [131]. Around 85% 

of aquatic animals swim using BCF propulsion. BCF propulsion is further divided 

into several subcategories depending on the portion of the waving part. These are 

anguilliform, subcarangiform, carangiform, thunniform, etc. The waving part 

decreases from anguilliform to thunniform. In the anguilliform subcategory 

almost the whole body deforms into a traveling wave; in the thunniform 

subcategory only the part near the caudal f in oscillates. Thunniform and 

carangiform subcategories are adopted by most fast swimmers, such as tuna, pike, 
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sailfish, etc. For MPF propulsion, the waving form is even more diverse. Though, 

for a single fin, the waving motion can be roughly categorized as undulatory 

flapping and oscillatory flapping. 

Figure 5-1 Fish Swimming Categories (a) BCF Propulsion and (b) MPF 

Propulsion[131] 

From the above description, how fish swim can be roughly categorized as BCF 

and MPF. In each category, the f in waving motion is divided into oscillatory 

flapping and undulatory flapping. The categorization is as shown in Figure 5-2. 

Figure 5-2 Simplified Fish Swimming Categorization 

5.1.2 Body Curve Function 

In the late 1960s, Sir James Lighthi l l proposed that the body curve of a swimming 

fish is a traveling wave [132]. The body curve model is composed of two parts: 

the first part represents the wave magnitude and the second part is the wave shape. 
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Among all the representations, Equation (5-1) shows a frequently used one. In the 

equation, C1and C2 are the coefficients of the linear and quadratic term in the 

wave amplitude, k is the body wave number and a is the body wave frequency 

[133, 134]. The body wave number k increases from oscillatory swimming to 

undulatory swimming. 

y(x, t) = cx + c^x^ [sin(kx + at) (5-1) 

Figure 5-3 shows an example of the oscillatory form swimming curve. In this 

example, coefficients are chosen as c! = 0.1, c �= 0.2, k=0.5, and a 二兀.In the 

figure, the fish moves in the direction and the swimming speed is one body 

length (BL) per flapping cycle. Five curves are shown in the figure, representing 

the body curve at five instances in the flapping cycle. From the figure, it is seen 

that during the flapping cycle, the whole fish body is on the same side. It does not 

cross the centerline. 

Figure 5-3 Fish Swimming Body Curve - Oscillatory 

For robot fishes, the backbone curve fits the fish body curve. Among current well 

known robot fishes, the links in the backbone are mainly rigid. In oscillatory form 

swimming robot fish, the backbone typically has one or two sections. In rigid 

backbones, the fish body is fitted by a straight line or a polyline. In wire-driven 

flexible backbones, the fish body is fitted by a circular arc. Figure 5-4 shows the 

comparison. Figure 5-4 (a) shows a straight line and a circular arc f i t the fish 
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body curve, respectively. From the comparison it is apparent that when the 

number of segments is the same, the circular arc outperforms in f i t t ing fish body 

curve. Figure 5-4 (b) shows a two-segment polyline and a circular arc f i t the fish 

body curve respectively. Compared with the single straight line version, the two-

segment polyline is better. However, it is still inferior to the circular arc-shaped 

backbone. Hence, we can say that the wire-driven flexible backbone outperforms 

the rigid backbone in resembling the oscillatory form of fish swimming. 

Figure 5-4 Oscillatory Body Curve Comparison: (a) One Straight Line and One 

Circular Arc Fitting; (b) Two Straight Lines and One Circular Arc Fitt ing 

Figure 5-5 shows an example of fish swimming in the undulatory form. In this 

example, coefficients are chosen as q = 0.02, c: = 0.0835, k = 6 .0and份=3.86 . 

These parameters are adopted by M IT ' s robot tuna [135]. In the figure, the fish 

moves in the + X direction. The five curves show the fish body curve at t=0, 

t=0.25T, t=0.5T, and t=T, where T is the flapping period. Compared wi th the 

oscillatory form of swimming, the fish body is more like a sine wave wi th the 

98 



amplitude increasing from the head to the tail. During the flapping cycle, the body 

curve crosses the centerline in the form of undulatory flapping. 

Figure 5-5 Fish Swimming Body Curve - Undulatory 

Figure 5-6 Undulatory Body Curve Comparison: (a) Three Straight Lines and 

Three Circular Arcs Fitting; (b) Six Straight Lines and Three Circular Arcs 

Fitting 
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To imitate the undulatory form of flapping, more sections are needed in the robot 

fish backbone. Typically, in rigid backbone design, three to six links are used. 

Figure 5-6 shows the undulatory fish body curve fitt ing comparison. The 

undulatory fish body curve is fitted by a multi-segment rigid backbone and a 

multi-segment wire-driven flexible backbone respectively. In the figure, the 

straight line represents a rigid l ink and the circular arc represents a wire-driven 

flexible section. Figure 5-6 (a) shows the body curve is fitted by three straight 

lines and three circular arcs; Figure 5-6 (b) shows the body curve is fitted by six 

straight lines and three circular arcs. From the figures, it is shown that three 

circular arcs can better f i t the undulatory fish swimming body than three straight 

lines. Also, they outperform six straight lines. Therefore, a multi-segment wire-

driven flexible backbone outperforms a multi-segment rigid backbone wi th regard 

to resembling the undulatory form of fish swimming. 

Figure 5-7 shows the use of two circular arcs to f i t the above undulatory fish 

swimming body curve. The fittings at four time instances are shown. From the 

figure, it is seen that two circular arcs can f i t the undulatory fish swimming body 

curve well, i.e. a two-segment wire-driven flexible backbone can be used to 

develop the undulatory robot fish. 

Figure 5-7 Two Circular Arcs Fit the Undulatory Fish Swimming Body Curve 
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5.1.3 Fish Swimming Hydrodynamics 

In fish swimming the f low is unsteady and its precise modeling is complicated. In 

robot fish development, the three most frequently used approaches are Elongated 

Body Theory (EBT) [129, 132, 136, 137], 3D Waving Plate Theory (3DWPT) 

[138] and Computational Fluid Dynamics (CFD) [139-141]. Among all the three 

approaches, the EBT is simple, computationally efficient and can predict fish 

swimming reasonably well. As a result, in this research, we used the EBT. 

EBT was first proposed by Sir James Lighthil l in the late 1960s and early 1970s 

[136, 137]. This theory assumes that: 1) water momentum near a fish section is in 

a direction perpendicular to the backbone. It has a magnitude equal to the virtual 

mass m per unit length times the perpendicular component (w) of fish velocity in 

that direction, as shown in Figure 5-8; 2) Thrust can be obtained by considering 

the rate of momentum change within a volume enclosing the fish whose boundary 

at each instant includes a flat surface PI perpendicular to the caudal f in through 

its posterior end; 3) In the momentum balance it is necessary to take into account 

transfer of momentum across PI not only by convection but also by the action of 

the resultant mw2/2 of the pressures generated by the motions within the plane PI. 

Figure 5-8 Spinal Column Configuration at Two Successive Instants [136] 

In the EBT, the instantaneous l i f t per unit length of the fish is: 

L( x, t) = -p 
d d 

—+ U 
dt & {V (x, t) A( x)} (5-2) 

Here, p is the density of the f low; U is the passing f low velocity or the fish 

forward velocity; V is the relative speed of the fish body section to the flow; 

A(x ) is the cross-sectional area of the fish body; x is the position along the fish 

body, from 0 to L. The virtual mass is pA(x). 
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The rate of work done by the fish is: 

J o dx 

dt [ J 0 dt 

The mean over a long time of the work done by the fish is 

—[pj"�丄堡 VA(xx)dx - 0.5pj"。丄 V2A(x)dx • + pU 
c
^
l
a
 

VA( x) 
(5-3) 

W = pUA(l) 生 
dt 

/
 

U
 

+
 

生
a
 (5-4) 

Here, y is the transverse displacement of the fish body; dyjdt is the traversing 

velocity, and dy/dx is the slope of the fish body. 

The energy for thrust is found by substracting the energy wasted in generating the 

wake ( 0 . 5 p V ^ a ) u from the total energy. As a result, the mean thrust is: 

I-
2 

pA{l) •dy( x, t) 
w dt 

-U2 dy( x, t) 
dx 

> 2 

(5-5) 

Drag force of a swimming fish is: 

F D = 1 C D P U “ S (5-6) 

where, CD is the drag coefficient. For long cylinders, 0.82 can be chosen; for a 

cone shape, it is 0.5 [142]. When a fish cruises (swims at constant speed), the 

drag force and thrust are equal. Fish cruising speed is: 

(5-7) 

Here m = pA(L) is the virtual mass at the fish tail tip. 

The Froude efficiency of a fish is the rate of work done to achieve cruising and 

the total work. It is obtained by: 
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A n improved efficiency model for the EBT is shown in Equation (5-9). It is also 

noted as the improved Froude efficiency model [143]. 

In the equation, A, is wave length； h讯 is amplitude at the tail end x=L； K is the 

amplitude at x=L — AL . 

5.1.4 Fish Swimming Data 

Fish's swimming speed is related to the tai l 's f lapping frequency. John J. Videler 

collected thirtheen fish species's swimming speed and the corresponding flapping 

frequencies, f lapping amplitudes, etc. in his book 'Fish Swimming' [144]. From 

the data, as shown in Figure 5-9, i t is obvious that when the speed U is measured 

in body length per second, i t is linearly related to the tail f lapping frequency f in 

Hertz. The relationship is: 

U(BL / s)= 0 .71f (Hz) ( 5 - 1 0 ) 

Strouhal number describes how fast the tail is f lapping relative to its forward 

speed or the wake behind the fish flapping tail. I t is defined as: 

St = f A (5-11) 

where A is the flapping range (the total distance between the two flapping l imits), 

U and f are the cruising speed and flapping frequency. 

The Strouhal number of the above fishes are ploted in Figure 5-10. As in the 

figure, most o f the fishes swim wi th the Strouhal number between 0.2 and 0.4 as 

shown in the red region. Especially, for the fast swimmers, such as Scomber 

scombrus and Oncorhypchus mykiss, the Strouhal number is close to 0.3. It is 

believed by robot fish researchers that the optimal swimming efficiency achieved 

when the Strouhal number is close to 0.3. 
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Figure 5-9 Fish Swimming Velocity Scaled to Body Length (data f rom [144]) 

Figure 5-10 Fish Swimming Strouhal Number (data from [144]) 

5.2 Oscillatory Wire-Driven Robot Fish 

For fish swimming in oscillatory form, the tail flaps back and forth periodically in 

the plane of motion. The fish body curve can be fitted by a circular arc wel l , as 

shown in the previous section. Recalling the kinematic model o f the W D M , the 

oscillatory form of swimming can be imitated by the SPXX W D M well. This 
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section describes two types of oscillatory flapping robot fish which were designed 

and built. One is the serpentine oscillatory wire-driven robot fish and the other is 

the continuum oscillatory wire-driven robot fish. The robots have two parts: the 

fish body and wire-driven oscillatory flapping tail. The propulsion model is 

developed based on Lighthi l l 's EBT. Swimming examples are given at the end. 

5.2.1 Serpentine Oscillatory Wire-Driven Robot Fish Design 

The serpentine oscillatory wire-driven robot fish design is divided into two parts: 

the serpentine oscillatory wire-driven flapping tail design and fish body design. 

1) Serpentine Oscillatory Wire-Driven Flapping Tail Design 

In this design, the SPSI W D M is adopted. The tail design is as shown in Figure 5- 

11. In the tail, there are seven serially arranged vertebras. These vertebras are 

similar. The structural parameters of all the vertebras are shown in Table 5-1. 

Figure 5-11 Serpentine Oscillatory Wire-Driven Flapping Tail Design 

Table 5-1 Tail Vertebra Parameters 

Vertebra No. H (mm) Di (mm) ho (mm) 0 (°) 
m a x \ / 

1 20 44 5 13.00 
2 19 40 5 14.25 
3 18 36 4.5 14.25 
4 17 32 4 14.25 
5 16 28 3.5 14.25 
6 15 24 3 14.25 
7 14 20 2.5 14.25 
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Figure 5-11 (a) shows the cross-sectional view of the joint in the rest position. 

From the figure, two adjacent vertebras form a revolute joint. A rubber tube in the 

central cavity also helps the joints to articulate. It deflects with the joints' 

rotations, and in the meantime, confines the joints' rotations. Wi th the constraint, 

all the joints' rotations are the same. A pair of wires goes through all the vertebras 

via the pilot holes. One end of the wire is fixed to the tail tip and the other end is 

connected to the actuator. The wires transmit the actuator's motion and force. 

They control the tail flapping. When resting, the rubber tube is straight and the 

wire lengths inside the tail are equal. By pull ing the left wire and unwinding the 

right wire, as shown in Figure 5-11 (b), the tail bends to the left and vice-versa. 

Flapping motion is achieved by pull ing and unwinding the left wire and right wire 

alternately. A replaceable caudal f in is connected to the tail at the distal end. The 

f in shape can be arbitrary. 

Figure 5-12 Serpentine Tail Joint Kinematics 

The relationship between wire length variation and joint rotation angle is shown 

in Figure 5-12. By simple geometry and assuming the joint rotations are small, i.e. 

sin (6)义 6, the relationship is: 

hn = h0 - M,1 = 、 • tan 力 2 + - ^ 仇 - 6 

2 2 

h2 = h + Ah2 =、(h0 • tan r f + (h0 + d d ^ ) ( h 0 + u d i ‘ 6 i 

(5-12) 

2 2 
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In the equation, h j i s the initial joint gap distance, y is the incline angle, dd, is 

the wire spacing distance at the bottom of the upper vertebra, and ud, is the wire 

spacing distance on the top of the lower vertebra. When the wire inclination is 

small, it is reasonable to make the fol lowing approximation: 

Ahn 义-Ahu 义 1 • dd, • 0, ‘ cos(y) (5-13) 

In this design, the incline angle is 7.5°. Figure 5-13 shows the relative error wi th 

respect to the inclination and joint rotation of this approximation when / = 7.5°. 

In the simulation, the maximum joint rotation is set as 12°. From the figure, the 

maximum relative error is 1.66%. 

Joint Rotation ( � 

Figure 5-13 Wire Length Change Approximation Error - Serpentine 

The maximum joint rotation is: 

0 „ 2 arctan 
化
I

 A
 

(5-14) 

Table 5-1 shows the maximum rotation for each joint. For the first joint, the 

maximum rotation angle is 13°. For other joints, the maximum rotation angle is 

14.25°. In this design, the maximum tail bending angle 0 is 98.5°. When the tails 

bend to 98.5°, the wire length changes for the two wires are 18.37 mm and 19.06 

mm, respectively. The approximated wire length change is 18.57 mm. The 

maximum error is less than 0.5 mm, which is small and can be ignored. 
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Figure 5-14 Serpentine Oscillatory Wire-Driven Tail Flapping Cycle 

Figure 5-14 shows the flapping cycle of the designed serpentine oscillatory wire-

driven flapping tail. The deformed shape of the tail is a seven-segment polyline. It 

can f i t the previous oscillatory fish swimming body curve well. 

2) Fish Body Design 

The fish body is important as it not only houses the power supply, actuator 

controller, and balance weight but also serves as the tail base. Meanwhile, the 

body shape, especially the front shape influences the water resistance greatly. 

Figure 5-15 Oscillatory Wire-Driven Robot Fish Body Design 

As shown in Figure 5-15, the fish body comprises the hull, central board, cap, tail 

base, controller, actuator, and power. The cylindroid hull is sealed by a cap. The 
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front of the cap is conical, which helps reduce the water resistance. The tail base 

is connected to the hull by two bolts. The first vertebra of the tail and the base 

form a revolute joint. The controller and communication unit is connected to the 

top of the central board by four bolts. A DC power supply is fixed at the bottom. 

A servo motor is used as the actuator. It is connected to the central board by four 

bolts. The central board is fixed to the hull by three bolts. Two pinholes are 

opened at the bottom of the hull. The wires can go through the pinholes and 

connect to the motor. To reduce water leakage, the pinhole diameter is almost the 

same as that of the wire. 

Figure 5-16 Wire Connection 

From the previous analysis, the maximum absolute error of wire length change 

approximation is less than 0.5 mm. As a result, the wires can be connected to the 

actuator via a drum wheel as shown in Figure 5-16. When the wheel rotates, the 

wire-1 elongation and wire-2 contraction is the same. 

3) Serpentine Oscillatory Wire-Driven Robot Fish 

The designed robot fish is as shown in Figure 5-17. The overall length of the 

robot fish is 328 mm, and the tail length is 175 mm. The maximum cross-

sectional area along the robot fish is 52.8 cm2, and the displacement of the robot 

fish is about 580 cm3. 

Figure 5-18 shows the serpentine oscillatory wire-driven robot fish prototype. The 

tail is fabricated by Rapid Prototyping (RP). The material is ABS plastic. The 

maximum flapping amplitude of the tail is 98.5° as in the design. The f in is 

replacable, a square f in wi th 80 mm side length is shown in the figure. The wires 

are 0.475 mm diameter fishing line. The core material is steel and is coated with 
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resin. One end of the wire is fixed to the last vertebra and the other end is 

connected to the drum wheel, which rotates with the servo motor (Model: 

TowerPro MG995). The servo motor is controlled using a Pulse Width 

Modulation (PWM) signal, which is generated by the commercial Micro 

Controller Unit (MCU) (Model: A V R AtMega16). The commands are sent to the 

M C U via a Bluetooth serial com port. A plastic hull is used to house the motor, 

controller and power supply. The total weight of the robot fish is 484 g. 

Figure 5-17 Designed Serpentine Oscillatory Robot Fish 

Figure 5-18 Serpentine Oscillatory Wire-Driven Robot Fish Prototype 

5.2.2 Continuum Oscillatory Wire-Driven Robot Fish Design 

The continuum oscillatory wire-driven robot fish design also has two parts, i.e. 

the tail design and fish body design. The fish body is the same as the serpentine 

oscillatory wire-driven robot fish. Therefore, only the continuum oscillatory wire-

driven flapping tail design is presented here. 
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Figure 5-19 Continuum Oscillatory Wire-Driven Flapping Tail Design 

The designed tail is as shown in Figure 5-19. In this design, the SPCT W D M is 

adopted. The backbone is composed by the caudal f in plate and carbon beam. The 

carbon beam is used to strengthen the backbone. Several spacing discs, (called 

eyelets here), are evenly distributed along the backbone. Each eyelet has a pilot 

hole at both ends, allowing the wires to go through. The two wires are placed on 

the two sides of the backbone. Similar to the previous design, a servo motor is 

used to reel and unwind the wires. One end of the wire is fastened to the last 

eyelet, and the other end is connected to the drum wheel as shown in Figure 5-16. 

Figure 5-20 Eyelet Connection 

The connection of the backbone and eyelets are as shown in Figure 5-20. From 

the enlarged view, the eyelet is inserted into the slot on the caudal f in plate. When 

the bulge on the eyelet collides with the f in plate, the slot on the eyelet is on the 

other side of the backbone. The carbon beam is inserted into this slot, and the 

three pieces are connected together like a latch. This connection is very simple 

but secure. When the motor rotates, the length of one wire is shortened and the 

length of the wire on the other side is elongated. A t the same time, the backbone 
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length remains the same. The tension variation in the two wires produces a 

bending moment. The backbone is then deformed by the wires. In the design, the 

thickness of the backbone is much less than its width. As a result, the bending of 

the backbone is inclined to the thickness direction. 

For the continuum WDM, the range between the eyelets is treated as a joint. In 

the tapered wire configuration, the joint kinematics is as shown in Figure 5-21. 

The wires are tensioned. As a result, in the figures they are straight lines as shown 

in red and blue. The backbone is flexible. Ideally, when it is loaded with a pure 

moment, the deformed shape is a circular arc. In the analysis, the deformed 

backbone is assumed to be a circular arc. It is also assumed that the spacing discs 

are orthogonal to the backbone as shown in Figure 5-21 (b). The relationship 

between the wire length change and the joint rotation is obtained by the Law of 

cosines: 

ln = li0 -A/1 (R-r i ) 2 + (R-/；_1)2 -2(R- f ))(R- /5_1)COSI 

li2 = ！i0 + Ali2 (R + rf)2 + (R + ff-1)2 - 2 ( R + r^)(R + ^^-1)cose 
(5-15) 

In the equation R=h/0, r i=di /2, and r i -1=di -1/2. 

Figure 5-21 Continuum Backbone with Tapered Wire Configuration 

Generally, for each joint, the rotation angle e is small. Hence, it is reasonable to 

make the simplification: cos(e)欠 1 - 0.5e2. The wire length changes are: 
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Joint Rotation (°) 

Figure 5-22 Wire Length Change Approximation Error - Continuum 

In this design, the incline angle is 7=7.125°. The eyelet spacing distance is h=20 

mm, and for the first jo int d1=39.5 mm, D1=45 mm. Figure 5-22 shows the 

relative wire length approximation error. The maximum joint rotation is set as 15°. 

From the simulation, the error is close to 6%. It is larger than that in the 

serpentine design. The reason is that the eyelet spacing distance is much larger 

than the joint initial gap distance in the serpentine joint. To reduce the error, one 

could use more eyelets. 

Flapping motion is obtained by controlling the motor rotate to and fro. Figure 5- 

23 shows the flapping cycle of the continuum oscillatory wire-driven tail. It is 

similar to the flapping of the serpentine oscillatory wire-driven robot fish. The 

flapping amplitude is controlled by the rotation angle of the motor and the 

flapping frequency is controlled by the motor speed. 
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The same as in the previous design, when the inclination is small the wire length 

changes can be assumed to be the same. They are approximated as: 

Al^ K _A/i2 K ri-1 • 6
i
 • cos(r) (5-17) 
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(a) Bend leftward (b) Resting position (c) Bend rightward 

Figure 5-23 Continuum Oscillatory Wire-Driven Tail Flapping Cycle 

The prototype is shown in Figure 5-24. The total length of the robot fish is 310 

mm, and the tail length is 170 mm. The maximum cross-section diameter of the 

fish body is 80 mm. The caudal f in is made from an ABS plastic plate, and the 

wire-guiding eyelets are made by rapid prototyping. The cross-section diameter of 

the carbon beam is 0.5 mm X 2 mm. The fish body is the same as that of the 

serpentine oscillatory wire-driven robot fish. 

Continuum Oscillatory Wire-Driven Tail 

Figure 5-24 Continuum Oscillatory Wire-Driven Robot Fish Prototype 

5.2.3 Oscillatory Robot Fish Propulsion Model 

In this design, the oscillatory wire-driven robot fish is slender, i.e. the cross-

section diameter is much less than the robot length. Also the diameter change is 

small. This meets the assumption in Lighthi l l 's EBT. As a result, the oscillatory 

robot fish propulsion model can be established based on EBT. 

From the previous introduction, it is known that in the EBT, the tail tip lateral 

displacement, slope, and traversing velocity determine the mean propulsion, 

cruising speed, and propulsion efficiency. To develop the propulsion model, one 

needs to obtain these items of the oscillatory flapping tail. 
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Table 5-2 Serpentine Oscillatory Wire-Driven Tail Mot ion Parameters 

Lateral Displacement (y) y(q, t) q ==L = & — ( t O) 
,=1 j=1 

Tail Tip Slope {dy jdq) 
dy(q,t) 

dq 
N 

= s i n ( t O,) 
q=L i=1 

Lateral Velocity (dy /d t ) dy(q, t) 
dt 

N f , , 、 

= - t Ir • cos(t Oj )-tOj 
q=L i=i y j=i j=i J 

Table 5-3 Continuum Oscillatory Wire-Driven Tail Motion Parameters 

Lateral Displacement (y) y(q, t) q , = L � 1 - cos(©)l 
'=L ©^ ^ “ 

Tail Tip Slope { d y j d q ) dy(q, t) 
dq 

=s in (© ) 
q=L 

Lateral Velocity {dy !d t ) dy(q, t) 
dt 

T d © 
= L [©• sin(©) + cos(©) 1]. “ © 

q=L ©  d t  

Assume the tail overall length is L, the number of vertebras is N, the length of 

each vertebra is l,, the flapping frequency is f , and the flapping amplitude is &. 

From the previous kinematic model of the single segment serpentine W D M and 

single segment continuum W D M , the lateral displacement, slope, and lateral 

velocity at the tail tip of the serpentine oscillatory wire-driven tail are as shown in 

Table 5-2 and that of the continuum oscillatory wire-driven tail are shown in 

Table 5-3. The coordinate frame setting for the serpentine wire-driven tail is 

shown in Figure 5-25. For the continuum wire-driven tail, the coordinate frame 

setting is similar as shown in Figure 5-23. The constant curvature assumption is 

still used. Hence, all the joints are the same, i.e., for j = 2 to N, Oj are the same. 

This is the same for Q.. It is noted that, as the flapping frequency i s / the average 

joint rotation velocity is 6. = AOjf. In Table 5-3, @ is the continuum wire-driven 

tail distal end angle, and d&/dt is the distal end rotation velocity. 
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Figure 5-25 Oscillatory Flapping Tail Coordinate Frame Setting 

5.2.4 Robot Fish Swimming Control 

The swimming of the robot fish is controlled by the wire-driven tail. The wire-

driven tail 's flapping cycle is divided into four stages as shown in Figure 5-26. 

Stage I: Flap from the rest position to the right l imit; Stage II: Flap from the right 

l imit back to the rest position; Stage III : Flap from the rest position to the left 

l imit; Stage IV: Flap from the left l imit back to the rest position. 

Figure 5-26 Oscillatory Flapping Cycle 

The forward speed and turning performance (i.e. turning speed and turning radius) 

is controlled by the flapping velocity in the four stages and the amplitudes of the 

two limits. For the oscillatory flapping robot fish, there are three basic motion 
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modes, i.e. swimming forward, turning to the left and turning to the right. In the 

forward mode, the tail flaps symmetrically. In the left turning mode, the left 

amplitude is larger than the right l imit, while in the right turning mode, the right 

amplitude is larger than the left l imit. The forward speed and turning radius are 

both influenced by the flapping amplitude and flapping frequency. 

Figure 5-27 shows the swimming control scheme. The command is sent to M C U 

by the operator via a remote controller. On receiving the command, the M C U 

generates a P W M sequence which controls the velocity and position of the servo 

motor. The rotation of the motor are transferred to the tail 's flapping motion 

through the W D M and the robot fish is propelled by the thrust. The direction and 

magnitude of the thrust is controlled by the flapping motion. A human is in the 

control loop. Visual feedback is established by the operator. The operator can 

send different commands to control the robot fish to swim in a desired manner. 

Figure 5-27 Robot Fish Swimming Control Scheme 

The frequency of the P W M is 50 Hz, i.e., the period is 20 ms. The duty cycle 

controls the servomotor rotating position. In the robot fish development, the 

servomotor selected is Towerpro MG995. For this motor, the rotation range is 

180°. When the P W M duty cycle is 1.5/20, or the voltage at high level continuous 

1.5 ms in one period, the servomotor is in the middle position (90°). When the 

P W M duty cycle is 1/20, the motor shaft is at the left l imit (0°); when the P W M 

duty cycle is 2/20, the motor shaft is at the right l imit (180°). By controlling the 

duty cycle, the motor position is controlled. The motor speed is the maximum 

(0.17s for 60°) from one position to another. The speed is controlled by 

segmenting the rotation and setting time delays. The fol lowing table shows the 

control signals in the three motion modes: swimming forward, turning left and 

turning right. The At controls the amplitude of the flapping. 
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Table 5- 4 P W M Duty Cycle for Swimming (1/20) 

Time (T) Forward Turn Left Turn Right 

0 1.5 1.5 1.5 

0.25 1.5-At 1.5-0.5At 1.5+0.5At 

0.5 1.5 1.5-dt 1.5+dt 

0.75 1.5+At 1.5-0.5At 1.5+0.5At 

1 1.5 1.5 1.5 

5.2.5 Swimming Experiments 

The experimental setup is as shown in Figure 5-28. An inflated water tank was 

used to test the two oscillatory wire-driven robot fishes' swimming performances. 

The length of the tank is 1.4 m, and the width 0.9 m. A one meter reference with 

10 divisions was placed in the tank for better evaluation of the swimming 

performance. In the experiments, the effects of flapping amplitude and frequency 

on swimming velocity were tested. Also, robot fish's turning performance was 

tested. 

1) Serpentine Oscillatory Wire-Driven Robot Fish Swimming Experiments 

For the serpentine oscillatory wire-driven robot fish, three experiments were 

carried out: moving forward with different flapping amplitudes; moving forward 

with different flapping frequencies; turning performance. 

Figure 5-28 Robot Fish Swimming Experiment Setup 

118 



Experiment 1 - Forward with Different Flapping Amplitudes 

The first experiment tested the effects of flapping amplitude. The experiment 

results are shown in Table 5-5. In the experiments, the flapping frequencies in the 

four stages are all 0.75 Hz. Six flapping amplitudes, i.e. 90°, 75°, 60°, 45°, 30°, 

and 15° were tested. The average swimming velocity (Vm) is estimated from the 

video frames. From the results, the cruise velocity increases with larger 

amplitudes. The increase rate decreases from 15° to 90°. The maximum velocity 

in these tests was 12.35 cm/s, which is 0.38 BL/s. The cruise velocity predicted 

by the propulsion model (Vp) is also shown in Table 5-5. In the model, the robot 

fish has a conical cap, and the drag coefficient is selected as 0.5 [142]. The wetted 

surface area of the robot fish is 613 cm2. It is seen that the predictions are 

generally larger than the measurements, and the average prediction error is 

14.25%. 

The Froude efficiency is calculated from Equation (5-9) using Vp. It is affected 

little by the flapping amplitude. However, the trend is that wi th smaller flapping 

amplitude, the robot fish has a higher Froude efficiency. From the results, the 

maximum efficiency is 68.88%, which is achieved at 30° flapping amplitude. 

Table 5-5 Influence of Flapping Amplitudes on Velocity - Serpentine 

Amp (°) Freq (Hz) Vm (cm/s) Vp (cm/s) Err (%) Efficiency (%) 

90 0.75 12.35 15.28 19.18 65.68 

75 0.75 11.63 13.37 13.01 66.47 

60 0.75 9.09 11.19 18.77 65.79 

45 0.75 8.43 8.74 3.55 68.51 

30 0.75 5.71 6.01 4.99 68.88 

15 0.75 2.67 3.07 13.03 68.02 

Experiment 2 - Forward with Different Flapping Freqiencies 

In the second experiment, the influence of flapping frequency on cruising speed 

was tested. Table 5-6 lists the experiment conditions and results. In the 

experiments, the flapping amplitude was fixed as 45°. The flapping velocities in 

the four stages are the same. The tested frequencies are from 1.5 Hz to 0.25 Hz. 
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The average forward velocity increases with the frequency. In the range of 0.25 

Hz to 1.25 Hz the increase rate is almost constant. From 1.25 Hz to 1.5 Hz, the 

increase rate is small. The maximum velocity in these cases is 13.56 cm/s, which 

is 0.413 BL/s. From the propulsion model, the cruise velocity should increase 

linearly. The same as the first experiment, the prediction is slightly larger than the 

measurements. The average prediction error is 16.23%. Also, the efficiency is less 

affected by the flapping frequency. In this experiment, the maximum efficiency 

was 68.51%, which is achieved at the flapping frequency戶0.75 Hz. 

Table 5-6 Influence of Flapping Frequency on Velocity - Serpentine 

Amp(°) Freq (Hz) Vm (cm/s) Vp (cm/s) Err (%) Efficiency (%) 

45 1.5 13.56 17.48 22.43 65.54 

45 1.25 12.20 14.56 16.21 66.55 

45 1 10.64 11.65 8.67 67.74 

45 0.75 8.43 8.74 3.55 68.51 

45 0.5 5.32 5.83 8.75 67.74 

45 0.25 2.30 2.91 20.96 65.77 

Figure 5-29 Serpentine Oscillatory Wire-Driven Robot Fish Swimming Forward 

Figure 5-29 shows the robot fish swimming forward in one flapping cycle. In this 

example, the flapping amplitude is 45° and the flapping frequency is 0.75 Hz. A t 

the beginning, the robot fish tail is relaxed and its head is in position Pi. The tail 

flaps to the left to the amplitude at first. During this process, as shown in the 

figure, the head also bends to the same side. In the next stage, the tail returns to 
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the rest position. The head also goes back. The robot fish is as in the relaxed 

status. After that, the tail flaps to the right. The final step is the tail flapping back 

to the rest position. It is noted that the tail and head always bend to the same side. 

During one flapping cycle, the robot fish moves from P i to P2. The robot keeps 

on moving with continuous flapping cycles. 

Experiment 3 - Turning 

In the third experiment, turning performance of the robot fish was tested. Figure 

5-30 shows one flapping cycle in the robot fish turning mode. Flapping 

amplitudes and flapping speeds in the four stages are different. Also, some stages 

may not exist. For example, when turning to the left, the tail flaps to the right first, 

and then returns back. The flapping cycle has only two stages. After one cycle, as 

shown in the figure, the robot head turns an angle a to the left. After several 

cycles the robot fish turns 360° and returns to the original position. 

Figure 5-31 shows the trajectory of the robot fish when turning around. It is seen 

that the trajectory of the robot head is close to a cycle, and the radius is 8 cm 

(0.24 BL). In the example, the average turning speed of the robot fish is 27.5°/s. 

Figure 5-30 Flapping Cycle in the Turning Mode 
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Figure 5-31 Oscillatory Flapping Wire-Driven Robot Fish Turning Trajectory 

In the experiments, the serpentine oscillatory wire-driven robot fish swims 

forward and turns to both sides effectively. From the results, it is seen that the 

forward velocity is affected by both the flapping amplitude and the frequency. 

The predicted velocities are larger than the measurements. There could be several 

error sources. The first source is the modeling error. In Lighthil l 's model the 

swimmer should be slender and the diameter change along the fish body be small. 

For this robot fish, there is an abrupt geometry change in the connection of the 

head and the tail. Also, there could be discrepancy in the drag coefficient. The 

second source is the measuring error. The measured velocity is the average speed 

of the robot fish crossing the water tank, including the acceleration stage. Hence, 

the measured velocity is smaller than the cruising speed. The third source is the 

reduced flapping frequency. Due to the water resistance, the actual flapping 

frequency is smaller than input. As shown in [98], there could be around a 10% 

decrease in frequency when the tail flaps in water. 

The maximum velocity recorded is 13.56 cm/s from all the experiments, which is 

0.413 BL/s. The speed can be further increased. In the experiments, the flapping 

speeds in the four stages were the same. When the flapping speeds in stage I and 

I I I were smaller than the speeds in stage I I and IV, the forward velocity of the 

robot fish was greater. The f in size tested was 80 mmx80 mm. A f in with other 

shapes such as lunate may improve the forward speed. Also, the maximum 

frequency tested was 1.5 Hz due to the limitation of the servo motor. A more 
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powerful actuator can be used to improve the robot fish's performance. In the test, 

the power consumption of the motor is between 0.5 watt and 1.5 watt. 

2) Continuum Oscillatory Wire-Driven Robot Fish Swimming Experiments 

Similar tests were carried out for the continuum oscillatory wire-driven robot fish. 

Figure 5-32 shows the flapping cycle in the cruising mode. 

Figure 5-32 Continuum Oscillatory Wire-Driven Robot Fish Cruising Example 

The Froude efficiency is calculated using the measurements. The results are 

summarized in Table 5-7 and Table 5-8. From the results, when the flapping 

amplitude increases from 30° to 90°, the cruising speed as well as the Froude 

efficiency increase at first and then decrease. The maximum efficiency (64.4%) is 

achieved at 60°, when cruising speed is 0.254 BL/s. When the amplitude is fixed 

at 45° and the flapping frequency increases from 0.25 Hz to 1.0 Hz, the Froude 

efficiency decreases from 64.2% to 58.2%. 

Table 5-7 Influence of Flapping Amplitude on Velocity - Continuum 

Amp(°) Freq(Hz) Vm (cm/s) Vp (cm/s) Err (%) Efficiency (%) 

30 0.75 3.30 3.87 14.73 62.0 

45 0.75 4.34 5.66 23.32 60.2 

60 0.75 7.89 7.3 -8.03 64.4 

75 0.75 6.19 8.77 29.42 59.9 

90 0.75 6.12 10.07 39.24 58.8 
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Table 5-8 Influence of Flapping Frequency on Velocity - Continuum 

Amp(°) Freq(Hz) V m (cm/s) Vp (cm/s) Err (%) Efficiency (%) 

45 0.25 1.98 1.89 -4.51 64.2 

45 0.5 2.83 3.78 25.15 60.5 

45 0.75 4.34 5.66 23.32 61.3 

45 1 4.46 7.55 40.97 58.4 

Figure 5-33 shows the continuum oscillatory wire-driven robot fish turning left. 

In the flapping cycle, the left flapping amplitude is larger than the right flapping 

amplitude. From the tests, the turning speed and radius is affected by the flapping 

amplitude more than the flapping frequency. In fact, when the flapping frequency 

increases the robot moves forward rapidly. This increases the turning radius as 

well as impairing the turning speed. 

Figure 5-33 Continuum Oscillatory Wire-Driven Robot Fish Turning Example 

From the results, it is shown that the continuum oscillatory wire-driven tail is also 

well suited to water propulsion. The backbone structure parameters, e.g. bending 

rigidity, are key factors in relation to propulsion performance. Wi th high rigidity, 

large tension is needed for the wires. This w i l l increase the motor power 

consumption. However, i f the rigidity is too low, the bending shape is lost. On the 

other hand, the model frequency of the propulsor is low due to its low rigidity. 

When the actuation frequency is close to the model frequency, the deformation of 

the propulsor is affected greatly by the mode shape. This is different from the 
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serpentine oscillatory wire-driven flapping tail, whose model frequencies are 

usually large. 

To sum up, the two types of oscillatory wire-driven robot fish both use one motor 

to actuate the flexible tail. The tail structure is simple and compact. The control is 

easy. More importantly, compared with screw propellers the efficiency is high. 

The tail motions resemble the oscillatory fish swimming body curve well. 

However, the performance of the oscillatory serpentine wire-driven robot fish is 

better. This is because the vertebras are rigid, which allows large wire tension. 

Also, due to the small jo int initial gap distance, the approximation errors of the 

wire length changes are smaller. Therefore, the drum wheel can control the two 

wires' lengths in the oscillatory flapping tail well. 

5.3 Undulatory Wire-Driven Robot Fish 

From the previous example, the serpentine W D M is more suitable for robot fish. 

In this section only the undulatory serpentine wire-driven robot fish is described. 

5.3.1 Undulatory Wire-Driven Robot Fish Design 

The same as the oscillatory wire-driven robot fish, the undulatory wire-driven 

robot fish is composed of the fish body and wire-driven propulsor, or the tail. In 

the tail design, the MPSP W D M is used. The undulatory flapping tail is actuated 

by two servo motors. 

1) Serpentine Undulatory Wire-Driven Flapping Tail Design 

The tail is composed of 13 vertebras and two pairs of wires, as shown in Figure 5- 

34. These vertebras are divided into two segments, as shown in the figure. The 

first segment has six vertebras (numbered from 1 to 6)； the second segment has 

seven vertebras (numbered from 7 to 13). The profile of the tail is shaped by the 

f in plate. It is similar to that of a slender fish tail. The plastic f in plate also helps 

articulate the vertebras and confine the joint rotations. 

The wire routing is shown in Figure 5-34 (b). The two pairs of wires are coplanar. 

The first wire pair goes through the first five vertebras via the pilot holes and is 

connected to the end of the sixth vertebra. The second wire pair passes by the first 
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six vertebras via the central cavity and goes through the left seven vertebras via 

the pilot holes. The end is connected to the end of the 13th vertebra. 

Figure 5-34 Undulatory Wire-Driven Tail Design 

Detailed vertebra design and joint connection are shown in Figure 5-35. A l l the 

vertebras in the segment are similar. The first three figures in Figure 5-35 show 

the sixth vertebra. For vertebras 1-6, there are two pilot holes used to guide the 

wires; two cylindrical surfaces are used to form a revolute joint; one guide hole is 

used to pass the wires of the second group; two slots (upper slot and lower slot) 

connect the f in plate; and one central cavity holds the elastic tube. For vertebras 

7-13, the structure is similar. The difference is there is no guide hole. As shown in 

the figure, two successive vertebras form a revolute joint. The wire routing in the 

sixth and seventh vertebras is also shown in the figure. 
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Figure 5-35 Vertebra Design and Joint Rotation 

Detailed vertebra parameters are shown in Table 5-9. In the table, the meaning of 

H, D, d, and ho are the same as that in the serpentine oscillatory wire-driven robot 

fish. The maximum joint rotation can be found by Equation (5-14). For the first 

segment, the maximum rotation of each joint is 14.7°. The maximum bending 

angle of the first segment is 88.20° . For the second segment, the maximum joint 

rotation is 14.55°. The maximum bending angle of the second segment is 101.85° . 

The overall bending angle of the propulsor is 190.05° . 

Figure 5-36 S-Shape and C-Shape Bending of the Wire-Driven Tail 

Table 5-9 Vertebra Parameters 

Vertebra No. H(mm) D(mm) d(mm) ho(mm) 0 m a x ( ° ) 

1~6 15 31 27 4 14.70 
7~13 12 23.5 19 3 14.55 
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For the two segments, their motions are independently controlled. There are a 

couple of motion combinations. However, two motions are basic. One is the two 

segments bending in the same direction. The tail forms a C-Shape. The other is 

the two segments bending in the opposite direction. The tail looks like an S-Shape. 

Figure 5-36 shows the two basic motions of the tail. In swimming, i f the tail 

deforms to the C-Shape all the time, the tail performs C-motion or the fish swims 

in oscillatory form. I f the tail deforms into the S-Shape all the time, the tail 

performs S-motion or the fish swims in undulatory form. This shows that the 

undulatory wire-driven robot fish can swim in both oscillatory form and 

undulatory form. There are other motions, such as keeping the first segment 

relaxed and flapping the second segment only. This is called the small C-motion. 

The motion of the undulatory wire-driven tail is compared with the fish 

undulatory swimming body curve, as shown in Figure 5-37. 

Figure 5-37 Undulatory Swimming Curve Comparison 

The red dashed lines are the fish curves at four time instances in a flapping cycle 

according to the fish body curve model. In the model, parameters are chosen as 

C7=0.2,〔2=0.4175, k=2.4, and ®=2n. The blue solid lines are the undulatory wire-

driven tail at the same time instances. The rotation of each angle is controlled as 

per Equation (5-18). The phase lag of the second segment is -0.3n. From the 

figure, the two set of curves match reasonably well, especially at the tail tip, 

which is the major factor influence fish's swimming performance according to 

Lighthi l l 's EBT. 
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2) Fish Body Design 

Figure 5-38 shows the designed fish body. It comprises the airtight hull, central 

board, controller, motors, and DC power supply. Two servo motors are fixed to 

the central board. The hull is axisymmetric. The front of the hull is a paraboloid. 

It helps reduce water resistance. A t the end of the hull, pinholes are opened to let 

the wires pass through. Each pair of wires is connected to a drum wheel, which 

rotates wi th the motor shaft. The propulsor is connected to the central board by 

screws. Waterproofing is achieved by a silicone covering. The overall length of 

the robot fish is 495 mm. The tail length is 280 mm. 

Figure 5-38 Undulatory Wire-Driven Robot Fish Body Design 

3) Undulatory Wire-Driven Robot Fish Prototype 

A n undulatory wire-driven robot fish was built according to the design. The 

vertebras were fabricated by 3D printing. The material used was ABS plastic. 

Steel wires wi th 0.475 mm diameter were used as the controlling wires. The 

motors, power supply control board and control scheme are the same as that used 

in the oscillatory wire-driven robot fish. The overall mass of the robot fish is 1256 

g. Figure 5-39 shows the robot fish prototype. Figure 5-39 (a) shows the robot 

fish tail in the rest position; Figure 5-39 (b) shows the tail bending into a C-Shape, 

and Figure 5-39 (c) shows the tail bending into an S-Shape. 
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Figure 5-39 Undulatory Wire-Driven Robot Fish Prototype 

5.3.2 Undulatory Wire-Driven Robot Fish Propulsion Model 

The propulsion model of the undulatory wire-driven tail was developed in a 

similar way: by substituting the tail tip lateral displacement, lateral velocity, and 

tail tip slope into EBT. In the kinematic analysis, the vertebras are treated as the 

line segments as shown in Figure 5-40. 

Figure 5-40 Undulatory Wire-Driven Tail Coordinate Frame Setting 

In the figure, Ft is the ending point of line segment i, l： is the length of line 

segment i, 6. is the bending angle between line segment i and i-1, L is the total 

length of the propulsor, q is the generalized coordinate denoting the distance from 
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the tail base along the backbone curve, and , is the index of vertebras, ranging 

from 1 to 13. The constant curvature assumption is still adopted here. In the wire-

driven tail, the jo int rotation wi th in a segment is the same. Hence, for i from 1 to 

6, Of are the same, as wel l as 4 and it is the same for i from 7 to 13. 

The lateral displacement, slope and lateral velocity of the tail t ip are as shown in 

Table 5-10. They can be derived from the serpentine W D M kinematic model. The 

propulsion model is obtained by substituting the three items into the EBT. 

From the previous experiments, the fish body sways wi th the tail flapping. This 

increases the water resistance. A sway coefficient Cs is mult ipl ied to the drag 

force in Equation (5-6) in calculating the cruising speed. Generally, a larger Cs is 

chosen for oscillatory swimming. 

Table 5-10 Undulatory Wire-Driven Tail Mot ion Parameters 

Lateral 

Displacement (y) 

6 13 

y(q, t) q =L = Z h • sin(i • 0a )+Z h • sin [60a + (i - 6) • 0b ] 
i=1 i=7 

Tail Tip Slope 

(ay/aq) 
〒 = s i n ( 6 0 a +70b ) 

a q=L 

Lateral Velocity 

(ay/at) 

a t q=L i=1 [ ‘ � 

/, • ( c o s ( 6 4 + ( / - 6 ) • ⑴ . ( 6 ^ + ( / - 6) • 4 ) ) 
i=l 

5.3.3 Swimming Experiments 

Swimming experiments were performed in an inflated water tank as shown in 

Figure 5-28. The robot fish swims in the water tank under the control o f an 

operator. Figure 5-41 shows the two basic swimming motions of the robot fish: 

oscillatory swimming (C-Motion) and undulatory swimming (S-Motion). 
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Figure 5-41 Oscillatory and Undulatory Swimming 

Four experiments were performed, i.e. "Big-C-Motion" forward, "Small-C-

Motion" forward, "S-Motion" forward, and turning. 

Experiment 1 - "Big-C-Motion" Forward 

In the first experiment the performance of "Big-C-Motion" was tested. In this 

swimming mode, the two segments flap synchronizely. There is no phase lag 

between the two segments. In the experiment, the cruising velocity of the robot 

fish was recorded under various bending amplitudes of the two segments and 

waving frequencies. The average speed is estimated by the traveling distance and 

time from the video frames. The traveling distance is estimated using the ruler 

standing in the tank, as shown in Figure 5-41. The results are shown in Table 5-11, 

where Aj is the flapping amplitude of the first segment, A2 is the flapping 

amplitude of the second segment, / is waving frequency, Vm is average cruising 

velocity, Vp is the predicted velocity. From the results, when the frequency is 

constant, the cruising speed increases with the increasing of flapping amplitudes. 

Theoratically, when the flapping amplitudes are constant, the cruising speed 

increases linearly wi th waving frequency. However, the experiment results show 

a different relationship. When the waving frequency / i s in the range between 0 

Hz and 1 Hz, the cruising speed increases with /. Beyond this range, the crusing 

speed does not increase anymore, it even decreases. This is due to the low 

frequency response of the W D M . 

In this test, the maximum velocity is 300.75 mm/s, which is 0.608 BL/s (BL 

represents for body length). It is achieved when the bending amplitudes of the 

first segment is 40° and the second segment is 60°, and the waving frequency is 1 

Hz. The velocities predicted by the propulsion model are generally larger than the 
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measured one. One reason is that, the measured velocity is the average speed, 

which is smaller than the actual cruising speed. Also, due to the size l imitation of 

the pool, the robot fish didn' t reach the cruising speed when it gets to the other 

side of the pool. When the flapping frequency is 1.5 Hz, the error is largest. One 

important reason is the low frequency response of the W D M , and another is the 

water resistance reduces the flapping frequency. In the test, the measured Froude 

efficiency o f the robot fish swimming in oscillatory form is between 55.56% and 

65.62%. This is consistant w i th the previous oscillatory wire-driven robot fish. 

Table 5-11 Big-C-Mot ion Swimming Experiment Result 

Ai(°) A 2 ( ° ) f (Hz) Vm (mm/s) Vm (BL/s) Vp(mm/s) n ( % ) 
20 30 1 201.73 0.408 252.50 61.99 

30 45 1 260.51 0.526 325.90 62.14 

40 60 1 300.75 0.608 353.60 63.04 

40 60 0.5 198.87 0.402 176.80 65.62 

40 60 1.5 154.00 0.311 522.30 55.56 

Experiment 2 - "Smal l -C-Mot ion" Forward 

In this experiment, only the second segment flaps in oscillatory form. The first 

segment remains still. Table 5-12 shows the results o f this experiment. The 

relationship of cruising speed and bending angle is similar to that in the "Big-C-

Mot ion" , as wel l as the speed-frequency relationship. The maximum speed in this 

experiment was 162.76 mm/s (0.329 BL/s), when the bending angle of the second 

segment was 60° and the waving frequency 1 Hz. 

Table 5-12 Small-C-Motion Swimming Experiment Result 

A 1 ( ° ) A 2 ( ° ) f (Hz) Vm (mm/s) Vm (BL/s) Vp(mm/s) n ( % ) 
0 30 1 91.74 0.185 134.60 61.99 

0 45 1 140.85 0.285 190.10 62.75 

0 60 1 162.76 0.329 233.30 62.11 

0 60 0.5 143.54 0.290 116.70 68.07 

0 60 1.5 136.75 0.276 346.80 57.52 
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The propulsion model predicts the swimming velocity reasonably well. The 

prediction is generally larger than the measurement. The measured Froude 

efficiency o f the robot fish performing "Smal l -C-Mot ion" swimming is between 

57.52% and 68.07%. It is a l i t t le bit higher than that o f "Big-C-Mot ion" . 

Recalling the results in the previous section, i t is seen that the efficiency is lower 

when the flapping tail is more flexible. 

Experiment 3 - "S-Mot ion" Forward 

The performance of "S-Mot ion" was tested similarly. Because the motion of the 

propulsor is the superposition of the two segments' motions, the modes of "S-

Mot ion" were varied according to the different phase difference between the two 

segments. 

Table 5-13 S-Motion Swimming Experiment Result 

A 2 ( ° ) / ( H z ) tp(T) Vm (mm/s) Vm (BL/s) Vp(mm/s) n ( % ) 
20 30 1 5/8 207.29 0.419 194.00 81.50 

30 45 1 5/8 278.88 0.563 280.60 79.83 

40 60 1 5/8 333.33 0.673 356.60 78.27 

40 60 0.5 5/8 308.37 0.623 178.30 88.51 

40 60 1.5 5/8 200.57 0.405 537.00 63.54 

40 60 1 1/8 289.26 0.584 578.50 66.14 

40 60 1 3/8 121.95 0.246 356.60 62.47 

40 60 1 1/2 32.26 0.065 8.40 92.85 

40 60 1 7/8 303.33 0.613 578.50 66.84 

Table 5-13 shows the results f rom this experiment, where tP is the number of 

periods that the second segment precedes the first segment. According to the 

experiments, when t? is 5/8 the performance of "S-Mot ion" is optimal. For this 

reason, in the flapping amplitude and flapping frequency test, tp is chosen as 5/8. 

The maximum speed in this experiment was 333.33 mm/s (0.673 BL/s), when the 

bending angles of the two segments were 40° and 60° respectively, the waving 

frequency was 1 Hz and tp is 5/8. The velocity prediction is reasonably good. It is 

seen that the measured Froude efficiency is much larger than the above results. 
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The maximum Froude efficiency is 92.85%. The averaged efficiency from this 

experiment is 75.56%. From the tests, when the robot fish swims in the 

undulatory form, the head is more stable. This reduces the drag force a lot. Hence, 

it improves the fish's efficiency. This agrees well wi th the design idea for 

B U A A ' s SPC robot fish, i.e. "Stability first, Propulsion second, and Control third." 

Experiment 4 - Turning 

In the fourth experiment, the robot fish turning performance was tested. In the test, 

the robot fish turned using the "Big-C-Motion". Figure 5-42 shows the turning 

cycle of the robot to the right. The turning radius of the robot fish is around 0.7 

BL, and the time used is 7 s. The turning speed is 51.47s. 

Figure 5-42 Undulatory Wire-Driven Robot Fish Turning 

From the experiment results, the undulatory wire-driven robot fish swims 

efficiently in both oscillatory form and undulatory form. In "S-Motion" or the 

undulatory form of swimming, the fish body's swaying is smaller. Hence, the 

drag force is reduced. This helps increase swimming speed. However, compared 

with the "C-Motion", the "S-Motion" is inferior in relation to turning. 
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5.4 Vector Propelled Wire-Driven Robot Fish 

The motion of oscillatory wire-driven robot fish and undulatory wire-driven robot 

fish are both planar. By changing the wire configuration, the W D M backbone can 

bend in 3D space. Taking advantage of this feature, a vector propelled wire-

driven robot fish was designed and built. The robot fish comprises the vector 

propulsor (tail) and fish body. The uniqueness of this robot fish is that the tail can 

provide thrust in arbitrary directions. 

5.4.1 Vector Propelled Wire-Driven Robot Fish Design 

1) Vector Propulsor Design 

The direction of thrust is confined to the flapping plane. To provide vector thrust, 

the flapping plane should be controllable. In the design, the SSSI W D M is used. 

The propulsor has two independent motions: one is flapping in the horizontal 

plane, and the other is flapping in the vertical plane. 

Figure 5-43 Vector Propulsor Design: (a) Vector Propulsor Isometric View； (b) 

Vertebra Top View 

Figure 5-43 (a) shows the designed propulsor. It comprises the tail base, several 

vertebras, fins, elastic rod, and the controlling wires. Four f in pieces are inserted 

into the last vertebra as shown in the figure. Two opposite f in pieces form a 

lunate caudal fin. The vertebra is shown in Figure 5-43 (b). It has four 
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orthogonally distributed ribs. A wire eyelet penetrates each rib. On the top of the 

vertebra there is a convex spherical surface, and on the bottom of the vertebra 

there is a concave spherical surface with the same diameter. In the middle of the 

vertebra is a central cavity, in which there is an elastic rod. The number of 

vertebras is arbitrary. Seven vertebras are shown in the figure. The vertebras are 

articulated by a uniform elastic rod and spherical joints. The rod confines the 

vertebra to rotate about its own axis, and as a result the joint can only rotate about 

the X and Y axes, i.e. the propulsor can bend horizontally and vertically without 

twisting. The rotations are controlled by two pairs of wires, which are guided by 

the eyelets on the vertebra rib as shown in Figure 5-43 (b). As the two pairs of 

wires are orthogonally arranged, the horizontal rotation and vertical rotation are 

independent. The wires work in pairs. When one wire is pulled and the other is 

loosened, the propulsor w i l l bend to the shortened wire. The load acting on the 

elastic rod is pure moment, and it wi l l deform to a circular arc. Therefore, all the 

joint rotations are the same during propulsor flapping. 

(a) Joint at Rest (b) Joint Rotate Rightward 

Figure 5-44 Joint Rotation: (a) Joint at Rest; (b) Joint Rotating to the Right 

Table 5-14 Vertebra Dimensions 

Num H(mm) ho(mm) R(mm) R y (mm) R2(mm) r； (mm) r2 (mm) 

1 20 5 21.12 20.00 22.29 10.00 11.71 

2 20 5 21.12 22.86 25.14 12.14 13.86 

3 20 5 21.12 25.71 28.00 14.29 16.00 

4 20 5 21.12 28.57 30.86 16.43 18.14 

5 20 5 21.12 31.43 33.71 18.57 20.29 

6 20 5 21.12 34.29 36.57 20.71 22.43 

7 20 5 21.12 37.14 39.43 22.86 24.57 
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Figure 5-44 shows the cross-section view of the joint. The wire pilot hole is 

inclined with respect to the propulsor axis. This is helpful in reducing the wire 

tension [145]. In the figure, H is the rib height; kg is the joint gap distance; rj is 

the top wire eyelet central distance; Rj is the vertebra top width; r�is the bottom 

eyelet central distance; R2 is the vertebra bottom width; R is the radius of the 

stopper. The joint can rotate about the X and Y axes independently, and the two 

rotations are the same. The maximum joint rotation angle is determined by the 

joint gap distance kg and the stopper radius R as shown in Figure 5-44 (b). In the 

designed vector propulsor, there are seven vertebras. The dimensions of the 

vertebras are as shown in Table 5-14, and the unit is mm. Each joint can rotate up 

to 13.5° in both Xand Y directions. The maximum bending angle is 94.5°. 

2) Fish Body Design 

Figure 5-45 shows the fish body design. It comprises the hull, main board, 

auxiliary board, servo motors, wire coilers (drum wheels), controller, battery, 

pulleys, etc. The hull has three pieces: hull-1, hull-2, and hull-3. Hull-1 is the base 

of the robot fish. The main board and tail base are fastened to Hull-1. Hull-2 is 

fastened to Hull-1 by four pegs. It is used to facilitate the robot fish assembly. 

The front of Hull-3 is a paraboloid, which is helpful in reducing water resistance. 

The assembly procedure is also shown in the figure: Step I, connect Hull-2 to 

Hull-1; step II, cover the fish body by Hull-3. The three pieces form an 

axisymmetric robot fish hull. 

Figure 5-45 Fish Body Design 
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Two servo motors are used to control the wire lengths. The motor in front 

controls the vertical wire group, while the other one controls the horizontal wire 

group. The wires are guided by the pulleys. One end of the wire is f ixed at the last 

vertebra, and the other end is connected to the wire coiler, which rotates with the 

servo motor. The motor motion is controlled by the M C U controller. The control 

scheme is similar to the oscillatory wire-driven robot fish. The command is sent 

out by the operator using a remote controller or using a comport via Bluetooth. 

On receiving the signal, the M C U generates a 50 Hz P W M sequence. The 

position of the servo motor is controlled by the duty cycle of the PWM, while the 

velocity is controlled by setting time delays between positions. 

(c) Vertical (d) Arbitrary 

Figure 5-46 Vector Propelled Robot Fish Prototype: (a) Robot Fish in the Rest 

Position； (b) Propulsor Bending Horizontally； (c) Propulsor Bending Vertically； 

(d) Propulsor Bending in an Arbitrary Direction 

The robot fish prototype is built as shown in Figure 5-46. In the prototype there 

are seven vertebras, which are made by RP. The size of each vertebra is as listed 

in Table 5-14. The maximum rotation of each jo int is 13.5°. The vertebras are 

connected by a silicon rubber rod wi th a 5 mm diameter. To improve the rigidity, 

four carbon sticks of 0.5 mm diameter are connected to the tail. To reduce the 

friction, lubricating oil is added to all the joints. Four plastic fins are orthogonally 

mounted on the last vertebra. Two opposite fins make a lunate shape, which is 

similar to the caudal f in of a dolphin. Two servo motors are used to control the 
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propulsor flapping. The length of the robot fish is 425 mm. A balancing weight is 

used to adjust the fish's suspension in water. The overall weight of the robot fish 

is 1.65 kg. 

5.4.2 Tail Motion Analysis 

The tail flapping is illustrated in Figure 5-47 (a). The flapping amplitude & and 

flapping direction 0 are controlled by the lengths of the four wires. The flapping 

direction is defined as the angle between the X axis (horizontal direction) and the 

flapping plane. The wire configuration is as shown in Figure 5-47 (b), where Fi, 

F2 , P3, denote the wire location. Fi and are the horizontal wire group. They 

control the propulsor bending about the Y axis (flapping is in the horizontal plane). 

and are the vertical wire group. They control the propulsor bending about 

the X axis (flapping in in the vertical plane). When the flapping direction is 0 it 

is conceived that the propulsor bends about a virtual axis Y' as shown in the 

figure. The distance between the wires in the vertical group and the virtual axis is 

a, while the distance between the wires in the horizontal group and the virtual 

axis is b. 

(a) Tail Bending Illustration 

Figure 5-47 Tail Bending and Wire Configuration 

The flapping plane is controlled as that in the W D M . Assuming the lengths for 

the four wires are Li, L2, L3, and L4, the flapping direction is as in Equation (5-19). 

The flapping amplitude is controlled as per Equation (5-20). Here, r is the 

average radius of ri and r2, as shown in Figure 5-44; Nis the joint number. 

:arctan 4 - L4 

A - L3 
(5-19) 
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0 = 2 N • arcsin 水 L1 — h )2 +(4 — L4 
4 N • r (5-20) 

Figure 5-48 shows some examples of the vector propelled flapping motion. 

Figure 5-48 (a) shows the tail flapping horizontally, or in the XOZ plane. The blue 

curves represent the tail location during the flapping cycle, while the red curve 

denotes the tail tip trajectory. Figure 5-48 (b) shows the tail flap vertically, or in 

the YOZ plane. Figure 5-48 (c) and (d) show the tail flap direction angle are 45。 

and -45° respectively. A l l these flapping motions are planar, i.e. during the 

flapping the tail is in the same plane. 

(c) Flap angle 45° (d) Flap angle -45" 

Figure 5-48 Vector Propulsor Planar Flapping 
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Figure 5-49 Vector Propulsor Spatial Flapping 

Besides planar flapping, the vector propulsor can perform a lot more swimming 

motion. Such as circular f lapping,⑴ shape flapping, etc. Figure 5-49 (a) shows 

the tail flapping motion is circular, and Figure 5-49 (b) shows the tail flapping is a 

⑴ shaped. Both are spatial. 

5.4.3 Swimming Experiments 

The robot fish was tested in an inflated swimming pool as before. The robot fish 

was covered with a rubber skin to waterproof it. In the experiment, swimming 

performance of the robot fish in still water was tested. Two sets of experiments 

were conducted, i.e. swimming in shark form (flap horizontally) and swimming in 

dolphin form (flap vertically). 

1) Swimming in Shark Form 

In this experiment, the vector propulsor flaps horizontally like a shark. In this 

mode, the back motor controls the horizontal wire group and the front motor 

keeps still. Fin 1 and f in 3 provide thrust, while f in 2 and f in 4 do not. The 

flapping frequency of the tail is f=1 Hz, and the flapping amplitude is 45°. A t first, 

the robot fish is placed in the swimming pool. When the water is still, the robot 

fish is controlled via a Bluetooth comport flapping horizontally. One flapping 

cycle is shown in Figure 5-50 (a)-(e). Figure 5-50 (a) shows the robot fish in the 

rest position. Then it flaps to the left as shown in Figure 5-50 (b). When it reaches 

the left-most position, it flaps back to the rest position as shown in Figure 5-50 (c). 

The other half cycle follows a similar mode. The propulsor flaps to the right at 

first, as shown in Figure 5-50 (d), and then flaps back to the rest position. In this 

experiment, the left flapping amplitude and right flapping amplitude are both 45°. 
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Figure 5-50 Experiment Results: (a)-(e) is the Flapping Cycle of Shark Form 

Swimming; (f)-(j) is the Flapping Cycle of Dolphin Form Swimming 
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Also, the flapping frequencies in the four stages are the same. It is shown that 

after one flapping cycle, the robot fish moves forward 148 mm, i.e. 0.35 BL. 

From the previous oscillatory flapping propulsion model, when the robot fish 

flapping frequency is 1 Hz and the amplitude is 45°, the cruising speed of the 

robot fish is 170.4 mm/s. The prediction error is about 13%. 
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2) Swimming in Dolphin Form 

In this experiment, the vector propulsor flaps vertically like a dolphin. Fin 2 and 

f in 4 provide thrust in this mode, while f in 1 and f in 3 do not. The flapping 

frequency of the propulsor is f = 1 Hz and the flapping amplitude is 45°. The 

same as the former test, the robot fish is placed in still water. When the fish 

receives the command, it starts flapping vertically. In this mode, the front motor 

controls the vertical wire group and the back motor keeps still. Figure 5-50 (f)-(j) 

shows one flapping cycle. As shown in Figure 5-50 (f), the robot fish is in the rest 

position, waiting for the command. On receiving the command, the tail flaps 

downward first, as shown in Figure 5-50 (g). After reaching the lowest position, 

the tail flaps back as shown in Figure 5-50 (h). The tail does not stop in the rest 

position. It flaps until it reaches the highest position as shown in Figure 5-50 (i). 

Finally, the tail flaps back into the rest position and finishes a cycle. After a cycle, 

the tail does not stop. It keeps flapping and drives the robot fish forward. From 

the measurement, the distance the robot fish travels in one cycle is around 0.28 

BL. The cruise prediction error for the dolphin form swimming is 30%. 

By the experiment, it is shown that the robot fish can swim effectively in both 

shark form and dolphin form. This validates the vector flapping propulsor design 

method. In both cases, the propulsion velocities are similar. Moreover, the 

velocity is close to the model prediction. The error sources include prototyping 

error, modeling error, measuring error, etc. Although, the speed of the dolphin 

form is less than that of the shark form, it does not mean the shark form is 

superior. In fact, in the experiment, it is seen that in the dolphin form, the robot 

can employ gravity to glide. In these preliminary swimming tests the robot was 

not ful ly submerged in water. This limits the robot fish's 3D mobility 

performance. 

5.5 Wire-Driven Robot Fish Performance and Discussion 

5.5.1 Performance 

Fish's cruising speed is related to the tail flapping frequency. John. J Videler 

summarized thirtheen fish species' swimming speed with respect to the tail 

144 



Figure 5-51 Wire-Driven Robot Fish Swimming Speed Scaled to Body Length 
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flapping frequency [144] . From the data, a simple relationship can be found as: U 

=0.71/ where Uis in Body Length per second and / i s in hertz. 

As a comparison, Figure 5-51 shows the swimming speed of the four wire-driven 

robot fishes scaled to body length. In the figure, the red line is the speed of the 

real fish regressioned from Vidler 'd data, the squares represent the speed of the 

oscillatory wire-driven robot fish, the circles show the undulatory wire-driven 

robot fish, and the right-pointing triangle represent the speed of the vector 

propelled robot fish. From the figure, it is seen that the performance of the wire-

driven fishes can catch up the real fish. At some frequencies, such as 0.5Hz, the 

wire-driven robot fish can even surpass the real fish. 
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The strouhal number describes how fast the tail is flapping relative to its forward 

speed. It is defined as Sx=fA/U, where / i s the tail flapping frequency, A is the 

flapping amplitude and U is the cruising speed. Fishes typically flap with a 

Strouhal number close to 0.3, which is also shown by researchers where the 

optimal swimming efficiency locates [146]. 

Figure 5-52 Strouhal Number of the Wire-Driven Robot Fish in Experiments 

The Strouhal number of the wire-driven fishes are shown in Figure 5-52. In the 

figure, the blue squres show the Strouhal number of the oscillatory wire-driven 

robot fish in the frequency test. In the test, the tail bending amplitude of the robot 

fish is 45°. It is seen that, in this case the Strouhal number is around 0.4. The 

frequency has little effect on the Strouhal number. The green squares show the 
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Strouhal number of the oscillatory wire-driven robot fish in the bending 

amplitude test. The frequency is constantly 0.75Hz. From the figure, wi th greater 

tail bending amplitude, the larger is the Strouhal number. It is generally viewed 

when the Strouhal number is close to 0.3, eg. 0.2-0.4 as shown by the shadowed 

area, the fish swims with high efficiency. When the flapping amplitude is 30°, the 

Strouhal number is 0.276, which is close to 0.3. The black circles show the 

Strouhal number of the undulatory robot fish swimming in undulatory form. The 

blue circles show the Strouhal number of the Big-C motion, and the green circles 

show the Strouhal number of the Small-C motion. As shown in the figure, there is 

no significant difference between the Strouhal numbers of the undulatory form 

swimming and oscillatory form swimming. For undulatory form swimming, the 

phase difference between the two segments are important. The right-pointing 

triangles show the Strouhal number of the vector propelled robot fish, which is 

close to 0.4. 

From all the data, it is seen that the all the three type of robot fishes can tune the 

flapping parameters and let the Strouhal number between 0.2 and 0.4. This again 

shows the wire-driven robot fishes can have high efficiency. 

5.5.2 Discussion 

Improve Speed and Efficiency 

The wire-driven robot fishes show a good frequency-speed relationship. However, 

the maximum speed of the robot fishes is 0.333 m/s, which is too slow compared 

with current ships. To improve the speed, there are several ways. One is to use a 

more powerful actuator. The power of the servomotors used in the prototypes are 

around 1 W, and the speed of the motor is limited. As a result, the flapping 

frequency of the prototypes is l imited a lot. Second, is change the transmission 

method. In the prototypes, the wires are connected to the motor shaft directly. The 

flapping is obtained by the back and forth rotation of the motor. During each 

cycle, there are two acceleration periods and two deceleration periods. This limits 

the flapping frequency as well as impairs the overall energy efficiency of the 

robot fish. A n alternate method is to design a special gear box, which transmits 

the motor's unidirectional rotation to the wire's linear back and forth motion. This 

can improve the flapping frequency and the overall energy efficiency a lot. Third, 
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is to improve the fish body stability. Undulatory form is better than oscillatory 

form in terms of swimming speed and efficiency, the major reason is the fish 

swims steadily in undulatory form. To further improve the swimming stability, 

there are several ways. Such as, use dorsal fins, use another actuator to control the 

head swaying, use passive joints, etc. One simple way is to put the actuators close 

to the fish head. From the videos, the swaying center is the motor shaft. When the 

motor is put in front, the rotation center is also moved forward. As a result, the 

swaying protion of the head is smaller. The previous swaying generating drag 

force now generates propulsion. Last but not least, in the wire-driven mechanism, 

there are friction along the wires during the motion. As all the wires are guided by 

the pilot holes, the friction impairs the transmission efficiency. For wire 

transmission, i f the friction is not considered, the efficiency is close to 95%. 

When the friction is considered, the transmission efficiency is lowered. In the 

robot fish prototype, lubricant grease is used to reduce the sideeffect of friction. 

The transmission efficiency is between 80% and 90%. 

Elongated Body Theory Model Prediction 

The elongated body theory predicts the robot fish's performance reasonably well, 

the prediction error is generally wi thin 20%. However, there are also some cases 

wi th large error, such as when the undulatory wire-driven robot fish swims in 

oscillatory form, wi th Ai=40°, • = 6 0 ° ,戶1 . 5 Hz, the measured speed is 154 mm/s, 

and the prediction is 522.3 mm/s. The reason for this is manifold. A t first, the 

elongated body theory assumes that the fish body is slim and the tail bending 

motion is not large. When the tail bending is very large, as in the above case, the 

model cannot predict the results well. Second, the flapping frequency of the tail is 

1.5 Hz, which is high. For the W D M , when the elasticity coefficient of the elastic 

elements are small, the frequency response is slow. In the robot fish, plastic plates 

are used as the elastic element, which has low Young's Modulus. Hence, the 

elasticity coefficient is small. As a result, the propulsor cannot fol low the input 

well. The actual bending amplitudes of the two segments are much smaller than 

the desired ones. This impairs the wire-driven robot fishes' performance a lot. To 

improve the frequency response, higher Young's Modulus material can be used. 

Third, the testing water pool is too small to measure the real cruising speed of the 

robot fish, especially when the swimming speed is fast. When the robot fish 
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swims across the pool, it is still accelerating. A larger swimming pool is needed 

to take more accurate measurement. 

Wire-Driven Flapping Propulsor Scalling 

In the thesis, the size of the robot fishes developed are in the range of 328 mm to 

495 mm. The wire-driven mechanism is simple, and compact. The length of the 

backbone can range from milimeter scale to meter scale. The wire-driven flapping 

propulsors can scale down to milimeter scale, e.g. below 10 mm; it can also scale 

up to meter scale, e.g. a few meters. The factors l imit scaling down include the 

motor size, and fabrication of the vertebras. The major factor limits scaling up the 

wire-driven propulsor is the dynamic property. In the current design, kinematics 

model of W D M is used, statics and dynamics are not coorperated in. When the 

scale of the robot fish is large, the flapping forces are also large, which w i l l affect 

the backbone curve a lot as indicated in the statics analysis. Hence, in scalling up 

the robot fish, the elastic element should be more rigid. For a large scale robot 

fish, the desired speed is often high, which means higher flapping frequency.The 

mode frequencies of the W D M backbone is low, typically a few Hertz. When the 

flapping frequency is large the backbone curve is not only controlled by the wires, 

but also the dynamic behavior of the backbone itself. In the design of high speed 

large scale robot fish, these factors should be taken into account. Wi th proper 

adjustment, it is for sure that the W D M based robot fish can have good 

performance in milimeter scale and meter scale. 

5.6 Summary 

In this chapter, three types of robot fish, i.e. oscillatory wire-driven robot fish, 

undulatory wire-driven robot fish, and vector propelled wire-driven robot fish are 

presented. Four WDMs are used in the propulsor design, i.e. SPSI W D M , SPCT 

W D M , MPSP W D M and SSSI W D M . From the experiments, serpentine 

backbone W D M is more suitable for robot fish development. The wire-driven 

robot fish propulsors are compact, simple in structure, and easy to control. More 

importantly, they better resemble fish's swimming body curve than traditional 

multi-joint robot fish tails. More importantly, they have better efficiency. For the 

wire-driven propulsor, two segments are sufficient to imitate fish's undulatory 

swimming. By rearranging the wire configuration, a robot fish wi th vector 
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propulsion can be developed. It provides propulsion in arbitrary directions. 

Furthermore, it can perform more complicated spatial flapping motions, such as 

circular flapping and ⑴-shaped flapping. The vector propulsion can improve 

fish's maneuverability a lot. 
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Chapter 6 Aplication II - Wire-Driven 

LTAV 一 Flying Octopus 

In this chapter, a Lighter-Than-Air-Vehicle ( LTAV) is described. It is has four 

independently actuated wire-driven flapping wings, which enable the L T A V to 

move freely in 3D space. The SPCT W D M is used in wing design. 

6.1 Introduction 

Before fixed-wing airplanes, Lighter-Than-Air-Vehicles (LTAVs) were the sole 

method of aerial transportation. Airships were the most common LTAVs. The 

first airship was built by a French engineer Henri Giffard in 1852 [147]. Since 

then, airships have been studied and built continuously. Compared wi th fixed 

wing airplanes, the L T A V has advantages in several aspects. First, it is energy 

efficient. LTAVs utilize buoyancy to suspend itself in the air; its payload can be 

very large without requiring much energy. Second, it can hover in the air and the 

speed can be very slow. This makes LTAVs very suitable for sightseeing, aerial 

photography, aerial monitoring, etc. The disadvantage is that the size of the 

L T A V is large, the speed is slow, and the motion is affected by wind. However, 

these disadvantages are not critical on some occasions, such as indoor 

entertainment. For indoor applications, the weight of a L T A V is typically small. 

As a result the size is moderate. Meanwhile, from the safety point of view, the 

low speed is beneficial for indoor applications. 

Traditional LTAVs have streamlined bodies and are propelled by screw 

propellers, such as the Graf Zeppelins LZ127, LZ129 [148]. In recent decades, 

various shaped LTAVs have been developed. The Flying Yachts Inc. built 

spherical airships [149]; a Brit ish company, named Thermo Skyship built 

lenticular airships [150]; Advanced Technologies Group Ltd. built a double 

hulled airship [151]; an airship wi th fixed wings was also proposed [150]. For 

indoor applications, the L T A V shape is even more diversified, such as being 

animal-like, cartoon-like [152], etc. Compared with the diversity in shape, the 

actuation is less changed. In addition to traditional screw propellers, one 

important way of L T A V actuation is flapping wings. Such as the Air je l ly [153] 
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and A i r swimmers [152], they flap their wings or tails to generate propulsion. The 

moving direction is controlled by other systems, such as the Ai i je l ly using a 

pendulum, and the air swimmers using a moving balance weight. 

Flapping is widely accepted as a highly efficient way to generate thrust and 

propulsion. Birds and fish have adopted flapping to move around through 

millions years of evolution. This gives researchers inspiration. From the previous 

chapter, it is shown that the W D M is well suited for propulsion in water, both 

oscillatory form swimming and undulatory form swimming. How about in the air? 

This motivated the development of a L T A V with wire-driven flapping wings. It is 

called Flying Octopus for one reason: its outlook is similar to that of an octopus; 

another reason is the wire configuration in the W D M was inspired by the octopus 

arm muscle arrangement. 

6.2 Flying Octopus Design 

An octopus, from its appearance, has a round head and eight arms, as suggested 

by its name. The Flying Octopus also has two parts: one is the body and the other 

is the flapping wings. The designs are as shown below. 

6.2.1 Flying Octopus Body Design 

The Flying Octopus body comprises a round head and midsection. Flapping 

wings are connected to the midsection via the wing base adapter. The designed 

Flying Octopus is as shown in Figure 6-1. 

For indoor entertainment, the size as well as the weight of the Flying Octopus is 

confined. The speed of the L T A V is not a key element. A sphere has the 

maximum volume to surface ratio. Hence, a spherical balloon was chosen as the 

head. The diameter of the balloon is 1.5m, wi th a volume of 1.767m3. When fi l led 

wi th helium, ideally, the buoyancy it can provide is 19.3 N, i.e., it can support a 

2.02 kg mass. 

The balloon is connected to the midsection on the top, while the flapping wings 

are connected at the bottom. The actuators, power supply, and control systems are 

all inside the midsection. The midsection structure should be lightweight and 

strong enough. For this reason a carbon plate was chosen. The design is shown in 

Figure 6-1 (b). The evenly distributed square slot is used to mount servo motors 
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and the exterior circular holes are used to hold the wing base adapter. From the 

figure, the structure can hold up to eight motors and has 16 ports for wings. In the 

figure, only four wings and motors are shown. In fact, four wings are more than 

enough for 3D motion. Each wing is actuated by a servo motor via the W D M . 

The propulsion magnitude and direction is controlled by controlling the wing 

flapping motion. The other holes in the carbon plate are used to f ix the balloon, 

power supply, and control system. They also help lighten the overall weight of the 

Flying Octopus. The carbon plate is circumscribed by a fence-like covering, as 

shown in Figure 6-1 (a). It not only covers the midsection but also helps to secure 

the balloon. The top of the fence presses against the balloon. This increases the 

contact area between the balloon and the midsection. As a result, there is no 

relative motion between the balloon and midsection. 

Figure 6-1 Flying Octopus Design 

6.2.2 Wire-Driven Flapping Wing Design 

The flapping wings are the critical part o f the Flying Octopus. They not only 

provide thrust but also control the motion of the Flying Octopus. The design 

requirements include: a) large flapping motion； b) light weight； c) easy to control. 

To meet all these requirements, the SPCT W D M is used. 
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The designed flapping wing is as shown in Figure 6-2. It has four parts: 

membrane, backbone, eyelets, and wires. The overall length of the wing is 680 

mm. The membrane defines the profile of the wing and also serves as a secondary 

backbone. In this design, the membrane width decreases from the wing base to 

the distal tip. The end of the wing is a lunate flipper. The backbone connects to 

the Flying Octopus body and supports the wing structure. It is slim and has a 

rectangular cross-section. The width is 5 mm and the thickness is 0.5 mm. The 

bending selectivity is 100. Hence the backbone is inclined to bend in the 

thickness direction. 

Figure 6-2 Wire-Driven Flapping Wing Design 

As shown in Figure 6-2 (b), the wires are symmetrically placed on both sides of 

the backbone and there is an inclined angle between the backbone and the wires. 

The eyelets are used to guide the wires. In this design, all the eyelets in the 

flapping wing are similar in structure. They have the same features: bulge, slot, 

hole, dent, and rib, as shown in Figure 6-2 (d). From the flipper to the wing base 

the eyelet rib length increases gradually. The growth rate is determined by the 

incline angle. The key parameters of the eyelet are shown in Table 6-1. There are 
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16 eyelets in each wing. A l l the eyelets are evenly distributed along the backbone. 

The eyelet locations (distance from the wing base to the eyelet) are also shown in 

Table 6-1. As shown in Figure 6-2 (c), the connection of the four parts is similar 

to the method used in the continuous oscillatory wire-driven robot fish. From the 

enlarged cross-section view, the eyelets are placed in the rectangular slots of the 

membrane and are positioned by the dent on the eyelet. There is a bulge and a slot 

around the center of each eyelet. The bulge of the eyelet presses against the 

membrane, leaving the eyelet slot on the other side of the membrane. The 

backbone inserts into the slots of the eyelets and locks the eyelets like a latch. 

This makes the connection of the three parts very simple and solid. After the 

connection, the wires are passed through the eyelets' hole and fastened to the 

distal end (eyelet #16). 

Table 6-1 Eyelet Parameters 

Num. D1 (mm) D2 (mm) W1(mm) W2 (mm) d (mm) Location (mm) 

1 82 77 12.5 6 1.5 10 

2 78.5 73.5 12.5 6 1.5 50 

3 75 70 12.5 6 1.5 90 

4 71.5 66.5 12.5 6 1.5 130 

5 68 63 12.5 6 1.5 170 

6 64.5 59.5 12.5 6 1.5 210 

7 61 56 12.5 6 1.5 250 

8 57.5 52.5 12.5 6 1.5 290 

9 54 49 12.5 6 1.5 330 

10 50.5 45.5 12.5 6 1.5 370 

11 47 42 12.5 6 1.5 410 

12 43.5 38.5 12.5 6 1.5 450 

13 40 35 12.5 6 1.5 490 

14 36.5 31.5 12.5 6 1.5 530 

15 33 28 12.5 6 1.5 570 

16 29.5 24.5 12.5 6 1.5 610 
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6.3 Flying Octopus Motion Control 

The propulsion model of the flapping wings is crucial for Fly ing Octopus motion 

control. In this section, the propulsion model is derived and 3D motion control 

strategy is presented. 

6.3.1 Propulsion Model 

As shown in Figure 6-3, the forces acted on the Flying Octopus include gravity G, 

drag force Fd, buoyancy Fb, thrust Ft, and lateral force Fi. By delicate adjustment, 

gravity and buoyancy balance each other, and the Flying Octopus can suspend 

itself in the air. The thrust and lateral forces are generated by the flapping wings. 

They are used to control the Flying Octopus' moving direction and velocity. Drag 

force is opposite to the moving direction. 

Figure 6-3 Flying Octopus Force Analysis 

Table 6-2 Forces on Flying Octopus 

Gravity: G = mg 

Drag force: Fd = 0.5parCdAv' 

Buoyancy: Fb =PairVg 

Thrust per wing: Ft =Jo L0.5Pai rC i " 2 sm⑷JdS 

Lateral force per wing: Fl =Jo L0.5PairC丄"2cos⑷JdS 
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The external forces acting on the Flying Octopus are as shown in Table 6-2. In 

the table, m is the overall mass of the Flying Octopus, g is gravity constant, p^i^ is 

the density of air, C^ is the drag coefficient, A is the projected area in the moving 

direction, v is the velocity of the Flying Octopus, V is the overall volume, C^ is 

the thrust coefficient, u is the velocity of the points on the membrane, a is the 

complement angle of u and v, dS is the infinitesimal area of the membrane at 

angle a , and 0 is the wing flapping amplitude. 

As shown in Figure 6-4, the general coordinate q is set as the 

wing base to the point, along the backbone. Based on the 

assumption and W D M kinematics, the velocity of the point is: 

L u = -2\a sin (a) + cos (a) -1 
0 

where a = q•©/L and L is the total length of the wing. 

arc length from the 

constant curvature 

( 6 - 1 ) 

Figure 6-4 Thrust Force Illustration 

6.3.2 Motion Control Strategy 

The motion of the Flying Octopus is controlled by the four independently 

actuated flapping wings. The control scheme is similar to that used in the 

oscillatory wire-driven robot fish: the command is sent to the M C U by remote 

control. On receiving the command, the M C U generates four P W M signals, 

which control the positions and velocities of the four motors. The wire-driven 

mechanism transmits the motor's rotation to the wings' flapping. Thrust and 

lateral forces are generated to drive the Flying Octopus body, and control its 

motion. 
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The flapping cycle is also similar to that in the oscillatory wire-driven robot fish. 

A complete cycle includes four stages. Stage I: flap from rest position to the 

outermost position. Stage II: flap from the outermost position to the rest position. 

Stage III : flap from rest position to the innermost position. Stage IV: flap from the 

innermost position to rest position. 

The Flying Octopus' motion is controlled by the four wings' flapping cycles, i.e., 

flapping amplitudes and the velocities in the four stages. The wings are divided 

into two groups: X wing group and Y wing group. There are five basic modes of 

motions: a) f lying upward, b) f lying downward, c) hovering, d) f ly ing in the X 

direction and e) f lying in the Y direction. The wing motions in the five motion 

modes are described below: 

a) Flying upward: Four wings flap synchronously. Before flapping, all the wings 

return to the rest position. The outer bending amplitude is larger than the inner 

amplitude. In stages I and III , the velocity is slower than that of stages I I and IV. 

As the four wings flap identically, the lateral forces cancel out each other. Due to 

the inward flapping velocity being larger than the outward flapping velocity, from 

the thrust representation in Table 6-2, the thrust in stages I and I I I is smaller than 

that in stages I I and IV. The net thrust in one flapping cycle is upward. Hence, the 

Flying Octopus ascends. 

b) Flying downward: The scheme is similar to f lying upward. The difference is 

that in this mode the inward flapping velocity is smaller than outward flapping 

velocity. As a result, the net thrust in one flapping cycle is downward. 

c) Hovering: Ideally, the Flying Octopus hovers in the air when the flapping 

wings keep still. However, disturbances exist. An aerometer could be used to 

detect the status of the Flying Octopus. Upward or downward flapping schemes 

are used when the flapping octopus is dropping or ascending. 

d) Flying in the X direction: in this motion mode, a lateral force is needed. The 

four wings are grouped into X and Y pairs. For traversing in the - X direction, the 

X wings flap toward the - X direction in stages I and IV slowly and flap toward 

the + X direction wi th a larger velocity in stages I I and III. The generated forces 

are a lateral force in the - X direction and an upward thrust. A downward force is 

generated by the other two wings. Their motions are the same as that in the 
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downward scheme, i.e. fast bending outward and slowly inward. In one flapping 

cycle the net force is in the -X direction. This drives the Flying Octopus to glide 

in the - X direction. By switching the + X and -X f lapp ing velocities of the X wing 

pair, the Flying Octopus w i l l move in the + X direction. 

e) Flying in the Y direction: The four wings are orthogonally placed on the Flying 

Octopus. By switching the motions of the X and Y wing pairs, the Flying Octopus 

wi l l move in the Y direction. 

The forces generated by the two wing groups in the five basic motions are as 

shown in Table 6-3. In the table, the arrow shows the force direction and the 

thickness of the arrow represents the magnitude of the force. Wi th the five basic 

motion modes, the Flying Octopus can move in 3D space freely, since arbitrary 

motion can be decomposed into these basic motions. 

Table 6-3 Five Basic Motions 

Forces by X wing group Forces by Y wing group 

Fly Upward f 十 
Fly Downward i 

Hovering t t 
Fly in the X direction t — • i 
Fly in the Y direction i t — • 

6.3.3 Motion Simulation 

From the propulsion analysis, it is convenient to develop a Matlab program to 

simulate the Flying Octopus' motion. Figure 6-5 shows the user interface of the 

program as well as the simulation example. 

The left upper figure shows the instantaneous wing motion; the lower figure 

shows the simulation results. The program can simulate the backbone bending 

angle, bending velocity, wing distal end linear velocity, thrust force, resistance 

force, resultant force, Flying Octopus velocity, etc. Simulation conditions can be 

input from the control panel on the right-hand side. The conditions include the 
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Flying Octopus' structure parameters and simulation parameters. Structures are 

wing length, balloon radius, midsection radius, wire pair distance, Flying Octopus 

overall mass, air density, and drag coefficient. Simulation parameters are wing 

flapping velocity profile (cosine, rectangular wave, etc.), flapping amplitude, 

flapping frequency, and simulation periods. 

Figure 6-5 Flying Octopus Motion Simulation 

Figure 6-6 shows one simulation example. In the simulation, the Flying Octopus 

is 1.592 kg; the wing length is 0.68 m; balloon radius is 0.75 mm; drag coefficient 

is 0.5. The wings' flapping amplitudes are all 60° and flapping frequency is 1 Hz. 

The flapping speeds in the four stages are the same. 

Figure 6-6(a) shows the Flying Octopus velocity. The horizontal axis represents 

the time (s), and vertical axis is the velocity (m/s). From the results, in the first 

few flapping cycles the Flying Octopus' velocity increases with fluctuation. After 

25 seconds, the speed of the Flying Octopus becomes stable. However, the 

velocity remains fluctuating wi th the wing flapping motion. The average 

stabilized velocity of the Flying Octopus is 0.215 m/s. Figure 6-6 (b) shows the 

propulsion generated by the flapping wings. It is shown that during one flapping 

cycle the instantaneous propulsion is between -0.12 N and 0.21 N. The average 

propulsion is positive, i.e. upward. Figure 6-6 (c) shows the drag force. It has a 
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similar trend as that of the Flying Octopus velocity, which is straightforward. 

Figure 6-6 (d) shows the resultant force acting on the Flying Octopus. The blue 

curve is the instantaneous resultant force, and the red curve is the historical 

average. From the result, the averaged resultant force decreases after a few 

seconds. This is also revealed by the velocity increase rate. 

Figure 6-6 Simulation Results in 30 Flapping Cycles 

6.4 Prototype and Indoor Experiments 

6.4.1 Flying Octopus Prototype 

To validate the design, a Flying Octopus prototype was built and tested indoor. 

As shown in Figure 6-7, a polyethylene (PE) balloon with 1.5 m diameter is used 

as the round head. The backbone in the wing is a carbon beam. Its width is 5 mm, 

and the thickness is 0.5 mm. The eyelets are fabricated by rapid prototyping, and 

the material used is ABS plastic. The membrane is made from a 0.5 mm thick 

ABS plate. The overall length of the flapping wing is 680 mm. The four wings are 

evenly distributed on the middle section. Steel wires covered with plastic sheath 

are used in the prototype. Four servo motors pull the wires by a rotator under the 

control of a commercial MCU. Each wing weighs 39 g. The total mass of the 

Flying Octopus is 1592 g. 
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Figure 6-7 Flying Octopus Prototype 

Table 6-4 Flying Octopus B i l l of Materials 

Component Description Mass (g) Number 

Balloon 1.5 m Diameter 568 1 

Midsection Plate Carbon 302 1 

Motor Towerpro M G 995 59 4 

Drum Wheel ABS Plastic 7 4 

Wing Membrane ABS Plastic 39 4 

Battery Box 4 A A A battery 69 1 

Control Board M C U Atmega 128 156 1 

Fence ABS Plastic 38 1 

Wire Steel 0.25 4 

Others Bolts, etc. 38 -

The details of the Flying Octopus are shown in Table 6-4. The weight of the 

Flying Octopus is delicately tuned to balance the buoyancy. As a result, the 

Flying Octopus is able to hover in the air when all the wings are at rest. A t resting, 

the four wings are relaxed as shown in Figure 6-7 (b). By pulling the outer wires, 

the wings bend outward as shown in Figure 6-7 (c). The maximum bending angle 

is constrained by the stiffness of the backbone. For this prototype, the maximum 
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bending angle is around 180°. Over bending w i l l exert a large moment on the 

backbone and twist the flapping wing. 

6.4.2 Indoor Experiments 

Indoor f ly ing tests were carried out. To eliminate the wind disturbance, all the air 

conditioners and exhaust fans were turned off. The weight of the Flying Octopus 

was adjusted to equal the buoyancy. From the control scheme, it is seen that in the 

five motion modes, the wings' motion in f ly ing upward, f lying downward and 

hovering are similar. Only the flapping speed in the four stages are different. 

Flying in the X direction and f ly ing in the Y direction are similar. Therefore, in the 

experiment, two fundamental modes, i.e. f ly ing upward and f lying in the X 

direction are tested. 

Experiment 1 - Flying upward 

Figure 6-8 Flapping Cycle of Flying Upward 

Figure 6-8 shows the four stages of the wings' flapping cycle in the f lying upward 

mode. A t the beginning, the Flying Octopus stays on the ground with all the four 

wings relaxed. Next, the four wings are flexed by the W D M slowly. When they 

have reached the outermost position, the four wings flaps back into the rest 
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position. From the figure, it is seen that the time for stage I takes 2.08 s, while it 

only takes 0.46 s for stage II. After reaching the rest position, the wings continue 

to bend inward. When they have reached the innermost position, the four wings 

flap back into the rest position and finish one flapping cycle. 

The Flying Octopus flies upward 1 m with five flapping cycles. The distance it 

travels in one cycle is about 20.0 cm, and the average speed is about 6.5 cm/s. As 

the traveling distance is short, the Flying Octopus does not reach its maximum 

velocity. This is consistent wi th the simulation result as shown in Figure 6-9. 

From the simulation, it is shown that during the first five flapping cycles, the 

velocity increases cycle by cycle. The average speed is 5.3 cm/s. 

Figure 6-9 Flying Octopus Velocity in the First Six Flapping Cycles 

Experiment 2 - Flying in the horizontal plane 

Figure 6-10 shows the wings' flapping cycle for the mode of f ly ing in the X 

direction. A t the beginning, all the wings are relaxed. The wings in the X group 

flap in the - X direction, and the wings in the Y group flap inward quickly in stage 

I. In stage I I and stage III , the X wings flap in the + X direction and the Y wings 

flap outward slowly. After that, the X wings flap in the - X direction and the Y 

wings flap inward quickly in stage IV. The distance traveled in one flapping cycle 

is around 25 cm, and the average traversing speed is 7.4 cm/s. 
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Figure 6-10 Flapping Cycle of Flying in XDirect ion 

6.4.3 Discussion 

Due to the size limitation of the room, performance of the Flying Octopus was not 

ful ly exhibited by the experiments. Such as in the ascending test, the L T A V 

reached the ceiling after five flapping cycles. The maximum velocity should be 

greater than 6.5 cm/s. It is also expected that the Flying Octopus can move faster 

after wing shape optimization and flapping motion parameters optimization. 

The flapping wing is a new application of the W D M besides robot fish and 

flexible manipulator. The wire-driven flapping wing is compact, lightweight, and 

easy to control. Also, the flapping range is quite large. In this prototype, the 

maximum flapping angle is over 180°. However, it also has drawbacks. Due to 

the wing's low rigidity, flapping frequency is l imited and the wing is inclined to 

twist at large bending angles. To avoid twisting, the length of the backbone and 

membrane should not be too large. To increase the thrust, a small web at the distal 

end is beneficial. 

The wire tension in flapping is affected much by the mass distribution and wire 

configuration of the wing. The ratio between the wire tension and force acting on 
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the wing is equivalent to the backbone length over the first eyelet's rib length. 

This is usually large, e.g. in this design the ratio is 30. Hence, it is beneficial to 

reduce the wing's weight, especially the wing tip's weight. As a result, the tilted 

wire configuration is better than parallel wires. The reason is that wi th shorter rib 

length the eyelet weight is reduced while keeping the same ratio. 

6.5 Summary 

This chapter introduces a novel L T A V named Flying Octopus. It is actuated by 

four wire-driven flapping wings. The wing design follows the SPCT WDM. This 

made the wings compact, light-weight, and easy to control. Also, the flapping 

range is quite large. The maximum flapping angle of this prototype can exceed 

180°. Wi th the four independently actuated wings, the Flying Octopus can move 

in 3D space freely. The basic motions are f ly ing upward, f ly ing downward, 

hovering, f lying in the X direction, and f ly ing in the Y direction. 
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Chapter 7 Conclusions and Future Work 

In this thesis, the wire-driven mechanism is studied systematically and several 

applications are developed, especially in relation to highly efficient propulsion in 

water. The contributions of this thesis are: 

1) Designed the biomimetic Wire-Driven Mechanism (WDM). The W D M is 

inspired from snake skeleton and octopus arm muscle arrangement. It contains a 

flexible backbone and several pairs of controlling wires. Its features include: large 

flexibli l i ty, highly under-actuated, leverage effect, long range force and motion 

transmission. The backbone structure is simple and compact. It can bend largely 

in all directions under the wires' actuation. Hence, it is well suited for working in 

confined spaces, such as minimally invasive surgery, engineering nondestructive 

inspection, disaster relief, etc. Also, it is well suited to flapping propulsion, both 

in water and in air. 

2) Developed the kinematics model for both serpentine W D M and continuum 

W D M . A generalized model with/without constraint was also proposed. The 

kinematic model was derived from geometry analysis under the constant 

curvature assumption. Several W D M based manipulators were built to test the 

kinematic model. The results show that the average prediction error is less than 

3.6%. Workspaces of the single segment W D M and multi-segment W D M were 

both developed. Wi th the constrained kinematic model, a novel idea of employing 

obstacles or actively deploying constraints to improve the workspace was 

proposed. The idea was also validated by a single segment W D M prototype. The 

results show that wi th the constraints, the workspace can be expanded a lot, from 

a curve to a large area. 

3) Developed the static and dynamic models for both serpentine W D M and 

continuum W D M . The Newton-Euler method and Lagrange method were used to 

develop the static model and dynamic model of serpentine W D M respectively. 

The static model and dynamic model of the continuum W D M were developed 

based on the nonlinear Euler-Bernoulli beam theory and extended Hamilton's 

principle. The simulation results show that only when the W D M is subject to pure 
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moment is the deformed shape a circular arc. In other loading conditions, the 

constant curvature assumption is invalid. 

4) Designed several novel fish-like flapping propulsors using the W D M . 

Compared with existing robot fish tails, the W D M propulsors use circular arcs to 

f i t the fish's swimming body curve. They employ less actuators but can better 

resemble fish motion, such as only one motor being used in the oscillatory 

flapping propulsor and only two motors in the undulatory flapping propulsor. 

Traditionally, three to six motors are used for undulatory robotic fish tail. Besides 

the traditional motions, brand-new flapping motions can be generated easily, such 

as the wire-driven vector propulsor. It can flap in any arbitrary plane or flap 

spatially, such as the shark form flapping, dolphin form flapping, circling, or ⑴-

shaped flapping. This enables the propulsor to provide propulsion in any arbitrary 

direction. Hence, improving the robot fish's maneuverability greatly. 

5) Developed the propulsion model of the W D M flapping propulsors. The models 

were developed based on the W D M kinematic model and Lighthi l l 's elongated 

body theory. The model is simple but can predict the propulsor performance well, 

including the cruising speed, and propulsion efficiency. For example, the average 

prediction error for the oscillatory serpentine robot fish is 16.73%. 

6) Bui ld several novel robot fishes using the wire-driven flapping propulsors, 

including a serpentine oscillatory robot fish, a continuum oscillatory robot fish, a 

serpentine undulatory robot fish, and a vector propelled robot fish. The 

performances of these robot fishes are good. For example, cruising speed of the 

serpentine undulatory robot fish can reach 0.67BL/s; the maximum Froude 

efficiency of the serpentine undulatory robot fish is 92.85% and the average 

tested efficiency is 75.6%, which is far better than current screw propellers 

(typically below 45%); the turning radius of the serpentine oscillatory robot fish 

is 0.24BL and the turning speed is 51.47s; the vector propelled robot fish can 

mimic both shark swim and dolphin swim effectively. Factors affect the 

swimming performance were also studied. These include the flapping amplitude, 

flapping frequency, and phase lag. For example, wi th the increasing of flapping 

amplitude and frequency, the cruising speed increased at first, and after reaching 

an optimal value, the cruising speed decreased; when the phase lag between the 

two segments is 0.5T, the cruising speed is the minimum. 
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7) Designed and built a novel indoor LTAV , named Flying Octopus using the 

W D M flapping propulsor. It suspends in the air using a helium balloon. The 

actuation is provided by four independently actuated continuous oscillatory 

flapping wings. These wings are light-weight, simple in structure and can bend 

over 180°. With the four wings' propulsion, the Flying Octopus can ascend, 

descend, transverse, and hover in the air. This shows another important 

application of the W D M . 

The W D M and similar mechanisms are commonly used in continuum robots and 

other flexible robots. Besides the topics studied in this thesis, there are a lot more. 

Future research contains three branches. 

1) Design optimization. In the current design, the joint rotations are all the same, 

such as for the serpentine W D M , the joint gap distances are identical, and for the 

continuum W D M , the eyelets' spacing is the same. Therefore the ideal deformed 

backbone is a circular arc. In some applications, different joint rotations may be 

beneficial. Also, the lengths of each segment affect the workspace. These issues 

generated the design's optimization. 

2) Theoretical modeling and control. In the current kinematic model, the constant 

curvature assumption is used. As indicated by the static model, when external 

loading is not a pure moment, this assumption is invalid. In the future, a more 

accurate model integrating the static model needs to be developed. Also, in this 

thesis, the dynamic model was developed. However, the dynamic behavior of the 

WDMs was not ful ly studied and validated by experiment. In the future, a more 

detailed study is needed. The W D M is highly underactuated and the control is 

highly nonlinear at large bending amplitudes. A computational efficient and 

robust control model is critical for developing elegent applications of the W D M . 

3) Application exploration. The W D M is a special mechanism with many useful 

features. There are a lot of applications where compliance, large deformation, 

leverage effect, long-range motion transmission, etc. are required. The flexible 

manipulator, robot fish and Flying Octopus are just one of many. More extensive 

applications could be identified, such as space robots, welding robots, medical 

robots, bio-inspired robots, etc. 

169 



Appendix A - Publication Record 

Journal Publications 

[1] Baofeng Liao, Li Zheng*, Du Ruxu, "Robot Fish with a Novel Biomimetic 

Wire-driven Flapping Propulsor", Advanced Robotics - special issue on 

biologically inspired robotics, 2013 (Invited paper, Under Review) 

[2] Li Zheng*, Du Ruxu, "Design and Analysis of a Biomimetic Wire-Driven 

Multi-Section Flexible Robot", International Journal of Advanced Robotic 

Systems, pp. 209-220, Vol. 10, Apri l , 2013 

[3] Li Zheng*, Du Ruxu, Zhang Yi , and L i Hua, "Robot Fish wi th Novel Wire-

Driven Continuous Flapping Propulsor", Applied Mechanics and Materials, pp. 

510-514, Vol. 300-301, 2013 

[4] Li Zheng*, Du Ruxu, "Design and implementation of a biomimetic wire-

driven underactuated serpentine manipulator", Transactions on Control and 

Mechanical Systems (TCMS), pp. 1-9, Vol. 1, No. 6, October, 2012 

[5] Du Ruxu*, Li Zheng, "Comparison of Manufacturing Development between 

China and the United States in the Last Century", Reformation & Strategy, 

pp.161-165, Vol. 27, No.5, 2011 

Conference Publications 

[1] Li Zheng*, Zhong Yong, Du Ruxu, "Design and Implementation of a Novel 

Vector Propulsion Robot Fish", IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS 2013), (Accepted) 

[2] Du Ruxu*, Li Zheng, "Under-Actuated Flexible Wire-Driven Mechanism and 

It's Application in Underwater Propulsion", the 10th Cross Strait Advanced 

Manufacturing Technology Forum, Taiwan, Jun. 15-19, 2013. 

[3] Baofeng Liao, Li Zheng*, Du Ruxu, "Robot Tadpole wi th a Novel 

Biomimetic Wire-driven Propulsor", 2012 IEEE International Conference on 

Robotics and Biomimetics (ROBIO 2012), Guangzhou, China, Dec. 11-14, 2012. 

(Best Paper Finalists) 

170 



[4] Li Zheng*, Du Ruxu, Zhang Yi , and L i Hua, "Robot Fish wi th Novel Wire-

Driven Continuous Flapping Propulsor", The 2nd International Conference on 

Mechatronics and Applied Mechanics ( ICMAM) , Hong Kong, Dec. 6-7, 2012 

[5] Li Zheng*, Gao Wenqi, Du Ruxu, Liao Baofeng, "Design and Analysis of a 

Wrie-Driven Robot Tadpole", International Mechanical Engineering Congress & 

Exposition ( IMECE 2012), Houston, Texas, USA, Nov. 9-15, 2012. 

[6] Li Zheng*, Du Ruxu, Yao Yupei, "Flying Octopus - A L T A V with Wire-

Driven Flapping Wings", International Mechanical Engineering Congress & 

Exposition ( IMECE 2012), Houston, Texas, USA, Nov. 9-15, 2012. 

[7] Li Zheng*, Du Ruxu, "Design and Analysis of a Biomimetic Wire-Driven 

Flapping Propeller", IEEE International Conference on Biomedical Robotics and 

Biomechatronics, (BioRob2012), Roma, Italy, June 24-27, 2012. 

[8] Li Zheng*, Du Ruxu, Lei Mancheong, Yuan Songmei, "Design and Analysis 

of A Biomimetic Wire-Driven Robot Arm", International Mechanical 

Engineering Congress & Exposition ( IMECE 2011), Denver, Colorado, USA, 

Nov. 11-17, 2011. 

171 



Appendix B - Derivation 
B.1 Wire Length w.r.t. Joint Rotation 

til -

Figure B-1 Wire Length Change in Joint Rotation 

Before joint rotation, the wire length B B equals to D iD 2 , they are both ho. When 

the joint rotates 6 to left, the wire length B B is hi, and the wire length D D is h〗. 

From the geometry as shown in Figure B-1. 

CA = ho 

get: 

. 2 
(B-1) 

By using the half angle formula, we have: 

C A == h -2 • sin 
6 

(B-2) 

The wires lengths after jo int rotation 

h CC - d • sin 

h = D D = C C + d • sin 

( 6 

2 乂 

6 

2 

(B-3) 

By substituting Equation (B-2) into Equation (B-3), we have: 

h 1 = h 0 

h 2 =  h0 

-2 • sin2 

•2 • sin2 

( 6 
4 

(6 
4 

d • sin 

+ d • sin 

6 
2, 

( 6 
2 

(B-4) 
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After rearrangement, we have: 

h = h-Ah = h -

h = K +Ah2 = h + 

d ‘ sin 

d ‘ sin 

I、 
2 ^ 

. 2 

+ 2K • sin2 

-2K • sin2 

I、 

'0 
4 

(B-5) 

The jo int rotation can be found from Equation (B-5). After rotation, the 
discrepancy of the two wires' lengths is: 

K - h = 2d • sin 
(0 

2 (B-6) 

Hence, the jo int rotation is: 

0 = 2 • arcsin K - h  
2d 

(B-7) 

In the wire-driven mechanism, there are N joints and based on the constant 

curvature assumption, all the joints rotate the same. Assume in the rest position, 

the lengths of the two wires are the same, they both equal to L .By summing up 

all the length change in the joints, the lengths of the two wires after backbone 

bending are: 

A = L0 - N •Ah,= L0 - N 

L = L + N -Ah = L + N 

d • sin 

d • sin 

2K • sin2  

-2K • sin2 

0 
4, 

( 0 
4 

(B-8) 

The backbone bending angle is: 

0 = N-0 = 2 N • arcsin 
h 2 - h  

2d (B-9) 

Or, we can represent the backbone bending using the two wires' lengths: 

L - L 0 = 2 N • arcsin 
2 N • d 

(B-10) 

B.2 Distal End Position in Generalized Kinematics Model 

In the kinematics modeling, constant curvature assumption is adopted. This 

means, for serpentine backbone the joints have identical rotation, and for 

continuum backbone, the deformed backbone curve is a circular arc. Figure B-2 
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shows the bending of the two types of backbone, with the same length L and 

bending angle 0 . Coordinate frame XOZ is located at the base or at the first joint 

rotation center. Initially, the backbone lies on Z axis. 

Figure B-2 Distal End Position of the Wire-Driven Mechanism 

For serpentine backbone, the deformed curve is a polyline with uniform side 

length and interior angle. The total length of the backbone is L , and there are N 

vertebras with Njoints as shown in the figure. The first joint is formed by the 

base and the first vertebra. For each vertebra, the length is l = L jN .The bending 

angle of the backbone is 0 . As all the joints rotate the same, for each joint, the 

rotation is 0 = @/N. The distal end position can be found from geometry: 

X = ^ l • sin (/ -e) 
i = 1 

N 

z - ^ l - c o s ( i - e ) 
(B-11) 

For continuum backbone, the deformed backbone is a circular arc. The arc length 

is L , which is the same as the backbone length. The center angle of the arc is the 

backbone bending angle 0 . At the From geometry, the distal end position is: 

R '(0) 
R - sin ( 0 ) 

(B-12) 

In the equation, R — L!0 is the arc radius. 
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When the backbone length L is kept constant and increases the joint number N 

to infinite, the two distal ends overlap. Hence, we can use Equation (B-11) to 

represent the continuum backbone distal end. It is noted that: 

fe 
^ i • sin {i-e) 

i 
e 

2s in ( | ) 
•z 

2sin 

cos •e 

•Z 2sin 2 
sin {i -e) 

e 
• e+ 

e 

i 
e 

2s in ( | ) 
cos N .e+ e 

e 
s i n

^
) 

. N . 0 . . 
sin( ). sin 

2 

{ N +1)0 

(B-13) 

Similarly, we have: 

Z l • cos {i-e) . , 0、 s i n ^ ) 

. N - e 、 
• sm( 2 ) • cos 

{N + 1 ) e 
(B-14) 

Hence, the distal end of a wire-driven mechanism is: 

‘ L • sin(0/2) . f ( N + 1 ) 0 ' 

x = 、 " - sin — 
N • sin(0/ 2 N) ( 2 N , 

L • sin(0/ 2) f ( N + 1 ) 0 
z = cos  

N • sin(0/ 2 N) ( 2 N , 

(B-15) 

When N —�，by L'Hopital's rule we have: 

r L • sin(0/ 2) 
x = l i m 一 ~ — ^ s i n 

N—① 

z = l im 
N — � 

N • sin(0/ 2 N) 

L • sin(0/ 2) 
N • sin(0/ 2 N)' 

cos 

( N + 1 ) 0 、 

.2N , 

\ N + 1 ) 0 

、 2 N 

L_ 
0 

；(0): 

L s i n ( 0 ) 

(B-16) 

It is the .Equation (B-12). 
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Appendix C - Matlab Programs 

1) Figure 3-8 WDM Distal End Velocity and Leverage Effect 
L=150e-3; N=10; 
d=10e-3; dtheta=pi; 
thetamax=180*pi/180; 
x=zeros(181,1); z=zeros(181,1); 
vx=zeros(181,1); vz=zeros(181,1); 
v=zeros(181,1); vw=zeros(181,1) 
theta=zeros(181,1); 
a=L/N; 
b=L/2/N^2; 
for i=1:181 

t(i)=(i-1)/180; 
beta(i)=(i-1)/2/N*pi/180; 
theta(i)=(i-1)*pi/180; 
sb=sin(beta(i)); 
cb=cos(beta(i)); 
st=sin(theta(i)); 
ct=cos(theta(i)); 

x(i)=a*sin(theta(i)/2)*sin(theta(i)/2+beta(i))/ 
sb; 
z(i)=a*sin(theta(i)/2)*cos(theta(i)/2+beta(i)) 
/sb; 
vx(i)=b*(N*sb*sin(theta(i)+beta(i))-
sin(theta(i)/2)^2)/sb^2*dtheta; 
vz(i)=b*(N*sb*cos(theta(i)+beta(i))-
0.5*st)/sb^2*dtheta; 

v(i)=sqrt(vx(i)A2+vz(i)A2); 
vw(i)=d/2*dtheta; 
end 
figure % distal end velocity 
plot(theta*180/pi,vx,'b','linewidth',2); 
hold on; 
plot(theta*180/pi,vz,'g','linewidth',2); 
plot(theta*180/pi,v,'r','linewidth',2); 
xlabel('theta 
(^o)','fontsize',12,'fontweight','bold'); 
ylabel('Distal End Velocity 
(m/s)','fontsize',12,'fontweight','bold'); 
legend('Vx','Vy','V',4); 
xlim([0 180]); 
set(gca,'fontsize', 12); 
set(gca,'fontweight','bold'); 
figure % velocity amplification ratio 
plot(theta*180/pi,v./vw,'b','linewidth',2); 
xlabel('theta 
(^o)','fontsize',12,'fontweight','bold'); 
ylabel('Velocity 
Ratio','fontsize',12,'fontweight','bold'); 
xlim([0 180]); 
set(gca,'fontsize', 12); 
set(gca,'fontweight','bold'); 

2) Figure 3-12 Workspace of a Single Segment Spatial WDM 
Figure 3-22 Trajectory of the WDM Manipulator End Effector 
Figure 3-23 Relative Positioning Error of the Manipulator 

% single section robot arm simulation 
N=8; H=12.5 D=20; 
d=15; h0=2.5; 
HS=13.75; 
HE=12.85+12.5; 
pi=3.1415926; 
A=-HE; 
B=-(H+h0); 
C=-HS; 
% Distal end trajectory prediction 
for i=1:286 

theta(i)=(-14.25+0.1*(i-1))*pi/180; 
x(i)=A*cos((N+1)*theta(i))+B*sin(N*theta( 
i)/2)/sin(theta(i)/2)*cos((N+1)*theta(i)/2)+C; 
y(i)=A*sin((N+1)*theta(i))+B*sin(N*theta(i 
)/2)/sin(theta(i)/2)*sin((N+1)*theta(i)/2); 
end 
plot(-x,y,'r','linewidth',2); 
xlabel('Z position 
(mm)','fontsize',12,'fontweight','bold'); 
ylabel('X position 
(mm)','fontsize',12,'fontweight','bold'); 
xlim([0,180]); ylim([-150,150]); 
% Compare with experiment data 

xexp=[40 58 76.5 95 114 132.5 142 151 158 
160 161 160 157 153 148 137 130 122 110 
94 76 58 40]; 
yexp=[111 113 110.5 105 92 76 62 45 25 11 
0.1 -12.5 -26 -40 -53 -68 -78 -87 -96 -105 -
112 -114 -112]; 
hold on; 
plot(xexp,yexp,'*b'); 
grid on 
legend ('Predicted','Experiment'); 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 
% Extract from simulation 
xp=[42.32 58.56 76.28 96.68 113.3 130.4 
141.4 150 156.4 158.5 159.2 158.4 156.2 
152.0 146.0 137 129.5 120.3 109.1 92.55 
75.1 57.39 42.32]; 
yp=[111.2 111.5 108.8 102.8 91.47 75.89 
61.28 44.89 24.59 11.38 0.1 -12.71 -25.89 -
39.95 -53.28 -67.78 -76.86 -85.88 -94.37 -
103.3 -109.1 -111.6 -111.2]; 
x_error=(xexp-xp)./xp; 
y_error=(yexp-yp)./yp; 
d_exp=sqrt(xexp. *xexp+yexp. *yexp); 
d_prid=sqrt(xp. *xp+yp. *yp); 
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d_error=(d_exp-d_prid)./d_prid; 
figure; 
plot(x_error*100,'r','linewidth',2); 
hold on; 
plot(y_error*100,'b','linewidth',2); 
plot(d_error*100,'c','linewidth',2); 
xlabel('Sample 
Num.','fontsize',12,'fontweight','bold'); 
ylabel('Relative 
Error(%)','fontsize',12,'fontweight','bold'); 
grid on; 
set(gca,'fontsize',12,'fontweight','bold'); 
legend('Z Error','X Error','Dist. Error',3); 
% workspace 
for i=1:29 

theta(i)=(-14.25+1*(i-1))*pi/180; 
temp1=A*sin((N+1)*theta(i))+B*sin(N*thet 
a(i)/2)/sin(theta(i)/2)*sin((N+1)*theta(i)/2); 
temp2=A*cos((N+1)*theta(i))+B*sin(N*the 
ta(i)/2)/sin(theta(i)/2)*cos((N+1)*theta(i)/2) 
+C; 

for j=1:37 
phiCj)=Cj-1)*pi/18; 
wx(i,j )=temp 1 *cos(phi(j))； 

wy(i,j)=templ*sin(phi(j)); 
wz(i,j)=temp2; 

end 
end 
figure; 
grid on; 
surf(wx,wy,wz); 
xlabel('X position 
(mm)','fontsize',12,'fontweight','bold'); 
ylabel('Y position 
(mm)','fontsize',12,'fontweight','bold'); 
zlabel('Z position 
(mm)','fontsize',12,'fontweight','bold'); 
xlim([-150,150]); ylim([-150,150]); 
zlim([-180,0]); 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 

3) Figure 3-13 Trajectories of the WDM Distal End with Increased Joint 
Number 
% Serpentine WDM parameter 
N=[1 2 5 100]; 
mycolor=[0 0 1; 0 1 0;1 0 0;1 0 1]; 
mywidth=[2 2 2 4]; 
d=15; D=20; 
h0=2.5; H=12.5; 
len=H+h0; 
L=150; 
BTheta=pi/2; 
dtheta=0.1*pi/180; 
figure; 
for j=1:size(N,2) 

thetamax=BTheta/N(j) 
clear theta x y; 
for i=1:ceil(2*thetamax/dtheta)+1 

theta(i) = -thetamax+(i-1) *dtheta; 
[x(i),y(i)]=UFM(L,NCj),NCj)*theta(i)); 

end 
1(])=:卿； 
bx(1)=0; 
by(1)=0; 
for k=l:N(j) 

bx(k+1 )=bx(k)+l(j )*sin(k*thetamax)； 
by(k+1)=by(k)+l(j)*cos(k*thetamax); 

end 
h(j)=plot(x,y,'color',mycolor(j,:),'linewidth', 
mywidth(j)); hold on; 
plot(bx,by, '--
o','LineWidth',2,'color',mycolor(j,:),... 

'MarkerEdgeColor','b',… 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

plot(-bx,by, '--
o','LineWidth',2,'color',mycolor(j,:),... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 

'MarkerSize',5); 
clear bx by; 

end 
% Continuum WDM 
clear x y i j ; 
for i=1:1 :ceil(2*BTheta/dtheta)+1 

theta(i)=-BTheta+(i-1)*dtheta; 
R=L/theta(i); 
x(i)=R*(1-cos(theta(i))); 
y(i)=R*sin(theta(i)); 

end 
for j=1:150 

R=L/BTheta; 
len(j)=j; 
afa(j)=len(j)/L*BTheta; 
bx(j)=R*(1-cos(alfa(j))); 
by(j)=R*(sin(alfa(j))); 

end 
h(5)=plot(x,y,'--k','linewidth',2); 
hold on; 
plot(bx,by,'linewidth',2,'color',[0.5,0.5,0.5]); 
plot(-bx,by,'linewidth',2,'color',[0.5,0.5,0.5]); 
xlabel('X Position 
(mm)','fontsize',12,'fontweight','bold'); 
ylabel('Z Position 
(mm)','fontsize',12,'fontweight','bold'); 
xlim([-150 150]); 
ylim([-100 160]); 
axis equal; 
legend(h,'WDM N=1','WDM N=2','WDM 
N=5','WDM N=100','Continuum WDM',3); 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 

function [x,y]=UFM(L,N,THETA) 
i f N>1e6 

tempTheta=0 
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R=L/THETA; 
else 

tempTheta=THETA/2/N; 
R=L/(2*N)/sin(tempTheta); 

end 
i f abs(THETA)<1e-3 

x=0; 
y=L; 

else 

tempx=R*(1-cos(THETA)); 
tempy=R*sin(THETA); 

x=cos(tempTheta)*tempx+sin(tempTheta)*t 
empy; 
y=-
sin(tempTheta)*tempx+cos(tempTheta)*tem 
py; 
end 

4) Figure 3-14 Workspace of a Three-Segment WDM in the X-Z Plane. (a) 
N=10, Simulation Interval is 2.5° ； (b) N=10, Simulation Interval is 10�； (c) 

N=8, Simulation Interval is 2.5° ； (d) N=12, Simulation Interval is 2.5°. 

% robot arm parameters 
N=[10 10 10]; % joint number 
phi = [0 0 0]*pi/180; 
H = [6.5 6.5 6.5]; h0 = [2.5 2.5 2.5]; 
D = [20 20 20]; d = [15 15 15]; 
for i=1:3 
thetamax(i) = 2*atan(h0(i)/D(i)); 
dtheta(i)=0.25*pi/180; % simulation 
interval 
Num(i)=floor(2 *thetamax(i)/dtheta(i)+1)； 

end 

%tip position 
origin = [0 0 0 1]'; 
for i=1 :Num( 1) % section 1 

theta1(i)=-thetamax( 1)+(i-1 )*dtheta( 1)； 

BTheta1(i)=N(1)*theta1(i); 
dist1(i)=(H(1)+h0(1))*sin(BTheta1(i))/sin(t 
heta1(i)); 

i f abs(sin(theta1(i)/2))<0.0001 
dist1(i) = (H(1)+h0(1))*N(1); 

end 
T01= coordTrans(BTheta1(i), phi(1), 

distl(i)); 
for j=1:Num(2) % section 2 

theta2(j)=-thetamax(2)+(j-1)*dtheta(2); 
BTheta2(j)=N(2)*theta2Cj); 

dist2(j)=(H(2)+h0(2))*sin(BTheta2Cj))/sin(t 
heta2①)； 

i f abs(sin(theta2(j)/2))<0.0001 
dist2(j) = (H(2)+h0(2))*N(2); 

end 
T02=T01*coordTrans(BTheta2(j), phi(2), 
dist2(j)); 

for k=1:Num(3) % section 3 
theta3 (k)=-thetamax(3 )+(k-

1)*dtheta(3); 
BTheta3(k)=N(3)*theta3(k); 
dist3(k)=(H(3)+h0(3))*sin(BTheta3( 
k))/sin(theta3(k)); 
i f abs(sin(theta3(k)/2))<0.0001 

dist3(k) = (H(3)+h0(3))*N(3); 
end 
T03= T02*coordTrans(BTheta3 (k), 

phi(3), dist3(k)); 
P3=T03*origin; 
tipx(i,j,k)=P3(1); 
tipy(i,j,k)=P3(2); 
tipz(i,j,k)=P3(3); 
x(k)=P3(1); 
y(k)=P3(2); 
z(k)=P3(3); 

end 
plot(x,z,'linewidth',2); 

% plot(-x,z,'linewidth',2); 
hold on; 

end 
end 
scatter(0,0,'r','filled'); 
xlim([-300,300]); ylim([-250,350]); 
xlabel('X position 
(mm)','fontsize',12,'fontweight','b'); 
ylabel('Z position 
(mm)','fontsize',12,'fontweight','b'); 
set(gca,'fontsize',12,'fontweight','b'); 

5) Figure 3-18 Inverse Kinematics: (a) Solution with Exact Position; (b) 
Solution with Exact Orientation and Exact X position; (c) Solution with 
Exact Orientation and Exact Z position 

% single section robot arm parameters 
N=10; d=15; D=20; 
h0=2.5; H=12.5; len=H+h0; 
L=N*len; 
dtheta = 0.1*pi/180; % simulation interval 
is 0.1 deg 
thetamax=2 *atan(h0/D) ； % maxmum 
bending angle for one joint 
% forward kinematics 

FN1=6; FN2=N-FN1; 
Fbeta=0.03; Falfa=0.12; 
FX1=len*(sin(FN1*Fbeta)*sin((FN1+1)*Fb 
eta))/sin(Fbeta); 
FY1=len*(sin(FN1*Fbeta)*cos((FN1+1)*Fb 
eta))/sin(Fbeta); 
FX2=len*(sin(FN2*Falfa)*sin(FN1*2*Fbet 
a+(FN2+1)*Falfa))/sin(Falfa); 
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FY2=len*(sin(FN2*Falfa)*cos(FN1*2*Fbet 
a+(FN2+1)*Falfa))/sin(Falfa); 
FTheta=FN1 *2*Fbeta+FN2*2*Falfa; 
figure; 
% target position and orientation 
X=FX1+FX2; Y=FY1+FY2; 
Theta=FTheta; 
tmpcolor=0; 
mywidth=[2 2 2]; 
mycolor=[0 1 1; 0.9 0.9 0; 1 0 0]; 
% inverse by scan (meet position 
requriement first) 
for i=1:N-1 

N1=i; N2=N-N1; 
eq=@(ang) 

inverseFun(ang,X,Y,N1,N2,len); 
[ang(i,:),fval(i,:),exitflag(i)]=fsolve(eq, [1e-6 
1e-6]); 

tmpalfa(i)=ang(i,2); tmpbeta(i)=ang(i,1)； 

tmptheta(i)=2*(N1 *tmpbeta(i)+N2 *tmpal 
fa(i)); 
X1(i)=len*(sin(N1*tmpbeta(i))*sin((N1+ 
1)*tmpbeta(i)))/sin(tmpbeta(i)); 
Y1(i)=len*(sin(N1*tmpbeta(i))*cos((N1+ 
1)*tmpbeta(i)))/sin(tmpbeta(i)); 

colorindex=1; 
i f abs(tmpalfa(i))<thetamax/2 & 

abs(tmpbeta(i))<thetamax/2 
beta=tmpbeta(i); alfa=tmpalfa(i); 
theta=tmptheta(i); tmpN1=N1; 
colorindex=2; 
i f abs(theta-FTheta)<1e-2 

colorindex=3; 
end 

end 
% plot robot arm 
vx(1)=0; vy(1)=0; 
for j=1:N 

i f j<N1 
vx(j+1)=vx(j)+len*sin(j*2*tmpbeta(i)); 
vy(j+1 )=vy(j )+len*cos(j *2 *tmpbeta(i))； 

else 

vx(j+1)=vx(j)+len*sin(N1*2*tmpbeta(i)+(j-
N1)*2*tmpalfa(i)); 
vy(j+1 )=vy(j )+len*cos(N1*2 *tmpbeta(i)+(j -
N1)*2*tmpalfa(i)); 

end 
end 

plot(vx,vy,'-
o','LineWidth',mywidth(colorindex),'color', 
mycolor(colorindex,:),... 

'MarkerEdgeColoO',… 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

hold on; 
scatter(X1(i),Y1(i),'s','filled',... 

'MarkerFaceColor',mycolor(colorindex,:)); 
end 
vy(1)=0; 
angBT=beta; angAF=alfa; 

for i=1:N 
i f i<tmpN1 
vx(i+1 )=vx(i)+len* sin(i*2 *tmpbeta(tmpN 
1)); 
vy(i+1)=vy(i)+len*cos(i*2*tmpbeta(tmp 
N1)); 
else 

vx(i+1 )=vx(i)+len*sin(tmpN1 *2 *tmpbeta(t 
mpN1)+(i-tmpN1)*2*tmpalfa(tmpN1)); 
vy(i+1)=vy(i)+len*cos(tmpN1*2*tmpbeta(t 
mpN1)+(i-tmpN1)*2*tmpalfa(tmpN1)); 

end 
end 
plot(vx,vy,'-
o','LineWidth',2,'color',mycolor(3,:),... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

hold on; 
scatter(X1(tmpN1),Y1(tmpN1),'s','filled',... 

'MarkerFaceColor',mycolor(3,:)); 
% left bending limit 
leftx(1)=0; leftz(1)=0; 
for i=1:N 

leftx(i+1)=leftx(i)+(H+h0)*sin(-
i*thetamax); 

leftz(i+1 )=leftz(i)+(H+h0) *cos(-
i*thetamax); 
end 
plot(leftx,leftz,'-go','LineWidth',2,... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% right bending limit 
rightx(1)=0; rightz(1)=0; 
for i=1:N 
rightx(i+1)=rightx(i)+(H+h0)*sin(i*thetama 
x); 
rightz(i+1)=rightz(i)+(H+h0)*cos(i*thetama 
x); 
end 
plot(rightx,rightz,'-go','LineWidth',2,... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% tip trajectory without constrant 
for i=1 :ceil(2 *thetamax/dtheta) 

theta(i) = -thetamax+(i-1)*dtheta; 
BTheta= N*theta(i); 
[tx(i),tz(i)]=UFM(N*len,N,BTheta); 

end 
plot(tx,tz,'--r','linewidth',2); 
axis equal; 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 
xlabel('X Position 
(mm)','fontsize',12,'fontweight','b'); 
ylabel('Z Position 
(mm)','fontsize',12,'fontweight','b'); 
hold on; 
scatter(X,Y,'filled'); 
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% inverse by scan (meet orientation ans X 
position first) 
figure; 
for i=1:N-1 

N1=i; N2=N-N1; 
eq=@(ang) 

inverseFun2(ang,X,FTheta,N1,N2,len); 

[ang(i,:),fval(i,:),exitflag(i)]=fsolve(eq, [1e-6 
1e-6]); 

tmpalfa(i)=ang(i,2); tmpbeta(i)=ang(i,1)； 

tmptheta(i)=2*(N1 *tmpbeta(i)+N2 *tmpal 
fa(i)); 
X1(i)=len*(sin(N1*tmpbeta(i))*sin((N1+ 
1) *tmpbeta(i)))/sin(tmpbeta(i))； 

Y1(i)=len*(sin(N1*tmpbeta(i))*cos((N1+ 
1) *tmpbeta(i)))/sin(tmpbeta(i))； 

tmpY(i)=len* (sin(N1 *tmpbeta(i)) *cos((N 
l+l)*tmpbeta(i)))/sin(tmpbeta(i))+… 
len*(sin(N2*tmpalfa(i))*cos(2*N1*tmpbe 
ta(i)+(N2+1)*tmpalfa(i)))/sin(tmpalfa(i)) 
colorindex=1; 
i f abs(tmpalfa(i))<thetamax/2 & 

abs(tmpbeta(i))<thetamax/2 
beta=tmpbeta(i); alfa=tmpalfa(i); 
tmpN1=N1; colorindex=2; 
i f abs(tmpY(i)-Y)<1e-2 

colorindex=3; 
end 

end 
% plot robot arm 
vx(1)=0; vy(1)=0; 
for j=1:N 

i f j <N1 
vx(j+1)=vx(j)+len*sin(j*2*tmpbeta(i)); 
vyCj+1)=vyCj)+len*cosCj*2 *tmpbeta(i))； 

else 

vx(j+1)=vx(j)+len*sin(N1*2*tmpbeta(i)+(j-
N1)*2*tmpalfa(i)); 
vy(j+1 )=vy(j )+len*cos(N1*2 *tmpbeta(i)+(j -
N1)*2*tmpalfa(i)); 

end 
end 

plot(vx,vy,'-
o','LineWidth',mywidth(colorindex),'color', 
mycolor(colorindex,:),... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

hold on; 
scatter(X1(i),Y1(i),'s','filled',... 
'MarkerFaceColor',mycolor(colorindex,:)); 
end 
vy(1)=0; 
angAF=alfa; 
for i=1:N 

i f i<tmpN1 
vx(i+1 )=vx(i)+len* sin(i*2*tmpbeta(tmpN1) 
); 

vy(i+1)=vy(i)+len*cos(i*2 *tmpbeta(tmpN1) 
); 

else 
vx(i+1 )=vx(i)+len*sin(tmpN1 *2 *tmpbeta(t 
mpN1)+(i-tmpN1)*2*tmpalfa(tmpN1)); 
vy(i+1 )=vy(i)+len*cos(tmpN1 *2 *tmpbeta(t 
mpN1)+(i-tmpN1)*2*tmpalfa(tmpN1)); 

end 
end 
plot(vx,vy,'-
o','LineWidth',2,'color',mycolor(3,:),... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

hold on; 
scatter(X1(tmpN1),Y1(tmpN1),'s','filled',... 

'MarkerFaceColor',mycolor(3,:)); 
% left bending limit 
leftx(1)=0; leftz(1)=0; 
for i=1:N 

leftx(i+1)=leftx(i)+(H+h0)*sin(-
i*thetamax); 

leftz(i+1 )=leftz(i)+(H+h0) *cos(-
i*thetamax); 
end 
plot(leftx,leftz,'-go','LineWidth',2,... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% right bending limit 
rightx(1)=0; rightz(1)=0; 
for i=1:N 
rightx(i+1)=rightx(i)+(H+h0)*sin(i*thetama 
x); 
rightz(i+1)=rightz(i)+(H+h0)*cos(i*thetama 
x); 
end 
plot(rightx,rightz,'-go','LineWidth',2,... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% tip trajectory without constrant 
for i=1 :ceil(2 *thetamax/dtheta) 

theta(i) = -thetamax+(i-1) * dtheta; 
BTheta= N*theta(i); 
[tx(i),tz(i)]=UFM(N*len,N,BTheta); 

end 
plot(tx,tz,'--r','linewidth',2); 
axis equal; hold on; 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 
xlabel('X Position 
(mm)','fontsize',12,'fontweight','b'); 
ylabel('Z Position 
(mm)','fontsize',12,'fontweight','b'); 
scatter(X,Y,'filled'); 
% inverse by scan (meet orientation and Y 
position first) 
figure 
for i=1:N-1 

N1=i; N2=N-N1; 
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eq=@(ang) 
inverseFun3(ang,Y,FTheta,N1,N2,len); 

[ang(i,:),fval(i,:),exitflag(i)]=fsolve(eq, [1e-6 
1e-6]); 

tmpalfa(i)=ang(i,2); 
tmpbeta(i)=ang(i,1); 

tmptheta(i)=2*(N1 *tmpbeta(i)+N2 *tmpalfa( 
i)); 
X1(i)=len*(sin(N1*tmpbeta(i))*sin((N1+1)* 
tmpbeta(i)))/sin(tmpbeta(i)); 
Y1(i)=len*(sin(N1*tmpbeta(i))*cos((N1+1) 
*tmpbeta(i)))/sin(tmpbeta(i))； 

tmpX(i)=len*(sin(N1*tmpbeta(i))*sin((N1+ 
1)*tmpbeta(i)))/sin(tmpbeta(i))+... 
len*(sin(N2*tmpalfa(i))*sin(2*N1*tmpbeta( 
i)+(N2+1)*tmpalfa(i)))/sin(tmpalfa(i)) 
colorindex=1; 

i f abs(tmpalfa(i))<thetamax/2 & 
abs(tmpbeta(i))<thetamax/2 

beta=tmpbeta(i); alfa=tmpalfa(i); 
tmpN1=N1; colorindex=2; 
i f abs(tmpX(i)-X)<1e-2 

colorindex=3; 
end 

end 
% plot robot arm 
vx(1)=0; vy(1)=0; 

for j=1:N 
i f j <N1 

vx(j+1)=vx(j)+len*sin(j*2*tmpbeta(i)); 
vy(j+1)=vy(j)+len*cos(j*2 *tmpbeta(i))； 

else 

vx(j+1)=vx(j)+len*sin(N1*2*tmpbeta(i)+(j-
N1)*2*tmpalfa(i)); 
vy(j+1)=vy(j)+len*cos(N1*2 *tmpbeta(i)+(j -
N1)*2*tmpalfa(i)); 

end 
end 

plot(vx,vy,'-
o','LineWidth',mywidth(colorindex),'color', 
mycolor(colorindex,:),... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

hold on; 
scatter(X1(i),Y1(i),'s','filled',... 

'MarkerFaceColor',mycolor(colorindex,:)); 
end 
vy(1)=0; 
angBT=beta; angAF=alfa; 
for i=1:N 

i f i<tmpN1 
vx(i+1 )=vx(i)+len* sin(i*2*tmpbeta(tmpN1) 

vy(i+1 )=vy(i)+len*cos(i*2 *tmpbeta(tmpN1) 
); 

else 
vx(i+1 )=vx(i)+len*sin(tmpN1 *2 *tmpbeta(t 
mpN1)+(i-tmpN1)*2*tmpalfa(tmpN1)); 
vy(i+1 )=vy(i)+len*cos(tmpN1 *2 *tmpbeta(t 
mpN1)+(i-tmpN1)*2*tmpalfa(tmpN1)); 

end 
end 
plot(vx,vy,'-
o','LineWidth',2,'color',mycolor(3,:),... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

hold on; 
scatter(X1(tmpN1),Y1(tmpN1),'s','filled',... 

'MarkerFaceColor',mycolor(3,:)); 
% left bending limit 
leftx(1)=0; leftz(1)=0; 
for i=1:N 

leftx(i+1)=leftx(i)+(H+h0)*sin(-
i*thetamax); 

leftz(i+1 )=leftz(i)+(H+h0) *cos(-
i*thetamax); 
end 
plot(leftx,leftz,'-go','LineWidth',2,... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% right bending limit 
rightx(1)=0; rightz(1)=0; 
for i=1:N 
rightx(i+1)=rightx(i)+(H+h0)*sin(i*thetama 
x); 
rightz(i+1)=rightz(i)+(H+h0)*cos(i*thetama 
x); 
end 
plot(rightx,rightz,'-go','LineWidth',2,... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% tip trajectory without constrant 
for i=1 :ceil(2 *thetamax/dtheta) 

theta(i) = -thetamax+(i-1) * dtheta; 
BTheta= N*theta(i); 
[tx(i),tz(i)]=UFM(N*len,N,BTheta); 

end 
plot(tx,tz,'--r','linewidth',2); 
axis equal; hold on; 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 
xlabel('X Position 
(mm)','fontsize',12,'fontweight','b'); 
ylabel('Z Position 
(mm)','fontsize',12,'fontweight','b'); 
scatter(X,Y,'filled'); 

6) Figure 3-19 Workspace with Single Bilateral Constraint 
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% single section robot arm parameters 
N=10; d=15; D=20; 
h0=2.5; H=6.5; len=H+h0; 
dtheta = 0.1*pi/180; % simulation interval 
is 0.1 deg 
thetamax=2 *atan(h0/D) ； % maxmum 
bending angle for one joint 
figureCname','Robot Arm Motion with 
External Constraint'); 
hold on; axis equal; 
xlabel('x position 
(mm)','fontsize',12,'fontweight','bold'); 
ylabel('z position 
(mm)','fontsize',12,'fontweight','bold'); 
title('Workspace with Bilateral 
Constraint','fontsize',12,'fontweight','bold'); 
set(gca,'fontsize',12,'fontweight','bold'); 
count=0; 
for i=1 :ceil(2*thetamax/dtheta) % joint 
bending angle loop 

theta(i) = -thetamax+(i-1) * dtheta; 
for j=1:N % manipulator loop 

[cx,cy]=UFMCj*len,j,j*theta(i)); % 
current fixed position 

for k=1:ceil(2*thetamax/dtheta) % 
free section joint bending angle loop 

temptheta(k) = -thetamax+(k-
1)*dtheta; 

[tempcx2,tempcy2]=UFM((N-
j)*len,(N-j),(N-j)*temptheta(k)); % current 
fixed position 
cx2=cos(j *theta(i))*tempcx2+sin(j *theta(i)) 
*tempcy2; 
cy2=-
sinCj*theta(i))*tempcx2+cosCj*theta(i))*tem 
pcy2; 
tx(k)=cx+cx2; ty(k)=cy+cy2; 

end 
plot(tx,ty); 

end 
end 

% in the rest position 
for i=1:N 

intz(i)=h0/2+(H+h0)*(i-1)； 

end 

intz(N+1)=(H+h0)*N; 
intx=zeros(1,N+1); 
plot(intx,intz,'-ro','LineWidth',2,... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% left bending limit 
leftx(1)=0; leftz(1)=0; 
for i=1:N 

leftx(i+1)=leftx(i)+(H+h0)*sin(-
i*thetamax); 

leftz(i+1 )=leftz(i)+(H+h0) *cos(-
i*thetamax); 
end 
plot(leftx,leftz,'-go','LineWidth',2,... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor', 'w',... 
'MarkerSize',5); 

% right bending limit 
rightx(1)=0; rightz(1)=0; 
for i=1:N 
rightx(i+1)=rightx(i)+(H+h0)*sin(i*thetama 
x); 
rightz(i+1)=rightz(i)+(H+h0)*cos(i*thetama 
x); 
end 
plot(rightx,rightz,'-go','LineWidth',2,... 

'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% tip trajectory without constrant 
for i=1:ceil(2*thetamax/dtheta) 

theta(i) = -thetamax+(i-1)*dtheta; 
BTheta= N*theta(i); 
[tx(i),tz(i)]=UFM(N*len,N,BTheta); 

end 
plot(tx,tz,'--r','linewidth',2); 

7) Figure 3-20 Workspace with Single Unilateral Constraint 
% single section robot arm parameters 
N=10; d=15; D=20; 
h0=2.5; H=12.5; len=H+h0; 
L=N*len; 
dtheta = 0.1*pi/180; % simulation interval 
is 0.1 deg 
thetamax=2 *atan(h0/D) ； % maxmum 
bending angle for one joint 
figure('name','Robot Arm Motion with 
External Constraint'); 
hold on; axis equal; 
xlabel('x position 
(mm)','fontsize',12,'fontweight','bold'); 
ylabel('z position 
(mm)','fontsize',12,'fontweight','bold'); 
title('Workspace with Unilateral 
Constraint','fontsize',12,'fontweight','bold'); 

set(gca,'fontsize',12,'fontweight','bold'); 
% workspace with unilateral constraint 
dx=1; dy=1; 
Nx=L/dx; Ny=L/dy; 
for i=1:Nx 

xc=i*dx; 
for j=1:Ny 

yc=j*dy; 
[x y vx vy]=UFMTra(N,L,xc,yc,thetamax); 

plot(x,y,'linewidth',2); 
hold on; 
plot(-x,y,'linewidth',2); 

end 
end 
% robot arm at rest 
for i=1:N 

intz(i)=(H+h0)*(i-1); 
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end 
intz(N+1)=(H+h0)*N； 
intx=zeros(1,N+1)； 
plot(intx,intz,’-ro’,’LineWidth’,2,… 

'MarkerEdgeColor','b',… 
'MarkerFaceColor','w',... 
'MarkerSize',5)； 

% left bending limit 
leftx(1)=0； leftz(1)=0； 
for i=1:N 

leftx(i+1)=leftx(i)+(H+h0)*sin(-
i*thetamax)； 

leftz(i+1)=leftz(i)+(H+h0)*cos(-
i*thetamax)； 
end 

plot(leftx,leftz,'-go','LineWidth',2,... 
'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5)； 

% right bending limit 
rightx(1)=0； rightz(1)=0； 
for i=1:N 
rightx(i+1)=rightx(i)+(H+h0)*sin(i*thetama 
x)； 

rightz(i+1)=rightz(i)+(H+h0)*cos(i*thetama 
x)； 

end 

plot(rightx,rightz,'-go','LineWidth',2,... 
'MarkerEdgeColor','b',... 
'MarkerFaceColor','w',... 
'MarkerSize',5)； 

% tip trajectory without constrant 
for i=1 :ceil(2 *thetamax/dtheta) 

theta(i) = -thetamax+(i-1) * dtheta； 
BTheta= N*theta(i)； 
[tx(i),tz(i)]=UFM(N*len,N,BTheta)； 

end 

plot(tx,tz,'--r','linewidth',2)； 

8) Figure 3-26 Trajectories Comparison of the Distal End 
Figure 3-27 Relative Positioning Error of the Distal End 

% robot arm parameters 
SectNum = 3； 
N=[10 10 10]； 
H = [6.4 6.4 6.4]； 
h0 = [2.5 2.5 2.5]； 
D = [20 20 20]； 
d = [15 15 15]； 

dtheta = 0.1*pi/180； % simulation interval 
is 0.1 deg 
phi=[0 0 0]； 
for i=1:3 
thetamax(i) = 2*atan(h0(i)/D(i))； 
BThetaMax(i) = thetamax(i)*N(i)； 
end 

% case 1: only section 1 bending in the XZ 
plane 
for i=1:ceil(thetamax(1)/dtheta) 

theta(i) = i*dtheta； 
BTheta(1)= N(1)*theta(i)； 
dist(1) = 

(H(1)+h0(1))*sin(BTheta(1)/2)/sin(theta(i)/2 
)； 

BTheta(2)=0； 

BTheta(3)=0； 

dist(2)=(H(2)+h0(2))*N(2)； 

dist(3)=(H(3)+h0(3))*N(3)； 
T01 = coordTrans(BTheta(1), phi(1), 

dist(l)): 
T12 = coordTrans(BTheta(2), phi(2), 

dist(2))； 
T23 = coordTrans(BTheta(3), phi(3), 

dist(3))； 

T02= T01*T12； T03=T02*T23； 

c1x(i)=T03(1,4)； 

c1z(i)=T03(3,4)； 

tip1x(i)=T01(1,4)； 

tip1z(i)=T01(3,4)； 

tip2x(i)=T02(1,4)； 

c1y(i)=T03(2,4)； 

tip1y(i)=T01(2,4)； 

tip2y(i)=T02(2,4)； 

tip2z(i)=T02(3,4)； 
dist12(i)=sqrt((tip2x(i)-

tiplx(i))A2+(tip2y(i)-tip1x(i))A2+(tip2z(i)-
tiplz(i))A2)； 

dist23(i)=sqrt((tip2x(i)-
clx(i))A2+(tip2y(i)-c1y(i))A2+(tip2z(i)-
clz(i))A2)； 
end 

% case 2: only section 2 bending in the XZ 
plane 
for i=1 :ceil(thetamax(2)/dtheta) 

theta(i) = i*dtheta； 
BTheta(1)= 0； 

dist(1) = (H(1)+h0(1))*N(1)； 
BTheta(2)= N(2)*theta(i)； 
dist(2)=(H(2)+h0(2))*sin(BTheta(2)/2)/si 

n(theta(i)/2)； 
BTheta(3)=0； 

dist(3)=(H(3)+h0(3))*N(3)； 
T01=coordTrans(BTheta(1), phi(1), dist(l))； 
T12=coordTrans(BTheta(2), phi(2), dist(2))； 
T23=coordTrans(BTheta(3), phi(3), dist(3))； 

T02=T01*T12； T03=T02*T23； 
c2x(i)=T03(1,4)； c2y(i)=T03(2,4)； 
c2z(i)=T03(3,4)； 

tip1x(i)=T01(1,4)； tip1y(i)=T01(2,4)； 
tip1z(i)=T01(3,4)； 

tip2x(i)=T02(1,4)； tip2y(i)=T02(2,4)； 
tip2z(i)=T02(3,4)； 
dist12(i)=sqrt((tip2x(i)-

tiplx(i))A2+(tip2y(i)-tip1x(i))A2+(tip2z(i)-
tip1z(i))A2)； 

dist23(i)=sqrt((tip2x(i)-
c2x(i))A2+(tip2y(i)-c2y(i))A2+(tip2z(i)-
c2z(i)r2)； 
end 

% case 3: only section 3 bending in the XZ 
plane 
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for i=1:ceil(thetamax(3)/dtheta) 
theta(i) = i*dtheta; 
BTheta(1)= 0; 
dist(1) = (H(1)+h0(1))*N(1); 
BTheta(2)= 0; 
dist(2)=(H(2)+h0(2))*N(2); 
BTheta(3)=N(3)*theta(i); 

dist(3)=(H(3)+h0(3))*sin(BTheta(3)/2)/sin(t 
heta(i)/2); 
T01=coordTrans(BTheta(1), phi(1), dist(l)); 
T12=coordTrans(BTheta(2), phi(2), dist(2)); 
T23=coordTrans(BTheta(3), phi(3), dist(3)); 

T02=T01*T12; T03=T02*T23; 
c3x(i)=T03(1,4); c3y(i)=T03(2,4); 
c3z(i)=T03(3,4); 
tip 1 x(i)=T01(1,4); tip1y(i)=T01(2,4); 
tip1z(i)=T01(3,4); 
tip2x(i)=T02(1,4); tip2y(i)=T02(2,4); 
tip2z(i)=T02(3,4); 
dist12(i)=sqrt((tip2x(i)-

tiplx(i))A2+(tip2y(i)-tip1x(i))A2+(tip2z(i)-
tiplz(i))A2); 

dist23(i)=sqrt((tip2x(i)-
c3x(i))A2+(tip2y(i)-c3y(i))A2+(tip2z(i)-
c3z(i))A2); 
end 
% case 4: three sections bend together 
for i=1:ceil(thetamax(3)/dtheta) 

theta(i) = i*dtheta; 
BTheta(1)= N(1)*theta(i); 
dist(1) = 

(H(1)+h0(1))*sin(BTheta(1)/2)/sin(theta(i)/2 
); 

BTheta(2)= N(2)*theta(i); 
dist(2)=(H(2)+h0(2))*sin(BTheta(2)/2)/sin(t 
heta(i)/2); 

BTheta(3)=N(3)*theta(i); 
dist(3)=(H(3)+h0(3))*sin(BTheta(3)/2)/sin(t 
heta(i)/2); 
T01=coordTrans(BTheta(1), phi(1), dist(l)); 
T12=coordTrans(BTheta(2), phi(2), dist(2)); 
T23=coordTrans(BTheta(3), phi(3), dist(3)); 

T02=T01*T12; T03=T02*T23; 
c4x(i)=T03(1,4); c4y(i)=T03(2,4); 
c4z(i)=T03(3,4); 
tip 1 x(i)=T01(1,4); tip1y(i)=T01(2,4); 
tip1z(i)=T01(3,4); 
tip2x(i)=T02(1,4); tip2y(i)=T02(2,4); 
tip2z(i)=T02(3,4); 
dist12(i)=sqrt((tip2x(i)-

tip1x(i))A2+(tip2y(i)-tiplx(i))A2+(tip2z(i)-
tiplz(i))A2); 

dist23(i)=sqrt((tip2x(i)-
c4x(i))A2+(tip2y(i)-c4y(i))A2+(tip2z(i)-
c4z(i))A2); 
end 
figure; hold on 
% final experiment 
case3_x=[0 12 24 36 47 55 60 64 65 62]; 

case3_z=[264 262 260 253 245 235 225 214 
202 188]; 
case2_x=[0 30 50 80 102 128 140 147 151 
149 137 116]; 
case2_z=[264 261 256 246 230 200 170 140 
110 80 50 27]; 
case4_x=[0 20 60 110 150 180 200 208 202 
181 149 110 66]; 
case4_z=[264 263 257 234 210 170 120 70 
20 -20 -50 -60 -56]; 
case1_x=[0 40 70 100 146 180 210 235 244 
241 233 213]; 
case1_z=[264 262 256 246 220 190 150 100 
40 -10 -50 -89]; 
% trajectory comparison 
plot(c1x,c1z,'r','linewidth',2); 
plot(c2x,c2z,'g','linewidth',2); 
plot(c3x,c3z,'b','linewidth',2); 
plot(c4x,c4z,'m','linewidth',2); 
legend('case 1','case 2', 'case 3','case 4'); 
plot(case1_x,case1_z,'*r','linewidth',2); 
plot(case2_x,case2_z,'*g','linewidth',2); 
plot(case3 _x,case3_z, '*b', 'linewidth',2)； 

plot(case4_x,case4_z,'*m','linewidth',2); 
scatter(0,0,'k','filled'); 
xlabel('X position 
(mm)','fontsize',12,'fontweight','bold'); 
ylabel('Z position 
(mm)','fontsize',12,'fontweight','bold'); 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 
% relative error 
clear; clc; 
simu1_x=[0 42.48 72.57 97.88 144.2 175.4 
204.8 225.9 235.7 231.9 220.8 202.9]; 
simu1_z=[267 263.2 255.7 246 218.3 189.7 
149.7 101 41.76 -6.401 -45.34 -81.23]; 
dist_simu1=sqrt(simu1_x. *simu1 _x+simu 1 _ 
z.*simu1_z); 
case1_x=T0 40 70 100 146 180 210 235 244 
241 233 213]; 
case1_z=[264 262 256 246 220 190 150 100 
40 -10 -50 -89]; 
dist_case1=sqrt(case1_x. *case 1_x+case1_z. 
*case1_z); 
simu2_x=[0 30.07 50.22 79.37 99.6 124.8 
139.6 146.6 147 141.6 129.7 117.9]; 
simu2_z=[267 264 258.4 244.3 229.1 199.7 
169.4 139.2 110.8 83.4 56.41 39.44]; 
dist_simu2=sqrt(simu2_x.*simu2_x+simu2_ 
z.*simu2_z); 
case2_x=T0 30 50 80 102 128 140 147 151 
149 137 116]; 
case2_z=[264 261 256 246 230 200 170 140 
110 80 50 27]; 
dist_case2=sqrt(case2_x.*case2_x+case2_z. 
*case2_z); 
simu3_~x=[0 13.97 24.22 36.44 47.45 55.6 
60.2 64 64.57]; 
simu3_z=[267 266.5 262.5 256.2 247 236.6 
227.6 214 202.8]; 
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： d e t 1 / L * 1 0 0 ; 
： d e t 2 / L * 1 0 0 ; 
： d e t 3 / L * 1 0 0 ; 
： d e t 4 / L * 1 0 0 ; 

det4=sqrt((case4_x-simu4_x).*(case4_x-
simu4_x)+(case4_z-simu4_z).*(case4_z-
simu4_z)); 
H=6.4; h0=2.5; 
L=(H+h0)*30; 

figure; hold on; 
plot(error1,'r','linewidth',2); 
plot(error2,'g','linewidth',2); 
plot(error3,'b','linewidth',2); 
plot(error4,'m','linewidth',2); 
xlabel('Samples','fontsize',12,'fontweight','bo 
Id'); 
ylabel('Relative Error 
(%)','fontsize',12,'fontweight','bold'); 
legend('case 1','case 2','case 3','case 4',2); 
plot(mean(error1)*ones(size(dist_simu1)),'--
r','linewidth',2); 
plot(mean(error2)*ones(size(dist_simu2)),'--
g','linewidth',2); 
plot(mean(error3)*ones(size(dist_simu3)),'--
b','linewidth',2); 
plot(mean(error4)*ones(size(dist_simu4)),'--
m','linewidth',2); 
grid on 

set(gca, 'fontsize', 12,'fontweight', 'bold'); 

Comparison - Internal Bilateral 

[sx(i),sy(i)]=UFM(N*len,N,N*theta(i)); % 
end effector position 

[tmpsx3 (i),tmpsy3 (i)] =UFM((N-
3)*len,(N-3),(N-3)*theta(i)); % end effector 
position 

[tmpsx5(i),tmpsy5(i)]=UFM((N-
5)*len,(N-5),(N-5)*theta(i)); % end effector 
position 
end 
plot(sx,sy,'b','linewidth',2); % free path 
plot(tmpsx3 ,tmpsy3 +3 *len, 'g', 'linewidth',2)； 

plot(tmpsx5 ,tmpsy5+5 *len, 'r', 'linewidth',2)； 

xlabel('X 
Position','fontsize',12,'fontweight','b'); 
ylabel('Y 
Position','fontsize',12,'fontweight','b'); 
set(gca,'fontsize',12,'fontweight','b'); 
scatter(0,3*len,'sg','linewidth',3); 
scatter(0,5*len,'sr','linewidth',3); 
% backbone 
vx(1)=0; vy(1)=0; 
for i=1:N 

vx(i+1)=vx(i); vy(i+1)=vy(i)+len; 
end 
plot(vx,vy,'-o','LineWidth',2,'color',[1 0 1],... 

'MarkerEdgeColor',[1 0 1],... 
'MarkerFaceColor','w',... 
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dist_simu3=sqrt(simu3_x.*simu3_x+simu3_ 
z.*simu3_z); 
case3_x="[0 12 24 36 47 55 60 64 65]; 
case3_z=[264 262 260 253 245 235 225 214 
202]; 
dist_case3=sqrt(case3_x.*case3_x+case3_z. 
*case3_z); 
simu4_x=[0 20.93 61.76 110 142.3 170 
190.1 193.3 184.3 167.2 143.6 108 67.85]; 
simu4_z=[267 265.9 257.2 234 207 170 
116.5 74.2 29.19 -4.377 -30.52 -51.51 -
57.95]; 
dist_simu4=sqrt(simu4_x. * simu4_x+simu4_ 
z.*simu4_z); 
case4_x=T0 20 60 110 150 180 200 208 202 
181 149 110 66]; 
case4_z=[264 263 257 234 210 170 120 70 
20 -20 -50 -60 -56]; 
dist_case4=sqrt(case4_x.*case4_x+case4_z. 

4_z)； 

sqrt((case1_x-simu1_x).*(case1_x-
simu1_x)+(case1_z-simu1_z).*(case1_z-
simu1_z)); 
det2=sqrt((case2_x-simu2_x).*(case2_x-
simu2_x)+(case2_z-simu2_z).*(case2_z-
simu2_z)); 
det3=sqrt((case3_x-simu3_x).*(case3_x-
simu3_x)+(case3_z-simu3_z).*(case3_z-
simu3_z)); 

9) Figure 3-29 End Effector Trajectory 
Constraint 
% experiment data 
% trajectory without constraint 
tx=[-112 -114 -100 -76 -40 0 41 79 105 116 
112]； 

ty=[22 52 92 122 142 150 142 123 92 52 
20]; 
% trajectory with the third joint fixed 
cx1=[-80 -61 -35 -20 0 20 39 64 81]; 
cy1=[94 122 142 147 150 147 140 122 93]; 
% trajectory with the f i f th joint fixed 
cx2=[-47 -28 0 26 48]; 
cy2=[125 142 150 142 124]; 
figure 
plot(tx,ty,'d','linewidth',2); 
hold on; axis equal; 
plot(cx1,cy 1, 'dg','linewidth',2); 
plot(cx2,cy2,'dr','linewidth',2); 
% simulation 
N=10; d=15; D=20; 
h0=2.5; len=15; 
dtheta = 0.1*pi/180; % simulation interval 
is 0.1 deg 
thetamax=2 *atan(h0/D) ； % maxmum 
bending angle for one joint 
for i=1:ceil(2*thetamax/dtheta) 

theta(i) = -thetamax+(i-1) * dtheta; 

;rror1 
;rror2 
;rror3 
;rror4 



'MarkerSize',5); 
% backbone 
vx(1)=0; vy(1)=0; Num=3; 
for i=1:N 

i f i<Num 
vx(i+1)=vx(i)+0; vy(i+1)=vy(i)+len; 

else 
vx(i+1)=vx(i)+len*sin(Num*0+(i-

Num)*thetamax); 
vy(i+1)=vy(i)+len*cos(Num*0+(i-

Num)*thetamax); 
end 

end 
plot(vx,vy,'-o','LineWidth',2,'color',[0 1 0],... 

'MarkerEdgeColor',[0 1 0],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

plot(-vx,vy,'-o','LineWidth',2,'color',[0 1 0],... 
'MarkerEdgeColor',[0 1 0],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% backbone 
vx(1)=0; vy(1)=0; Num=5; 
for i=1:N 

i f i<Num 
vx(i+1)=vx(i)+0; vy(i+1)=vy(i)+len; 

else 
vx(i+1)=vx(i)+len*sin(Num*0+(i-

Num)*thetamax); 
vy(i+1)=vy(i)+len*cos(Num*0+(i-

Num)*thetamax); 
end 

end 
plot(vx,vy,'-o','LineWidth',2,'color',[1 0 0],... 

'MarkerEdgeColor',[1 0 0],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

plot(-vx,vy,'-o','LineWidth',2,'color',[1 0 0],... 
'MarkerEdgeColor',[1 0 0],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% backbone 
vx(1)=0; vy(1)=0; Num=0; 
for i=1:N 

i f i<Num 
vx(i+1)=vx(i)+0; vy(i+1)=vy(i)+len; 

else 
vx(i+1 )=vx(i)+len* sin(Num*0+(i-

Num)*thetamax); 
vy(i+1)=vy(i)+len*cos(Num*0+(i-

Num)*thetamax); 
end 

end 
plot(vx,vy,'-o','LineWidth',2,'color',[0 0 1],... 

'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

plot(-vx,vy,'-o','LineWidth',2,'color',[0 0 1],... 
'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

legend('Free Path','Fixed N=3','Fixed 
N=5',3); 

10) Figure 3-30 End Effector Trajectory Comparison - External Bilateral 
Constraint 
% experiment data 
% trajectory without constraint 
tx=[-112 -108 -87 -65 -31 0 36 73 95 112 
112]; 
ty=P0 72 108 130 143 150 143 123 96 70 
16]; 
% trajectory with the sixth joint fixed at left 
limit 
cx1=[-112 -121 -116 -108]; 
cy1=[20 50 75 91]; 
% trajectory with the sixth joint fixed at 
right limit 
cx2=[112 119 123 109]; 
cy2=[16 32 63 86]; 
% trajectory with the third joint fixed at left 
limit 
cx3=[-112 -116 -101 -73 -53 -28 -4 2]; 
cy3=[20 63 101 128 137 140 135 127]; 
% trajectory with the third joint fixed at 
right limit 
cx4=[-2 21 47 84 107 118 118 112]; 
cy4=[127 134 137 121 97 68 35 16]; 

figure 
plot(tx,ty,'d','linewidth',2); 

hold on; axis equal; 
plot(cx1,cy1,'Dr','linewidth',2); 
plot(cx4,cy4,'Dg','linewidth',2); 

% simulation 
N=10; d=15; D=20; 
h0=2.5; len=15; 
dtheta = 0.1*pi/180; % simulation interval 
is 0.1 deg 
thetamax=2*atan(h0/D) ； % maxmum 
bending angle for one joint 
for i=1 :ceil(2 *thetamax/dtheta) 

theta(i) = -thetamax+(i-1) * dtheta; 
[sx(i),sy(i)]=UFM(N*len’N,N*theta(i)); % 

end effector position 

tmpsx1(i),tmpsy1(i)]=UFM((N-3)*lenXN-
3),(N-3)*theta(i)); % end effector position 
csx1(i)=tmpsx1(i)*cos(-
3 *thetamax)+tmpsy 1 (i)*sin(-3 *thetamax)； 
csy1 (i)=-tmpsx1(i)*sin(-
3 *thetamax)+tmpsy 1 (i) *cos(-3 *thetamax); 
[tmpsx2(i),tmpsy2(i)]=UFM((N-3)*len,(N-
3),(N-3)*theta(i)); % end effector position 
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csx2(i)=tmpsx2(i)*cos(3*thetamax)+tmpsy2 
(i)*sin(3*thetamax); 
csy2(i)=-tmpsx2(i)*sin(3*thetamax)+ 
tmpsy2(i)*cos(3 *thetamax); 
[tmpsx3(i),tmpsy3(i)]=UFM((N-6)*len,(N-

6),(N-6)*theta(i)); % end effector position 
csx3 (i)=tmpsx3 (i) *cos(-
6 *thetamax)+tmp sy3 (i) * sin( -6 *thetamax)； 

csy3(i)=-tmpsx3(i)*sin(-
6*thetamax)+tmpsy3(i)*cos(-6*thetamax); 
[tmpsx4(i),tmpsy4(i)]=UFM((N-6)*len,(N-

6),(N-6)*theta(i)); % end effector position 
csx4(i)=tmpsx4(i)*cos(6*thetamax)+tmpsy4 
(i)*sin(6*thetamax); 
csy4(i)=-tmpsx4(i)*sin(6*thetamax)+ 
tmpsy4(i)*cos(6*thetamax); 
end 
[bx1,by1]=UFM(3*len,3,-3*thetamax); % 
end effector position 
[bx2,by2]=UFM(3*len,3,3*thetamax); % 
end effector position 
[bx3,by3]=UFM(6*len,6,-6*thetamax); % 
end effector position 
[bx4,by4]=UFM(6*len,6,6*thetamax); % 
end effector position 
scatter(bx2,by2,'sg','linewidth',3); 
scatter(bx3,by3,'sr','linewidth',3); 
% figure 
plot(sx,sy,'b','linewidth',2); % free path 
plot(csx2+bx2,csy2+by2,'g','linewidth',2); 
plot(csx3+bx3,csy3+by3,'r','linewidth',2); 
xlabel('X Position (mm)', 
'fontsize', 12,'fontweight','b'); 
ylabel('Z Position (mm)', 
'fontsize', 12,'fontweight','b'); 
set(gca, 'fontsize',12,'fontweight','b'); 
% backbone 2 
vx(1)=0; vy(1)=0; vx1(1)=0; vy1(1)=0; 
Num=6; 
for i=1 :N 

i f i<Num 
vx(i+1)=vx(i)+len*sin(-i*thetamax); 
vy(i+1)=vy(i)+len*cos(-i*thetamax); 
vx 1 (i+1 )=vx 1 (i)+len* sin(-i*thetamax); 
vy1(i+1)=vy1(i)+len*cos(-i*thetamax); 

else 
vx(i+1)=vx(i)+len*sin(-

Num*thetamax+(i-Num) *thetamax)； 

vy(i+1)=vy(i)+len*cos(-
Num*thetamax+(i-Num) *thetamax)； 

vx 1 (i+1 )=vx 1 (i)+len* sin(-
Num*thetamax-(i-Num) *thetamax)； 

vy1(i+1 )=vy 1 (i)+len*cos(-
Num*thetamax-(i-Num) *thetamax)； 

end 

end 

plot(vx,vy,'-o','LineWidth',2,'color',[1 0 0],... 
'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

plot(vx1,vy1,'-o','LineWidth',2,'color',[1 0 
0],... 

'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% backbone 3 
vx(1)=0; vy(1)=0; vx1(1)=0; vy1(1)=0; 
Num=3; 
for i=1:N 

i f i<Num 
vx(i+1 )=vx(i)+len* sin(i*thetamax)； 

vy(i+1)=vy(i)+len*cos(i*thetamax); 
vx 1 (i+1 )=vx 1 (i)+len* sin(i *thetamax)； 

vy1(i+1 )=vy 1 (i)+len*cos(i*thetamax); 
else 

vx(i+1)=vx(i)+len*sin(Num*thetamax+(i-
Num)*thetamax); 
vy(i+1)=vy(i)+len*cos(Num*thetamax+(i-
Num)*thetamax); 
vx1(i+1)=vx1(i)+len*sin(Num*thetamax-(i-
Num)*thetamax); 
vy1(i+1 )=vy 1 (i)+len*co s(Num*thetamax-(i-
Num)*thetamax); 

end 
end 
plot(vx,vy,'-o','LineWidth',2,'color',[0 1 0],... 

'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

plot(vx1,vy1,'-o','LineWidth',2,'color',[0 1 
0],… 

'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

11) Figure 3-31 End Effector Trajectory Comparison - Unilateral Constraint 
% experiment data 
% trajectory with constraint 
tx=[-112 -113 -99 -75 -36 0 44 86 101 114 
110]; 
ty=[20 57 94 120 143 150 140 112 84 50 
20]; 
% left trajectory with block 
cx1=[-93 -89 -83 -71]; 
cy1=[75 94 105 123]; 
% right trajectory with block 

cx2=[69 66 59 51]; 
cy2=[110 119 128 135]; 
figure 
plot(tx,ty,'d','linewidth',2); 
hold on; axis equal; 
plot(cx1,cy1,'dr','linewidth',2); 
plot(cx2,cy2,'dr','linewidth',2); 
% simulation 
N=10; d=15; D=20; h0=2.5; len= 15; 
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dtheta = 0.1*pi/180; % simulation interval 
is 0.1 deg 
thetamax=2 *atan(h0/D) ； % maxmum 
bending angle for one joint 
for i=1 :ceil(2*thetamax/dtheta) 

theta(i) = -thetamax+(i-1)*dtheta; 
[sx(i),sy(i)]=UFM(N*len,N,N*theta(i)); % 

end effector position 
end 
% figure 
plot(sx,sy,'b','linewidth',2); % free path 
xlabelCX Position 
(mm)','fontsize',12,'fontweight','b'); 
ylabel('Z Position 
(mm)','fontsize',12,'fontweight','b'); 
set(gca,'fontsize',12,'fontweight','b'); 
% simulation 
% left part 
clear sx sy; 
lcx=-6; lcy=40; 
[Num，Ltheta,ln,xn,yn]=solveConstralnt(N,N 
*len,-lcx,lcy,thetamax) 
Ltheta=-Ltheta; 
xn=-xn; 
for i=1 :ceil((thetamax+Ltheta)/dtheta)+1 

theta(i) = -thetamax+(i-1) * dtheta; 
[tmpsx(i),tmpsy(i)]=UFM((N-

Num)*len,(N-Num),(N-Num)*theta(i)); % 
end effector position 
sx(i)=cos(Num*Ltheta)*tmpsx(i)+sin(Num* 
Ltheta)*tmpsy(i); 
sy(i)=-
sin(Num*Ltheta)*tmpsx(i)+cos(Num*Lthet 
a)*tmpsy(i); 
end 
plot(xn+sx,yn+sy,'r','linewidth',2); 
hold on; 
scatter(lcx,lcy,'sk','linewidth',2); 
% backbone 
vx(1)=0; vy(1)=0; 
for i=1 :N 

i f i<Num 
vx(i+1 )=vx(i)+len*sin(i*Ltheta)； 

vy(i+1)=vy(i)+len*cos(i*Ltheta); 
else 

vx(i+1 )=vx(i)+len*sin(Num*Ltheta-(i-
Num)*thetamax); 

vy(i+1 )=vy(i)+len*cos(Num*Ltheta-(i-
Num)*thetamax); 

end 
end 
plot(vx,vy,'-o','LineWidth',2,'color',[0 1 0],... 

'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% right part 

clear sx sy xn yn tmpsx tmpsy theta; 
rcx=10; rcy=68; 
[Num,Rtheta,ln,xn,yn]=solveConstraint(N,N 
*len,rcx,rcy,thetamax); 
for i=1:ceil((thetamax-Rtheta)/dtheta)+1 

theta(i) = Rtheta+(i-1)*dtheta; 
[tmpsx(i),tmpsy(i)]=UFM((N-

Num)*len,(N-Num),(N-Num)*theta(i)); % 
end effector position 
sx(i)=cos(Num*Rtheta)*tmpsx(i)+sin(Num* 
Rtheta)*tmpsy(i); 
sy(i)=-
sin(Num*Rtheta)*tmpsx(i)+cos(Num*Rthet 
a)*tmpsy(i); 
end 
plot(xn+sx,yn+sy,'r','linewidth',2); 
hold on; 
scatter(rcx,rcy,'sk','linewidth',2); 
% backbone 
vx(1)=0; vy(1)=0; 
for i=1:N 

i f i<Num 
vx(i+1 )=vx(i)+len*sin(i*Rtheta)； 

vy(i+1)=vy(i)+len*cos(i*Rtheta); 
else 

vx(i+1 )=vx(i)+len* sin(Num*Rtheta+(i-
Num)*thetamax); 
vy(i+1)=vy(i)+len*cos(Num*Rtheta+(i-
Num)*thetamax); 

end 
end 
plot(vx,vy,'-o','LineWidth',2,'color',[0 1 0],... 

'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% middle part 
clear theta sx sy; 
for i=1:ceil((Rtheta-Ltheta)/dtheta) 

theta⑴=Ltheta+(i-1)*dtheta; 
[sx(l),sy(l)]=UFM(N*len，N,N*theta(l)); % 

end effector position 
end 
plot(sx,sy,'r','linewidth',2); 
% backbone 
vx(1)=0; vy(1)=0; 
for i=1:N 

vx(i+1 )=vx(i) ； vy(i+1 )=vy(i)+len; 
end 
plot(vx,vy,'-o','LineWidth',2,'color',[1 0 1],... 

'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',5); 

% other constraints 
block_x=[-30 35 -60 50 75 -80]; 
block_y=[60 30 30 85 80 60]; 
scatter(block_x,block_y,'sk','linewidth',2); 

12) Figure 4-2 SPSP WDM Static Analysis: (a) Deformed Backbone Curve; 
(b) Joint Rotations 
% serpentine WDM statics % parameters: 
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% external loads 
Fex=0.1; Fey=0.2; Me=0.015; 
% control force 
T1=0; T2=0; T=T1+T2; 
% vertebra parameters 
H=12.5e-3; h0=2.5e-3; 
len=H+h0; d=10e-3; N=10; 
% elastic tube parameters 
E=1.5e9; pi=3.1415926; 
r1=2.5e-3; r2=2.0e-3; 
I=pi*(r1^4-r2^4)/64; 
K=E*I/h0; 
% intended angle; 
BTheta = 45*pi/180; 
alfa = BTheta/N; 
% from kinematics; 
L0=N*(H+h0) 
dL1=N*(d*sin(alfa/2)+2*h0*sin(alfa/4)^2); 
dL2=N*(d*sin(alfa/2)-2*h0*sin(alfa/4)^2); 
xc=zeros(N+1,1); 
yc=zeros(N+1,1); 
% constant curve assumption 
for i=1:N 

xc(i+1)=xc(i)+len*cos(i*alfa); 
yc(i+1)=yc(i)+len*sin(i*alfa); 

end 
% initialization 
theta=zeros(N,1); Mo = zeros(N,1); 
Fx=zeros(N,1); Fy=zeros(N,1); 

syms alfa1 alfa2 alfa3 alfa4 alfa5 alfa6 alfa7 
alfaS alfa9 alfa10; 
syms F1x F2x F3x F4x F5x F6x F7x F8x 
F9x F10x; 
syms F ly F2y F3y F4y F5y F6y F7y F8y 
F9y F10y; 
syms theta1 theta2 theta3 theta4 theta5 
theta6 theta7 theta8 theta9 theta10; 
global num 
num=0; 
result1=fsolve('deformedshape1',zeros(10,1) 
); 
result2=fsolve('deformedshape2',zeros(10,1) 
); 
result3=fsolve('deformedshape3',zeros(10,1) 
); 
x1=zeros(N+1,1); y1=zeros(N+1,1); 
x2=zeros(N+1,1); y2=zeros(N+1,1); 
x3=zeros(N+1,1); y3=zeros(N+1,1); 
% constant curve assumption 
for i=1:N 

x1(i+1)=x1(i)+len*cos(result1(i)); 
y1(i+1)=y1(i)+len*sin(result1(i)); 
x2(i+1)=x2(i)+len*cos(result2(i)); 
y2(i+1)=y2(i)+len*sin(result2(i)); 
x3(i+1)=x3(i)+len*cos(result3(i)); 
y3(i+1)=y3(i)+len*sin(result3(i)); 

end 
figure; 

plot(x1*1000,y1*1000,'-
o','LineWidth',2.5,'color',[1 0 0],... 

'MarkerEdgeColor',[1 0 0],... 
'MarkerFaceColor','w',... 
'MarkerSize',6); 

hold on; 
plot(x2*1000,y2*1000,'-
o','LineWidth',2.5,'color',[0 1 0],... 

'MarkerEdgeColor',[0 1 0],... 
'MarkerFaceColor','w',... 
'MarkerSize',6); 

plot(x3*1000,y3*1000,'-
o','LineWidth',2.5,'color',[0 0 1],... 

'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',6); 

axis equal; 
xlabel('X 
(mm)','Fontsize',12,'fontweight','bold'); 
ylabel('Y 
(mm)','Fontsize',12,'fontweight','bold'); 
legend('M=0.1 Nm,Fx=0 N, Fy=0 N',... 

'M=0.1 Nm，Fx=1 N, Fy=0 N',... 
'M=0.1 Nm，Fx=0 N, Fy=1 N',2); 

set(gca, 'Fontsize', 12,'fontweight', 'bold'); 
figure; 
ang1=result1; ang2=result2; ang3=result3; 
for i=2:10 

ang 1 (i)=result1 (i)-result1(i-1)； 

ang2(i)=result2(i)-result2(i-1); 
ang3 (i)=result3 (i)-result3 (i-1); 

end 
plot(ang1*180/pi,'--
o','LineWidth',2.5,'color',[1 0 0],... 

'MarkerEdgeColor',[1 0 0],... 
'MarkerFaceColor','w',... 
'MarkerSize',6); 

hold on; 
plot(ang2*180/pi,'--
o','LineWidth',2.5,'color',[0 1 0],... 

'MarkerEdgeColor',[0 1 0],... 
'MarkerFaceColor','w',... 
'MarkerSize',6); 

plot(ang3*180/pi,'--
o','LineWidth',2.5,'color',[0 0 1],... 

'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',6); 

xlabel('Joint 
Num','Fontsize',12,'fontweight','bold'); 
ylabel('Joint Rotation 
(^o)','Fontsize',12,'fontweight','bold'); 
legend('M=0.1 Nm,Fx=0 N, Fy=0 N',... 

'M=0.1 Nm，Fx=1 N, Fy=0 N',... 
'M=0.1 Nm，Fx=0 N, Fy=1 N',1); 

set(gca, 'fontsize', 12,'fontweight', 'bold'); 

function eq=deformedshape1 (Theta) 
global num 
num=num+1; 
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H=12.5e-3; h0=2.5e-3; 
len=H+h0; d=10e-3; 
E=1.5e9; 
pi=3.1415926; 
r1=2.5e-3; r2=2.0e-3; 
I=pi*(r1^4-r2^4)/64; 
K=E*I/h0; 
Fex=0; Fey=0.0; Me=0.1; 
T1=0; T2=0; 
T=T1+T2; 
M=(T1-T2)*d; 
Fx=-Fex+(T1+T2)*cos(Theta(10)); 
Fy=-Fey+(T1+T2)*sin(Theta(10)); 

eq(1)=K*Theta(1)-K*(Theta(2)-Theta(1))-
len*(Fx*sin(Theta(1))-Fy*cos(Theta(1))); 
eq(2)=K*(Theta(2)-Theta(1))-K*(Theta(3)-
Theta(2))-len*(Fx*sin(Theta(2))-
Fy*cos(Theta(2))); 
eq(3)=K*(Theta(3)-Theta(2))-K*(Theta(4)-
Theta(3))-len*(Fx*sin(Theta(3))-
Fy*cos(Theta(3))); 
eq(4)=K*(Theta(4)-Theta(3))-K*(Theta(5)-
Theta(4))-len*(Fx*sin(Theta(4))-
Fy*cos(Theta(4))); 
eq(5)=K*(Theta(5)-Theta(4))-K*(Theta(6)-
Theta(5))-len*(Fx*sin(Theta(5))-
Fy*cos(Theta(5))); 
eq(6)=K*(Theta(6)-Theta(5))-K*(Theta(7)-
Theta(6))-len*(Fx*sin(Theta(6))-
Fy*cos(Theta(6))); 
eq(7)=K*(Theta(7)-Theta(6))-K*(Theta(8)-
Theta(7))-len*(Fx*sin(Theta(7))-
Fy*cos(Theta(7))); 
eq(8)=K*(Theta(8)-Theta(7))-K*(Theta(9)-
Theta(8))-len*(Fx*sin(Theta(8))-
Fy*cos(Theta(8))); 
eq(9)=K*(Theta(9)-Theta(8))-K*(Theta(10)-
Theta(9))-len*(Fx*sin(Theta(9))-
Fy*cos(Theta(9))); 
eq(10)=K*(Theta(10)-Theta(9))-Me-
len*(Fex*sin(Theta(10))-
Fey*cos(Theta(10))); 

function eq=deformedshape2(Theta) 
global num 
num=num+1; 
H=12.5e-3; h0=2.5e-3; 
len=H+h0; 
d=10e-3; 
E=1.5e9; 
pi=3.1415926; 
r1=2.5e-3; r2=2.0e-3; 
I=pi*(r1^4-r2^4)/64; 
K=E*I/h0; 
Fex=1; Fey=0.0; Me=0.1; 
T1=0; T2=0; 
T=T1+T2; 
M=(T1-T2)*d; 
Fx=-Fex+(T1+T2)*cos(Theta(10)); 

Fy=-Fey+(T1+T2)*sin(Theta(10)); 
eq(1)=K*Theta(1)-K*(Theta(2)-Theta(1))-
len*(Fx*sin(Theta(1))-Fy*cos(Theta(1))); 
eq(2)=K*(Theta(2)-Theta(1))-K*(Theta(3)-
Theta(2))-len*(Fx*sin(Theta(2))-
Fy*cos(Theta(2))); 
eq(3)=K*(Theta(3)-Theta(2))-K*(Theta(4)-
Theta(3))-len*(Fx*sin(Theta(3))-
Fy*cos(Theta(3))); 
eq(4)=K*(Theta(4)-Theta(3))-K*(Theta(5)-
Theta(4))-len*(Fx*sin(Theta(4))-
Fy*cos(Theta(4))); 
eq(5)=K*(Theta(5)-Theta(4))-K*(Theta(6)-
Theta(5))-len*(Fx*sin(Theta(5))-
Fy*cos(Theta(5))); 
eq(6)=K*(Theta(6)-Theta(5))-K*(Theta(7)-
Theta(6))-len*(Fx*sin(Theta(6))-
Fy*cos(Theta(6))); 
eq(7)=K*(Theta(7)-Theta(6))-K*(Theta(8)-
Theta(7))-len*(Fx*sin(Theta(7))-
Fy*cos(Theta(7))); 
eq(8)=K*(Theta(8)-Theta(7))-K*(Theta(9)-
Theta(8))-len*(Fx*sin(Theta(8))-
Fy*cos(Theta(8))); 
eq(9)=K*(Theta(9)-Theta(8))-K*(Theta(10)-
Theta(9))-len*(Fx*sin(Theta(9))-
Fy*cos(Theta(9))); 
eq(10)=K*(Theta(10)-Theta(9))-Me-
len*(Fex*sin(Theta(10))-
Fey*cos(Theta(10))); 

function eq=deformedshape3 (Theta) 
global num 
num=num+1; 
H=12.5e-3; h0=2.5e-3; 
len=H+h0; 
d=10e-3; 
E=1.5e9; 
pi=3.1415926; 
r1=2.5e-3; r2=2.0e-3; 
I=pi*(r1^4-r2^4)/64; 
K=E*I/h0; 
Fex=0; Fey=1; Me=0.1; 
T1=0; T2=0; 
T=T1+T2; 
M=(T1-T2)*d; 
Fx=-Fex+(T1+T2)*cos(Theta(10)); 
Fy=-Fey+(T1+T2)*sin(Theta(10)); 
eq(1)=K*Theta(1)-K*(Theta(2)-Theta(1))-
len*(Fx*sin(Theta(1))-Fy*cos(Theta(1))); 
eq(2)=K*(Theta(2)-Theta(1))-K*(Theta(3)-
Theta(2))-len*(Fx*sin(Theta(2))-
Fy*cos(Theta(2))); 
eq(3)=K*(Theta(3)-Theta(2))-K*(Theta(4)-
Theta(3))-len*(Fx*sin(Theta(3))-
Fy*cos(Theta(3))); 
eq(4)=K*(Theta(4)-Theta(3))-K*(Theta(5)-
Theta(4))-len*(Fx*sin(Theta(4))-
Fy*cos(Theta(4))); 
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eq(5)=K*(Theta(5)-Theta(4))-K*(Theta(6)-
Theta(5))-len*(Fx*sin(Theta(5))-
Fy*cos(Theta(5)))； 

eq(6)=K*(Theta(6)-Theta(5))-K*(Theta(7)-
Theta(6))-len*(Fx*sin(Theta(6))-
Fy*cos(Theta(6)))； 

eq(7)=K*(Theta(7)-Theta(6))-K*(Theta(8)-
Theta(7))-len*(Fx*sin(Theta(7))-
Fy*cos(Theta(7)))； 

eq(8)=K*(Theta(8)-Theta(7))-K*(Theta(9)-
Theta(8))-len*(Fx*sin(Theta(8))-
Fy*cos(Theta(8)))； 

eq(9)=K*(Theta(9)-Theta(8))-K*(Theta(10)-
Theta(9))-len*(Fx*sin(Theta(9))-
Fy*cos(Theta(9)))； 

eq(10)=K*(Theta(10)-Theta(9))-Me-
len*(Fex*sin(Theta(10))-
Fey*cos(Theta(10)))； 

13) Figure 4-3 SPSP WDM Backbone Reaches a Desired Position: (a) 
Deformed Backbone Curve; (b) Joint Rotations 
%% Controlling forces 
pi=3.1415926； 

N=10； len=15e-3； d=10e-3； 

global num 
num=0； 

result1=fsolve('actuationload1',zeros(14,1))； 

result2=fsolve('actuationload2',zeros(14,1))； 

result3=fsolve('actuationload3',zeros(14,1))； 

result4=fsolve('actuationload4',zeros(14,1))； 

T11=0.5*(result1(11)+result1(14)/d)； 
T12=0.5*(result1(11)-result1(14)/d)； 
T21=0.5*(result2(11)+result2(14)/d)； 
T22=0.5*(result2(11)-result2(14)/d)； 
T31=0.5*(result3(11)+result3(14)/d)； 
T32=0.5*(result3(11)-result3(14)/d)； 
T41=0.5*(result4(11)+result4(14)/d)； 
T42=0.5*(result4(11)-result4(14)/d)； 

x1=zeros(N+1,1)； y1=zeros(N+1,1)； 
x2=zeros(N+1,1)； y2=zeros(N+1,1)； 
x3=zeros(N+1,1)； y3=zeros(N+1,1)； 
x4=zeros(N+1,1)； y4=zeros(N+1,1)； 
% constant curve assumption 
for i=1:N 

x1(i+1)=x1(i)+len*cos(result1(i))； 
y1(i+1)=y1(i)+len*sin(result1(i))； 
x2(i+1)=x2(i)+len*cos(result2(i))； 
y2(i+1)=y2(i)+len*sin(result2(i))； 
x3(i+1)=x3(i)+len*cos(result3(i))； 
y3(i+1)=y3(i)+len*sin(result3(i))； 
x4(i+1)=x4(i)+len*cos(result4(i))； 
y4(i+1)=y4(i)+len*sin(result4(i))； 

end 

figure； 

plot(x1*1000,y1*1000,'-
o','LineWidth',2.5,'color',[1 0 0],... 

'MarkerEdgeColor',[1 0 0],... 
'MarkerFaceColor','w',... 
'MarkerSize',6)； 

hold on； 
plot(x2*1000,y2*1000,'-
o','LineWidth',2.5,'color',[0 1 0],... 

'MarkerEdgeColor',[0 1 0],... 
'MarkerFaceColor','w',... 
'MarkerSize',6)； 

plot(x3*1000,y3*1000,'-
o','LineWidth',2.5,'color',[0 0 1],... 

'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor', 'w',... 
'MarkerSize',6)； 

plot(x4*1000,y4*1000,'-
o','LineWidth',2.5,'color',[1 0 1],... 

'MarkerEdgeColor',[1 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',6)； 

axis equal； 
xlabel('X 
(mm)','fontsize',12,'fontweight','bold')； 
ylabel('Y 
(mm)','fontsize',12,'fontweight','bold')； 
legend('M_e=0 Nm,F_e_x=0 N, F_e_y=0 
N',… 

'M_e=0.1 Nm,F_e_x=0 N, F_e_y=0 N',... 
'M_e=0 Nm,F_e_x=1 N, F_e_y=0 N',... 
'M_e0 Nm,F_e_x=0 N, F_e_y=1 N',2)； 

set(gca,’fontsize’,「2,’fontweight’,bold')； 
figure； 

ang1=result1； 
ang2=result2； ang3=result3； ang4=result4； 
for i=2:10 

ang 1 (i)=result1 (i)-result1(i-1)； 
ang2(i)=result2(i)-result2(i-1)； 
ang3 (i)=result3 (i)-result3 (i-1)； 
ang4(i)=result4(i)-result4(i-1)； 

end 

plot(ang1(1:10)*180/pi,'--
o','LineWidth',2.5,'color',[1 0 0],... 

'MarkerEdgeColor',[1 0 0],... 
'MarkerFaceColor','w',... 
'MarkerSize',6)； 

hold on； 
plot(ang2(1:10)*180/pi,'--
o','LineWidth',2.5,'color',[0 1 0],... 

'MarkerEdgeColor',[0 1 0],... 
'MarkerFaceColor','w',... 
'MarkerSize',6)； 

plot(ang3(1:10)*180/pi,'--
o','LineWidth',2.5,'color',[0 0 1],... 

'MarkerEdgeColor',[0 0 1],... 
'MarkerFaceColor','w',... 
'MarkerSize',6)； 

plot(ang4(1:10)*180/pi,'--
o','LineWidth',2.5,'color',[1 0 1],... 

'MarkerEdgeColor',[1 0 1],... 
'MarkerFaceColor','w',... 
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'MarkerSize',6); 
xlabel('Joint 
Num','fontsize',12,'fontweight','bold'); 
ylabel('Joint Rotation 
(^o)','fontsize',12,'fontweight','bold'); 
legend('M_e=0 Nm,F_e_x=0 N, F_e_y=0 
N',… 

'M_e=0.1 Nm,F_e_x=0 N, F_e_y=0 N',... 
'M_e=0 Nm,F_e_x=1 N, F_e_y=0 N',... 
'M_e=0 Nm,F_e_x=0 N, F_e_y=1 N',3); 

set(gca,'fontsize',l2，'fontweight','bold'); 

function eq=actuationload 1 (Theta) 
global num 
num=num+1; 
% desired position and orientation 
x=125e-3; y=75e-3; ang=1.1161; 
% external load 
Fex=0; Fey=0; Me=0.0; 
H=12.5e-3; h0=2.5e-3; len=H+h0; 
d=10e-3; E=1.5e9; pi=3.1415926; 
r1=2.5e-3; r2=2.0e-3; 
I=pi*(r1^4-r2^4)/64; 
K=E*I/h0; 
% vertebras (1-9) 
eq(1)=K*Theta(1)-K*(Theta(2)-Theta(1))-
len*(Theta(12)*sin(Theta(1))-
Theta(13)*cos(Theta(1))); 
eq(2)=K*(Theta(2)-Theta(1))-K*(Theta(3)-
Theta(2))-len*(Theta(12)*sin(Theta(2))-
Theta(13)*cos(Theta(2))); 
eq(3)=K*(Theta(3)-Theta(2))-K*(Theta(4)-
Theta(3))-len*(Theta(12)*sin(Theta(3))-
Theta(13)*cos(Theta(3))); 
eq(4)=K*(Theta(4)-Theta(3))-K*(Theta(5)-
Theta(4))-len*(Theta(12)*sin(Theta(4))-
Theta(13)*cos(Theta(4))); 
eq(5)=K*(Theta(5)-Theta(4))-K*(Theta(6)-
Theta(5))-len*(Theta(12)*sin(Theta(5))-
Theta(13)*cos(Theta(5))); 
eq(6)=K*(Theta(6)-Theta(5))-K*(Theta(7)-
Theta(6))-len*(Theta(12)*sin(Theta(6))-
Theta(13)*cos(Theta(6))); 
eq(7)=K*(Theta(7)-Theta(6))-K*(Theta(8)-
Theta(7))-len*(Theta(12)*sin(Theta(7))-
Theta(13)*cos(Theta(7))); 
eq(8)=K*(Theta(8)-Theta(7))-K*(Theta(9)-
Theta(8))-len*(Theta(12)*sin(Theta(8))-
Theta(13)*cos(Theta(8))); 
eq(9)=K*(Theta(9)-Theta(8))-K*(Theta(10)-
Theta(9))-len*(Theta(12)*sin(Theta(9))-
Theta(13)*cos(Theta(9))); 
% last vertebra 
eq(10)=K*(Theta(10)-Theta(9))-Me-
Theta(14)+len*(Fex*sin(Theta(10))-
Fey*cos(Theta(10))); % M 
eq(11)=-Theta(12)-
Fex+Theta(11)*cos(Theta(10)); % Fx 
eq(12)=-Theta(13)-
Fey+Theta(11)*sin(Theta(10)); % Fy 

% boundary condition 
eq(13 )=x-len* sum(cos(Theta( 1:10))); 
eq(14)=y-len* sum(sin(Theta( 1:10))); 

function eq=actuationload2(Theta) 
global num 
num=num+1; 
% desired position and orientation 
x=125e-3; y=75e-3; ang=1.1161; 
% external load 
Fex=0; Fey=0; Me=0.1; 
H=12.5e-3; h0=2.5e-3; 
len=H+h0; d=10e-3; 
E=1.5e9; 
pi=3.1415926; 
r1=2.5e-3; r2=2.0e-3; 
I=pi*(r1^4-r2^4)/64; 
K=E*I/h0; 
% vertebras (1-9) 
eq(1)=K*Theta(1)-K*(Theta(2)-Theta(1))-
len*(Theta(12)*sin(Theta(1))-
Theta(13)*cos(Theta(1))); 
eq(2)=K*(Theta(2)-Theta(1))-K*(Theta(3)-
Theta(2))-len*(Theta(12)*sin(Theta(2))-
Theta(13)*cos(Theta(2))); 
eq(3)=K*(Theta(3)-Theta(2))-K*(Theta(4)-
Theta(3))-len*(Theta(12)*sin(Theta(3))-
Theta(13)*cos(Theta(3))); 
eq(4)=K*(Theta(4)-Theta(3))-K*(Theta(5)-
Theta(4))-len*(Theta(12)*sin(Theta(4))-
Theta(13)*cos(Theta(4))); 
eq(5)=K*(Theta(5)-Theta(4))-K*(Theta(6)-
Theta(5))-len*(Theta(12)*sin(Theta(5))-
Theta(13)*cos(Theta(5))); 
eq(6)=K*(Theta(6)-Theta(5))-K*(Theta(7)-
Theta(6))-len*(Theta(12)*sin(Theta(6))-
Theta(13)*cos(Theta(6))); 
eq(7)=K*(Theta(7)-Theta(6))-K*(Theta(8)-
Theta(7))-len*(Theta(12)*sin(Theta(7))-
Theta(13)*cos(Theta(7))); 
eq(8)=K*(Theta(8)-Theta(7))-K*(Theta(9)-
Theta(8))-len*(Theta(12)*sin(Theta(8))-
Theta(13)*cos(Theta(8))); 
eq(9)=K*(Theta(9)-Theta(8))-K*(Theta(10)-
Theta(9))-len*(Theta(12)*sin(Theta(9))-
Theta(13)*cos(Theta(9))); 
% last vertebra 
eq(10)=K*(Theta(10)-Theta(9))-Me-
Theta(14)+len*(Fex*sin(Theta(10))-
Fey*cos(Theta(10))); % M 
eq(11)=-Theta(12)-
Fex+Theta(11)*cos(Theta(10)); % Fx 
eq(12)=-Theta(13)-
Fey+Theta(11)*sin(Theta(10)); % Fy 
% boundary condition 
eq(13 )=x-len* sum(cos(Theta( 1:10))); 
eq(14)=y-len*sum(sin(Theta(1:10))); 

function eq=actuationload3 (Theta) 
global num 
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num=num+1; 
% desired position and orientation 
x=125e-3; y=75e-3; ang=1.1161; 
% external load 
Fex=1; Me=0.0; 
H=12.5e-3; h0=2.5e-3 
len=H+h0; d=10e-3; 
E=1.5e9; 3.1415926; 
r1= s-3; r2=2.0e-3; 
I=pi*(r1^4-r2^4)/64; 
K=E*I/h0; 
% vertebras (1-9) 
eq(1)=K*Theta(1)-K*(Theta(2)-Theta(1))-
len*(Theta(12)*sin(Theta(1))-
Theta(13)*cos(Theta(1))); 
eq(2)=K*(Theta(2)-Theta(1))-K*(Theta(3)-
Theta(2))-len*(Theta(12)*sin(Theta(2))-
Theta(13)*cos(Theta(2))); 
eq(3)=K*(Theta(3)-Theta(2))-K*(Theta(4)-
Theta(3))-len*(Theta(12)*sin(Theta(3))-
Theta(13)*cos(Theta(3))); 
eq(4)=K*(Theta(4)-Theta(3))-K*(Theta(5)-
Theta(4))-len*(Theta(12)*sin(Theta(4))-
Theta(13)*cos(Theta(4))); 
eq(5)=K*(Theta(5)-Theta(4))-K*(Theta(6)-
Theta(5))-len*(Theta(12)*sin(Theta(5))-
Theta(13)*cos(Theta(5))); 
eq(6)=K*(Theta(6)-Theta(5))-K*(Theta(7)-
Theta(6))-len*(Theta(12)*sin(Theta(6))-
Theta(13)*cos(Theta(6))); 
eq(7)=K*(Theta(7)-Theta(6))-K*(Theta(8)-
Theta(7))-len*(Theta(12)*sin(Theta(7))-
Theta(13)*cos(Theta(7))); 
eq(8)=K*(Theta(8)-Theta(7))-K*(Theta(9)-
Theta(8))-len*(Theta(12)*sin(Theta(8))-
Theta(13)*cos(Theta(8))); 
eq(9)=K*(Theta(9)-Theta(8))-K*(Theta(10)-
Theta(9))-len*(Theta(12)*sin(Theta(9))-
Theta(13)*cos(Theta(9))); 
% last vertebra 
eq(10)=K*(Theta(10)-Theta(9))-Me-
Theta( 14)+len*(Fex* sin(Theta( 10))-
Fey*cos(Theta(10))); % M 
eq(11)=-Theta(12)-
Fex+Theta(11)*cos(Theta(10)); % Fx 
eq(12)=-Theta(13)-
Fey+Theta(11)*sin(Theta(10)); % Fy 
% boundary condition 
eq( 13 )=x-len*sum(cos(Theta( 1:10))); 
eq(14)=y-len*sum(sin(Theta( 1:10))); 

function eq=actuationload4(Theta) 

global num 
num=num+1; 
% desired position and orientation 
x=125e-3; y=75e-3; ang=1.1161; 
% external load 
Fex=0; Fey=1; Me=0.0; 
H=12.5e-3; h0=2.5e-3; 
len=H+h0; d=10e-3; 
E=1.5e9; pi=3.1415926; 
r1=2.5e-3; r2=2.0e-3; 
I=pi*(r1^4-r2^4)/64; 
K=E*I/h0; 
% vertebras (1-9) 
eq(1)=K*Theta(1)-K*(Theta(2)-Theta(1))-
len*(Theta(12)*sin(Theta(1))-
Theta(13)*cos(Theta(1))); 
eq(2)=K*(Theta(2)-Theta(1))-K*(Theta(3)-
Theta(2))-len*(Theta(12)*sin(Theta(2))-
Theta(13)*cos(Theta(2))); 
eq(3)=K*(Theta(3)-Theta(2))-K*(Theta(4)-
Theta(3))-len*(Theta(12)*sin(Theta(3))-
Theta(13)*cos(Theta(3))); 
eq(4)=K*(Theta(4)-Theta(3))-K*(Theta(5)-
Theta(4))-len*(Theta(12)*sin(Theta(4))-
Theta(13)*cos(Theta(4))); 
eq(5)=K*(Theta(5)-Theta(4))-K*(Theta(6)-
Theta(5))-len*(Theta(12)*sin(Theta(5))-
Theta(13)*cos(Theta(5))); 
eq(6)=K*(Theta(6)-Theta(5))-K*(Theta(7)-
Theta(6))-len*(Theta(12)*sin(Theta(6))-
Theta(13)*cos(Theta(6))); 
eq(7)=K*(Theta(7)-Theta(6))-K*(Theta(8)-
Theta(7))-len*(Theta(12)*sin(Theta(7))-
Theta(13)*cos(Theta(7))); 
eq(8)=K*(Theta(8)-Theta(7))-K*(Theta(9)-
Theta(8))-len*(Theta(12)*sin(Theta(8))-
Theta(13)*cos(Theta(8))); 
eq(9)=K*(Theta(9)-Theta(8))-K*(Theta(10)-
Theta(9))-len*(Theta(12)*sin(Theta(9))-
Theta(13)*cos(Theta(9))); 
% last vertebra 
eq(10)=K*(Theta(10)-Theta(9))-Me-
Theta(14)+len*(Fex*sin(Theta(10))-
Fey*cos(Theta(10))); % M 
eq(11)=-Theta(12)-
Fex+Theta(11)*cos(Theta(10)); % Fx 
eq(12)=-Theta(13)-
Fey+Theta(11)*sin(Theta(10)); % Fy 
% boundary condition 
eq(13 )=x-len* sum(cos(Theta( 1:10))); 
eq(14)=y-len*sum(sin(Theta( 1:10))); 

14) Figure 4-5 
Figure 4-6 SPCP WDM Backbone Deformation under Different Loading 

Conditions 
% continuum statics 
% system parameters 
L=500e-3; E=1.5e9; 
h=1e-3; w=40e-3; 

I=w*h^3/12; 
% Pure Moment at the end 
M=10E-3; 
% Calculate Horizontal displacement 
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Gyita=inline('M*(L-deta).*(yita-
1)/E/I','M','L','deta','E','I','yita'); 
Gx=inline('M.*(x-
L+deta)/E/I','M','L','deta','E','I','x'); 
dydx=inline('G./sqrt(1-G.^2)','G'); 
Fyita=inline('1 ./sqrt( 1 -Gyita.^2)','Gyita'); 
Fx=inline('sqrt(1+Gx.^2)','Gx'); 
Fg=inline('G./sqrt(1-G.^2)','G'); 
% compute deta 
tmpdeta=0.1*L; % assumption 
snum=10; % simpson's one third rule 
tmpL=0; 
% compute for maximum M 
count=0; 
while(abs(L-tmpL)>0.001 *L) 

lamda=(L-tmpdeta)/snum; 
x=linspace(0,L-tmpdeta, snum+1)； 

G=Gyita(M,L,tmpdeta,E,I,x/(L-tmpdeta)); 
% dy=dydx(G); 

F=Fyita(G); 
tmpL=(L-

tmpdeta) * Simpson10(F,lamda/(L -tmpdeta))； 

deta=tmpdeta; 
i f L<tmpL 

tmpdeta=tmpdeta+0.382*tmpdeta; 
else 

tmpdeta=tmpdeta-0.382 *tmpdeta; 
end 
disp(['L=' num2str(tmpL)]); 
disp(['deta=' num2str(deta)]); 
disp(['percent(%)=' 

num2str(deta/L*100)]); 
count=count+1 
i f count>1000 

break; 
end 

end 
% tip orientation 
G0=Gx(M,L,deta,E,I,0); 
dydx0=dydx(G0); 
theta0=atan(dydx0)*180/pi; 
% plot deformed curve - integration 
xL=0; yL=0; 
xp=linspace(0,L-deta, 101); 
for i=1:101 % calculate vertical 
displacement and orientation 

lamda=xp(i)/snum; 
tmpx=linspace(0,xp(i),11); 
G=Gx(M,L,deta,E,I,tmpx); 
F=Fg(G); 
yp(i)=simpson10(F,lamda); 

end 
figure 
x1=fliplr(xp); y1=min(yp)-yp; 
plot(x1,y1,'color','r','linewidth',2); 
% deformed curve - constant curvature 
model 
hold on; 
THETA=-theta0*pi/180; 
theta=linspace(0,THETA,101); 

R=abs(L/THETA); 
for i=1:101 

x2(i)=R*sin(theta(i)); 
y2(i)=-R*(1-cos(theta(i))); 

end 
plot(x2,y2,l-’,’linewidth’,2); 
legend('Nonlinear Euler-Bernoulli 
model','Constant Curvature Model'); 
xlabel('X 
(m)','fontsize',12,'fontweight','bold'); 
ylabel('Y 
(m)','fontsize',12,'fontweight','bold'); 
title('model compare'); 
xlim([0 L]); axis equal; 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 
% force and moment (M=0.01, F=0) 
clear; 
% system parameters 
L=500e-3; E=1.5e9; 
h=1e-3; w=40e-3; 
I=w*h^3/12; 
M=10E-3; F=0; 
% Calculate Horizontal displacement 
deta=0.1*L; 
% anonymous function 
solve_theta=@(theta0)theta0 * (L-deta)-
L*sin(theta0); 
theta0=fsolve(solve_theta,0.5); 
C=-(M*(L-deta)-0.5*F*(L-
deta)^2*(sin(theta0)-
cos(theta0)*tan(theta0/2)))/E/I; 
Gx=@(x,theta0,C) (M.*x-
0.5*F*x.^2*(sin(theta0)-
cos(theta0) *tan(theta0/2)))/E/I+C; 
dydx=inline('G./sqrt(1-G.^2)','G'); 
Fx=inline('sqrt(1+Gx.^2)','Gx'); 
% compute deta 
snum=10; % simpson method number 
tmpL=0; count=0; 
tmpdeta=deta; 
while (abs(L-tmpL)>0.005*L) 

lamda=(L-tmpdeta)/snum; 
x=linspace(0,L-tmpdeta, snum+1)； 

solve_theta=@(theta0)theta0*(L-
tmpdeta)-L*sin(theta0); 

theta0=fsolve(solve_theta,0.55); 
C=-(M*(L-tmpdeta)-0.5*F*(L-

tmpdeta)^2*(sin(theta0)-
cos(theta0)*tan(theta0/2)))/E/I; 

G=Gx(x,theta0,C); 
dy=dydx(G); 
FX=Fx(dy); 
tmpL=(L-

tmpdeta)*Simpson10(FX,lamda/(L-
tmpdeta)); 

deta=tmpdeta; 
i f L<tmpL 

tmpdeta=tmpdeta+0.382*tmpdeta; 
else 

tmpdeta=tmpdeta-0.382 *tmpdeta; 
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end 
disp(['L=' num2str(tmpL)]); 
disp(['deta=' num2str(deta)]); 
disp(['percent(%)=' 

num2str(deta/L*100)]); 
count=count+1 
i f count>500 

break; 
end 

end 
% plot deformed curve - integration 
xL=0; yL=0; 
xp=linspace(0,L-deta, 101); 
for i=1:101 % calculate vertical 
displacement and orientation 

lamda=xp(i)/snum; 
tmpx=linspace(0,xp(i),11); 
G=Gx(tmpx,theta0,C); 
dy=dydx(G); 
yp(i)=simpson10(dy,lamda); 

end 
figure 
x1=fliplr(xp); y1=min(yp)-yp; 
plot(x1,y1,'r','linewidth',2); 
hold on; 
% force and moment (M=0.01, F=0.05) 
clear; 
% system parameters 
L=500e-3; E=1.5e9; 
h=1e-3; w=40e-3; 
I=w*h^3/12; 
M=10E-3; F=0.05; 
% Calculate Horizontal displacement 
deta=0.1*L; 
% anonymous function 
solve_theta=@(theta0)theta0*(L-deta)-
L*sin(theta0); 
theta0=fsolve(solve_theta,0.5); 
C=-(M*(L-deta)-0.5*F*(L-
deta)^2*(sin(theta0)-
cos(theta0)*tan(theta0/2)))/E/I; 
Gx=@(x,theta0,C) (M.*x-
0.5*F*x.^2*(sin(theta0)-
cos(theta0)*tan(theta0/2)))/E/I+C; 
dydx=inline('G./sqrt(1-G.^2)','G'); 
Fx=inline('sqrt(1+Gx.^2)','Gx'); 
% compute deta 
snum=10; % simpson method number 
tmpL=0; count=0; 
tmpdeta=deta; 
while (abs(L-tmpL)>0.005*L) 

lamda=(L-tmpdeta)/snum; 
x=linspace(0,L-tmpdeta, snum+1)； 

solve_theta=@(theta0)theta0*(L-
tmpdeta)-L * sin(theta0)； 

theta0=fsolve(solve_theta,0.55); 
C=-(M*(L-tmpdeta)~-0.5*F*(L-

tmpdeta)^2*(sin(theta0)-
cos(theta0)*tan(theta0/2)))/E/I; 

G=Gx(x,theta0,C); 

dy=dydx(G); 
FX=Fx(dy); 
tmpL=(L-

tmpdeta)*Simpson10(FX,lamda/(L-
tmpdeta)); 

deta=tmpdeta; 
i f L<tmpL 

tmpdeta=tmpdeta+0.382*tmpdeta; 
else 

tmpdeta=tmpdeta-0.382 *tmpdeta; 
end 
disp(['L=' num2str(tmpL)]); 
disp(['deta=' num2str(deta)]); 
disp(['percent(%)=' 

num2str(deta/L*100)]); 
count=count+1 
i f count>500 

break; 
end 

end 
% plot deformed curve - integration 
xL=0; yL=0; 
xp=linspace(0,L-deta, 101); 
for i=1:101 % calculate vertical 
displacement and orientation 

lamda=xp(i)/snum; 
tmpx=linspace(0,xp(i), 11); 
G=Gx(tmpx,theta0,C); 
dy=dydx(G); 
yp(i)=simpson10(dy,lamda); 

end 
x1=fliplr(xp); y1=min(yp)-yp; 
plot(x1,y1,'g','linewidth',2); 
% force and moment (M=0.01, F=0.1) 
clear; 
% system parameters 
L=500e-3; E=1.5e9; 
h=1e-3; w=40e-3; 
I=w*h^3/12; 
M=10E-3; F=0.1; 
% Calculate Horizontal displacement 
deta=0.1*L; 
% anonymous function 
solve_theta=@(theta0)theta0 * (L-deta)-
L*sin(theta0); 
theta0=fsolve(solve_theta,0.5); 
C=-(M*(L-deta)-0.5*F*(L-
deta)^2*(sin(theta0)-
cos(theta0)*tan(theta0/2)))/E/I; 
Gx=@(x,theta0,C) (M.*x-
0.5*F*x.^2*(sin(theta0)-
cos(theta0)*tan(theta0/2)))/E/I+C; 
dydx=inline('G./sqrt(1-G.^2)','G'); 
Fx=inline(’sqrt(l+Gx.A2)’,’Gx'); 
% compute deta 
snum=10; % simpson method number 
tmpL=0; count=0; 
tmpdeta=deta; 
while (abs(L-tmpL)>0.005*L) 

lamda=(L-tmpdeta)/snum; 
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x=linspace(0,L-tmpdeta, snum+1)； 

solve_theta=@(theta0)theta0*(L-
tmpdeta) -L * sin(theta0)； 

theta0=fsolve(solve_theta,0.55); 
C=-(M*(L-tmpdeta)~-0.5*F*(L-

tmpdeta)^2*(sin(theta0)-
cos(theta0)*tan(theta0/2)))/E/I; 

G=Gx(x,theta0,C); 
dy=dydx(G); 
FX=Fx(dy); 
tmpL=(L-

tmpdeta)*Simpson10(FX,lamda/(L-
tmpdeta)); 

deta=tmpdeta; 
i f L<tmpL 

tmpdeta=tmpdeta+0.382*tmpdeta; 
else 

tmpdeta=tmpdeta-0.382 *tmpdeta; 
end 
disp(['L=' num2str(tmpL)]); 
disp(['deta=' num2str(deta)]); 
disp(['percent(%)=' 

num2str(deta/L*100)]); 
count=count+1 
i f count>500 

break; 
end 

end 

% plot deformed curve - integration 
xL=0; yL=0; 
xp=linspace(0,L-deta, 101); 
for i=1:101 % calculate vertical 
displacement and orientation 

lamda=xp(i)/snum; 
tmpx=linspace(0,xp(i), 11); 
G=Gx(tmpx,theta0,C); 
dy=dydx(G); 
yp(i)=simpson10(dy,lamda); 

end 
x1=fliplr(xp); y1=min(yp)-yp; 
plot(x1,y1,'b','linewidth',2); 
legend('M=0.01Nm','M=0.01Nm, 
F=0.05N','M=0.01Nm, F=0.1N'); 
title('model compare'); 
xlim([0 L]); axis equal; 
xlabel('X(m)','fontsize',12,'fontweight', 
'bold'); 
ylabel('Y(m)','fontsize',12,'fontweight', 
'bold'); 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 

function S=Simpson10(Y,lamda) 
S=lamda/3 *(Y( 1 )+4 *Y(2)+2 *Y(3)+... 

4*Y(4)+2*Y(5)+4*Y(6)+2*Y(7)+... 
4*Y(8)+2*Y(9)+4*Y(10)+Y(11)); 

15) Figure 5-3 Fish Swimming Body Curve - Oscillatory 
% Oscillatory Swimming 
% Oscillatory Body Curve Function 
L=1; dL=0.01; 
T=2; =T/4; 
lamda=1.048; 
c1=0.1; c2=0.2; k= ).5； 
omega=pi; U=0.5; 
linecolor(1,:) = [0 0 1]; 
linecolor(2, 
linecolor(3, 
linecolor(4, 
linecolor(5, 

[0 1 0]; 
[1 0 0]; 
[1 0 1]; 
[0 0 1]; 

for i=1:1*T/dt+1 
t(i)=(i-1)*dt; 
for j=1:L/dL 

x(j)=j*dL-U*L*t(i); % traveling wave 
xloc(j)=j*dL; % local coordinate 

y(i,j)=(c1*xloc(j)+c2*xloc(j)A2)*sin(k*xloc 
①+omega*t(i)); 

end 

plot(-
x,y(i,:),'linewidth',3,'color',linecolor(i,:)); 
hold on 
end 
axis equal; 
alfa=15/180*pi; phi=45/180*pi; 
d=0.0267*L; 
H=c1*(L)+c2*(L)A2 
TIP=2*(H-d*sin((atan((H)*omega/U)-
alfa)*sin(pi/2+phi))) 
title('Body Curve of A Swimming Fish -
Oscillatory','Fontsize', 12); 
xlabel('Travelling Distance 
(BL)','Fontsize',12,'fontweight','bold'); 
ylabel('Fish Body Excursion 
(BL)','Fontsize',12,'fontweight','bold') 
legend('t=0,00T','t=0.25T','t=0.50T','t=0.75T 
','t=1.00T'); 
set(gca, 'fontsize', 12,'fontweight','bold'); 
xlim([-1,1]); ylim([-0.75,0.75]); 

16) Figure 5-4 Oscillatory Body Curve Comparison: (a) One Straight Line 
and One Circular Arc Fitting; (b) Two Straight Lines and One Circular Arc 
Fitting 

% Oscillatory Body Curve Comparison 
% Oscillatory Body Curve Function 
L=1; dL=0.01; T=2; 
dt=T/4; c1=0.1; c2=0.2; 
kk=0.5; omega=pi; U=0.5; 

linecolor(1,: 
linecolor(2,: 
linecolor(3,: 
linecolor(4,: 
linecolor(5,: 

[0 0 1]; 
[0 1 0]; 
[1 0 0]; 
[1 0 1]; 
[0 0 1]; 
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str= ,'ii','iii','iv'. 
for i=1:1*T/dt 

t(i)=(i-1)*dt; 
for j=1:L/dL 

x(j)=j*dL-U*L*t(i); % traveling wave 
xloc(j)=j*dL; % local coordinate 

y(i,j)=(c1*xloc(j)+c2*xloc(j)A2)*sin(kk*xlo 
c(j)+omega*t(i)); 

end 
x_bc=xloc; 
y_bc(i,:)=y(i,:); 
subplot(4,2,2*i-1); 

plot(x_bc,y_bc(i,:),'linewidth',2,'color',linec 
olor(i,:)); 
text=strcat('(',str(i),')','','t=',num2str(i/4), 'T'); 
title(text,'fontsize',12,'fontweight','bold'); 
set(gca,'fontsize',12,'fontweight','bold'); 

xlim([0,1]); hold on; 
% 1 rigid link 
for k=1:L/dL 

x_rl1(k)=k*dL; % local coordinate 
i f k<L/dL+1 

y_rl1(i,k)=y_bc(i,L/dL)*k/(L/dL); 
end 

end 
plot(x_rl1 ,y_rl1(i,:), 'linewidth',2,'color',linec 
olor(i,:),'linestyle','--'); 

% 1 WD 
Jnum=floor(L/dL/3); 
[x_wd(i,:),y_wd(i,:)]=ArcPPP(x_bc(1),y_bc 

(i,1),x_bc(Jnum),y_bc(i,Jnum),x_bc(L/dL),y 
_bc(i,L/dL)); 
plot(x_wd(i,:),y_wd(i,:),'linewidth',2,'color',l 
inecolor(i,:),'linestyle','*'); 

% 2 rigid links 
for k=1:L/dL 

x_rl(k)=k*dL; 
i f k<L/dL/2+1 

% local coordinate 

y_rl(i,k)=y_bc(i,L/dL/2)*k/(L/dL/2); 
else 

y_rl(i,k)=y_rl(i,L/dL/2)-... 
(y_rl(i,L/dL/2)-

y_bc(i,L/dL))*(k/(L/dL/2)-1); 
end 

end 
subplot(4,2,2*i); 

plot(x_rl,y_rl(i,:),'linewidth',2,'color',linecol 
or(i,:),'linestyle','--'); 

text=strcat('(',str(i),')',' ',' 
t=',num2str(i/4),'T'); 

title(text,'fontsize',12,'fontweight','bold'); 
set(gca,'fontsize', 12,'fontweight', 'bold'); 
xlim([0,1]); 
hold on; 
plot(x_wd(i,:),y_wd(i,:),'linewidth',2,'colo 

r',linecolor(i,:),'linestyle','*'); 
end 
xlim([0,1]); 

17) Figure 5-5 Fish Swimming Body Curve - Undulatory 
% Robot Tuna Body Curve Function 
L=1; dL=0.01; T=1.626; 
dt=T/4; lamda=1.048; 
c1=0.020; c2=0.0835; 
K=2*pi/lamda; 
omega=2*pi/T; 

% travelling 
linecolor(1,:) 
linecolor(2,:) 
linecolor(3,:) 
linecolor(4,:) 
linecolor(5,:) 

[0 0 1] 
[0 1 0] 
[1 0 0] 
[1 0 1] 
[0 0 1] 

for i=1:1*T/dt+1 
t(i)=(i-1)*dt; 
for j=1:L/dL 

x(j)=j*dL-U*L*t(i); % travelling wave 
xloc①=j *dL; % local coordinate 

y(i,j)=(c1*xloc(j)+c2*xloc(j)A2)*sin(K*xloc 
(j)+omega*t(i)); 

end 

plot(-
x,y(i,:),'linewidth',3,'color',linecolor(i,:)); 
hold on 
end 
axis equal; 
alfa=15/180*pi; phi=45/180*pi; 
d=0.0267*L; 
H=c1*(L)+c2*(L)A2 
TIP=2*(H-d*sin((atan((H)*omega/U)-
alfa)*sin(pi/2+phi))) 
title('Body Curve of A Swimming Fish -
Undulatory','fontsize', 12); 
xlabel('Travelling Distance 
(BL)','fontsize',12,'fontweight','bold'); 
ylabel('Fish Body Excursion 
(BL)','fontsize',12,'fontweight','bold') 
legend('t=0,00T','t=0.25T','t=0.50T','t=0.75T 
','t=1.00T',1); 
xlim([-1,1]); ylim([-0.4,0.4]); 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 

18) Figure 5-6 Undulatory Body Curve Comparison: (a) Three Straight 
Lines and Three Circular Arcs Fitting; (b) Six Straight Lines and Three 
Circular Arcs Fitting 

Figure 5-7 Two Circular Arcs Fit the Undulatory Fish Swimming Body 
Curve 
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h1=figure('name','undulatory swimming 
body curve comparison'); 
h2=figure('name','Fit by two-segment 
WDM'); 
sti={'i','ii','iii','iv'}; 
linecolor(1,: 
linecolor(2,: 
linecolor(3,: 
linecolor(4,: 
linecolor(5,: 

[0 0 1]; 
[0 1 0]; 
[1 0 0]; 
[1 0 1]; 
[0 0 1]; 

[x_wd32,y_wd32]=ArcPPP(x_bc(2*Jnum),y 
_bc(i,2*Jnum),x_bc(3*Jnum),y_bc(i,3*Jnu 
m),x_bc(4*Jnum),y_bc(i,4*Jnum)); 

% segment 3 
[x_wd33,y_wd33]=ArcPPP(x_bc(4*Jnum),y 
_bc(i,4*Jnum),x_bc(5*Jnum),y_bc(i,5*Jnu 
m),x_bc(L/dL),y~bc(i,L/dL));“ 

x_wd3(i,:)=cat(2,x_wd31,x_wd32,x_wd33); 
y_wd3(i,:)=cat(2,y_wd31,y_wd32,y_wd33); 

L=1; dL=0.01; dt=0.4; 
T=1.626; lamda=1.048; 
c1=0.020; c2=0.0835; 
K=2*pi/lamda; 
omega=2*pi/T; 

4687; 
= 1:1*T/dt 

t(i)=(i-1)*dt; 
for j=1:L/dL 

x_bc①=j *dL; % local coordinate 
y_bc(i,j)=(c1*x_bcCj)+c2*x_bcCj)^2)*sin(K 
*x_bc(j)+omega*t(i)); 

end 
figu^(1); subplot(4,2,2*i-1); 
plot(x_bc,y_bc(i,:),'linewidth',2,'color',lin 

ecolor(i,:)); 
hold on; 
xlim([0,1]); 
text=strcat('(',str(i),')',' ',' 

t=',num2str(i/4),'T'); 
title(text,'fontsize',12,'fontweight','bold'); 
set(gca,'fontsize',12,'fontweight','bold'); 
% three links 
for k=1:L/dL 

x_rl3(k)=k*dL; % local coordinate 
Jnum=floor(L/dL/3); 
i f k<Jnum+1 

y_rl3(i,k)=y_bc(i,Jnum)*k/Jnum; 
else i f k<2*Jnum+1 

y_rl3 (i,k)=y_rl3 (i,Jnum)-... 
(y_rl3(i,Jnum)-

y_bc(i,2*Jnum))*(k/Jnum-1); 
else 
y_rl3(i,k)=y_rl3(i,2*Jnum)-... 

(y_rl3(i,2*Jnum)-
y_bc(i,L/dL)))*((k-2*Jnum)/(L/dL-2*Jnum)); 

end 
end 

end 

plot(x_rl3,y_rl3(i,:),'linewidth',2,'color',linec 
olor(i,:),'linestyle','--'); 

% 3 WD 
Jnum=floor(L/dL/6); 
% segment 1 
[x_wd31,y_wd31]=ArcPPP(x_bc(1),y_bc 

(i,1),x_bc(Jnum),y_bc(i,Jnum),x_bc(2*Jnum 
),y_bc(i,2*Jnum));~ “ 

% segment 2 

plot(x_wd3(i,:),y_wd3(i,:),'linewidth',2,'colo 
r',linecolor(i,:),'linestyle','*'); 

% six links 
for k=1:L/dL 

x_rl(k)=k*dL; % local coordinate 
Jnum=floor(L/dL/6); 
i f k<Jnum+1 

y_rl(i,k)=y_bc(i,Jnum)*k/Jnum; 
else i f k<2*Jnum+1 

y_rl(i,k)=y_rl(i,Jnum)-... 
(y_rl(i,Jnum)-

y_bc(i,2*Jnum))*(k/Jnum-1); 
else i f k<3*Jnum+1 

y_rl(i,k)=y_rl(i,2*Jnum)-... 
(y_rT(i,2*Jnum)-

y_bc(i,3 *Jnum))*(k/Jnum-2); 
else i f k<4*Jnum+1 

y_rl(i,k)=y_rl(i,3 *Jnum)-... 
(y_rl(i73*Jnum): 

y_bc(i,4*Jnum))*(k/Jnum-3); 
else i f k<5*Jnum+1 

y_rl(i,k)=y_rl(i,4*Jnum)-... 
(y_r l( i ,4*Jnum)-“ 

y_bc(i,5*Jnum))*(k/Jnum-4); 
else 

y_rl(i,k)=y_rl(i,5 *Jnum)-... 
(y_rl(i,5*Jnum)-

y_bc(i,L/dL)))*((k-5*Jnum)/(L/dL-5*Jnum)); 
end 

end 
end 

end 
end 

end 
subplot(4,2,2*i); 
plot(x_rl,y_rl(i,:),'linewidth',2,'color',linecol 
or(i,:),'linestyle','--'); 

hold on; 
xlim([0,1]); 
text=strcat('(',str(i),')',' ',' 

t=',num2str(i/4),'T'); 
title(text,'fontsize',12,'fontweight','bold'); 
set(gca,'fontsize',12,'fontweight','bold'); 
xlim([0,1]); 

plot(x_wd3(i,:),y_wd3(i,:),'linewidth',2,'colo 
r',linecolor(i,:),'linestyle','*'); 
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plot(x_bc,y_bc(i,:),'linewidth',2,'color',linec 
olor(i,:))； 

% 2 WD 
Jnum=floor(L/dL/10)； 

% segment 1 
[x_wd21,y_wd21]=ArcPPP(x_bc(1),y_bc 

(i,1),x_bc(3 *Jnum),y_bc(i,3*Jnum),x_bc(6* 
Jnum),y_bc(i,6*Jnum))； 

% segment 2 
[x_wd22,y_wd22]=ArcPPP(x_bc(6*Jnum),y 
_bc(i,6*Jnum),x_bc(8*Jnum),y_bc(i,8*J皿 

m),x_bc(L/dL),y_bc(i,L/dL))； 

x_wd2(i, :)=cat(2,x_wd21,x_wd22)； 

y_wd2(i,:)=cat(2,y_wd21 ,y_wd22)； 

figure(2)； 

h2=subplot(2,2,i)； 

plot(x_wd2(i, 
r',linecolor(i,:) 

),y_wd2(i,:),'linewidth',2,'colo 
,'linestyle','--')； 

on； 

set(gca,'fontsize', 12,'fontweight', 'bold')； 

xlim([0,1])； 

text=strcat('(',str(i),')',' ', 
t=',num2str(i/4),'T')； 

title(text,'fontsize',12,'fontweight','bold')； 

plot(x_bc,y_bc(i,:),'linewidth',2,'color',linec 
olor(i,:))； 

end 

19) Figure 5-13 Wire Length Change Approximation Error - Serpentine 
% error plot - chapter 2 serpentine tapered 
h0=5； ddi=39； DD=44； 
thetamax=2 *atan(h0/DD) * 180/pi； 
figure； 

mycolor1 = [1 0 0； 1 0 1]； 
mycolor2 = [0 0 1； 0 1 0]； 
for i=5:5 % gama 

gama(i)=7.5*pi/180； 
udi1(i)=ddi+2*h0*tan(gama(i))； 
hi0(i)=sqrt(h0^2+(h0*tan(gama(i)))^2)； 
for j=1:floor(thetamax) % theta 

theta(i,j)=j*pi/180； 
a=(h0/2/tan(theta(i,j)/2)-ddi/2)； 
b=(h0/2/tan(theta(i,j)/2)-udi1(i)/2)； 
A=(h0/2/tan(theta(i,j)/2)+ddi/2)； 
B=(h0/2/tan(theta(i,j)/2)+udi1(i)/2)； 
dh1(i,j)=hi0(i)-sqrt(a^2+b^2-

2*a*b*cos(theta(i,j)))； 

dh2(i,j)=-hi0(i)+sqrt(A^2+B^2-
2*A*B*cos(theta(i,j)))； 
dh(i,j)=0.5*(ddi)*theta(i,j)*cos(gama(i))； 

err1(i,j)=abs(dh1(i,j)-
dh(i,j))/dM(i,j)*100； 

err2(i,j)=abs(dh2(i,j)-
dh(i,j))/dh2(i,j)*100； 

end 

plot(theta(i,:)*180/pi,err1(i,:),'color',mycolor 
1(i/5,:),'linewidth',2)； 

hold on； 

plot(theta(i,:)*180/pi,err2(i,:),'color',myco 
lor2(i/5,:),'linewidth',2)； 
end 

legend('Wire1 Err,\gamma = 7.5^o','Wire2 
Err,\gamma = 7.5^o',3)； 
ylabel('Relative Error 
(%)','fontsize',12,'fontweight','bold')； 
xlabel('Joint Rotation 
(^o)','fontsize',12,'fontweight','bold')； 
set(gca,'fontsize',12,'fontweight','bold') 
xlim([0 12])； 

20) Figure 5-14 Serpentine Oscillatory Wire-Driven Tail Flapping Cycle 
for j=1:7 

alfa(j) = sum(theta(i,1:j))； 
x(i,j+1)=x(i,j)+len(j)*cos(alfaCj))； 
y(i,j+1)=y(i,j)+len(j)*sin(alfaCj))； 

end 

plot(x(i,:),y(i,:),'linewidth',2)； 
hold on； 

end 

axis equal 
set(gca, 'fontsize', 12,'fontweight', 'bold')； 
xlim([0 150])； 
ylim([-100 100])； 

H = [20 19 18 17 16 15 14]； 
h = [5 5 4.5 4 3.5 3 2.5]； 
D = [44 40 36 32 28 24 20]； 
for j=1:7 

thetaMax(j)=2*atan(h(j)/D(j))； 
len(j)=H(j)+h(j)； 

end 

num=6； 

dtheta=thetaMax/num； 
for i=1:2*num+1 

theta(i,:)=(-num+i-1)*dtheta； 
x(i,1:7)=0； y(i,1:7)=0； 

21)Figure 5-22 Wire Length Change Approximation Error - Continuum 
%% error plot - continuum tapered 
h=20； ri1=39.5/2； DDi1=45； 
thetamax=2 *h/DDi1*180/pi； 
figure； 

mycolor1 = [1 0 0； 1 0 1]； 

mycolor2 = [0 0 1； 0 1 0]； 

for i=5:5 % gama 
gama(i)=7.125*pi/180； 

ri(i)=ri1+h*tan(gama(i))； 

li0(i)=sqrt(h^2+(h*tan(gama(i)))^2)； 
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for j=1:15 % theta 
theta(i,j)=j*pi/180; 
dh1(i,j)=li0(i)-sqrt(li0(i)^2-

(ri1+ri(i))*h*theta(i,j)+ri1*ri(i)*theta(i,j)^2); 
dh2(i,j)=-

li0(i)+sqrt(li0(i)^2+(ri1+ri(i))*h*theta(i,j)+ri 
1*ri(i)*theta(i,j)^2); 

dh(i,j)=ri1*theta(i,j)*cos(gama(i)); 
err1(i,j)=abs(dh1(i,j)-

dh(i,j))/dh1(i,j)*100; 
err2(i,j)=abs(dh2(i,j)-

dh(i,j))/dh2(i,j)*100; 
end 

plot(theta(i,:)*180/pi,err1(i,:),'color',mycolor 
1(i/5,:),'linewidth',2); 

22) Figure 5-37 Undulatory Swimming Curve Comparison 
% undulatory wire-driven tail body curve 
H1 = 15; h1 = 4; H2 = 12; 
h2 = 3; D1 = 31; D2=23.5; 
thetaMax1=2*atan(h1/D1); 
thetaMax2=2*tan(h2/D2); 
len1=H1+h1; 
len2=H2+h2; 
N1=6; N2=7; 
T=1; dT=1/4; 
pi=3.1415926; 
for i=1:T/dT 

t(i)=(i)*dT+0.2*T; 
theta1(i)=8*sin(2 *pi*t(i)) *pi/180; 
theta2(i)=-12*sin(2*pi*t(i)-

0.3*pi)*pi/180; 
x(i,1:N1+N2)=0; 
y(i,1:N1+N2)=0; 
for j=1:N1 

alfa(j)=j*theta1(i); 
x(i,j+1)=x(i,j)+len1*cos(alfa(j)); 
y(i,j+1)=y(i,j)+len1*sin(alfaCj)); 

end 
for k=N1+1:N1+N2 

alfa(k)=alfa(N1)+(k-N1)*theta2(i); 
x(i,k+1)=x(i,k)+len2*cos(alfa(k)); 
y(i,k+1)=y(i,k)+len2*sin(alfa(k)); 

end 
plot(x(i,:),y(i,:),'linewidth',2); 

hold on; 
plot(theta(i,:)* 180/pi,err2(i,:),'color',myco 

lor2(i/5,:),'linewidth',2); 
end 
legend('Wire1 Err,\gamma = 
7.125^o','Wire2 Err,\gamma = 7.125V,3); 
ylabel('Relative Error 
(%)','fontsize',12,'fontweight','bold'); 
xlabel('Joint Rotation 
(^o)','fontsize',12,'fontweight','bold'); 
set(gca,'fontsize',12,'fontweight','bold') 
xlim([0 15]); ylim([5.7 6.1]); 

hold on; 
end 
% Body Curve from the swimming model 
L=N1*len1+N2*len2; 
dL=L/13; dt=0.25; 
T=1; c1=0.2/L; 
c2=0.4175/L/L; 
K=2.4/L; 
omega=2*pi/T; 
for i=1:1*T/dt 

t(i)=(i-1)*dt+0.20*T; 
for j=1:L/dL+1 

x_bc(j)=(j-1)*dL; % local 
coordinate 
y_bc(i,j)=(c1*x_bc(j)+c2*x_bc(j)A2)*sin(K 
*x_bccj)+omega*t(i))); 

end 
plot(x_bc,y_bc(i,:)*L,'--r','linewidth',2); 
str=num2str((i-1)*dt+0.20); 

gtext(strcat('t=',str,'T'),'fontsize',12,'fontweig 
ht','bold'); 
end 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 
xlabel('X(mm)','fontsize',12,'fontweight','bol 
d')； 

ylabel('Y(mm)','fontsize',12,'fontweight','bol 
d')； 
xlim([0 200]); 

23) Figure 5-48 Vector Propulsor Planar Flapping 
% flap in horizontal plane 
l=25; 
figure; 
phi = 0; Amp = 60; Num=12; 
det = 2*Amp/Num; 
for i=1:Num % cycle 

theta(i)=(-Amp+(i-1)*det)*pi/180; 
dtheta= theta(i)/7; 
x(i,1)=0; y(i,1)=0; z(i,1)=0; 
for j=1:7 % link 
q(i,j)=l; 
xloc(i,j)=q(i,j)*sin(j*dtheta)*cos(phi); 
yloc(i,j)=q(i,j)*sin(j*dtheta)*sin(phi); 

zloc(i,j)=q(i,j)*cos(j*dtheta); 
x(i,j+1)=xloc(i,j)+x(i,j); 
y(i,j+1)=yloc(i,j)+y(i,j); 
z(i,j+1)=zloc(i,j)+z(i,j); 
end 
plot3(x(i,:),y(i,:),z(i,:),'b','linewidth',2); 
hold on; grid on; 

end 
plot3(x(:,8),y(:,8),z(:,8),'r','linewidth',3); 
xlim([-100,100]); ylim([-100,100]); 
zlim([0,200]); 
xlabel('X','fontsize',12,'fontweight','bold'); 
ylabel('Y','fontsize',12,'fontweight','bold'); 
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zlabel('Z','fontsize',12,'fontweight','bold'); 
set(gca,'fontsize',12,'fontweight','bold'); 

% flap in vertical plane 
l=25; 
figure; 
phi = 90*pi/180; Amp = 60*pi/180; 
Num=12; det = 2*Amp/Num; 
for i=1:Num % cycle 

theta(i)=(-Amp+(i-1)*det); 
dtheta= theta(i)/7; 
x(i,1)=0; y(i,1)=0; z(i,1)=0; 
for j=1:7 % link 
q(i,j)=l; 
xloc(i,j)=q(i,j)*sin(j*dtheta)*cos(phi); 
yloc(i,j)=q(i,j)*sin(j*dtheta)*sin(phi); 
zloc(i,j)=q(i,j)*cos(j*dtheta); 
x(i,j+1)=xloc(i,j)+x(i,j); 
y(i,j+1)=yloc(i,j)+y(i,j); 
z(i,j+1)=zloc(i,j)+z(i,j); 
end 
plot3(x(i,:),y(i,:),z(i,:),'b','linewidth',2); 
hold on; grid on; 
xlim([-100,100]); ylim([-100,100]); 
zlim([0,200]); 

end 
plot3(x(:,8),y(:,8),z(:,8),'r','linewidth',3); 
xlabel('X','fontsize',12,'fontweight','bold'); 
ylabel('Y','fontsize',12,'fontweight','bold'); 
zlabel('Z','fontsize',12,'fontweight','bold'); 
set(gca,'fontsize',12,'fontweight','bold'); 
% flap in 45 deg 
l=25; 
figure; 
phi = 45*pi/180; Amp = 60*pi/180; 
Num=12; det = 2*Amp/Num; 
for i=1:Num % cycle 

theta(i)=(-Amp+(i-1)*det); 
dtheta= theta(i)/7; 
x(i,1)=0; y(i,1)=0; z(i,1)=0; 
for j=1:7 % link 
q(i,j)=l; 
xloc(i,j)=q(i,j)*sin(j*dtheta)*cos(phi); 
yloc(i,j)=q(i,j)*sin(j*dtheta)*sin(phi); 

zloc(i,j)=q(i,j)*cos(j*dtheta); 
x(i,j+1)=xloc(i,j)+x(i,j); 
y(i,j+1)=yloc(i,j)+y(i,j); 
z(i,j+1)=zloc(i,j)+z(i,j); 
end 
plot3(x(i,:),y(i,:),z(i,:),'b','linewidth',2); 
hold on; grid on; 
xlim([-100,100]); ylim([-100,100]); 
zlim([0,200]); 

end 
plot3(x(:,8),y(:,8),z(:,8),'r','linewidth',3); 
xlabel('X','fontsize',12,'fontweight','bold'); 
ylabel('Y','fontsize',12,'fontweight','bold'); 
zlabel('Z','fontsize',12,'fontweight','bold'); 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 

% flap in -45 deg 
l=25; 
figure; 
phi = 60*pi/180; Amp = 60*pi/180; 
Num=12; det = 2*Amp/Num; 
for i=1 :Num % cycle 

theta(i)=(-Amp+(i-1)*det); 
dtheta= theta(i)/7; 
x(i,1)=0; y(i,1)=0; z(i,1)=0; 
for j=1:7 % link 
q(i,j)=l; 
xloc(i,j)=q(i,j)*sin(j*dtheta)*cos(phi); 
yloc(i,j)=q(i,j)*sin(j*dtheta)*sin(phi); 
zloc(i,j)=q(i,j)*cos(j*dtheta); 
x(i,j+1)=xloc(i,j)+x(i,j); 
y(i,j+1)=yloc(i,j)+y(i,j); 
z(i,j+1)=zloc(i,j)+z(i,j); 
end 
plot3(x(i,:),y(i,:),z(i,:),'b','linewidth',2); 
hold on; grid on; 
xlim([-100,100]); ylim([-100,100]); 
zlim([0,200]); 

end 
plot3(x(:,8),y(:,8),z(:,8),'r','linewidth',3); 
xlabel('X','fontsize',12,'fontweight','bold'); 
ylabel('Y','fontsize',12,'fontweight','bold'); 
zlabel('Z','fontsize',12,'fontweight','bold'); 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 

24) Figure 5-49 Vector Propulsor Spatial Flapping 
% circling 
l=25; 
figure; 
phi = 90*pi/180; Amp = 60*pi/180; 
Num=72; det = 2*Amp/Num; 
for i=1:Num % cycle 

theta(i)=(-Amp+(i-1)*det); 
phi(i)=(i-1)*2*pi/Num; 
dtheta= Amp/7; 
x(i,1)=0; y(i,1)=0; z(i,1)=0; 
for j=1:7 % link 
q(i,j)=l; 
xloc(i,j)=q(i,j)*sin(j*dtheta)*cos(phi(i)); 
yloc(i,j)=q(i,j)*sin(j*dtheta)*sin(phi(i)); 

zloc(i,j)=q(i,j)*cos(j*dtheta); 
x(i,j+1)=xloc(i,j)+x(i,j); 
y(i,j+1)=yloc(i,j)+y(i,j); 
z(i,j+1)=zloc(i,j)+z(i,j); 
end 
plot3(x(i,:),y(i,:),z(i,:),'b','linewidth',2); 
hold on; grid on; 
xlim([-100,100]); ylim([-100,100]); 
zlim([0,200]); 

end 
phi2 = 0:pi/10:2*pi; 
xt=sqrt(x( 1,8)A2+y( 1,8)^2)*cos(phi2); 
yt=sqrt(x( 1,8)^2+y( 1,8)^2)*sin(phi2); 
zt=z(1,8)*ones(1,21); 
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plot3(xt,yt,zt,'r', 'linewidth' ,3); 
xlabelCX','fontsize',12,'fontweight','bold'); 
ylabelCY','fontsize',12,'fontweight','bold'); 
zlabelCZ','fontsize',12,'fontweight','bold'); 
set(gca,'fontsize',12,'fontweight','bold'); 

% 8 shape flapping 
l=25; 
figure; 
phi = 90*pi/180; Amp = 60*pi/180; 
Num=36; det = 2*Amp/Num; 
alfa = 30*pi/180; 
Num2=alfa/2/pi*Num; 
Num3=(Num-4*Num2)/2; 
for i=1:Num % cycle 

x(i,1)=0; y(i,1)=0; z(i,1)=0; 
i f i<2*Num2+1 % first arc 

phi(i)=alfa-(i-1)*2*pi/Num; 
dtheta= Amp/7; 
for j=1:7 % link 

q(i,j)=l; 

xloc(i,j)=q(i,j)*sin(j*dtheta)*cos(phi(i)); 

yloc(i,j)=q(i,j)*sin(j*dtheta)*sin(phi(i)); 
zloc(i,j)=q(i,j)*cos(j*dtheta); 
x(i,j+1)=xloc(i,j)+x(i,j); 
y(i,j+1)=yloc(i,j)+y(i,j); 
z(i,j+1)=zloc(i,j)+z(i,j); 

end 
else i f i<2*Num2+Num3/2+1 % first line 

det=2*Amp/Num3; 
theta(i)=(Amp-(i-2*Num2)*det); 
dtheta= theta(i)/7; 
phi(i)=-alfa; 
for j=1:7 % link 

q(i,j)=l; 

xloc(i,j)=q(i,j)*sin(j*dtheta)*cos(phi(i)); 

yloc(i,j)=q(i,j)*sin(j*dtheta)*sin(phi(i)); 
zloc(i,j)=q(i,j)*cos(j*dtheta); 
x(i,j+1)=xloc(i,j)+x(i,j); 
y(i,j+1)=yloc(i,j)+y(i,j); 
z(i,j+1)=zloc(i,j)+z(i,j); 

end 
else i f i<Num/2+1 % second line 

det=2*Amp/Num3; 
theta(i)=(Amp-(i-2 *Num2) *det); 
dtheta= theta(i)/7; 
phi(i)=-alfa; 
for j=1:7 % link 

q(i,j)=l; 

xloc(i,j)=q(i,j)*sin(j*dtheta)*cos(phi(i)); 

yloc(i,j)=q(i,j)*sin(j*dtheta)*sin(phi(i)); 
zloc(i,j)=q(i,j)*cos(j*dtheta); 
x(i,j+1)=xloc(i,j)+x(i,j); 
y(i,j+l)=yloc(i,j)+y(i,j); 

z(i,j+1)=zloc(i,j)+z(i,j); 
end 

else i f i<Num/2+2*Num2+1 % 
second arc 

dtheta = Amp/7; 
phi(i)= pi-alfa+(i-

Num/2)*2*pi/Num; 
forj=1:7 % link 

q(i,j)=l; 

xloc(i,j)=q(i,j)*sin(j*dtheta)*cos(phi(i)); 

yloc(i,j)=q(i,j)*sin(j*dtheta)*sin(phi(i)); 
zloc(i,j)=q(i,j)*cos(j*dtheta); 
x(i,j+1)=xloc(i,j)+x(i,j); 
y(i,j+1)=yloc(i,j)+y(i,j); 
z(i,j+1)=zloc(i,j)+z(i,j); 

end 
else i f i<Num-Num3/2+1% third line 

det=2*Amp/Num3; 
theta(i)=(Amp-(i-

(4 *Num2+Num3)) *det)； 

dtheta = theta(i)/7; 
phi(i)=pi+alfa; 
for j=1:7 % link 

q(i,j)=l; 

xloc(i,j)=q(i,j)*sin(j*dtheta)*cos(phi(i)); 

yloc(i,j)=q(i,j)*sin(j*dtheta)*sin(phi(i)); 
zloc(i,j)=q(i,j)*cos(j*dtheta); 
x(i,j+1)=xloc(ij)+x(i,j); 
y(i,j+1)=yloc(i,j)+y(i,j); 
z(i,j+1)=zloc(i,j)+z(i,j); 

end 
else % fourth line 
det=2*Amp/Num3; 
theta(i)=(-Amp+(i-

(4 *Num2+Num3)) *det)； 

dtheta = theta(i)/7; 
phi(i)=alfa; 
for j=1:7 % link 

q(i,j)=l; 

xloc(i,j )=q(i,j)*sin(j *dtheta) *cos(phi(i))； 

yloc(i,j )=q(i,j)*sin(j *dtheta)*sin(phi(i))； 

zloc(i,j )=q(ij)*cos(j *dtheta)； 

x(i,j+1)=xloc(i,j)+x(i,j); 
y(i,j+1)=yloc(i,j)+y(i,j); 
z(i,j+1)=zloc(i,j)+z(i,j); 

end 
end 

end 
end 

end 
end 
plot3(x(i,:),y(i,:),z(i,:),'b','linewidth',2); 
hold on; grid on; 
xlim([-100,100]); ylim([-100,100]); 
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zlim([0,200]); 
end 
plot3(x(:,8),y(:,8),z(:,8),’r’,’linewidth’,3); 
xlabel('X','fontsize',12,'fontweight','bold'); 

ylabel('Y','fontsize',12,'fontweight','bold'); 
zlabel('Z','fontsize',12,'fontweight','bold'); 
set(gca, 'fontsize', 12,'fontweight', 'bold'); 

25) Undulatory Propulsion model and swimming experiments 
% robot fish Froude efficiency 
% tail parameters 
N1=6; N2=7; L1=19e-3; L2=15e-3; 
L=280e-3; 
Lend=L-N1*L1-N2*L2; 
%% simulation input - exp1 
A1=[20 30 40 40 40]*pi/180; 
A2=[30 45 60 60 60]*pi/180; 
f=[1 1 1 0.5 1.5]; 
UM=[0.408 0.526 0.608 0.402 0.311]*0.495; 
lag=[5/8 5/8 5/8 5/8 5/8]*0; 
lamda=4*L*ones(size(A1,2),1); 
U=zeros(size(A1,2),1); 
E=zeros(size(A1,2),1); 
for i=1:size(A1,2) 

result=EBT(A1(i), 
A2(i),f(i),lamda(i),lag(i),UM(i),10); 

U(i)=result(1); 
E(i)=result(2); 

end 
%% simulation input - exp2 
A1=[00 00 00 00 00]*pi/180; 
A2=[30 45 60 60 60]*pi/180; 
f=[1 1 1 0.5 1.5]; 
UM=[0.185 0.285 0.329 0.290 0.276]*0.495; 
lamda=4*(L-L1*N1)*ones(size(A1,2),1); 
lag=[5/8 5/8 5/8 5/8 5/8]*0; 
U=zeros(size(A1,2),1); 
E=zeros(size(A1,2),1); 
for i=1:size(A1,2) 

result=EBT(A1(i), 
A2(i),f(i),lamda(i),lag(i),UM(i),10); 

U(i)=result(1); E(i)=result(2); 
end 
%% simulation input - exp3 
A1=[20 30 40 40 40 40 40 40 40]*pi/180; 
A2=[30 45 60 60 60 60 60 60 60]*pi/180; 
f=[1 1 1 0.5 1.5 1 1 1 1]; 
UM=[0.419 0.563 0.673 0.623 0.405 0.584 
0.246 0.065 0.613]*0.495; 
lag=[5/8 5/8 5/8 5/8 5/8 1/8 3/8 4/8 7/8]; 
lamda=L*ones(size(A1,2),1); 
U=zeros(size(A1,2),1); 
E=zeros(size(A1,2),1); 
for i=1:size(A1,2) 

result=EBT(A1(i), 
A2(i),f(i),lamda(i),lag(i),UM(i),3); 

U(i)=result(1); E(i)=result(2); 
end 
function result = 
EBT(A1,A2,f,lamda,lag,UM,sway) 
% parameter input 
amp1 = A1; amp2 = A2; 
freq=f; lamda=lamda; 

L1=19e-3; L2=15e-3; 

pi = 3.1416; 
phaselag=lag*2*pi; 
% tail parameters 
N1=6; N2= 
L=280e-3; 
Lend=L-N1*L1-N2*L2; 
den = 1000; coef_d = 0.5; 
sc = 110e-3; m = 0.25*pi*den*sc^2; 
front_area=0.25*pi*sc^2; 
front_area=sway*front_area; 
drag=0.5*den*coef_d*front_area; 
damp = 5*pi/180; 
omega1 =2*pi*freq; omega2=2*pi*freq; 
T=1/freq; dt=1/100/freq; 
% lighthill model 
for i=1:T/dt 

% first segment 
t(i)=i*dt; 
theta1(i)=amp1/N1*sin(omega1*t(i)); 

theta2(i)=amp2/N2*sin(omega2*t(i)+phasel 
ag); 

% tip 
Ttheta(i)=N1*theta1(i)+N2*theta2(i); 
y1(i)=L1* sum_sin(N1 ,theta 1(i),0); 

y2(i)=L2*sum_sin(N2,theta2(i),N1*theta1(i )); 

y(i)=y1(i)+y2(i)+Lend*sin(Ttheta(i)); 
dtheta1(i)=omega1*amp1/N1*cos(omega1* 
t(i)); 
dtheta2(i)=omega2*amp2/N2*cos(omega2* 
t(i)+phaselag); 

dyt1(i)=0; 
for j=1:N1 

dyt1(i)=dyt1(i)+L1*cos(j *theta1 (i))*j *dthet 
a1(i); 

end 
dyt2(i)=dyt1(i); 
for k=1:N2 

dyt2(i)=dyt2(i)+L2*cos(N1*theta1(i)+j*thet 
a2(i))*(N1*dtheta1(i)+j *dtheta2(i)); 

end 
dyt(i)=dyt2(i)+Lend*cos(Ttheta(i))*(N1*dt 
heta1(i)+N2*dtheta2(i)); 

dyx(i)=sin(Ttheta(i)); 
ht(i)=y(i); 
hm(i)=y1(i)+y2(i); 

end 
ave_yx=mean(abs(dyx)); 
ave_yt=mean(abs(dyt)); 
ave_yt2=ave_yt^2 ； 

ave_yx2=ave_yx^2 ； 
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U=sqrt(m*ave_yt2/(coef_d*den*front_area 
+m*ave_yx2)) 
V=sqrtcUM^2+ave_yt2); 
detL=Lend; 
Ht=mean(abs(ht)); Hm=mean(abs(hm)); 
beta=UM/V; 
alfa=lamda/2/pi*(mean(abs(dyx))/Ht); 
effi=froude(alfa, beta)*100 

% result output 
result(1)=U; result(2)=effi; 

function ssin=sum_sin(N,theta,lag) 
ssin=0; 
for i=1:N 

ssin=ssin+sin(i*theta+lag); 
end 
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