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Abstract

Jet engines need to be inspected periodically and, in some instances, repaired. Currently, some

of these maintenance operations require the engine to be removed from the wing and dismantled,

which has a significant associated cost. The capability of performing some of these inspections

and repairs while the engine is on-wing could lead to important cost savings. However, existing

technology for on-wing operations is limited, and does not su�ce to satisfy some of the needs.

In this work, the problem of performing on-wing operations such as inspection and repair

is analysed, and after an extensive literature review, a novel robotic system for the on-wing

insertion and deployment of probes or other tools is proposed. The system consists of a fine-

positioner, which is a miniature and dexterous robotic manipulator; a gross-positioner, which

is a device to insert the fine-positioner to the engine region of interest; an end-e↵ector, such as

a probe; a deployment mechanism, which is a passive device to ensure correct contact between

probe and component; and a feedback system that provides information about the robot state

for control. The research and development work conducted to address the main challenges to

create this robotic system is presented in this thesis. The work is focussed on the fine-positioner,

as it is the most relevant and complex part of the system.

After a literature review of relevant work, and as part of the exploration of potential robot

concepts for the system, the kinematic capabilities of concentric tube robots (CTRs) are first

investigated. The complete set of stable trajectories that can be traced in follow-the-leader

motion is discovered. A case study involving simulations and an experiment is then presented

to showcase and verify the work. The research findings indicate that CTRs are not suitable for

the fine-positioner. However, they show that CTRs with non-annular cross section can be used

for the gross-positioner. In addition, the new trajectories discovered show promise in minimally

invasive surgery (MIS).

Soft robotic manipulators with fluidic actuation are then selected as the most suitable con-

cept for the fine-positioner. The design of soft robotic manipulators with fluidic actuation is

investigated from a general perspective. A general framework for the design of these devices
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is proposed, and a set of design principles are derived. These principles are first applied in

a MIS case study to illustrate and verify the work. Finite element (FE) simulations are then

reported to perform design optimisation, and thus complete the case study. The design study

is then applied to determine the most suitable design for the fine-positioner. An additional

analytical derivation is developed, followed by FE simulations, which extend those of the case

study. Eventually, this work yields a final design of the fine-positioner. The final design found

is di↵erent from existing ones, and is shown to provide an important performance improvement

with respect to existing soft robots in terms of wrenches it can support.

The control of soft and continuum robots relevant to the fine-positioner is also studied. The

full kinematics of continuum robots with constant curvature bending and extending capabilities

are first investigated, which correspond to a preliminary design concept conceived for the fine-

positioner. Closed-form solutions are derived, closing an open problem. These kinematics,

however, do not exactly match the final fine-positioner design selected. Thus, an alternative

control approach based on closed-loop control laws is then adopted. For this, a mechanical

model is first developed. Closed-loop control laws are then derived based on this mechanical

model for planar operation of a segment of the fine-positioner. The control laws obtained

represent the foundation for the subsequent development of control laws for a full fine-positioner

operating in 3D. Furthermore, work on path planning for nonholonomic systems is also reported,

and a new algorithm is presented, which can be applied for the insertion of the overall robotic

system.

Solutions to the other parts of the robotic system for on-wing operations are also reported.

A gross-positioner consisting of a non-annular CTR is proposed. Solutions for a deployment

mechanism are also presented. Potential feedback systems are outlined. In addition, methods

for the fabrication of the systems are reported, and the electronics and systems required for the

assembly of the di↵erent parts are described.

Finally, the use of the robotic system to perform on-wing inspections in a representative case

study is studied to determine the viability. Inspection strategies are shortlisted, and simulations

and experiments are used to study them. The results, however, indicate that inspection is not
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viable since the signal to noise ratio is excessively low.

Nonetheless, the robotic system proposed, and the research conducted, are still expected to

be useful to perform a range of on-wing operations that require the insertion and deployment

of a probe or other end-e↵ector. In addition, the trajectories discovered for CTRs, the design

found for the fine-positioner, and the advances on control, also have significant potential in

MIS, where there is an important need for miniature robotic manipulators and similar devices.
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Chapter 1

Introduction

Performing some of the required inspection and repair operations of jet engines while the engine

is on-wing can provide significant cost savings to the aerospace industry. The technologies

currently available to insert and deploy the probes and other tools for these on-wing operations

are relatively limited, and cannot be used to address all needs. The development of new

technologies for on-wing operations can satisfy some of these needs, providing significant cost

savings to the aerospace industry, and represents the focus of the work presented in this thesis.

In this chapter, the industrial motivation behind this work is first introduced in section 1.1.

The aim of the work is then described in section 1.2. The concept proposed in this work for a

robotic system capable of on-wing inspections and other operations is outlined in section 1.3.

The main requirements for the robotic system are summarised in section 1.4. The work required

to develop the robotic system is then outlined in section 1.5. Finally, the thesis structure is

also presented in section 1.5, together with a list of publications arising from this work.
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1.1 Project background and motivation

1.1.1 Industrial relevance

Rolls-Royce plc (London, UK) is a manufacturer of jet engines with decades of tradition.

In recent years, Rolls-Royce modified its business model, moving from selling engines and

replacement components with the corresponding ad hoc servicing, to o↵ering a TotalCare R�

package that includes the engine maintenance at a specific cost per operation hour. Such

change in strategy has made lifelong aspects of the engine such as inspection, monitoring, and

repair a part of the company’s operations.

Inspection and repair operations can be conducted during overhauls, and a set of planned

overhauls exist for aircraft engines. The cost of an overhaul or a similar operation that involves

removing the engine from the aircraft wing and dismantling is significant. In this regard, there

is a desire to maximise the period of time between overhauls, and to avoid any unplanned

operations that require removing the engine from the aircraft wing.

Some of the required inspection and repair operations, however, can either be unpredictable, or

require significantly shorter time periods between interventions than the remaining operations.

Taking the engine o↵-wing to perform these operations that do not match the main, planned

overhauls can have an important additional cost. Thus, there is a significant interest in the

capability of performing these unplanned or higher frequency operations on-wing.

1.1.2 On-wing inspection technology

Miniature probes exist, which can be inserted into the engine to perform on-wing inspections.

These probes can be used to inspect a component without damaging it relying on di↵erent

techniques that belong to the field of non-destructive evaluation (NDE) [1]. The main NDE

techniques are ultrasonic, electromagnetic, radiographic, visual, and thermographic, and these

are briefly reviewed in Chapter 7.
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Figure 1.1: Existing borescope. Image courtesy of General Electric.

The technologies currently available to insert and deploy probes (or other tools) in situ, however,

are relatively limited. These mainly consist of passive tools (rigid or flexible); tools that can

either be in a flexible state or a rigid state with a pre-defined shape; and borescopes such as

that shown in Figure 1.1 or equivalent devices that can carry di↵erent end-e↵ectors instead of

a camera. These existing technologies are described in more detail in Chapter 2, and can be

used to deploy probes (or other tools) in locations with relatively easy access, typically near the

points of access into the engine. However, these technologies are not suitable to deploy probes

or other tools in di�cult to access locations.

1.1.3 General need for new on-wing inspection technology

Various applications that require the on-wing deployment of probes or other tools in di�cult

to access locations exist, and additional ones can be expected in the future. This general need

for technologies to deploy probes and tools on-wing represents the motivation for this work.

A certain degree of variability in the requirements for these on-wing inspections in di�cult to

access locations exists. However, they generally involve the insertion and deployment of probes

or tools in locations relatively distant from the point of entry into the engine, through narrow,

convoluted conducts, and without direct line of sight. In this regard, a reference on-wing

inspection case is defined in the following to guide the development of new technology.
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Figure 1.2: CAD rendering of a generic jet engine with main parts labelled. Image courtesy of
Rolls-Royce.

The reference case requires the insertion of a probe into a chamber near the centre of the

engine, where the high pressure compressor (HPC) discs are located, as shown in Figure 1.2,

and the deployment of this probe on the various HPC discs to inspect them. The access route

to reach the chamber of interest involves a relatively long and convoluted path, which is shown

in Figure 1.3. This is composed of a first narrow part to enter towards the centre of the engine

through a conduct with constant diameter and constant curvature; an open part with a turn of

approximately 90 degrees; another narrow part to advance horizontally in the space between the

shafts which is straight; and finally another open part in the chamber with the HPC discs. This

route is illustrative of possible access routes that may be encountered in in situ inspections.

This reference use case is representative of the requirements of on-wing inspections in di�cult

to access locations, and is selected to be a particularly challenging one. It should be noted,

however, that this is only an example of case used to guide the e↵orts in this work. The general

aim of the work presented in this thesis is the development of technology to address the general

on-wing inspection problem.

Other examples of applications that may require new on-wing inspection technology, even
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IPC
HPC CC

HPT

IPT

Air flow

Figure 1.3: Access route selected in an illustrative reference case to deliver probes to the
chamber with HPC discs on-wing. The locations of interest for probe deployment are circled
in blue.

though with less complex access restrictions, also exist. One of them is the detection of potential

defect-like indications in turbine blade roots. Blade roots can be di�cult to access and, even

though they could be inspected using ultrasonic probes [2, 3] or eddy-current probes [4, 5], the

location of the potential defect-like indications makes it di�cult to insert and deploy probes

on-wing. Another set of examples of challenging on-wing inspections are those relying on

radiographic techniques. These can require inserting radioactive beads and detection films in

di�cult to access locations inside the engine. Lastly, inspections relying on enhanced visual

techniques [6, 7] may also require new on-wing capability. These inspections can be complex

to perform in situ since they involve applying visible liquids on the component so that they

seep into potential cracks, cleaning excess liquid from the surface, and inserting a camera or

optic fibre to visually detect any potential defect. The insertion and deployment of the required

probes and inspection devices in many of these applications cannot be done using existing rigid

tools or borescope-type devices, so new technology is required.



46 Chapter 1. Introduction

1.2 Aim and preliminary considerations

Responding to the industrial need presented in the previous section, the aim of the work

reported in this thesis is the development of a robotic system capable of inserting and deploying

probes and other end-e↵ectors on-wing in order to perform general in situ inspections. A

reference use case, defined to help guide the development of this robotic system, is the insertion

of probes into the chamber with HPC discs and the subsequent deployment on the HPC discs.

However, the robotic system should also be capable of other on-wing inspections. In this

regard, the robotic system should be a versatile device capable of inserting and deploying an

end-e↵ector (typically a probe) for general on-wing inspections, such as those mentioned in the

previous section, or other general operations.

The deployment of probes and other end-e↵ectors inside the engine involves navigating the

engine geometry through complex, narrow routes to reach the region of interest, positioning

the probes in the desired location, and ensuring a correct and stable deployment to perform

the inspection. This generally requires the application of controllable forces and moments

on the end-e↵ector to insert it and accurately deploy it. Considering the forces in nature,

together with the problem context in terms of surrounding engine, in this work the most

reliable option is considered to be the use of contact forces applied by a structure on the probe.

These forces must be transmitted through the structure to a support point, and this structure

must fit through the entire access route. Other alternatives such as the use of propelling

forces from miniature flying robots to deliver the end-e↵ector were discarded since they are

considered significantly less reliable and practically di�cult to achieve. The use of non-contact

electromagnetic forces to bring the end-e↵ector to the desired location, such as those proposed

for medical interventions [8], was also discarded since jet engines include an important number

metallic components.

The majority of components inside a jet engine are also non-ferromagnetic, and the engine

has few support points where a robot could reliably hold to advance. Thus, untethered robot

locomotion to navigate inside the engine is di�cult in practice. In this regard, the best option

a priori is considered to be the use an elongated, narrow manipulator such as a snake-robot
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to insert and deploy the end-e↵ector. The development of such snake-robot with the mobility

and size required for general on-wing inspections represents the main part of the development

of the robotic system.

In the reference case defined in the previous subsection 1.1.3 to serve as guidance for this work,

the access route selected is that shown in Figure 1.3, which is illustrative of a complex on-

wing inspection. The probes need to be entered through this route, and subsequently deployed

on the HPC discs, which are circled in blue in Figure 1.3. The route is relatively long with

curvature variations, multiple turns, and limited room to manoeuvre. However, the route

has the advantage of being independent of the rotation of the HPC discs, which could allow

deploying a probe on a HPC disc, and rotating the disc while maintaining the probe in a fixed

position in order to perform a full disc inspection. Thus, the main objective for this example

inspection is to deploy a probe on the HPC discs.

In order to reach the discs, the robotic system needs to enter the chamber with the HPC discs

through a hole in the shaft, as shown in Figure 1.3. This manoeuvre requires the robotic system

to perform a relatively sharp turn. The robotic system should therefore be capable of either

articulating or bending with significant flexibility to perform the turn. Furthermore, once part

of the robotic system is already inserted inside the chamber with the HPC discs, the rest of it

should be capable of continuing advancing through the hole so that the probe can be delivered

to the HPC discs.

After passing through the hole, the probes need to be deployed on the various HPC discs. The

deployment on the first disc encountered when accessing the HPC chamber through the hole can

be performed by directing the robotic system directly towards this disc. Once this is inspected,

the robotic system should manoeuvre to pass through the gap between this first disc and the

shaft, and then reach the following disc, where it should deploy the probe to inspect it. The

procedure is then intended to be repeated to reach each of the following discs and inspect them.

The height of the gap between the first disc and the shaft is similar to the height of the gap

between shafts, so a robotic system capable of entering through the access route is expected to

be capable of passing through the gap under the disc. It should be noted that the manoeuvre
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to pass through the gap between each disc and the shaft is expected to require significant

dexterity, and thus to involve the full robotic system manoeuvring to complete it. Once the

robot has passed through the gap, this gap can help in anchoring or bounding the motion of

part of the body of the robotic system so that it can deploy the probe on the subsequent disc.

In the access route shown in Figure 1.3, any device inserted can be guided by reaction forces

from the engine in the constrained parts, which are therefore relatively simple to follow, but

requires steering in the open spaces, and accurate control in the final part. The curvature in the

first narrow conduct is constant, but presents variations throughout the rest. As a consequence,

a rigid structure can only be entered through the first conduct, but the rest of the route requires

a device capable of moving in exact or approximate follow-the-leader motion [9], i.e. the body

of the device following the path selected by the distal end. This implies that the robotic system

must be capable of either articulating or bending with a flexible structure. Finally, the entry

hole is selected to be 6 mm in diameter, which represents one of the main constraints on the

robotic system.

1.3 Concept proposed

The robot concept proposed in this work for the on-wing insertion and deployment of a probe

(or other end-e↵ector) is schematised in Figure 1.4, and consists of two main parts: a gross-

positioner and a fine-positioner. The gross-positioner is a low mobility device capable of reach-

ing the region of interest inside the engine with a low accuracy. The fine-positioner is a minia-

ture, accurate robotic manipulator that can be coupled at the end of the gross-positioner, and

can position its distal end to a desired pose in space using a set of degrees of freedom (DOFs).

The fine-positioner thus serves to deploy the probe (or other end-e↵ector) in the target location,

using its dexterity to compensate for any deviations from the gross-positioner.

The robot system also has two additional parts. One of them is a deployment mechanism,

which is a passive mechanism placed between the distal end of the fine-positioner and the probe

that is conceived to tolerate small misalignments from the robot and ensure a correct probe
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Actuation for fine-positioner
and gross-positioner

Computer to control robot
and systems integration

End-effector controller

Feedback system equipment

Figure 1.4: Conceptual drawing of the proposed robotic system for on-wing inspections, com-
prising a gross-positioner, a fine-positioner, a deployment mechanism, a feedback system, and
an end-e↵ector (in this instance a probe).

deployment. It should be noted that the deployment mechanism refers to all passive mechanisms

used to correct for misalignments on the end-e↵ector; any active DOFs incorporated on the

overall system correspond to the fine-positioner. The other additional part of the robotic

system is a feedback system, which is a system that provides information about the robot state

to control it.

This robot concept, schematised in Figure 1.4, is conceived to exploit the reaction forces from

contact with the engine in order to support and guide the robot. This is viable in on-wing

inspections since the engine parts are relatively robust, and implies that the robot needs not

be self-supporting. Such a robot concept contrasts with some of the existing trends in the

development of robots for inspections, and facilitates the development of the robot since it

reduces the required number of DOFs and the force that the robot structure must support. In

particular, it implies that the gross-positioner can be a device with very limited mobility, or

even passive in some instances, which significantly reduces complexity. In addition, it broadens

the regions inside the engine that can be reached with the limited number of DOFs achievable

with miniature diameter robotic manipulators.
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This robot concept, composed of a gross-positioner plus a fine-positioner, is intended to be

applicable to a broad range of on-wing inspections. These inspections generally require accessing

the engine region of interest through a convoluted route in a first instance, where reaction forces

can be exploited, and then deploying a probe or other end-e↵ector, which requires DOFs and

accuracy provided by the fine-positioner. In this regard, the development of a robot system like

that schematised in Figure 1.4 matches the aim of versatility described in the previous section.

In the reference case of on-wing inspection defined in the previous subsection 1.1.3, the gross-

positioner should be capable of reaching the chamber with the HPC discs. The main challenge

in reaching this chamber is the 90 degree turn in open space. In this instance, the mobility of the

gross-positioner combined with the dexterity of the fine-positioner are expected to be su�cient

to execute the turn. After the turn, the gross-positioner only needs to advance in the narrow

gap between shafts to reach the chamber of interest, which is considered to be a relatively simple

operation, even with a low-mobility gross-positioner. The only envisaged potential issues when

advancing between the shafts are lateral deviations from the desired path, and friction with the

engine complicating the advancement. However, the fine-positioner is expected to be capable

of helping in correcting for deviations. In addition, some fine-positioner concepts, such as the

one selected in Chapter 2, can help in the advancement, overcoming frictional forces by actively

contributing to self locomotion, as described in Chapter 6.

In order to enter the chamber with the HPC discs, a combination of the motion of the fine-

positioner and the gross-positioner is expected to be required. The distal end of the fine-

positioner should be steered towards the hole in the shaft, while the gross-positioner and po-

tentially the proximal part of the fine-positioner are used to advance the entire robotic system.

This procedure should continue until the entire fine-positioner is inside the chamber with the

HPC discs. At this point, a length of a few millimetres of the distal end of the gross-positioner

is expected to be entering into the chamber with the HPC discs.

The pose at the distal end of the gross-positioner when entering into the chamber is expected to

present significant variation. In this regard, a fine-positioner with a high dexterity is expected

to be necessary to deploy the probes in the desired location on the first disc. After inspecting
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the first disc, the fine-positioner is expected to be used to steer the robotic system into the gap

between the disc and shaft, while the gross-positioner is used to advance it. A combined ma-

noeuvre of the fine-positioner and gross-positioner is expected to be necessary to pass through

the gap between the disc and shaft. This procedure is indended to be repeated to inspect all

subsequent HPC discs.

1.4 Basic requirements

Each on-wing inspection entails a set of requirements on the robotic system. Even though the

specific requirements can vary to some extent for each specific inspection, an important part of

the main requirements in terms of size, kinematics, dynamics, accuracy or systems compatibility

are common in general on-wing inspections. In this regard, the majority of requirements used

for the development of the robotic system in this work are common requirements for general

on-wing inspections, and in instances where values specific for each scenario are required, the

requirements of the reference case defined in subsection 1.1.3 are used. These requirements are

established in the following subsections.

1.4.1 Fine-positioner

The fine-positioner is the most complex part of the robotic system, as well as the most challeng-

ing to develop. Its requirements are thus described in more detail in the following subsections.

Geometry

The fine-positioner must fit through the entry port and through the access route, which gen-

erally represents one of the most determinant constraints on the design. In the reference case

used as example in this work, this implies that the maximum diameter cannot exceed 6 mm.

This constraint is representative of typical on-wing inspections.
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The required length depends on the specific capabilities of the gross-positioner in terms of

proximity to the regions to be inspected that can be achieved reliably, which is generally not

specified. In the reference case defined in the previous subsection 1.1.3, on a first instance the

required length of the fine-positioner can be established to be approximately 10 cm based on

the distance between HPC discs, the distance between the point of entry into the chamber with

HPC discs and the first disc, and the space to manoeuvre inside the chamber with HPC discs.

The fine-positioner must also be capable of negotiating the curved access route, and therefore

the capacity to bend or articulate in order to navigate in the route shown in Figure 1.3 is

essential.

Kinematics: DOFs

The fine-positioner must be capable of moving the end-e↵ector to a desired location with a

specific pose. The variation in the approximation by the gross-positioner must be corrected

by the fine-positioner through a set of DOF in order to ensure an accurate positioning of the

probes. In the reference case defined in the previous subsection 1.1.3, the HPC chamber is

accessed through a small aperture in a specific location, as can be seen in Figure 1.3. This

implies that the position of the inserted device is known with a small variation at that point.

However, the orientation can present significant variations in all three independent directions.

These orientation deviations at the chamber entry point translate as pose deviations at the

distal end of any fine-positioner device, and are amplified by the distance from the entry point.

The fine-positioner must compensate for all these deviations, acting as a manipulator in 3D

space. This generally requires 6 DOF.

In the reference case previously defined in subsection 1.1.3, the HPC discs are axially symmetric,

and therefore the probes can be deployed in any circumferential position, which reduces the

complexity of the problem by 1 DOF. This advantage, however, does not particularly simplify

the design of most fine-positioner concepts since most of the existing robotic manipulators

identified in the literature review as candidates for the fine-positioner are composed of 2 DOF

segments. In addition, the position of the HPC discs with respect to the entry point into the
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chamber implies that a typical fine-positioner design can only reach a limited set of deployment

locations on the disc circumference. Thus, the reduction of 1 DOF in the requirements is not

always possible, and depends on the specific robot design.

The gross-positioner is expected to be capable of providing 1 DOF corresponding to the ad-

vancement of the proximal end of the fine-positioner. This can reduce by another 1 DOF the

kinematic requirements of the fine-positioner. However, it should be noted that the use of the

gross-positioner to provide 1 DOF may not be always reliable or accurate.

On the other hand, the inspection may require avoiding obstacles, such as those in the HPC

chamber in the reference case, or negotiating the geometry in other scenarios. This can require

additional DOFs. Lastly, it is desirable for the robotic system to be as versatile as possible. As

a result, the desirable number of DOFs for the fine-positioner is established to be 6, with the

option of having 5 DOF if it is not possible to achieve 6.

Dynamics

The main dynamic requirement is for the fine-positioner to be capable of supporting its own

weight, the weight and forces associated to the payload, and the forces required to ensure a

correct probe deployment on the inspected component. Inertial forces are not considered in the

requirements since the final objective is to position the probe in a static deployment location.

In inspections conducted using the most frequent NDE techniques for on-wing inspections,

which are ultrasound with a coupling medium and eddy currents, the force to deploy a probe

on the component is negligible. In the reference case for this work, the technique selected is

ultrasound with a coupling medium, as described in Chapter 7, which also requires practically

zero deployment force.

The main force that the fine-positioner needs to support apart from its own weight is then that

associated to the payload. Considering the weight of typical miniature probes used for on-wing

inspection, the sti↵ness of the corresponding cables, and the required bending of these, in a first

instance it is estimated that the fine-positioner should be capable of applying the equivalent of
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0.25 N at its distal end.

Accuracy

The fine-positioner should be capable of a high accuracy in the positioning of the end-e↵ector.

The required orientation accuracy depends on the capability of the deployment mechanism to

tolerate misalignments. The required position accuracy in the direction perpendicular to the

inspected component depends on whether reaction forces from the component can be used in

the probe deployment. If reaction forces are possible, the accuracy only needs to be su�cient

to ensure that contact is achieved and that the reaction forces are below the limits that the

robot can cope with. If reaction forces are not possible, the accuracy typically needs to be

su�cient to ensure that the probe is within the acceptable stand-o↵ for the inspection, which

is typically sub-millimetric. The required position accuracy in the direction parallel to the

inspected component depends on the e↵ect of the position errors on the inspection performance,

which is specific to each application.

In the reference case defined this work, reaction forces are possible. Thus, the required accuracy

in the direction perpendicular to the inspected component only needs to be su�cient to ensure

that the probe is in contact with the component without damaging the fine-positioner selected.

The required absolute accuracy in the direction parallel to the surface of the component is

not critical since the proposed inspection involves scanning the entire HPC disc. Thus, the

accuracy only needs to be su�cient to ensure that the component can be scanned consistently

without gaps in the scan. In this regard, a certain error in absolute accuracy can be accepted,

provided that the relative error between positions during a scan is small enough to ensure a

full scan coverage.

Compatibility

The fine-positioner must be compatible with the rest of the robotic system. It must therefore be

capable of accommodating wires from the payload or microtubes to deliver a coupling medium
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to the probe. Moreover, it must be attachable to the gross-positioner; it must be possible to

attach a deployment mechanism to the fine-positioner; and it must be possible to incorporate

a feedback system on the fine-positioner, leading to an integrated robot.

1.4.2 Gross-positioner

The gross-positioner must be capable of navigating the access route and reaching the engine

region of interest. In the reference case defined in the previous subsection 1.1.3, this implies

that it needs to be capable of reaching lengths over 1 m, with a maximum outer diameter (OD)

of 6 mm, and it must be capable of either bending or articulating to fit through the access

route shown in Figure 1.3. It also needs to be capable of at least 1 DOF to advance, and

potentially additional DOFs to negotiate obstacles and follow the access route. However, the

required number of DOFs depends on the gross-positioner concept selected.

The required force for the gross-positioner depends on the weight of the fine-positioner and the

rest of the robot parts, as well as on the reaction forces on the fine-positioner and end-e↵ector.

The development of the fine-positioner is the most challenging part of the robotic system so, to

simplify its development, it needs to be selected first. The chosen fine-positioner together with

the payload and other robot parts then determine the required force on the gross-positioner.

The gross-positioner must also be capable of accommodating any elements to actuate and

control the fine-positioner, as well as the payload and the feedback system.

1.4.3 Deployment mechanism

The deployment mechanism should be capable of correcting the misalignments from the fine-

positioner. The magnitude of the corrections depends on the accuracy of the fine-positioner

selected. Since the development of the fine-positioner is the most challenging part, this should

be developed first aiming to minimise the misalignments. Then the misalignments of the robot

can be experimentally estimated, and the deployment mechanism can be adapted accordingly.
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The deployment mechanism should also ensure a correct contact between probe and component,

forcing the probe to conform in the case of non-rigid probes. In the case of inspections performed

with a couplant medium, the deployment mechanism should ensure a correct coupling. Finally,

the deployment mechanism should be attachable to the fine-positioner, compatible with the

probe, and should have a minimal weight.

1.4.4 Feedback system

The feedback system should be capable of providing su�cient information about the state of

the robot to enable control and accurate positioning of the end-e↵ector. The information re-

quired depends on the type of robot selected for the fine-positioner and for the gross-positioner.

However, in general the feedback system should provide information that allows at least for the

determination of the end-e↵ector pose.

In the reference case previously defined in subsection 1.1.3, there is generally no direct line of

sight to the robot, and the robot must navigate inside the jet engine, which includes many

metallic components that act as a Faraday cage. This implies that, in general, a proprioceptive

feedback system compatible with these conditions is required. The feedback system also needs

to fit through the 6 mm diameter entry hole, and must be compatible with the rest of the

robotic system. These requirements are representative of typical on-wing inspections.

The feedback system should have a su�cient accuracy to enable a correct and reliable deploy-

ment of the probe on the desired location, as well as the insertion of the robot through the

access route. The required accuracy of the feedback system depends on the type of robot and

accuracy required for the fine-positioner. Thus, the accuracy of the feedback system must be

such that the fine-positioner can meet the requirements described in subsection 1.4.1.

1.4.5 End-e↵ector

The end-e↵ector must fit through the access route. In the reference case, this implies that

it must fit through 6 mm diameter holes. The end-e↵ector must also be capable of operat-



1.5. Project parts and thesis outline 57

ing inside a jet engine, which includes many metallic components, the majority of which are

non-ferromagnetic. In addition, the end-e↵ector should be compatible with the deployment

mechanism, and the rest of the robotic system.

1.4.6 Integrated inspection system

The requirements of the di↵erent parts comprising the full robotic system for on-wing inspec-

tions are interrelated. This implies that the performance of one of the parts can a↵ect the

requirements of another, and vice versa. In general, as noted in the previous subsections, the

most challenging part in the development of the full robotic system is the development of the

fine-positioner. Thus, this should be selected first with the minimum possible requirements from

the other parts. Then, the specifications of the chosen fine-positioner dictate the requirements

on the other parts.

1.5 Project parts and thesis outline

The development of the complete robotic system for on-wing inspections, schematised in Figure

1.4, requires work in all di↵erent parts of the system: the fine-positioner, the gross-positioner,

the deployment mechanism, and the feedback system. In addition, the application of the

robotic system to the reference case previously defined in subsection 1.1.3 requires a study

of the inspection to select the most suitable NDE technique and probe, determine the most

suitable inspection strategy, and evaluate the expected performance to determine the viability.

As previously mentioned, the most important and challenging part of the work is the devel-

opment of the fine-positioner. The second most relevant part of the work is the development

of the gross-positioner. These two parts complement each other, and combined lead to the

main robotic manipulator that can insert and position an end-e↵ector. In this regard, the de-

velopment of the fine-positioner combined with the gross-positioner represents the core of the

work presented in this thesis. The other parts of the robotic system, which are the deploy-
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ment mechanism and feedback system, together with the inspection study, are considered to

be complementary.

The development of the fine-positioner and gross-positioner requires first a literature review to

select the most suitable types of robot to be explored and developed. Then the development of

the selected type of fine-positioner requires detailed work on analysis and design of the robot,

fabrication, and control, which includes work on mechanical modelling, kinematics, and closed-

loop control laws. The development of the gross-positioner requires similar work on analysis,

design, fabrication, and control. However, in the case of the gross-positioner, the required

level of complexity is significantly lower since it is a simpler device with less DOFs and lower

accuracy requirements.

The rest of this thesis is then structured as follows. A literature review on robotic manipulators

and technologies relevant to on-wing operations is presented in Chapter 2. This literature review

leads to the selection of two types of robot as the most relevant to be explored for either the

fine-positioner and gross-positioner. These are concentric tube robots (CTRs), and soft robotic

manipulators with fluidic actuation.

A new, general study of the kinematic capabilities of CTRs is presented in Chapter 3. The

study is focussed on the follow-the-leader capabilities of these robots since, as elucidated in

this work, CTRs are one of the few snake-robots capable of perfect follow-the-leader motion,

which is desirable when advancing inside cluttered environments like a jet engine. The analysis

is general and considers all possible robot designs and controls to achieve follow-the-leader

motion. The result of the study identifies the complete follow-the-leader capabilities of CTRs,

which closes an open question. However, one of the conclusions from the study is that these

robots can generally not be used for the fine-positioner, since the viable lengths between the

robot distal end and the actuation box for it are excessively short, suggesting that soft robotic

manipulators need to be used instead. Nonetheless, the work on CTRs also shows that using

a CTR with non-annular cross section it is possible to create a robotic device of any required

length, which is the concept selected for the gross-positioner.

Research conducted on analysis and design of soft robotic manipulators with fluidic actuation is
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described in Chapter 4. The development of a novel, general framework for the design of these

robots is presented first. This leads to a set of design principles, and to new insights into the

behaviour of these robots. The development of a non-dimensional analysis is then also briefly

reported. The application of the design principles, new insights, and non-dimensional analysis

to find the most suitable design of the fine-positioner is finally presented which, together with

numerical methods for optimisation, yields the final design of the fine-positioner.

The work completed on control of the soft robotic manipulator to be used as the fine-positioner

is described in Chapter 5. The derivation of new, closed-form solutions to the full kinematics

of the robot assuming a set of deformation modes is presented first. The work conducted

on mechanical modelling is then summarised. Finally, the derivation of closed-loop control

laws based on this mechanical model is presented for planar operation of a segment of the

fine-positioner, laying the foundation for the development of general control laws.

In Chapter 6, the work conducted on the analysis and development of the gross-positioner,

deployment mechanism, and feedback system is described. The fabrication of the di↵erent

systems in the complete robotic system for on-wing inspections is also described in Chapter

6, particularly in terms of fine-positioner and gross-positioner. Research completed on path

planning, which can be used for navigation of the robot inside the engine, is also presented.

Finally, the proposed integration and expected operation of the complete on-wing inspection

system is outlined.

All considerations related to the inspection in the reference case defined in subsection 1.1.3

to guide and illustrate the development e↵orts in this work are presented in Chapter 7. The

inspection requirements and selection of the most suitable technique and probe are introduced

first. The study of the inspection in both planar and 3D case is then described. Finally, the

resulting expected performance of the inspection is reported.

Concluding remarks summarising the most relevant parts of the research reported in this thesis

are presented in Chapter 8. Future work to complete and translate the robotic system proposed

for on-wing inspections of jet engines to industry is also outlined in Chapter 8.



60 Chapter 1. Introduction

1.6 List of publications

The main parts of the research reported in this thesis have been published in the following set

of publications.

• A. Garriga-Casanovas and F. Rodriguez y Baena. Complete follow-the-leader kinematics

using concentric tube robots. International Journal of Robotics Research, 37.1, pp. 197-

222, 2018.

• A. Garriga-Casanovas, I. Collison, and F. Rodriguez y Baena. Towards a Common Frame-

work for the Design of Soft Robotic Manipulators with Fluidic Actuation. Soft Robotics,

5.5, pp. 622-649, 2018.

• F. Liu, A. Garriga-Casanovas, R. Secoli, and F. Rodriguez y Baena. Fast and Adap-

tive Fractal Tree-Based Path Planning for Programmable Bevel Tip Steerable Needles.

Robotics and Automation Letters, 1.2, pp. 601-608, 2016. c� 2016 IEEE.

• A. Garriga-Casanovas, A. A. M. Faudzi, T. Hiramitsu, F. Rodriguez y Baena, and K.

Suzumori. Multifilament Pneumatic Artificial Muscles to Mimic the Human Neck. IEEE

International Conference on Robotics and Biomimetics, 2017.

• A. Garriga-Casanovas and F. Rodriguez y Baena. Kinematics of Continuum Robots with

Constant Curvature Bending and Extension Capabilities. Journal of Mechanisms and

Robotics, 11.1, 011010, 2018.

• A. Garriga-Casanovas and F. Rodriguez y Baena. Manipulator, Patent Application Num-

ber 1812408.1. Patent Application, 2018.



Chapter 2

Literature Review on Miniature

Robotic Manipulators

A myriad of robotic manipulators and similar devices have been proposed in the literature. The

robotic manipulators and devices relevant to the insertion and deployment of probes on-wing

are reviewed in this Chapter. The scope of the review and the division of existing devices into

a set of categories are first described in section 2.1. The review of devices separated into six

di↵erent categories is reported in sections 2.2 to 2.8. The most promising devices selected for

the fine-positioner and gross-positioner are finally presented in section 2.9.

2.1 Preliminary considerations and classification

The aim of the review is to identify the most promising concepts to satisfy the needs of the fine-

positioner and gross-positioner, outlined in the previous chapter. Even though the devices in

this review are predominantly robotic, the review is general and considers all types of devices.

In addition, the review is not limited to devices conceived as manipulators, but includes all

devices that could be used or adapted as manipulators, or that could be combined with other

devices to make a manipulator, or that could be relevant to create a fine-positioner or a gross-

positioner.

61



62 Chapter 2. Literature Review on Miniature Robotic Manipulators

The requirements for the fine-positioner and gross-positioner outlined in the previous chapter

are similar to the requirements for operations in minimally invasive surgery (MIS). As a con-

sequence, a noticeable part of the devices in this review are originally conceived for medical

applications.

In the review, passive devices that do not o↵er any active DOFs are first briefly described in

section 2.2. Devices that can provide some mobility in the form of 1 or 2 DOFs are then briefly

presented in section 2.3. Then, devices that can be used to achieve 5 or 6 DOFs are reviewed

in more detail sections 2.4 to 2.8, which represent the core of the review.

There is a significant number of concepts in the literature that can lead to devices with 5

or 6 DOFs, and these present very di↵erent characteristics. To avoid having to consider the

suitability of each device individually, it is helpful to classify them into into a set of categories

that are relevant to the aim of the review, so that general features corresponding to each

category can be extracted, enabling a more general analysis. The classification proposed in this

work is based on the actuation, as it is considered to be the most determining factor. This

results into five categories of devices that can achieve 5 or 6 DOFs: tendon-driven devices with

multiple segments, concentric tube robots, devices actuated by a pressurised fluid, devices with

electromagnetic actuation, and devices actuated by shape-memory alloys (SMA).

2.2 Passive devices

2.2.1 Description and review

Passive devices refer to all rigid tools or flexible tools that can be used to insert and deploy

probes in situ. The simplest and most common tool used for on-wing inspections is a rigid

stick with the probe mounted at the distal end. Rigid tools with more complex geometries

to avoid obstacles and bring probes to a desired location also exist, which are similar to that

conceptually illustrated in Figure 2.1 (left). These can be used in on-wing inspections, and

they can be created by bending a rod or tube to the required shape.



2.2. Passive devices 63

Figure 2.1: Illustrative example of a rigid tool with a complex pre-defined geometry to insert
and deploy any end-e↵ector attached at the tip (left), and sword tool developed by WesDyne
Sweden AB (right), with a probe mounted on it including all the wires for the probe. Image
on the right courtesy of WesDyne Sweden AB.

Flexible tools to bring probes to locations that cannot be reached with rigid tools have also been

proposed. These flexible tools are typically designed to bend in a pre-defined manner when in

contact with structures in the environment, which serve to guide the tool. The most prominent

concept is a tool resembling a sword developed by WesDyne Sweden AB (Taby, Sweden) [10],

shown in Figure 2.1 (right). This is a slender tool designed to bend with a low sti↵ness in a

given direction, but to present a high sti↵ness in the orthogonal directions. Thus, it can deform

but it generally remains in a plane. It is therefore suitable for narrow environments where

contact forces deform and guide the tool, but where it is necessary for the tool to remain in a

given plane.

2.2.2 Analysis, discussion and applicability

In general, these passive tools o↵er 0 active DOFs by definition. Thus, the pose at the distal

end of the tool is determined by the pose at the proximal end, and any external wrenches acting

on the tool. This means that, for rigid tools, the pose of the end-e↵ector can be controlled by

imposing the pose at the proximal end. For flexible tools, the end-e↵ector pose depends on the

forces from the environment, so it is necessary to know the e↵ect of the environment on the

tool to insert or deploy any probe on the end-e↵ector.

Passive tools are simple, reliable, low cost, and can be developed in a short time. In general, the

applicability of passive tools for on-wing inspections is di�cult to define a priori, as it depends
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on the specific geometry of the obstacles in each application, and on the target end-e↵ector

pose relative to the access point. Thus, it needs to be considered on a case by case basis.

Nonetheless, passive tools are typically suitable to insert and deploy probes in locations with

relatively easy access, commonly those with direct line of sight or accessible via a single turn

with significant room to manoeuvre and proximity to the access point. In addition, passive

tools that are flexible can reach locations accessible via a narrow conducts that can guide a

flexible tool without openings that require steering the tool. In general, passive tools cannot

not advance along routes with significant lengths involving multiple turns.

Passive tools are therefore not suitable for the reference on-wing inspection case defined in

subsection 1.1.3. The access route shown in Figure 1.3 is long and presents multiple turns to

reach the engine region of interest, so a rigid tool cannot be inserted through it, and a typical

flexible tool cannot perform the first 90 degree turn in an open chamber.

2.3 Low mobility devices

Low mobility devices comprise all existing devices designed to actively provide 1 or 2 DOFs, or

to adopt or grow to a pre-defined shape when desired. The majority of low mobility devices are

borescope-type devices, such as that shown in Figure 2.2 (centre), but there are also devices

that can transition between a limp state and a rigid state, such as that shown in Figure 2.2

(left), and robots that can grow to advance in a desired direction [11].

2.3.1 Borescope-type devices

Description and review

Borescope-type devices, such as that shown in Figure 2.2 (centre), generally consist of a slender

structure with a circular cross section of nearly constant diameter. These devices have an

active segment capable of 1 or 2 DOFs at the distal part, and a passive body that is typically

flexible. The distal part can generally bend and is actuated by a set of 2, 3 or 4 tendons that
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Figure 2.2: (left) PretzelFlexTM which is a device that can transition between limp state
and rigid state with a pre-defined shape (image courtesy of Surgical Innovations ltd); (cen-
tre) borescope-type device (image courtesy of Olympus - copyright remains the property of
Olympus); and (right) diagram of a standard borescope-type device.

are distributed circumferentially, and are routed through the body of the device to an actuation

box at the base. The tendons force the distal segment to bend when tensioned, as illustrated

in Figure 2.2 (right). Controlling the tension or displacement in the di↵erent tendons allows

controlling the magnitude and direction of bending of the distal end. This provides 1 DOF in

devices with 2 tendons, which bend in a plane, and 2 DOFs in devices with 3 or 4 tendons,

which can bend in space. The end-e↵ector is typically attached at the distal end of the device,

and the passive, flexible body serves to insert the device in long routes.

Analysis, discussion and applicability

Borescope-type devices o↵er some mobility of the end-e↵ector, but cannot be used to position

it to any desired pose in space since they only o↵er a maximum of 2 DOFs. The insertion of the

borescope and the rotation at the proximal end can be used in practice to provide additional

DOFs. However, these additional DOFs are generally not reliable for accurate positioning of

a probe in in situ inspections. Reaction forces from the environment can be used to aid in

the mobility, such as forces applied on the distal end by pressing it against a concave corner of

a component. In this manner, it is possible to constrain certain displacement DOFs and use

the available control to modify the orientation of the device. However, operations involving

reaction forces to aid in mobility are typically strongly dependent on the operator skill and are
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unreliable.

Borescope-type devices are therefore generally di�cult to use alone for the deployment of

probes on-wing since they do not have su�cient DOFs. Borescope-type devices are generally

only suitable to deploy probes in cases where the pose at the proximal end of the distal, active

segment of the device is controllable and known, and the desired deployment location can

be reached by simply bending the distal end. However, these cases are not frequent in on-

wing inspections. The use of borescope-type devices in terms of NDE is primarily for visual

inspections, where the exact positioning of the camera is not crucial, and only the orientation

of the camera’s field of view is relevant, which can be provided by the 2 DOFs of the device.

Borescopes for visual inspections are available from companies such as GE or Olympus (Tokyo,

Japan), as the one shown in Figure 2.2 (centre).

Borescope-type devices can be used as gross-positioners in some cases to insert an end-e↵ector

or another tool for manipulation at their distal end. However, the viability as gross-positioners

is also di�cult to define a priori. Borescope-type devices can advance in cluttered environments

found in on-wing inspections by using the active distal part to steer, and using the environment

to support the flexible body, which can then keep the device advancing. However, they cannot

manoeuvre in open spaces, they can present di�culty to follow through sharp turns, and friction

can prevent their advancement in long routes with with curvature variations. Thus, the specific

application of borescope-type devices for the insertion of tools must be considered individually

in each case.

In the reference inspection case defined in subsection 1.1.3, borescope-type devices are not

suitable since they cannot be used to accurately deploy a probe. In addition, they cannot be

used as gross-positioners either as they can generally not perform the first 90 degree turn in

open space.
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2.3.2 Shape locking devices

Description and review

The main device among those that can transition between a pre-defined shape and a limp state

is the PretzelFlexTM by Surgical Innovations ltd (Leeds, UK) [12], shown in Figure 2.2 (left).

It consists of a structure divided into rigid elements that are linked together by an elastic

material. The structure has a cable routed through that, when tensioned, forces the individual

elements in contact, which makes the structure adopt a pre-defined geometry and hold it with

a relatively high sti↵ness. When the cable is not tensioned, the device presents a limp state.

Alternative shape locking devices can be conceived, for example using SMAs that can return to

a pre-defined geometry by the application of heat. However, the strain that can be recovered

using SMAs is limited [13]. Thus, alternatives to the PretzelFlexTM can generally not be used

as manipulators.

Analysis, discussion and applicability

Shape locking devices can only be in a limp state or in a rigid state with a pre-defined geometry,

as that shown in Figure 2.2 (left). In this regard, the pose at the distal end is either determined

by the external forces in the limp state, or fully specified by the pre-defined shape of the device

and the pose at the proximal end, as in rigid devices. Shape locking devices therefore have

0 DOF in general. In cases where the transition between limp state and rigid state can be

controlled, they can be considered to have 1 DOF.

The applicability of shape locking devices in terms of on-wing inspections is generally limited

to cases where the pose at the proximal end of the device can be controlled exactly, so that

the probe at the distal end can be deployed accurately. These cases are generally limited

to inspections in locations near the access point, or where the proximal end of the shape

locking device can be inserted with a rigid tool. In this regard, shape locking devices can

be considered an augmentation of rigid tools that enables reaching additional locations inside



68 Chapter 2. Literature Review on Miniature Robotic Manipulators

the engine thanks to the change in shape between limp state and rigid state. However, shape

locking devices cannot manoeuvre to negotiate obstacles, and thus their applicability in on-wing

inspections is limited.

In the particular reference case defined in subsection 1.1.3, shape locking devices are not suitable

since the access route requires manoeuvring. In addition, a shape locking device over 1 m long

is di�cult to create in practice. The use of a shape locking device to act as a fine-positioner is

not suitable, since these cannot provide 5 or 6 DOFs.

2.3.3 Vine-like robot

Description and review

Vine-like robots are a singular type of robot that can grow with a desired shape while main-

taining a constant diameter [11], as shown in Figure 2.3 (A, B, C, D). These robots consist of

a tubular membrane made of a soft plastic that can be pressurised. The membrane is initially

stored in a reel at the base of the robot. This is arranged in such a manner that, as the tubu-

lar membrane is pressurised and the material is released, this emerges in a process known as

eversion 2.3, shown in Figure 2.3 (A, B, C, D). In this manner, the robot can grow, and the

material is mechanically fed to the distal end through the eversion process.

Vine-like robots can steer as they grow thanks to a set of latches at their sides, which can

release an additional amount of membrane that is initially pinched, as shown in Figure 2.3 (E).

This works by lengthening the membrane at one side of the robot when the latch is activated,

making the robot steer. The release of material from a latch, however, is permanent, and thus

the steering of the robot is permanent. In this regard, once the robot has grown a given length

to a given shape, it cannot reposition its distal end as it does not have active DOFs.
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Figure 2.3: Concept of vine-like robot and implementation as it grows using emersion (A, B,
C, D). Steering mechanisms of vine-like robots using a set of latches that pinch material and
can be released when desired (E). Images reproduced from [11] with permission of the rights
holder, the American Association for the Advancement of Science.

Analysis, discussion and applicability

Vine-like robots are applicable as gross-positioners as they can advance following complex

routes in a relatively accurate follow-the-leader motion while maintaining a constant diameter.

In addition, thanks to the eversion mechanism, they create no friction as they advance, and

they can adapt to the environment, passing through small openings. However, they are not

suitable as fine-positioners as they do not o↵er active DOFs.

Vine-like robots could be used as gross-positioners in the reference on-wing inspection case

defined in subsection 1.1.3. However, they are considered to require a fine-positioner to accu-

rately deploy any probe, which needs to be mounted at the distal end of the vine-like robot.

Moreover, the steering capability and accuracy of vine-like robots is limited as it depends on a

set of latches. Thus, they could present di�culties to reach the point of entry into the chamber

with the HPC discs. It should also be noted that vine-like robots were proposed during the

third year of the work reported in this thesis, hence they were not considered in the initial

selection of the devices to be developed in the work.
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Figure 2.4: Typical tendon-driven robot composed of two segments with a flexible backbone
and cables distributed circumferentially (left) (image taken from [14], c� 2003 IEEE); and
possible arrangements of cables in the cross-section of tendon-driven devices (right) (image
taken from [15]).

2.4 Tendon-driven devices with multiple segments

2.4.1 Description and review

Tendon-driven devices correspond to all devices actuated by means of a set of cables that can

be tensioned to move and control the robot. The most common layout consists on a slender

structure acting as a backbone, which can be flexible or articulated, and which has a set of

cables distributed circumferentially, as shown in Figure 2.4 (left). The cables can be arranged in

di↵erent manners, as shown in Figure 2.4 (right), but in general they serve to create a deflection

on the backbone structure when tensioned, allowing control of the device. The borescope-

type devices presented in section 2.3.1 can be considered to be a simple type of tendon-driven

device, with one segment that can deflect in any direction providing 2 DOFs. However, tendon-

driven devices can be composed of multiple segments stacked serially, allowing multiple DOFs,

typically with 2 DOFs per segment. In this section, tendon-driven devices composed of multiple

segments or capable of more than 2 DOFs are reviewed.

Tendon-driven devices are the most popular type of snake-robot, and they have existed for

decades. Pioneering work started in the late 1960s [16], as shown in Figure 2.5 (a), it followed

in subsequent decades [17], with robots such as that shown in 2.5 (b), and it continues in more

recent years, e.g. [15, 18, 19]. The devices proposed in the literature range broadly in size and

mobility, from 3 mm OD catheters with 3 DOF [20] to 100 mm OD hyper-redundant robots [21],

as shown in Figure 2.5 (c) and (d), respectively.
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Figure 2.5: Illustrative examples of a broad range of tendon-driven robots corresponding to
(a) a device proposed in the late 1960s (image taken from [16]), (b) a robot developed in the
1990s (image courtesy of Victor Andersen, originally published in ASME Transactions, and
reproduced from the original publication [17]), (c) a recent 3 mm OD catheter with 3 DOFs
(image taken from [20], c� 2013 IEEE), and (d) a 100 mm OD manipulator with 32 DOFs
(image taken from [21]), c� 1999 IEEE.

The use of a flexible rod as backbone is popular in tendon-driven robots, and relevant examples

of such devices are [14], shown in Figure 2.4 (left), and [22], shown in Figure 2.6 (left). These

robots o↵er 2 DOFs per segment of the robot, they can be miniaturised, and are well-suited to

MIS. However, the force they can support in miniature size is limited.

To improve the force of tendon-driven robots with a flexible rod as backbone, an improved robot

concept is proposed in [23–25], known as the distal dextrous unit (DDU), shown in Figure 2.6

(right). The main particularity of this design is that, instead of using cables as tendons, it

uses microtubes made of nitinol arranged in a co-located manner (Figure 2.4 (right)), which

can transmit both tension and compression forces. Thus, to generate bending in a segment of

the robot as that shown in Figure 2.6 (centre) and (right), the DDU employs tension in the

microtube corresponding to one side of the cross-section, and compression in the microtubes

at the opposite side [26, 27]. As a result, the DDU can support 1 N forces with a design that

is 4 mm OD. The existing prototype [28–30], shown in Figure 2.6 (centre), is composed of 2

segments, and provides 4 DOFs.

One general limitation in the use of a flexible rod as backbone is the limited support it provides

to torsional forces. This issue can be addressed by using a notched structure as backbone,

and this has been used in designs from Stanford University [31, 32], Johns Hopkins University

[33–35], or Habrin Institute of Technology [36, 37], shown in Figure 2.7 (left), (centre), and

(right), as some relevant examples. The issue with torsion is also identified in a robot being
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Figure 2.6: Tendon-driven robots with a flexible rod as backbone, which correspond to a medical
device initially developed by Hansen Medical Inc. (left) (image taken from [22]), a prototype of
the DDU (centre) (image taken from [25], c� 2004 IEEE), and the concept for the DDU (right)
(image taken from [26], c� 2006 IEEE).

Figure 2.7: Tendon-driven robots with a notched structure as backbone from Stanford Univer-
sity (left) (image taken from [31], c� 2008 IEEE), Johns Hopkins University (centre) (image
taken from [33], c� 2011 IEEE), and Habrin Institute of Technology (right) (image taken
from [36]).

developed at Nottingham University [38,39], where the use of a notched structure as backbone

has been recently adopted. This robot is relevant as it is aimed at in situ inspections and

repairs [40], and has a significant number of DOFs that provide it with hyperredundancy [41].

The design of this robot and work published to date in terms of analysis and control [38, 42]

are also in line with other devices introduced above, e.g. [27, 31,32].

Alternative designs of flexible backbones also exist. The most relevant are a design with a

backbone made of a pressurized air tube [43], which provides more adaptability, a design with

an extensible backbone that provides one additional DOF per segment [44], and a design with

segments made of a granular medium that can be jammed with the application of vacuum [45],

which can support significant loads when jammed.

Tendon-driven robots with backbones made of rigid links and articulated joints also exist.
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Figure 2.8: Tendon-driven robots with backbones made of rigid links and articulated joints
corresponding to ViaCath design (a) and (b) (images taken from [47], c� 2007 IEEE), and
EndoWrist (c) and (d) (images taken from [48,49], respectively).

Prominent ones are devices developed for MIS such as the Endowrist [46], by Intuitive Surgical

(Sunnyvale, USA), and Viacath [47], initially developed by Hansen Medical (Mountain View,

USA), shown in Figure 2.8 (a) and (b), respectively. These two devices provided the foundation

for the current EndoWrist [48,49], shown in Figure 2.8 (c) and (d). Rigid links are also included

in some tendon-driven robots developed by the company OC Robotics [50] (Bristol, UK),

currently part of GE, although the company also has robots with flexible elements [51, 52].

2.4.2 Analysis, discussion and applicability

The tendon-driven devices introduced in previous paragraphs are generally composed of seg-

ments that provide 1 or 2 DOFs, each actuated with 3 or 4 cables. Multiple segments are

then stacked serially to create a manipulator. The cables actuating the distal segments are

routed through the proximal segments, which leads to a certain coupling in the tension and

displacement applied to control the di↵erent cables, and complicates the analysis and control of

the robots. This complex analysis and control was already identified in [14], and is considered

in the majority of devices presented in previous paragraphs. Reference work for the quasistatic

analysis and control of tendon-driven robots was developed at Stanford University and is pre-

sented in [31,32], and more recent work on static and dynamics in the general case is reported

in [18].

Tendon-driven robots are generally capable of 6 DOF or more and can have a diameter of a

few millimetres, e.g. [20, 32, 48]. Moreover, their design generally o↵ers a working channel to

accommodate other instruments, and they can support payloads of near 100 g with diameters

of less than 1 cm [33, 39], which makes them well-suited devices as fine-positioners. It should
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be noted, however, that tendon-driven robots require an accurate control of the tension in the

cables for accurate positioning, which complicates coupling to other devices. The use of tendon-

driven robots as gross-positioners is more di�cult due to the fact that they are complicated to

control when interacting with the environment, despite recent progress [53]. In addition, they

are di�cult to create with long lengths, high mobility, and small diameters (one of the most

slender devices manufactured is [41]).

In the reference on-wing inspection case previously defined in subsection 1.1.3, a gross-positioner

over 1 m long and with a 6 mm OD is required, which is di�cult to achieve with tendon-driven

robots. A tendon-driven fine-positioner would be an interesting option if it was possible to

accurately control the tension in the cables. However, the cables of the fine-positioner must

be routed through a long gross-positioner, which introduces friction, elasticity, uncertainty and

potentially a certain degree of slack in the system. This complicates significantly the control

of any tendon-driven fine-positioner in practice, compromising their viability.

2.4.3 Singular devices

Two other tendon-driven robots exist, which di↵er significantly from the other designs and

need to be reviewed separately. The first is the FLEX System [54, 55], which is composed of

two rigid tubes with a high number of articulations arranged concentrically. The outer tube

has three cables threaded through and equally spaced circumferentially, whereas the inner tube

has one central cable threaded through [56]. Thus, tensioning and releasing the cables of the

outer and inner tube allows advancing them reciprocally in a follow-the-leader motion. The

three cables of the outer tube allow steering the distal section of the robot to select the desired

path [57, 58]. The FLEX System is attractive for operation in cluttered environments like a

jet engine, especially to be used as a complete robot that acts as an accurate gross-positioner

and does not require a fine-positioner. However, the existing design is 300 mm long and 10

mm OD, and the required length extension or diameter reduction for use in the reference case

defined in subsection 1.1.3 are not possible, as confirmed in correspondence with the inventor

of the device.
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Figure 2.9: Singular tendon-driven robots corresponding to the FLEX System (left) (image
taken from [56]), and an interlaced robot consisting of two conventional tendon-driven robots
arranged concentrically (right), courtesy of [59].

The second singular robot is the combination of two standard tendon-driven robots with flexible

backbones arranged concentrically [59]. The robot is designed for a reciprocal actuation of the

two composing devices, such that at each instant of time one of them is maintained fixed and

thus used to preserve the shape of the robot, while the other advances one section and steers.

In this manner, the robot can advance in follow-the-leader motion. The existing prototype,

however, presents a significant diameter and a limited length, which make it unsuitable as

a gross-positioner in the reference on-wing inspection case defined in the previous subsection

1.1.3. In addition, it requires relatively accurate control of the tension in the cables as in

standard tendon-driven robots, which makes it di�cult to use as a fine-positioner.

2.5 Concentric tube robots

2.5.1 Description and review

Concentric tube robots consist of a set of precurved, super-elastic tubes arranged concentrically,

as shown in Figure 2.10 (left) and (right). The geometry of the robot is thus determined by

the elastic equilibrium of the tubes that compose it. The control of the relative insertion

and rotation of the tubes (typically with an actuation box at the robot’s proximal end) enables

control of the robot’s motion, generally with 2 DOFs associated to each tube. It should be noted
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Figure 2.10: Sketch of a general CTR composed of three tubes illustrating the concept (left),
and example of CTR robot in practice (right). The right image is taken from [60], c� 2009
IEEE.

that the motion achievable by a specific robot depends on its design in terms of precurvature

and sti↵ness of the tubes that comprise it.

CTRs were initially proposed over a decade ago [61], [62], and since then research on di↵erent

aspects of CTRs has been reported in the literature. The mechanical analysis of these robots is

well established, with traditional approaches assuming no external loads and no friction, such

as in [63] and [64], and subsequent studies considering external forces, as in [65] and [66], and

also including friction between tubes, with [67]. As a result, accurate control of the robots is

possible ( [68], [69]), and stable paths can be planned ( [60], [70], [71]). In addition, feedback

systems based on Fibre-Bragg Gratings (FBG) have been proposed and incorporated into the

robots ( [72]), enabling closed-loop control with proprioceptive sensing. All this established

research has allowed applications in MIS, including [73–77], which showcase the capabilities of

CTRs.

One of the main attractions of concentric tubes robots is the kinematics that they can achieve.

CTRs are capable of follow-the-leader motion, as well as moving in general directions oblique to

their centreline, which allows repositioning and compensating for external forces. The known

capabilities for follow-the-leader motion at the start of the work reported in this thesis, how-

ever, were limited to robot designs composed of piecewise constant curvature tubes, and it

was unknown whether CTRs were capable of follow-the-leader motion in other designs and

trajectories. Finding the full capabilities for follow-the-leader motion is particularly relevant

to determine the applicability of these robots to operate in cluttered environments like a jet
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Figure 2.11: Example of CTR composed of two tubes with non-annular cross section to prevent
relative rotation of the tubes and thus prevent snap-through instability. Image taken from [79].

engine.

The practical application of concentric tubes robots can be limited by an instability known as

snap-through [78], which is inherent of these robots. Such instability is a consequence of the

finite torsional sti↵ness of the tubes. It occurs when a variation in the torsional deformation of

the tubes can lead to a lower energy state of the overall robot, at which point the tubes adopt

the new configuration abruptly, changing their torsional deformation and thus the shape of

the robot. This can make the robot unstable at certain configurations. An analytical solution

predicting the snap-through instability exists for CTRs with tubes with constant curvature

[69, 78], which indicates that the unstable configurations increase with robot length and with

the curvature of the tubes. However, general solutions are not available.

The use of tubes with non-annular cross section, as shown in Figure 2.11, has been proposed to

overcome the snap-through instability [79,80], where the non-annular cross section prevents any

relative rotation of the tubes, and thus any snap-through. The main disadvantage of employing

non-annular cross section is that each tube only provides 1 DOF, which implies either a lower

mobility or greater number of tubes required, and therefore greater diameter, for an equivalent

capacity. At larger diameters, the risk of kinking is higher, and outer tubes have significant

sti↵ness, which dominate the behaviour of the robot and can be undesirable for robot mobility.
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Nonetheless, CTRs with non-annular cross section can achieve practically any desired length

without instabilities.

2.5.2 Analysis, discussion and applicability

In general, CTRs can o↵er 6 DOFs or more, and typically have millimetric diameters. This,

together with the ability to move in a follow-the-leader manner, makes CTRs well suited for

on-wing operations. They could be used as gross-positioners, as fine-positioners, or as complete

robots that combine both. The main disadvantage of standard CTRs with annular cross section

is the snap-through instability, which can limit their length and maximum curvature. However,

the general capabilities for follow-the-leader and corresponding snap-through were unknown

at the start of this work. In addition, CTRs with non-annular cross section can be used

to overcome the snap-through instability in cases where significant length is required, at the

expense of mobility.

In the reference on-wing inspection case previously defined in subsection 1.1.3, CTRs could be

considered as both gross-positioners or fine-positioners a priori. In the case of using a CTR as

fine-positioner only, the tubes of the robot need to be routed through the gross-positioner to an

actuation box outside the engine, where the insertion and rotation of the tubes is controlled.

In the case of using CTRs as gross-positioners, a non-annular cross section may be necessary to

prevent snap-through considering the required length of over 1 m. The final design and viability

of CTRs, however, depends on the full capabilities for follow-the-leader achievable, and on the

corresponding e↵ects of the snap-through instability, which need to be studied in detail.

2.6 Fluidic actuation devices

Fluidic actuation devices include all manipulators and similar devices that rely on a pressurised

fluid to actuate and control them. An important part of fluidic actuation devices are soft

robots actuated by a pressurised fluid. These are devices made of soft materials and with easily



2.6. Fluidic actuation devices 79

Figure 2.12: Examples of devices with fluidic actuation corresponding to (a) manipulator from
Festo (Sankt Ingbert, Germany) (image taken from [81], c� 2014 IEEE), (b) soft robot segment
from Lyon University (image taken from [82]), (c) bending segment from Harvard University
(image taken from [83], c� 2014 IEEE), and (d) soft robotic manipulator from the Massachusetts
Institute of Technology (image taken from [84]).

deformable structures, which comprise a set of chambers that can be pressurized to achieve

structural deflection, and thus generate motion [85]. The field of soft robotics has received

significant attention in recent years [86, 87], and a myriad of soft robots with fluidic actuation

have been proposed, such as those shown in Figure 2.12. As a consequence, an important part

of the devices in this section are soft robots with fluidic actuation.

The fluidic actuation devices relevant to the aims of this review generally need to be capable

of bending or articulating to provide DOFs and navigate inside cluttered environments. This

bending can generally be achieved in two elementary ways: with an extension in the part of

the structure that is pressurised, or with a contraction in the part of the structure that is

pressurised. Fluidic actuation devices can then be divided into two subcategories: extending

devices and contracting devices. This division is further elucidated in Chapter 4.

Extending devices with fluidic actuation are the most popular. The most common layout

consists on a deformable structure with one or multiple chambers, an inextensile region at one

side of the chamber, and a region that can easily extend at the opposite side [89, 89–97], three

examples of which are shown in Figure 2.13. Thus, the structure tends to bend when a chamber

is pressurised, which provides 1 DOF associated to the pressurised chamber. Combining two

or three chambers in a structural segment, this can provide various DOFs such as that shown

in Figure 2.13 (c), and stacking multiple segments serially can lead to a robotic manipulator,
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Figure 2.13: Extending devices corresponding to (a) a segment with one chamber and an
inextensible layer at one side that produces bending when pressurised (image taken from [88]),
(b) a prototype of a similar device (image taken from [89]), and (c) a segment with three
chambers capable of bending in any direction in space (image taken from [90]).

Figure 2.14: Sketch of segment of FMA (left) and detail of outer wall of FMA made of rub-
ber with circumferential fibres (centre) (images taken from [98], c� 1992 IEEE), and robotic
manipulator made of two FMA segments (right) (image taken from [99]).

such as [84] shown in Figure 2.12 (d).

A pioneering and prominent soft robot with fluidic actuation designed to work as an extending

device is the flexible micro-actuator (FMA) [98,100,101]. The concept for a segment of the FMA

is shown in Figure 2.14 (left). It consists on a cylinder with three longitudinal chambers that

can be pressurised independently. The structure is made of rubber, and it has circumferential

fibres on the outer wall, shown in Figure 2.14 (centre), which prevent it from expanding radially

while allowing it to extend longitudinally. Thus, a di↵erential pressure in the chambers leads

to bending, whereas an increased pressure in all chambers leads to extension. As a result, a

segment of FMA can bend in any direction and also extend, providing 3 DOFs. A manipulator

can then be created by stacking multiple segments serially, as shown in Figure 2.14 (right).

The FMA has been applied to make robotic fingers [102], legs [103], manipulators [99], snake-
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Figure 2.15: CAD of a segment of Sti↵-Flop in frontal section view (left) and top view (centre)
(images taken from [113], c� 2015 IEEE), and prototype of segment of Sti↵-Flop (right) (image
taken from [115]).

robots locomoting in pipes [104, 105], and colonoscopy instruments [106], with sizes ranging

between 1 mm OD and 20 mm OD [101]. In addition, the FMA inspired work in multiple

similar devices [107–111]. A general drawback of all these devices is the limited force they can

support. A robot concept aimed to address this issue is the Sti↵-Flop robot [112, 113], shown

in Figure 2.15, which is a robotic manipulator aimed at MIS [114,115]. It has a similar layout

as the FMA, with three chambers per segment, but also includes a granular jamming element

that can make a segment sti↵ when activated [116], as shown in Figure 2.15. However, the

Sti↵-Flop concept only o↵ers higher force when jammed, but not when moving its segments

to position its distal end, which limits its advantages. In addition, both the Sti↵-flop and the

FMA are designed to have a constant cross section where the area of the pressurised chambers

is relatively low. This can limit their force, as elucidated in the study in Chapter 4, and is an

area of potential improvement.

Another layout of extending devices consists on three extensible tubes that can be pressurised,

arranged in parallel between two platforms, as shown in the examples in Figure 2.16. Thus,

a di↵erential pressure in the tubes generates bending, whereas an increased pressure leads to

expansion. These designs can be considered equivalent to a scaled-up version of the FMA, since

they comprise three parallel chambers that are designed to extend. These devices have been

proposed to create robotic manipulators such as [117–121], shown in Figure 2.16 (a)-(e). More

recently, improved versions have also been reported in the literature [122], where a tendon

is included inside each extensible tube to control contraction of the tube and thus improve

accuracy of the manipulator. In general, however, the size of these devices is a few centimetres

in diameter, and miniaturisation tends to lead to a design equivalent to the FMA layout in
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Figure 2.16: Examples of designs consisting on three extensible tubes arranged in parallel be-
tween two platforms, corresponding to the design of a robot known as Amadeus (a), (b) (images
taken from [117,118], respectively, c� 1997 IEEE and c� 2001 IEEE), a robotic manipulator (c)
(image taken from [119], c� 2001 IEEE), a prototype of a segment designed to provide bending
(d) (image taken from [120], c� 2004 IEEE), and a prototype of slender segment design capable
of bending and extending (e) (image courtesy of [121], c� 2012 IEEE).

terms of principle of operation.

Contracting devices with fluidic actuation also exist. These generally rely on pneumatic artifi-

cial muscles (PAMs), which are elongated flexible structures with a bladder designed to expand

radially when pressurised, and as a consequence to produce a longitudinal contraction [123,124].

In the majority of cases, a segment of a contracting device consists on 3 or 4 PAMs arranged

in parallel and attached to a flexible structure like a rod or a notched cylinder [125–133], as

shown in Figure 2.17 (left) and (right). Thus, when one or more of the PAMs are pressurised,

these contract, making the device bend. Multiple segments can be stacked serially to create a

manipulator such as that shown in Figure 2.17 (left). Contracting devices with other layouts

also exist, such as that shown in Figure 2.17 (centre), which consists on a set of balloons at-

tached between two sides of articulated joints [134]. Thus, when the balloons are pressurised,

they expand radially, creating tension in their structure that actuates the joint.

2.6.1 Analysis, discussion and applicability

Devices with fluidic actuation are generally robust, compliant, and miniaturisable to diameters

of a few millimetres thanks to their design simplicity. They can provide multiple DOFs, and

manipulators with 5 or 6 DOFs exist [100,129]. In addition, they are versatile in design, so they

can accommodate payloads in their structure, and they can be coupled to other devices, since
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Figure 2.17: Contracting devices with fluidic actuation corresponding to prototype of manipu-
lator with three segments (left) (image taken from [129], c� 2015 IEEE), concept of design made
of articulated joints and balloons that can be pressurised (centre) (image taken from [134]),
and CAD of device made of four PAMs arranged in parallel inside a notched cylinder (right)
(image taken from [131], c� 2015 IEEE).

they only require a set of tubes delivering pressure for actuation and control. Moreover, they

can collapse on themselves with the application of vacuum, which enables insertion through

very confined spaces. Both extending and contracting devices exist, although their relative ad-

vantages and disadvantages are currently not well established. Some new insights are presented

in the study in Chapter 4.

The main limitation in the devices introduced in the previous subsection is that they have

low force, which limits the applicability in miniature size. Even in one of the most relevant

existing designs, the FMA, the force that one segment can support with a 6 mm OD is only a

few grams. Work to explore improvements on the design of the robots exist [135–137], but in

general their force remains low. Sti↵-Flop is the only design that can support significant forces

when it is fixed, but it loses the force when it needs to move. Another general limitation of

devices with fluidic actuation, particularly of soft robots, is their di�cult control, which limits

their accuracy.

Devices with fluidic actuation can therefore be suitable as fine-positioners. In particular, designs

similar to the FMA can be used to create manipulators with 5 or 6 DOFs with diameters of a

few millimetres. Devices with fluidic actuation, however, are not suitable as gross-positioners

that need to manoeuvre in space as they generally cannot support significant forces to carry

a fine-positioner and end-e↵ector. Nonetheless, they can be considered as gross-positioners in

very cluttered environments where they can be supported by the surrounding structures since
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Figure 2.18: Robots with electromagnetic actuation composed of a set of rigid links and joints
actuated by electric motors, corresponding to (a) a snake-robot for pipe inspection (image
taken from [138], c� 2010 IEEE), (b) a manipulator resembling an elephant trunk (image taken
from [139]), (c) a versatile snake-robot (image taken from [140]), and (d) a manipulator for
MIS (image taken from [141], c� 2011 IEEE).

they are compliant and thus adapt to complex geometries.

In the reference inspection case defined in subsection 1.1.3, devices with fluidic actuation and

particularly FMA-type robots could be suitable solutions as fine-positioners. They can meet the

size and mobility requirements, they are easily attachable to any gross-positioner, and they can

incorporate the payload and other systems. However, they cannot be used as gross-positioners

since they cannot navigate the open parts of the access route.

2.7 Electromagnetic actuation devices

2.7.1 Description and review

Electromagnetic actuation devices comprise all devices that rely on electromagnetic forces for

actuation. Solutions involving electromagnetic fields external to a device, such as [8, 142], are

not included since they are not viable inside jet engines. The devices in this category are devices

with embedded electromagnetic actuation, chiefly in the form of electromagnetic motors.

The most common design consists on a set of rigid links and articulated joints stacked serially,

with electric motors embedded in the links that actuate the joints. Thus, robotic manipulators

with multiple DOFs can be created, as well as hyper-redundant robots with the ability of

self-locomotion. Various examples of such robots exist, including a manipulator resembling an
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Figure 2.19: Design of i-snake robot with 6 DOFs (a), CAD rendering of a segment of i-snake
(b), and detail of a universal joint of i-snake (c). Images courtesy of [146, 147], c� 2011 and
2012 IEEE, respectively.

elephant trunk [139], a snake-robot for pipe inspection [138], a robotic manipulator for MIS

named i-snake [141], a water-proof snake-robot design [143], and a versatile robot capable of

self-locomotion in di�cult terrain [140, 144, 145]. The most representative of these are shown

in Figure 2.18 (a-d).

From these robots, the most relevant to this review is the i-snake [146]. It has a 13 mm OD,

and comprises a set of rigid links and articulated joints with 1 or 2 DOFs [147], as shown in

Figure 2.19 (a) and (c). Each link incorporates the motors for joint actuation, as shown in

Figure 2.19 (b), as well as micro-intertial sensors, which provide feedback of the robot state for

control [148,149].

2.7.2 Analysis, discussion and applicability

The devices with electromagnetic actuation introduced in the previous subsection are generally

modular and can provide 6 DOFs or more. They are generally made of joints that can rotate

45 degrees or more, and they can o↵er a working channel to incorporate payload, as in [146].

However, the existing devices have a significant diameter, and miniaturisation is generally

di�cult since the reduction in motor torque is significantly greater than the weight reduction.

The existing robot with the smallest diameter is the i-snake, but its outer diameter is still

13 mm, and with this size it can barely support its own weight in motion against gravity for

designs with 5 or 6 DOFs. Thus, diameter reduction is considered practically impossible, as
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confirmed with researchers that led the i-snake project.

The modularity and DOFs provided by devices with electromagnetic actuation implies that they

could be used as gross-positioners in some scenarios. However, these devices are generally made

of rigid links, which limits their adaptability and manoeuvrability, and they have diameters

of over 1 cm, so they can only be used in applications with significant room. Devices with

electromagnetic electromagnetic actuation could also be used as fine-positioners in some cases

since they can provide 6 DOFs, they can be easily coupled to a gross-positioner, and they

can incorporate payload. However, their diameter is significant, so they are only viable in

applications where the access route has an opening of well over 1 cm.

In the reference on-wing inspection case previously defined in subsection 1.1.3, devices with

electromagnetic actuation are not suitable as fine-positioners nor as gross-positioners since the

entry hole has a 6 mm diameter. Diameter reductions of existing designs such as the i-snake

to 6 mm OD while maintaining su�cient mobility and capability of carrying some payload are

considered practically inviable.

2.7.3 Singular devices

A set of singular devices with electromagnetic actuation that do not rely on motors to create

a manipulator also exist. These are briefly reviewed in this subsection.

The first is a snake-robot, shown in Figure 2.20 (c), which is capable of swimming and was

developed in the LAMPETRA project [150]. It consists on a set of links and articulated joints,

and employs pairs of magnets in each joint, the relative orientation of which can be modified,

to generate actuation. However, miniaturisation of this concept is not considered to be possible

as it o↵ers relatively limited specific force. The device is designed to operate in water with

its weight supported by forces, but is generally not applicable as a gross-positioner or fine-

positioner.

The second is an inspection robot developed by Alstom Inspection Robotics (currently part of

GE Inspections) [151, 153], shown in Figure 2.20 (a), (b). It is a robot that can be inserted
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Figure 2.20: Singular robots with electromagnetic actuation corresponding to a robot developed
to assemble and move with magnetic wheels once inserted into the region of interest (a) and (b)
(images taken from [151]), a snake-robot capable of swimming developed in the LAMPETRA
project (c) (image taken from [150], c� 2012 IEEE), and an electroactive gripper (d) (image
courtesy of Yoseph Bar-Cohen, JPL/Caltech/NASA, [152]).

through 15 mm diameter holes, and folds once inside using electric motors, becoming a vehicle

with magnetic wheels that can move attached to ferromagnetic components to perform inspec-

tions. This robot concept, however, is not applicable to in situ inspections of machinery that

includes few ferromagnetic components, such as a jet engine. In addition, it is not suitable for

navigation in the environments considered in this work, which involve advancing in cluttered

regions and performing turns in open spaces that require manoeuvring, where a gross-positioner

and fine-positioner is a more appropriate concept.

The last type of singular devices are those using electro-active materials to generate actuation

[152], as exemplified by the gripper shown in Figure 2.20 (d). These devices rely on the

piezoelectric [154], dielectric [155,156], and electrostrictive [157] properties of certain polymers

in order to generate actuation. These technologies, however, are still at early stages, and are

focussed on the development of single actuators rather than the design of complete robotic

devices. In addition, most of these technologies require high voltages to generate actuation

with usable strokes, and these voltages cannot be used inside explosive environments like a jet

engine [158]. As a result, devices with electro-active materials are not considered to be practical

for the creation of a gross-positioner or fine-positioner for in in situ inspections.
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Figure 2.21: Schematic of a segment of a typical device with SMA actuation (left) (image taken
from [164], c� 1998 IEEE), prototype of miniature manipulator with SMA actuation (centre)
(image taken from [165]), and another example of miniature manipulator with SMA actuation
(right) (image taken from [166]).

2.8 Shape memory alloy actuation devices

2.8.1 Description and review

Shape memory alloys (SMAs) are materials capable of recovering a predetermined geometry

when subject to temperature variations [159]. This property can be exploited to generate

actuation [160], and it has been implemented in manipulators and similar devices. The set of

snake-robots and similar devices that rely on SMAs for actuation and control comprise this last

category.

The force and capability of recovering a memorised shape provided by SMAs under temperature

increases is significant [161]. Instead, the performance in the inverse process, i.e. shape recovery

when cooled, is lower [162], and cannot be reliably applied to the actuation of robotic devices.

As a consequence, SMAs are generally employed either antagonistically or with elastic restoring,

so that the SMA only provides actuation in one direction. The former is the most common

option in robotic devices since it allows greater controllability and higher force, as in [163].

Thus, the majority of devices in this section use antagonistic SMAs.

The design layout of snake-robots and similar devices actuated by SMAs generally consists on

a slender backbone, which can be either flexible [165] or rigid [167], with three SMA elements

distributed circumferentially around it, e.g. [164], as shown in Figure 2.21 (left). The SMA

elements are typically helical, as also shown in Figure 2.21. This is because SMAs tend to

have a relatively low usable strain [160], so to generate a su�cient stroke for actuation, a
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helical geometry is required. The helical SMA elements are generally designed to contract

when heated. Thus, they pull between the ends of the backbone when activated to generate

bending. A segment with three or four SMA elements can thus be controlled to bend in any

direction, providing 2 DOFs.

Multiple segments with 2 DOFs can be stacked serially to create a manipulator with 6 DOFs

or more, as exemplified in Figure 2.22 (b). In manipulators, the heat is typically generated

by Joule e↵ect through the SMA and dissipated by convection. Thus, only a set of wires

connected to each SMA element are required to actuate and control these devices. The layout

of a manipulator made of multiple 2 DOF segments is similar to that of conventional tendon-

driven robots. However, in SMA, only wires transmitting electricity are required, instead of

tendons transmitting mechanical work.

Multiple examples of these devices with SMAs relevant to create a manipulator exist. Pioneering

work dates back to over two decades ago [168]. Since then, a various devices have been created

with sizes ranging from a few millimetres in diameter, e.g. [164–166, 169, 170], some of which

are shown in Figure 2.21 and in Figure 2.22 (a) and (c), to over one centimetre OD [168], as

shown in Figure 2.22 (b). The design layout in all these devices is like the one described in the

previous two paragraphs.

2.8.2 Analysis, discussion and applicability

Devices with SMAs as actuation can create manipulators with multiple DOFs and a miniature

diameter. The segments of these devices are typically capable of 45 degrees bending or more,

they o↵er significant force to support their own weight and significant payload, and they are

modular since they only require a set of wires to provide electricity, so they can be easily

coupled to other devices. In addition, these devices o↵er a large working channel, so payload

and instrumentation can be easily incorporated, as shown in Figure 2.22 (c). Furthermore, the

design of devices with SMAs can be easily adapted in terms of length and diameter, which

makes them highly versatile.
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Figure 2.22: Prototype of active catheter actuated by SMA with 0.9 mm OD (a) (image taken
from [170]); snake-robot composed of multiple segments actuated by SMAs (b) (image taken
from the article [168] authored by S. Hirose, K. Ikuta and M. Tsukamoto, entitled ”Development
of a shape memory alloy actuator. Measurement of material characteristics and development
of active endoscopes”, and published at Advanced Robotics, copyright c� Taylor Francis and
Robotics Society of Japan, reprinted by permission of Taylor Francis Ltd, www.tandfonline.com
on behalf of Taylor Francis and Robotics Society of Japan); and schematic of integrated
manipulator with payload and instrumentation (c) (image taken from [164], c� 1998 IEEE).

The main drawbacks of devices with SMAs are the di�cult manufacturing and control. Work

on manufacturing and material selection is reported in the literature [164, 168, 170]. However,

it generally requires specialised equipment and extensive experience, as confirmed in discussion

with experts in the field. Similarly, some work on control of SMA is published, e.g. [163, 171–

174], but generally the control is complex and sensitive to factors such as the environment, the

operation history and the manufacturing, which makes the practical implementation di�cult.

Moreover, the heat dissipation of SMAs needs to be carefully considered when operating in

confined environments, as it can a↵ect any inspection operation.

Devices with SMAs are therefore well suited as fine-positioners. However, in practice, their

fabrication and control can be very di�cult, and can require significant time and expertise to

achieve the required performance for a fine-positioner. Devices with SMAs are generally not

appropriate as low-mobility gross-positioners that deform when in contact with the environment

since the SMAs can be delicate. However, they could also be considered as integrated robots

including both gross-positioner and fine-positioner. The length, diameter, force and accuracy

achievable depend on their fabrication and control, which needs to be studied in detail.
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In the refeence on-wing inspection case previously defined in subsection 1.1.3, devices with

SMAs could be considered as fine-positoiners. Still, the di�cult fabrication at miniature size,

and the complex control in a confined environment with potential temperature variations would

need to be carefully considered as they could complicate significantly the development of such

a fine-positioner. The creation of an integrated robot comprising fine-positioner and gross-

positioner fully actuated by SMAs is not considered viable, since it would require a 6 mm OD

and a length over 1 m, an aspect ratio that is beyond existing prototypes.

2.9 Selection

Considering the review presented in the previous sections, two robot concepts were selected as

the most promising to be explored for the insertion and deployment of probes on-wing. These

are concentric tube robots, and soft robots with fluidic actuation, with a layout similar to that

of the FMA, which can serve as initial reference design.

Soft robots with fluidic actuation can have diameters of a few millimetres, they can include a

working channel, and they o↵er a relatively modular design capable of achieving 6 DOF. Their

actuation and control only require three miniature, flexible conducts per robot segment, which

makes them versatile and compatible with any gross-positioner, as opposed to tendon-driven

devices. Manufacturing of the soft robots is relatively simple and does not require specialised

equipment or extensive experience, unlike in robots relying on SMAs. Moreover, these devices

can be easily scaled and miniaturised maintaining su�cient force to support their weight and

additional payload, unlike devices employing electric motors.

CTRs o↵er a millimetric diameter, a working channel, a mobility that can reach 6 DOFs or

more, and the capability of navigating in cluttered environments and advancing in follow-the-

leader motion. In addition, they are simple in design and manufacturing. Thus, they can be

considered as gross-positioners and as fine-positioners.

It should be noted that vine-like robots are also a relevant robot concept with potential as

gross-positioners. However, they were initially proposed during the third year of the work
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reported in this thesis, so they were not considered in the initial literature review. In addition,

they have limited accuracy and mobility, and they do not o↵er active DOFs. Thus, they are

not explored further in this work.

2.10 Conclusions

Soft robots with fluidic actuation and CTRs are then the most promising concepts for this work.

However, their capability of meeting the requirements described in Chapter 1 is unknown. Thus,

research is necessary.

For CTRs, research on their kinematic capabilities is necessary to determine their full potential

and applicability. This involves studying all possible design and control possibilities to achieve

follow-the-leader motion. Research addressing this matter is presented in the next Chapter 3.

For soft robots with fluidic actuation, research on design and control is necessary to achieve

devices with su�cient force and accuracy to deploy probes. The design of these devices is

studied in Chapter 4 from a general perspective to find the most suitable design of a soft

robotic manipulator. The work conducted on control of soft robotic manipulators with fluidic

actuation is presented in Chapter 5.



Chapter 3

Concentric Tube Robots

The kinematic capabilities of CTRs are investigated in this chapter to find the complete follow-

the-leader possibilities of CTRs. This allows for the determination of the general potential of

these robots, and their suitability to on-wing operations. The research presented in this chapter

is an edited version of that published in:

• A. Garriga-Casanovas and F. Rodriguez y Baena. Complete follow-the-leader kinematics

using concentric tube robots. International Journal of Robotics Research, 37.1, pp. 197-

222, 2018.

The chapter is structured as follows. Initial considerations for the research are first introduced

in section 3.1. The equations governing the behaviour of a general CTR are derived in section

3.2. The study of follow-the-leader motion is presented section 3.3, where a new, closed-form

solution corresponding to the set of trajectories traceable in a follow-the-leader configuration

is derived. In section 3.4, additional maneuvers of interest that can be drawn from the analysis

of follow-the-leader motion are described. The e↵ects of torsion of the tubes composing a CTR

is considered in section 3.5, where a closed-form solution to the tubes’ torsion in a two-tube

configuration is derived. Lastly, a case study involving simulation and experiment is presented

in section 3.6, together with the corresponding results. Conclusions from the research are drawn

in section 3.7, where the suitability of CTRs for on-wing operations is also discussed.

93
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3.1 Introduction

As previously mentioned in Chapter 2, CTRs are attractive to operate in cluttered environ-

ments, such as those found in MIS or on-wing inspections, since they o↵er the capability of

moving in follow-the-leader motion, as well as moving in directions oblique to their centerline.

This, combined with a small diameter similar to that of a surgical needle and a simple mechan-

ical design requiring a small number of parts, makes CTRs a robot concept with high potential,

as confirmed by the significant interest that CTRs are receiving in recent years.

Current work, however, is focused on the exploitation of robot designs composed of piecewise

constant curvature tubes. This is predominantly due to the fact that the general follow-the-

leader capabilities of CTRs, and the corresponding robot behaviour in terms of torsion of

the tubes, were unknown. A first study of other trajectories traceable in a follow-the-leader

configuration was published in [175], at the same time that the research presented in this

chapter was being conducted. However, [175] only o↵ers solutions for some pre-determined and

specific robot configurations, but it does not allow a general study, leaving the general follow-

the-leader possibilities as an open question. A general study is therefore required to determine

the complete follow-the-leader possibilities that CTRs can o↵er based on existing models, and

thus establish the full potential of these devices.

In this chapter, the full follow-the-leader capabilities achievable with CTR are analysed, and

a closed-form solution to the complete set of trajectories that can be followed in a follow-the-

leader configuration under the assumption of no axial torsion of the tubes is presented. The

validity of such an assumption is subsequently considered in the set of trajectories discovered,

which allows for the selection of a case study to showcase the work. The objective of this

work is similar to that in [175], and therefore some parallels are inevitably present. However,

the research presented here was conducted independently and prior to the publication of [175],

which favored the formulation of a di↵erent approach that enables a general study and solution.

The work presented here clarifies a currently open question, and broadens the potential of CTRs

with a new set of trajectories that can be exploited in, for instance, MIS or on-wing inspections.

A crucial part of the approach adopted here is a specific robot description, which allows for
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a geometrical interpretation of the conditions for follow-the-leader motion. This enables the

formulation of a treatable problem and the derivation of a general, closed-form solution under

the assumption of no axial torsion of the tubes.

The formulation of the analysis developed in this work considers robots comprising any num-

ber of tubes with any desired pre-curvature and sti↵ness, and any possible control strategy

in terms of rotation and insertion of the tubes. Discontinuities in robot curvature, which are

inherent in telescopic robot deployment as well as in unconventional robot designs, are also

considered in the study. Thus, the analysis of follow-the-leader motion reported here, together

with the corresponding solutions, is completely general. In addition, the geometrical interpre-

tation of follow-the-leader motion proposed in this work provides conceptual insight into these

kinematics, which is useful for the future development of path planning and closed-loop control

algorithms, and for the application of these robots to practical scenarios, where disturbances

are present.

The strategy employed in this work to study the follow-the-leader possibilities, which involves

first studying the problem assuming no torsion and then determining the validity of the as-

sumption, is advantageous from both a theoretical and practical perspective. It establishes

first the full capabilities under the assumption of no torsion, and then it enables selecting the

admissible deviation in terms of torsion of the tubes. In this manner, useful trajectories with a

small deviation away from an ideal follow-the-leader configuration are not discarded, which can

be advantageous. Furthermore, since the admissible deviation in terms of torsion can be se-

lected, it can be specified to be as close to zero as desired. Still, the design of CTRs accepting a

relatively small deviation from follow-the-leader due to torsion is advisable, considering that it

noticeably increases the number of feasible trajectories, and that in practice a certain degree of

uncertainty generally exists in the predicted robot behavior. It should be noted that the focus

here is on the deviation in terms local curvature from that corresponding to follow-the-leader

motion, but this does not directly imply a specific deviation in task space. The relation between

deviation in task space and local deviation due to torsion is illustrated with some simulations of

relevant configurations, but the determination of the specific relation is a question beyond the

scope of this present work. Interestingly, the analysis assuming no torsion is also applicable to
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robot designs with non-annular cross sections, originally proposed in [80], by simply considering

controls without relative rotation of the tubes.

In order to study the torsion of tubes and then conceive a case study to showcase this research,

the general equilibrium of the robot is considered in the set of trajectories discovered. A closed-

form solution describing the torsion of the tubes along the arc length is obtained for two-tube

robots with helical precurvatures, which represent the most relevant designs in the trajectories

discovered. This solution then allows for the identification of the designs that guarantee that

the torsion of the tubes is below a specified value. Interestingly, the torsional behavior is

found to depend on two non-dimensional groups, which indicate that torsional deviation can be

reduced by using helical tubes, the precurvatures of which have significantly di↵erent geometric

torsion. These results are used to develop a case study involving simulation and experiment,

where the tubes present a small torsional deformation and the robot maintains a near perfect

follow-the-leader configuration, illustrating the capabilities described in this work.

The set of trajectories discovered in this work is non-trivial, and expands the currently known

capabilities of CTRs. For robots composed of constant sti↵ness tubes, the corresponding robot

designs required are found to be composed of tubes with precurvatures that are either helices

or deformed helices with exponentially varying curvature magnitude. For robots with variable

sti↵ness tubes, robot designs composed of tubes with more general geometries associated to the

deformation of helices are found to be possible. Kinematic equivalences that can be exploited

within the follow-the-leader set of trajectories are also extracted from the analysis. These

include concatenation of segments of di↵erent trajectories, or the addition of idle tubes that

become active once inserted.

Various maneuvers that combine follow-the-leader motion along a segment of the CTR with

general displacements at its distal end, which do not correspond to follow-the-leader, are also

distilled from the analysis. These maneuvers are aimed at applications where the robot end-

e↵ector is able work in a spacious cavity, which can only be accessed through a narrow path that

requires follow-the-leader motion. Such situation is common in MIS and in on-wing inspections,

where the kinematics identified here can o↵er a significant advantage. It should be noted that



3.2. Governing equations 97

some of these kinematic possibilities have been previously mentioned in the literature for robot

designs composed of piecewise constant curvature tubes, e.g. [77], [74], [69]. In this work, these

are generalised and integrated into the analysis developed here.

3.2 Governing equations

The relations that govern the behavior of a CTR are derived in this section. The analysis

follows a similar approach to that in the established literature, and [69] is used as the main

reference throughout the chapter to facilitate the reading. However, some variations on the

analysis are introduced in order to adapt it to the aims of this work, with associated changes

in nomenclature.

3.2.1 Problem Characterization

The problem description adopted in this work is crucial to allow the derivation of the solutions

presented in the following sections. In this regard, a detailed characterization of the problem is

presented in this subsection. The geometry of a tube, or a set of concentric tubes, is described

by the curve corresponding to its centreline. Diameter variations are not expected, nor relevant

to this study, and only the cross-sectional moment of inertia is necessary, as elucidated in the

following subsection. Vectors, and in particular curvature, are expressed relying on Bishop

reference frames ( [176]). In particular, a frame W is defined as a Bishop frame corresponding

to the final robot geometry, as initially proposed by [62], and a frame Fi is defined as a frame

materially attached to a tube i that coincides with a Bishop frame associated to tube i before

undergoing structural deformation.

The following magnitudes are then used to characterise a concentric tube robot. The length

of the relevant part of the robot, which generally corresponds to the inserted robot length, is

denoted by L. The position along the arc length is represented by s, relative to the distal end

and defined positive s 2 [0, L]. An independent variable t, generally coinciding with time, is
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Figure 3.1: Sketch of a general concentric tube robot composed of three tubes with relevant
nomenclature definitions.

used to parametrise the evolution of the robotic system. The vector curvature of tube i at cross

section si and instant t is denoted by the first two components of uFi(si)
i (si, t) = [uix, uiy, uiz]T

, which is defined as the angular rate of increment of frame Fi materially attached to tube i

respect to the arc length, and expressed in the same frame Fi(si). The third component of

uFi(si)
i (si, t) denotes the torsional deformation of tube i. Similarly, the first two components

of uW (s)
T (s, t) define as the curvature of the resulting robot in frame W (s), while the third

component of uW (s)
T (s, t) is zero due to the definition of W . It should be noted that the vector

curvature of a tube before and after applying external wrenches on it generally varies, so a

circumflex is used to indicate the initial curvature ûFi
i (si). Since the initial geometry of a tube

is described by the curve corresponding to its centreline, expressed in a Bishop frame, the

third component of the initial curvature is zero by definition ûFi
iz (si) = 0. The sti↵ness matrix

corresponding to a tube i is defined as

ki =

2

66664

EixIix 0 0

0 EiyIiy 0

0 0 JiGi

3

77775

where E is the Young modulus, and Iix,y is the cross-sectional moment of inertia in either

direction x or y. In this work, the tubes are assumed to have an annular cross section, since it

allows relative rotation between the tubes, and it is therefore the most general case in terms
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of follow-the-leader motion analysis. This implies EixIix = EiyIiy, and therefore the matrix ki

is independent of the Bishop frame used in the tube or robot description. The cross-sectional

moment of inertia for tubes with annular cross section is

Iix =
⇡(d4o � d4i )

64
(3.1)

where do denotes the outer diameter of the tube and di denotes the inner diameter. The length

along the robot centreline between the distal end of tube i and the robot’s distal end is defined

as hi. At least one hi must be zero since the robot’s distal end must comprise at least one

tube, and here h1 is chosen to be zero in a situation of ambiguity. The rotation angle between

frame Fi and frame W is denoted by ✓i. The scalar velocity at which the distal end of the robot

advances through the workspace with respect to t is represented by v. Finally, the internal

moment vector associated with the resulting cross-sectional stress of tube i is indicated as mFi
i .

A general CTR with some of the magnitudes here defined is illustrated in Figure 3.1.

From this problem description, the advantages of using Bishop frames ( [176]) are clear. First,

Bishop frames are intrinsic reference frames with one component always parallel to the curve

tangent vector, which is convenient considering that the vector curvature is orthogonal to

the tube’s centreline curve. In addition, they are defined in any curve that is su�ciently

di↵erentiable, even at points with zero curvature. Finally, for a tube with no axial torsion, the

curvature along the tube can be transformed to another Bishop frame with a simple rotation

that is constant along the entire tube.

3.2.2 Governing laws

The behavior of the robotic system is governed by three laws. First, an elastic constitutive law,

which can be obtained following [69] as

mFi
i = ki(u

Fi
i � ûFi

i ) (3.2)
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Second, a static equilibrium law (assuming a quasistatic operation of the robot), which can be

written as
nX

i=1

mW (s)
i = 0 (3.3)

Finally, a compatibility law (using a continuum mechanics description of matter), which trans-

lates into a condition that imposes a common final curvature to the tubes that compose a robot

when arranged concentrically

uW (s)
1 |x,y = uW (s)

2 |x,y = ... = uW (s)
T |x,y (3.4)

which only applies to the x, y components of uW (s)
i , as indicated by the subscripts x, y.

Assuming no external loads, and no axial torsion of the tubes, the combination of all three laws

(3.2), (3.3), (3.4) determines the robot quasistatic model

uW (s)
T (s, t) = [

nX

j=1

kj]

�1 nX

i=1

R(✓i(t))kiû
Fi
i (s� hi(t)) (3.5)

where h1 = 0, n is the number of tubes comprising the robot, and

R(✓i(t)) =

2

66664

cos(✓i(t)) � sin(✓i(t)) 0

sin(✓i(t)) cos(✓i(t)) 0

0 0 1

3

77775

expressed in a Bishop frame corresponding to the final robot curvature with no axial torsion.

The orientation of this final Bishop frame around the z axis is defined by a desired arbitrary

frame in a given cross section, e.g. the proximal end of the robot, and the corresponding

extension to the entire curve of the robot centreline. As a consequence, rigid body rotations of

the robot are represented by a simple rotation of all tubes with a common angular velocity. It

should be noted that the composition (s � hi(t)) allows the evaluation of each tube’s sti↵ness

and initial curvature in a given cross section relative to the robot reference frame.

Equation (3.5) elucidates the fact that both the tubes and the robot’s final curvature can be
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expressed using a vector with only two components. However, in order to be consistent with

literature, and to clarify the use of the assumption of no axial torsion, a three-dimensional

vector is employed.

3.3 Follow-the-leader

Expression (3.5) describes all possible geometries that a concentric tube robot with design

parameters ki, ûi can achieve by relative rotation and insertion of the tubes that integrate it,

and therefore the general movements it can perform. At each cross section, the possible robot

curvature evolutions with time are given by the functions ✓i(t), hi(t) for all tubes. And for a

given instant in time, the shape of the continuum robot is determined by the curvature values

along s.

In this section, the robot kinematics corresponding to follow-the-leader motion are studied. The

condition for follow-the-leader motion is first elucidated in subsection 3.3.1. This condition is

then imposed on the quasistatic model of a general CTR in subsection 3.3.2, yielding the

vectorial equation that must be satisfied for a trajectory to be traceable in follow-the-leader

motion. The complete solutions to this equation are then studied in subsection 3.3.3, leading

to the complete set of trajectories where follow-the-leader is possible in subsection 3.3.4. It

should be noted that the strategy of defining a kinematic condition for follow-the-leader motion

and then imposing it on the robot model is similar to that proposed in [175]. However, the

specific analysis is markedly di↵erent, which is a consequence of the fact that this research was

conducted independently and prior to the publication of [175]. The di↵erent study in this thesis

then leads to the new solutions derived in the following subsections.

3.3.1 General condition

Follow-the-leader motion requires the curve corresponding to the robot centreline to remain in

a constant spatial curve, except for the di↵erential segment that advances with a di↵erential
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of t. Thus, the curvature of the robot centreline must be constant for all spatial locations.

Defining a magnitude x, which corresponds to spatial location in the workspace, the condition

imposing curvature at each spatial location to remain constant can be expressed as

uT (x) = constant 8x 2 C (3.6)

where C is the loci of the curve corresponding to the robot centreline. Considering that the

robot curvature can be expressed as a function of s and t, as described in the previous section,

the expression of curvature at a spatial location can be di↵erentiated. Since curvature must be

constant at each spatial location as expressed in (3.6), the di↵erentiation yields the condition

for follow-the-leader in the robot segments with di↵erentiable curvature as

�v@u
W (s)
T

@s
=
@uW (s)

T

@t
8s, t (3.7)

It should be noted that the time-dependant variables in uW (s)
T are ✓i(t) and hi(t), and therefore

the right hand side of (3.7) corresponds to
@u

W (s)
T

@✓i,hi...
@✓i,hi...
@t for all i. Condition (3.7) indicates that,

in order to advance in a follow-the-leader configuration, the curvature of each cross section

must pass to the immediate adjacent cross section towards the proximal end. In a reference

frame positioned at the distal end of the robot, this motion resembles that of a wave without

attenuation traveling towards the base of the CTR, as conceptually illustrated in Figure 3.2.

For robots with continuous
@u

W (s)
T
@s and

@u
W (s)
T
@t , equation (3.7) is a necessary and su�cient condi-

tion for follow-the-leader motion. For robots with discontinuities in ruW (s)
T , follow-the-leader

motion is achieved if and only if the discontinuity step is finite, constant, and translating at

velocity v away from the distal end, and also equation (3.7) is satisfied in the segments of conti-

nuity. In other words, follow-the-leader requires the curvature discontinuity to remain constant

in the given position relative to the workspace, and therefore it must distance away at rate v

from the robot distal end as the robot advances.

Interestingly, this condition for follow-the-leader motion is not only applicable to CTRs, but

to any continuum robot. This condition indicates that the majority of continuum robots, such
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Figure 3.2: Conceptual illustration of a curvature field corresponding to a follow-the-leader
configuration. A vector of motion that satisfies follow-the-leader is indicated with a black
arrow.

as standard tendon-driven robots or soft robotic manipulators, are not capable of follow-the-

leader motion. This is due to the fact that the majority of continuum robots are composed of

a set of segments stacked serially, and the curvature along the arc length can only be selected

by selecting of bending of each full robot segment. However, the follow-the-leader condition

(3.7) requires the curvature at each cross section along the arc length to pass to the adjacent

cross section towards the proximal end as the robot advances. In the majority of continuum

robots, this is only possible by selecting all robot segments to have an equal curvature, which

corresponds to a trivial case of a robot with a constant circumference arc geometry advancing

in a circumferential trajectory. However, this configuration has little practical interest, and is

equivalent to a rigid tool. Thus, follow-the-leader motion in standard continuum robots is not

considered further.
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3.3.2 Application to concentric tube robots

The imposition of condition (3.7) on the quasistatic model of the concentric tube robot (3.5)

restricts the possible robot kinematics to those that correspond to perfect follow-the-leader

motion (if any). This yields the condition that su�ces for a trajectory to be traceable by a

concentric tube robot in a follow-the-leader configuration

nX

i=1

[R0(✓i)Piû
Fi
i (s�hi)✓̇i�R(✓i)

@

@s
(Piû

Fi
i (s�hi))ḣi]=�v

nX

i=1

[R(✓i)
@

@s
(Piû

Fi
i (s�hi))] 8s,t

(3.8)

where

R0(✓i(t)) =

2

66664

� sin(✓i(t)) � cos(✓i(t)) 0

cos(✓i(t)) � sin(✓i(t)) 0

0 0 0

3

77775

and

Pi = [
nX

j=1

kj]
�1ki

and both ✓̇i and ḣi are functions of time.

The variables ✓̇i and ḣi for all the tubes in a CTR are the control inputs available to control

the robot. Mores specifically, ✓̇i corresponds to the control of the rotation of each tube i as

a function of time, and ḣi corresponds to the control of the insertion of each tube i. The

dependence of ✓̇i and ḣi on t is omitted in (3.8) and in the following equations for brevity, but

both ✓̇i and ḣi should be considered to be functions of time in the entire presentation unless

otherwise stated.

The rest of terms in (3.8) can be interpreted as follows. Matrix Pi is a diagonal matrix, and its

three terms can be interpreted as the relative sti↵ness of tube i in local directions x, y, z with

respect to the total sti↵ness of the robot in the same directions. The product Piû
Fi
i (s � hi)

corresponds to a vector that lies on the local x, y plane in the robot cross section. Matrix

R0(✓i(t)) is the derivative with respect to ✓i of R(✓i(t)), which in turn corresponds to a rotation

along the local tangential axis at each robot cross section. It should be noted that bothR0(✓i(t))
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and R(✓i(t)) correspond to rotations along the local tangential axis, with a phase di↵erence of

⇡
2 . Equation (3.8) then corresponds to a sum of vectors Piû

Fi
i (s� hi) that lie on the local x, y

plane, and that are rotated along the local z axis by matrices R0(✓i(t)) and R(✓i(t)).

The curve describing trajectories where follow-the-leader is possible can be specified both by

the corresponding uW
T (s, tf ), which is parametrised by the arc length and evaluated at the time

at the end of an insertion tf , or by uW
T (0, t), which parametrised by time and evaluated at the

robot distal end s = 0. Both expressions are equivalent in a follow-the-leader configuration. In

this presentation, the expression uW
T (s, tf ) is used for clarity of exposition.

The orientation at any robot cross section relative to the task space can be denoted by a rotation

matrix D, which is defined to have its z component tangential to the centreline of the robot.

The specific value of D at a given cross section s and instant of time t can be obtained by

integrating the rotation determined by the local curvature uW
T (s, t) along the robot arc length,

which is a standard integration of a Bishop frame. The di↵erential increment of D with respect

to s is determined by

@D

@s
= �

2

66664

�uTyD13 uTxD13 uTyD11 � uTxD12

�uTyD23 uTxD23 uTyD21 � uTxD22

�uTyD33 uTxD33 uTyD31 � uTxD32

3

77775
(3.9)

where Dij denotes the individual components of D in row i and column j. D can then be

obtained from the integral equation

D =

Z L�s

L

@D

@s
ds (3.10)

It should be noted that integration of (3.10) generally needs to be solved numerically.

In concentric tube robots,
@u

W (s)
T
@s and

@u
W (s)
T
@t must be sectionally continuous since discontinuities

can only be caused by either the end of one tube, or a locally non di↵erentiable precurvature,

both of which generate constant discontinuity steps. In this regard, the translation of discon-

tinuity points towards the robot’s proximal end at velocity v, and satisfaction of (3.8) in the



106 Chapter 3. Concentric Tube Robots

rest of the domain, are necessary and su�cient conditions for a trajectory to be traceable in a

follow-the-leader configuration.

The complete solution to (3.8) therefore corresponds to the complete set of trajectories where

follow-the-leader is possible under the assumption of no axial torsion. It should be noted that

(3.8) is applicable to any robot design in terms of precurvatures, sti↵ness and number of tubes,

for any possible control strategy. Thus, it represents a general condition for follow-the-leader

motion.

The problem description employed in this work allows the derivation of a closed-form solution

to (3.8). The key to such a solution is treating (3.8) from a vectorial perspective, rather than

decoupling it into a system of individual di↵erential equations. Considering that all terms in

(3.8) either contain Piû
Fi
i or its derivative relative to s, and that R and R0 are closely related

in terms of the rotations they represent, geometric relations simplify the study of (3.8). Such

geometric interpretation also provides insight into the control inputs and geometries associated

to follow-the-leader motion, and facilitates an intuitive interpretation of the follow-the-leader

configuration. The rest of this section is dedicated to the solution of (3.8).

3.3.3 Solution cases

The approach adopted here to study the solution to (3.8) involves dividing the problem into

cases of increasing complexity for clarity of exposition, as presented in this subsection. Cases

with restrictions on the motions allowed with the tubes are considered first, serving as a foun-

dation for the subsequent study of more general cases.

Rotation only and di↵erent for each tube

Considering first a case where the rotation of the tubes is the only input allowed (equal insertion

rate of all tubes), and considering that no groups of tubes are moving together, i.e. functions

✓̇i(t) satisfy ✓̇i(t) 6= ✓̇j(t) 8i, j = 1, ..., n over the course of an insertion, equation (3.8) simplifies
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to
nX

i=1

R0(✓i)Piû
Fi
i (s)✓̇i = �v

nX

i=1

R(✓i)
@

@s
(Piû

Fi
i (s)) (3.11)

The possible solutions to (3.11) can be divided in two cases: the terms in (3.11) corresponding

to each tube compensate so that their sum is null, which will be referred to as ”compensating

individually”, or the terms in (3.11) from di↵erent tubes combine so that their sum is zero,

which will be referred to as ”compensating in conjunction”.

In the case of compensating individually, (3.11) is particularised as

R0(✓i)Pi

2

66664

ûix

ûiy

0

3

77775
(s)✓̇i = �vR(✓i)

@

@s
(Pi

2

66664

ûix

ûiy

0

3

77775
(s)) (3.12)

which must be satisfied for all time. The only time-dependent terms are matrices R and R0 and

✓̇i(t). Realizing that both R and R0 matrices represent a rotation of the x,y components with

a constant di↵erence of ⇡2 , and that component z is not relevant here since the vector curvature

always lies in the XY plane, equation (3.12) reduces to an ordinary di↵erential equation (ODE)

of the vector Piûi with respect to s

R(
⇡

2
)Pi

2

66664

ûix

ûiy

0

3

77775
(s)✓̇i = �v

@

@s
(Pi

2

66664

ûix

ûiy

0

3

77775
(s)) (3.13)

The solution to (3.13) can be easily obtained realizing that it imposes @
@s(Piûi) to be orthogonal

to Piûi. Specifically, the magnitude kPiûik must be constant, and the direction of the vector

Piûi corresponding to tube i in a Bishop frame must rotate in the local XY plane at a constant

rate with respect to the arc length. In addition, ✓̇i(t) must be constant and proportional to v

in order to satisfy (3.13) for all t. This applies to any individual tube, and therefore configu-

rations corresponding to robots composed of individual tubes that satisfy (3.13) correspond to

trajectories that satisfy follow-the-leader.
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Follow-the-leader motion using only relative rotation of the tubes and compensating individu-

ally is therefore possible, and the resulting trajectories expressed as resulting geometry of the

robot at the time corresponding to the end of an insertion are

uW
T (s, tf ) =

nX

i=1

2

66664

kPiûik cos(wis+ �i)

kPiûik sin(wis+ �i)

0

3

77775
(3.14)

where wi is a variable that can be selected in the robot design as desired and corresponds to

the initial torsion of tube i, and �i is a parameter related to the relative rotation of the tubes

at the proximal end of the trajectory, which can also be chosen freely. It should be noted

that the trajectories (3.14) are parametrised by s to elucidate that they correspond to a set of

geometric curves, although the trajectories could also be parametrised by t, since both of these

are equivalent in a follow-the-leader configuration.

In the case of compensating in conjunction, solutions to (3.11) can also be derived in specific

configurations. Rewriting (3.11) relying on the fact that R0(✓i) = R(✓i)R(⇡2 ) yields

nX

i=1

R(✓i)[R(
⇡

2
)Piû

Fi
i (s)✓̇i + v

@

@s
(Piû

Fi
i (s))] = 0 8s, t (3.15)

The terms in (3.15) are a sum of planar vectors in each cross section, and thus vectors Piû
Fi
i

and @Piû
Fi
i /@s from a set of two or more tubes, defined as tubes i 2 l, can be combined so

that their sum is zero. For ✓̇i(t) 6= ✓̇j(t), however, the relative orientation between vectors

corresponding to di↵erent tubes changes with t. For follow-the-leader to be satisfied, these

vectors need to compensate in conjunction at each instant of time and each cross section so

that their sum is null, despite variations in their relative orientation from di↵erent evolutions

of R(✓i(t)).

The magnitude of the vectors in (3.15) is either fixed, for @Piû
Fi
i /@s, or determined by ✓̇i, for

✓̇iPiû
Fi
i . The PiûW

i of tubes i 2 l are generally not aligned and therefore the ✓̇i determine the

value of the sum of vectors corresponding to tubes i 2 l in (3.15) in each cross section. The

✓̇i(t) can thus be selected so that the terms from a set of tubes l compensate in conjunction
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despite variations from di↵erent R(✓i(t)), with the values of ✓̇i(t) chosen at each instant of time

for each arrangement of vectors Piû
Fi
i and @Piû

Fi
i /@s. This enables a set of specific solutions,

which are discussed in two further cases for clarity of exposition.

Considering first a case with l = 2, two variables ✓̇1 and ✓̇2 are available to be selected at each

instant of time. Specific ✓̇1(t) and ✓̇2(t) can thus be used to satisfy the two scalar equations

implied by (3.15) for a given cross section, and all t. The functions ✓̇1(t), ✓̇2(t) to satisfy

(3.15) are unique for a given set of P1û
F1
1 , @P1û

F1
1 /@s, P2û

F2
2 , @P2û

F2
2 /@s with a specific

relative orientation and relative magnitude between these vectors, corresponding to a given

cross section. The ✓̇i(t), however, are common for all cross sections. Follow-the-leader is then

satisfied if and only if the arrangement of vectors Piû
Wi
i and @Piû

Wi
i /@s, in terms of relative

orientation and relative magnitude of these vectors for tubes i 2 l, is proportional in all cross

sections along the arc length.

Two possible design solutions then arise: (i) the PiûW
i and @PiûW

i /@s of tubes i 2 l remain

proportional along the arc length with an equal orientation, or (ii) the PiûW
i and @PiûW

i /@s

remain proportional along the arc length, with an absolute orientation of all vectors corre-

sponding to i 2 l rotating at a constant rate along the arc length when expressed in a Bishop

frame. In solution (i), the kPiûik of each tube must vary exponentially in order to maintain the

proportionality between PiûW
i and @PiûW

i /@s, and vector orientation must remain constant.

In addition, the exponential increase rate must be equal for tubes i 2 l in order to maintain

the proportionality between all vectors corresponding to tubes i 2 l. In solution (ii), kPiûik

must also vary exponentially at an equal rate for all tubes i 2 l, and in addition the direction

of PiûW
i and @PiûW

i /@s must rotate along the arc length at an equal rate for tubes i 2 l in

order to maintain proportionality.

Considering a general case with l > 2, an equivalent analysis applies, although some specific

di↵erences are present. The number of variables ✓̇i available in this case is l. This could suggest

that condition (3.15) could be satisfied in l/2 di↵erent cross sections (for even l) by selecting

specific values of ✓̇i at each instant of time. The design in terms of vectors PiûW
i and @PiûW

i /@s

would then be freely selected at l/2 cross sections, and designs with all other cross sections



110 Chapter 3. Concentric Tube Robots

proportional in terms of the PiûW
i and @PiûW

i /@s to any of the selected l/2 cross sections, or

linear combinations of them, would maintain follow-the-leader with the same common ✓̇i, as in

the previous case for l = 2. However, designs with vectors PiûW
i and @PiûW

i /@s proportional

to the arrangement of these vectors in multiple cross sections are not possible. As described

for the case l = 2, proportionality in PiûW
i and @PiûW

i /@s implies an exponential variation

in kPiûik. Thus, proportionality of vectors PiûW
i and @PiûW

i /@s for tubes i 2 l to any given

cross section is propagated over all cross sections, and consequently all cross sections must be

proportional to any given one. Therefore, also in the case l > 2, the arrangement of PiûW
i and

@PiûW
i /@s for tubes i 2 l in all cross sections must be proportional to a given cross section

for follow-the-leader compensating in conjunction to be possible. The design of the tubes is

then equivalent to that in the case l = 2, with PiûW
i and @PiûW

i /@s for tubes i 2 l that must

remain proportional along the arc length in terms of relative orientation and magnitude, and

with an absolute orientation that must either be equal in all cross sections, or rotating at a

constant rate along the arc length.

The trajectories that can be traced in a follow-the-leader configuration with robots comprising

only a set of tubes i 2 l that compensate in conjunction must then correspond to a uW
T (s, tf ) of

either constant direction or constantly rotating direction, and magnitude varying exponentially.

These trajectories are

uW
T (s, tf ) =

lX

i=1

2

66664

e�s kPiûik cos(⇢s+ �i)

e�s kPiûik sin(⇢s+ �i)

0

3

77775
(3.16)

where � is a parameter corresponding to the increase in curvature magnitude along the arc

length, which can be selected with the tubes’ design and is common for tubes i 2 l, ⇢ is a

parameter corresponding to the geometric torsion of the tubes, also common for tubes i 2 l,

and �i is related to the tubes’ orientation at the proximal end, as previously defined. Since ⇢
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and � are common for tubes i 2 l, the trajectories (3.16) can also be expressed as

uW
T (s, tf ) =

2

66664

e�s kuRk cos(⇢s+ ⌫)

e�s kuRk sin(⇢s+ ⌫)

0

3

77775
(3.17)

where kuRk is the curvature resulting from the interaction of tubes i 2 l at a given cross section

s = 0 and tf , and ⌫ is related to the robot orientation at the proximal end, and is analogous

to �i.

Compensating in conjunction requires at least two tubes in order to have two inputs ✓̇i to

satisfy the two components of (3.15). Configurations with additional tubes are also possible,

and in these cases a degree of freedom appears for each additional tube. This does not expand

the set of trajectories (3.17), but implies that a ✓i(t) can generally be freely selected for each

additional tube, which can be exploited in additional maneuvers, described in section 3.4.

Follow-the-leader motion using only relative rotation of the tubes is thus possible both compen-

sating individually and in conjunction. Condition (3.11) is a summation of terms corresponding

to di↵erent tubes. Hence, any combination of solutions corresponding to a set of tubes com-

pensating individually (3.14) and a set of tubes compensating in conjunction (3.17) must also

satisfy (3.11). The resulting set of trajectories then is

uW
T (s, tf ) =

n0X

i=1

2

66664

kPiûik cos(wis+ �i)

kPiûik sin(wis+ �i)

0

3

77775
+

gX

j=1

2

66664

e�js kuR,jk cos(⇢js+ ⌫j)

e�js kuR,jk sin(⇢js+ ⌫j)

0

3

77775
(3.18)

where g is the number of sets of tubes that involve compensating in conjunction, and n0 is the

number of tubes that compensate individually.

As a particular solution in (3.18), the trajectory corresponding to a single tube being inserted is

a helix relative to the workspace. In this case, the required tube precurvature is equal to the re-

sulting trajectory, a configuration that corresponds to a common device, namely the corkscrew.

It should be noted that the helix can be degenerated to a circumference arc, elucidating the
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fact that this result is completely general.

Di↵erent rotation and insertion for each tube

Considering now the case where any independent combination of insertion and rotation of the

tubes as a function of time is allowed, but no groups of tubes move together, i.e. functions ✓̇i(t)

satisfy ✓̇i(t) 6=✓̇j(t) 8 i, j = 1, ..., n over an insertion, the possible solutions to (3.8) can also be

divided in two cases corresponding to the terms in (3.8) of each tube compensating individually

or in conjunction.

In the case of compensating individually, condition (3.8) particularises to

R0(✓i)Piû
Fi
i (s� hi)✓̇i �R(✓i)

@

@s
(Piû

Fi
i (s� hi))ḣi = �vR(✓i)

@

@s
(Piû

Fi
i (s� hi)) 8s, t, i (3.19)

Regrouping it, expression (3.19) can be rewritten as

R0(✓i)Piû
Fi
i (s� hi)✓̇i = (ḣi � v)R(✓i)

@

@s
(Piû

Fi
i (s� hi)) (3.20)

which must also be satisfied for all s, t, i. Expression (3.20) simplifies the geometrical inter-

pretation of the di↵erential equation, elucidating the relation that must be satisfied between

vector Piû
Fi
i and its derivative with respect to s.

Two di↵erent design possibilities in terms of precurvatures and sti↵ness of the tubes comprising

the robot arise from equation (3.20), which depend on whether the magnitude of Piû
Fi
i = qi is

designed to be constant or not.

(i) If kqik is constant, then the directions of R @
@sqi and R0·qi are parallel. This implies that

there can be both ḣi(t) 6=v, 0 and ✓̇i(t) 6=0 simultaneously. In this case, the solution of (3.20) has

one degree of freedom to choose from, either ḣi(t) or ✓̇i(t). Regardless of the choice, provided

that ḣi(t) 6=v, equation (3.20) represents an ODE analogous to that in the rotation only case,
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since the di↵erence between Ri and R0
i is again constant and equal to ⇡

2 , yielding

R(
⇡

2
)Piû

Fi
i (s� hi)✓̇i = �(ḣi � v)

@

@s
(Piû

Fi
i (s� hi)) (3.21)

The solution to (3.21) is, as in the previous case, a vector Piû
Fi
i of constant magnitude, and

direction rotating in the intrinsic XY plane proportionally to the arc length. In equation

(3.21), it is patent that the choice of ḣi(t) is completely equivalent to the choice of v and ✓̇i(t),

which determines the pace at which vector qi rotates with the arc length. Hence, if kqik is

constant, the follow-the-leader trajectories that can be obtained combining ḣi(t) and ✓̇i(t) are

equivalent to those achievable using ✓̇(t) only. Naturally, this is only valid for the segment of

the robot where the tube with ḣi(t) 6=v, 0 is present. The combination of ✓̇i(t) and ḣi(t) is only

advantageous in a scenario where a variation of the relative insertion of a tube is desired. Such

a maneuver does not increase the variety of single trajectories that can be traced in follow-the-

leader. However, it enables the linkage of some of these single trajectories, which can be useful

in practical applications, as described in section 3.4. The satisfaction of (3.19) for a t and any

s directly implies that (3.19) is satisfied for all t, since the vector Piû
Fi
i corresponding to each

tube rotates along the arc length at a constant rate. Thus, the complete set of trajectories

achievable for constant kqik are exactly equal as those in (3.18).

(ii) If kqik is not constant, then R @
@sqi generates a vector in a direction oblique to R0·qi.

Therefore, the only solution is ḣ(t) = v, ✓̇(t) = 0. This implies tube i to be fixed with respect

to the workspace, while the rest of the robot advances. Such a configuration may seem idle in

terms of follow-the-leader kinematics as it does not contribute to the advancement of the robot.

However, it shows that, once a tube has been inserted to some extent along the trajectory, it

can be left fixed in that position while the rest of the robot continues forward, which is useful

when linking trajectories composed of di↵erent numbers of tubes. It should be noted that a

configuration with ḣi(t) = v cannot be simultaneously adopted in all tubes since there must be

at least one tube that advances the robot’s distal end (functions h(t) are defined nonnegative

with respect to the robot’s distal end). It is immediate to see that the solution identified for

the design alternative (ii) holds for all times and cross sections.
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In the case of compensating in conjunction, specific control inputs ✓̇i and ḣi together with

specific designs can also satisfy (3.8). This can be elucidated by rewriting (3.8) using the

definition qi = Piû
Fi
i as

nX

i=1

R(✓i)[R(
⇡

2
)qi(s� hi)✓̇i + (v � ḣi)

@

@s
(qi(s� hi))] = 0 (3.22)

which must hold for all s, t.

Equation (3.22) is a sum of planar vectors with a relative orientation that varies with t due

to the di↵erent R(✓i(t)) in di↵erent tubes. The magnitude of these vectors at each instant of

time is determined by ✓̇i for vectors ✓̇iqi, and by ḣi for vectors ḣi@qi/@s. Thus, for a general

design in a given cross section, ✓̇i and ḣi of a set of tubes i 2 l can be selected at each instant

of time so that the sum of the corresponding terms in (3.22) is zero despite changes in relative

orientation of the vectors.

The selection of ✓̇i(t) and ḣi(t) enables the satisfaction of (3.22) in a specific cross section.

However, ✓̇i(t) and ḣi(t) a↵ect all cross sections. For follow-the-leader to be satisfied in all

cross sections, the arrangement of vectors qi and @qi/@s corresponding to tubes i 2 l, in terms

of relative orientation and relative magnitude of the vectors, must be proportional in all cross

sections, in an equivalent manner as in the previous subsection. The corresponding design of

the tubes is then equal to that in the previous subsection, with PiûW
i and @PiûW

i /@s for tubes

i 2 l that must have a magnitude that varies exponentially along the arc length, and an absolute

orientation either constant or rotating at a constant rate along the arc length. The trajectories

that can be traced in a follow-the-leader configuration by compensating in conjunction using

✓̇i and ḣi are then equal to those in the previous subsection (3.17).

Compensating in conjunction involves two or more tubes. Configurations with two tubes lead

to a robot with two degrees of freedom, as four inputs (✓̇1, ✓̇2, ḣ1, ḣ2) are available to satisfy the

two equations implied by (3.22). Any additional tubes add two degrees of freedom per tube.

Thus, even though the use of both ✓̇i and ḣi does not increase the follow-the-leader trajectories

with respect to those traceable using ✓̇i only, the use of both ✓̇i and ḣi provides additional
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degrees of freedom. These degrees of freedom imply that either ✓̇i, ḣi, or a combination of them

can be used to maintain follow-the-leader, as in the previous case involving tubes compensating

individually with ✓̇i and ḣi. As before, this applies to the region of robot that contains the

tubes with ✓̇i and ḣi. The exploitation of these kinematics combining ✓̇i and ḣi is described in

section 3.4.

It should be noted that the trivial solution ḣ(t) = v, ✓̇(t) = 0 also satisfies (3.22) for any general

design qi. As in the previous case, this solution does not contribute to the advancement of the

robot in a follow-the-leader configuration, but it can be exploited in the additional kinematics

described in section 3.4.

The discussion in the previous paragraphs for both configurations compensating individually or

in conjunction shows that the use of the relative tube’s insertion as control input ḣi(t) does not

contribute to the enhancement of the set of trajectories where follow-the-leader is possible. An

alternative argument to discard relative tube insertion from contributing to follow-the-leader

kinematics is that any positive ḣi(t) motion prevents tube i from remaining at the robot’s distal

end, and any negative ḣi(t) implies a certain o↵set until the eventual instant of time when the

tube becomes part of the distal end. Thus, a tube with ḣi(t) 6= 0 could only contribute

to the distal ends kinematics during an instant of time. Nonetheless, the strategy of using

ḣi(t) = v remains useful for the linkage of trajectories achieved with di↵erent numbers of tubes,

as previously mentioned.

In the case of compensating individually, the control input for each tube is also restricted by

(3.20). In order to satisfy (3.20) at a given time instant, a specific tube geometry must be

selected, as previously discussed. Once the geometry is specified, (3.20) imposes a constant

relation between ✓̇(t), ḣ(t) and v at each section for any time. Assuming constant sti↵ness of

the tubes for simplicity, this relation can be written as

✓̇i + (ḣi � v)wi = 0 (3.23)

where wi is the torsion of the tube expressed in [m�1].
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Relation (3.23) corresponds to the control input required in each individual tube to satisfy

the follow-the-leader condition (3.20). Equation (3.23) elucidates the aforementioned freedom

in the follow-the-leader control of each individual tube, where di↵erent combinations of ✓̇i(t)

and ḣi(t) satisfy (3.21), and similarly (3.20). However, ḣi(t) must be either zero or v in the

follow-the-leader configurations where the robot advances in order to satisfy the requirements

on curvature discontinuities described in subsection 3.3.2. Thus, the relation between ✓̇i(t)

and v is constant and determined by the geometry of the specific tube in the scenarios where

the robot advances, with a specific rotation rate of each tube relative to the insertion rate. In

particular, each advancing tube must rotate at a rate of wi relative to the arc length. A common

example of such configuration is found in the insertion of a corkscrew, where the rotation rate

relative to the insertion is determined by the helix geometry.

In the case of compensating in conjunction, the required control inputs ✓̇i(t), ḣi(t) to maintain

follow-the-leader motion can be determined from (3.22). In some cases, however, this can be

complicated, and may lack insight into the mechanics of the robot. Alternatively, considering

that the evolution of uW
T (s0, t) at any cross section s0 is known for each trajectory (3.17),

equation (3.5) can be used to determine ✓i(t), hi(t) and thus ✓̇i(t), ḣi(t). The ✓i(t) and hi(t)

are the angles and insertions that satisfy that the sum of vectors PiûW
i (s) at a cross section is

equal to the resulting curvature for all t. The control inputs determined for a cross section then

apply to the entire robot, since the relative orientation and relative magnitude of PiûW
i and

@
@sPiûW

i in each cross section must remain proportional along the robots arc length for each set

of tubes compensating in conjunction, as previously discussed.

The degrees of freedom of the control inputs can be seen in (3.5), where both ✓̇i(t) or ḣi(t) can

be selected to achieve the desired evolution for the resulting curvature (3.17). As previously

mentioned, the conditions on curvature discontinuities imply that the insertion inputs must

be ḣi = 0 or ḣi = v for a CTR to maintain follow-the-leader motion over the entire robot.

Then, only ✓i(t) can be used to follow the resulting curvature (3.17). Interestingly, in designs

composed of two tubes, the ✓i(t) then involve the curvature vectors of both tubes monotonically

tending towards an aligned or opposed configuration.
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The condition for follow-the-leader (3.8) is a sum of terms corresponding to di↵erent tubes.

Therefore, as in the previous subsection 3.3.3, combinations of configurations that involve

compensating individually and compensating in conjunction also satisfy (3.8). The complete

set of trajectories that can be traced in a follow-the-leader configuration under the assumptions

of this second case is then equal to that in the previous subsection (3.18). The only extension

in terms of follow-the-leader motion is the possibility of leaving tubes static relative to the

workspace while the rest of the robot advances.

General configuration including groups of tubes

Considering now the most general case, where any control inputs are allowed, the solutions to

(3.8) are generally equivalent to those in the previous case, with the exception of configurations

where groups of tubes move with a common ✓̇i(t). These configurations are discussed in the

following, both for groups of tubes compensating individually and in conjunction with other

groups.

In the case of each group compensating individually, the terms of each group must then satisfy

R0(✓j)
mX

i=1

qi(s� hi)✓̇j �R(✓j)
mX

i=1

@qi

@s
(s� hi)ḣi = �vR(✓j)

mX

i=1

@qi

@s
(s� hi) 8s, t (3.24)

where ✓j(t) represents the common motion of the group of tubes, and m is the number of

tubes in the group. Equation (3.24) admits various solutions, which can be divided in di↵erent

configurations.

(i) If ✓̇j(t) = 0, then two possible solutions arise. First, (3.24) can be satisfied by selecting

ḣi(t) = v for all tubes, which an analogous situation to that discussed in 3.3.3 (ii).

Alternatively, by selecting specific ḣi(t) for each tube, it is also possible to satisfy (3.24) at each

instant of time in a given cross section. This solution requires at least two tubes, since two

inputs ḣi(t) are necessary to satisfy (3.24) for all t. In the case of the group of tubes coinciding

with the robot’s distal end, ḣi(t) of one tube must always be zero by definition of hi(t), and

then three tubes are necessary. The ḣi 6= 0 imply that the arguments of qi vary with t. The
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inputs ḣi(t), however, apply to all cross sections. Thus, the configuration of vectors qi and

@qi/@s must be proportional in all cross sections in order to satisfy (3.24) for all s, t. The

resulting trajectories are then equivalent to those described in the previous subsections 3.3.3,

3.3.3. It should be noted that this solution enables one to maintain follow-the-leader motion

in the part of robot where the tubes with ḣi(t) 6= 0 are present, which cannot be all tubes of a

robot for a sustained period of time.

(ii) If ḣj(t) = 0, then it is necessary for ✓̇j(t) 6= 0, as well as hj(t) = 0, resulting in (3.24)

transforming as

R0(✓j)
mX

i=1

qi(s)✓̇i = �vR(✓i)
mX

i=1

@qi

@s
(s) 8s, t (3.25)

which is equivalent to case (ii) of the previous subsection 3.3.3, so no new trajectories are added.

(iii) If ḣi(t) 6= 0 and ✓̇j(t) 6= 0, then two possible solutions arise. First, by selecting hi(t) = hj(t)

for all i,j, (3.24) becomes analogous to (3.19). Then a solution exists where the group of tubes

becomes equivalent to a single tube with the geometry and sti↵ness of the group in equilibrium,

and thus the trajectories that can be traced in a follow-the-leader configuration are equivalent

to those in subsection 3.3.3.

Alternatively, by selecting specific ḣi(t) for each tube at each instant of time, (3.24) can be

satisfied. This configuration is analogous to the previous case 3.3.3 (i) for ḣi(t) 6= v, and

therefore the trajectories that can be followed are equivalent to those in the previous case.

In the case of various groups of tubes compensating in conjunction, the groups must satisfy

g0X

j=1

(R(✓j)

ljX

i=1

[R(
⇡

2
)qi✓̇j + (v � ḣi)

@

@s
(qi)]) = 0 8s, t (3.26)

where g0 is the number of groups compensating in conjunction, lj denotes the number of tubes

in group j, and arguments qi(s � hi) apply to the qi, although they are omitted for brevity.

(3.26) is analogous to (3.22). The possible solutions can be divided in two further cases.

(iv) If the ḣi(t) are common for all tubes in each group, then the groups act as single tubes with a

geometry and sti↵ness equivalent to the combination of tubes in the group. The various groups
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can then compensate in conjunction in an analogous manner as in the previous subsection for

the case of single tubes compensating in conjunction. Hence, no trajectories are added.

(v) If the ḣi(t) are di↵erent for the various tubes in each group, then the values of ḣi(t) at each

instant of time can be selected, either to achieve a desired evolution for the sum of terms in

(3.26) corresponding to each tube so that the combination of tubes satisfies (3.26), or directly

to satisfy (3.26) with the combination of terms from each individual tube. In either case,

the arguments of vectors qi and @qi/@s at each cross section vary due to the di↵erent ḣi(t).

Specific control inputs are then required at each instant of time to satisfy (3.26) in a cross

section, which represents a case analogous to that in subsection 3.3.3 when compensating in

conjunction. Thus, the configuration of vectors qi and @qi/@s must be proportional along the

arc length, and the resulting trajectories are equivalent to those in subsection 3.3.3.

From the discussion in this subsection, it can be concluded that the combination of a group

of tubes with a common ✓i(t) does not expand the trajectories feasible in follow-the-leader

configurations from those derived in the previous subsections. Nonetheless, the fact that groups

of tubes moving in conjunction are equivalent to a single tube can be useful for the insertion

of various tubes with singular precurvatures that cannot be inserted individually in a follow-

the-leader configuration, but that in conjunction result in a geometry that can satisfy follow-

the-leader. The exploitation of this configuration is considered and developed in the additional

maneuvers described in section 3.4. It should be noted that the control input required for the

insertion of a group of tubes is that corresponding to the single tube equivalent to the group,

elucidated in (3.23).

Curvature discontinuities

Up to this point, the study of trajectories where follow-the-leader is possible considered only

continuous curves satisfying (3.7). However, trajectories with curvature discontinuities can

also be traced in a follow-the-leader configuration, provided that the conditions described in

subsection 3.3.1 are satisfied. An example are the well established trajectories composed of

circumference arcs ( [62]).
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In general, the points of curvature discontinuity must remain in a constant position in the

workspace, which implies that they must translate at velocity v away from the robot’s distal

end as it advances. This requires the tubes causing the discontinuity to have ḣi(t) = v from the

point where the trajectory discontinuity is reached, onward. Considering that discontinuities

appear due to either the end of a tube or a discontinuous precurvature of a tube, follow-the-

leader motion in trajectories with discontinuities is possible by leaving one or more tubes fixed

at each point of curvature discontinuity while the rest of the robot proceeds forward. Each

segment of trajectory between curvature discontinuities must satisfy (3.8). Thus, the complete

trajectory must be a combination of segments of the trajectories identified in the previous

subsections. These combined trajectories are discussed in more detail in subsection 3.4.1.

3.3.4 Set of trajectories summary

The trajectories found in the previous subsections 3.3.3-3.3.3, together with their combinations

in subsection 3.3.3, constitute the set of trajectories that can be traced in a follow-the-leader

configuration, since all possible cases solving (3.8) have been considered, in addition to curvature

discontinuities. The trajectories, excluding combinations of them, can be synthesised in a single

expression

uW
T (s, tf ) =

n0X

i=1

2

66664

kPiûik cos(wis+ �i)

kPiûik sin(wis+ �i)

0

3

77775
+

gX

j=1

2

66664

e�js kuR,jk cos(⇢js+ ⌫j)

e�js kuR,jk sin(⇢js+ ⌫j)

0

3

77775
(3.27)

where kPiûik, wi, kuR,jk, �j, and ⇢j are selected in the robot design, and �i and ⌫j are

determined by the rotational orientation of the tubes at the beginning of the trajectory. The

magnitude of kPiûik must be constant according to the previous discussion, but its value

can be chosen as desired by selecting appropriate initial sti↵ness and curvature for each tube.

Similarly, the kPiûik of the tubes that compensate in conjunction to create kuR,jk must vary

exponentially, but the rate �j and the magnitude of kuR,jk can be selected as desired with the

design of these tubes. The values of wi and ⇢j, which correspond to the initial torsion of either
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tubes i or j, and also can be freely selected provided that it is constant.

The initial designs of the individual tubes or groups of tubes comprising a CTR capable of

follow-the-leader motion must satisfy Piû
Fi
i and @

@sPiû
Fi
i to remain proportional along the arc

length, as discussed in the previous subsections. In the case of compensating in conjunction, the

relative orientation and proportionality of the Piû
Fi
i and @

@sPiû
Fi
i must be equal for all tubes

that compensate. Interestingly, for the common configuration of tubes with constant sti↵ness

along the arc length, the initial geometry of the tubes that compensate individually is a helix,

whereas that of tubes that compensate in conjunction is a deformed helix with continuously

varying curvature magnitude. A particular case of degenerated helix is a circumference arc.

Thus, (3.27) includes the well-established robot designs consisting of constant curvature tubes.

The robot designs corresponding to the set (3.27), however, are not limited to tubes with helical

precurvatures. If tubes with variable sti↵ness are used, the precurvatures can present more gen-

eral geometries that correspond to the deformation of helices, provided that the aforementioned

relations on Piû
Fi
i are satisfied. These designs are equivalent to those of constant sti↵ness tubes

in terms of follow-the-leader capabilities, but they can be exploited in additional maneuvers

described in the next section, which combine follow-the-leader with other general kinematics in

di↵erent parts of the robot, to increase the possibilities of motion and geometry in the parts of

the robot that do not remain in a follow-the-leader configuration.

It should be noted that Pi is a non-dimensional sti↵ness determined by the sti↵nesses of all

tubes comprising a robot. In this regard, the design of the tubes in a robot is not decoupled,

and instead a CTR must be designed considering all tubes that comprise it. In addition, in the

case of configurations including tubes with �j 6= 0, which involve compensating in conjunction,

two or more tubes are required for each term that involves a specific set of �j and ⇢j in the

trajectories (3.27).

Expression (3.27), together with combinations of the trajectories linked as introduced in sub-

section 3.3.3, represent the complete set of trajectories that can be traced in follow-the-leader

motion under the assumption of no axial torsion of the tubes. A broad variety of trajectories

can therefore be followed. However, it should be noted that a generic robot design cannot be
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used to follow any desired trajectory in the set (3.27), and instead a robot must be designed to

follow a desired, small subset of the trajectories determined by variations in the �i, ⌫j and the

insertion lengths of the tubes. In the particular case of using a robot with the minimum number

of tubes necessary to follow a desired trajectory, the desired trajectory would require a specific

robot design in terms of the initial Piûi of the tubes. It should also be noted that the length

of trajectories involving terms with � 6= 0 is typically limited as the curvature in these terms

increases exponentially, rendering the trajectories prone to instability and of limited practical

interest.

The control input required in each tube or group of tubes to maintain follow-the-leader motion

over an entire CTR is (3.23) with ḣi(t) = 0 for all tubes that are advancing and compensating

individually in a possibly combined trajectory. The inputs required in tubes or groups of tubes

compensating in conjunction is also ḣi(t) = 0, and a ✓i(t) that can be determined from (3.5) so

that the curvature resulting from the tubes compensating in conjunction follows the evolution

of the corresponding term in (3.27). In both cases, the control input for tubes that remain

stationary at the end of a segment of a combined trajectory is ḣi(t) = v, ✓̇i(t) = 0.

The set of trajectories summarised in (3.27) is broad, and torsion can be expected to occur

in some of the trajectories. This can render some of the trajectories partially inaccurate or

completely unfeasible, as studied in section 3.5. Before the analysis of torsion, additional

kinematics of interest are considered in the following section, completing the general study of

motion related to follow-the-leader.

3.4 Additional maneuvers

The kinematic analysis presented up to this point focused on follow-the-leader motion. However,

some potentially exploitable kinematic possibilities were also found in the discussion. The

applicability of these kinematics, together with additional motions related to follow-the-leader,

are described in this section. Some of these kinematics have been previously considered in the

literature for robots comprising a set of piecewise constant curvature tubes. This work extends
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some these kinematic possibilities to the new trajectories found here, and integrates them into

the derivation in this thesis to complete the analysis.

3.4.1 Trajectory linking

The possibility of inserting one or multiple tubes that compose a robot with ḣi = 0, ✓̇i 6= 0, and

at a certain point switching the control of some of these tubes to ḣi = v, ✓̇i = 0, was mentioned

in subsection 3.3.3. This involves inserting one or multiple tubes to some extent together with

the rest of the robot, and leaving these specific tubes fixed at a certain point while the rest of

the robot proceeds forward, maintaining follow-the-leader motion throughout the entire robot

(including the segment of the robot in which some tubes are left stationary).

This concept of telescopic deployment to enable follow-the-leader motion is known in the lit-

erature ( [77], [74]) and was originally introduced in [62] for tubes with piecewise constant

curvature. In this work, the concept is extended to general trajectories composed of segments

of trajectories from the set (3.27). More specifically, this deployment strategy can be exploited

to follow trajectories in which the geometry of the first segment is determined by (3.27) for

any desired number of tubes with selected precurvatures, and the geometry of the subsequent

segments corresponds to (3.27) for equal precurvatures but a reduced number of tubes. In

this manner, di↵erent trajectories from the set summarised in equation (3.27) can be linked

and followed with a single robot, expanding the follow-the-leader kinematics. The telescopic

insertion of tubes with piecewise constant curvature and no torsion is included as a particular

case of linked trajectories. However, this deployment strategy is applicable to the broader set

of trajectories discovered in this work (3.27).

The linkage of trajectories also enables extending the reachability of concentric tube robots.

Tubes with significant precurvatures, which are generally prone to torsional instability, can

be inserted a short length at the beginning of the trajectory, while tubes with shallower pre-

curvatures can proceed forward. This is particularly relevant in keyhole surgery and on-wing

operations, where reaching a desired location can require follow-the-leader motion in regions

with clearly di↵erentiated kinematic requirements. Examples in on-wing operations can be
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inspections the access route involves entering into the engine in a radial direction, followed by

a sharp turn to avoid a component, and then proceeding in a relatively straight passage to the

location of interest. Typical MIS examples can be scenarios where entry into the body at a

specific angle is a challenge, and the subsequent trajectory requires lower curvatures, as can

be the case of interventional Magnetic Resonance (MR) procedures where access to the patient

within the bore of the scanner is restricted. Specific examples of this can be focal ablation,

brachytherapy, tissue sampling or drug delivery, performed under live MR imaging.

3.4.2 Combined follow-the-leader and general motion

One of the results drawn from the analysis in subsection 3.3.3 is that both ✓̇i and ḣi can be

used to maintain follow-the-leader motion in the parts of the robot where the tubes with ✓̇i and

ḣi are present. This applies both to configurations compensating individually, where it leads

to one degree of freedom per tube, and configurations compensating in conjunction, where it

leads to 2l�2 degrees of freedom. Once a robot has been inserted, it is then possible to operate

individual tubes (or subsets of tubes in the case of compensating in conjunction) independently

by using ḣi 6= v, 0 and the corresponding control input ✓̇i determined from (3.23) for tubes

compensating individually, or from (3.5) for tubes compensating in conjunction, as previously

described. Follow-the-leader is then maintained throughout the part of the robot that contains

the tubes controlled with ḣi 6=v, 0. Similarly, it is possible to independently operate some of

the tubes composing a group that has been inserted with common ✓̇i and ḣi, and maintain

follow-the-leader provided that their individual design satisfies (3.20), or that the combination

of designs of a subset of the tubes in the group satisfies (3.22). In the case of a tube or subset of

tubes satisfying the design requirements for follow-the-leader in their proximal region only, their

independent operation enables follow-the-leader motion in the part of the robot that contains

the corresponding region of the tubes.

These kinematic equivalences enable general motion of the robot’s distal part while maintain-

ing a follow-the-leader configuration of the body of the robot once it has been inserted. In

particular, there exist two main alternatives. The first involves varying the insertion of a tube
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or a subset of tubes using follow-the-leader control in a configuration where the tubes being

actuated present some o↵set hi > 0, i.e. the tubes are not at the robot’s distal end. This leads

to general, transversal motion of the robot’s distal segment s 2 [0, hi], while the rest of the

robot, which contains the tube being actuated, remains in a follow-the-leader configuration.

The second alternative involves using a group of tubes that satisfies the design requirements

for follow-the-leader as a group, but is composed of tubes that, either individually or in con-

junction for a subset of the tubes in the group, only satisfy the follow-the-leader requirements

in the proximal part of the robot, presenting a general design in the distal part of the robot.

In this configuration, the independent operation of the tubes using a follow-the-leader control

corresponding to the proximal region of the tubes also enables follow-the-leader motion in the

proximal part of the robot, combined with general motion of the distal region of the robot. The

selection of the general curvature function in the distal part of the individual tubes determines

the general motion generated at the robot.

It should be noted that the strategy of maintaining the proximal part of the robot in a steady

configuration while the distal part is used as a manipulator had been previously introduced

in [69]. In this regard, the contribution of this work is to expand the strategies to achieve this

type of motion as well as the possible trajectories and kinematics under a common framework.

A relevant advantage of the kinematics proposed in this subsection, in particular the use

of groups of tubes, is that, during the insertion, the group behaves as a single tube with

✓i(t) = ✓j(t)). Thus, it can contribute to the follow-the-leader kinematics during the robot

insertion, reducing the number of tubes required, and then the group can be split for general

maneuvers. Furthermore, the kinematics described in this subsection enable smooth variations

of the robot’s distal end configuration during insertion, which do not correspond to a follow-the-

leader configuration. These can be particularly useful in MIS applications, particularly during

insertions through soft tissue where trajectory corrections are required.
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Figure 3.3: Schematic illustration of the idle tubes concept corresponding to (a) two tubes
(red and yellow) with opposite curvatures, resulting in a straight geometry (green) useful for
insertion, and (b) the same tubes with aligned curvatures, which corresponds to an active
configuration with bending in the segment near the distal end.

3.4.3 Idle tubes

The quasistatic model (3.5) shows that the combination of two tubes with opposite precur-

vatures results in a tube with zero curvature since the tubes’ curvatures compensate at each

cross section. Thus, a tube with a general desired curvature near the distal end and a straight

geometry towards the proximal end can be integrated in a robot as a straight tube by combin-

ing it with its opposite, in an idle configuration shown in Figure 3.3(a). The incorporation of

the resulting straight tube does not a↵ect the possibility of follow-the-leader motion; it simply

increases the robot sti↵ness.

Once the robot is inserted, the idle tubes can be activated by modifying their relative rotation

or insertion, as shown in Figure 3.3(b). The active tubes only present curvature in the segment

near the distal end, which is determined by their design. The result is the possibility of

general motion at the robot’s distal end once inserted, while maintaining a follow-the-leader

configuration throughout the rest of the robot. The general motion achievable at the distal end

is determined by the geometry of the idle tubes, which is selected by design. The idea of using

idle tubes has been previously proposed in the literature. Here, the idea is generalised to the
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precurvatures and trajectories discovered in this work, and the concept is extracted from the

analysis in the previous sections of this chapter, leading to a more complete study.

The advantage of using idle tubes over the maneuvers described in the previous subsection is

that idle tubes do not impose any restrictions on their control, since their proximal part is

straight. On the other hand, idle tubes cannot contribute to the follow-the-leader kinematics,

unlike groups of tubes described in the previous subsection. In this regard, idle tubes lead

to a noticeable increase in robot sti↵ness, requiring higher precurvatures in the robot design

to follow a specified trajectory. This results in devices prone to torsional instability, which is

discussed in section 3.5. Thus, the practical applicability of the idle tubes concept is relatively

limited.

3.5 Torsion

The analysis presented in the previous sections is predicated on the assumption of no axial

torsion of the tubes composing the robot. Such an assumption can be used in the kinematic

study of concentric tube robots, and it leads to the solutions described in previous sections.

However, a certain degree of axial torsion is generally present in CTRs, and therefore a certain

deviation from follow-the-leader can occur in the trajectories previously identified. When axial

torsion is significant, CTRs can even become unstable in some of the previously identified

trajectories due to the so-called snap-through instability described in [69]. Thus, even though

some of the trajectories found under the assumption of no axial torsion can be tempting, as

that shown in Figure 3.4, they may not be viable.

The axial torsion of CTRs is studied in this section in order to determine the validity of the

assumption of no axial torsion, and therefore allow for the selection of robot configurations

where such assumption is an acceptable approximation. It should be noted that, in this work,

the term axial torsion refers to the torsional deformation of a tube along the axis locally

tangential to its centreline. In the following derivation, both terms torsion and axial torsion

are used to refer to axial torsion. These terms should not be confused with the geometric
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Figure 3.4: Example of trajectory from the set (3.27), illustrating the fact that the assumption
of no axial torsion can lead to intriguing predictions, but a study of torsion is required to
determine feasibility.

torsion that can be associated to a curve in space, which can be used to describe the initial,

undeformed geometry of a tube in space. In instances where it is necessary to refer to the

geometric torsion of a curve in space, which can be describing the initial geometry of a tube,

the term geometric torsion is used.

The study of torsion requires a general equilibrium analysis, which is derived in this section

using special Cosserat rod equilibrium theory, following the approach in [69]. The study is then

made specific to trajectories of interest in subsection 3.5.2, and a closed-form solution for a

two-tube robot is presented. The implications of such a solution are subsequently discussed

in subsection 3.5.3, and criteria to ensure that the torsion of the tubes is below a specified

value are extracted. The relation between torsional deformation and deviation in task space is

illustrated with some cases of interest in subsection 3.5.4, serving for the selection of a robot

design for the case study described in section 3.6.
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3.5.1 General formulation of torsional study

The derivation of the general di↵erential equation governing torsion presented in this subsec-

tion is analogous to that in [69]. However, the main steps of the derivation are included for

completeness, serving as a foundation for the subsequent analysis in this chapter. It should be

noted that the derivation is for quasistatic operation of the robot, as in the previous sections

of this chapter. In order to facilitate the integration of this work with existing literature, a

new variable is defined ⇣ = L � s, which corresponds to the arc length relative to the robot’s

proximal end. The study of torsion in the following is derived using ⇣ as the independent

variable.

The equilibrium of a tube i subjected to distributed external forces f and moments ⌧ can be

imposed as 2

64
ṁi

ṅi

3

75 =

2

64
⌧
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75�

2
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0 [ui]

3

75
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64
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ni

3

75 (3.28)

where ui and vi represent the angular and linear deformations, respectively, mi and ni denote

the internal moments and forces associated with the stress in the tube cross section, and

the square brackets denote skew-symmetric matrix. The derivatives, indicated by a dot, are

relative to the arc length of the curve describing the tube centreline, ⇣, and all the variables

are a function of ⇣. The variables corresponding to a tube are expressed in the tube’s frame,

although the superscript indicating the frame is omitted for simplicity in the notation.

In this work, the focus is on the robot equilibrium resulting from the interaction between tubes.

Thus, f and ⌧ correspond to the forces and moments exerted on a tube by the adjacent tubes.

Assuming the friction between the tubes comprising the robot to be negligible ⌧ = 0, the

equilibrium equation corresponding to the torques in (3.28) is

ṁi = �[ui]mi � [vi]ni (3.29)
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Considering the derivative of the constitutive relation (3.2) with respect to arc length

ṁi = ki
dui

d⇣
+

dki

d⇣
ui �

d(kiûi)

d⇣
(3.30)

and combining (3.29) and (3.30) yields

ki
dui

d⇣
= �[ui]mi � [vi]ni �

dki

d⇣
ui +

d(kiûi)

d⇣
(3.31)

The angular strains can be assumed to be the prevailing deformation modes over linear strains,

following [69], leading to

[vi] =

2

66664

0 �1 0

1 0 0

0 0 0

3

77775
(3.32)

Recalling that the initial curvature of a tube is defined in section 3.2 as the curvature of

the curve corresponding to its centreline, the z component of ûi is zero, and therefore the z

component of d(kiûi)
d⇣ is null. The tubes comprising the robot can be assumed to have an annular

cross section with constant sti↵ness for convenience, which implies ki
d⇣ = 0 and kx = ky. Using

the constitutive relation (3.2), and after some manipulation, the z component of (3.31) can be

written as

u̇iz =
kx
kz

(uixûiy � uiyûix) (3.33)

which describes the torsional derivative of a tube with respect to ⇣ as a function of its initial and

deformed bending curvatures. It should be noted that this expression is equivalent to that pre-

sented in [69], as it is applicable to any concentric tube robot design under the aforementioned

assumptions.

Considering a robot composed of two tubes, the relative twist angle can be defined as

↵(⇣) = ✓2(⇣)� ✓1(⇣) (3.34)

where ✓i represents the torsional displacement of tube i. Recalling the definition of uiz as the
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torsional strain, the derivative of (3.34) with respect to the arc length relates the twist rate to

the torsion of the tubes

↵̇ = u2z � u1z (3.35)

Combining the equilibrium of moments (3.3) in the z direction and the constitutive law (3.2),

the following relation in the z direction can be obtained

k1zu1z + k2zu2z = 0 (3.36)

Substituting (3.36) into (3.35), the twist rate between both tubes can be related to the torsion

of one of the tubes

↵̇ = (1 +
k2z
k1z

)u2z (3.37)

It should be noted that the twist rate can also be directly related to the torsion of the other

tube using (3.36).

Combining the derivative of (3.37) with (3.33), the second derivative of the twist can be related

to the initial and final curvatures of tube 2 as

↵̈ = (
k2x
k2z

+
k2x
k1z

)(u2xû2y � u2yû2x) (3.38)

The variables u2x and u2y can be expressed as functions of the initial curvatures of the tubes and

the relative twist using the governing equations in section 3.2. Taking (3.5) in combination with

(3.4), and expressing the relations in the Bishop frame associated to tube 2, F2, considering

that in such case R(✓1) = R(�↵) and R(✓2) = I, the following relations are obtained

u2x = 1
k1x+k2x

(k1xû1x cos↵ + k1yû1y sin↵)

u2y =
1

k1y+k2y
(�k1xû1x sin↵ + k1yû1y cos↵)

(3.39)

Substituting (3.39) into (3.38), and after some manipulation including the aforementioned

assumption that kx = ky, the expression governing the relative twist of the tubes as a function
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of their initial curvatures is obtained

↵̈ = (
k2x
k1z

+
k2x
k2z

)(
k1x

k1x + k2x
)((û1xû2y � û2xû1y) cos↵ + (û1xû2x + û1yû2y) sin↵) (3.40)

A first boundary condition can correspond to the twist at the proximal end of the robot, i.e.

at ⇣ = 0, which can generally be used as a control input,

↵(0) = ✓2(0)� ✓1(0) (3.41)

The second boundary condition can be obtained by considering that the torsional moment at

the distal end of each tube must be zero, which implies no torsion of the tubes at ⇣ = L and

therefore

↵̇(L) = 0 (3.42)

It should be noted that expression (3.40) together with boundary conditions (3.41) and (3.42)

is general, and therefore valid for any two-tube robot design satisfying the assumptions used in

the derivation.

3.5.2 Torsion in particular configurations

Expression (3.40) can be made specific to trajectories in the set (3.27) in order to determine

the validity of the assumption of no axial torsion in practice. The most relevant trajectories in

practice are those corresponding to tubes compensating individually since they only require one

tube per component in (3.27), which enables following a wide variety of non-trivial trajectories

with a low number of tubes, and they o↵er lengths and curvature values of typical practical

interest. The following derivation is thus focused on robots composed of tubes with helical

precurvatures. Substituting these helical precurvatures from (3.27) into (3.40), and after some

manipulation,

↵̈ = c sin((w2 � w1)⇣ + ↵(⇣) + �d) (3.43)
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where c = kû1k kû2k (k2xk1z
+ k2x

k2z
)( k1x

k1x+k2x
) in which kûik is constant considering tubes with

constant sti↵ness, �d = �2 � �1, and the boundary conditions remain equal to those in (3.41)

and (3.42). Defining a change of variable

�(⇣) = (w2 � w1)⇣ + ↵(⇣) + �d (3.44)

equation (3.43) transforms into
d2�(⇣)

d⇣2
= c sin(�(⇣)) (3.45)

with boundary conditions

�(0) = ↵(0) + �d

�̇(L) = w2 � w1

(3.46)

Di↵erential equation (3.45), with boundary conditions (3.46), is similar to that obtained in

[69], but di↵ers in one of the boundary conditions, requiring a di↵erent solution. The rest of

this subsection is dedicated to the solution of (3.45) with boundary conditions (3.46), and its

application to solve (3.43).

The approach adopted in this work relies on the fact that equation (3.45) is analogous to the

equation of a nonlinear pendulum. Thus, the solution to a nonlinear pendulum is adapted here

for the specific boundary conditions (3.46). Considering that d2�(⇣)
d⇣2 = �̈ = �̇ d�̇

d� , (3.45) can be

integrated Z �̇(⇣)

˙�(0)

�̇d�̇ = c

Z �(⇣)

�(0)

sin(�)d� (3.47)

and evaluated as

�̇(⇣)
2
= �̇(0)

2
+ 2c(cos(�(0))� cos(�(⇣))) (3.48)

This expression can be evaluated at ⇣ = L considering the boundary conditions (3.46), and

substituted in (3.48), resulting in the first order di↵erential equation

�̇(⇣)
2
= (w2 � w1)

2 + 2c(cos(�(L))� cos(�(⇣))) (3.49)
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Using separation of variables, the integral of (3.49) can be considered in the following interval

⇣ � L =
1p
2c

Z �(⇣)

�(L)

d�q
(w2�w1)2

2c + cos(�(L))� cos(�(⇣))
(3.50)

Defining b = (w2�w1)2

2c +cos(�(L))+1,Ke =
q

2
b , and using the change of variable h(⇣) = �(⇣)+⇡,

integral (3.50) can be rewritten as

⇣ � L =
1p
2cb

Z h(⇣)

h(L)

dhq
1�Ke

2 sin2 h(⇣)
2

(3.51)

This integral corresponds to the incomplete elliptic integral of the first kind F (x,K), which is

defined for 0  K  1. The closed-form solution to (3.51) can be obtained in two intervals of

Ke.

If 0  Ke  1, expression (3.51) can be directly integrated according to the definition of

F (x,K), yielding

(⇣ � L)

r
cb

2
= F (

h(⇣)

2
, Ke)� F (

h(L)

2
, Ke) (3.52)

Using the Jacobi elliptic functions sn and cn, the incomplete elliptic integral of the first kind

F (h(⇣)2 , Ke) can be inverted, which allows solving for h(⇣) as

h(⇣) = 2 tan�1

2

64
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⇣
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q
cb
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⌘

3

75 (3.53)

If Ke > 1, a change of variable can be defined using  (⇣) = sin�1(Ke sin
h(⇣)
2 ), which can

be di↵erentiated as d cos = Ke

q
1� sin2  

Ke
2

dh
2 , and guarantees that the incomplete elliptic

integral is well defined. Applying such change of variable to (3.51) yields

(⇣ � L)
p
c =

Z  (⇣)

 (L)

cos d q
1� sin2  

Ke
2

p
1� sin2  

(3.54)

which can be integrated using the definition of the incomplete integral of the first kind, resulting
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in

(⇣ � L)
p
c = F ( (⇣),

1

Ke
)� F ( (L),

1

Ke
) (3.55)

Using Jacobi elliptic functions, and reversing the change of variables, (3.55) can be solved for

h(⇣) as

h(⇣) = 2 sin�1{ 1

Ke
sn[(⇣ � L)

p
c+ F (sin�1[Ke sin(

h(L)

2
)],

1

Ke
),

1

Ke
]} (3.56)

The change of variable h(⇣) = �(⇣)+⇡ can be reversed to obtain the solution to (3.45) for �(⇣)

from (3.53) and (3.56), which is immediate.

Finally, by reversing the change of variable (3.44), the closed-form solution to the relative twist

↵(⇣) of two tubes in the trajectories where follow-the-leader motion is possible for given design

parameters can be obtained in two intervals of Ke. For 0  Ke  1,

↵(⇣) = (w1 � w2)⇣ � ⇡ � �d + 2 tan�1

2
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And for Ke > 1,

↵(⇣) = (w1 � w2)⇣ � ⇡ � �d + 2 sin�1{ 1

Ke
sn[(⇣ � L)

p
c+

F (sin�1[Ke sin(
↵(L) + (w2 � w1)L+ �d + ⇡

2
)],

1

Ke
),

1

Ke
]}

(3.58)

where the transition at Ke = 1 is smooth.

It should be noted that the solution is expressed as a function of the relative twist at the

distal end of the robot, instead of the proximal end as in the boundary condition (3.41). An

equivalent result can be obtained using ↵(0) as independent variable instead of ↵(L) following

an analogous derivation. However, ↵(L) is selected as the independent variable in this case

since it facilitates the discussion on torsional stability, which is the final aim of this torsional

study.
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3.5.3 Torsion discussion

The implications of solution (3.57), (3.58) are analysed in this subsection. The focus is on the

torsional magnitude in order to determine the validity of the assumption of no axial torsion

employed in the previous sections of this chapter, and thus identify stable trajectories.

Expressions (3.57), (3.58) allow the determination of the relative twist at any cross section of

a two-tube robot composed of helical tubes as a function of ↵(L) as well as the robot design

parameters and �d. The evaluation of expressions (3.57), (3.58) at s = 0 provides the relation

between ↵(0) and ↵(L) for a given robot design and �d. The e↵ect of �d on the relation between

↵(0) and ↵(L) is simply a translation of the origin about ↵(0) = ↵(L), which is a consequence

of the fact that �d corresponds to the relative rotation of the tubes at the proximal end. Since

the torsional behavior of the tubes is cyclic with period 2⇡, the e↵ect of �d is not relevant

and is not considered further. On the other hand, the influence of the design parameters on

the torsional behavior is through two non-dimensional groups: L
p
c, (w2 �w1)L. The relation

between ↵(0) and ↵(L) can therefore be plotted for di↵erent values of the non-dimensional

groups in order to study the tubes’ torsional behavior.

Three illustrative examples of di↵erent relations between ↵(0) and ↵(L) are shown in Figure 3.5,

which correspond to three di↵erent cases in terms of values of the non-dimensional groups. As

can be seen, in two of the cases, the evolution of ↵(L) as a function of ↵(0) is stable, whereas

in the third case the robot presents a torsional instability corresponding to a snap-through

instability. The two stable examples, however, present markedly di↵erent evolutions of relative

twist. The relation shown in blue is strongly nonlinear, which implies that the assumption of no

axial torsion is not an accurate representation of the torsional behavior. Instead, the relation

shown in green is closer to linear, and therefore can be approximated well by the assumption

of no axial torsion of the robot.

Studying the evolution of ↵(L) as a function of ↵(0) for a range of values of the non-dimensional

groups in combination with the solutions (3.57), (3.58), criteria to attain a desired torsional

behavior can be extracted. The domain considered here is selected to include the configurations
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Figure 3.5: Evolution of the relative twist between the distal and proximal ends of robots
composed of two tubes with three di↵erent designs, which present a stable and approximately
linear relation (green), a stable but nonlinear evolution (blue), and an unstable behavior in the
interval ↵(0) 2 [2.8, 3.8].

of practical interest, with L
p
c 2 [0, 3⇡/4] and (w2 � w1)L 2 [0, 24]. In general, the robot is

stable if L
p
c  ⇡

2 , although greater values can be reached in a stable manner by increasing

(w2�w1)L. Similarly, it can be seen that greater values of (w2�w1)L lead to a relation between

↵(L) and ↵(0) that is closer to ↵(L) = ↵(0). The deviation from ↵(L) = ↵(0), quantified as

average deviation error squared, is plotted in Figure 3.6 as a function of the non-dimensional

groups in the region of stable configurations of interest L
p
c 2 [0, ⇡/2] and (w2�w1)L 2 [0, 24].

The plot confirms the trends identified for (w2 � w1)L and shows that they are monotonic

over the region considered. Interestingly, for the case of w2 = w1 = 0, the results from (3.57),

(3.58) converge with the results reported by [69]. In this regard, the solution (3.57), (3.58)

represents a generalization of the work in [69] for two-tube robot designs with helical tubes,

which correspond to the set (3.27).

A torsional deviation in the relation between ↵(0) and ↵(L) can therefore be selected to be

below a specified value in order to ensure that the assumption of no axial torsion is an acceptable

approximation. It should be noted, however, that a boundary on torsional deformation does not

directly imply a specific boundary on the deviation with respect to follow-the-leader motion in
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Figure 3.6: Plot of the average squared deviation from ↵(L) = ↵(0) as a function of L
p
c,

(w2 � w1)L in the domain of interest. The plot elucidates the trends identified, and confirms
that they are monotonic in the domain of interest.

the resulting trajectory. The torsional deformation a↵ects the local curvature values, whereas

the deviation in the resulting trajectory is determined by the integration of the local curvature

along the robot length. Thus, torsional deformation and resulting deviation in task space are

related, but the relation depends on an integral.

The solution (3.57), (3.58) can be substituted into the well-known robot model including torsion,

e.g. that described in [69], to determine the deviation in local curvature due to torsion in a

two-tube robot. This can then be particularised to the robot designs and configurations found

in this work to determine the local curvature deviation in the trajectories of interest (3.27).

However, in order to determine the resulting position deviation due to torsion in task space, the

local curvature needs to be integrated. A closed-form solution to such integral is not available.

Thus, the specific deviation in task space due to torsion cannot be directly determined from

the current analysis. The possibility of approximating this integral or finding boundaries on

the deviations in task space from boundaries on local curvature deviations will be addressed in

future work.
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Nonetheless, in some practical cases, the typical deviation in task space due to torsional defor-

mation can be considered to follow certain trends that can be approximated for a specific family

of designs based on experience. In such cases, boundaries on torsional deformation can be used

to identify the trajectories where follow-the-leader is possible within an admissible deviation.

In order to exploit any trajectories of interest, however, these need to be subsequently verified

to ensure that the deviation in task space is within the expected values. In more general cases,

a hypothesis on the admissible torsional deformation in the specific scenario of interest can be

formulated by exploring the e↵ect of torsion on the resulting trajectory in some relevant con-

figurations. The corresponding trajectories where approximate follow-the-leader is possible can

then be identified, and trajectories of interest can be selected. However, any selected trajectory

needs to be subsequently verified. This procedure can therefore require some iteration. In all

cases, it should be noted that boundaries on torsional deformation typically involve using tubes

with lower curvatures. In particular, in designs composed of tubes with planar precurvatures,

this always applies as torsional deformation is determined by a single parameter L
p
c.

3.5.4 Illustration of torsion e↵ects

A set of examples of torsional deformation and the corresponding deviation in task space are

presented in this subsection. These are aimed at illustrating the relation between torsion and

resulting deviation for some designs of interest.

Three simulated insertions are first used to show the behavior of three exemplary robot designs

corresponding to the torsional relations shown in Figure 3.5, and then to quantify the follow-

the-leader deviation in task space due to torsion. The simulations are implemented using the

robot quasistatic model considering torsion (3.5) together with the solutions of torsion along the

arc length (3.57), (3.58). The robot configuration is evaluated at ten regular intervals during an

insertion. The three designs are all composed of two helical tubes with equal sti↵ness, a length

of 20 cm, and kû1k = 11 m�1, kû2k = 8 m�1, w1 = 8 m�1, w2 = 12 m�1 for the first design,

kû1k = 9 m�1, kû2k = 7 m�1, w1 = �12 m�1, w2 = 9 m�1 for the second, and kû1k = 6 m�1,

kû2k = 5 m�1, w1 = �18m�1, w2 = 9m�1 for the third.
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The resulting simulated insertions are shown in Figure 3.7 (a), (b) and (c), respectively. As

can be seen, follow-the-leader is maintained in some parts of the trajectories, but significant

deviations are present in both the first and second designs. In this work, the deviation, defined

✏, is quantified as the maximum of the minimum distances between any point on the robot

centreline at any of the configurations during an insertion and the centreline at any other

configuration. The maximum deviations for the insertions shown in Figure 3.7 (a), (b) and (c)

then are ✏1 = 40.7 mm, ✏2 = 16.0 mm, and ✏3 = 2.8 mm, respectively. The error in these

three cases thus increases with the magnitude of torsion, as can also be observed in the plots.

Interestingly, the snap-through instability appears in the first design at approximately 75% of

the insertion, as can be seen in Figure 3.7 (a), where the geometry of the robot in the last three

configurations is markedly di↵erent from that in the previous configurations.

Equivalent simulations can be conducted to explore the relation between torsion boundaries

and deviation in task space in any set of designs. This is presented here for a relevant subset

of designs corresponding to two-tube robots with helical tubes of equal sti↵ness, a length of 20

cm, and curvatures of each tube varied within kûik 2 [3, 7], and geometric torsion varied within

wi 2 [�30, 15], with w1 6= w2 for each design. This subset of designs is selected as it results

in trajectories of potential practical interest, which present complex geometries with variations

of curvature along the arc length, both in magnitude and direction. The maximum deviation

from follow-the-leader is measured in each insertion as in the previous three cases.

The maximum deviation in task space is plotted in Figure 3.8 as a function of the maximum

torsional deviation, defined as �↵M = max k↵(L)� ↵(0)k over ↵(0) 2 [0, 2⇡], for all designs in

the subset. As can be seen in Figure 3.8, the maximum deviation in task space tends to increase

with the maximum torsional deformation. Interestingly, the torsional deviation of some of the

designs coincides, which is due to the fact that the non-dimensional groups coincide. In some

specific cases, the deviation is low despite significant torsional deviation. These are designs

where w1 and w2 are close, and therefore the robot behaves practically as a single helix with

limited relative tube rotation. Still, in the cases explored, torsion boundaries translate as

bounded deviation in task space.
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presents a significant deviation from follow-the-leader and includes a snap-through instability,
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a low deviation.



142 Chapter 3. Concentric Tube Robots

0 0.2 0.4 0.6 0.8 1 1.2 1.4

 
M

 [rad]

0

1

2

3

4

5

6

7

8

 [
m

m
]

Figure 3.8: Plot of maximum deviation from follow-the-leader in task space as a function of
maximum torsional deviation for a wide variety of designs.

Torsion boundaries can then be defined in the subset of designs explored so that the assump-

tion of no torsion is an admissible approximation, and thus the corresponding follow-the-leader

trajectories can be followed within an acceptable deviation. This can be exemplified by consid-

ering admissible the relations between ↵(0) and ↵(L) that lie within two boundaries depicted as

dashed lines in Figure 3.5, and without snap-through. These boundaries are arbitrarily set to

be parallel to ↵(0) = ↵(L) with an o↵set of ±1/2 m�1, and correspond to maximum deviations

in task space of near 4 mm. It should be noted, however, that these bounded deviations are only

guaranteed in the specific configurations explored. The deviations on any other configuration,

even if similar, must be verified.

The trajectories corresponding to the configurations explored within these bounds are plotted

in Figure 3.9 for a common initial pose at the base. It should be noted that the trajectories

shown in Figure 3.9 can also be rotated around the base z axis while maintaining the base

pose, increasing the follow-the-leader possibilities for that pose, although they are not plotted

for clarity of illustration. It should also be noted that the solution in equations (3.57), (3.58)

does not depend on the length units in the robot design variables, and therefore any isotropic

scaling of the trajectories shown in Figure 3.9 results in a trajectory that can also be traced

in an approximate follow-the-leader manner with a deviation that scales with L. Figure 3.9
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Figure 3.9: Plot of the set of stable trajectories where follow-the-leader is possible using a robot
composed of two tubes, with a common base pose.

illustrates the potential of the trajectories discovered in this work for surgical applications,

showcasing the capability of following trajectories with a continuous variation of curvature,

both in magnitude and direction, in an approximate follow-the-leader configuration to reach

targets in di↵erent locations from a specified initial pose.

3.6 Case study: simulation and experiment

The results on torsional stability presented in the previous section allow for the selection of a

robot design together with a trajectory to showcase the research reported in this chapter. The

performance of the selected robot is presented in this section in the form of a case study involving

simulation and experiment. This serves to illustrate both the capability of follow-the-leader
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 [m�1] w [m�1] OD [mm] ID [mm]
Tube 1 6.79 -26 0.9652 0.8128
Tube 2 6.22 4 1.1938 1.1176

Table 3.1: Characteristics of the tubes corresponding to the case study.

motion in a trajectory that is unique and representative of the research on follow-the-leader,

as well as the validity of the assumption of no axial torsion in such trajectory.

3.6.1 Robot design and trajectory

The case study involves a two-tubes robot advancing in follow-the-leader motion along a trajec-

tory with continuous variation of curvature, both in direction and magnitude, in the proximal

part of trajectory, and helical geometry in the distal part. The trajectory selected is a combina-

tion of two trajectories in the set (3.27) linked as described in subsection 3.4.1, whereby one of

the tubes remains static at the linkage between trajectories while the other proceeds forward.

The case study therefore serves to demonstrate both the research reported in section 3.3, as

well as some of the work on additional exploitable kinematics described in section 3.4. The

behavior of the robot in the first and proximal part of trajectory is studied with simulations,

whereas that in the second and distal part of trajectory is shown with an experiment.

The geometry of the complete selected trajectory can be described by the curvature i, geomet-

ric torsion wi and sti↵ness of the two tubes comprising the robot, together with their respective

insertion lengths. The tube’s characteristics are summarised in Table 3.1, where OD denotes

the outer diameter of the tube and ID represents the inner diameter. The total insertion of the

outer tube, tube 2, is 19 cm, whereas that of the inner tube is 26 cm. The complete trajectory

is shown in Figure 3.10. As can be seen, it is a trajectory that cannot be followed using con-

ventional, constant curvature tubes, as it presents continuous variation of curvature in the part

corresponding to two tubes, and helical geometry in the part corresponding to a single tube.

The tube’s characteristics are selected to minimise axial torsion. The evolution of ↵(L) as a

function of ↵(0) can be predicted using (3.57), (3.58), as shown in Figure 3.13. In this case, the

design parameters summarised in Table 3.1 result in the approximately linear relation between
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Figure 3.10: Plot of the complete trajectory selected for the case study. It comprises both
the first part of trajectory in the proximal region, where is presents continuous variation of
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↵(L) and ↵(0) shown in Figure 3.13. Thus, torsion is expected to be low in the entire trajectory.

3.6.2 Simulation

The first part of the trajectory corresponds to both tubes advancing with ḣ1 = ḣ2 = 0 from

the insertion point until full insertion of tube 2. The behavior of the robot in this part of

the trajectory is studied by simulating it at a set of twenty configurations corresponding to

insertion lengths between L = 9.5 mm and L = 19 cm at regular intervals. This enables

evaluating the deviation from follow-the-leader and the magnitude of torsional deformation as

the robot advances.

The geometry of the robot in each of these twenty configurations is simulated as in subsection

3.5.4, by combining (3.5) and (3.57), (3.58). The e↵ects of friction between tubes and gravity

are neglected, and the tubes are assumed to be made of nitinol with a Poisson ratio of ⌫ = 0.33.

The desired control inputs at the insertion point for this part of trajectory are determined from

(3.23) with ḣi = 0. Thus, the rotation of each tube at the insertion point should be constant

and at a rate corresponding to its geometric torsion. In practice, the tubes must be controlled

by an actuation system, and therefore part of the tube will be inside this actuation system.

The part of the tubes inside the actuation system may then undergo torsion as well, leading

to a rotation at the insertion point di↵erent from that at the proximal ends where the tubes

actuated. Considering an actuation box that constrains the tubes to remain straight inside it,

the torsion in the part of the tubes inside the box is constant, according to the generalization

of (3.33) for any number of tubes described in [69]. The specific torsion is then determined

by the torsion at the cross section immediately after the insertion point, uiz(⇣ = 0, t), which

can be determined from (3.37) and (3.49). The desired constant rotation of ✓i at the insertion

point can then be achieved with a rotation of �i = ✓i(⇣ = 0)�uiz(⇣ = 0, t)di at the point where

tube i is actuated, where di is the tube length between the point of actuation and the insertion

point. The simulations then assume ideal actuation inputs, and thus a constant rotation at the

insertion point at a rate corresponding to the geometric torsion of each tube.



3.6. Case study: simulation and experiment 147

The resulting simulated robot configurations are shown in Figure 3.11. As can be seen, an

approximate follow-the-leader motion is maintained over this entire first part of trajectory,

although a certain degree of deviation is present. The deviation from follow-the-leader is rela-

tively low near the insertion point and increases towards the distal parts of the trajectory. The

maximum deviation in task space, quantified as in the previous section, is 3.5 mm, and occurs

between the configurations at 85% and 100% of the insertion, at an arc length of 163.9 mm of

the final configuration.

The deviations shown in Figure 3.11 are due to torsion. The simulated torsional deviation

along arc the length �↵(⇣) = ↵(⇣)� ↵(0) is shown in Figure 3.12 for the robot configurations

corresponding to the twenty insertion lengths. As can be seen, the torsional behavior varies as

the insertion of the robot increases, which results in changes in the local curvature along the arc

length, and ultimately leads to the deviations from follow-the-leader in task space. The relation

between deviations in local curvature and follow-the-leader error in task space is determined

by the integration of curvature along the arc length, and therefore the e↵ect of local curvature

deviations is amplified with the arc length, which results in the larger errors in the distal parts

of the trajectory shown in Figure 3.11.

3.6.3 Experiment

The second part of the trajectory is the continuation of the first one. It begins with both tubes

inserted as described in the previous subsection. One of the tubes is then advanced to trace

this second part of trajectory while the other tube remains stationary relative to the task space.

The robot behavior in this second part of trajectory is demonstrated with an experiment in

order to illustrate follow-the-leader motion in practice.

The experiment implementation starts with the distal end of both tubes coinciding, which

corresponds to the end of the first part of trajectory. Tube 1 is subsequently advanced, which

involves a combination of insertion and rotation of the tube at a rate of w1 m�1, while tube

2 remains stationary. The geometry of the complete device is measured as tube 1 advances

in order to evaluate the satisfaction of follow-the-leader motion over the entire device. The
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Figure 3.11: Simulated insertion of the robot in the first part of trajectory.
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Figure 3.12: Simulated torsional deviation as a function of arc length for twenty robot config-
urations during an insertion.

experiment proceeds until full insertion of tube 1, which corresponds to the end of the complete

trajectory shown in Figure 3.10.

The design of the tubes used in the experiment matches the description in subsection 3.6.1,

summarised in Table 3.1. Both tubes are made of nitinol, supplied by Nitinol Devices and

Components Inc., with part numbers TSE0380X0320GS and TSE0470X0440GS, respectively.

It should be noted that the sti↵ness of both tubes is practically equal, which requires the result

in (3.27) to be correct for follow-the-leader motion to occur throughout the entire robot.

Starting the experiment from the point of linkage between the two parts of the complete tra-

jectory enables achieving follow-the-leader motion without the need for an actuation system.

Tube 1 can be simply advanced with free rotation, relying on the elastic equilibrium of the

system to naturally rotate it at the required rate w1.

This rotational behavior is necessary in this configuration corresponding to follow-the-leader,

where the curvature at each point in the workspace must be constant. For tubes with constant

sti↵ness as in this experiment, follow-the-leader requires the curvature vector of each tube to

remain constant at each point in the workspace. Since the tubes are in a minimum energy
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Figure 3.13: Predicted evolution of the relative twist at the distal end as a function of the
proximal end of the robot design selected for the experiment.

equilibrium at the beginning of the experiment, tube 1 is expected to rotate to remain in

the minimum energy equilibrium as it is being inserted. Considering that the tubes have a

helical geometry, remaining at a minimum energy configuration implies maintaining a constant

curvature vector at each point in the workspace, and therefore rotating at the follow-the-leader

rate w1. This structural behavior can therefore be exploited to design a simpler experiment that

su�ces for the illustration of the research on follow-the-leader, which is the strategy adopted

in this work for the implementation.

The experimental set up used in the implementation is shown in Figure 3.14. The shape of the

device is measured at regular intervals during advancement using a 3D laser scanner (PICZA

LPX-250, manufactured by Roland). The desired initial geometry of the tubes was achieved by

means of a shape setting process. Since the tubes’ sti↵ness is constant, their precurvatures are

helical, and the shape setting process simply involved constraining each tube to a cylindrical

fixture of the specified diameter, heating the assembly in air up to 550 degrees Celsius under free

convection for 10 minutes, and quenching it in water. The assembled device with both tubes

arranged concentrically was held vertically to minimise the deformation due to gravitational
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forces. In this work, the set-up was placed inside the 3D laser scanner, and tube 1 was advanced

manually while tube 2 remained fixed relative to the scanner workspace.

A total of six robot shape measurements were recorded using the 3D laser scanner as tube 1

was advanced. Each measurement consists of a set of points describing the device shape, as

shown in Figure 3.15 for the third measurement, with the corresponding projections on the XZ

and YZ planes, shown in Figures 3.16 and 3.17, respectively. A curve is fitted to determine the

geometry of the curve corresponding to the device centreline, which is also shown in Figures

3.15, 3.16 and 3.17, for the same measurement. As can be seen, the measurement presents a

certain degree of noise, which can be attributed to vibrations induced on the device by the

rotation of the 3D scanner, and to reflections from the surface of the tubes, which is more

reflective than the desired surface for typical operation of the 3D laser scanner. The noise

is zero mean, and the fitted curve allows for the reliable extraction of the geometry of the

device. The fitted curves of the di↵erent measurements are subsequently used to assess the

follow-the-leader motion.

The result of the experiment is an accurate follow-the-leader configuration throughout the entire

device. The 3D points from the di↵erent measurements recorded during device advancement,

together with their corresponding fitted curves, are shown in Figure 3.18 using specific colors

for each measurement. The projections of the fitted curves on the XZ and YZ planes are shown

in Figures 3.19 and 3.20, respectively. As can be seen, the motion in both parts of the trajectory

corresponding to two tubes and one tube remains within a follow-the-leader configuration. The

maximum deviation estimated from the fitted curves in each measurement is 4 mm. This can

be partially attributed to the limited accuracy of the experimental set-up, 3D scanner and

shape setting process, as well as small discrepancies between the idealised robot behavior and

the practical implementation, mainly in terms of external forces or friction between tubes.

The trajectory displayed by the device in the experiment presents the same approximate char-

acteristics as the planned trajectory, as shown in Figure 3.21, although there are some discrep-

ancies. The discrepancies are considered to be related to imperfections in the experimental

implementation, as well as small inaccuracies in the assumptions used in the derivation. In-
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Figure 3.14: Experimental set-up with device held vertically inside the 3D laser scanner.
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Figure 3.15: Exemplary measurement of the 3D device geometry as a cloud of orange points,
with a fitted 3D curve in blue.
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Figure 3.16: Projection on the XZ plane of the recorded points describing the geometry of the
device in one exemplary measurent, with the corresponding fitted curve.
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Figure 3.17: Projection on the YZ plane of the measured points corresponding to the device
shape in a specific configuration during the experiment, and fitted curve.
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Figure 3.18: Experimental measurements of the device geometry during the advancement of
one of the tubes, plotted as a point cloud with a di↵erent color for each recorded configuration.
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device. The curves fitted to each measurement are also displayed.



156 Chapter 3. Concentric Tube Robots

100 150 200 250 300 350

z [mm]

-10

-5

0

5

10

15

20

25

30

35

40

45

x 
[m

m
]

Figure 3.19: Projection on the XZ plane of the curves fitted to the experimental measurements
during advancement of one of the tubes.

terestingly, in the experimental implementation, tube 1 presented an estimated rotation at the

expected rate as it was being inserted according to visual observation of the rotation at the

base of the tube aided by markers. The apparent torsion of the tubes, also estimated from

visual observations at ↵(0) and ↵(L� h2) aided by markers, was minimal, as predicted. Over-

all, and despite practical imperfections, the experiment satisfactorily illustrates the research on

follow-the-leader kinematics and on torsion of the tubes.

3.7 Conclusions

3.7.1 General conclusions of research on CTRs

The complete set of trajectories where follow-the-leader motion is possible under the assumption

of no axial torsion within the robot was discovered in this work. A closed-form expression

summarising the set of trajectories was derived. The solution obtained showed that the majority

of trajectories in the set present a continuous variation of curvature along the arc length, both
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Figure 3.20: Projection on the YZ plane of the curves fitted to the experimental measurements
during advancement of one of the tubes.

in direction and magnitude; still, the solution includes all currently known piecewise constant

curvature trajectories as a particular case. The analysis presented in this chapter also elucidated

the control required for a robot to advance in a follow-the-leader configuration, where the

individual tubes must be either static or advancing as part of the robot’s distal end.

Additional maneuvers of interest were also extracted from the study of follow-the-leader kine-

matics. These include the possibility of combining follow-the-leader motion in the proximal

part of the robot with general motion at the distal end, or the linkage of trajectories that can

be traced in follow-the-leader configuration.

The general analysis of follow-the-leader motion was developed under the assumption of no

axial torsion of the tubes. In order to determine the validity of such an assumption, and then

be able to select stable robot configurations for follow-the-leader motion in practice, the torsion

of the tubes was considered in the trajectories of interest. A closed-form solution describing

the torsion of the tubes in the most relevant trajectories where follow-the-leader is possible

using two-tube robots was derived. Criteria for the structural stability of the robot were then

extracted from such a solution, and a relevant subset of designs was explored. This allowed for
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the identification of stable trajectories that can be traced in follow-the-leader motion within an

admissible deviation value, which can be specified as desired.

In order to illustrate the work, a suitable stable trajectory was selected for a case study of a

prototypical, two-tube CTR. The case study was developed with simulations and an experiment,

showcasing the capability of follow-the-leader motion in a trajectory with continuous curvature

variation, both in direction and magnitude. This capability in the wider set of trajectories

found in this work expands the potential of CTRs.

3.7.2 Applicability of CTRs

The complete set of trajectories discovered is non-trivial and significantly increases the known

capabilities of CTRs. However, the research conducted on the e↵ects of torsion also suggests

that the trajectories found are a↵ected by torsion in a similar manner as existing trajectories

traceable with robots composed of piecewise constant curvature tubes. Thus, in the trajectories

discovered, the robot also su↵ers from torsional deviations that introduce deviations from follow-

the-leader motion, and it can experience snap-through instabilities in some configurations. The

research indicates that the deviations due to torsion and the snap-through instabilities tend to

increase with the robot length and the magnitude of curvature in the design and, even though

the use of tube designs with significantly di↵erent geometrical torsion can reduce the e↵ects of

torsion to some extent, the issues caused by torsion remain prominent in the new trajectories

found.

The practical applicability of the new trajectories is thus generally limited to trajectories that

are relatively short and with shallow curvatures for the requirements of on-wing operations. The

possible values of magnitude of curvature in a trajectory depends on the acceptable deviations

due to torsion, the desired length, and the environmental constraints that define the overall

trajectory geometry. Thus, the viability of CTRs needs to be considered in each individual

case. However, in general, for trajectories of interest in on-wing operations where the required

length is over 30 cm, the typical magnitude of the curvature radius should not be significantly

lower than a 20 cm radius to enable standard operation of a CTR.
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This generally does not have a wide applicability in on-wing operations. CTRs can only be

useful in specific scenarios that require the insertion of tools along a shallow trajectory, or

in scenarios where significant curvature magnitude is only required at the first part of the

trajectory, or where trajectory linking can be used. However, CTRs are generally not useful

for fine manipulation of an end-e↵ector in on-wing operations. In the particular, reference case

previously defined in subsection 1.1.3, CTRs are not useful in general since the required robot

length is over 1 m, and torsion makes the robot practically inviable.

CTRs with non-annular cross section can be used to prevent the issues with torsion, although

it should be noted that this reduces one DOF per tube in the robot. The same analysis

developed in this chapter applies. However, as previously noted, the analysis shows that the new

trajectories discovered are not viable in designs with non-annular cross section since they require

the relative rotation of the tubes for robot advancement. Thus, the only viable trajectories in

CTRs with non-annular cross section are those composed of piecewise constant curvature arcs,

with telescopic deployment of the tubes.

This is generally not useful for the fine-positioner in the reference on-wing inspection case

defined in subsection 1.1.3. However, it can be used to create a gross-positioner that can follow

the access route, performing the 90 degree turn in open space in the turbine chamber, and

advancing over the entire route to insert a fine-positioner. The use of a non-annular cross

section implies that the gross-positioner has no length limit and, even though it limits the

mobility of the device, a few DOFs can su�ce for the insertion. A gross-positioner consisting

of a CTR with non-annular cross section is selected for robotic system in Chapter 6. Instead,

for the fine-positioner, soft robots with fluidic actuation are the main robot concept explored,

as presented in the next Chapter 4.

Even though generally not relevant to on-wing operations, the new trajectories for CTRs discov-

ered in this work show promise in MIS. In medical applications, the required trajectory length

in general is significantly shorter than in on-wing operations, since the distance between the

locations of interest in the human body and the entry points is shorter. Thus, CTRs with an-

nular cross section can be used to exploit some of the new trajectories discovered, and relevant
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curvature magnitudes can be used thanks to the shorter trajectory length. CTRs exploiting

the new trajectories found could be used, for example, in neurosurgery or heart surgery, where

CTRs have the potential to enable new procedures and improve existing ones.



Chapter 4

Design of Soft Robotic Manipulators

with Fluidic Actuation

The work presented in the previous chapter indicates that CTRs cannot be used for the fine-

positioner. Thus, soft robots with fluidic actuation represent the main robot concept explored in

the present and following chapters to create a fine-positioner. Existing soft robots are generally

designed by intuition, and o↵er a low force. The design of soft robotic manipulators with fluidic

actuation is investigated in this chapter by taking a novel, general approach, which is intended

as a common framework for the design of soft robotic manipulators. This is then applied to

determine the most suitable design of the fine-positioner. It should be noted that this chapter

is entirely dedicated to the design of soft robotic manipulators, which are generally composed

of a set of segments that need to be capable of bending. The term device is used in this chapter

to refer to each of these segments, which need to be designed.

The research presented in this chapter is an edited version of that published in:

• A. Garriga-Casanovas, I. Collison, F. Rodriguez y Baena. Towards a Common Framework

for the Design of Soft Robotic Manipulators with Fluidic Actuation. Soft Robotics, 5.5,

pp. 622-649, 2018.

In addition, the design method developed in this chapter and the new soft robotic manipulator
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designs found are the material of the following patent application:

• A. Garriga-Casanovas, F. Rodriguez y Baena. Manipulator. Patent Application 1812408.1,

2018.

The chapter is structured as follows. The research on design is introduced in section 4.1. The

general design problem is formulated in section 4.2, where the study of design is divided into

two parts: design of soft robotic manipulators for a given maximum pressure, and design of

soft robotic manipulators for any pressure. The design of soft robotic manipulators for given

maximum pressure is addressed first. The outline of the corresponding designs of interest is

justified in section 4.3, and the layouts of interest are classified into two categories, which define

the possible types of the segments of a robotic manipulator. These correspond to extending and

contracting devices. The study of the design of extending devices is presented in section 4.4.

A similar derivation for the design of contracting devices is reported in section 4.5. The main

design principles derived for extending and contracting devices with a given maximum pressure

are summarised in section 4.6. In section 4.7, these design principles are applied to the design

of a bending device in a prototypical scenario that showcases the work. Finite element (FE)

simulations to determine two parameters of the bending device in the prototypical scenario

and verify the work are also reported in section 4.7. The extension of the design study to

devices where any desired value of maximum pressure can be used is described in section 4.8.

A non-dimensional analysis of the designs of interest is outlined in section 4.9. Finally, the

most suitable design of the fine-positioner is presented in section 4.10, and conclusions on the

overall design study and the final fine-positioner design found are summarised in section 4.11.

It should be noted that nomenclature is redefined in each chapter of this thesis, including this

one. This is due to the fact that the work presented in the various chapters addresses very

di↵erent aspects of robotics, and requires a significant number of di↵erent variables in each

chapter.
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4.1 Introduction

As previously mentioned in chapter 2, a myriad of soft robots with fluidic actuation exist, which

are aimed at very di↵erent applications including manipulation, locomotion, or gripping. The

majority of these applications require the soft robot to provide a controlled motion between

two points of interest in a solid structure while supporting external wrenches. Soft robots with

fluidic actuation o↵ering this type of operation represent the technology required to create a

manipulator that can be used as fine-positioner, and thus are the focus of this work. Specifically,

in this chapter we concentrate on the design of the individual elements providing the controlled

motion between two points, which can be part of a system comprising multiple similar elements,

such as a manipulator composed of a set of serially stacked segments. The design of each of

these elements can be studied relatively independently, and therefore in the rest of this chapter

the focus is on the design of the individual elements. These individual elements, or segments

of robotic manipulator, are treated as individual devices, such as that shown in Figure 4.1, and

the term device is used to refer to them.

These devices can be divided according to the motion they provide between the two points of

interest when pressurized. This results in three preliminary categories: devices that provide

elongation, contraction, and bending. The design of elongating devices is relatively straightfor-

ward, as the elongation is directly created by the pressure applied to the chamber walls in the

elongation direction, and the structure generally opposes to it. Thus, the design simply involves

a structure that facilitates elongation while containing the pressurized fluid and preventing ra-

dial expansion. Furthermore, piston-cylinder devices provide e�cient solutions to elongation

needs [177], hence elongating devices are not considered further. Contracting devices are equiv-

alent to pneumatic artificial muscles (PAMs). The design and mechanical properties of PAMs

are extensively studied in the literature [123, 124], and therefore are not analyzed further in

this work.

The design of devices that provide bending, on the other hand, is challenging, and a general

rationale for their design is not available. The canonical application for bending devices is

manipulation, which is also the application of this work. In this regard, bending devices are
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generally interpreted as segments of soft robotic manipulators. As previously mentioned in

chapter 2, a profusion of bending devices have been proposed in recent decades, mostly aimed

at manipulation, including the FMA [98, 101], the OctArm [178, 179], or Sti↵-Flop [112, 113],

among others. However, in spite of the wide range of designs now available, bending devices

are still designed mostly by intuition.

A first study of the design of bending devices was recently published [83]. However, it only

o↵ers a specific analysis of a set of predefined designs, but it is not applicable for a generalized

design study. In addition, the derivation in [83] relies on equilibrium conditions that may not

always be justified, and the paper only considers the e↵ects of external forces at zero deflection

configurations. A comprehensive set of tools for the design of soft robots are available at the

soft robotics toolkit [180]. However, these tools are predominantly based on finite element

(FE) methods and experiments centred on a set of predefined designs, which are suitable for

the analysis and optimisation of specified classes of designs, but are not applicable to address

the design problem in general. In this regard, to the best of this author’s knowledge, there is

no general framework for the design of bending devices, which hinders the identification of the

best existing designs, complicates the development of novel and improved devices (such as that

required for the fine-positioner), and ultimately hampers the advancement of the field.

In this chapter, a general study of the design of soft robots with fluidic actuation that provide

bending is presented. In the study, the design layouts of interest are first justified, and a

set of design principles is then derived. These principles can be used to outline the design

of devices for each application, and to define subsequent design optimization, which is also

developed in this chapter. The work is a applied in a medical case study to illustrate the new

design methodology proposed and verify the design principles. Finally, the work is applied

to determine the most suitable design of the fine-positioner. The study is developed first for

devices with a given maximum pressure, which represents the most relevant design problem,

and is then extended to cases where any pressure can be used.

The foundation for the study is a novel approach that considers the equilibrium of devices

isolated in arbitrary cross sections to provide insight into their mechanical behavior. Such an
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Figure 4.1: Schematic diagram of a bending device with a completely general design.

approach is adapted from existing work on tendon-driven, continuum manipulators [181], with

parallelisms that are apparent in the analysis. The approach serves both to study the design of

soft robotic manipulators with fluidic actuation, and to mechanically model them for accurate

control. In this chapter, the focus is on design; mechanical modelling and control are presented

in chapter 5.

The approach proposed in this chapter is applicable to any design, and therefore the study

developed here is general. The findings in terms of design principles coincide with some de-

sign trends in existing literature, elucidating the relevance of this work. In this regard, this

work aims to contribute towards the development of a common framework for the design of

bending devices, serving as a reference to compare existing designs, and providing an analytical

instrument, together with a set of principles for the design of soft robotic manipulators. It

should be noted that the nature of the analysis in this work is generally qualitative, although

mathematical elements are employed to facilitate the derivation.

4.2 Problem formulation

The purpose of the segments of soft robotic manipulator considered here is to provide a desired

motion between two points on the device, which in this case is associated to bending, together

with a certain force. In soft robots with fluidic actuation, the motion is achieved by pressurizing
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a set of chambers in the device to produce structural deformation. The most common scenario

of interest is that where the robot must generate work to produce the motion, overcoming

external wrenches, and this is the case of interest for the design of a fine-positioner. However,

the study presented in this chapter is completely general, without limitations on the possible

designs or on the operational scenario.

The design problem is to select the geometry and structural properties of the soft robot to

achieve the desired motion and maximise a specified performance. In this work, the design

problem considered is completely general, without predefined design variables. Solving this

problem generally requires determining the solution to a non-linear structural problem with

large deformations, for which analytical solutions are not available in general. Thus, an inno-

vative approach is required, as presented in the following sections.

The exact maximum pressure that a soft robot design can withstand can be very complex to

determine. In general, however, this can be considered to be primarily determined by outer wall

design, and by the sealing points in the chambers. In addition, in the common case of medical

applications, the maximum pressure can also be limited by the operation environment, e.g. to

guarantee the safety of a patient in the case of a malfunction during a medical procedure. It

should be noted that in cases where the maximum pressure is limited by the outer wall, this

refers to the wall in the device that separates any chamber from the outside. Any partition

walls defining chambers inside the device generally do not limit the maximum pressure since

the rubbers typically used in soft robots can reach significant strains, so partition walls may

deform when pressurised, but remain internal and generally do not burst.

The e↵ect that the choice of outer wall has on the maximum pressure that a device can withstand

is a relatively simple and independent design factor to consider. In general, an outer wall that

can withstand the maximum possible pressure is desirable to maximise the force of the device

(typically by making it with fibres and silicone). And generally, a thicker and stronger wall can

withstand higher pressure, but also introduces more bending sti↵ness on the device and takes

more space, which limits performance. In this regard, it is a relatively independent factor to

consider in the design. The e↵ect that the strength of the sealing points in the chambers has
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on the maximum pressure is also a relatively independent factor, and is usually related to the

fabrication method and assembly of parts rather than design of the soft robot.

In this regard, the first design problem of interest is typically the design of a device for a given

maximum pressure, since this maximum pressure is generally either dictated by the application

such as in MIS, or by factors that are relatively independent of the rest of the design. In the

particular case of this work, the limiting factor on maximum pressure initially was the strength

of the sealing points. Thus, the design of soft robotic devices is first studied for given maximum

pressure. The study is then extended to a case where any value of pressure can be used.

The performance criteria for the design must generally be related to the purpose of these

devices, i.e. to provide a bending motion while supporting external wrenches. Typically, soft

robotic manipulators are required to be capable of reaching a specific deflection determined by

the desired workspace. The wrenches that can be supported at that deflection tend to be their

main limitation. In this regard, the design objective selected in this work is to maximise the

wrenches that can be supported while achieving a desired deflection.

The design of devices to maximise the wrenches that can be supported with a given maximum

pressure is thus studied first in sections 4.3, 4.4, 4.5, 4.6, 4.7. The work is then extended to the

case of any possible pressure in sections 4.8, 4.9, and 4.10.

4.3 General design layouts

The wide diversity of possibilities for the design of a soft robotic manipulator makes it di�cult to

directly address the general design problem and determine the design. It is therefore appropriate

to first outline the design space, and then use a more detailed study to derive the design

principles. In this work, a preliminary analysis is first used to bound the design space and

discretise the design options, as described in this section. This enables a subsequent detailed

study of the two layouts of interest, which is derived in the following sections. It should be

noted that the analysis in this section is general and independent of the desired performance
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criteria; the study is then particularised in subsequent sections to the performance criteria

selected for this work.

Any potential design must consist of a general structure linking the two points of interest, as

illustrated in Figure 4.1. In soft robotic manipulators with fluidic actuation, the structure is

passive, and therefore the design must contain a set of chambers that can be pressurised to

generate the desired motion by deforming the structure. This set of chambers must generally

cover the region between the two points of interest in a nearly continuous manner, as otherwise

parts of the device would act as structures that simply transmit loads, which are not the focus

of this work.

The set of chambers, together with the direction of bending, which is approximately perpendic-

ular to the vector between the two points of interest, define two sides of the device, which can

be considered as two walls. Kinematic considerations show that, in order to achieve bending,

a di↵erential deformation in the structure at either side of the device is required. This involves

either one wall extending more than the other, or one wall contracting more than the other.

A segment of soft robotic manipulator can therefore generate bending in two elementary ways,

and the designs can be classified accordingly, leading to two general categories: extending-type

devices, and contracting-type devices, as illustrated in Figure 4.2.

The equilibrium of a system corresponding to the general design isolated at an arbitrary cross

section perpendicular to the vector between the two points of interest can then be considered,

as shown in Figure 4.3. This exposes the reaction forces as well as the pressure applied by

the fluid. The system equilibrium can thus be used to extract insights into the mechanical

behaviour and to study the design, and it represents a cornerstone of the analysis presented in

this chapter. Before a detailed study, the equilibrium can first be applied to the two categories

of a segment of soft robotic manipulator, extending and contracting devices, to outline the

design layouts, as described in the following two paragraphs.

Considering the equilibrium in extending devices, this indicates that the pressure in the cham-

bers generally creates tensioning reactions on the structure. The reactions associated to each

side of the structure depend on the design. These reactions translate into deformations, with
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Figure 4.2: Conceptual illustration of the general layouts corresponding to the two possible
types of soft robotic manipulators: extending devices (a) and contracting devices (b).
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wall 1

wall 2

Figure 4.3: Equilibrium diagram of a general bending device isolated at an arbitrary cross
section, exposing the pressure applied by the fluid as well as the structural reactions.

the elongation of each side depending on the sti↵ness in the longitudinal direction. The dif-

ferential elongation necessary for bending can therefore be achieved with either an asymmetric

pressure loading or an asymmetric longitudinal sti↵ness. It should be noted that the reactions

can also produce lateral expansion, but this generally does not contribute to elongation, rather

the opposite, so it is undesirable in extending devices. Thus, the layout of extending devices

must consist of an elongated structure that cannot expand radially and has a combination of

asymmetric geometry and asymmetric longitudinal sti↵ness so that one side extends more than

the other. The specific combination of geometry and sti↵ness a↵ects the performance, and

requires a detailed study, presented in section 4.4.

Considering the equilibrium in contracting devices, this also shows that the pressure tends

to generate tensioning reactions. Contraction cannot be achieved with a compression of the

structure at one side of the device that substantially reduces its length, and instead one side of

the structure must either protrude outwards or buckle inwards to generate the contraction. The

layout of contracting devices must then consist of a structure with one side that either protrudes
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or buckles to produce a contraction while the other side maintains the original length, resulting

in bending. The principle of operation is similar to that of PAMs, e.g. see [124], and some

of the analysis can be adapted from there. Still, the equilibrium analysis indicates that both

the design geometry and the longitudinal and bending sti↵nesses a↵ect the reaction forces, the

protrusion geometry, and ultimately the performance, requiring a detailed examination. The

study of the design of contracting devices is reported in section 4.5.

Considering that extending and contracting devices are the only alternatives to produce bend-

ing, the study of these two layouts represents a complete study of the design of soft robotic

manipulators with fluidic actuation. Devices combining extension and contraction are also pos-

sible, and their design is a combination of the design principles for both types of operation. The

design of a device combining both extending and contracting operation is presented in section

4.7.

4.4 Design of extending devices

Extending devices achieve bending thanks to a di↵erential extension in their structure when

pressurised, which is created by a design asymmetry in terms of geometry and sti↵ness. The

design of extending devices is studied in detail in this section in order to derive a set of design

principles and determine the design that maximises the design objective. It should be noted

that, previously mentioned in the previous sections, the term device is used here to refer to a

segment of soft robotic manipulator.

Considering that the design objective is to achieve a desired deflection and maximise the force

for a given maximum pressure, the study is divided into two parts. First, the study is focused

on the design to maximise the forces and moments that can be supported at a given deflection

with a constrained pressure, as described in subsections 4.4.1, 4.4.2, 4.4.3. Then, the analysis

considers the design objective of reaching the desired deflection with a minimum pressure, as

presented in subsection 4.4.4. The results of both analyses are combined to extract design

principles and determine the most suitable design, summarised in subsection 4.4.5, while the
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overall analysis is finally generalised to 3D in subsection 4.4.6.

4.4.1 Equilibrium approach

Equilibrium formulation

The equilibrium of an extending device isolated at an arbitrary cross section can be considered,

as shown in Figure 4.4, exposing the reactions as well as the pressure applied by the fluid. The

equilibrium of moments and forces in the direction perpendicular to the cross section can thus

be imposed as

T1 + T2 = px� Fn

T1(c1d+ x(1� c1) + b(c2 � c1))� px2

2 � pxc2b+ Fn(h� b(1� c2)) = M
(4.1)

where d denotes the total region of the cross section, x represents the region of the cross section

corresponding to the pressurised fluid, and b is the region of the cross section corresponding

to wall 2. The external forces are decomposed into two directions, parallel and perpendicular

to the cross section. The perpendicular forces are aggregated into a resulting normal force,

denoted by Fn, and the parallel forces are aggregated into a resulting tangential force Ft. M

corresponds to the sum of external moments together with the moment created by Ft with

respect to the cross section.

The distributed normal stresses corresponding to wall 1 and 2 are aggregated into two equiv-

alent forces, denoted by T1 and T2, respectively, while the distributed tangential stresses are

aggregated into Tt1 and Tt2, respectively. The location of the equivalent line of application of

T1 and T2 is defined by the non-dimensional parameters c1 and c2, respectively. The specific

equivalent line of application of these two forces may not be constant and can be di�cult to

determine as it depends on the specific stress distribution, which is determined by a complex

structural behavior. However, considering that, in soft robots with fluidic actuation, and par-

ticularly in extending devices, the walls are in tension, the equivalent point of application of

T1 and T2 must be within the respective walls. Thus, the variables c1 and c2 are bounded



174 Chapter 4. Design of Soft Robotic Manipulators with Fluidic Actuation

Figure 4.4: Equilibrium diagram of extending device isolated at an arbitrary cross section,
exposing the reaction forces, aggregated into T1 and T2, and the pressure applied by the fluid.
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c1, c2 2 [0, 1]. As will be seen in the following, the walls should be thin, and therefore the stress

distribution can generally be considered to be relatively uniform, leading to values of c1 and c2

near 1/2. However, the specific point of application does not a↵ect the subsequent derivation,

and therefore need not be considered further.

The description of the cross section with d, x, and b is convenient, as d is generally a parameter

determined by constraints from the environment, and then the design study involves selecting

the variables x and b. It should be noted that the variables x, b and d are then geometrically

bounded. In particular, x > 0, b > 0, d > x+ b. Thus, some of the constraints are coupled. It

should also be noted that for extending devices to operate, Fn < px.

The external wrenches applied in the device can be any combination of forces and moments.

The point of application of Fn is determined by the specific external forces in each scenario.

The contribution of Fn to the moments equation in (4.1) depends on the distance between the

line of application of Fn and the line of application of T2. The Fn applied may thus influence

the M that can be supported, and vice versa. However, maintaining the contribution of Fn to

the moments as a separate force with a certain point of application is desirable as it shows the

separate wrenches that can be supported by a design, and the e↵ect of Fn on M .

Equilibrium discussion

Equation (4.1) indicates that b a↵ects the contribution of Fn to M through the term Fnb(1�c2),

which has an e↵ect on the device’s performance. However, this is due to the fact that changes

in b involve displacing the point of application of T2. Equivalent alternatives for displacing

the point of application of T2 relative to the point of application of Fn include displacing the

entire wall 2, or displacing the entire device. However, any possible o↵set of the external forces

relative to the device to improve performance is considered to be already applied in practice.

The problem of interest in terms of design is to maximise performance for a given external

loading. In this regard, the e↵ect of varying b on Fnb(1 � c2) is not relevant from a design

perspective as it is equivalent to o↵setting the device, and it is therefore disregarded in the

design derivation.
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The cross section where equilibrium is considered is arbitrary, and therefore the analysis can be

applied to any cross section on the device. This provides insight into the mechanical behavior

of the entire device, and therefore it serves to study the design.

The equilibrium of forces also shows that external forces parallel to the cross section must be

supported at the boundary where the device is isolated. Considering the definition of fluid, the

direction of the pressure force is always normal to the boundary. Thus, the lateral forces must

be supported by the structure in any design, particularly by Tt1 and Tt2. The contribution of

this shear stress to the deflection, however, is considered to be relatively small, following the

standard study of structures. In this regard, the equilibrium in the direction parallel to the

cross section is not considered further.

The system of equations (4.1) provides the reactions T1 and T2 for any M and p given a

design. These solutions, however, correspond to di↵erent structural deformations and therefore

di↵erent displacements. Thus, the equilibrium alone cannot be used to determine the design to

maximise M , as a combination of T1 and T2 to increase M always exists, but it may correspond

to an undesirable deflection. In order to study the design for a given deflection of interest, a

condition imposing a desired deflection to be maintained is required.

4.4.2 Deflection condition

The purpose of the deflection condition is to define the relation between T1 and T2 that must be

satisfied for a desired deflection to remain constant. In particular, the deflection must remain

constant despite variations in the external wrenches and pressure applied.

Deflection depends on the di↵erential wall extension. Thus, deflection can be maintained even

at di↵erent pressures provided that both walls extend. The deflection condition can therefore

not be determined from a specified extension value at each wall, but rather must be derived

from a ratio between the extensions of both walls.

In order to attain a desired deflection, even without external wrenches, a certain extension at

each wall is necessary, which corresponds to the initial extension of the walls. Once the initial
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deflection is achieved, it can be maintained even for variable external wrenches by compensat-

ing with pressure. More specifically, deflection can be maintained at variable values of wall

extension provided that any increase in length in a wall is accompanied by a certain increase

in length at the other wall. A condition to maintain a deflection can therefore be obtained by

imposing the increase in length at both walls to be related through a certain ratio R as

�1 = R�2 (4.2)

where �i denotes the increase in length in wall i with respect to the length necessary to attain

the initial deflection. The value of the ratio R is generally close to 1, but it can depend on the

desired deflection. However, the derivation in this work does not require the exact value of R,

and it is therefore not specified. It should be noted that any variation in extension must be

associated with a variation in both external wrenches and pressure.

The extension in a wall depends both on the stress applied and the wall sti↵ness. In addition,

the initial extension required in each wall to reach the initial deflection involves a certain initial

tension Ti0 for i = 1, 2. In this regard, the deflection condition cannot simply impose a relation

between T1 and T2, but it must include the sti↵nesses of the walls as well as the initial tension

of the walls. The increase in extension �i in a wall i can be related to the increase in tension in

that wall Ti � Ti0 through a variable sti↵ness si as

Ti � Ti0 = si�i (4.3)

The value of si can be di�cult to determine, and it is not necessarily constant. In general, si

can depend on the material, the design, and the deformation. However, the specific si is not

calculated here since it is not necessary for the derivation.

Substituting the relation between extension and tension (4.3) into (4.2), the condition that

must be satisfied for a deflection to be maintained is obtained as

T2 =
T1s2
Rs1

+ T20 �
T10s2
Rs1

(4.4)
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The deflection condition is thus expressed as a relation between T1 and T2, as well as as set of

parameters.

This condition (4.4) is applicable to any scenario with any desired deflection and external

wrenches. The two terms on the right depend on the conditions to achieve initial deflection,

and thus the desired deflection in each scenario is imposed by these terms. These two terms are

constant, and are analysed in subsection 4.4.4. The value of R may also vary to some extent

for some of these di↵erent scenarios, although in some instances the value of R can be equal for

di↵erent deflections. Still, all these parameters are specified for a given scenario. Thus, (4.4)

defines the relation between T1 and T2 that guarantees the deflection to be maintained in any

scenario.

Interestingly, in the case of infinite sti↵ness at wall 1, the deflection condition (4.4) simply

imposes T2 to be constant. This is a typical situation as will be seen in the following, where

designs with infinite wall 1 sti↵ness are particularly relevant. However, a constant T2 is not a

valid condition to maintain deflection in general, since, in extending devices, wall 2 may need

to extend to a certain degree as pressure increases in order to compensate the extension in wall

1.

4.4.3 Design derivation

The equilibrium and the deflection condition can be combined to analyse the design problem

and derive a set of design principles, as described in the following.

Preliminary qualitative considerations

The equilibrium analysis, illustrated in Figure 4.4, indicates that the moment at the cross

section necessary to support the external wrenches is created between the pressure and the

reactions. In particular, since pressure can only act in one direction, and the structure generally

only acts in the opposite direction, the moment is created between the pressure pushing and

the structure pulling.
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The main challenge is supporting wrenches that tend to reduce the deflection, i.e. wrenches that

contribute as positive values of M . Opposite wrenches increase the deflection, and supporting

them is thus trivial.

The pressure is always acting between the two walls in tension. Thus, the moment must be

created between T1 pulling and p pushing. T2, on the other hand, opposes to this moment, and

is therefore undesirable in general. The only purpose of wall 2 is to contain the pressurised

fluid.

This qualitative analysis indicates that maximum T1 and minimum T2 are desirable. This could

lead to the impression that concentrating the pressure application near wall 1, for example

using thick or even hollow structure in wall 2, maximises performance, as it maximises T1

and minimises T2. However, this arrangement also promotes an undesirable deflection. In the

extreme case, a design with T2 = 0 and thus T1 = px would be possible, but it would yield

zero or negative deflection, which is undesirable as deflection must be maintained. Conversely,

concentrating the pressure application close to wall 2 would minimise the increase in T1 and

thus the reduction in deflection when pressure is increased, enabling p to compensate generate

the majority of the moment without loss of deflection. However, this also results in low T1 and

thus low wrenches that can be supported. The analysis combining the equilibrium (4.1) and

deflection condition (4.4) is derived in the following to resolve these design questions.

Detailed analysis and derivation

Imposing the condition requiring a deflection to be maintained (4.4) into the equilibrium of

forces in (4.1) yields

T1 =
px� Fn � 

1 + s2
Rs1

(4.5)

where  = T20� T10s2/Rs1 which corresponds to the initial deflection conditions. Substituting

(4.5) into the equilibrium of moments in (4.1), the M that can be supported for a given design
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and a certain deflection is obtained as

px� Fn � 
1 + s2

Rs1

[c1d+ x(1� c1) + b(c2 � c1)]� p
x2

2
� pxc2b+ Fn(h� b(1� c2)) = M (4.6)

It should be noted that, as previously mentioned, T1 > 0 for operation to be possible since

otherwise the structure would be in compression, and the device would not act as an extending

device but rather as a passive structure. Thus, from (4.5), this implies a bound px�Fn� > 0.

Expression (4.6) enables determining the design to maximise the desired performance, which

in this case involves maximizing M . Expression (4.6) is applicable to any deflection, and

therefore it can be used to address the design problem in any scenario. It should be noted that

the e↵ect of the terms corresponding to initial deflection, aggregated in , is studied separately

in subsection 4.4.4.

The design principles can be extracted by considering the contribution of the design variables

to M in (4.6). The sti↵nesses s1 and s2 appear only as a ratio s2/s1. The ratio only contributes

to the denominator of a term that should be maximised for the case of interest px�Fn� > 0,

and therefore s2/s1 should be minimised. As previously mentioned, the values of s1 and s2 may

depend on the design as well as the material. However, in soft robotic devices, the material can

generally be chosen to provide any desired sti↵ness, particularly including low values. In this

regard, the material can be used to select s1 and s2, compensating for any variation in sti↵ness

associated to the geometry. Thus, the minimization of s2/s1 is considered to be attainable with

the material choice, independently of the rest of the design.

The variables s1 and s2 represent the overall sti↵ness of a wall, but the local sti↵ness within the

wall needs not be constant. The specific sti↵ness distribution a↵ects the line of application of

T1 and T2, and therefore can be used to modify c1 and c2. The line of application is determined

by the location where the moment generated by the distributed stress within a wall is equal

to that created by T1 or T2. For a given wall in extension, corresponding to a deflection, the

normal stress within the wall can be considered to be strongly dependent on the local sti↵ness,

especially if the sti↵ness distribution over the cross section presents significant di↵erences.
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Thus, the wall layers with markedly higher sti↵ness generally involve higher local stress, and

the line of application of the equivalent force can be considered to tend to these layers.

The sti↵ness distribution can therefore be used to modify c1 and c2. However, it should only

be used for c1. Considering that s2 should be minimised, and that low sti↵ness is di�cult to

attain, any sti↵ness variation typically involves an increase in s2, reducing the performance.

Instead, a high s1 can generally be maintained since local sti↵ness can typically be increased to

compensate local reductions. Equation (4.6) indicates that a high c1 is desirable, and therefore

wall 1 should have a high sti↵ness in the outer layers and lower sti↵ness in the inner layers.

Still, this is only relevant in designs where wall thickness is substantial, which are typically not

the designs of interest, as shown in the following.

For a s2/Rs1 that is minimised,  is typically negligible, as can be seen from the analysis in

the next subsection. The derivation of the rest of design principles can then be divided in two

cases for clarity of exposition.

Case with Fn = 0 and negligible 

A case with Fn = 0 and  negligible can be considered first as it represents a common scenario of

interest where the robotic manipulator must support external forces in the direction of bending,

as in a nearly horizontal robot segment supporting and moving a payload against gravity, or a

nearly horizontal segment moving a set of additional segments stacked serially at its distal end,

which generate an external lateral force and moment. In addition, the case with and negligible

provides a first intuitive understanding of the design principles. In this case, and for s2/Rs1

negligible relative to 1, each of the variables b, x, d only a↵ects one or a small number of terms

in (4.6), and thus can be easily determined. In addition, p can be factorised, so the desired

value of these variables is independent of pressure.

The variable b a↵ects three terms, the combination of which always reduces M since s2/Rs1 >=

0, and x, c1 and c2 are non-negative. Hence, b should be minimised, which can be written as

b = 0. Then, for b = 0, the value of x to maximise M depends on c1, s2/Rs1 and d. If

1�2c1�s2/Rs1 > 0 then x should be maximised, and therefore x = d. If 1�2c1�s2/Rs1 < 0
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then the value of x to maximise M is

x =
2c1d

2c1 + s2/Rs1� 1
(4.7)

Considering that s2/Rs1 should be minimised, this implies x = d. Thus, in a design where

s2/Rs1 is minimal, the most suitable cross section is x = d regardless of the value of the

parameters c1 and c2. The design of the cross section with maximal x and minimal b, so that

the cross-sectional region corresponding to the pressurised fluid is maximal, in designs were

s2/Rs1 is minimised, represents another relevant design principle. It should be noted that

in some practical cases it may not be possible to minimise s2/Rs1 due to manufacturing or

material constraints. In these cases, x is determined by (4.7), which may be lower than x = d.

Finally, the parameter d is determined by the practical application, but expression (4.6) high-

lights that increasing d results in higher force. Thus, d should be maximised to occupy all

available room in each scenario.

Case with Fn, 6= 0

Considering a general scenario including Fn and , a similar analysis can be applied to determine

the design principles. In this case, the contribution of Fnb(1 � c2) to M in (4.6) should be

disregarded, as discussed in subsection 4.4.1. Then, for a s2/Rs1 negligible relative to 1, the

variables x and b can be analysed in conjunction. The analysis is divided in two further cases

depending on the sign of Fn + .

For Fn +  < 0, the terms in (4.6) containing either of these variables can be aggregated into

three groups: terms containing xb, terms containing sums of x and b and terms containing only

x, as

⌧1 = �pxbc1

⌧2 = (�Fn � )[c1d+ x(1� c1) + b(c2 � c1)]

⌧3 = pxx(1�2c1)+2c1d
2

(4.8)

The terms corresponding to ⌧1 reduce M and should therefore be minimised, which entails that

either x or b should be minimised. The term corresponding to ⌧2 should be maximised which,
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considering that b+x < d, implies that combinations of x and b that yield b+x = d are desirable.

In particular, if a trade-o↵ between x and b is possible, combinations with higher values of x

are preferable since the contribution of x to ⌧2 is higher. Finally, the terms corresponding to

⌧3 contribute to M , and should therefore be maximised.

The value of x to maximise ⌧3 deserves consideration as the relation between ⌧3 and x is

parabolic. If c1 > 1/2, then ⌧3 is maximised with the specific value of x

xm = � c1d

1� 2c1
(4.9)

which is always xm >= d. Considering the constraint x < d, the value of x should then be

x = d. If c1 < 1/2, then ⌧3 as a function of x is a parabola that tends to infinity and intersects

the x axis at 0 and at a negative value. Hence, x should also be maximised. Thus, for any c1

within the possible values, if s2/Rs1 can be minimised as previously discussed, then the x to

maximise T3 should be x = d.

The desirable values of x and b can thus be determined. ⌧1 requires either x or b to be minimised,

⌧2 indicates that a trade-o↵ between x and b be achieved, prioritizing x, and ⌧3 requires x to

be maximised. Hence, b should be minimised, which can be expressed as b = 0, and x should

be maximised, yielding x = d.

For Fn+ > 0, a similar derivation can be used. Defining a change of variable y = px�Fn�,

the terms in (4.6) containing either y or b can be aggregated into three groups: terms containing

yb, terms containing only b and terms containing only y, as

⌧ 01 = �yc1b

⌧ 02 = �(Fn + )c2b

⌧ 03 = yc1d+
y2

p (
1�2c1

2 )� y(Fn+)c1
p

(4.10)

The terms corresponding to both ⌧ 01 and ⌧ 02 reduce M , and thus should be minimised. Instead,

the terms corresponding to ⌧ 03 increase M , and should be maximised.

As in the previous case, the maximization of ⌧ 03 requires some consideration. If c1 < 1/2, the
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relation between y and ⌧ 03 is a positive parabola that intersects the y axis at 0 and at a negative

value, since Fn +  < px. Thus, y should be maximised. If c1 > 1/2, ⌧ 03 as a function of y is a

negative parabola that is maximised at

ym = �pc1d� (Fn + )c1
1� c1

(4.11)

which is always ym > pd � Fn � . The value of y, however, is bounded 0 < y < pd � Fn � 

since px > Fn +  and x < d. Thus, for c1 > 1/2, y should also be maximised.

The desirable values of y and b to maximise ⌧ 03 and minimise ⌧ 01, ⌧
0
2 are then maximum y and

minimum b. Reversing the change of variable y = px� Fn � , this implies b = 0 and x = d.

The design principles for all admissible values of Fn+ are therefore equal to those in the case

where Fn = 0. Hence, these constitute general principles to maximise the wrenches that can

be supported at a given deflection.

Final derivation considerations

This analysis was derived considering the equilibrium in an arbitrary cross section, and therefore

it is applicable to any cross section on the device. In addition, it also applies to any deflection,

pressure, and external wrenches. Thus, the design principles can generally be used to determine

the design of a device to maximise the wrenches that can be supported.

For a given design and deflection, both the reactions at the cross section and p vary with the

external wrenches applied to create the moment that maintains equilibrium. Specifically, for

an increase in M , both p and T1 must increase. If s1 is not negligible, then the increase in T1

is accompanied by an increase in T2 that maintains deflection, with a ratio that depends on

s2/Rs1. However, as discussed in the previous subsections, s2/Rs1 should always be minimised,

and therefore the increase in T2 is generally low.

The moment created by the external wrenches can vary in di↵erent cross sections. However, the

design to maximise performance remains equal in all cross sections regardless of the equivalent
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wrenches, as argued in the previous paragraphs. The variable moment in di↵erent cross sections

can result in uneven deformation along the device, but that simply implies a small variation

in R, which does not a↵ect the derivation. Thus, a constant cross-sectional design throughout

the device, with a design determined by the design principles derived in previous paragraphs,

is the most suitable design solution in general.

Derivation discussion

It should be noted that, in designs determined by the design principles derived here, bending

is mainly achieved with a di↵erential sti↵ness in the two sides of the structure, rather than

an asymmetric geometry. The values of T1 and T2 can therefore be equal, but the di↵erent

longitudinal sti↵ness in both walls produces the deflection. In addition, when external wrenches

are supported, T2 can be lower than T1, but the deflection can be maintained thanks to the

di↵erent sti↵ness in both walls.

The designs principles derived here are valid for T1 and T2 with a line of application anywhere

within the wall thickness. Thus, even singular designs with a hollow wall structures to create

separation are considered, but these are undesirable according to the design principles, which

is a consequence of the fact that maximizing the cross-sectional region corresponding to the

pressurised fluid is always desirable. In this regard, the results of the design analysis are general

in terms of maximizing the force of the device at a given deflection.

The analysis indicates that the wrenches that can be supported depend on the maximum pres-

sure. Thus, if the pressure limit was infinite, the device would be capable of supporting prac-

tically any wrenches, which illustrates the potential of soft robots with fluidic actuation. Still,

elongation of the device would occur for finite s1, complicating the practical implementation.

It should also be noted that the design principles only require the ratio s2/s1 to be minimised,

but the absolute value is not imposed. This could lead to the false impression that the absolute

sti↵ness is not relevant to the device performance. However, the absolute sti↵ness a↵ects the

pressure required to reach the desired deflection, as described in the following.
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4.4.4 Initial deflection

A similar approach as that described in previous subsections is applied here in order to study

the most suitable design to attain a desired deflection with minimum pressure. The same

equilibrium of the device isolated at an arbitrary cross section can be considered, as illustrated

in Figure 4.4. This provides the reactions for a given cross sectional design.

Deflection is achieved with a di↵erential extension of the walls. This can be attained with

either a di↵erence between T1 and T2, a di↵erence in sti↵ness of the walls, or a combination.

The absolute extension in a wall i, denoted by �i, can be related to the tension using a similar

expression as (4.3), but here in absolute terms

Ti = si�i (4.12)

As in subsection 4.4.4, si can be di�cult to determine, but the specific value is not necessary

for the derivation, and is therefore not considered further. The use of (4.12) is advantageous

as it elucidates the two methods to achieve deflection.

In order to attain the desired deflection with minimum pressure it is necessary to facilitate

achieving the desired di↵erence between �1 and �2. Using (4.12), the desired di↵erential

extension of the walls can be expressed as

�2 ��1 = T2/s2 � T1/s1 (4.13)

Thus, in terms of sti↵ness, the di↵erence between s1 and s2 should be maximised. It should

be noted that maximizing the di↵erence between s1 and s2 facilitates attaining the desired

deflection regardless of the tensions in the walls. In this regard, it represents a general principle

in terms of attaining the desired deflection at minimum pressure.

In terms of tensions, (4.13) elucidates that di↵erence between T1 and T2 should also be max-

imised for a given p. Since s1 should be maximised and s2 minimised, the determining factor in

(4.13) to maximise deflection is T2, which should be maximised. Considering the equilibrium
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(4.1), and after some manipulation, it can be seen that the tensions depend on the cross section

design as

T1 =
px2

2 +pxc2b+M+Fn(h�c2b)

x(1�c1+dc1+b(c2�c1))

T2 =
px2

2 (1�c1)+pxc1(d�b)�M+Fn(h�bc2)

x(1�c1)+dc1+b(c2�c1)

(4.14)

As discussed in subsection 4.4.1, the contribution of the term Fnb(1� c1) is disregarded since it

is equivalent to o↵setting the device. Then, from (4.14), it can be seen that for M > 0, which

are the external wrenches of interest as previously discussed, reducing b to increase x is always

desirable since @T2/@b < 0 and @T2/@x > 0. Thus, in order to maximise T2 and therefore

deflection, b should be minimised and x should be maximised, which can be written as b = 0

and x = d. For x = d, (4.14) also elucidates that a maximum d is desirable, hence d should be

selected to occupy all space available.

Interestingly, the performance in terms of initial deflection depends on the absolute sti↵ness of

the walls, as elucidated in (4.13). Hence, for a given di↵erence between s1 and s2 that cannot be

increased, the absolute sti↵ness should be minimised to achieve deflection at minimum pressure.

The analysis in this subsection therefore indicates that the design principles to attain a desired

deflection with minimum pressure are maximum s1, minimum s2, b = 0, x = d, maximum d, and

minimum absolute sti↵ness when possible. It should be noted that these equalities in practice

denote that the variables should tend to the desired values, i.e. minimum wall thickness and

maximum region corresponding to the pressurised fluid. In the optimal design x = d, (4.14)

indicates that T2 increases with d, which should therefore be maximised to occupy all available

room in each scenario. The derivation of these results is independent of the desired deflection

or the pressure, and therefore they represent general principles.

4.4.5 Complete design

The designs to maximise the wrenches that can be supported at a given deflection and maximum

pressure, and to achieve a deflection at minimum pressure were elucidated in the two previous

subsections. The design objective in this work involves attaining a desired deflection and
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maximizing the wrenches that can be supported with a given maximum pressure, which couples

both analyses.

Fortunately, there is an agreement in the design principles to achieve both objectives, as sum-

marised in the following. The ratio s1/s2 should be maximised in both cases, which can be

attained, for example, with a pleated structure in wall 2. Then, for a high s1/s2, x in both cases

should be maximised, d should be maximised, and b should be minimised. The only di↵erence

is that the absolute values of s1 and s2 are not relevant in terms of maximizing force at a

given deflection and maximum pressure, but they are relevant to attain the desired deflection

at minimum pressure. Thus, absolute sti↵ness should generally be minimised.

This applies to any cross section on the device, and to any deflection and pressure value. Thus,

these design principles summarised in the previous paragraph can be used to determine the

most suitable design. Since the design principles are independent of the maximum pressure

and the deflection, the most suitable design is relatively independent of the desired application.

4.4.6 Generalization to 3D

The study up to this point considered a planar scenario. The generalization to 3D is presented in

this subsection. The analysis in 3D is mostly analogous; it involves considering the equilibrium

of a device isolated in a cross section, aggregating the distributed reactions onto two tensioning

force variables, distilling a condition to maintain deflection, and combining them in order to

determine the design. However, the generalization of elements such as the aggregation of forces

and deflection condition requires a careful examination.

In the 3D scenario, the soft robotic manipulator is considered to bend in a desired plane.

External forces are considered to act in the plane of bending, as it represents the most relevant

case for the design study. This scenario lends itself to the analysis of symmetric designs, but

this symmetry is not used in the derivation in order to maintain generality of the study. The

study can then be directly extrapolated to the design of devices capable of supporting out of

plane forces.
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The 3D device isolated in an arbitrary cross section can be considered, as in 2D. Here, the force

associated to the pressure is pA, where A is the area of the cross section corresponding to the

chamber, and p is pressure as before. The force pA is applied at the centre of pressures, which

depends on the chamber geometry.

Aggregation of forces T1 and T2

The distributed normal stresses at the cross section can also be aggregated into two forces

T1 and T2 as in the planar case. However, the specific division of the cross section into two

regions, the stresses of which correspond to T1 and T2, a↵ects the analysis, and therefore must

be considered. The moment at the cross section that produces bending and supports external

wrenches is created between the pressure and distributed reaction stresses at one side of the

structure, with the reactions at the other side opposing to it. Thus, a suitable dividing line is

that passing through the centre of pressures and perpendicular to the bending plane, as it yields

a T1 aggregating all distributed stresses that contribute to the moment, and a T2 aggregating

all stresses that oppose to it, as in the planar scenario.

A dividing line passing through the centre of pressures implies that the relative location of

this line can vary with the cross-sectional design. However, this is desirable, as the cross-

sectional stresses that contribute to the moment also depend on the design. Thus, the dividing

line proposed here ensures that the stresses are appropriately aggregated, since the stresses

associated to each force always share a common objective in terms of contribution to the device

performance.

It should be noted that, as in the planar case, the equivalent line of application of T1 and T2 can

be assumed to be within the region of the cross section they correspond to. Indeed, considering

that extending devices achieve deflection thanks to a di↵erential extension of the walls, and

that this is produced with a pressurised fluid, it can generally be assumed that the normal

stresses at the cross section are predominantly tensioning stresses, and therefore T1 and T2 are

applied within the cross section.
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Figure 4.5: General cross section of a 3D device with variable sti↵ness, with the regions in dark
and light gray indicating to higher and lower sti↵ness, respectively. The approximate lines of
application of T1, T2 and the centre of pressures cp are also indicated.

E↵ect of sti↵ness distribution on T1 and T2

The specific line of application of T1 or T2 is a↵ected by the sti↵ness distribution in the region

they correspond to, as illustrated in Figure 4.5. As in the planar case, the sti↵ness in a region

needs not be constant, and specific sti↵ness distributions can be used to displace T1 and T2. T1

and T2 are applied at the point where the moment they create is equivalent that generated by

the normal stress in their corresponding region. In designs with a constant cross section and

at a certain deflection, the local stress in the cross section can be considered to be higher at

the sub-regions with markedly higher sti↵ness, particularly when the variations in the sti↵ness

distribution are significant. Thus, the line of application of T1 and T2 can be considered to tend

to the location of higher sti↵ness within their regions.

As in the planar case, the desired sti↵ness is considered to be selectable with the material

choice, compensating for any e↵ects from the design geometry. Thus, a typical configuration

of interest with T1 applied at an edge of the cross section can be attained with a high-sti↵ness

material in the desired sub-region, and a lower-sti↵ness material over the rest of cross section,
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as shown in Figure 4.5. In this case, the line of application of T1 can be considered to be

relatively independent of the cross section geometry.

Generalization of deflection condition to 3D

The condition to maintain deflection can also be generalised to 3D. In order to maintain de-

flection, the overall normal strain distribution in the cross section should be approximately

preserved, which implies that any increase in extension should be relatively homogeneous over

the cross section. Considering that the sti↵nesses at the cross section regions corresponding to

T1 and T2 can be anticipated to be markedly di↵erent, a stress distribution with two distinct

values corresponding to two regions in terms of sti↵ness can be expected.

The specific relation between T1 and T2 to maintain deflection is di�cult to determine, as

these average values may correspond to di↵erent stress and strain distributions. However, a

ratio between T1 and T2 that guarantees that the deflection is maintained must always exist.

Indeed, an increase in M while p and the external forces remain constant results in a decrease in

deflection, whereas an increase in p while all external wrenches are constant leads to an increase

in deflection. Thus, a configuration where deflection is maintained exists, and this corresponds

to a certain ratio between T1 and T2. In particular, following a similar structure as in 2D, at

each configuration of equilibrium in each cross section, a relation of the type

T2 =
T1S2

RS1
+ T20 �

T10S2

RS1
(4.15)

exists, which guarantees that the deflection is maintained with a certain value of R. It should

be noted that the variables S1 and S2 denote the longitudinal sti↵nesses of the cross section

regions corresponding to T1 and T2, respectively, and are analogous to s1 and s2 in 2D.

The specific value of R can be di�cult to determine, and may depend on the cross section. In

general, considering the discussion in the previous paragraph, it can be bounded to be positive.

Provided that it is positive, the specific value of R is not relevant to the design derivation in

general, as in the planar case, and it is therefore not considered further.
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It should be noted that that the existence of the condition (4.15) with a certain R is independent

of the deformation distribution over the cross section. In some cross sections, it can occur that

maintaining the deflection with di↵erent external wrenches leads to a somewhat di↵erent strain

distribution, resulting in a variation in the bending mode of the overall device. However,

this only implies a somewhat di↵erent R in the cross sections, but the overall deflection is

maintained. In addition, R remains positive in general, which is the main requisite for the

derivation of the design principles.

Generalization of design derivation to 3D

With these concepts generalised to 3D, the equilibrium of the device isolated at an arbitrary

cross section can also be considered in 3D. As in the planar case, the equilibrium indicates

that T1 and p generate the moment, and are desirable, whereas T2 opposes to it. However,

for a deflection to be maintained, relation (4.15) between T1 and T2 must be satisfied. The

equilibrium of forces

T1 + T2 =

ZZ

A

p dA� Fn (4.16)

can therefore be combined with (4.15), and substituted into the equilibrium of moments, yield-

ing

�(Fn +K)
D

1 + S2/RS1
+

ZZ

A

pD

1 + S2/RS1
� p� dA+ FnH = M (4.17)

where D is the distance between the line of application of T1 and T2, � is the distance in

the direction of bending between a point in the cross section and the line of application of

T2, generalizing x in 2D, K is a constant associated to the initial deflection of the device,

which generalises  and is also typically low and positive, H is the distance between the line

of application of Fn and T2, generalizing h � b(1 � c2), and the rest of variables are a direct

generalization of those in 2D. Both D and � depend on the design geometry and sti↵ness

distribution. However, � does not depend on the line of application of T1, and therefore is

not a↵ected by the sti↵ness in the region corresponding to T1. The value of H can also vary

with the design but, as in the planar case, this variation is disregarded since it is equivalent

to o↵setting the device. Expression (4.17) is equivalent to (4.6), and can be used to derive the
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design principles in 3D.

Case with Fn +K = 0 Considering a case with Fn+K = 0 first, expression (4.17) indicates that

S2/RS1 should be minimised. Thus, maximal S1 and minimal S2 are desirable. As previously

discussed, the overall sti↵ness in a region, S1 or S2, can be composed of di↵erent sti↵nesses in

di↵erent sub-regions, which can be used to displace the line of application of T1 and T2 towards

the sub-regions of higher sti↵ness. Equation (4.17) indicates that D should be maximised while

maintaining the values of �, i.e. by displacing the line of application of T1. Hence, the sti↵ness

distribution in the region corresponding to T1 should be analogous to that in 2D, and consist of

a high-sti↵ness sub-region near the edge in the direction of bending and a lower sti↵ness over the

rest, as previously introduced and illustrated in Figure 4.5. This preserves a minimal S2/RS1,

and maintains T1 applied near the edge despite variations in the cross-sectional geometry.

The integrand in (4.17) can then be considered to be always positive. Its local value is the

distance between T1 and a di↵erential element of chamber area, D � �, which is not a↵ected

by variations in the line of application of T2. Hence, the integrand is relatively independent

of design geometry, since the line of application of T1 is relatively constant. Then, the area

of the integral in (4.17) should be maximised in order to maximise M . This implies that the

design should have minimum wall thickness, maximum chamber area, and a cross section that

occupies all the available room.

As previously mentioned, a minimal S2 is desirable. It should be noted that in very specific

cases where the reduction of S2 through material choice has reached the possible minimum, a

cross section outline to some degree smaller than the room available may result in a noticeably

lower S2, and therefore improved performance despite the reduction in pA. However, these

cases are generally unusual, and the performance improvement is typically low as the reduction

in S2/RS1 is marginal. Hence, the design of a cross section to occupy all available room can

be considered a general design principle.

Case with Fn +K 6= 0 Considering a case with Fn +K 6= 0, a similar analysis can be applied.

Here, for operation to be viable, Fn + K < pA. Thus, (4.17) indicates that S2/RS1 should

be minimised. As in the case with Fn = 0, (4.17) indicates that D should be maximised
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while maintaining the values of �, and therefore the same sti↵ness distribution in the region

corresponding to T1 applies. The point of application of T2, however, is relevant in this case

since an equal variation in D and � can modify M . If Fn+K > 0, a high D is desirable despite

an equal increase in �. However, a large A is also desirable, which can involve a reduction in

D. Conversely, if Fn +K < 0, a low D is desirable provided that � reduces equally. Still, an

extensive A is also desirable with Fn < 0 to maximise the contribution of the integral in (4.17),

which can increase D and thereby reduce the performance. In this regard, the most suitable

design depends on Fn, K, as well as the variation of D and � with A and the geometry. This

design problem in the case Fn +K 6= 0 in 3D is analogous to that in 2D, but in 3D an ad hoc

analysis is required to determine the 3D equivalents of c1 and c2 for a given geometry as well

as K, and then generalise the design principles. This involves a numerical study that is beyond

the scope of this work; thus, the specific geometry for each configuration under Fn + K 6= 0

remains as an open question.

Final derivation considerations

The derivation with both Fn = 0 and Fn +K 6= 0 considered the equilibrium at an arbitrary

cross section of the device. As in the planar case, the moment created by the external wrenches

depends on the cross section, and therefore can vary along the device. However, the design

study is equal despite variations in the external moments, and therefore applicable to all cross

sections. Thus, the design principles can be applied to all cross sections, defining the most

suitable design of the device.

It should be noted that the derivation of the design involves first establishing that the ratio

between the sti↵ness of wall 2 and that of wall 1 needs to be minimised, and then determining

the geometry. However, in the case that the ratio of sti↵nesses could not be minimised, and

for Fn = 0, the design would then need to have an area of the cross section corresponding to

the pressurised fluid not occupying all the cross section, which in 2D can be determined from

(4.7). In 3D this can involve using structures to prevent cross section deformation, which can

justify the introduction of braided chambers in some of the existing designs [113].



4.5. Design of contracting devices 195

It should also be noted that, as previously discussed, the structure of extending devices is

considered to extend only longitudinally, without expanding radially. The introduction of radial

expansion would lead to contraction, which is undesirable in extending devices as it reduces

the extension. Devices employing contraction are discussed in the following section. Extending

devices should therefore maintain a constant cross section occupying all available space, which

can be achieved by incorporating a set of braces or transversal fibers on the structure of the

device.

4.5 Design of contracting devices

The deflection in contracting devices is generated by a protruding wall, which forces one side of

the device to contract, causing bending of the device. Thus, in contrast to extending devices,

the pressure in contracting devices primarily serves to force a wall to protrude, and the moment

for bending and supporting external wrenches is created to some extent between the tension

in the protruding wall and the compression of another wall. The performance of the device

depends on the design geometry and sti↵ness, which requires a detailed examination. It should

be noted that, as introduced at the beginning of this chapter, the term device is used here to

refer to a segment of soft robotic manipulator.

The design of contracting devices is studied in this section using the same framework as in

extending devices. First, the equilibrium of the device is formulated in subsection 4.5.1. Energy

considerations are then presented in subsection 4.5.2, justifying a set of design principles in

terms of the sti↵nesses of the device’s structure. In subsection 4.5.3, a condition to impose

a constant deflection is determined. The equilibrium, energy considerations, and deflection

condition are combined in subsection 4.5.4 to study the design and derive design principles.

The design principles to attain a desired deflection with minimum pressure are presented in

4.5.5, leading to the complete design principles for contracting devices, summarised in 4.5.6.

The generalization of the analysis to a 3D scenario is finally described in subsection 4.5.7.
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4.5.1 Equilibrium

Equilibrium formulation

The equilibrium of a general contracting device isolated at an arbitrary cross section can be

considered, as illustrated in Figure 4.6. Imposing equilibrium of forces in the direction orthog-

onal to the cross section and equilibrium of moments with respect to the point where T2 is

applied, two equations are obtained

T1 + T2 = px� Fn

T1[c1d+ x(1� c1) + b(c2 � c1)]� px2

2 � pxc2b�m2 + Fn(h� b(1� c2)) = M
(4.18)

where b, x, d, c1, c2, T1, T2, Tt1, Tt2, Fn, M and p are equivalent to those of extending devices.

Equations (4.18) are analogous to those in extending devices, including the comments on the

aggregation of external wrenches into Fn, Ft and M , as well as the inequalities relating x, b

and d based on geometric constraints.

In contracting devices, wall 1 must protrude and generate a contraction by pulling between

its ends, whereas wall 2 must approximately maintain the initial length and bend. Wall 2

therefore serves as a backbone, which may undergo compression stresses. In particular, when

T1 > px�Fn, wall 2 must be in compression, which typically occurs at low deflections. Hence,

the structure of wall 2 typically needs to be capable of supporting compressive stress, and the

stress distribution in wall 2 may combine tensioning and compressive stresses. The aggregation

of these stresses is decoupled here into a moment associated to bending of the wall, defined as

m2, which can be generally considered to be negative and to reduce further with wall thickness,

and the tensioning force T2. This aggregation of the distributed stresses into m2 and a normal

force T2 is generally admissible since, as will be seen in the subsequent presentation, wall 2 can

generally be considered to act as a rod. The equivalent point of application of T2 can thus be

considered to lay within the wall thickness, 0 < c2 < 1, and typically near the centre, c2 = 1/2.
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Figure 4.6: Equilibrium diagram of a 2D contracting device isolated at an arbitrary cross
section, exposing reaction forces as well as pressure.
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Equilibrium discussion

As in extending devices, the equilibrium can be considered on any cross section of the device,

and therefore the analysis derived from this equilibrium can be used to study the design of the

entire device. Similarly, the equilibrium in the lateral direction also indicates that the structure

of the device must support any lateral reactions in a passive manner. However, the e↵ect of

shear stresses on deflection is generally negligible, and and therefore not considered further.

The equilibrium equations (4.18) indicate that, in order to maximise the moment that can

be supported, T1 should be maximised and T2 should be minimised, working in compression.

Equations (4.18) also highlight that the pressure in contracting devices serves two separate

purposes. First, and most importantly, it presses on wall 1 to create a protrusion, indirectly

contributing to the equilibrium of moments through T1. Second, it acts on the cross section,

directly contributing to the equilibrium of moments as in extending devices. In this regard,

contracting devices with equal diameter but di↵erent x can present di↵erent performance and

the contribution px can be exploited. The direct contribution of px, however, also implies a

higher tension at the walls, tending to reduce the protrusion, or equivalently limiting M , which

couples both purposes of pressure.

The design in terms of geometry, including x and b, and sti↵ness, predominantly in terms of the

protruding wall, must therefore be determined to maximise the wrenches that can be supported.

Considering (4.18), configurations that attain high values of M in equilibrium with low or even

zero p can be found. However, each of these equilibrium configurations may correspond to a

di↵erent deflection. A condition imposing a desired deflection is therefore required in order to

study the e↵ect of design on performance, as in extending devices.

An important di↵erence with respect to extending devices, however, is that in contracting

devices the protruding wall is not perpendicular to the cross section along most of the device.

The geometry of the protrusion therefore a↵ects the device’s performance, and must be first

considered, as described in the next subsection.
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4.5.2 Energy considerations

General energetic analysis

The similarities between PAMs and contracting devices imply that some of the existing energetic

approaches used in PAMs [123] can be adapted for the study of contracting devices, and thereby

extract insight into the behavior of contracting devices. In particular, energetic considerations

can be used to elucidate the e↵ect of some aspects of the design, such as structural sti↵ness, on

the performance. Thus, specific aspects of the design, such as sti↵ness of the protruding wall,

can be determined, defining specific protrusion geometries.

Energy conservation must be satisfied in a system corresponding to a general device with a given

deflection and supporting general wrenches. Following [123], virtual works can be considered

for a structural deformation caused by a virtual element of fluid dV entering the device, with

associated virtual increment of displacement dl at the point of application and in the direction

of the resulting external force F , and associated virtual increment of rotation ✓ where M is

applied. Considering an incompressible fluid, this yields

pdV = Fdl +Md✓ + dWs (4.19)

where dWs is the work required to deform the structure, which is dWs > 0. Equation (4.19)

elucidates that any dWs tends to reduce the wrenches that can be supported, and therefore

should generally be minimised.

In order to minimise dWs while maintaining operational capability, the longitudinal sti↵ness of

the protruding wall should tend to infinity. The bending sti↵ness of the protruding wall, defined

sb, should either be sb = 0 over the entire protruding wall, or a combination of sb = 0 and

sb =1 in di↵erent parts of the protruding wall. It should be noted that sb must be sb = 0 at

least at some parts of the protruding wall to enable operation. Finally, the bending sti↵ness of

wall 2 should be minimal to minimise dWs, or equivalently to reduce the e↵ect of m2 in (4.18),

but the wall should be capable of supporting compression stresses with minimal contraction.
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The energy dedicated to deform the structure can be considered to be practically zero both in

designs with only sb = 0 in wall 1 and in designs with a combination of sb = 0 and sb =1 in

wall 1, which renders both configurations equivalent in this regard. However, equation (4.19)

also indicates that the wrenches that can be supported with a given pressure are maximised

when the dV that corresponds to a pair of dl, d✓ is maximised. Thus, the geometry of the

protrusion is relevant as it can increase dV for a given deflection. The protrusion geometry

of designs with only sb = 0 in wall 1 is completely determined by the structural behavior.

Instead, the protrusion geometry in designs combining sb = 0 and sb = 1 depends on the

distribution of sb = 0 and sb =1, and can therefore be selected. Considering that a maximum

dV associated to a dl, d✓ at the deflection of operation is desirable, the specific distribution

of sb = 0 and sb = 1 should be selected to maximise the dV associated to an increment of

contraction of the protruding wall at the desired deflection, using all available room. This is

generally determined geometrically considering that the wall geometry is composed of parts

with predetermined geometry corresponding to sb = 1, and parts with a specific geometry

corresponding to sb = 0, which is a circumference arc as shown in the next subsection. The

constraints from the environment and the desired deflection, however, depend on each scenario,

and therefore the distribution of sb = 0 and sb =1 is specific for each application.

Braces and braids

A set of braces can be used as an alternative design option to reduce the protrusion and adapt

it to the environmental constraints. The braces need not involve any additional dWs provided

that wall 1 is only comprised of parts with sb = 0 and sb =1 and infinite longitudinal sti↵ness,

although the braces should enable wall 1 to protrude to reach the desired deflection. The e↵ect

of these braces is thus analogous to that of a wall combining sb = 0 and sb =1, and therefore

they represent an equivalent alternative to select the desired protrusion geometry.

Another design option for wall 1 in 3D scenarios is to include a braided structure such as

those used in PAMs [124], which may also minimise dWs. In particular, a braid that couples

longitudinal and transversal tension (and therefore sti↵ness) through a certain ratio determined
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by the braid angle may also o↵er a performance equivalent to that of designs with infinite

longitudinal sti↵ness provided that it requires minimal work to deform it. The braid then simply

acts as a mechanism to transform transversal deformation into longitudinal deformation. This

provides the capability of increasing contraction for a given protrusion, but it requires in-plane

deformation in two directions, and thus a 3D structure. Considering that in-plane extension

in the transversal direction is generally not desirable nor practical in soft robotic manipulators

with contracting operation, and that braids generally involve a certain degree of dWs, the use of

braids in wall 1 is considered disadvantageous over infinite longitudinal sti↵ness, and therefore

not the main focus of this study.

Final energy discussion

The design in terms of sti↵ness can therefore be determined using energetic considerations, as

described in previous paragraphs. The energetic considerations, however, do not directly imply

a specific design in terms of x or b, since the relation between these and the maximization of

dV , for a dl, d✓ is di�cult to determine a priori. The equilibrium approach introduced in the

previous subsection can be used to determine the rest of design, and also to develop the study

of contracting devices under the same framework as extending devices, but first a deflection

condition is required.

4.5.3 Deflection condition

An incompressible wall 2 is desirable in contracting devices, as argued in previous and following

sections. Then, a deflection condition imposing the distance between the ends of wall 1 to

remain constant su�ces to ensure that deflection is maintained.

General deflection condition

The distance between the ends of wall 1 depends on the protrusion geometry and any extension

of wall 1. As argued in the previous subsection, a maximal longitudinal sti↵ness is desirable
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for wall 1, and therefore wall 1 can be considered to be inextensible. In this case, the distance

between the ends of wall 1 only depends on the protrusion geometry, which is generally a

function of p, T1, and sb. For a given sb, the distance between the ends of the protruding wall

can thus be expressed as ⇣, which a function of p and T1.

The deflection is then determined by ⇣. The specific ⇣(T1, p) can be di�cult to determine in

general as it involves solving a nonlinear structural problem with general boundary conditions.

However, considering that ⇣, and therefore deflection, depend on the protrusion geometry,

insight into the structural behavior of the protrusion can be used in order to obtain a condition

to impose a desired deflection.

In a general protruding wall, an increase in p for constant T1 given sb leads to a greater

protrusion and more contraction, so d⇣/dp < 0. Conversely, an increase in T1 for constant p

and sb tends to reduce the protrusion, hence d⇣/dT1 > 0. Thus, a relation between T1, p and ⇣

generally exists as well for a given sb, which can be defined as f(p, ⇣). Even though f(p, ⇣) is

also di�cult to determine in general, the function f(p, ⇣) can be either bounded or determined

in specific designs of interest, which can su�ce to obtain a deflection condition that enables a

subsequent design study.

In particular, in designs with sb = 0, the equilibrium of a di↵erential element of wall can be

considered, as shown in Figure 4.7, yielding

dm1/dh = V1

dV1/dh = p� T1d /dh

dT1/dh = V1d /dh

(4.20)

where m1 is the resulting moment at the cross section of the wall, V1 is the resulting vertical

force at the cross section of the wall, and  is an angle corresponding to the orientation of the

cross section. For sb = 0, m1 = 0. Thus, V1 = 0, and therefore T1 is constant over the wall

region where sb = 0. Finally, the relation between T1, p and the curvature radius of the wall,
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M

Figure 4.7: Equilibrium of a di↵erential wall element, where m, V and T denote the resulting
moment, vertical force and tensioning force at the wall cross section, respectively, and p is the
pressure that the wall is withstanding.

which can be defined as R = 1/d /dh, is

T1 = pR (4.21)

The curvature of a wall or part of it over the region where sb = 0 is therefore constant. In

this regard, the protrusion geometry in designs with purely sb = 0 is a circumference arc,

whereas the protrusion geometry in designs combining sb = 0 and sb = 1 is a combination

of circumference arcs and the preselected geometry for the parts with sb = 1. A bijective

relation then exists between the geometry of wall 1 and the distance between its ends ⇣ in a

given design, which is determined geometrically. In particular, in the case of a wall 1 with only

sb = 0, a certain ⇣ implies a specific R. In the case of a wall 1 combining sb = 0 and sb = 1,

a given ⇣ also implies a certain R that is common in all regions where sb = 0, and is generally

lower than the R in designs with only sb = 0 for an equal ⇣.

The wall curvature is directly related to T1 and p according to (4.21). Hence, a pair of T1 and

p imply a protrusion geometry, which in turn entails a certain ⇣, and can therefore be used as

a condition to impose a desired deflection. Equivalently, using the relation between R and ⇣

described in the previous paragraph for each particular design, (4.21) can be transformed into

the condition

f(p, ⇣) = pR(⇣) (4.22)
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where R(⇣) is determined geometrically. Thus, for a given design in terms of distribution of

sb = 0 and sb = inf , the tension in wall 1 to maintain a desired deflection is proportional to p,

and determined by (4.22) with the R corresponding to the regions where sb = 0. The condition

applies to the entire wall. This includes regions where sb =1 since the moment at the ends of

these regions is zero, and therefore the tension and its line of application within these regions

is constant and equal to the tension at the ends.

The result that the wall geometry is specific for a certain distance between the ends of a

protruding wall in wall designs with sb = 0 and infinite longitudinal sti↵ness is coherent with

the energetic considerations. Indeed, if deformation energy cannot be stored in the structure,

an increase in p and T1 that maintains the distance between the ends of the wall and thus

involves no motion of the device cannot result in any change in geometry in order to satisfy

energy conservation.

Particular designs with braces or braids

In designs including a set of braces, the deflection condition is similar. However, the specific

design of the braces can lead to di↵erent values of tension in each segment of wall between

two braces, particularly if the braces are not perpendicular to the cross section, resulting

in di↵erent curvatures at each segment of the protrusion. The e↵ect of the braces on the

resulting wall tension must therefore be considered in order to then use condition (4.22) with

the corresponding R. This e↵ect can be determined by considering equilibrium at the point

of attachment of the braces. However, it is not developed in this work since braces simply

represent an alternative to modify the protrusion geometry equivalent to designs combining

sb = 0 and sb = 1, but do not provide specific performance advantages, as discussed in the

previous subsection. It should be noted, however, that braces typically involve a reduction in

R, which entails lower T1 and therefore lower force for a given p and deflection, but also lower

protrusion magnitude.

A deflection condition similar to (4.22) can also be obtained in designs with braids provided

that sb = 0 is a valid assumption for the braid. However, condition (4.22) is derived considering
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a planar case, and a direct generalization to 3D only applies to protrusions with bending in

a plane. Braids, on the other hand, couple transversal and longitudinal deformation, and

therefore are intrinsically 3D. Considering that the use of braids is generally disadvantageous

as discussed in the previous subsection, and that the generalization of this study to 3D is

discussed in subsection 4.5.7, the deflection condition for designs with braids is not considered

further in this subsection.

4.5.4 Design derivation

The equilibrium equations (4.18) and the deflection condition (4.22), together with the energetic

considerations, can be combined to study the design, and derive design principles to maximise

the wrenches that can be supported.

Detailed analysis and derivation

First, the energetic considerations described in subsection 4.5.2 can be used to determine the

wall sti↵nesses of the design. In particular, the design should generally have an inextensible

protruding wall with either sb = 0 or a combination of sb = 0 and sb = 1 to maximise the

dV associated to a dl, d✓ at the desired operation deflection, using all available room. The

specific combination of sb = 0 and sb = 1 depends on each specific application, but typically

larger regions of sb = 1 provide higher dV and thus higher performance at low deflections,

whereas larger wall regions with sb = 0 enable reaching and providing some support of external

wrenches at larger deflections. With these sti↵nesses, the tension of the protruding wall (4.21)

can be combined with the equilibrium of forces (4.18) in order to show that wall 2 must be

designed to be capable of supporting compressive stress to allow operation at low deflections

where R tends to infinity.

In these designs of interest, the equilibrium equations (4.18) can then be considered, and a
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desired deflection can be imposed by substituting (4.22), yielding

pR(⇣) cos↵[c1d+ x(1� c1) + b(c2 � c1)]� p
x2

2
� pxc2b�m2 + Fn(h� b(1� c2)) = M (4.23)

where ↵ is the angle between the direction of the resulting tensioning force in wall 1 and the

direction normal to the plane of the cross section. (4.23) elucidates the fact that the design to

maximise M depends on ↵, and therefore on the protrusion geometry. This is determined by

the aforementioned sti↵nesses, which maximise performance as discussed in subsection 4.5.2,

and thus ↵ is a specified value at each cross section.

Expression (4.23) provides the relation between the wrenches that can be supported at a desired

deflection and the design. (4.23) is analogous to (4.6) in extending devices, and can therefore

be used to derive the additional design principles to meet the objective of maximizing M .

Expression (4.23) is valid in general, and thus enables the determination of the design in a

general scenario.

Case with Fn = 0

A case with Fn = 0 can be studied first, as it represents a common scenario of interest in

practice, and is illustrative of the design principles. The e↵ect of x, b and d on (4.23) is

relatively decoupled in the majority of terms. However, their contributions to M depend on

the values of c1 and c2, especially in terms of sgn(c2� c1), and therefore these two parameters

must be first considered.

Specific values of c1 and c2 can be di�cult to select with the design, but general tendencies for

the desired values of the parameters can be considered, which can su�ce for the design study.

The value of c1 a↵ects M through three terms: a positive and two negative ones. However,

considering that the variables x, b and d are related through x+ b < d, it can be seen that the

total contribution of c1 to M is always positive, and therefore c1 should be maximised to the

extent it is possible with the design. The contribution of c2 to M is more complex to analyse,

and therefore its desired tendency is di�cult to determine. However, considering that c1 and

c2 are equivalent design parameters, their maximum values can be considered similar. Thus, in
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a design where c1 is maximised, it can be assumed that c2 <= c1.

The sgn(c2 � c1) can then be considered to be negative. This implies that b tends to reduce

M in (4.23). In addition, b also tends to reduce m2, leading to more negative values, which

reduces further M . Thus, b should generally be minimised, which can be expressed as b = 0.

The contribution of x to M in (4.23) is then only through two terms, with a quadratic relation.

Thus, the value of x to maximiseM can be directly determined as x = (1�c1)R(⇣). Considering

the constraint x < d, the value of x should tend to d at low deflections where R ! 1, even

for a c1 that is maximised, which can be expressed as x = d. At larger deflections, the required

value of x may be lower than d. A design where x reduces with deflection can be considered to

be inviable in practice unless pressures below atmospheric pressure are used, which is typically

impractical as it limits the maximum pressure di↵erence. Thus, at larger deflections, the design

in terms of x should be selected for a specific operation according to x = R(⇣)(1� c1).

Finally, the value of d is determined by the environment in each application. (4.23) shows that

a high d is desirable, and therefore it should be the selected so that the device reaches the

constraints from the environment at the maximum protrusion. This agrees with the aforemen-

tioned design of wall 1 to use all available room, although the specific wall geometry, determined

by the regions with sb = 0 and sb = 1, should be selected to maximise the dV associated to

dl, d✓, as previously described.

Case with Fn 6= 0

The design in the general case Fn 6= 0 can be studied in a similar manner. In contracting

devices, the deflection condition (4.22) only imposes a constraint on T1, but does not involve

T2. As a consequence, the contribution of Fn to M in (4.23) is through a constant term Fnh

and a term depending on the design Fnb(1� c2). As in extending devices, the contribution of

the term Fnb(1� c2) to M can be disregarded since it is equivalent to o↵setting the device with

respect to the external forces. The contribution Fnh is fixed and equivalent to an additional

external moment to be supported.

The design derivation in the case Fn/ = 0 is therefore analogous to that in the case Fn = 0, and
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the principles for contracting devices both with and without external wrenches are equivalent.

These, together with the aforementioned principles corresponding to the sti↵nesses of the walls,

constitute the design principles to maximise the M that can be supported at a given deflection

with contracting devices.

Final derivation considerations

It should be noted that, in designs combining sb = 0 and sb = 1, the derivation also applies

to the regions where sb =1. However, in these regions, both the line of application of T1 and

R(⇣) correspond to those at the boundaries with the adjacent regions, at the side where sb = 0.

Thus, the line of application of T1 needs not necessarily be within the wall in designs with

curved, rigid wall regions. The design principles, however, indicate that d should be maximised

within the room available, and x should generally occupy the entire cross section. Hence, the

rigid parts in wall 1 should be straight, and the same principles derived in previous paragraphs

apply.

Interestingly, the geometric principles indicate that the thickness of wall 1 and 2 should be

minimised in the majority of cases. This is coherent with the principles in terms of sti↵ness

indicating that the bending sti↵ness of wall 2 should be minimal while supporting compression

stress, and the bending sti↵ness of wall 1 should be minimal in the desired regions. Thus, the

resulting designs can be produced in practice.

Derivation discussion

This derivation confirms that wall 2 in standard contracting devices must undergo compressive

stress when R(⇣) >= x � Fn/p, which typically occurs at low deflections. High values of x

can aid in reducing the compressive stress but, in general, designs without the capability of

supporting compressive stress in wall 2 cannot operate at low deflections. This is due to the

fact that a protrusion generally involves a T1.

The need for a wall 2 capable of supporting compressive stress can only be prevented by reducing
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the T1 associated to a protrusion and p, which requires exceptional solutions. One of such

solutions is to include an elastic sheet that acts as a continuous set of elastic braces opposing

to the protrusion, thereby reducing T1 and thus leading to a contracting device without the

need for a wall 2 capable of supporting compressive stress. Such a design solution is relevant

in the application described in section 4.7. However, in general such a solution also involves a

reduction in the wrenches that can be supported.

4.5.5 Initial deflection

The design principles to attain a desired initial deflection with minimum pressure can be de-

termined by following a similar derivation as that to derive the principles to maximise the

wrenches that can be supported.

First, the energetic considerations of subsection 4.5.2 indicate that the structure should store

minimum energy. This implies an inextensible protruding wall with either sb = 0 or a combi-

nation of sb = 0, sb = 1. Wall 2 should then be incompressible, and with minimum bending

sti↵ness.

The study of the protrusion in subsection 4.5.3 then indicates that the protrusion geometry

is directly related to the deflection. Thus, the desired initial deflection can be imposed by

selecting a protrusion geometry with a desired R, and using the deflection condition (4.22),

where the specific R(⇣) is determined geometrically.

Equilibrium of moments can also be considered in a device at the desired initial deflection and

with no external wrenches. This is equivalent to the equilibrium in (4.18), shown in Figure

4.6, particularised to Fn = 0, M = 0. The imposition of the desired initial deflection (4.22) to

(4.18)b yields

pRi(c1d+ x(1� c1) + b(c2 � c1))�
px2

2
� pxc2b�m2 = 0 (4.24)

This equation can be used to determine the design to attain the desired initial deflection with

minimum pressure. First, (4.24) indicates that, in order to minimise p, m2 should be minimised,

which agrees with the energy considerations. Then, factorizing p, it can be seen that the design
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to minimise p in (4.24) is equivalent to the design to maximise M in (4.23). Hence, the design

geometry and sti↵ness should be equal to those derived in the previous subsection.

4.5.6 Complete design

The design principles to attain a desired deflection at minimum pressure are equal to those to

maximise the wrenches that can be supported at a desired deflection, both with and without Fn.

Thus, these represent the general design principles for contracting devices, and are summarised

in the following.

The protruding wall should have infinite longitudinal sti↵ness, and either sb = 0 or a combina-

tion of sb = 0 and sb = 1 to maximise the dV associated to an increment in the contracting

wall, using all available space. Wall 2 should be incompressible with minimum bending sti↵ness.

The parameter c1 should be maximised to the extent possible. The total width d should be

selected so that wall 1 reaches the constraints from the environment at maximum protrusion.

And finally, the design geometry should be b = 0, and x = R(⇣)(1 � c1), which is typically

x = d.

4.5.7 Generalization to 3D

The design derivation presented up to this point can be generalised to 3D. The study in 3D is

mostly equivalent: it involves using energy considerations to outline the device’s sti↵ness, and

then combining it with an equilibrium analysis to derive the design principles. However, some

aspects of the generalization require a detailed analysis.

Generalization of design derivation to 3D

The energy considerations in subsection 4.5.2 can be applied to 3D, showing that the structure

of a 3D device should store minimum energy to maximise the wrenches that can be supported.

Thus, the structure of a 3D contracting device must be composed of two regions: a first region
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corresponding to a protruding wall, which should be inextensible and with either sb = 0 or a

combination of sb = 0 and sb = 1, and a second region of the device acting as a backbone,

which should be incompressible and with minimum bending sti↵ness, equivalent to wall 2 in

the planar case.

The cross section of the device must then be divided, with parts corresponding to these two

structural regions. Unlike in extending devices where the role of the cross-sectional stress in

the cross section is dictated by the position relative to the centre of pressures, in contracting

devices the purpose of the local stress in each element of area over the cross section is not clear

a priori.

A cross section divided along an arbitrary curve can be considered. This defines the two

regions in terms of sti↵ness, where one region corresponds to the protruding, inextensible wall,

and the other region corresponds to the incompressible wall. The equilibrium of the 3D device

isolated in this general cross section divided along an arbitrary curve can then be considered in

an analogous manner as in subsection 4.5.1, with T1 corresponding to the aggregated normal

stresses in the region of the protruding wall, and T2 corresponding to the aggregated stresses

in the other region. The equilibrium indicates that, in order to maximise the wrenches that

can be supported, the separation between T1 and T2 should be maximised. Thus, the curve

dividing the cross section must be selected to maximise the distance between T1 and T2 in the

direction perpendicular to these forces and in the plane of bending. This specifies the purpose

of each region of the cross section, and defines the sti↵nesses of the device.

Equilibrium of the 3D device isolated in an arbitrary cross section with T1 and T2 defined by

this dividing curve can be used to determine the rest of the design in an equivalent manner as

in the planar case. The design involves minimizing the thickness of the region corresponding

to T2, maximizing the area of the cross section corresponding to the pressurised chamber for

typical operation deflections, and maximizing the increment of volume in the device for an

increment in contraction of the protruding wall at the operation deflection, using all available

space.

The specific division of the cross section along a curve, or equivalently the allocation of the
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di↵erent parts of the cross section to the di↵erent regions, in order to maximise the distance

between T1 and T2 depends on each scenario. In typical scenarios where the spatial constraints

in a cross section are defined by a rectangle, wall 1 should correspond to one side of the rectangle,

and wall 2 to the opposite side, as shown in Figure 4.8 (a). In more general scenarios with

any spatial constraints, wall 1 should correspond to the entire frontal region of the device when

observed from the direction in which it bends, as illustrated in the example in Figure 4.8 (b),

creating a frontal protrusion, while wall 2 should correspond to the opposite side.

These designs oppose to designs with a wall 1 that extends to the lateral regions, such as that

shown in Figure 4.8 (c). Protrusion in the lateral direction, or in any direction di↵erent from

a frontal protrusion, is generally undesirable. This can be elucidated using the equilibrium, as

it generally involves increasing the region corresponding to T1 to the laterals, which modifies

the line of application of T1, reducing the distance between T1 and T2. The undesirable lateral

protrusions can also be explained using energetic considerations. The wrenches that can be

supported depend on the volume increase of the device (4.19) for a contraction increment.

However, the geometry of the protrusion generally cannot be selected to adapt exactly to the

volume available from the spatial constraints, which are commonly prismatic, leaving some

volume unused. In designs with lateral protrusions, the unexploited volume is typically larger

than in designs with only frontal protrusion, as unused volume appears at both sides or near

vertices of the available room, leading to lower performance. Thus, both equilibrium and

energetic considerations confirm that the protrusion should generally be only frontal.

Designs in 3D such as those in Figures 4.8 (a), (b) typically include lateral walls. However,

these should not contribute to the protruding wall nor to the opposite wall in order to maintain

the distance between T1 and T2 to a maximum. These lateral walls only serve to contain

the pressurised fluid and enable protrusion of wall 1, but should not a↵ect the structural

behaviour of the device. Thus, these walls should generally be designed to minimise any

resistance to deformation while containing the fluid without protruding laterally, e.g. using

a pleated structure with tendons connecting both laterals. In specific cases, however, these

lateral walls can be used to reduce the T1 associated to a deflection and pressure, reducing the

compression on wall 2. This is equivalent to the use of an elastic sheet introduced in subsection
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(a) (b) (c)

Room available Room available Room available

Wall 1

Pressurized
chamber

Pressurized
chamber

Pressurized
chamber

Wall 2 Wall 2 Wall 2

Lateral walls Lateral walls

Figure 4.8: Diagrams of a typical cross-sectional design in a scenario with rectangular con-
straints (a), typical cross-sectional design in a general scenario with curved constraints (b), and
undesirable cross-sectional design in general scenario. In all diagrams, wall 1 is depicted in red,
wall 2 in blue, lateral walls in black, and the available room in the scenario in dashed green
lines.

4.5.4 for planar designs, and is a relevant solution in the design presented in the following

section.

Discussion of 3D derivation

The design of contracting devices in 3D presented in this subsection elucidates that contracting

devices are similar to a segment of continuum robot actuated by PAMs and with an elastic

backbone, such as [182]. However, contracting devices integrate the di↵erent parts, and can be

designed with the principles elucidated in this work to improve performance. Still, both con-

tracting devices and devices including PAMs present the disadvantage of involving a protruding

wall, which typically protrudes outwards, requiring additional room to operate.

4.6 Summary of design principles for given maximum

pressure

The main design principles derived in the previous sections are summarised in the following,

first for extending devices in subsection 4.6.1, and then for contracting devices in subsection

4.6.2. The overall procedure to design a soft robotic manipulator using the design principles

is then outlined in subsection 4.6.3. It should be noted that this section is intended as a
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summary of the main principles, and the reader is referred to the previous sections for details

and clarifications on the principles and their derivation.

4.6.1 Extending devices

The design principles for extending devices in both 2D and 3D can be summarised as follows.

The longitudinal sti↵ness in the region corresponding to wall 1 should be maximised, which can

be expressed as maximal s1 in 2D and equivalently maximal S1 in 3D. The sti↵ness distribution

should be selected so that the maximum sti↵ness is concentrated near the edge of the cross

section in the direction of bending in order to displace the line of application of T1 towards the

cross section contour. The sti↵ness in the region corresponding to wall 2 should be minimised,

which can be expressed as minimal s2 in 2D, and minimal S2 in 3D. This minimal sti↵ness can

be achieved, for example, with a pleated structure. The total cross section of the device should

be maximised to occupy all available room. The thickness of the walls should be minimised.

Finally, the chamber area should be maximised, in general case were S2/RS1 is minimised, to

ensure that the region of the cross section corresponding to the pressurised fluid is maximal.

It should be noted that these last three principles apply to any 2D case and to the 3D case

Fn +K = 0. However, in the 3D case Fn +K 6= 0, the specific geometry of the cross section

must be determined using numerical methods.

The performance of extending devices is related to their operation. In extending devices,

the combination of T1 and the direct contribution of pressure in the cross section create the

moment that supports external moments and equivalent moments generated by external forces.

Thus, the performance of extending devices tends to be relatively low at low pressures, but

remains relatively constant as deflection and pressure increase. As a result, extending devices

are relatively well suited to operate at large deflections and corresponding higher pressures.
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4.6.2 Contracting devices

The design principles for contracting devices in both 2D and 3D can be summarised as follows.

The longitudinal sti↵ness of the protruding wall should be maximal. Its bending sti↵ness should

generally be a combination of parts with infinite and minimal bending sti↵ness, selected to

maximise the dV corresponding to an increase in wall contraction at the operation deflection,

although in specific cases braids or braces can be used to maximise the dV associated to a

contraction increase. Wall 2 should be capable of bending with minimum resistance while

generally being capable of supporting compression forces. The distance between T1 and T2

should be maximised by selecting appropriate regions for walls 1 and 2, as illustrated in Figure

4.8. This implies that in some cases lateral walls may be included, typically in the form of

pleated structures with braces to prevent lateral expansion. However, these lateral walls should

only serve to contain the pressure and not a↵ect the structural behavior of the device. The

total cross section should be maximised so that the device occupies all available room at the

operation deflection, where the protrusion should be maximal. The thickness of the walls should

be minimised. Finally, the region of the cross section with pressurised fluid should generally be

selected to be maximal at the operation deflection.

The performance of contracting devices is also related to their operation. The support of

external moments and equivalent moments generated by external forces is primarily achieved

between wall 1, which is in tension thanks to the pressure forcing wall 1 to protrude, and wall

2 in compression. The direct contribution of pressure to the moment at the cross section is

then secondary. As a result, their performance is relatively high at low deflections, where low

pressures produce significant T1, but tends to reduce at higher deflections, where the T1 created

by a given pressure is lower. This behavior is analogous to that of PAMs [123].

4.6.3 Outline of design principles application

The design principles can be used in the process of determining the most suitable design in

each scenario. The design depends on multiple factors in terms of requirements and constraints
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Figure 4.9: Flow chart outlining the overall procedure to design a soft robotic manipulator in
a given scenario. The chart summarises the main design steps, which are implemented using
the design principles derived in this work.

of the scenario, so each case needs to be considered individually. Nonetheless, an overall design

procedure exists, which is generally common. This is schematised in Figure 4.9, and outlined

in the following.

First, the spatial constraints and the scenario requirements (typically desired deflection) are

considered, and the category of device is selected accordingly. If the desired deflection is

relatively low and some space is available for a protrusion, a contracting device is selected.

Conversely, if the desired deflection is high, or the maximum diameter is very constricted, an

extending device is selected. If the desired deflection presents a broad range of values of interest,

a device combining extending and contracting actuation can be selected. Finally, if the desired

deflection is intermediate, both an extending and a contracting device need to be explored, and

the most suitable design needs to be selected by comparing the performance of the final designs

of both types of device.
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Once the type of device is chosen, the total cross section is selected to occupy all room available

at the desired deflection, as indicated in Figure 4.9. In some cases, braids or braces may be

introduced to adapt to the total cross section to the spatial constraints. A preliminary cross-

sectional geometry is then designed, following the design principles and defining a preliminary

estimate of the regions corresponding to each wall.

The sti↵ness distribution is then selected, following the design principles. In most contracting

devices, this can a↵ect the design of the total cross section to use all available room and any

braids or braces associated with it, and thus they need to be designed in conjunction. Once

the sti↵ness distribution and total cross section are established, the cross-sectional geometry

is adjusted according to the design principles. Iteration can then be conducted to satisfy all

design principles to the best possible extent, as shown in Figure 4.9.

The design procedure up to this point provides the most suitable design layout. In some cases,

the design principles can show that a compromise is necessary, as not all principles can be

concurrently satisfied. In addition, the value of specific design parameters may need to be

optimised, which is also generally identified by the design principles. FE simulations can be

used to optimise the parameters, and resolve the compromises, yielding the final design. The

FE simulations can also be used to compare final performance of designs in the case that both

an extending and a contracting device are explored, and thus select the best. An example of

design application is presented in the next section, which showcases this design procedure in a

problem that illustrates the di↵erent steps described in this subsection.

4.7 Case study: design of a manipulator for MIS

The design principles distilled in the previous subsections are applied in this section to derive

the design of a segment of soft robotic manipulator in a prototypical scenario.
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4.7.1 Scenario definition

A minimally invasive surgery (MIS) scenario requiring a segment of soft robotic manipulator

is selected as the prototypical scenario in this work. Soft robotic manipulators are well suited

to MIS, o↵ering compliance, modularity, compatibility with magnetic resonance imaging, and

miniaturization possibilities that are particularly desirable in keyhole surgery. The recent in-

terest in the subject [112] illustrates the relevance of these devices in medical applications.

The specific requirements for the segment of soft robotic manipulator in the selected scenario

are for it to be able to bend laterally in any direction, providing 2 degrees of freedom (DOFs),

and to maximise the lateral force that can be supported at deflections near 20 degrees. This

deflection is measured as the angle between the centres of the manipulators ends in undeformed

and deformed configurations, and is selected arbitrarily to illustrate the determination of the

design in a representative case. The outer diameter of the device is constrained to 6 mm,

and the operation pressure is limited to 6 psi. These are typical values in MIS where a small

diameter is required for entry into the body, and the maximum pressure is limited due to the

relatively weak sealing at miniature size and to prevent damage in case of bursting. These

values are also similar to the pressures and deflections considered in the literature for devices

with similar characteristics [116, 183].

The minimum wall thickness is considered to be limited by manufacturing constraints and

associated resilience to puncture, leakage, and withstanding the maximum pressure. The man-

ufacturing of soft robots commonly involves casting the hyperelastic structure of the device,

adding fibers, sheets or other inextensible elements, and finally a�xing all the elements typically

with additional layers of hyperelastic material. Considering the typical tolerances associated to

these processes, a minimum wall thickness of 400 µm is selected for the prototypical scenario,

which is considered to be a thickness value that could be achieved reliably with su�cient invest-

ment in manufacturing. The suitability of this thickness to withstand the maximum pressure

with a safety margin to cope with manufacturing tolerances while providing a certain degree of

resilience is confirmed in the simulations in subsection 4.7.6.
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4.7.2 Design derivation

Primary design derivation

The principles of operation of extending and contracting devices are di↵erent, which makes

the devices suitable for operation at di↵erent deflections. Contracting devices predominantly

support external wrenches thanks to the pressure forcing the protruding wall to be in tension

and thus the opposite wall in compression, and the direct contribution of pressure to support

external moments is secondary. As a consequence, they generally o↵er higher performance at

lower deflections where even low pressures create significant tension in the protruding wall.

However, as deflection increases, the relation between T1 and p reduces, and T2 becomes a

tension force, leading to lower performance. Conversely, extending devices support external

wrenches thanks to the direct contribution of pressure to generate a moment when considering

equilibrium of a device isolated in a general cross section, in combination with T1. Thus, they

typically o↵er lower performance at low deflections and low pressure, but their performance

remains relatively constant as deflection and pressure increase, o↵ering higher performance at

higher deflections. A design combining extending and contracting operation would therefore

be advantageous in this application that requires operation at various deflections.

The design principles for extending and contracting devices share many similarities. The wall

thickness should generally be minimised, and the area of the cross section corresponding to the

pressurised fluid should be maximised; the devices should use all available room; the region

corresponding to wall 1 should present a maximal longitudinal sti↵ness, and this should be

concentrated near the edge to maximise the distance between the line of application of T1

and T2. In addition, these principles are generally independent of the desired deflection and

pressure. Thus, a design combining both types of operation can be conceived for this scenario.

The main design di↵erence is that, in extending devices, a wall 2 with minimum longitudinal

sti↵ness is desirable, as elucidated in section 4.4, which can be attained with a pleated structure.

Instead, in contracting devices, wall 2 must typically support compressive stresses, as shown in

section 4.5, and therefore a pleated structure is not viable. Thus, a certain degree of compromise
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is necessary.

In this prototypical scenario, any protrusion over 6 mm diameter is undesirable. Thus, the

outer structure should be cylindrical with 6 mm diameter. In order to provide bending in any

direction, the design must be 3D, and should then include at least three chambers in the cross

section along the device. Since chambers involve partition walls that increase bending sti↵ness,

the number of chambers should be minimised, leading to three chambers being selected. The

design principles indicate that cross section deformation is desirable from an extending device

perspective in order to maximise the area of the cross section corresponding to the pressurised

chambers, and displace the line of application of T1 towards the outer contour, with maximum

concentration of sti↵ness at the region corresponding to T1. Such cross section deformation

leads to a protruding central rod. This can be exploited as the protruding wall in contracting

devices. Thus, the central rod should have an infinite longitudinal sti↵ness, which is desirable

for it to act as the protruding wall of extending devices, and as wall 1 of extending devices.

This results in a device combining extending and contracting operation, with a design that is

desirable for both types of operation as it maximises area of the cross section corresponding to

the pressurised fluid, and presents a desirable sti↵ness at the equivalent of wall 1.

Since the design includes contracting operation, a structure capable of supporting compressive

stress is necessary to act as wall 2. The device must be capable of bending in any direction,

hence the line of application of the equivalent of T2 must be near the centre of the device.

The most suitable solution is then the incorporation of an outer cylindrical structure made of

superelastic material such as nitinol, with notches in alternating perpendicular directions to

enable bending with minimum resistance while supporting compression forces.

The most suitable design of the soft robotic manipulator is therefore a cylinder with a constant

cross section that consists of three equal chambers that can deform and present a maximum

area, and an outer metallic structure, as conceptually illustrated in Figure 4.10 (left). The ratio

S1/S2 should be maximised according to the design principles, which implies a minimal sti↵ness

at the outer wall, and maximal longitudinal sti↵ness at the central rod. This can be obtained by

designing an outer wall made of minimal sti↵ness material and with minimum thickness, which
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Low stiffness outer wall

Inextensible central rod

Deformable partition walls
(minimum stiffness)

Maximum inner diameter

Low stiffness outer wall

Extensible central rod
(relatively high 
longitudinal stiffness)

Deformable partition walls
(some stiffness)

Maximum inner diameter

Figure 4.10: Conceptual illustrations of the most suitable design (left), and alternative design
(right). The design on the left includes three partition walls with minimal sti↵ness to facilitate
cross-sectional deformation, an inextensible central rod, a minimal outer wall thickness of 400
µm made of low sti↵ness material, and a notched outer structure to support compression force
while minimizing resistance to bending. The design on the right also has an outer wall with
minimal thickness and minimal resistance to bending, but it does not include an outer structure,
and instead is has outer fibers to prevent radial expansion. In addition, its three partition walls
are also deformable but present some sti↵ness, which combines with a central rod that can
extend to some degree to prevent compression of the outer wall.
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in this scenario corresponds to 400 µm as described in the previous subsection, and including

an inextensible thread at the central rod. The sti↵ness of the partition walls should be minimal

to facilitate cross section deformation, and wall thickness should be minimal to maximise the

area of the chambers in the cross section. Since the maximum cross-sectional deformation is

limited by the outer wall, the partition walls are always below the maximum strain of typical

hyperelastic materials, and thus the minimum wall thickness in this scenario, 400 µm, can be

selected. It should be noted that the outer structure serves to prevent radial expansion of the

outer wall. The maximum protrusion of the central rod is also limited by the outer diameter,

and therefore the device respects the diameter constraints while o↵ering contracting operation.

Discussion of primary design found

This design layout resembles that of the FMA, but the principles of operation and the spe-

cific geometry and sti↵nesses are di↵erent. This layout combines extending and contracting

operation, in contrast to the FMA that only involves extending operation. In addition, the

wall thickness in this layout is lower than in the FMA to maximise the chamber area in the

cross section, the central rod is inextensible to maximise force, and the design includes an outer

structure to support compression forces. Finally, the partition walls in the proposed layout

contrast with those in the FMA, as they are designed to facilitate cross section deformation,

which maximises the area corresponding to the pressurised fluid in the cross section and leads

to contracting operation.

The manufacturing of the proposed outer structure capable of supporting compression forces

is challenging, particularly at the miniature size of this prototypical scenario. In addition, it

can introduce bending resistance, limiting performance. Furthermore, the structure can limit

extending-type operation at relatively high pressures.
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Alternative design

An alternative design without the outer structure can be conceived, which is easier to manu-

facture and more illustrative of the research presented in this chapter, enabling the verification

of some of the design principles. The need for a structure to support compressive forces stems

from the significant tension at the central rod associated to a protrusion, and mainly occurs at

low deflections. As mentioned in subsections 4.5.4 and 4.5.7, this tension can be reduced by in-

troducing some resistance to the protrusion. In this 3D design, the resistance can be introduced

by using partition walls with some sti↵ness. Thus, by combining partition wall sti↵nesses to-

gether with some extension of the central rod, a design without compression force on the outer

structure can be achieved. It should be noted that, in such design, the central rod still serves

to increase performance by introducing contracting actuation and by maximizing S1/S2, hence

a high central rod sti↵ness in the longitudinal direction is desirable. The main purpose of the

partition walls is to compensate any excessive e↵ect of the protrusion for a given pressure and

deflection, and therefore the partition wall sti↵ness (PWS) depends on the longitudinal central

rod sti↵ness (LCRS), with higher LCRS requiring higher PWS.

The alternative design is therefore similar to the previous design, as conceptually illustrated in

Figure 4.10 (right), but with di↵erent values of PWS and LCRS. This leads to a design without

compression at the outer wall, which eliminates the need for complex structures while enabling

operation at low deflection. Consequently, it represents the design selected for this prototypical

scenario.

The outer wall can then be made of soft material, and according to the design principles should

have a minimal wall thickness to maximise the area of the cross section corresponding to the

pressurised fluid, and a minimal bending sti↵ness to maximise S1/S2. A pleated structure

with circumferential fibers could be used to minimise bending sti↵ness, but manufacturing at

millimetric scale can be challenging. Instead, a cylindrical outer wall made of soft material

with circumferential fibers to prevent radial expansion while allowing longitudinal deformation

is practically equivalent and easier to manufacture, hence is the solution selected. The material

of the outer wall should be hyperelastic, with low sti↵ness, and capable of withstanding pressure
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when combined with fibers. In order to consider a realistic material that is readily available,

DragonSkin 10 (Smooth-On, USA) is selected for this prototypical scenario. This is a common

material in soft robotics and it has been previously characterised in the literature [184]. The

wall thickness should be the minimum possible, which corresponds to 400 µm in this scenario,

as described in the previous subsection. This wall thickness can withstand pmax with only

minor bulging of the rubber between the fibers, which corresponds to a maximum strain in the

rubber below the failure limit of the material, as confirmed in the simulations in subsection

4.7.6. The cross section area corresponding to the pressurised fluid should also be maximised

according to the design principles, which implies a minimum partition wall thickness of 400

µm. This principle also implies that cross section deformation is also desirable, which however

can be limited by PWS. Thus, the contributions of PWS and LCRS need to be matched to

achieve the desired performance.

Compromise in optimal design parameters

The optimal values of LCRS and PWS depend on the maximum pressure, denoted by pmax, as

well as the outer wall characteristics. Increasing the LCRS improves S1/S2, and thus the design

principles indicate that it increases performance, as qualitatively shown in Figure 4.11 (left).

However, it requires a high PWS to prevent buckling, and therefore cross section deformation

can be compromised, which can reduce performance. Conversely, lower PWS facilitates cross

section deformation, which according to the design principles is desirable, leading to higher ini-

tial deflections and higher performance at lower pressures, as qualitatively shown in Figure 4.11

(left). However, the maximum LCRS is then limited, which can reduce performance at higher

pressures. A compromise is therefore necessary, which depends on pmax. The performance of

designs optimised for di↵erent pmax is qualitatively illustrated in Figure 4.11 (right), elucidating

the fact that the optimal values of the parameters must be selected for the operating pressure

in each scenario.

Since cross-sectional deformation is limited by the outer wall, all designs become equivalent

in terms of cross section once full cross-sectional deformation is reached. On the other hand,
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Figure 4.11: (left) Qualitative graph illustrating the design trends corresponding to the variation
of LCRS in a design where the rest of the design remains equal, shown in blue, and the variation
of PWS in a design where the rest remains equal, shown in magenta. (right) Qualitative graph
illustrating the performance of designs optimised for di↵erent pmax in terms of their PWS and
LCRS, elucidating the fact that the design parameters PWS and LCRS must be optimised for
the specific pressure of operation in each scenario.

maximal PWS enables higher LCRS and therefore higher performance. In addition, high PWS

also contributes to the longitudinal sti↵ness of wall 1, increasing and thereby leading to better

performance. Thus, the optimization of the design involves selecting the maximum PWS that

enables reaching full cross section deformation at , and then the maximum LCRS to minimise

tension at the outer wall during operation of the device while avoiding buckling. These parame-

ters need to be optimised for each specific scenario. FE simulations were developed in this work

for the optimization in the prototypical scenario. The specific simulations, the optimization

process, and results obtained are reported in the next four subsections.

It should be noted that, in the design selected, the partition wall sti↵ness serves to prevent

buckling before full cross section deformation. After reaching full cross section deformation, this

cross section remains practically constant despite further increases in pressure, and buckling

does not occur since the contribution of the contracting e↵ect is practically completed. Thus,

designs with di↵erent PWS become equivalent once they reach full cross section deformation

provided that the rest of the design is equal and that the contribution of the partition walls to

the longitudinal sti↵ness is relatively low.
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Rigid block

Constrained end

Figure 4.12: Configuration of the simulations with soft robotic manipulator and rigid block.
The distances and angles are specified in the diagram.

4.7.3 FE simulations: evaluation criteria

FE simulations were developed in order to optimise the design parameters for the device in the

prototypical scenario, and verify the design principles extracted in the previous subsections.

The criteria to evaluate the performance of the soft robotic manipulator deserve consideration.

These are first considered in this subsection.

The design objective in this prototypical scenario is to maximise the lateral force at a deflection

near 20 degrees for a given pmax. Thus, the performance is evaluated by measuring the normal

force applied onto a prismatic block positioned as shown in Figure 4.12, with frictionless contact.

This corresponds to an approximate deflection near 20 degrees of the manipulator at initial

contact, and an interaction that is normal to the rigid block and approximately lateral on the

soft robotic manipulator. It should be noted that the deflection at initial contact is somewhat

lower than 20 degrees. This is intentional since the relative rotation between the ends of the

manipulator varies with pressure even after contact, which implies that the distance between

the centre of the distal end of the device and the block changes even after contact. Since
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deflection is measured based on the position of the centres of the manipulator’s ends, this

varies at di↵erent pressures during contact. Thus, the rigid block is specifically positioned so

that deflection is near 20 degrees for the range of pressures of interest.

This configuration selected for the simulations is also a representative of the typical operation

of soft robotic manipulators. The design principles were shown to be independent of maximum

pressure and deflection. Thus, the FE simulations conducted in this configuration also serve to

verify some of the design principles derived in the previous sections.

4.7.4 FE simulations: parameter optimization

The objective of the optimization of the LCRS and PWS is to obtain both maximum PWS

while reaching full cross section deformation at pmax, and minimal outer wall tension in the

operation range of the device, while preventing buckling due to compression of the outer wall.

This maximises the wrenches that can be supported at pmax and enables operation at low

deflection. The procedure to determine the optimal values of LCRS and PWS is as follows.

First, PWS is selected to obtain full cross-sectional deformation at pmax for a generic LCRS. This

is achieved by conducting quasistatic simulations for a set of values of PWS with regular sti↵ness

increments while maintaining constant material properties elsewhere. The simulations are

executed using a gradual increase in pressure until a practically full cross-sectional deformation,

which here is specified by the central rod reaching approximately 70% of the radius, and the

corresponding pressure is recorded. The PWS of the design that achieves practically full cross-

sectional deformation at a pressure closest to pmax is selected. Then, for the optimal PWS,

the LCRS to achieve minimal outer wall tension is determined. This is done by conducting

simulations with the optimal PWS and gradually increasing value for LCRS, starting with a

sti↵ness corresponding to that of DragonSkin 10, until the outer wall sti↵ness is minimal. The

LCRS that reaches minimal outer wall sti↵ness without buckling, together with the PWS to

provide practically full cross section deformation at pmax, constitute the optimal design. It

should be noted that this optimization process of determining the PWS first independently of
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Figure 4.13: Undeformed cross section geometry of the design selected viewed with a perspective
projection (left), and deformed cross section of the same design with partition walls made of a
material with C10 = 127500 Pa when pressurised at 6 psi in two chambers (right).

the LCRS is possible since cross-sectional deformation is relatively independent of the value of

LCRS.

It should also be noted that rupture of the partition walls due to excessive strain is not consid-

ered since the maximum cross-sectional deformation is limited by the outer wall. The maximum

possible extension of the partition walls is approximately double their initial length, which is

significantly below the failure limit of typical rubbers. Similarly, extension of the central rod is

typically lower than double the initial length, which is also below the failure limit. Thus, the

PWS and LCRS are varied freely.

4.7.5 FE simulation implementation

The simulations were implemented using Abaqus/Standard - SimuliaTM, Dassaut Systemes R�

(Velizy-Villacoublay, France). The simulation set up involves the soft robotic manipulator and

a rigid block situated as shown in Figure 4.12. The geometry of the soft robotic manipulator is

a 6 mm diameter cylinder, with a constant cross section as shown in Figure 4.13 (left), a solid

end cap of 1 mm thickness, and a total length of 31 mm.
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The material of the outer wall was modeled as an incompressible, hyperelastic material with a

Neo-Hookean constitutive law with c10 = 42500Pa and D = 0, following [184]. The constitutive

behavior of the material of the partition walls was also approximated with an incompressible

Neo-Hookean law, and the di↵erent values of the PWS were selected by varying the parameter

c10, with values ranging between c10 = 42500Pa and c10 = 425000Pa at regular increments of

42500Pa. Similarly, the material of the central rod was also approximated with an incompress-

ible Neo-Hookean law, with a c10 that was modified to vary LCRS. The bending sti↵ness of the

central rod was not relevant at the sti↵ness values of interest since this was su�ciently thin.

Finally, the fibers were modeled as circular beams of 10 µm diameter made of a material with

a Young’s modulus of 51 GPa, and a Poisson ratio of 0.36, which is representative of Kevlar.

The deformation of the device resulting from the pressurisation of two chambers was simulated

by applying a pressure in the chambers that increased linearly, from zero to the maximum

applied pressure. This linear load increment approach enabled solving the geometrically non-

linear problem. An encastre boundary condition was imposed at one end of the manipulator,

and another encastre was defined at one point of the rigid block. The contact between the

manipulator and the rigid block was modeled as frictionless. The contact force was measured

as the force applied by the manipulator on the rigid block.

The force corresponding to wall 2, T2, was measured as the aggregated tension force over

the outer wall of the device in a free body cut corresponding to the cross section indicated in

Figure 4.14. This is due to the fact that the outer wall in this 3D design provides the equivalent

function as wall 2 in the analytical derivation. The mesh was maintained constant when varying

material properties in the di↵erent simulations, and mesh convergence testing was conducted

to ensure that the analysis was not a↵ected by the characteristics of the mesh.

4.7.6 FE simulation results

The results of the simulations provide the deformation of the device and the force it applies

on the rigid block as a function of pressure, as illustrated in Figure 4.14 for a representative

simulation. These results serve both to determine the optimal design parameters of the device
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Figure 4.14: Simulation of deformed geometry in design with partition walls made of a material
with c10 = 127500 Pa and central rod made of a material with c10 = 425 MPa, pressurised at 6
psi in two chambers. The bulging at the outer wall between the fibers is shown, as well as the
deformation of the cap caused by the tension of the central rod.

in the prototypical scenario, and to verify some of the design principles, as described in the

following.

Design optimization results

In terms of optimal parameters, the results of varying PWS for constant LCRS show that

partition walls made of a material with c10 = 127500Pa yield practically full cross-sectional

deformation at pmax, as shown in Figure 4.13 (right). This cross section corresponds to the sec-

tion marked in orange in Figure 4.14, which is representative of the cross-sectional deformation

along the device. Thus, the optimal PWS in this scenario corresponds to c10 = 127500Pa since

it is the highest PWS that reaches practically full cross section deformation at pmax.

The results of increasing LCRS for the optimal PWS are shown in Figure 4.15. As can be seen,

the performance improves with increasing values of LCRS. At an LCRS of c10 = 425MPa,

the tension at the outer wall becomes zero and even slightly negative during operation, as can
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Figure 4.15: Plot of lateral force as a function of pressure for di↵erent designs. The performance
of designs with a PWS of c10 = 127500 Pa and a hyperelastic LCRS, the value of which is
indicated in the legend in terms of the c10 parameter, are shown with continuous lines. The
performance of designs with a PWS of c10 = 127500 Pa and an elastic LCRS, with the sti↵ness
indicated in the legend in terms of the Youngs modulus, are shown in dashed lines. The
performance of the FMA design in terms of partition wall sti↵ness and LCRS, but with an
outer wall thickness of 400 µm, is shown with an orange line combining dots and dashes.

be seen in Figure 4.16 (left), where the tension at the outer wall is plotted as a function of

pressure for the di↵erent LCRS. Thus, the optimal LCRS corresponds to c10 = 425MPa since

higher values of LCRS would involve compression stress at the outer wall, which could lead to

structural instabilities such as buckling. This was confirmed by executing simulations at higher

LCRS, which presented converge issues due to structural instabilities.

A design with partition walls made of a material with c10 = 127500Pa and central rod with

c10 = 425MPa therefore represents optimal design in this scenario, together with the aforemen-

tioned geometry and the outer wall made of DragonSkin 10 with c10 = 42500Pa. The higher

performance of the optimal design is predominantly due to two factors. First, it presents prac-

tically full cross section deformation at pmax, and therefore it provides a high performance in

terms of cross section as the area corresponding to the pressurised fluid is maximised and the

majority of the sti↵ness is concentrated near the cross section contour corresponding to wall



232 Chapter 4. Design of Soft Robotic Manipulators with Fluidic Actuation

1. Second, it has the highest LCRS, and therefore the force spent stretching the structure is

minimised, particularly at the central rod which corresponds to wall 1, leading to a maximal

contribution of pressure to support external wrenches. Interestingly, a relation can be observed

between the reduction in tension at the outer wall, shown in Figure 4.16 (left), and the improve-

ment in performance due to the increase in LCRS, shown in Figure 4.15, where the magnitude

of the improvement in performance between two designs is directly related to the magnitude of

the reduction in outer wall tension.

The results of the simulations show that buckling of the outer wall does not occur, as can be

seen in Figure 4.14. The results also indicate that any bulging of the outer wall between the

circumferential fibers is minor, as can also be seen in Figure 4.14, which corresponds to a strain

at the outer wall that is maintained significantly below the failure limit of the rubber. Thus, the

wall performs as desired, withstanding the pressure applied without excessive wall thickness.

This outer wall behaves similarly to a pleated structure, presenting longitudinal extension with

only minimal radial expansion between the fibers. Thus, this design with the soft outer wall

and circumferential fibers is mostly equivalent to a previously mentioned design with a pleated

structure and circumferential fibers, and the study developed here can be generally extrapolated

due to the similar structural behavior.

The results of the simulations also confirm that the tension at the inner rod is relevant and

significant. Observing the end cap, as shown in Figure 4.14, a depression can be noted, which

is caused by the inner rod in tension.

Performance comparison

The performance of the design obtained in this work with optimal parameters was also compared

with that of the FMA design, in terms of material sti↵nes of the partition walls and LCRS,

since it is as well-established design, and is representative of some of the highest performing

soft robotic manipulator designs that can meet the requirements of the scenario defined in this

work. It should be noted that, in this FMA design, only the partition walls and central rod
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Figure 4.16: (left) Plot of outer wall tension as a function of pressure (left) for designs with
a PWS of c10 = 127500 Pa and various LCRS, indicated in the legend in terms of the c10
coe�cient. (right) Plot of lateral force as a function of pressure for designs with varying PWS
and equal material properties in the rest of design, including LCRS. The PWSs are indicated
in the legend in terms of the c10 parameter of the Neo-Hookean constitutive law used to model
these hyperelastic, incompressible materials.

of the FMA were used. The outer wall thickness used was the same as in the rest of this case

study, 400 µm, to compare performance in equivalent conditions, removing the potential e↵ect

of a di↵erent outer wall on bending sti↵ness. DragonSkin 10 was selected as the material for the

FMA, also to compare both designs in equivalent conditions. The results of lateral force as a

function of pressure are shown in Figure 4.15. As can be seen, the design obtained here provides

a higher force at pmax. The results also show that, at lower pressures, the FMA design presents

a somewhat higher performance, primarily due to the softer partition walls that enable larger

cross-sectional deformation at lower pressure, confirming that a design must be optimised for

a specific pressure.

The performance of the design obtained in this work was also compared with that of the

standard FMA with an outer wall thickness of 0.75 mm, which matches exactly the standard

FMA design. DragonSkin 10 was also used as the material for the rubber. The results of

lateral force obtained, however, could not be included in Figure 4.15, since the standard FMA

makes contact with the rigid block at 6.39 psi, which is beyond the interval of pressures in

the plot. The performance of the standard FMA is plotted later in section 4.10 Figure 4.22

where a suitable interval of pressures is shown. The fact that the standard FMA does not
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even make contact with the rigid block at the range of pressures considered here shows that

the performance of the standard FMA is significantly below that of the design obtained here

for the range of pressures in this case study, and is lower than that of the FMA with an outer

wall thickness of 400 µm. This is due to the thicker outer wall in the standard FMA, which

adds bending sti↵ness, and thus reduces performance. It should be noted, however, that the

comparison with the standard FMA is not entirely valid since this is designed to withstand

higher pressures than pmax here, and to operate in a range of pressures that exceeds that of

Figure 4.15. The design for any desired pressure, which includes the operating conditions of

the standard FMA, is considered in the next sections 4.8, 4.9, 4.10.

Alternative materials

The design obtained in this work can be fabricated using readily available silicones for the outer

wall, partition walls, and fibers. However, the hyperelastic material selected for the central rod

can be di�cult to obtain in practice as it presents a sti↵ness significantly higher than that of

standard rubbers. In order to consider more realistic materials, equivalent simulations were

conducted using elastic material properties for the central rod, with Young moduli between

E = 108 Pa and E = 1010 Pa, which are representative of cotton or wool threads. The results

are shown in Figure 4.15, together with the previous results for hyperelastic central rod. As

can be seen, the performance of designs with central rods made of sti↵, elastic materials are

equivalent to those with hyperelastic materials. Thus, the design can be fabricated by using

readily available materials such as textile threads as the central rod.

Principles and operation verification results

The results of the simulations also serve to verify two of the most relevant design principles. In

addition, they can be used to confirm that the operation of the device is as predicted.

The performance of di↵erent designs with varying PWS and constant LCRS and material

properties elsewhere is plotted in Figure 4.16 (right) as a function of pressure. The plots
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indicate that lower PWS increases the lateral force that the device can apply, and reduces

the pressure required to attain an initial deflection. These results agree with the behaviour

predicted based on this analysis in this work, shown in Figure 4.11 (left). Thus, the results

confirm that cross-sectional deformation is desirable to improve performance. Equivalently, the

results verify that maximizing the area of the cross section corresponding to the pressurised

fluid is desirable to maximise the force of soft robotic manipulators. This contrasts with some

of the designs in the literature [113], and shows that, unless additional constraints are present,

such as those exposed in subsection 4.4.6, the exploitation of cross-sectional deformation can

yield designs with improved performance.

The results of increasing values of LCRS with a constant design elsewhere, shown in Figure 4.15

for both hyperelastic and elastic central rods, confirm that increasing LCRS leads to higher

force in general. These results also agree with the predicted trends, shown in Figure 4.11 (left).

This verifies another of the design principles, namely that high LCRS is desirable to maximise

the performance or, equivalently, that maximal S1/S2 is desirable to maximise the force that

can be applied, provided that it does not lead to buckling of wall 2. It should be noted that the

result of the simulation with a central rod sti↵ness of c10 = 4.25MPa does not reach the full

pressure. This is due to the fact that the simulation did not converge at pressures above 5.7

psi since some mesh elements presented excessive distortion. Nonetheless, the plot elucidates

the trends of interest.

Finally, the results of tension at the outer wall for di↵erent LCRS, shown in Figure 4.16 (left),

confirm that increasing LCRS leads to lower values of overall tension at the outer wall. Thus,

these results confirm that the performance improves as less force is spent stretching the outer

wall. In particular, for the optimal LCRS, the results in Figure 4.16 (left) show that the tension

at the outer wall becomes zero and even to a slight extent negative, which indicates that the

objective of the optimization in terms of minimizing outer wall tension is achieved. Moreover,

the results on outer wall tension confirm that the contracting operation is e↵ective, particularly

at low deflections, where the tension at the equivalent of wall 2 becomes practically zero. At

larger deflections, the contribution of the contracting operation is significantly reduced, since

the protrusion is limited by the outer wall and cannot increase further. Then, the extending
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operation becomes relevant, which involves some inevitable tension at the outer wall, but

provides a high overall performance.

4.8 Design for unconstrained pressure

The design study presented up to this point was developed for a given maximum pressure. The

study can be extended to the case where any maximum pressure can be used. This is presented

in this section.

The design study in the case of unconstrained maximum pressure is mostly equivalent to that

for a given maximum pressure. The main di↵erence is that here the maximum pressure is not

given, but depends on the design.

4.8.1 E↵ect of design on pressure

As previously noted in section 4.2, the pressure that a device can withstand primarily depends

on its sealing points and its outer walls. The resistance of the sealing points can be increased

with improved fabriation techniques, and it is not considered an issue in the design problem.

This is discussed further in the fabrication section in chapter 6. The resistance of the outer

walls, on the other hand, depends on their design, and this a↵ects the performance of the

device. Thus, it must be added to the design problem.

The strength of the outer walls chiefly depends on the type of wall used and on its thickness.

The outer wall generally needs to be able to extend in order to enable bending of the device,

while withstanding the pressure without expanding radially beyond the operation constraints.

Thus, it needs to be anisotropic in sti↵ness. This can generally be achieved with two types of

wall design: either a pleated structure with circumferential fibres, or with a straight structure

(without pleats) made of a soft material such as rubber and circumferential fibres.

In both types of outer wall, a thicker wall can generally withstand higher pressures. And the

application of higher pressures in a device generally allows for the support of greater wrenches,
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as can be seen by formulating the equilibrium of the device isolated in a general cross section

in analogous manner as in sections 4.4 and 4.5. However, a thicker wall introduces bending

resistance, and occupies room in the cross section, both of which are undesirable since they

a↵ect the design by reducing the wrenches that can be supported.

The e↵ect of the outer wall on the design can be then summarised with two additional principles.

First, a thicker outer wall can withstand higher pressures, which lead to higher wrenches that

can be supported. Second, a thicker outer wall increases the bending sti↵ness and reduces the

area in the cross section corresponding to the pressurised fluid, which reduces the wrenches

that the design can support.

4.8.2 Extension of design to unconstrained pressure

The design of devices with unconstrained maximum pressure is then equivalent to the design

with a given maximum pressure, with the added factor that here the pmax depends on the outer

wall, particularly in terms of its thickness. Each outer wall implies a pmax, and for this pmax the

principles in the previous sections apply. However, the fact that here the pmax depends on the

outer wall implies that the factors summarised in the two additional principles in the previous

paragraph must also be considered in the selection of the outer wall.

These two additional principles generally introduce a compromise in the design of the outer

wall, which in turns a↵ects the pmax and thus the specific parameters in the rest of design. The

design process in the case with unconstrained maximum pressure is then mostly equivalent to

the case with a given maximum pressure, and can be conducted using the principles summarised

in section 4.6 together with the two additional principles in the previous subsection 4.8.1.

However, the two additional principles mean that an extended optimisation process is generally

required. This involves considering various outer walls with corresponding pmax, optimising the

design for each of them, and finally comparing the performance of the designs for di↵erent pmax

to select the best. This is presented by way of example in section 4.10.

It should be noted that analytical solutions to the maximum pressure that an outer wall can
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withstand are not available, so numerical solutions are required. This implies that the design

process must involve a numerical part to consider each outer wall. In this regard, the approach

adopted in this work to study the design for a given maximum pressure, and then extend

it to consider any maximum pressure, which depends on the outer wall, is well suited to the

requirements of the design process, since it enables outlining the design first for various possible

pmax and then performing the numerical simulations to determine the most suitable outer wall

and thus pmax.

4.9 Non-dimensional analysis

The material selection is important in both the design of the fine-positioner, and in the more

general design of soft robotic manipulators. In addition, in the development of soft robotic

manipulators, it can be relevant to extrapolate between di↵erent scales in order to reduce the

number of simulations and experiments required for development.

A non-dimensional analysis was thus developed for soft robotic manipulators with a design

outline similar to that of the FMA or the design shown in Figure 4.10 (right), which are

similar to the design of the fine-positioner selected in the next section. This provides valuable

insight for the material selection for the fine-positioner, and allows for the extrapolation of the

work between di↵erent scales. In this regard, it enables conducting experimental studies at

convenient sizes, and reducing the number of simulations and experiments required.

4.9.1 Development of non-dimensional analysis

The deformation of geometrically equivalent soft robotic manipulators similar to those of inter-

est under equivalent external load distribution, and pressurisation in one chamber or multiple

chambers with a given ratio of pressures between them, depends on a set of non-dimensional

groups. These can be selected to be p
Er
, F

Erd2
, Ef

Er
, Ec

Er
, Ep

Er
, as well as a parameters ⌫r, ⌫f , ⌫c,

and ⌫p, where p is the reference magnitude of the pressure applied, F is the magnitude of the
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external wrenches applied for a given wrench distribution that generally excludes gravitational

forces since they are typically negligible, d is a reference length corresponding to the diameter of

the device, Er is a coe�cient related to the sti↵ness of the rubber (which can correspond to the

Young’s modulus or the c10 coe�cient in a Neo-Hookean constitutive law), Ef is the sti↵ness of

the outer fibres, Ec is the sti↵ness of the central rod, Ep is the sti↵ness of the partition walls in

designs where these are made of a di↵erent material than the outer wall, and ⌫r, ⌫f , ⌫c, and ⌫p

are the Poisson ratios of the rubber, outer fibres, central rod and partition walls, respectively.

It should be noted that here the use of the magnitude p in the non-dimensional groups imposes

the stress at the surfaces where pressure is applied, and is equivalent to the use of a reference

magnitude of stress in the structure of the device.

In the deformation of the soft robotic manipulator, it can be assumed that the outer fibres

are inextensible. In addition, the e↵ect of ⌫f , ⌫c, and ⌫p on the behaviour of the complete

device can be assumed to be negligible in general. Moreover, rubbers used as soft material are

generally incompressible, so ⌫r is generally constant. Thus, the non-dimensional groups of Ef

Er
,

⌫f , ⌫c, ⌫r and ⌫p are considered to have a negligible e↵ect or be irrelevant, and the important

non-dimensional groups are reduced to p
Er
, F
Erd2

, Ec
Er
, and Ep

Er
. Also, in some designs such as that

selected in section 4.7, the central rod can be assumed to be practically inextensible, and in

other devices such as the FMA the central rod is not present. In these cases, the group Ec
Er

is not

relevant. Finally, in designs where the partition walls must also be made of the same material

as the outer wall due to fabrication constraints, the non-dimensional groups are reduced to p
Er
,

F
Erd2

.

Using this non-dimensional analysis, the behaviour of geometrically equivalent devices with

either di↵erent size, di↵erent material, di↵erent magnitude of external wrenches, or di↵erent

applied pressure can be guaranteed to be equivalent if the non-dimensional groups are equal. In

addition, the number of variables influencing the behaviour of a soft robotic manipulator in the

non-dimensional case is reduced by two relative to the dimensional case, which simplifies the

study of these devices.This analysis can also be generalised to designs with additional regions

or fibres with di↵erent sti↵ness by adding non-dimensional groups corresponding to the ratio

of sti↵nesses in the di↵erent regions.
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4.9.2 Applications of non-dimensional analysis

This non-dimensional analysis enables the extrapolation of the behaviour of a soft robotic

manipulator to di↵erent materials. It indicates that an equal deformation is achieved in designs

made of materials with di↵erent sti↵ness if the pressure and external wrenches are varied

proportionally to maintain the non-dimensional groups constant. This suggests that sti↵er

materials lead to devices capable of supporting higher wrenches with an equal deformation,

which is generally desirable, provided that pressure is also increased.

The stress in a sti↵er material also increases proportionally in the case of equivalent deformation.

Thus, the use of sti↵ materials with a relatively low ultimate stress can be undesirable. However,

for materials with similar ultimate strain, which is the case of some of the hyperelastic rubbers

used as soft materials in manipulators with fluidic actuation, the non-dimensional analysis

indicates that the use of sti↵er materials is desirable as it leads to devices that can support

higher wrenches, provided that the assumptions in the previous subsection are satisfied. This

is further elucidated in the material selection for the fine-positioner in the next section 4.10.

The non-dimensional analysis provides additional insights on the mechanical behaviour of soft

robotic manipulators. One relevant insight is that, for devices with equal material properties

and no external loads, the relation between applied pressure and deformation is constant re-

gardless of the device scale. This implies that the pressure required for operation is determined

by the design and desired deflection, but not by the scale of the device, which is particularly

relevant when considering medical applications.

Another insight of interest is related to the non-dimensional group F
Erd2

. This elucidates that

the external wrenches that can be supported by a device with specified material properties and

a given deformation varies with the square of the diameter of the device. This is particularly

relevant when considering the use of a given device, such as a fine-positioner, in alternative

applications with di↵erent diameter constraints.
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4.10 Design of fine-positioner

The requirements for the fine-positioner are similar to those in the case study in section 4.7,

with the main di↵erence that in this application the maximum pressure is not limited by the

scenario. The design procedure is then generally equivalent to that in the previous case study,

which serves as foundation. However, here the maximum pressure depends on the selected

outer wall of the design, which must be added to the design problem.

4.10.1 Design derivation

The design derivation is then analogous to that in subsection 4.7.2 for the previous case study,

and involves satisfying the design principles to the extent possible, and using the principles to

identify compromises that need to be resolved through numerical optimisation where necessary.

The main di↵erence is that in the case of the fine-positioner, the maximum pressure depends

on outer wall thickness, which must be selected. Therefore, here, the complete principles used

in the derivation are those summarised in section 4.6 together with those in subsection 4.8.1.

The two additional principles from subsection 4.8.1 do not a↵ect significantly the derivation

of the layouts of interest, which remains equivalent to that in subsection 4.7.2. This involves

first considering that each segment of fine-positioner should be capable of bending to achieve

deflections of 30 degrees or more in order to provide a significant workspace. The design of this

robot segment should be selected to maximise the wrenches that it can support at the operation

deflections. As in 4.7.2, this implies that the best design should be a combination of extending

device and contracting device. Considering that each robot segment needs to be capable of

bending in any direction in 3D space, the design needs to have at least three partition walls

in the cross section that define three chambers. The number of partition walls is then selected

to be three considering the design principles in section 4.6 stating that the region in the cross

section corresponding to pressurised fluid should be maximised, and that the bending sti↵ness

of the design should be minimised.

The rest of design layout can then be determined by applying the design principles in section



242 Chapter 4. Design of Soft Robotic Manipulators with Fluidic Actuation

4.6 together with the two principles in subsection 4.8.1. The aim in the application of the

principles is to determine a design layout that satisfies as many principles as possible, and to

identify compromises that need to be optimised numerically where necessary. The application

of the principles here is analogous to that in subsection 4.7.2, with the main di↵erence that the

outer wall thickness in this case needs to be selected in a trade-o↵ defined by the principles

described in subsection 4.8.1. A given outer wall then determines the maximum pressure, which

in turn implies a specific design as in the previous case study in subsection 4.7.2.

The specific design layout of interest for each outer wall thickness is determined by design

principles that are simply those in section 4.6, since the two principles in subsection 4.8.1 only

relate to the outer wall. Thus, the layouts of interest for the design of the fine-positioner for

any selected outer wall are equivalent those in the previous case study shown in Figure 4.10,

but with specific parameters in terms of partition wall sti↵ness and central rod sti↵ness that

depend on the maximum pressure dictated by the outer wall thickness.

In this regard, the resulting possible design layouts for the fine-positioner are equivalent to

those in Figure 4.10. The main di↵erence in the design of the fine-positioner is that here the

outer wall thickness also needs to be optimised, together with the longitudinal sti↵ness of the

central rod and the sti↵ness of the partition walls. Another minor di↵erence is that, in the case

of the fine-positioner, the fabrication of rubber structures combining multiple soft materials is

not considered viable, as described further in Chapter 6. Thus, the material of the partition

walls must be the same as that of the outer wall. The sti↵ness of the partition walls must then

be selected through their thickness. The thickness of the partition walls a↵ects the region of

cross section that corresponds to the pressurised fluid, and contributes to the bending sti↵ness

of the device, and to the longitudinal sti↵ness of the central rod. Therefore, it needs to be

determined in conjunction with the other parameters by following an optimisation procedure,

which is presented in subsection 4.10.3.

The fabrication of any outer structure with notches such as that shown in Figure 4.10 (let) is

considered di�cult in the miniature size required for the fine-positioner, and this can introduce

bending sti↵ness that reduces performance, in a similar manner as in the previous case study.
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Thus, as in subsection 4.7.2, the layout in Figure 4.10 (left) is discarded.

The design layout selected as the most suitable for a segment of the fine-positioner is then

that shown in Figure 4.10 (right), with an outer wall thickness, partition wall thickness and

longitudinal central rod sti↵ness that need to be selected. This selection requires numerical

optimisation, which is described in subsection 4.10.3. Before the optimisation, the most suitable

soft material for the rubber structure in the device is considered and chosen, as presented in

the following subsection 4.10.2.

4.10.2 Hyperelastic material selection

The hyperelastic material of which the structure of the device should be made, including outer

wall and partition walls, a↵ects the performance of the device and needs to be selected carefully.

After surveying suppliers and literature for hyperelastic rubbers, a set of relevant materials

available was identified, which are summarised in Table 4.1. These materials present significant

di↵erences in their sti↵ness and ultimate strain. The selection of material can be made with

aid from the non-dimensional analysis presented in the previous section 4.9.

As can be seen in Table 4.1, the ultimate strain of Elastosil M4601, by Wacker Chemie AG

(Munich, Germany), is higher than that of DragonSkin 10, 20, and 30, by Smooth-On Inc.

(Macungie, US). In addition, the sti↵ness of Elastosil M4601 is also higher or comparable to

that of these other materials. Hence, according to the non-dimensional analysis in the previous

section 4.9, Elastosil M4601 is preferable over DragonSkin 10, 20 or 30, since it can reach

equivalent deformations to DragonSkin 10 or 20 while supporting higher wrenches, and at the

deformation where DragonSkin 30 reaches its ultimate strain, Elastosil M4601 can still increase

its strain by further increasing pressure, leading to higher support of wrenches.

When comparing the ultimate strain of Elastosil M4601 with that of Ecoflex OO-30 and OO-50,

by Smooth-On Inc., it can be seen that the ultimate strain of the former is somewhat lower.

This means that a device made of Ecoflex OO-30 or OO-50 can reach an equal deformation as

a device made of Elastosil M4601 at the point where the latter reaches its ultimate strain, and
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then keep increasing deformation and thus support of wrenches by increasing pressure. However,

the sti↵ness of Ecoflex OO-30 or OO-50 is at least three times lower that of Elastosil M4601.

According to the non-dimensional analysis in section 4.9, this implies that at the maximum

strain of Elastosil M4601, with an equivalent deformation, the wrenches that a device made

of Elastosil M4601 can support are at least three times those that a design made of Ecoflex

OO-30 or OO-50 can support. In this regard, even though devices made of Ecoflex OO-30 or

OO-50 can keep increasing the strain from 700% to 900%, with an associated increase in the

support of wrenches, it is expected that this additional increase in wrenches is not su�cient

to triple the wrenches supported at 700% strain. Thus, Elastosil M4601 is expected to yield

devices capable of supporting higher wrenches.

The sti↵ness of Smooth-Sil 950, by Smooth-On Inc., is higher than that of Elastosil M4601,

which according to the non-dimensional analysis in section 4.9 implies that at an equal de-

formation, a device made of Smooth-Sil 950 can support higher wrenches. Using a coarse

approximation to estimate the sti↵ness of these two materials based on their Shore hardness,

the wrenches that a device made of Smooth-Sil 950 can support can be estimated to be nearly

80% higher than those of a device made of Elastosil M4601 for an equal deformation. How-

ever, the ultimate strain of Elastosil M4601 is more than double that of Smooth-Sil 950. This

implies that at the maximum deformation of a device made of Smooth-Sil 950, a device made

of Elastosil M4601 can keep deforming by increasing pressure to double the strain. Thus, even

though a device made of Smooth-Sil 950 can support wrenches approximately 80% higher at

its maximum deformation, the strain in a device made of Elastosil M4601 can be increased to

more than double the strain at the maximum of Smooth-Sil 950, with an associated increase

in pressure and thus in the wrenches it can support. The increase in wrenches that a device

can support as a function of strain is not necessarily linear, and can require numerical solutions

to determine. However, in a first linear approximation, the increase in wrenches that a device

made of Elastosil M4601 from the maximum strain of Smooth-Sil 950 to the maximum strain

of Elastosil M4601 can be expected to exceed 80%. Thus, Elastosil M4601 is expected to yield

a device capable of supporting higher wrenches than the other materials, and is the material

selected for the rubber of the fine-positioner.
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Material Ultimate stress [MPa] Ultimate strain Shore hardness c10 coe↵. [kPa]
Smooth-Sil 950 5 320% 50A 340
DragonSkin 10 2.75 663% 10A 42.5
DragonSkin 20 3.8 620% 20A n/a
DragonSkin 30 3.45 384% 30A n/a
Elastosil M4601 6.5 700% 28A 110
Ecoflex OO-30 1.38 900% OO30 12.662
Ecoflex OO-50 2.17 980% OO50 near 25

Table 4.1: Material properties of available hyperelastic rubbers relevant to create deformable
structures in soft robotic manipulators.

4.10.3 Design optimisation

An optimisation needs to be conducted to select the outer wall thickness (OWT), partition wall

thickness (PWT), and longitudinal central rod sti↵ness (LCRS) in the design layout shown in

Figure 4.10 (right), and thus determine the final design of the fine-positioner. The objective

of the optimisation is to find the combination of parameters that maximises the wrenches that

can be supported.

Initial optimisation procedure

The procedure to determine the design parameters deserves consideration. As summarised

in subsection 4.8.1 and mentioned in subsection 4.10.1, a larger OWT increases pmax, which is

desirable, but also introduces bending sti↵ness and reduces the area of the chambers in the cross

section, which is undesirable. Thus, a range of OWT must be explored. Each OWT implies

a pmax. Then for each pmax, the selection of LCRS and PWT is similar to that described in

the case study in section 4.7. In terms of the LCRS, higher LCRS generally leads to improved

performance, and thus the aim is to use a high LCRS without compression on the outer wall.

PWT can be introduced to limit the protrusion associated to the central rod initially, and

thus help prevent buckling. It should be noted, however, that in this instance the sti↵ness of

the partition walls is selected through their thickness and not their material. The choice of

partition wall sti↵ness then a↵ects the region of the cross section corresponding to the chambers.

Thus, an optimal combination of LCRS and PWT must be found for each pmax. The overall

optimal design can then be obtained by comparing the performance of the designs with pairs
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of LCRS and PWT optimised for each OWT, which corresponds to a pmax, and then selecting

the combination of OWT, LCRS, and PWT, that maximises wrenches that can be supported.

A specific optimisation procedure can be used to explore the combinations of parameters of

interest without conducting unnecessary simulations. As described in the previous paragraph,

the most suitable pair of LCRS and PWT depends on pmax, which is determined by OWT. In

general, LCRS and PWT are chosen so that there is practically full cross-sectional deformation

at pmax, and LCRS is maximum without causing buckling. A higher pmax allows for larger PWT

while achieving full cross-sectional deformation at this pmax. This in turn can generally enable

higher LCRS. Thus, LCRS and PWT are typically higher with higher pmax that corresponds

to a larger OWT.

This implies that a pair of LCRS and PWT selected for a OWT can also be suitable for a

larger OWT. And typically, for the larger OWT, it is possible to increase the pair of LCRS and

PWT to some extent, leading to increase performance. The drawback is that a greater OWT

can also reduce performance. However, if the performance in a design with a given pair of

LCRS and PWT increases when increasing OWT, then the greater OWT is generally desirable

as typically it will also be possible to keep equal or greater LCRS and PWT, leading to even

better performance.

In this regard, it is possible to explore first a range of OWT with a constant pair of LCRS and

PWT. Then, if performance increases monotonically with OWT for a set of OWT, those OWT

can be initially discarded. The starting point for the optimisation then is the OWT at which

performance presents a first peak for constant LCRS and PWT, together with the higher values

OWT. These represent an initial shortlist of OWT of interest.

The optimisation process must then explore combinations of LCRS and PWT for the shortlisted

OWT to find the most suitable pair of LCRS and PWT for each OWT. The exploration of pairs

of LCRS and PWT can also be economised relying on the discussion in the previous paragraphs

of this subsection. Since the pair of LCRS and PWT suitable for an OWT is generally also

applicable for larger OWT, it is possible to first find the optimal pair of LCRS and PWT for

the smallest shortlisted OWT, and then only explore equal or higher combinations of LCRS
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and PWT for each subsequent larger OWT. This optimisation procedure, which involves first

a shortlisting a set of OWT, and then exploring pairs of LCRS and PWT that only increase,

is the procedure initially adopted in this work.

The range of OWT to be explored initially is selected to be between 0.4 mm and 1.4 mm. The

lowest value is selected to be smaller than the minimum OWT that can be manufactured, which

is approximately 0.8 mm in the work conducted for this thesis as discussed in Chapter 6, in

order to clearly elucidate the trends. The highest value is initially selected by intuition, as the

optimal design is expected to have an OWT less than half the radius of the device, but it can

be extended if the simulation results suggest it. The discretisation interval for OWT is selected

to be 0.2 mm considering the fabrication accuracy in practice, and the personal experience that

suggests that the performance variations corresponding to variations of OWT less than 0.2 mm

are relatively low.

The results of the simulations are presented in the subsection 4.10.3. But first, the simulation

set-up is summarised in the next subsection.

Simulation set-up

The simulation set-up used for this design optimisation is equivalent to that in the case study

described in subsections 4.7.3 and 4.7.5, and shown in Figure 4.12. This is because the objective

of maximising the loads that can be supported at typical operation deflections is similar.

The simulation of the central rod, however, is somewhat di↵erent from that in the previous

simulations in subsection 4.7.5. Here, the central rod is simulated as a beam using beam

elements in Abaqus Standard, with a radius of 0.025 mm. This is to represent more accurately

the behaviour of a design with a central fibre (made of a material such as a thread) embedded

in rubber, and ensure that the bending sti↵ness of this fibre is negligible, as in a standard fibre.

In addition, it helps with the meshing as it does not require transitions between fine mesh and

coarse mesh that occurred in the previous case of simulating the central rod as a solid tubular

region. The material properties for the central rod are selected to be similar to those of typical
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fibres available in practice, with a linear constitutive law with a Young’s modulus that is varied

between 105 Pa and 1010 Pa, and a Poisson ratio that is maintained constant at 0.35. It should

also be noted that in the simulations in this section, the thickness of the end cap was increased

to 2.5 mm to support the tension of the central rod applied to the centre of the cap without

excessive stress in the cap.

The simulations are executed until the equivalent stress in the rubber material (Elastosil

M4601), determined using the Von Mises criterion, reaches a value of �e = 5.2 MPa. This

is approximately 80% of the ultimate stress of Elastosil M4601, and is selected to leave a safety

margin of 20%, and to ensure that the simulations are performed in a range of stress where

the Neo-Hookean constitutive law used for the rubber is an acceptable approximation. This

criterion for maximum stress also leads to simulation results where the outer wall presents

relatively small protrusions on the outer wall between the fibres at pmax, which correspond to

typical conditions of maximum pressurisation.

Initial optimisation results

The results of the simulation of designs with a range of OWT and a constant pair of PWT

= 0.8 mm and LCRS = 105 Pa are shown in Figure 4.17. As can be seen, the designs with

lower OWT contact the rigid block at lower pressures, which matches the expected behaviour.

However, at the maximum equivalent stress of �e = 5.2 MPa, the performance increases from

the lowest OWT = 0.4 mm up to OWT = 1 mm, where it peaks. After OWT = 1 mm, the

performance decreases. These results suggest that the shortlist of OWT of interest are OWT

= 1 mm and larger values of OWT.

The subsequent optimisation is performed first for OWT = 1 mm. This is due to the fact

that, for the given pair of LCRS and PWT used initially to explore OWT, performance with

OWT = 1.2 mm or OWT = 1.4 mm is lower than with OWT = 1 mm. OWT = 1.2 mm and

OWT = 1.4 mm enable higher pressures which, as discussed in the previous subsection 4.10.3,

would generally imply that larger LCRS and PWT could be used, potentially leading to higher

performance. However, the pressures achieved at OWT = 1 mm, OWT = 1.2 mm and OWT
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Figure 4.17: Plot of lateral force as a function of pressure for a set of designs with OWT varying
between OWT = 0.4 mm and OWT = 1.4 mm at intervals of 0.2 mm, and constant parameters
PWT = 0.8 mm and LCRS = 105 Pa.

= 1.4 mm are already significantly higher than those in the previous case study in section 4.7,

where the optimal LCRS was already nearly inextensible. This suggests that the optimal LCRS

at OWT = 1 mm may be already inextensible, and it may be di�cult to achieve any noticeable

improvement with OWT = 1.2 mm or OWT = 1.4 mm. Thus, OWT = 1 mm was selected as

the initial OWT of interest.

The next step of the optimisation, which involves determining the optimal LCRS and PWT

for the OWT of interest, was then implemented first for OWT = 1 mm. Since this OWT is

larger than in the previous case study in section 4.7, and corresponds to higher pressure, the

optimal LCRS and PWT can then be expected to be equal or higher than those in section 4.7,

according to the discussion in the previous subsection 4.10.3. The central rod in this section

is simulated as a beam, which is half the diameter (a fourth of the area) of the solid region

defined as central rod previous case study in section 4.7. In addition, the rubber selected for

the fine-positioner is sti↵er than that in the previous case study, which requires scaling the

material properties of the entire design by a factor of 110/42.5 = 2.588 maintain equivalent

behaviour. In order to consider central rods with longitudinal sti↵nesses similar to those in the

final design in section 4.7 (where the central rod materials that yield the highest performance
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have sti↵nesses of 109 � 1010 Pa), the initial Young’s modulus for the central beam in this

optimisation should then be approximately 109 ⇤ 4 ⇤ 2.588 = 1010 Pa or 1010 ⇤ 4 ⇤ 2.588 = 1011

Pa. Considering that these values of sti↵ness are nearly inextensible in practice, especially in

relation to the sti↵ness of the rubber, the sti↵ness values initially used in this optimisation are

in the range 2.5 ⇤ 107 Pa to 2.5 ⇤ 1010 Pa. The partition wall sti↵ness in the fine-positioner

design is selected through PWT. In order to approximately match the partition wall sti↵ness

in the final design in section 4.7, the PWT should be PWT = 1.2 mm. However, as previously

noted in subsection 4.10.3, the e↵ect of PWT is somewhat di↵erent in the fine-positioner due

to the fact that the thickness varies in PWT and occupies space in the cross section. Thus,

lower PWT are also considered, with corresponding lower LCRS.

The starting set of values for the optimisation of the fine-positioner are then between LCRS =

2.5 ⇤ 108 Pa and LCRS = 2.5 ⇤ 1010 Pa, and PWT = 0.8 mm, PWT = 1.0 mm, PWT = 1.2

mm. It should be noted that, for PWT = 0.8 mm, the maximum LCRS initially considered is

LCRS = 2.5 ⇤ 109 Pa since the this PWT is not expected to be su�cient to prevent buckling

for the higher LCRS. For PWT = 1.0 mm, the LCRS initially considered are 2.5 ⇤ 109 Pa and

2.5 ⇤ 1010 Pa, since lower values are not expected to be relevant. Finally, for PWT = 1.2 mm,

the LCRS considered is 2.5 ⇤ 1010 Pa, as lower values are not expected to be relevant.

The results of force for this initial set of parameters of interest are shown in Figure 4.18. As

can be seen, the design that presents the highest performance is the design with OWT = 1

mm, PWT = 1 mm, LCRS = 2.5 ⇤ 1010 Pa. It should be noted that some of the results do not

reach the maximum pressure, which is due to convergence issues in the simulations at higher

pressures. However, the results reach a su�cient pressure to show the trends of interest. Figure

4.18 also shows that, for a given PWT, performance increases with higher LCRS, as expected.

The results also show that, for a given LCRS, lower PWT is desirable. Lower PWT, however,

can be associated with risk of buckling in the outer wall.

The results of tension at the outer wall for this initial set of parameters of interest is shown

in Figure 4.19. It should be noted that some of the results in Figure 4.19, and particularly

the result for the design with OWT = 1 mm, PWT = 0.8 mm, LCRS = 2.5 ⇤ 109 Pa, show
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Figure 4.18: Plot of lateral force as a function of pressure for designs with OWT = 1 mm, and
various combinations of PWT and LCRS as indicated in the legend, which are the combinations
of parameters considered in the initial optimisation process.

an abrupt variation in the trends near the values corresponding to highest pressures. This is

due to the fact that, at higher pressures, the deformation in the device increases, and some

of the mesh elements tend to distort excessively, causing numerical instabilities. Still, these

instabilities are limited to isolated values that can be clearly distinguished, and do not a↵ect

the results in terms of extracting the trends of interest.

The results in Figure 4.19 suggest that high values of PWT tend to increase tension at the

outer wall for a given LCRS and OWT. This is attributed to the fact that PWT contributes

to the tension of the central rod for high values of PWT. Thus, reducing PWT can help

prevent buckling. This contrasts with some of the discussion used to economise the optimisation

procedure in 4.10.3. Thus, the optimisation procedure needs to be revisited to include all

relevant combinations of design parameters considering this new information.

Additional optimisation process

The new information extracted from the results in the previous subsection suggests that the

parameters PWT and LCRS are coupled, as PWT contributes to the longitudinal sti↵ness of the
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Figure 4.19: Plot of tension at the outer wall as a function of pressure for designs with OWT
= 1 mm, and various combinations of PWT and LCRS as indicated in the legend.

central rod. In addition, PWT a↵ects the chamber area in the cross section. Thus, optimisation

must consider both parameters together, exploring all combinations in the interval of values

interest.

The exploration of various combinations of PWT and LCRS is already conducted in part in the

results in the previous subsection. Thus, the results obtained up to this point remain relevant.

The optimisation process only needs to be extended to include a broader interval of parameters

LCRS and PWT. The minimum PWT can be manufactured with reasonable accuracy in this

work is considered to be 0.6 mm, as discussed in Chapter 6. PWT higher than 1.2 mm are not

considered relevant according to the results in the previous subsection 4.10.3. Thus, the range

of PWT is extended to be between 0.6 mm and 1.2 mm. As discussed in the previous subsection

4.10.3, an LCRS = 2.5 ⇤ 1010 Pa is considered practically inextensible, especially relative to the

sti↵ness of the rubber, and thus it represents the maximum LCRS of interest. LCRS lower than

2.5 ⇤ 109 Pa is not expected to be relevant considering the results in the previous subsection

that show that buckling does not occur for LCRS = 2.5 ⇤ 109 Pa, and that the additional PWT

explored in this subsection are expected to further reduce the risk of buckling. However, an

LCRS = 2.5 ⇤ 1010 is considered possible for a PWT = 0.8 mm considering the results in the

previous subsection. The additional optimisation process is then an extension of the previous
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Figure 4.20: Plot of lateral force as a function of pressure for designs with OWT= 1 mm, various
combinations of PWT and LCRS, as indicated in the legend, which represent the designs of
interest in the extended optimisation process.

one which include all combinations of LCRS and PWT in these extended intervals of interest.

It should be noted that, as in the previous subsection, some of the simulations are not executed

up to the maximum pressure, but only up to a pressure where the trends of interest are visible.

This is due to the fact that convergence at high pressures can be very sensitive to the mesh

selected, and achieving this convergence can be time-consuming. Thus, the simulations are

developed up to a point where they show the relevant trends.

The results of force for these additional combinations of values of the parameters, together with

the previous ones, are shown in Figure 4.20. The corresponding results of tension at the outer

wall are shown in Figure 4.21. As can be seen in Figure 4.20, the trends from the previous

Figure 4.18 are maintained, and performance increases with higher LCRS for given OWT and

PWT. Figure 4.20 also shows that, for given OWT and LCRS, performance increases with

lower PWT. The design with the highest force is with an OWT = 1 mm, a PWT = 0.6 mm

and an LCRS = 2.5 ⇤ 1010 Pa.

Figure 4.21 confirms that tension at the outer wall is generally positive, so the designs explored

are viable. The tension at the outer wall for some designs in Figure 4.21 reaches locally negative
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Figure 4.21: Plot of tension at the outer wall as a function of pressure for designs with OWT =
1 mm, various combinations of PWT and LCRS, as indicated in the legend, which correspond
to the extended optimisation process.

values. However, these are very close to zero, and do not lead to buckling in the simulations.

Still, the fact that the tension at the outer wall begins to reach negative values in some of the

designs, as shown in Figure 4.21, indicates that the range of designs explored is near the viable

limit. Therefore, the results in Figure 4.20 indicate that the most suitable design for an OWT

= 1 mm is with a PWT = 0.6 mm and an LCRS = 2.5 ⇤ 1010 Pa. This does not buckle.

These results show that an LCRS = 2.5 ⇤ 1010 Pa is viable and suitable for OWT = 1 mm.

This LCRS is practically inextensible, and higher values need not be considered. In this regard,

designs with OWT = 1.2 mm need not be considered since higher LCRS achievable at higher

pressures are not expected to have a relevant impact in the performance of the device, and on

the other hand, a thicker outer wall reduces performance for an equivalent pair of LCRS and

PWT, as previously shown in Figure 4.17.

Final optimisation steps

The optimisation process up to this point was developed considering that the limitation that a

larger OWT can impose on the possible protrusion of the central rod is not relevant. However,
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a constraint on the protrusion caused by the OWT could hinder the contracting e↵ect, and

thus reduce the performance of the device. Thus, to complete the optimisation process and

determine the final fine-positioner design, it is necessary to consider whether a reduction in

OWT can lead to a performance improvement.

As previously noted, in this work, the minimum OWT that can be manufactured reliably

is estimated to be near 0.8 mm. This is 0.2 mm larger than the minimum PWT that can be

manufactured, which is due to the fact that the outer wall includes fibres and the manufacturing

process is di↵erent, as described in Chapter 6. Thus, the designs with a reduced OWT explored

have a OWT = 0.8 mm. The exploration is equivalent to that for OWT = 1 mm presented

in the previous subsections, and involves considering all relevant combinations of LCRS and

PWT.

The results of force for designs with OWT = 0.8 mm and a set of LCRS and PWT of interest are

shown in Figure 4.22, together with the most relevant of the previous results. The corresponding

results of tension at the outer wall are shown in Figure 4.23. The results in Figure 4.22 indicate

that, for a OWT = 0.8 mm, the most suitable design is with a PWT = 0.6 and LCRS =

2.5⇤1010 Pa. The results in Figure 4.23 show that, for all designs of interest, the tension at the

outer wall is practically non negative and therefore do not lead to buckling, so they are viable

designs.

The results in Figure 4.22 also indicate that devices with OWT = 0.8 mm contact the rigid block

at lower pressures than equivalent devices with OWT = 1 mm. This is expected considering

that the bending sti↵ness of devices with OWT = 0.8 mm is lower than with OWT = 1 mm,

and that the former allows for a larger chamber area in the cross section. For a given maximum

equivalent stress of �e = 5.2 MPa, the performance of the design with OWT = 1 mm, PWT =

0.8 mm and LCRS = 2.5 ⇤ 1010 Pa is very similar to that of the design with OWT = 0.8 mm,

PWT = 0.6 mm and LCRS = 2.5 ⇤ 1010 Pa, although the performance of the latter is near 5%

higher. The similar performance is attributed to the fact that, even though designs with OWT

= 0.8 mm have lower bending sti↵ness and larger area of the chambers in the cross section,

they also o↵er lower pmax than designs with OWT = 1 mm. The fact that the performance of
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Figure 4.22: Plot of lateral force as a function of pressure for designs with both OWT = 0.8
mm and OWT = 1 mm, and a set of combinations of PWT and LCRS of interest, as indicated
in the legend. The results show the highest performing designs with both OWT = 0.8 mm and
OWT = 1 mm. The results for the standard FMA design are also included for comparison of
performance.
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Figure 4.23: Plot of tension at the outer wall as a function of pressure for designs with both
OWT = 0.8 mm and OWT = 1 mm, and a set of combinations of PWT and LCRS of interest,
as indicated in the legend.
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the best designs with OWT = 0.8 mm and OWT = 1 mm is similar at maximum equivalent

stress indicates that lower OWT are not relevant.

Comparing the force for all the designs of interest for equivalent stress levels, the design with

the highest performance is the design with OWT = 0.8 mm, PWT = 0.6 mm and LCRS =

2.5⇤1010 Pa. It should be noted that the performance is very similar to that of the design with

OWT = 1 mm, PWT = 0.8 mm and LCRS = 2.5 ⇤ 1010 Pa, so the selection of the former over

the latter does not have a significant impact, as at this stage of the optimisation both designs

are near the optimal. In this regard, the latter design could also be used if in the future it was

advantageous for manufacturing or other practical reasons.

4.10.4 Final selected design and discussion

The final design selected for the fine-positioner in this work then is the design with OWT = 0.8

mm, PWT = 0.6 mm and LCRS = 2.5 ⇤ 1010 Pa. This has the highest performance, as shown

in Figure 4.22.

The OWT and PWT of the design found in this work are similar to those of the FMA. However,

the design derived in this work is di↵erent, and provides a higher performance. Unlike the FMA,

which is designed as an extending device only, the design proposed in this work is conceived to

combine extending and contracting operation, which enables it to support higher wrenches at a

range of deflections. In addition, as an extending device, the FMA design is not optimal since

the central part is designed to be soft and extensible, and thus provide one DOF corresponding

to extension. This lowers its performance in terms of bending and supporting external wrenches,

and is considered a design aspect with significant potential for improvement, which attributed

to the fact that the FMA was originally designed mostly by intuition. Conversely, in this work,

the design is derived using a set of design principles, which lead to a design that includes a

nearly inextensible central rod, which improves its performance. Moreover, the design proposed

in this work is designed exploit any cross-sectional deformation, which contrasts with the FMA,

which is designed for a constant cross section. Finally, the fact that the FMA is mostly designed

by intuition implies that it is not necessarily optimal even as an extending device, which can
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be seen in the partition walls that are excessively thick and are not designed to deform, which

leads to chambers in the cross section that are somewhat smaller than they could be, and in

the fact that the FMA lacks an inextensible central rod.

The higher performance of the design found in this work is confirmed in Figure 4.22, where it

is compared with that of the standard FMA. As can be seen, the force of the design proposed

here is higher than that of the standard FMA for all pressures, and at an equal pressure of

approximately 1.5 bar, which is the highest common pressure simulated for both designs, the

performance of the design proposed in this work is nearly double that of the standard FMA.

In addition, the trends of force as a function of pressure indicate that at higher pressures, the

performance of the design proposed here can increase further at a significantly higher rate than

that of the standard FMA. This is attributed to the fact that the design proposed in this work

has a practically inextensible central rod that prevents it from wasting the increase in pressure

in extension of the device. Lastly, the design found in this work has an OWT that is 0.05 mm

larger than in the standard FMA, which enables it to withstand slightly higher pressures with

an equivalent maximum stress, and thus support higher forces.

It should be noted that the final design selected in this work was obtained by following an

optimisation process where the discretisation step for both OWT and PWT is 0.2 mm. This

was initially justified considering the manufacturing accuracy that can be reliably achieved

in practice, and that the variation in performance associated to this discretisation step was

expected to be low. The results shown in Figures 4.22 and 4.23 confirm that the variation

in performance between designs near the optimal is relatively low, and therefore confirm the

suitability of the discretisation step used.

The discretisation step for LCRS is in increments of one order of magnitude. This is considered

reasonable taking into account that in practice the fibres available to create this central rod are

limited, so not any sti↵ness value can be manufactured, and that the variation in performance

between designs with di↵erent LCRS is relatively low near the final design selected.

It should also be noted that the design optimisation was conducted without including significant

wires or other elements required for the payload, which may need to be routed through the fine-
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positioner. In the case that wires or other elements from the payload need to be incorporated,

these should be passed through the central rod, and can potentially be used as the element

providing the longitudinal sti↵ening. Adding wires or other elements through the central rod

is expected to have a negligible e↵ect on performance, and they can integrate well with the

inextensile central rod, provided that these have a relatively small diameter. These wires or

other elements should generally not be passed through the chambers, since this could reduce

performance due to the fact that the cables can occupy room in the cross section, reducing

chamber area.

Lastly, the final design selected here has an unpleated outer wall made of rubber with circum-

ferential fibres. A pleated outer wall could improve performance to some extend by reducing

the bending sti↵ness of this outer wall. However, this is considered very di�cult to manufac-

ture in miniature size, and is left for future work. Similarly, the design derivation in this work

also identified a possible design variation with an outer wall made of a tubular structure with

notches. However, the fabrication of such a structure in miniature size and ensuring that it

does not introduce significant bending sti↵ness is considered very di�cult, and is left for future

work.

4.11 Conclusions on design

A novel approach to study the design of soft robotic manipulators with fluidic actuation was

proposed in this chapter. This can serve as the foundation towards a common framework for

the design of these devices. This approach can be first applied to justify the two main design

layouts, which correspond to extending and contracting devices. Design principles for each of

the two layouts can be subsequently extracted. These are summarised in section 4.6 for designs

with a given maximum pressure. The study can be extended to designs where the maximum

pressure is not constrained by the application, leading to two additional principles summarised

in subsection 4.8.1.

In addition to the main design study, a non-dimensional analysis of soft robotic manipulators
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similar to the FMA and to the designs of interest in this work was also developed. This primarily

helps in the selection of soft robotic manipulators. Moreover, it provides insights on the scaling

of these devices, and the force and pressures they can support at di↵erent sizes.

The design principles for extending and contracting devices can be applied to determine the

design of a soft robotic manipulator in each desired scenario. To showcase this, a prototypical

scenario in MIS was defined in this work, which serves as foundation for the design of the fine-

positioner. The application of the design principles led to the determination of the design of

a segment of soft robotic manipulator that combines the extending and contracting operation,

which represents the most suitable design in the scenario defined. Optimal values for the

sti↵ness of the partition walls and central rod in the design selected were found to require a

numerical analysis of the deformation of the device. FE simulations were developed to determine

these optimal sti↵ness values, yielding the optimised design. The FE simulations also served to

confirm some of the main trends predicted by the design study, thereby verifying some of the

main research results.

The design principles were then applied to outline the most suitable design of the segments of

the fine-positioner. The design derivation was similar to that used for the previous case study,

but generalising it to the jet engine inspection application, where pressure is not constrained.

The non-dimensional analysis was used to aid in the material selection for this fine-positioner

design. Finally, a set of compromises in this design outline were identified using the design

principles, and an optimisation process was defined. The results of the implementation of this

optimisation yielded the final design for each of the segments of the fine-positioner.

This final design selected for the segments of the fine-positioner consists of the layout shown

in Figure 4.10 (right), with an outer wall thickness of 0.8 mm, a partition wall thickness of 0.6

mm, and a longitudinal central rod sti↵ness of 2.5⇤ 1010 Pa. The outer wall and partition walls

should be made of Elastosil M4601. This final design found in this work shows a performance

that is higher than that of the FMA, which in turn is one of the highest performing soft

robotic manipulators developed to date, as presented in 2. This can be attributed to the

design improvements and di↵erences summarised in the previous section. The fabrication of
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this final design is described is Chapter 6. But first the research conducted on control of the

fine-positioner, which should be made of three segments of this final design, and more generally

of other similar soft robotic manipulators, is presented in the next chapter.



Chapter 5

Control of a Soft Robotic Manipulator

The robotic system comprising the fine-positioner and gross-positioner needs to be controlled

in order to reach the engine region of interest and accurately position the end-e↵ector to deploy

probes. The insertion into the overall engine region of interest is performed mostly by the

gross-positioner, and needs not be accurate. It only requires a path planning capability, which

is discussed in Chapter 6. The positioning of the end-e↵ector is performed using the fine-

positioner, and this must be accurate for a correct probe deployment, which requires accurate

control.

The control of soft robotic manipulators similar to the design selected for the fine-positioner

is considered in this chapter. The kinematics of continuum robots with bending and extension

capabilities are first studied in sections 5.1 to 5.6, and closed-form solutions are derived. Work

on the development of closed-loop control laws for soft robotic manipulators such as the fine-

positioner is then presented in the subsequent sections 5.7 and 5.8. This includes a mechanical

model of the fine-positioner, which is described in section 5.7, and the development of closed-

loop control laws for a segment of the fine-positioner operating in a plane, which presented in

section 5.8.

The work presented in this Chapter is in part an edited version of the work published in:

• A. Garriga-Casanovas, F. Rodriguez y Baena. Kinematics of Continuum Robots with

262
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Constant Curvature Bending and Extension Capabilities. Journal of Mechanisms and

Robotics, 11.1, 011010, 2018.

5.1 Introduction to kinematics of continuum robots with

bending and extension capabilities

As previously mentioned in Chapter 2, continuum robots have received significant attention in

recent years. This is not least because of the advantages they o↵er in manipulation, dexterity

and even locomotion inside cluttered environments. A relevant part of continuum robots are

actuated by means of a pressurised fluid and can be considered soft robots. Prominent examples

of this are the FMA [98, 100], the OctArm robot [178], a manipulator similar to the OctArm

[185], the AirOctor [43], or the Sti↵-Flop [112]. The fine-positioner selected in this work also

belongs to the categories of soft and continuum robots.

The capability of bending and extending is common in soft, continuum robots actuated by a

pressurised fluid. This provides these robots with dexterity that, in specific applications, can

surpass that of traditional serial manipulators. However, solutions to the kinematics prob-

lems, and particularly the inverse kinematics, are generally not available, which obscures their

potential and can hamper the application of these robots.

Finding solutions to the full kinematics would help in establishing the way in which these

robots manoeuvre, the DOFs they can o↵er, and even their workspace, which in turn would

help in clarifying and exploiting these robots’ full potential. In addition, having solutions to

the full kinematics would help in the development of closed-loop control laws and path planning

algorithms. The possibility of clarifying the potential of soft, continuum robots, particularly

in terms of applicability to cluttered environments such as a jet engine, and the possibility

of having a foundation for the development of closed-loop control laws and path planning

algorithms, originally motivated the research on kinematics presented here.

The kinematics can be decoupled into a robot-specific mapping, between actuator space and
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Figure 5.1: Illustration of a robot configuration corresponding to the inverse kinematics solution
for a specified end-e↵ector pose, in a robot composed of two segments with a total of six
actuation degrees of freedom.
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configuration space, and a robot-independent mapping, between configuration space and task

space, as proposed in [15]. The kinematics work presented here in sections 5.1 to 5.6 focuses

on the robot-independent mapping for robots composed of sections that can both elongate

and bend with constant curvature, such as the device illustrated in Fig. 5.1. The kinematics

problem considering the capability of both elongating and bending represents a general and

relevant kinematics problem in continuum robots, which applies to a variety of robots including

FMA-type robots [98], the OctArm and a kinematically similar master device to control it [178,

186], more recent robots similar to the OctArm [128], or tendon-driven devices with extensible

backbone [187], and [44].

Various studies of the kinematics of continuum and soft robots exist in the literature [15],

although the inverse kinematics for a specified end-e↵ector pose remains an open problem.

A relatively complete formulation of the kinematics is presented in [188], although it does

not provide a closed-form solution to the inverse kinematics. A modal approach that allows

numerical calculation of the inverse kinematics is proposed in [189,190], and is extended in [191].

However, these approaches rely on approximations of the robot geometry that do not match

the common constant curvature bending kinematics. An algorithm to calculate the inverse

kinematics of the distal end position is introduced in [192], but it does not account for the

tip orientation and does not provide closed-form solutions. Various approaches to solving the

inverse kinematic control problem have been developed using the robot Jacobian, where [93]

and [81] are recent examples. However, these require some computational time that can vary

depending on the end-e↵ector pose, especially when redundancies exist, they do not directly

yield the reachable end-e↵ector poses, and they present issues with singularities. Furthermore,

these approaches based on the Jacobian lack insight into the kinematics, which complicates

subsequent path planning and control. Formulations of both the robot-specific and robot-

independent mappings are presented in [193]. However, closed-form solutions to the inverse

kinematics are not available, and a numerical approximation is used. In [194], the self-motion

of 2D continuum manipulators is analysed, but closed-form solutions to the inverse kinematics

are not derived, and the research cannot be extrapolated to a 3D scenario. An adaptation of

the Denavit-Hartenberg parameters is described in [195], but it does not yield a closed-form
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solution to the inverse kinematics. An analytical kinematic formulation is proposed in [17] for

a 2D application, although it cannot be extrapolated to 3D. In [196], a closed-form solution to

the inverse kinematics for a specified end-e↵ector position in 3D is presented, but the approach

is not applicable to solve the problem of a specified end-e↵ector pose, hence it cannot be used

in general.

In sections 5.1 to 5.6 of this Chapter, the kinematics of soft, continuum robots composed of

segments with piece-wise constant curvature bending and extending capabilities are studied,

and analytical, closed-form solutions to the direct and inverse kinematics are presented. The

analysis is focused on devices composed of serially stacked segments operating in 3D space

since they represent the most relevant type of robots. The solution to the inverse kinematics

is derived in closed-form thanks to a novel approach that relies on quaternions to describe

the rotations associated to the robot’s segments. This, combined with a strategy inspired by

the Paden-Kahan sub-problems [197] that involves dividing the problem into parts of reduced

complexity, yields a particularly simple formulation of the inverse kinematics, which can be

treated analytically, leading to explicit solutions. It should be noted that quaternions have

been previously used to study di↵erent aspects of continuum robots. In [198,199], quaternions

are used for the mechanical modeling of elastic rods, and a similar approach is applied in [200] to

study the dynamics of soft robotic manipulators. Quaternions are also used in [201] to develop

e�cient finite element methods applicable to continuum rods that can also expand radially.

In addition, quaternions can be used to reliably integrate orientation along the arc length of

continuum robots [202,203], and they are used in [204] to develop e�cient numerical solutions to

the kinematics of continuum robots. However, to the best of this author’s knowledge, the work

presented here is the first instance where quaternions are used to derive closed-form solutions

to the full robot kinematics.

A set of relevant considerations that arise from the central study of kinematics are also discussed

in this work. The number of degrees of freedom (DOFs) at the distal end of the robot is

analysed using the direct kinematics Jacobian, and redundancies are identified. The solution

to the inverse kinematics is then shown to be a curve that corresponds to such redundancy,

and is also obtained in closed-form. A condition on the reachable end-e↵ector poses with a six
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actuation DOFs robot is distilled from the derivation, and it is related to the discussion on the

robot’s DOFs. This discussion also shows that a robot with nine actuation DOFs is required

to achieve six end-e↵ector DOFs, and therefore the kinematics of robots with nine actuation

DOFs are also analysed.

It should be noted that this work on kinematics cannot be directly applied to the final design

selected for the fine-positioner since this cannot extend. This is due to the fact that the

kinematics research presented here was conducted before the majority of work on design, and

with the information available at the time, the fine-positioner design was expected to be closer

to the FMA, and thus be capable of extending. Nonetheless, the kinematics research presented

here serves as foundation for the kinematics of the fine-positioner and subsequent development

of control laws, and it is applicable to all other continuum robots with constant curvature

bending and extension capabilities.

The rest of the work on kinematics is structured as follows. The kinematic problem is outlined

in section 5.2, where nomenclature is also defined. The direct kinematics are presented in

section 5.3, together with a discussion on the end-e↵ector DOFs corresponding to robots with

six and nine actuation DOFs. The analysis of the inverse kinematics is presented in section

5.4, leading to the derivation of closed-form solutions. In addition, the implications of such

solutions are discussed in the same section, including the redundancies of the solution, the

condition on reachable poses, and the analysis of robots with nine actuation DOFs. Finally,

simulations of the robot configuration corresponding to the kinematic solutions are plotted in

section 5.5, leading to the conclusions on the kinematics work in section 5.6.

5.2 Problem formulation

The kinematics of a robot concern the study of the relation between the configuration of the

robot end-e↵ector, which can be described by gt 2 SE(3) when operating in a 3D workspace,

and the robot joint configuration, which can be described by ✓ 2 Q ⇢ Rn, where n denotes the

dimensions of the configuration space. The direct kinematics correspond to the study of the



268 Chapter 5. Control of a Soft Robotic Manipulator

function g : Q! SE(3). The inverse kinematics concern the study of the solution to

g(✓) = gt (5.1)

for ✓ 2 Q, where gt is a specified end-e↵ector configuration inside the workspace.

The kinematic study presented in this work considers a continuum robot composed of a set of

serially stacked segments, each of which can be individually controlled to bend in any direction

in 3D space and also extend, providing 3 DOFs. The deformation modes of the segments

represent the foundation for the kinematic study of any continuum robot. Here, the segments

are assumed to bend as constant curvature arcs, and the extension DOF is assumed to be

independent of the bending, following the same circumference arc of the selected bending. It is

also assumed that attachments between any two segments present negligible length, and that

adjacent arcs are tangential.

The geometry of the robots considered here can therefore be described by a set of circumference

arcs stacked serially, which correspond to the robot’s segments. Each segment can be charac-

terised by three independent variables. The kinematic mapping g(✓) thus corresponds to n/3

subsequent transformations associated to constant curvature arcs.

This robot layout together with these of assumptions on bending modes satisfactorily model

FMA-type robots [98], which originally motivated this work. However, the kinematic study

reported here is not only limited to an FMA-type robot; it applies to all robots that can be

approximated by the aforementioned bending and extension modes, which can correspond to

a variety of devices, such as [44, 186, 187]. It should be noted that the deformation modes

considered in this work are selected according to their relevance. Robots composed of 3-DOF

segments that bend as circumference arcs and also extend represent a relevant part of the soft,

continuum robots introduced in the previous section. In addition, the kinematics considered

here provide a foundation for the kinematics of devices with other deformation modes. The

kinematics, however, are not simplified by the deformation modes considered in this work, and

they di↵er from the kinematics of traditional multi-linkage robots, calling for a novel approach.
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The primary aim in the operation of the serial robots considered in this work is to control the

robot’s end-e↵ector pose, commonly for manipulation purposes. Operation in SE(3) generally

requires near 6 DOFs at the end-e↵ector. Considering that the devices studied here o↵er

3 actuation DOFs per segment, the kinematics of robots composed of 2 segments represent

the most relevant problem, and are the focus of this work. The main objective in the study

reported here are the kinematics to attain a desired end-e↵ector pose. The solution to the

inverse kinematics of a robot with n = 6 involves determining the two tangential arcs required

to reach a desired gt. The solution to such a problem is not simple, as will be seen in the

following sections, requiring an innovative derivation. The analysis of the direct and inverse

kinematics also shows that g(✓) is neither injective nor surjective, hence configuration spaces

with dimension n > 6 are also considered.

5.3 Direct kinematics

Various general derivations of the direct kinematics of a continuum robot exist in the literature,

e.g. see [15]. However, the specific variables used to describe the robot ✓ 2 Q strongly influence

the complexity of the mapping g(✓).

The most suitable description of the robot configuration is discussed in the following subsec-

tion 5.3.1. The direct kinematics are then derived in subsection 5.3.2, and the corresponding

Jacobian is studied in subsection 5.3.3 to determine the DOFs of di↵erent robot layouts.

5.3.1 Robot Description

The configuration of the continuum robot is completely determined when the configuration

of all sections that comprise it is specified. A suitable description of the segments is crucial

in order to obtain a simple formulation for the kinematics, which subsequently allows for the

derivation of closed-form solutions.

Each robot segment corresponds to a transformation from the pose at its proximal end to a
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Figure 5.2: Diagram of one segment of the robot (yellow), with the di↵erent variables cor-
responding to the first segment description (�i, ⇣i,�i), and the second segment description
(xF

i , y
F
i , z

F
i ), as well as the reference frame at the base of the segment {F}, the rotation vector

wi, and rotation angle ⇢i.
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new pose at its distal end, as illustrated in Fig. 5.2. The main challenge in the kinemat-

ics formulation resides in the conceptually distant transformations associated with translation

and rotation. Descriptions of the robot segments that simplify the translation transformation

associated with the segment generally complicate the rotation transformation, and vice versa.

There are two main segment descriptions that are used in this work, which complement in

di↵erent parts of the analysis. Both of them are relative to a reference frame, defined as {F},

situated at the segment’s base, as shown in Fig. 5.2.

The first description employs �i, which is a scalar corresponding to the Euclidean distance

between segment i’s base and tip, ⇣i, which is the angle between the vector of the segment

tip position and the kF axis of {F}, and �i, which is the angle between the projection of the

segment on the iF , jF plane and the iF axis of {F}, as shown in Fig. 5.2. It should be noted

that the definitions of segment base and tip are arbitrary, and interchangeable. This segment

description represents a compromise in the complexity of the transformations corresponding to

translation and rotation, and is used for the derivation of the direct kinematics.

The second description employs the Cartesian coordinates of the tip of a segment, defined

as xF
i , y

F
i , z

F
i , relative to a reference frame at its base {F}, as shown in Fig. 5.2, where the

subscripts in xF
i , y

F
i , z

F
i indicate the segment index, i, and the superscripts the reference frame,

{F}. As in the previous description, the segment base and tip are selected arbitrarily, and

can be interchanged in each analysis, as applied in the inverse kinematics derivation in section

5.4. It should be noted that the position of the reference frame used in the definition of the

variables xF
i , y

F
i , z

F
i determines the side of the segment corresponding to the base. This second

description simplifies the translation transformation, but generally complicates the rotation

transformation. This description is used in the inverse kinematics derivation in section 5.4,

where its advantages become apparent.

It should be noted that both segment descriptions are directly related. For example, �i, ⇣i,�i
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can be obtained as a function of xF
i , y

F
i , z

F
i using

�i =
p

(xF
i )

2 + (yFi )
2 + (zFi )

2

⇣i = arccos zFip
(xF

i )2+(yFi )2+(zFi )2

�i = arctan yFi
xF
i

(5.2)

The bending and extension of a segment are coupled in both of these descriptions. A given set

of values of �i, ⇣i,�i generally implies both bending and extension of the segment. Equally, a set

of values of xF
i , y

F
i , z

F
i generally involves both bending and extension of segment i. Furthermore,

segment motions that involve variations in only one of the variables �i, ⇣i or xF
i , y

F
i , z

F
i generally

lead to variations in both bending and extension. Similarly, variations in only bending or

extension generally involve coupled variations in �i, ⇣i,�i or xF
i , y

F
i , z

F
i .

The decoupled bending and extension of a segment can be determined from �i, ⇣i,�i using

the fact that the triangle shown in blue in Fig. 5.2 is isosceles, together with trigonometric

relations. The resulting expression is

bi =
2 sin ⇣i
�i

li =
⇣i�i
sin ⇣i

(5.3)

where the bending curvature of the segment is bi, the arc length of the extended segment is li,

and the direction of bending is simply determined by �i. Similarly, for a set of xF
i , y

F
i , z

F
i , the

bending and extension of a segment are determined by

bi =
2
p

(xF
i )2+(yFi )2

(xF
i )2+(yFi )2+(zFi )2

li = arcsin(
p

(xF
i )2+(yFi )2p

(xF
i )2+(yFi )2+(zFi )2

) (x
F
i )2+(yFi )2+(zFi )2p

(xF
i )2+(yFi )2

�i = arctan yFi
xF
i

(5.4)

As can be seen from (5.3), the segment description �i, ⇣i,�i yields a relatively simple decou-

pling of bending and extension, whereas the decoupling in (5.4) involves additional complexity.

Equations (5.3) and (5.4) also elucidate the specific variations in bending and extension of a

segment for variations in �i, ⇣i,�i or xF
i , y

F
i , z

F
i . In addition, the equations show that, for fixed
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bending or extension, the possible values of �i, ⇣i,�i or xF
i , y

F
i , z

F
i are determined by nonlinear

relations with a certain degree of complexity.

Robot segment descriptions where bending and extension are directly decoupled in di↵erent

variables are also possible. For example, using bi, li,�i, bending is directly determined by bi and

�i, and extension by the total length li. However, these descriptions complicate the formulation

of the kinematics, rendering the subsequent study of the direct kinematics impractical, and

the derivation of the inverse kinematics practically inviable. In addition, the use of these

descriptions does not provide specific advantages in the study of the kinematics, and the specific

bending and extension of segments can be obtained from the results obtained with the other

segment descriptions using (5.3) and (5.4). Hence, the segment descriptions used in this work

are either �i, ⇣i,�i or xF
i , y

F
i , z

F
i .

The complete robot configuration is determined by the multiple individual segments described

using either of the descriptions above.

5.3.2 Direct Kinematics Derivation

The direct kinematics mapping of the continuum robot can be obtained by subsequently apply-

ing the transformations corresponding to its serially stacked segments, each of which involves

a translation and a rotation. Here, the segments are described using �i, ⇣i, �i. The orientation

of the end-e↵ector is described using ZYZ Euler angles, as introduced at the latter part of this

subsection, since it yields a simpler formulation of the direct kinematics that facilitates the

subsequent Jacobian-based analysis of DOFs.

The position of the distal end of a segment i relative to reference frame {F} is defined as pF
i .

This position pF
i corresponds to the translation associated to segment i, and can be determined

as a function of �i, ⇣i, �i as

pF
i = [�i sin ⇣i cos�i, �i sin ⇣i sin�i, �i cos ⇣i] (5.5)
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It should be noted that kpF
i k = �i, which is simply a consequence of the definition of �i. Still,

the variable �i is generally used here for clarity.

The formulation of the rotation corresponding to the orientation at the tip of segment i relative

to {F}, defined asRi, requires some preliminary consideration. The rotation axis corresponding

to Ri is perpendicular to the segment’s bending plane, and therefore always lies in plane iF , jF

in Fig. 5.2. The distal end of a segment can therefore reach any position inside the reachable

3D space, but only the subspace of SO(3) subtended between two orientation variables can be

reached.

The rotation axis can thus be expressed in {F} as

wi = [� sin�i, cos�i, 0] (5.6)

The rotation angle associated to segment i, defined as ⇢i, can be obtained as a function of ⇣i

considering trigonometric relations. Since the triangle shown in blue in Fig. 5.2 is isosceles,

then

⇢i = 2⇣i (5.7)

Using Rodrigues’ formula [197], Ri can then be directly obtained as a function of ⇣i and �i

using (5.6) and (5.7). Thus, the homogeneous transformation associated to a segment Ti can

be obtained as a function of �i, ⇣i,�i from Ri and pF
i , as

Ti =

2

66666664

(s�i)
2(1� c2⇣i) + c2⇣i s�ic�i(c2⇣i � 1) c�is2⇣i �is⇣ic�i

s�ic�i(c2⇣i � 1) (c�i)
2(1� c2⇣i) + c2⇣i s�is2⇣i �is⇣is�i

�c�is2⇣i �s�is2⇣i c2⇣i �ic⇣i

0 0 0 1

3

77777775

(5.8)

where c! and s! denote cos! and sin!, respectively. The total transformation of a robot
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composed of n/3 segments between its distal and proximal ends then is

Tt =
n/3Y

i=1

Ti (5.9)

which is a function of �i, ⇣i, �i for i = 1, ..., n/3.

The orientation of the robot’s distal end can also be described using the ZYZ Euler angles

↵, �, �. The corresponding rotation matrix can be obtained, e.g. see [197], as

Rt =

2

66664

c↵c�c� � s↵s� �c↵c�s� � s↵c� c↵s�

s↵c�c� + c↵s� �s↵c�s� + c↵c� s↵s�

�s�c� s�s� c�

3

77775
(5.10)

Comparing (5.10) and the rotational component of (5.9), the ZYZ Euler angles of the robot

distal end as a function of the robot configuration can be extracted for sin� 6= 0 as

↵ = atan2( Tt23
sin� ,

Tt13
sin� )

� = atan2(
p
T 2
t31 + T 2

t32 , Tt33)

� = atan2( Tt32
sin� ,�

Tt31
sin� )

(5.11)

where Ttij denotes the components of Tt. In particular, ↵, �, � can be directly obtained as a

function of �i, ⇣i,�i for i = 1, ..., n/3 from (5.11) with the Ttij determined from (5.9) combined

with (5.8).

Defining a reference frame at the robot’s proximal end as {G}, which coincides with reference

frame {F} of the first robot segment, the position of the robot’s distal end relative to {G} can

be denoted by pG
t . The expression of pG

t as a function of the robot configuration can also be

directly obtained from Tt (determined using (5.9) combined with (5.8)). It corresponds to the

first three terms in the fourth column of Tt.

The direct kinematics can thus be determined by the distal end pose, defined by ↵, �, � and

pG
t , obtained as a function of the robot configuration �i, ⇣i,�i for i = 1, ..., n/3, as described in
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the last two paragraphs.

5.3.3 Degrees of Freedom Analysis

As previously mentioned in section 5.2, the most common requirement for operation of robotic

manipulators in 3D space is to provide near 6 DOFs at the end-e↵ector, which refer to the

ability to control the end-e↵ector pose. In this regard, the DOFs of robots composed of two

and three segments, which o↵er six and nine actuation DOFs from their segments, respectively,

are considered in this subsection. It should be noted that in this analysis the DOFs refer to the

end-e↵ector pose, and not to the possibility of continuous deformation of the robot segments

in infinitely di↵erent ways. The robot segments are considered to provide 3 actuation DOFs

each, as previously described in section 5.2.

The DOFs at the end-e↵ector of a robot can be determined by studying the Jacobian J corre-

sponding to the di↵erentiation of the direct kinematics, i.e. di↵erentiation of the end-e↵ector

pose, ↵, �, � and pG
t , with respect to the actuation DOFs �i, ⇣i,�i for i = 1, ..., n/3. However,

some of the trigonometric functions in (5.11) complicate such study. A Jacobian J0 can be

defined, which corresponds to the di↵erentiation of tan↵, tan �, tan � and pG
t with respect to

�i, ⇣i,�i for i = 1, ..., n/3. Since

� tan↵ =
�↵

cos2 ↵

� tan � =
��

cos2 �

� tan � =
��

cos2 �

(5.12)

the rank of J is equal1 to the rank of J0.

The expression of J0 is not reproduced here since it has a significant extension, which makes it

impractical to write explicitly. However, it can be calculated using a symbolic toolbox, such as

the Symbolic Math ToolboxTM of Matlab R�(Mathworks Inc.), as implemented in this work, by

1Singularities can be locally present at cos� = 0, cos � = 0, cos↵ = 0, which require a separate analysis.
However, these singular regions are not relevant to the general study of the DOFs achievable by the robot.
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entering the expressions of tan↵, tan �, tan � and pG
t as a function of �i, ⇣i,�i for i = 1, ..., n/3

(obtained as described in the previous subsection), and deriving with respect to �i, ⇣i,�i for

i = 1, ..., n/3.

By studying J0 for a robot with n = 6, the rank is found to be 5 since

det|J0| = 0 8 �1, ⇣1,�1, �2, ⇣2,�2 (5.13)

and at least one minor exists with det|J0| 6= 0. One degree of redundancy therefore exists. This

result is also obtained in section 5.4 using a di↵erent derivation, where the redundancy is also

elucidated.

The redundancy, however, di↵ers from those in traditional multi-link robots since the kinematics

are fundamentally di↵erent, and therefore a geometric analogy is not available. The fact that a

robot with n = 6 provides 5 DOFs at the end-e↵ector also implies a constraint on the reachable

end-e↵ector poses. The study of the inverse kinematics provides a simple derivation of the

condition on the end-e↵ector poses that can be reached, as presented in subsection 5.4.4.

The study of J0 also indicates that at least a minor with rank 3 exists in the rows corresponding

to tan↵, tan �, tan �. This implies that any end-e↵ector orientation can be reached, with an

associated constraint on position. Similarly, the study of J also shows that any end-e↵ector

position can be reached since a minor with rank 3 exists in the rows corresponding to pG
t .

A constraint on the reachable end-e↵ector orientations then applies. These results on the

reachable end-e↵ector poses are confirmed and elucidated in the derivation in subsection 5.4.4.

Interestingly, the end-e↵ector orientation is the concatenation of the rotations associated to

the robot segments, as expressed in 5.9. The rotation associated to a robot segment with a

given bending and extension can also be achieved with zero extension and a di↵erent, specific

bending of the segment. This bending can be directly determined from (5.3) by imposing the

segment rotation angle ⇢i = 2⇣i and the li corresponding to zero extension, and determining

the �i and corresponding bi. Therefore, an end-e↵ector orientation reached using both bending

and extension can also be reached using only bending of the segments, with zero extension,
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which enables decoupling both types of actuation in this instance. Conversely, any end-e↵ector

orientation cannot be reached by only selecting the extension of the segments for a given

bending, as a robot with n = 6 only has 2 DOFs corresponding to extension.

For a specified, desired end-e↵ector orientation, the inverse kinematics solution derived in sec-

tion 5.4 can be used with an arbitrary end-e↵ector position to determine the required segment

rotation using both bending and extension. Then, the equivalent bending of the segments for a

zero extension configuration can be calculated as described here to reach the desired end-e↵ector

orientation without extension.

A robot with n = 9 provides 6 DOFs at the distal end. This result can be obtained by studying

the rank of the corresponding Jacobian, following an analogous procedure to that described for

a two-segment robot. A three-segment robot therefore provides the ability to reach any pose

in 3D space, as well as three degrees of redundancy that can be used, for instance, to avoid an

obstacle.

5.4 Inverse kinematics

The closed-form solution to the inverse kinematics problem is presented in this section. This

involves determining the configuration of the two arcs composing a robot with n = 6 to reach

a specified end-e↵ector pose. Despite the apparent simplicity of the problem, its solution is not

trivial. Attempts to solve (5.1) with g(✓) formulated as in the previous section do not yield

closed-form solutions. Instead, an alternative approach is required.

The approach proposed here is conceptually illustrated in Fig. 5.3. It involves considering

the orientation at the point of junction between the two segments, which can be defined as pG
m

relative to the robot’s proximal end, as a result of the transformations associated to the segments

from the robot’s proximal and distal ends. For an arbitrary position of pG
m, the approaches from

both ends generally lead to di↵erent orientations. By imposing that both orientations coincide,

a set of conditions emerge, which constitute the inverse kinematics problem.
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Figure 5.3: Conceptual approach to the inverse kinematics solution. The rotations associated
to a robot composed of two segments, which are defined by quaternions, are illustrated. The
point of junction pG

m, and the reference frames {G} and {T} are also included.

5.4.1 Inverse Kinematics Formulation

Simplicity in the conditions constituting the inverse kinematics problem is crucial to enable

the derivation of a closed-form solution. The use of Euler angles to describe the end-e↵ector

orientation is not suitable in the case of the inverse kinematics, as it complicates significantly

the problem formulation, rendering it practically intractable. Instead, in this instance, orienta-

tion is described using quaternions, which are better suited to address the inverse kinematics

problem. In addition, the robot segments are described using the second description introduced

in subsection 5.3.1, which employs xF
i , y

F
i , z

F
i (Fig. 5.2). The combination of quaternions and

this segment description enables the derivation of the closed-form solutions to the inverse kine-

matics reported in the following subsections. A key challenge is finding the relative orientation

between the ends of a segment as a function of xF
i , y

F
i , z

F
i .

The rotation associated to a general segment i is determined by an axis wi and an angle ⇢i, as

discussed in subsection 5.3.2. The orientation at the segment tip can be expressed by a unit

quaternion qi relative to a reference frame at the base of the segment {F}, which is

qi = cos
⇢i
2
+ wii sin

⇢i
2
iF + wij sin

⇢i
2
jF + wik sin

⇢i
2
kF (5.14)
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where iF , jF ,kF are the unit vectors of the {F} frame, and wii, wij, wik denote the three compo-

nents of wi. It should be noted that wik is zero, as previously introduced in (5.6), and therefore

the orientation of the segment tip corresponds to a rotation of {F} about an axis that lies in

the iF , jF plane. The rotation axis wi is perpendicular to the plane of bending of segment i.

Thus, the orientation at the tip of segment i described by quaternion qi in (5.14) corresponds

to a zero twist configuration of segment i from a continuum body perspective. Quaternion qi

then correctly represents the full orientation at the tip of segment i relative to {F} in an actual

continuum robot.

It should be noted that in this work, quaternion qi in (5.14) is directly obtained as the total

rotation from frame {F} to the orientation at the tip of segment i. This approach di↵ers from

the three successive rotations commonly used in the literature [15] to find the orientation at

the tip of segment i. Still, our approach leads to an equal resulting orientation at the tip of

segment i, and is more straightforward when using quaternions.

Obtaining qi as a simple function of xF
i , y

F
i , z

F
i requires some consideration. First, by using the

identity in the scalar product between the vector corresponding to the position of the segment’s

tip [xF
i , y

F
i , z

F
i ] and the unit vector kF ,

q
(xF

i )
2 + (yFi )

2 + (zFi )
2kkFk cos ⇢i

2
= [0, 0, 1] · [xF

i , y
F
i , z

F
i ] (5.15)

the cos ⇢i2 can be obtained as a simple function of xF
i , y

F
i , z

F
i .

Then, by using the vector product identity for the same vectors [xF
i , y

F
i , z

F
i ] and kF

q
(xF

i )
2 + (yFi )

2 + (zFi )
2kkFk sin ⇢i

2
= k[xF

i , y
F
i , z

F
i ]⇥ kFk (5.16)

the sin ⇢i
2 can be obtained as a function of xF

i , y
F
i , z

F
i .

The normalised wi as a function of xF
i , y

F
i , z

F
i can be obtained as

wi =
kF ⇥ [xF

i , y
F
i , z

F
i ]

kkF ⇥ [xF
i , y

F
i , z

F
i ]k

=
[�yFi , xF

i , 0]p
(xF

i )
2 + (yFi )

2
(5.17)



5.4. Inverse kinematics 281

Finally, by combining (5.15), (5.16) and (5.17), qi can be obtained as a function of xF
i , y

F
i , z

F
i

as

qi =
zFi � yFi i

F + xF
i j

F

p
(xF

i )
2 + (yFi )

2 + (zFi )
2

(5.18)

The simplicity of (5.18) enables the subsequent derivation of a closed-form solution to the

inverse kinematics.

Considering a robot with n = 6, as illustrated in Fig. 5.4 by plotting the centreline of the

robot’s segments, the reference frame at the robot’s proximal end is {G}. Another reference

frame at the robot’s distal end can be denoted by {T}. The orientation of {T} is defined so

that it coincides with {G} when the robot is in a straight configuration. The orientation of the

robot’s end-e↵ector relative to {G} can be defined as

qt = + �iG + µjG + ⌫kG (5.19)

and the corresponding rotation matrix is denoted by Rt.

The configuration of the proximal segment (segment 1) can be described by the position of its

distal end xG
1 , y

G
1 , z

G
1 relative to {G}. This distal end of segment 1 is the same as the point of

junction between both segments pG
m, and thus the Cartesian coordinates xG

1 , y
G
1 , z

G
1 correspond

to the three components of pG
m. The orientation at the distal end of segment 1 can then be

determined using (5.18) as

q1 =
zG1 � yG1 i

G + xG
1 j

G

p
(xG

1 )
2 + (yG1 )

2 + (zG1 )
2

(5.20)

The configuration of the distal segment (segment 2) can be described by the position of its

proximal end xT
2 , y

T
2 , z

T
2 , relative to {T}. The proximal end of segment 2 is pT

m, which is the

same point in space as pG
m, but here it is expressed relative to {T}. Thus, in this case the

proximal end of segment 2 acts as the tip of the segment, and the base of segment 2 lies at

the origin of {T} (Fig. 5.4). The rotation q�1
2 corresponding to the second segment, which is

relative to the robot’s distal end reference frame, can therefore be expressed as a function of
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xT
2 , y

T
2 , z

T
2 as

q�1
2 =

zT2 � yT2 i
T + xT

2 j
T

p
(xT

2 )
2 + (yT2 )

2 + (zT2 )
2

(5.21)

It should be noted that the rotation q�1
2 corresponds to a segment that begins at the robot’s

distal end in a direction opposite to the kT axis of {T}. Still, expression (5.21) remains valid

due to geometric symmetry.

The vectors [xG
1 , y

G
1 , z

G
1 ] and [xT

2 , y
T
2 , z

T
2 ] both indicate the position of the point of junction

between the two robot segments relative to {G} and {T}, respectively. Reference frames {T}

and {G} are related through a translation pG
t and a rotation R�1

t . The components of R�1
t

can be denoted by R�1
t,ij, which correspond to row i and column j. These components of R�1

t

are given by the specified end-e↵ector pose. Thus, vectors [xG
1 , y

G
1 , z

G
1 ] and [xT

2 , y
T
2 , z

T
2 ] are also

directly related for a specified end-e↵ector pose. The relation can be expressed as

2

66664

xT
2

yT2

zT2

3

77775
=

2

66664

R�1
t,11 R�1

t,12 R�1
t,13

R�1
t,21 R�1

t,22 R�1
t,23

R�1
t,31 R�1

t,32 R�1
t,33

3

77775

2

66664

pGti � xG
1

pGtj � yG1

pGtk � zG1

3

77775
(5.22)

where pGti , p
G
tj, p

G
tk denote the three components of pG

t .

The rotation q�1
2 in (5.21) can then be expressed as a function of xG

1 , y
G
1 , z

G
1 using (5.22). Thus,

for any position of pG
m, the resulting orientation when approached from the robot’s proximal

and distal ends can be expressed by q1(xG
1 , y

G
1 , z

G
1 ) and q�1

2 (xG
1 , y

G
1 , z

G
1 ), respectively.

In the robot configuration corresponding to the inverse kinematics solution, (5.9) must be

satisfied. Hence, the concatenation of rotations must satisfy

qt = q1q2 (5.23)

Defining q�1
t as the inverse of qt, equation (5.23) can be reordered as

q�1
2 = q�1

t q1 (5.24)
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Figure 5.4: Reference frames in inverse kinematics solution for a n = 6 robot, with end-
e↵ector position at pG

t = [2.64, 0.92,�0.26] [a.u.] and orientation qt = 0.87+ 0.13iG� 0.27jG +
0.40kG. The centreline of the first segment is plotted in cyan, and the centreline of the second
segment in magenta, and four lines following the outer surface of both segments of continuum
body separated circumferentially at 90 degrees are plotted in red, green, blue and yellow.
Reference frame {G} at the robot’s proximal end is depicted in turquoise, reference frame {T}
at the specified end-e↵ector pose is depicted in purple, and the pose resulting from the robot
configuration is shown in dashed green, with an exact overlap.
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which is a function of xG
1 , y

G
1 , z

G
1 , as well as the end-e↵ector pose, from (5.20) and (5.21)

combined with (5.22). The quaternion components of (5.24) define the inverse kinematics

problem.

5.4.2 Inverse Kinematics Solution

The solution to (5.24) is the solution to the inverse kinematics. In the subsequent presentation,

x, y, z is used to indicate xG
1 , y

G
1 , z

G
1 . Substituting (5.20) and (5.21) into (5.24) and using the

change of variable (5.22), the following conditions emerge

�x+ µy + ⌫z = 0 (5.25a)

��µx+ �y + z

h3 · (d� pG
t )

=
kdk

kd� pG
t k

(5.25b)

�⌫x+ y � �z
h2 · (d� pG

t )
=

kdk
kd� pG

t k
(5.25c)

�x� ⌫y + µz

h1 · (d� pG
t )

=
kdk

kd� pG
t k

(5.25d)

where d = [x, y, z], and h1 = [R�1
t,11, R

�1
t,12, R

�1
t,13], h2 = [R�1

t,21, R
�1
t,22, R

�1
t,23], h3 = [R�1

t,31, R
�1
t,32, R

�1
t,33],

which correspond to the rows of R�1
t . The components of R�1

t are determined by the specified

end-e↵ector orientation, and are thus directly related to qt. It should be noted that the main

nonlinearities in (5.25) arise from the exponentials related to the moduli on the right hand side.

The equations in the system (5.25) are not independent. Di↵erent approaches to solving it are

possible. This work proposes that (5.25a) be used, as well as the di↵erence between (5.25b)

and (5.25c). From (5.25a),

y = ��x+ ⌫z

µ
(5.26)

Substituting (5.26) into the di↵erence between (5.25b) and (5.25c), a second order polynomial

equation relating x and z is obtained

c4x
2 + c3z

2 + c2xz + c1x+ c0z = 0 (5.27)
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where

c4 = �µR�1
t,21 � ⌫R�1

t,31 +
(�R�1

t,22 � R�1
t,32)�

2

µ2
�

(�µR�1
t,22 + �R�1

t,21 � ⌫R�1
t,32 � R�1

t,31)�

µ

c3 =
(�R�1

t,22 � R�1
t,32)⌫

2

µ2
+ R�1

t,23 + �R�1
t,33 �

(�R�1
t,23 + R�1

t,22 � R�1
t,33 + �R�1

t,32)⌫

µ

c2 =
2⌫�(�R�1

t,22 � R�1
t,32)

µ2
�

(�µR�1
t,22 + �R�1

t,21 � ⌫R�1
t,32 � R�1

t,31)⌫

µ
� µR�1

t,23+

R�1
t,21 � ⌫R�1

t,33 + �R�1
t,31 �

�(�R�1
t,23 + R�1

t,22 � R�1
t,33 + �R�1

t,32)

µ

c1 = (µR�1
t,21 + ⌫R�1

t,31)p
G
ti + (µR�1

t,22 + ⌫R�1
t,32)p

G
tj + (µR�1

t,23 + ⌫R�1
t,33)p

G
tk�

�((R�1
t,31 � �R�1

t,21)p
G
ti + (R�1

t,32 � �R�1
t,22)p

G
tj + (R�1

t,33 � �R�1
t,23)p

G
tk)

µ

c0 =
⌫(R�1

t,31p
G
ti + R�1

t,32p
G
tj + R�1

t,33p
G
tk � �R�1

t,21p
G
ti � �R�1

t,22p
G
tj � �R�1

t,23p
G
tk)

µ
�

R�1
t,21p

G
ti � R�1

t,22p
G
tj � R�1

t,23p
G
tk � �R�1

t,31p
G
ti � �R�1

t,32p
G
tj � �R�1

t,33p
G
tk

(5.28)

The analytical, closed-form solution to (5.25) can then be obtained for x

x =
�(c2z + c1)±

p
(c2z + c1)2 � 4c4(c3z2 + c0z)

2(c4)
(5.29)

which is the solution to the inverse kinematics problem in combination with (5.26), as a function

of z, which acts as a parameter. The point x, y, z corresponds to the point of junction between

the two segments, pG
m, and completely defines the configuration of each of the two robot seg-

ments. This solution can also be expressed with the more conventional variables �i, ⇣i,�i using

the change of variable (5.5) for the proximal segment, and by using an analogous relation with

the change of variables (5.22) for the distal segment.

The solution to the inverse kinematics is therefore a curve in 3D space of the possible positions

of the point of junction pG
m. This solution can be expressed as

x = f1(p
G
t ,qt, z)

y = f2(p
G
t ,qt, z)

(5.30)

where the curve is parametrised by z as in (5.29). This corresponds to a degree of redundancy
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in the robot space, which is discussed in the following subsection.

The solution to the inverse kinematics derived here always exists for any gt inside the robot’s

workspace, and is not a↵ected by singularities. The solution is expressed in closed-form by

(5.29) and (5.26) for the general case µ 6= 0. For the particular case µ = 0, the solution is

determined by substituting the relation between x and z determined by (5.25a) with µ = 0 into

the di↵erence between (5.25b) and (5.25c), in an analogous manner as previously described in

this subsection, but for the simpler case µ = 0. The resulting expression is equivalent to (5.29).

The fact that the solution is derived in closed-form implies that it is straightforward to imple-

ment in practice, requiring a negligible computational time. In addition, the solution applies

to any reachable gt without any additional complexity. The closed-form solution can then be

used in the design of control laws and path planning algorithms. The derivation of the inverse

kinematics solution in closed-form also elucidates a kinematic redundancy, which enables one

to select the most desirable robot configuration for each gt, as described in the next subsection.

5.4.3 Redundancy in Inverse Kinematics

The direct kinematics analysis of subsection 5.3.3 indicates a degree of redundancy in a robot

with six actuation DOFs operating in SE(3). This redundancy corresponds to the fact that a

robot with six actuation DOFs can reach a given end-e↵ector pose in multiple configurations.

This redundancy is verified and elucidated by the solution to the inverse kinematics system

(5.25). For a specified gt inside the workspace, there exists an infinite number of solutions for

the point of junction between the two robot segments [x, y, z] that allow gt to be reached, which

determine the robot’s self-motion.

These solutions define on a curve, determined by (5.29) and (5.26) as a function of the parameter

z. This curve lies on a plane determined by �, µ, ⌫, and is elliptical in geometry.

An example of such an ellipse is plotted in orange in Fig. 5.5 for a gt at pG
t = [�0.14, 5.28, 1.02]

[a.u.] position, and qt = 0.1 + 0.36iG � 0.17jG + 0.91kG orientation. The di↵erent points

on the orange curve are possible positions of the point of junction pG
m, and thus correspond to



5.4. Inverse kinematics 287

-2

x [a.u.]

0

-0.5

0

0.5

1

z 
[a

.u
.]

1.5

2

0

y [a.u.]

1 22 3 4 5

Figure 5.5: Curve corresponding to the loci of the distal end of the first segment, for an
n = 6 robot with end-e↵ector position at pG

t = [�0.14, 5.28, 1.02] [a.u.] and orientation qt =
0.1+ 0.36iG� 0.17jG +0.91kG. Two of the possible robot configurations to reach this specified
end-e↵ector pose are also shown, with the distal end of the first segment at two of the possible
locations on the curve.

di↵erent extension and bending of the robot segments. Two robot configurations corresponding

to the inverse kinematics solution for the same specified gt and di↵erent positions of pG
m on the

orange curve of possible solutions are also plotted in Fig. 5.5 to help illustrate the kinematic

redundancy. The two configurations correspond to di↵erent extension and bending of the

segments, but reach the same gt. The most desirable robot configuration to reach a gt can

therefore be selected, which enables avoiding collisions between the robot and obstacles in the

environment, and respecting the physical constraints on extension and bending of the segments.

5.4.4 Condition on End-E↵ector Configuration

An alternative, relevant reordering of (5.23) is

q1 = qtq
�1
2 (5.31)
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Expressing the terms in (5.31) as explicit functions of x, y, z, and the end-e↵ector pose by using

(5.20), (5.21) and (5.22), a set of equations equivalent to (5.25) is obtained as

�h1 · (d� pG
t ) + µh2 · (d� pG

t ) + ⌫h3 · (d� pG
t ) = 0 (5.32a)

µh1 · (d� pG
t )� �h2 · (d� pG

t ) + h3 · (d� pG
t ) = �zkd� pG

t k
kdk (5.32b)

⌫h1 · (d� pG
t )� h2 · (d� pG

t )� �h3 · (d� pG
t ) = y

kd� pG
t k

kdk (5.32c)

h1 · (d� pG
t ) + ⌫h2 · (d� pG

t )� µh3 · (d� pG
t ) = �xkd� pG

t k
kdk (5.32d)

It should be noted that the left hand side of the system of equations (5.32) is linear.

Since systems (5.25) and (5.32) are equivalent, the constituting equations must be concurrently

satisfied. Equations (5.32a) and (5.25a) correspond to two parallel planes. However, they

are not necessarily coincident, as this depends on the desired end-e↵ector pose. Thus, the

poses gt that simultaneously satisfy (5.25a) and (5.32a) constitute the reachable end-e↵ector

configurations.

Comparing (5.25a) and (5.32a), and after manipulation, the condition determining the reachable

end-e↵ector configurations can be distilled as

�pGti + µpGtj + ⌫pGtk = 0 (5.33)

Equation (5.33) indicates that the position of the robot’s end-e↵ector must be on a plane

determined by �, µ, ⌫, which is the same plane where the distal end of the proximal segment,

pG
m, must be. Interestingly, condition (5.33) does not constrain . The condition on the

reachable end-e↵ector configurations can also be expressed in terms of the ZYZ Euler angles

by transforming �, µ, ⌫ into ↵, �, �, e.g. as in [205].

Thus, by selecting five variables to specify the desired end-e↵ector pose, one of which must

correspond to  or its equivalent in Euler angles, condition (5.33) can be then used to obtain the

6th variable, thereby completely defining the robot’s end-e↵ector pose. The inverse kinematics

solution can be subsequently determined, as described in the previous subsection.
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5.4.5 Higher Dimensional Robot Configurations

The discussion in the previous subsections shows that a robot with n = 6 provides 5 DOFs at

the end-e↵ector. In order to achieve 6 DOFs at the end-e↵ector, an additional robot segment

is required, as justified in (5.3.3), resulting in a robot with n = 9. The generalization of the

work to robots with n = 9 is outlined in this subsection.

Considering a robot composed of three segments, a reference frame {B} can be defined, which

coincides with the robot’s proximal end. The configuration of the proximal segment can be

described by xB
0 , y

B
0 , z

B
0 , which correspond to the position of the proximal segment’s distal end

relative to {B}. The orientation of the proximal segment’s distal end relative to {B} can be

expressed by a quaternion using (5.18) as

q0 =
zB0 � yB0 i

B + xB
0 j

B

p
(xB

0 )
2 + (yB0 )

2 + (zB0 )
2

(5.34)

A reference frame can then be defined at the distal end of the proximal segment {G0}, the

position and orientation of which are a function of xB
0 , y

B
0 , z

B
0 .

The pose of the robot’s end-e↵ector relative to {B} can be denoted by pB
⌧ and q⌧ . The

orientation of the robot’s end-e↵ector relative to {G0}, which can be defined as q0
⌧ , can then be

obtained as a function of xB
0 , y

B
0 , z

B
0 and q⌧ as

q0
⌧ = q�1

0 q⌧ (5.35)

The robot’s end-e↵ector position relative to {G0}, which can be denoted by pG0
⌧ , can also be

obtained as a function of the proximal segment’s configuration and pB
⌧ by using the translation

[xB
0 , y

B
0 , z

B
0 ] and the rotation associated with q�1

0 , see [197], yielding

pG0

⌧ =

2

66664

pB⌧ i((z
B
0 )

2+(xB
0 )

2)+xB
0 (p

B
⌧jy

B
0 �2pB⌧kz

B
0 +(zB0 )

2�(yB0 )
2+(xB

0 )
2)

pB⌧j((z
B
0 )

2�(yB0 )
2)+yB0 (2p

B
⌧kz

B
0 +pB⌧ ix

B
0 �3(zB0 )

2�(xB
0 )

2�(yB0 )
2)

pB⌧k((z
B
0 )

2�(yB0 )
2�(xB

0 )
2)+zB0 (2p

B
⌧ ix

B
0 �2pB⌧jy

B
0 +3(yB0 )

2�(zB0 )
2)

3

77775
(5.36)
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where pB⌧ i, p
B
⌧j, p

B
⌧k are the three components of pB

⌧ .

The kinematics subproblem corresponding to the two distal segments of the robot implies a

condition on the reachable pG0
⌧ , q0

⌧ , elucidated in (5.33). Instead, the three-segment robot allows

6 DOFs at the end-e↵ector. Using (5.35) and (5.36), condition (5.33) corresponding to the two

distal segments can be translated into a condition on xB
0 , y

B
0 , z

B
0 for a given pB

⌧ and q⌧ .

The inverse kinematics subproblem for the two distal segments can then be solved using (5.30),

for a pose specified by pG0
⌧ and q0

⌧ , which now satisfies (5.33). Substitution of expressions (5.35)

and (5.36) into the pG0
⌧ and q0

⌧ of such solution (5.30) provides the general solution to the inverse

kinematics of the complete robot as a function of xB
0 , y

B
0 , z

B
0 , which in turn are related by the

aforementioned condition.

Thus, the three-segment robot allows for the complete control of the end-e↵ector pose inside the

workspace, and three degrees of redundancy. In a typical scenario, one of them can correspond

to the two distal segments, and the other two may correspond to the proximal segment.

5.5 Simulations

The robot configurations corresponding to the inverse kinematics solution in di↵erent scenarios

are simulated in this section for robots with n = 6 in order to help illustrate the results

obtained. The simulations also provide a verification of the work presented in the previous

sections, and show the behavior of continuum robots with bending and extension capabilities

in some representative cases.

The configuration of a robot with a specified end-e↵ector pose pG
t = [2.64, 0.92,�0.26] [a.u.]

and qt = 0.87 + 0.13iG � 0.27jG + 0.40kG is illustrated in Fig. 5.4 with a plot of the centreline

of the robot’s segments, together with four lines that follow the outer contour of the continuum

robot, showing that this does not undergo any twist and that its torsional alignment is correct.

The end-e↵ector pose is selected to satisfy (5.33). The solution is calculated using (5.29), (5.26),

with an arbitrary value of z = �3. The coordinates of the point of junction between the two
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Figure 5.6: Set of inverse kinematics solutions corresponding to a robot with n = 6, for a
specified end-e↵ector at pG

t = [2.64, 0.92,�0.26] [a.u.] and qt = 0.87+0.13iG�0.27jG+0.40kG.

segments pG
m are found to be x = 1.40, y = �3.80, z = �3 [a.u.]. Using (5.2) and (5.22), the

variables directly describing the two segments can be obtained as �1 = 5.04, ⇣1 = 2.21,�1 =

�1.22, �2 = 5.60, ⇣2 = 1.00,�2 = �0.58. As can be seen in Fig. 5.4, the tangency of the arcs is

respected, and the resulting robot end-e↵ector pose matches the specified pose exactly.

The robot configuration shown in Fig. 5.4 is a solution to the inverse kinematics, but it

requires significant room to maneuver, which may not be available when operating in confined

environments. In this regard, di↵erent possible robot configurations for the same end-e↵ector

pose, which correspond to the redundancy presented in subsection 5.4.3, are plotted in Fig 5.6.

These highlight the capability provided by the inverse kinematics solution to select the most

suitable robot configuration to reach a desired end-e↵ector pose.

Finally, four robot configurations corresponding to the robot moving vertically and with an

end-e↵ector orientation changing gradually are plotted in Fig. 5.7, with pose values specified
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in the figure caption. All four end-e↵ector poses satisfy (5.33), and the corresponding robot

configurations are determined using the inverse kinematics solution (5.29), (5.26), with appro-

priate z values to prevent excessive bending or extension of the segments. As can be seen in

Fig. 5.7, these robot configurations result in a smooth motion of the robot, which illustrates the

suitability of the inverse kinematics solution in determining appropriate robot configurations

to execute a desired motion.

5.6 Conclusions on kinematics

The direct and inverse kinematics of continuum robots with constant curvature bending and

extending capabilities can be solved in closed-form using the approach proposed in this work.

The problem description is decisive in the complexity of the kinematic mappings. The use

of quaternions enables the derivation of the closed-from solution to the inverse kinematics

presented here.

The kinematic analysis required to obtain these solutions also produces additional results, which

are of interest. Among the most prominent of these is the fact that a manipulator with six

actuation DOFs is only capable of five DOFs at the end-e↵ector. This redundancy is translated

as a curve corresponding to the inverse kinematics solution, which can be expressed in closed-

form as described in this work. A condition on the reachable end-e↵ector poses using a robot

with six actuation DOFs therefore exists, which is also drawn from the analysis presented in the

previous sections. The kinematic solutions derived for a robot with six actuation DOFs can also

be used to determine the solution to the inverse kinematics of a higher order system necessary

to reach six DOFs at the end-e↵ector, as outlined in this work. Finally, the simulated solutions

presented here show a variety of robot configurations available to reach a desired end-e↵ector

pose, illustrating the possibility of selecting suitable configurations for di↵erent scenarios.

As previously noted, the kinematic solutions derived in the previous sections cannot be directly

applied to the final fine-positioner design, since this is composed of segments that cannot extend.

Thus, the work presented in the previous sections cannot be directly used for the development
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Figure 5.7: Four inverse kinematics solutions corresponding to the motion of an n = 6 robot
with end-e↵ector poses at pG

t1 = [�2, 2, 2.97] [a.u.] and qt1 = 0.73 + 0.31iG � 0.39jG + 0.47kG,
pG
t2 = [�2, 2, 3.30] [a.u.] and qt2 = 0.73+0.29iG� 0.44jG+0.44kG, pG

t3 = [�2, 2, 3.64] [a.u.] and
qt3 = 0.73 + 0.27iG � 0.48jG + 0.41kG, and pG

t4 = [�2, 2, 3.97] [a.u.] and qt4 = 0.73 + 0.24iG �
0.51jG + 0.38kG.
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of control laws.

The generalisation of this work on kinematics to continuum robots composed of segments that

cannot extend, such as the fine-positioner, was considered, and some e↵orts were spent on

it by this author. However, even though this work can serve as foundation, and important

elements such as the use of quaternions to formulate the inverse kinematics can be adapted,

the generalisation is non-trivial, and is considered to require a significant amount time.

At the same period of time when the issues on compatibility of this work on kinematics with the

final fine-positioner design were arising, the possibility of starting a collaboration between this

author and Dr Enrico Franco, a post-doctoral researcher working on control theory at Imperial

College London, arose. This enabled the possibility of adopting an alternative approach to the

development of control laws for the fine-positioner, which involved the use of energy shaping

methods to derive closed-loop control laws. Such an alternative approach presented a higher

probability of success, and thus was adopted. The work on this alternative approach is presented

in the next sections.

5.7 Mechanical modelling

The development of closed-loop control laws for the fine-positioner using energy shaping meth-

ods first requires an analytical model of the mechanical behaviour of the fine-positioner. The

development of such an analytical model is presented in this section. It should be noted that

notation is redefined in this section and in the next section 5.8, since they correspond to a new

approach to the control presented in [206], and the new notation used in this and next sections

generally follows that in [206] to simplify comprehension for the reader.

5.7.1 Initial modelling exploration

An initial approach to the mechanical modelling was first explored using beam theory. A

segment of the fine-positioner was considered as a beam, subjected to external loads that
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corresponded to pressure and external wrenches. A hypothesis on the deformation modes of

the fine-positioner was then formulated based on a coarse approximation of the deformation

of the outer wall observed in the similations. This assumed that the cross sections that were

planar in the undeformed segment remained planar in the deformed segment, although they

needed not remain perpendicular to the centreline.

Imposing equilibrium on this beam model, and developing it, an approximate mechanical model

was obtained. This yielded closed-form solutions to the curvature of the centreline of a seg-

ment of fine-positioner for the case of a pressurised segment without external wrenches. This

predicted a constant curvature bending, which approximately matches the behaviour in sim-

ulations and experimental observations. However, it was not possible to obtain closed-form

solutions to the deformation for the case of a segment undergoing external wrenches.

5.7.2 Mechanical model selected

In this regard, an alternative approach was then adopted, which is the approach selected for

the mechanical model used in this work for the derivation of closed-loop control laws. In this

approach, a segment of the fine-positioner is approximated as a set of four rigid links articulated

at three pin joints, as illustrated in Figure 5.8. The joints are initially considered to have an

elastic sti↵ness, defined ki for joint i, that needs to be determined using either simulations

or experiments, with a resting configuration of equal orientation between adjacent links. The

angle in the joints is defined qi, and the resting configuration corresponds to qi = 0. Nonlinear

sti↵nesses can also be considered in future work to improve the model. The bending moment

created by the pressurisation of the chambers in the fine-positioner is applied as a moment at

the distal end of the model, or equivalently as an equal moment at each of the joints. The

specific value of moment created by a given pressure needs to be determined using simulations

or experiments.
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Figure 5.8: Schematic of the model made of four links with three pin joints, which corresponds
to a segment of the fine-positioner in planar operation. The joint angles, qi, are indicated, as
well as the joint sti↵nesses, ki, links lengths, Li, and control input u that corresponds to the
moment created by pressure and is equal for all three joints in the model.

Link lengths

This model is initially developed for planar operation of the fine-positioner segment. The model

has the advantage that it does not result in redundancies, since the imposition of a pose at the

distal end of the segment generally implies a specific set of joint angles. The lengths of the links

in the model a↵ect the joint angles for each distal end pose, and must be determined so that

the bending behaviour in the model is representative of the bending behaviour of a segment of

the fine-positioner.

The lengths of the four links in this work are determined so that the potential elastic energy

associated to a deformed segment is similar to that of the continuous segment. It should be

noted that an exact match is not possible for all segment deformations or distal end poses

due to the discretisation used in the model to approximate a continuum robot segment. The

lengths are selected to yield a similar behaviour between model and device for the most relevant

configurations.
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In order to match the behaviour in the model and in the fine-positioner in the common config-

uration of a straight segment with zero external loads and zero pressure, the links at the two

ends of the robot segment should be tangential to the segment. In addition, the sum of the

length of the four links should be equal to the length of a segment of fine-positioner, LT . Then,

for a common case of a robot segment bending as constant curvature (CC) arc, symmetry in

the model is important so that it is representative of the behaviour of the fine-positioner. This

implies that the length of the rigid link near the proximal end, L1, and that of the link near the

distal end, L4, should be equal. In addition, the length of the second link, L2, and the third,

L3, should also be equal.

Finally, in robot segments bending as CC arcs, in a first, coarse approximation assuming that

the elastic energy associated to each slide of fine-positioner is constant and that the bending

sti↵ness is constant with curvature, the elastic potential energy should be proportional to

the square of curvature. Then, in the model, in order to obtain an elastic potential energy

proportional to the square of the deflection angle at the distal end, the rotation in all three

joints should be equal for tip poses corresponding to a segment bending as CC arc. Considering

the kinematics of a model made of four rigid links, it is not possible to find a set of link lengths

such that the rotation in all joints is equal for distal end poses corresponding to CC arcs of

the fine-positioner. It is only possible to select a reference deflection corresponding to CC arc

bending where this is satisfied, and then ensure that the deviations from equal rotation angles

in all joints is relatively low for other deflections. In this work, the reference deflection selected

is a 60 degree deflection at the distal end, since it is representative of the desired operation of

the fine-positioner where control laws are expected to be particularly relevant.

Given these considerations, to achieve symmetry, it is necessary for L1 = L4 and L2 = L3.

In addition, L1 + L2 + L3 + L4 = LT , to match the total length at zero deflection. Then,

link lengths of L1 = L4 = 0.125LT and L2 = L3 = 0.375LT lead to rotations in the segment

joints qi1 = q2 = q3 = 20 degrees for a distal end deflection of 60 degrees. In addition, at

other bending deflections corresponding to CC arcs, a model with these link lengths also leads

to rotations in the joints that are relatively equal, which results in elastic potential energy

proportional to the square of deflection.
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Finally, for other general deformations of the segment that are not CC, a model with L1 = L4 =

0.125LT and L2 = L3 = 0.375LT is also considered to be suitable. This is predominantly due

to the fact that for typical deformation modes of the robot observed in the simulations in the

previous Chapter 4, this model results in joint rotations that are approximately representative

of the curvature at the cross sections of the segment near the equivalent location of the joint.

Thus, the model selected consists of four links with lengths L1 = L4 = 0.125LT and L2 = L3 =

0.375LT .

Mass distribution

A mass is associated to each of the four links. The objective is to obtain dynamics in the

model similar to those of the fine-positioner segment. In this work, the total mass in the model

is selected to be equal to the mass of a segment of the fine-positioner, and this is distributed

between the four links, assigning mass proportional to the length of the links. This implies

12.5% of the total mass at first link, m1, 37.5% at second link, m2, 37.5% at third link, m3, and

12.5% at fourth link, m4. For all links, the mass is concentrated at the midpoint of the link.

This mass distribution is expected to result in an acceptable model in a first approximation that

su�ces to derive control laws for the following reasons. First, a mass distribution proportional

to the link lengths implies that the inertia of each segment relative to the base can be similar

to that in the fine-positioner. In addition, the mass distribution is symmetric like the link

lengths, and the more significant parts of the total mass are in the longer links of the model,

that generally present displacements that are similar to those of the larger parts of the fine-

positioner segment. And finally, the mass in the first link of the proximal end of the robot,

which considered fixed relatively to the environment for control purposes, does not a↵ect the

kinetic energy, which can be acceptable considering that it is only 12.5% of the total mass, and

can be considered to be representative of the fact that the proximal 12.5% of the first segment

of fine-positioner does not move significantly relatively to the environment.
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Moment generated by pressure

The bending moment generated by a given pressure is determined from the simulation of the

selected design of the fine-positioner. This moment is determined by the magnitude of pressure,

and by the distance between the centre of pressures and the sti↵ness centre, which is analogous

to the centre of mass of the cross section but using the distribution of sti↵ness in the cross

section instead of the distribution of density. On a first instance, this moment is estimated to

be proportional to the pressure, which neglects the e↵ects of cross-sectional deformation. This

moment generated by pressure is measured at a given pressure, and is then interpolated linearly

to any other pressure. It should be noted that this is a coarse approximation that tends to

increase in error as the cross section varies from that used to extract the values of the moment.

Thus, the values of moment should be extracted for a representative state.

The moment was measured by using a free body cut in a simulation of a segment of the fine-

positioner without external loads and with a deflection near 60 degrees. Considering the fact

that the outer wall remains circular in the deformed cross section, the fact that the sti↵ness

of the central rod is orders of magnitude higher than that of the rubber, and the geometry

of the deformed cross section in the simulations, the sti↵ness centre was estimated to be near

the central rod. From this, the bending moment generated by pressure was estimated to be

1.1mNm/bar. It should be noted that the determination of this bending moment generated by

pressure is only a first, coarse approximation, and can be refined with experiments in case the

control laws do not perform correctly.

Joint sti↵ness

The sti↵ness of the joints in the model was then determined so that the deflection of the model

matched that of the segment of fine-positioner in the simulation without external loads, for a

given pressure, and for the moment generated by pressure obtained in the previous subsection.

In the case without external loads, the rotation in all joints of the model is equal. Thus, this

simply involved extracting a deflection from the simulation, dividing it by three to determine
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the rotation in each joint, and then finding the joint sti↵ness that corresponds to this joint

rotation for the moment generated by pressure calculated using the value of 1.1mNm/bar.

The resulting joint sti↵ness is 5mNm/rad.

These values of joint sti↵ness and bending moment generated by pressure imply that, at a

pressure of 1 bar, each joint rotates 0.22 rad, and thus the deflection at the distal end of the

model is near 38 degrees. This resulting model is relatively similar to the observed behaviour

of a segment of the fine-positioner. As noted in the previous subsection, this represents a first,

coarse model, and its parameters can be improved based on the first results in the practical

implementation of the control laws. In particular, the values of the moment generated by

pressure and joint sti↵ness can be tuned based on the results obtained in practice.

5.8 Closed-loop control laws

Work on the development of control laws for the fine-positioner is presented in this section.

The control laws are based on the mechanical model presented in the previous section 5.7. It

should be noted that the derivation of the control laws for this work was predominantly done

by Dr Enrico Franco. The contribution of this author to the derivation of these laws was only

in an advisory capacity, through discussions on the suitability of the laws for the mechanical

model, suggestions on potential solutions adapted from existing literature, and insights on the

behaviour of the device relevant for the derivation of the laws. In this regard, the derivation of

the control laws is only briefly outlined, and the resulting control laws for planar operation of

a segment of the fine-positioner are then presented.

5.8.1 Control objective

The aim of the control laws initially developed here is to reach and track a desired configuration

in a segment of the fine-positioner by using feedback information regarding the state of this

segment. In this case, the control input is the pressure applied in two chambers of this fine-
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positioner, which is equal for both chambers and makes the segment bend in a plane. This

pressure input in the model, which generates the bending moment applied to all joints, is defined

as u. The segment is considered to be subjected to external wrenches that act as external

disturbances. These cause the equivalent of external moments acting as disturbances on the

model joints, which are defined as �i. The e↵ect of all external disturbances is incorporated as

these �i. The control law should then generally be a function of the state of the segment, and

potentially of an estimate of the disturbances, that determines the pressure to be applied at each

instant of time to track the desired configuration, compensating for the external disturbances.

The desired configuration to be tracked is generally a function of the distal end of the segment.

The control law developed in the following is to track the deflection at the distal end of a

segment. From this, equivalent control laws can be developed in a relatively straightforward

manner to track other desired variables, e.g. position at the distal end.

5.8.2 Concept of approach adopted

The approach adopted in this work to derive the control laws is generally referred to as energy

shaping [207,208]. The concept for energy shaping can be interpreted considering the fact that,

in general, systems without a control input present a set of minimum energy states that are

generally stable configurations. In energy shaping, a control law is defined such that the closed-

loop behaviour of the system, resulting from the control input, presents an energy minimum

at the desired system configuration. This is achieved by defining a control law such that the

control input is a function of the system state that results in a closed-loop system behaviour

with an equivalent minimum energy point at the desired configuration.

One of the main formulations of energy shaping is the so-called interconnection-and-damping-

assignment passivity-based-control (IDA-PBC) [208], which was successfully developed over

a decade ago. In IDA-PBC, the control law consists of two separate terms that correspond

to the energy shaping and the so-called injection-damping control, and neglects dissipative

forces. Recent work, however, indicates that using a control based on IDA-PBC but with

less rigid structures can lead to control laws suitable to a wider range of systems [209, 210].
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Following these recent advances, Dr Enrico Franco proposed a new control design that relies on

the framework of IDA-PBC, and improves it to include adaptive estimation of friction forces,

and a nonlinear dissipative term in the closed-loop system dynamics [206], which builds upon

published work from the same author [211,212].

This adaptive, energy shaping control proposed in [206] is considered to be well-suited for the

control of the fine-positioner. It can cope with the nonlinearities of the system, it is robust and

suitable for operation in unstructured environments, it considers the system dynamics, and it

is adaptive so it can compensate for disturbances and tolerate model inaccuracies.

It should be noted that alternative approaches to the control of soft robotic manipulators have

also been recently proposed in the literature, although the problem remains largely open in

general. A recent, relevant publication is [93], where a dynamic controller is proposed for

operation of a soft robotic manipulator in a plane, which is based on a model of the robot

consisting of a set of rigid links and elastic joints. The controller, however, is based on partial

feedback linearisation, and is not adaptive. This can lead to issues with convergence in the case

of external disturbances and significant nonlinearities in the system behaviour, and in general

the linear control can be relatively slow to converge for typical gains required to avoid significant

instabilities and overshooting. Another recent, relevant approach is presented in [213], where

a model-free control for continuum robots is proposed, which is based on an adaptive Kalman

filter. The resulting control in this case is adaptive so it can cope with external disturbances

and does not require a robot model. This control, however, does not consider dynamic e↵ects,

and it can be relatively slow to adapt to changes in the external disturbances and in the

system dynamics, especially if these are constantly varying. Furthermore, it relies on a linear

approximation of nonlinear system behaviour, and its stability can be di�cult to prove in a

general case.

5.8.3 Control laws

The control laws for a segment of the fine-positioner were derived by Dr Enrico Franco by

applying [206]. The derivation is based on the model presented in the previous section 5.7. In
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this case, the system state is q 2 R3, the control input is u 2 R, and the external disturbances

are � 2 R3. The control problem therefore corresponds to an underactuated system, since

only one control input is available to control the bending of multiple degrees of freedom, which

approximate to the continuous bending of a segment of robot in practice.

In the derivation, it was assumed that the potential energy in the segment is primarily due to

elastic potential energy, and thus gravitational potential energy was neglected, following [130].

It was also assumed that kinetic energy is primarily translational energy, and thus rotation

could be neglected, also following [130]. Finally, any e↵ects of hysteresis or damping were also

neglected considering the behaviour observed in practice.

The potential energy then is

Vk =
1

2

3X

i=1

ki(qi)
2 (5.37)

The kinetic energy is

T =
1

2
[q̇1 q̇2 q̇3 ]M

2

66664

q̇1

q̇2

q̇3

3

77775
(5.38)

where M is the inertia matrix

M =

2

66664

c1 + c2 cos q2 + c3 cos q3 + c4 cos(q2 + q3) ⇤ ⇤

c8 + c9 cos q2 + c10 cos q3 + c11 cos(q2 + q3) c5 + c6 cos q3 ⇤

c12 + c13 cos q3 + c14 cos(q2 + q3) c15 + c16 cos q3 c7

3

77775
(5.39)

where c1 = L2
2(m2/4+m3+m4)+L2

3(m3/4+m4)+L2
4m4/4, c2 = L2L3(m3+2m4), c3 = L3L4m4,

c4 = L2L4m4, c5 = L2
3m3/4 + L2

3m4 + L2
4m4/4, c6 = L3L4m4, c7 = L2

4m4/4, c8 = L2
3m3/4 +

L2
3m4 + L2

4m4/4, c9 = L2L3(m3/2 + m4), c10 = L3L4m4, c11 = L2L4m4/2, c12 = L2
4m4/4,

c13 = L3L4m4/2, c14 = L2L4m4/2, c15 = m4L2
4/4, c16 = L3L4m4/2.

The equations governing the behaviour of the system can then be formulated as
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where q are the three angles, as previously defined, p = Mq̇ which are the momenta, GT =

[1 1 1] is the input matrix, I3 is the identity matrix of rank 3, and H = 1
2p

TM�1p+ Vk which

is the open-loop Hamiltonian. The equations (5.40) elucidate the fact that the control problem

corresponds to an underactuated system.

The control laws were initially developed to track a desired distal end deflection in the system

(5.40). For a segment without external loads, a desired distal end deflection implies equal

rotations in all three joints. This rotation is denoted by q⇤, which is a third of the tracked

deflection. The derivation of the control laws was conducted by Dr Enrico Franco by applying

[206], which resulted in the control law

u =
k

3
(q1 + q2 + q3 � q⇤)�Kp(q1 + q2 + q3 � 3q⇤)�Kv(q̇1 + q̇2 + q̇3) +

1

3
(�̂1 + �̂2 + �̂3) (5.41)

where Kp and Kv are control parameters that can be tuned, in an equivalent manner as the

parameters in proportional-derivative control.

The control law (5.41) is composed of four terms. The first two terms are equivalent to the

energy shaping terms to assign a desired closed-loop equilibrium in IDA-PBC; the third term

is equivalent to the damping-injection control term in IDA-PBC; and the fourth term is the

disturbance compensation term from [206]. In this work, the external disturbances can be

estimated adaptively by using either time-delay-control (TDC) approach [214], or the immersion

and invariance (I&I) approach [215]. Using the TDC approach, the adaptive estimation is

�̂ = �rqH(t� ⌧) +Gu(t� ⌧)�Mq̈(t� ⌧)� Ṁq̇(t� ⌧) (5.42)

where ⌧ is a time delay corresponding to the instant in the past t�⌧ when the system state and

inputs are observed for the estimation of �̂, and should generally be selected to be as small as

possible while allowing su�cient time for the available feedback system to provide information

regarding the system state.

Using the I&I approach, the adaptive estimation can be obtained for various cases in terms of
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the expected disturbances. For a case with constant disturbances �, the adaptive estimation is

�̂ = �↵p+

Z
↵(�rqH +Gu� �̂)dt (5.43)

where ↵ is a parameter that can be tuned based on the application.

For a more general case where the disturbances correspond to a vertical force F of unknown

value acting on the distal end of the segment, this force F generates disturbances that act as

moments on the model joints, which are a nonlinear function of the state as

� = FLT f(q) (5.44)

where

f(q) =
1

LT

2

66664

L4 sin(q1 + q2 + q3) + L3 sin(q1 + q2) + L2 sin q1

L4 sin(q1 + q2 + q3) + L3 sin(q1 + q2)

L4 sin(q1 + q2 + q3)

3

77775
(5.45)

The adaptive estimation of this force using I&I then is

F̂ = � 1

LT
↵fT (q)p+

1

LT

Z
↵f(q)T (�rqH +Gu� F̂LT f(q))dt (5.46)

and thus the adaptive estimation of �̂ is

�̂ = F̂LT f(q) (5.47)

As in the previous case, ↵ in (5.46) is a parameter that can be tuned. In general, increasing ↵

leads to faster convergence of the adaptive estimation of the disturbances. However, the use of

higher values of ↵ can lead to the excitation of unmodelled dynamics in the system in practice.

Thus, the selection of ↵ depends on the accuracy in the model and the desired convergence rate,

and is generally determined based on experimental exploration of possible values. It should be

noted that in the control law proposed in this work, it is only necessary for ↵ > 0 to ensure

stability.
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It should also be noted that the function f(q) in (5.46) corresponds to the type of external

disturbances that are expected to act on the system. In the case of a vertical force acting on

the distal end of a segment, f(q) is proportional to the moment generated by this force on the

model joints. However, other general functions f(q) can be defined to adaptively estimate more

general disturbances using I&I.

Comparing both estimation approaches, the TDC approach is simpler and more general than

I&I since it does not involve any structural assumption on the disturbance except for the

assumption that the variation of the disturbance over the period of time ⌧ is bounded. However,

it is more susceptible to noise since the update depends on acceleration. Conversely, I&I tends to

present less noise since the update is determined by velocity, and the parameter ↵ o↵ers more

versatility for tuning to the desired system in practice. In addition, using I&I it is possible

to show local stability in general, and global stability in some cases where the disturbance is

matched or where the system state is bounded, which applies to a significant number of systems

such as the one in this work. Instead, using TDC it is only possible to show that the system

behaviour is ultimately bounded.

It should be noted that the adaptive estimation of disturbances also applies to adaptively

estimate uncertainties in the bending sti↵ness in the model. The e↵ect of the disturbances �̂ is

a moment in the joints in the model, which acts on the system in an equivalent manner as a

discrepancy between in the joint sti↵ness model and bending sti↵ness of the robot in practice.

Thus, the adaptive control proposed in this section also applies to adapt and compensate for

model discrepancies in terms of bending sti↵ness, which further increases the robustness of this

control.

5.8.4 Results of performance

The performance of the control laws presented in the previous subsection was evaluated using

simulations. These involved simulating the dynamics of the model of the fine-positioner segment

described in subsection 5.7.2 when applying the control law (5.41). The objective of the control

in the simulations was set to be that of reaching and holding a desired distal end deflection of
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⇡/2 rad, which in a case without external loads corresponds to a rotation of ⇡/6 rad in all three

model joints. The initial configuration of the model in the simulations was set to be horizontal,

with zero deflection in all joints. The behaviour of the system was recorded by saving the

rotations of the three joints as a function of time in the simulations.

The simulations were initially implemented both using a fixed time step in the integration of

the system dynamics, and using a variable time step in the integration, which was determined

by the solver. The fixed time step enables measuring the state of the system at a set of specific

instants of time that can correspond to the sampling rate of typical sensing systems used in

practice, to then input this system state to the control law at the specific instants of time.

This closely matches practical scenarios where some limitations can exist in terms of sampling

rate of the sensing used to measure the robot state. However, this results in relatively long

simulation times. The simulations with a variable time step, on the other hand, enable faster

simulations, but in these simulations the system state is always made available to the control

law, so the specific sampling rate of the sensing used in practice cannot be exactly reproduced in

the simulations. The results of system behaviour obtained in the initial simulations conducted

with both methods were practically equal. The simulations with variable time step were then

adopted, since they require significantly shorter simulation time. The results presented in this

section were predominantly produced using variable time step simulations. The estimation of

the external disturbances in the simulations presented in this section was performed using the

I&I approach since it is more robust to noise associated to acceleration, which is desirable,

especially for the fixed time step simulations.

The simulations were first performed for a case without external disturbances, which implies

that the model used in the simulation of the dynamics of the system matches the model used

in the derivation of the control laws. The results of the simulations in this first case without

external disturbances are shown in Figure 5.9, where the rotation in all three joint angles is

plotted. The desired rotation angle in each joint, which corresponds to a third of the desired

distal end deflection, is also plotted as reference. As can be seen in Figure 5.9, the system

tends to the desired configuration without overshooting or oscillations, which confirms the

correct performance of the control law derived in this work.
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Figure 5.9: Results of performance of the control law in simulations corresponding to a case
without external loads. The rotation in all three joints (q1, q2, q3) is plotted in di↵erent colours,
as indicated in the legend. The desired joint configuration corresponding to a third of the
desired distal end deflection is also plotted for reference.

Simulations with external disturbances corresponding to a vertical external force acting on

the distal end of the fine-positioner segment were then implemented, for a control without

disturbance compensation. In this case, the external force creates di↵erent disturbances in

terms of moments in the three joints, and these disturbances are a nonlinear function of the

system configuration. This is commonly referred to as a problem with unmatched disturbances,

and is a particularly challenging problem in the control of underactuated systems such as the

one considered in this work.

The results of the simulations in this second case with external force and unmatched distur-

bances are shown in Figure 5.10 (left). The results indicate that the behaviour of the system

presents a significant deviation from the desired configuration, and the distal end deflection

does not converge to the desired value. This is due to the external disturbances on the system

that are not matched with the control.

Finally, simulations were performed for a case with an external vertical force applied to the
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Figure 5.10: Results of simulations corresponding to a case with external disturbances in terms
of an external force at the distal end, performed with a control law without disturbance com-
pensation (left), and with the control law with disturbance compensation (right). The rotation
in all three joints (q1, q2, q3) is plotted in di↵erent colours, as indicated in the legend. A reference
joint rotation corresponding to a third of the desired distal end deflection is also plotted.

distal end of the segment, acting as a disturbance, and with disturbance compensation on the

control. The results of these simulations with external disturbances and compensation on the

control are shown in Figure 5.10 (right). As can be seen, the system converges to the desired

configuration, confirming the correct performance of the control law. It should be noted that

in this case, the rotations in the three joints do not tend to the same value. This is due to the

fact that in the desired distal end deflection, the assignable equilibrium of the system with the

external disturbances corresponds to di↵erent rotations in each joint, since the external force

creates a di↵erent moment in each joint, and it is thus not possible to reach an equilibrium

with equal rotations in all three joints. In other words, the configuration corresponding to

constant curvature bending is not an assignable equilibrium as a consequence of the unmatched

disturbances in the system. Still, the distal end deflection, which is the sum of the rotations

in the three joints, tends to the selected, desired deflection thanks to the control law that

compensates for the external disturbances, which is the control aim.

It should be noted that in all simulations shown in Figures 5.9, 5.10 (left), 5.10 (right) the

transient time to reach an equilibrium configuration in the system is between 8 and 12 s. This

is primarily determined by the parameters Kp and Kv used in the control. These parameters
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can be adjusted to reduce the settling time in the future, although it should be noted that

combinations of parameters that lead to markedly shorter settling time can also lead to over-

shooting. In addition, in robust control, the parameters ↵ and 1/⌧ can also be increased to

reduce the settling time, but as discussed in the previous subsection, higher values of these

parameters can be unsuitable in practice, and could lead to oscillations due to the excitation

of unmodelled dynamics, or due to noise generated in the estimation of the disturbances.

The time to reach the equilibrium configuration in Figures 5.9, 5.10 (left), 5.10 (right) also

presents some di↵erences between these figures. This can be attributed to the fact that in the

cases with external disturbances, these correspond to a vertical force at the distal end that

contributes to the bending of the segment of fine-positioner, and thus helps reach the desired

deflection in a shorter time.

5.8.5 Discussion

The control law presented in this work can be used to reach and track a desired configura-

tion in terms of distal end deflection, and performs correctly both in cases without external

disturbances and with external disturbances. The control law (5.41) is relatively simple, and

can resemble control laws that can be obtained with simpler approaches such as proportional

derivative and integral controls. However, the adaptive energy shaping approach adopted in

this work is relevant since it is a more robust approach that can cope with additional complex-

ity. For example, it can be extend in a relatively straightforward manner to track a desired

distal end position, and it can be generalised to more complex models or alternative models of

other types of continuum robots.

Similarly, it is expected to be possible to generalise it to derive control laws for the full fine-

positioner. The generalisation of the work on control to the full fine-positioner operating in

3D space is expected to be performed in future work. Lastly, the control approach adopted

in this work is also advantageous over simpler control approaches since it o↵ers an adaptive

feature, which is attractive considering that some of the parameters in the model such as the

joint sti↵ness present some uncertainty.
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5.9 Conclusions on control

The kinematics of continuum robots with bending and extension capabilities were studied, and

closed-form solutions were derived. These solutions elucidate a redundancy in the kinematics

of a manipulator with 6 actuation DOFs, and a condition on the reachable end-e↵ector poses

was also obtained. These kinematics studied apply to soft robotic manipulators similar to the

FMA and to other continuum robots that can extend and bend describing piece-wise constant

curvature arcs. However, these kinematics do not exactly match the final design obtained for

the fine-positioner.

An alternative approach to the control of the fine-positioner using adaptive energy shaping con-

trol was then proposed in this work. A mechanical model was developed for it, and control laws

were subsequently derived for operation of a segment of fine-positioner in 2D. The successful

performance of these control laws was shown in simulations, which considered practical factors

such as a limited sampling frequency in the sensing used to measure the system state.

Experiments are planned to be conducted in future work to evaluate the performance of the

control law in practice, where discrepancies in the model are expected, as well as potential

issues with noise, and limited sampling frequency in sensing. These experiments can also be

used to select between the TDC and I&I adaptive estimation based on performance in practice.

In addition, the experiments are expected to serve to illustrate the work. The experiments are

not included in this thesis due to time constraints, and due to di�culties in the fabrication

of segments of the fine-positioner that are su�ciently durable in practice. The issues with

reliability in the fabricated devices, and the systems complementing the fine-positioner in the

overall inspection system to perform on-wing operations, are described in the next chapter.



Chapter 6

Robotic System for On-wing

Inspections

The most important and challenging part in the development of the robotic system for on-

wing inspections is the development of the fine-positioner, which is presented in the previous

chapters. This fine-positioner needs to be complemented by a set of other components to insert

it into the engine region of interest, ensure a correct probe deployment, and navigate inside

the engine. In this chapter, the selection of concepts for these complementary components is

presented, together with a justification of the design process. In addition, the fabrication and

intended operation of these di↵erent components of the robotic system are also described, and

practicalities of their application to on-wing inspections are discussed.

The selection of a solution concept for the gross-positioner is presented in section 6.1, together

with its intended operation; the electronics for fine-positioner are outlined in section 6.2; a path

planner is described in section 6.4; deployment mechanism solutions are summarised in section

6.5; and possible feedback system are introduced in section 6.6. In addition, the fabrication of

both gross-positioner and fine-positioner is described in section 6.3; and the assembly of the

di↵erent systems is considered in section 6.7.

The work on path planning presented in this chapter is an edited version of the work published

in:

312
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• F. Liu, A. Garriga-Casanovas, R. Secoli, and F. Rodriguez y Baena. Fast and Adap-

tive Fractal Tree-Based Path Planning for Programmable Bevel Tip Steerable Needles.

Robotics and Automation Letters, 1.2, pp. 601-608, 2016. c� 2016 IEEE.

It should also be noted that part of the details regarding the fabrication of soft robots described

in this Chapter were learned during a placement of this author at the Suzumori Endo Robotics

laboratory of Tokyo Institute of Technology. Thus, the fabrication method was not developed

entirely by this author. Additional details about the fabrication of soft robots learned during

the placement are presented in the conference paper:

• A. Garriga-Casanovas, A. A. M. Faudzi, T. Hiramitsu, F. Rodriguez y Baena, K. Suzu-

mori. Multifilament Pneumatic Artificial Muscles to Mimic the Human Neck. IEEE

International Conference on Robotics and Biomimetics, 2017.

However, the work reported in this paper is mostly relevant to fabricate devices including PAMs,

which is not central in this work. Thus, the work reported in this paper is not presented in this

thesis.

6.1 Gross-positioner

As previously noted in Chapter 1, the gross-positioner must perform the insertion into the region

of interest, which in the reference case defined in subsection 1.1.3 involves negotiating the entry

route shown in Figure 1.3. Considering the literature review in Chapter 2, the study of CTRs

in Chapter 3, and the work on design and control of soft robotic manipulators in Chapters 4,

5, the robot concept selected for the gross-positioner is a non-annular CTR composed of three

tubes, which carries the fine-positioner attached at its distal end, as illustrated in Figure 6.1.

This robot concept can achieve lengths over 1 m with diameters of 6 mm or less, as previously

noted in Chapter 2, and it does not present the issues with torsion of the tubes of annular CTRs,

that limit their lengths and maximum curvatures. In addition, using telescopic deployment of

the tubes, non-annular CTRs can negotiate the obstacles shown in Figure 1.3, and reach the
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Figure 6.1: Concept of gross-positioner as a non-annular CTR composed of three tubes, together
with the fine-positioner attached at its distal end. The assembly of both devices is illustrated
in a configuration similar to that of the resulting system after insertion into the chamber with
the HPC discs.

engine region of interest. Furthermore, a non-annular CTRs can provide a working channel of

a few millimetres in diameter to accommodate any wires and elements for the payload, as well

as tubes to pressurise the fine-positioner, and any elements from a feedback system.

The non-annular CTR gross-positioner is intended to work together with the fine-positioner

to reach the engine region of interest. In the reference case previously defined in subsection

1.1.3, the proposed operation mode to advance inside the engine involves a combination of the

mobility of both devices so that they can successfully reach chamber with the HPC discs. The

insertion into the chamber with the HPC discs consists of four parts, described in the following.

The first part of the entry route simply involves entering through a narrow conduct with

constant curvature, which can for example be the conduct of a temperature probe for the

turbine, and this guides both fine-positioner and gross-positioner via contact forces. Thus,

the gross-positioner only needs to act as a passive rod with some flexibility that advances the

fine-positioner.

The second part of the route is the turn in the turbine chamber, which is illustrated in Figure

6.2. This intended to be performed with telescopic deployment of two pre-curved tubes of the

non-annular CTR, such that the device initially curves towards the rear end of the engine,

and then it curves in the opposite direction, defining an S shape that brings the base of the

fine-positioner to the correct pose for insertion into the gap between the shafts. The first

turn in this telescopic deployment is intended to be performed by advancing the entire CTR,
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designed with an outer tube that has a sti↵ness higher than the other two tubes, and thus

dominates the geometry of the device, as shown in Figure 6.2 (top). Then, this outer tube is

expected to remain static, and the other two tubes of the CTR are expected to advance to

perform the second turn, shown in Figure 6.2 (middle), and thus point the distal end of the

gross-positioner (the proximal end of the fine-positioner) near the desired pose. For this, the

middle tube of the CTR should be pre-curved, whereas the inner tube should be straight, so

that the combination of the two create the desired curvature of the CTR in this second turn.

Then, using the dexterity of the fine-positioner, its distal end is expected to be pointed into

the gap between shafts, potentially with aid from the 3 DOFs provided by the non-annular

CTR to compensate for deviations. Finally, the inner tube of the CTR is intended to advance

while the other tubes remain static, as shown in Figure 6.2 (bottom), in order to advance the

fine-positioner into the gap between shafts, while the fine-positioner and remaining 2 DOFs of

the gross-positioner are used to correct for any deviations. In this regard, the fine-positioner is

only expected to be attached to the inner tube.

Once the fine-positioner is at the beginning of the gap between shafts, the third part of the

route starts, which is the advancement through the gap between the shafts to reach the chamber

of interest. In this part, the gross-positioner and fine-positioner are intended to work together

to advance. The fine-positioner is intended to perform a ’snaking’ motion shown in Figure 6.3,

and originally proposed in [104]. This motion can be achieved by applying control inputs that

impose a sequential bending of two or more segments of devices such as the fine-positioner

or the FMA, following the sequence shown in Figure 6.3. The result of this motion, which

resembles that of a wave, is an advancement of the device in narrow spaces thanks to the

contact with the surrounding structures. Then, by combining this ’snaking’ motion of the

fine-positioner together with the advancement of the inner tube from the gross-positioner,

the combined inspection system is intended to advance through the gap between shafts and

overcome any frictional forces. Dynamic frictional forces are expected to be low, since the

’snaking’ motion of the fine-positioner avoids dynamic friction, and thus the only dominant

dynamic frictional forces are those associated to the inner tube of the gross-positioner advancing.

The fine-positioner is expected to be composed of three segments, so the sequential bending
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Tubes 1+2+3

Fine-positioner

Tubes 1+2+3

Tubes 1+2

Fine-positioner

Tubes 1+2+3

Tubes 1+2

Tube 1

Fine-positioner

Figure 6.2: Insertion procedure for gross-positioner, corresponding to initial insertion of device
with three tubes (top), advancement of middle and inner tube while leading the outer tube
static (middle), and advancement of inner tube only (bottom).
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should generally be applied to all three segments to achieve the ’snaking’ motion. However,

it can also be applied to two segments while another segment is used for other purposes such

as steering. Lateral deviations from the desired, straight trajectory can occur while advancing

through the gap between shafts. Using the capability of the segments of the fine-positioner to

bend in any direction, including the lateral direction, is expected to be possible to correct for

these deviations, and steer the robotic system in the desired direction.

After advancing through the gap between shafts, the robotic system needs to enter the chamber

with HPC discs through a hole, which is the fourth part of the access route. For this manoeuvre,

the dexterity of the fine-positioner is expected to be used to steer the distal end into the hole.

Then, a combined motion of the gross-positioner advancing, and the proximal segments of the

fine-positioner performing the ’snaking’ motion in Figure 6.3, is intended to be used to advance

the fine-positioner into the chamber with the HPC discs. This fourth part of the access route

ends once the entire fine-positioner is inside the chamber, and the distal end of the gross-

positioner is beginning to enter the chamber. It should be noted that the intended method

to access the chamber with the HPC discs described in this subsection needs to be tested in

practice to determine its viability.

Once the robotic system is inside the chamber, the fine-positioner is intended to be used to

deploy the probe on the first disc encountered when accessing the chamber through the hole

in the shaft. After inspecting this first disc, the robotic system must pass through the gap

between the first disc and the shaft to reach the second disc. This manoeuvre can be performed

by first directing the distal part of the fine-positioner into the gap, using its dexterity. Then,

a combination of advancement of the gross-positioner together with a ’snaking’ motion of the

fine-positioner are intended to be used to advance the robotic system through the gap between

the disc and shaft until the fine-positioner is passed the first disc in the direction towards the

front of the engine. At this point, the fine-positioner is intended to be used to deploy the probe

on the second disc, relying on its dexterity. After inspecting this second disc, the operation

to reach and inspect the following disc is intended to be repeated, until all subsequent discs

are inspected. As in the previous case, this manoeuvre to reach all discs needs to be tested in

practice to determine its viability.
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Figure 6.3: Schematic of snaking motion to advance in a narrow space between two walls
using a device composed of two FMA-type devices. The schematic illustrates the sequence of
bending (from left to right) in a robot composed of two segments to advance upwards, although
an analogous sequence applies to advance in a robot composed of additional segments. Image
courtesy of [104].

The retraction of the robotic system is intended to be equivalent to the insertion, but performed

in reverse. Retraction is simpler since the gross-positioner is already inserted through the route,

so deviation from the desired path is not an issue. In this regard, the ’snaking’ motion may

not be required if friction is not significant, but can be used in case friction is an issue.

The design of the gross-positioner is thus simple. The device is a non-annular CTR composed

of three tubes, which needs to be designed for each specific application. For the reference

case defined in subsectino 1.1.3 and addressed in the previous paragraphs, only the outer and

middle tubes are curved to achieve the desired resulting S shape. The curvature of the tubes

to achieve this resulting geometry can be determined using the analysis in Chapter 3, and this

is relatively simple case. The inner tube is straight, so it only adds sti↵ness to the robot, and

then the curvatures and sti↵nesses of the other two tubes need to be selected to achieve the

resulting geometry in equilibrium, and not exceed the maximum strain of nitinol. The process

to fabricate this gross-positioner is described in section 6.3.

The control of the insertion of the gross-positioner can be performed with linear actuators for

high accuracy. However, since this application is relatively simple, the insertion of the tubes
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could also be performed by hand, by simply attaching grippers to each tube. It should be

noted, however, that the turn in the turbine chamber to enter into the gap between the shafts

can be di�cult. The dexterity of the fine-positioner can help in this insertion into the gap

between shafts. In addition, the three DOFs of the gross-positioner can also be used to aid

in directing the fine-positioner into the gap between shafts. In the case that the DOFs of the

gross-positioner are used to aid in the manoeuvre, the theoretical framework in Chapter 3 can

be used to determine the geometry of the gross-positioner for each control input in terms of

tube insertion. It should also be noted that, even though relative rotation of the tubes of the

gross-positioner is not possible due to the non-annular cross section, the rotation of the entire

gross-positioner could also be used to help align it.

6.2 Fine-positioner

The design selected for the fine-positioner is that presented in Chapter 4. This fine-positioner

is controlled by pressure inputs to its chambers, which are determined by a computer that

uses the control introduced in Chapter 5, in combination with possible path planning algo-

rithms described in section 6.4, and with information from a feedback system introduced in

6.6. The systems to communicate with the computer determining the desired pressure values,

and regulate the pressure inputted to the fine-positioner, are described in this section.

Proportional pressure regulators were used in this work to impose the desired pressure values to

the chambers of the fine-positioner via tubes, which are described in section 6.3. The pressure

regulators selected here are the PRE1-U08 supplied by AirCom Pneumatic GmbH (Ratingen,

Germany). These operate at a pressure between 0 and 8 bar. The desired pressure values are

imposed on the pressure regulators via analog voltage inputs.

Electronic hardware to interface between these pressure regulators and the computer was de-

veloped with advice from Dr Enrico Franco. The electronics consist of a mictrocontroller that

receives commands from the computer, converts them to digital signals with the appropriate

protocol, and outputs them to a set of digital to analogue converters (DAC) that then transform
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Figure 6.4: Design of the printed circuit board developed to integrate the electronics.

the signals into analogue voltages, which are finally inputted to the pressure regulators. The

microcontroller selected for this application is the mbed LPC 1768 manufactured by ARM ltd

(Cambridge, UK), and the DACs are MCP4922 manufactured by Microchip Technology Inc.

(Chandler, US). In order to simplify the systems, the communication between computer and

microcontroller was implemented through the USB connector that powers the mbed using serial

communication, and more specifically using remote procedure calls (RPC) as the communica-

tion protocol. The commands are converted at the mictrocontroller and outputted using serial

peripheral interface (SPI) to the DACs.

A printed circuit board (PCB) was developed to integrate all the electronics and thereby sim-

plify the practical use of the electronics. The design of the PCB is shown in Figure 6.4, and

includes the microcontroller, six DACs, and a set of ports where the pressure regulators and

power supplies can be connected.

The PCB was ordered from Newbury Electronics ltd (Newbury, UK), and the electronic com-

ponents from RS Components ltd (Corby, UK). The hardware was subsequently assembled and

tested. The code to interface in RPC between computer and microcontroller was implemented
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Figure 6.5: Electronic systems assembled on the PCB and connected to the computer to confirm
their correct performance.

in C++ on the mbed, and in Matlab on the computer in order to facilitate a possible future inte-

gration using the robotics operating system (ROS) via the Matlab Robotics Toolbox. The code

to output SPI commands from the microcontroller to the DACs was also implemented on the

mbed after consulting the relevant datasheets. The complete electronic system with hardware

and software, illustrated in Figure 6.5, was finally tested, verifying its correct performance.

6.3 Fabrication

The fabrication of soft robots, and in particular the fine-positioner, is presented in the next

subsection 6.3.1. The fabrication of the gross-positioner is presented in subsection 6.3.2.
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Figure 6.6: Fabrication process for general soft robots, corresponding to cast silicone structure
(a), structure with added outer fibres (b), and structure with supply tubes and separate end
caps before sealing (c).

6.3.1 Fine-positioner

Soft robots with fluidic actuation, such as the fine-positioner, are generally fabricated in three

main steps. First, the rubber structure is cast. Second, the outer fibres are winded on the outer

surface. And third, the ends of the segments are sealed while including pressurisation tubes,

and the outer fibres are a�xed to the rubber using an additional layer of rubber. This process

is illustrated in Figure 6.6, and details about these three steps are presented in the following

subsections. First, however, the moulds used for casting are introduced in subsection 6.3.1.

Moulds

Moulds for soft robots can be manufactured using a variety of methods depending on the

desired geometry. In the case of the fine-positioner, the primary mould used was fabricated

using additive manufacturing. More specifically, the mould was fabricated using laser sintering

of a titanium alloy powder. The final mould is shown in Figure 6.7 (a) and (b). As can be seen,

the mould is composed of two parts corresponding to the inner chambers and the outer surface,

which facilitates demoulding. The accuracy in this mould was estimated to be near 50µm.

The fabrication of the same mould using additive manufacturing of plastic was also explored.

However, the lower accuracy of the 3D printer used, a FormLabs 2 (Somerville, USA), and the

issues encountered with warping of the thin rods and surface roughness, resulted in moulds

that were generally unusable due to the low accuracy and defects they created. Thus, plastic
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Figure 6.7: Primary mould used for casting composed of two parts made with additive manu-
facturing, shown in (a) and (b), and alternative mould composed of a set of machine parts that
are partially assembled in (c), where the three metallic rods are assembled to an end piece, and
fully assembled in (d).

moulds were discarded.

An alternative mould made of machined parts that were subsequently assembled was also

created. This is shown in Figure 6.7 (c) in a partly assembled configuration, and in Figure 6.7

(d) in a fully assembled configuration. As can be seen, this mould is made of three metallic

rods corresponding to the chambers, which are held in position by two pieces at the ends,

which are cut using wire electrical discharge machining. An outer tube, also held in position

by the end pieces, defines the outer wall, which is shown separately in Figure 6.7 (c). This

mould is simpler to manufacture and is a viable alternative to the metallic mould created by

additive manufacturing. However, it presented some issues with leaking of the rubber during

casting, and the accuracy in this mould was similar to that of the one created by additive

manufacturing, so the mould created by additive manufacturing was generally preferred.

Casting

The fabrication of soft robots generally begins by casting the rubber in the mould, to create a

rubber structure such as that shown in Figure 6.6 (a). In the fabrication of the fine-positioner,

the fibre for the central rod was also added at the centre of the mould before adding the liquid

rubber, and was held in place to embed it.
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The rubber was prepared by first mixing the two components that constitute it in the specified

proportions, then degassing it by placing it into a vacuum chamber for 8 minutes, and finally

pouring it into the mould. The mould with the cast rubber was then left at room temperature

for 8 hours until it cured. The mould was then separated into its two parts, and the rubber

structure was removed.

The process of removing the rubber was found to be delicate, and in multiple occasions the

rubber corresponding to the partition walls or outer wall broke. In addition, despite the de-

gassing process, micro bubbles were found to remain in some cases. Considering these factors,

and the accuracy in the mould, it was considered to be di�cult to cast wall thicknesses lower

than 0.6 mm in a reliable manner.

Outer fibres

Once the rubber structure is created, the outer fibres can be added, as shown in Figure 6.6

(b). In the fabrication of the fine-positioner, the fibres were manually wound, creating a double

helix arrangement with an approximate pitch between 1-2 mm.

Pressurisation tubes and sealing

The final step of the manufacturing is adding the tubes supplying the pressure to the chambers

of the soft robot, sealing these chambers, and securing the outer fibres in their position. In the

fine-positioner, the tubes used were EXLON PFA Micro-Fluoro Resin Tubing, manufactured

by IWASE Co. (Kanagawa, Japan), and distributed by Elematec Czech s.r.o. (Prague, Czech

Republic). Two tube sizes were used: the first with an OD of 0.3 mm and an ID of 0.1 mm, and

the second with an OD of 0.6 mm and an ID of 0.4 mm. The thinner tubes were used to deliver

the pressure to the chambers of the distal segments of the fine-positioner, passing through the

chambers of proximal segments to reach the proximal end of the fine-positioner and extend out

of it a few centimetres. The wider tubes were used to pressurise the chambers of the proximal

segment. Wider tubes were also attached to the thinner tubes at the proximal end of the
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Figure 6.8: Example of preliminary fabricated segment (shown on the right) with the tubes
to pressurise it attached to its proximal end, and the tubes to pressurise another distal seg-
ment passing through it. The distal segment is also shown on the left, which represents the
segment where the tubes passing through the proximal segment should be attached. The com-
position aims to illustrate the concept of stacking the segments serially, and passing the tubes
to pressurise the distal segments through the proximal ones.

fine-positioner to supply the pressure through the length corresponding to the gross-positioner.

This helped reduce the pressure drop by providing a wider conduct to supply the pressurised

air throughout most of the length of the supply tubes, which corresponds to the length of the

tubes passing through the gross-positioner.

The micro tubes were placed inside the corresponding chambers, and rubber was applied to

the ends of the segments to seal them. The proximal segment was fabricated first, with the

tubes corresponding to the distal segments passing through it. At the same time, a layer of

rubber was also applied to the outer wall to a�x the outer fibres, with an additional thickness

of approximately 100 µm to 200 µm. The result was that the minimum wall thickness that

could be manufactured reliably was near 0.8 mm. An example of fabricated segment with the

tubes to pressurise it attached at is proximal end, and the tubes to pressurise another distal

segment passing through it, is shown in Figure 6.8.

Once the additional rubber of the sealing points cured, Loctite R� 401TM (Dusseldorf, Germany)

was applied at the region of contact between the micro tubes and the rubber to improve the

bonding, and prevent leakage. In some cases, the device was then pressurised to test it, and if
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Figure 6.9: Example of preliminary fabricated segment without pressure (left), and pressurised
(right). The excess material from the casting is attached at the distal end of the segment, which
needs to be removed.

leakage occurred, additional Loctite R� 401TM was used to improve the sealing. An example of

a single fabricated segment being tested to confirm that it can withstand the pressure without

leakage is shown in Figure 6.9.

Discussion

This fabrication process described in the previous subsections can be successfully used for the

fabrication of the fine-positioner developed in this work. The resulting bonding of the central

fibre with the silicone, however, was found to be relatively weak, and in some cases this central

fibre tended to slide relative to the silicone. This can create friction forces that tend to cut the

silicone, eventually breaking the inner structure of the device and rendering this unusable. As

a consequence, the device fabricated using the method described in the previous subsections

presents a low reliability, and in the experience by this author, it can only work for a few

minutes before it breaks.

The reliability needs to be improved in future work. Possible solutions to be explored in the

future are the use of fibre materials and adhesives that improve the bonding between the

central fibre and the rubber; widening the region of rubber around the central rod, which can

contribute to the LCRS while having a minimal impact on the area of the chambers, and thus

have a minimal impact on performance; and using a miniature chain as central rod that is

mechanically locked to the silicone.
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6.3.2 Gross-positioner

The gross-positioner can be fabricated by following an equivalent method as that described in

Chapter 3 for annular CTRs, but by initially creating a non-annular cross section. Circular

tubes can be first purchased in the desired sizes from a supplier such as Nitinol Devices and

Components Inc. The non-annular cross section can then be created by inserting a mandrel

into the tubes, heating them to 550 degC as in Chapter 3, and mechanically deforming them

into the mandrel, for example using pliers, to create an elliptical cross section. An elliptical

cross section is an e↵ective design of non-annular cross section that prevents relative torsion of

the tubes and is relatively simple to manufacture.

Once the tubes are elliptical, the curvature of the two tubes that need to be pre-curved can

be created by following a process of heating and quenching, as described in Chapter 3. The

three tubes can then be arranged concentrically to create the gross-positioner. Finally, linear

actuators can be attached to the tubes for high accuracy insertion control, or the tubes can be

inserted manually into the jet engine. The fabrication of the gross-positioner using this method,

and its practical application, are expected to be performed in future work, as described in

Chapter 8. Major technical obstacles are not expected in the fabrication. The main expected

issues are practicalities such as fabricating fixtures of the required size that can be used to set

the shape of the tubes and withstand 550 degrees Celsius, and obtaining access to furnaces

of the required size for the tubes which are over 1 m long. The performance of the resulting

gross-positioner in terms of accuracy and viability is expected to depend on the accuracy of the

fabrication, particularly on the process of creating an elliptical tube cross section. However,

this is expected to be relatively accurate, and it can be improved by iteration.

6.4 Path planning

The path planning capability can be helpful when navigating inside cluttered environments

such as a jet engine. In the reference on-wing inspection case defined in subsection 1.1.3, this is

particularly relevant for the insertion of the inspection system into the gap between shafts, for
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the advancement through the gap to the chamber with the HPC discs, and for the operation

of the fine-positioner with the end-e↵ector in the vicinity of the components that need to be

inspected without collisions.

The path planning problem was therefore considered in this work. The path planning problem

to navigate inside a jet engine presents similarities with the path planning problem for MIS, and

particularly for steerable needles navigating in cluttered environments such as brain or liver.

Considering these similarities, a collaboration with a post doctoral researcher investigating path

planning algorithms for nonholonomic steerable needles, Dr Fangde Liu, was started to develop

path planning algorithms for nonholonomic systems.

6.4.1 Concept for path planner

The path planner developed in this work aims to suit the requirements of navigating inside jet

engines, and of MIS, which present similar challenges. The most prominent of these challenges

are the complex and numerous obstacles in the environment; the confined spaces where the

robot needs to operate; and the need for a path planner that can replan a path in real-time to

compensate for unexpected variations in the robot configuration, or in the case of MIS, in the

environment.

The concept for the path planner proposed here, in collaboration with Dr Liu, is to parallelise

the path planning problem, and harness the power of the graphics processing unit (GPU) to

solve it in real time. The path planner proposed first generates a significant number of paths

covering the domain of interest without considering the obstacles in the environment, and then

checks their viability in parallel, to finally select the path that minimises a given cost function,

which can be freely selected for each application. This path planner relies on fractal theory

to generate the paths in an e�cient manner, and create a data structure that enables e�cient

parallel path planning on the GPU. The resulting data structure has a recursive structure,

is adaptable in size, is constructed procedurally, is invariant, and allows for a dense coverage

of the entire domain. This is conceptually illustrated in Figure 6.10, where a tree of paths

generated with the proposed approach is shown.



6.4. Path planning 329

Figure 6.10: Generic tree illustrating the concept for the path planner. The density of paths
corresponds to the space coverage that can be achieved in real-time with modern GPUs. c�
2016 IEEE.

The generated cache of paths can then be analyzed in parallel using the GPU to determine the

most suitable path in a fraction of a second. The ability to cope with nonholonomic constraints,

as well as constraints in the space of states of any complexity or number, is intrinsic to the

path planner proposed, rendering it highly versatile. Details about the proposed path planner

are presented in Appendix A.

The proposed path planner has three main advantages with respect to imaged-based algorithms:

(i) it works directly with voxels, optimizing computational performance; (ii) it is capable of

real-time replanning with a bounded computational time; (iii) it can be used regardless of the

number or complexity of the obstacles, rendering it robust and versatile, with a high success

rate compared to other path planning algorithms. It should be noted that jet engines have a

known geometry, but the obstacles can be complex and numerous, and the robot being inserted

has a certain degree of compliance so it can deform in a di↵erent manner from the predicted

one, requiring path replanning in real-time. In this regard, these features of the path planner

are attractive for jet engine navigation.

It should be noted that the original idea for this path planner was proposed by Dr Fangde



330 Chapter 6. Robotic System for On-wing Inspections

Liu. The contributions of this author to this path planning work are: the formulation of the

theoretical framework for the work, the review of literature, help outlining and clarifying the

final algorithm, help in the selection and generation of the final results, and writing the paper.

6.4.2 Results and illustration of path planning capability

The result of the path planning work is a fast and robust path planner for nonholonomic

systems that can work in real-time, which is detailed in Appendix A. The capability of the

path planner is also showcased in Appendix A, in a scenario requiring real-time path planning

for a steerable needle that must navigate through a complex liver structure to reach a given

target. An illustrative result from this work is shown in Figure 6.11, which corresponds to a

particular case where the steerable needle is required to reach a target that moves, replanning

the path as it advances. As can be seen in Figure 6.11, the path planner initially finds a first

path and, as the target moves, it repeats the path planning process to find an alternative path

online.

This application is illustrative of the speed of the path planning algorithm proposed here. The

implementation used in this work employed Matlab 2014b (Mathworks Inc.), Linux Ubuntu

64bit, and was executed on an Intel CORE i7 CPU @ 3.2Ghz with a GTX TITANX from

NVIDIA corp., with 3072 threads, a 1GHz base-clock and 12GB of memory, which has an

approximate computing power of 7 TFLOP and supports CUDA 7.5 API [216]. With this

implementation, it was possible to explore 300 million paths per second. More details can also

be found in Appendix A.

6.4.3 Conclusions on path planning

A path planner for nonholonomic systems was developed in this work. The algorithm was

applied to a nonholonomic steerable needle, which showcases its performance. The path planner

is versatile, and represents a capability that can be used for navigation inside jet engines using

the inspection system. The application of the path planner, together with other control laws,
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Figure 6.11: Simulation results of online path replanning during needle insertion into liver, with
target moving along the red arrow direction. The best initial path is shown in green, and and
subsequent best paths in red, blue, cyan, and magenta. c� 2016 IEEE.
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to a jet engine is expected to be performed in future work, together with implementation of

the complete inspection system in jet engines.

6.5 Deployment mechanism

The purpose of the deployment mechanism is to ensure a correct contact between the probe

and the inspected component, passively compensating for any misalignments, and allowing for

a correct inspection. In addition, in the case of flexible probes, it should facilitate the probe

insertion into the engine. The deployment problem was considered for both flexible and rigid

probes, and suitable solutions were identified. These are summarised in subsection 6.5.1 for

flexible probes, and in subsection 6.5.2 for rigid probes.

6.5.1 Deployment mechanism for flexible probes

The deployment mechanism together with any flexible probe used must fit through the entry

port, which in the reference case previously defined in subsection 1.1.3 is 6 mm ID, and must

be compatible with the fine-positioner and the rest of the inspection system. If the flexible

probe is larger than the entry port, it must be furled or redesigned so that it can be inserted.

The flexible probe must then be deployed on the component compensating for misalignments,

compensating for any shape mismatching, ensuring a correct contact, and in the case that a

couplant medium is used, removing any air bubbles in it.

The design of the deployment mechanism for flexible probes can therefore be divided in three

parts: furling and unfurling, conforming while removing air bubbles, and orientation correc-

tions. The analysis of each part and solutions proposed are summarised in the following three

subsections.
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Figure 6.12: Concepts of solutions for furling and unfurling corresponding to (a) a tube with a
slit, and (b) tapered probe.

Furling and Unfurling

Four main options were identified for furling and unfurling. The first option involves placing

the probe inside a tube with a slit so that the probe can extend and retract when rotated, as

illustrated in Figure 6.12 (a). The second alternative is to design a tapered probe towards the

base and place it inside a tube, so that it elastically unfurls when pushed outside, and is furled

by the reaction forces from the tube walls when pulled inside, as shown in Figure 6.12 (b).

The third option is to attach a backing on the probe that elastically furls it, and to employ

a balloon to unfurl it. The last alternative is to employ SMA antagonistically or with elastic

restoring to generate the furling and unfurling. However, these last two options are considered

secondary due to implementation di�culties they entail.

Conforming on component

In order to force any flexible probe to conform on the surface of the component, forces and

moments need to be applied on it. The surface of the component can be used to compensate for

shape mismatching, and in general the application of a distributed load at the back of the probe

can help make it conform. Considering the possible forces available, four potential solutions

were identified.

The first alternative is to employ a balloon to apply a pressure at the back of the probe, forcing

it to conform, as shown in Figure 6.13 (a). The second option is similar, but placing a foam at

the back of the probe, as illustrated in Figure 6.13 (b). In this manner, by pressing at a single

point the back of the foam, this can help distribute the force on the probe. A third option is to
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Figure 6.13: Concepts of solutions to force the probe to conform on the component correspond-
ing to (a) a balloon at the back of the probe, (b) a foam at the back of the probe, (c) pressing
at a single point at the back of the probe, and (d) only the probe held with significant base
bending.

press at a discrete number of points at the back of the probe by means of a simple structure,

as depicted in Figure 6.13 (c). Considering the main deformation modes of the probe, it can

be possible to force it to conform on a suitable component. A last option is to simply place the

probe on the component and force it to bend near the base by holding it at specific orientations,

as in Figure 6.13 (d), in order to create a moment that aids in conforming on concave surfaces.

This option is inspired by [217], which tackles a similar problem and reports successful results.

Bubbles are expected to be removed by the load applied at the back of the probe in the solutions

employing a balloon, foam or pressing at discrete points. In the design that simply involves

placing the probe on the component, sliding the probe while feeding additional couplant as it

slides is a potential strategy to remove air bubbles. However, this needs to be tested for each

application, probe, and final inspection system.

Orientation corrections

Forces and moments together with some degree of mobility between the probe and the fine-

positioner are required to correct for orientation misalignments. These misalignments refer to
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di↵erences between the direction of a vector perpendicular to the surface of the component

and a vector perpendicular to the surface of the probe, which should be aligned in an ideal

deployment. Reaction forces from the component at misaligned probe angles can generate the

stabilising moment necessary to correct for orientation misalignments. In this regard, two main

solutions were identified.

The first solution is to place a pivoting point between the fine-positioner and the probe that

enables the required degree of mobility. This pivoting point can be mechanical, or simply an

elastic element such as rubber or a spring. The range of motion from the pivoting point, and its

sti↵ness, should be selected based on the expected misalignments for each application, which

depend on the final fine-positioner performance.

The second solution is to exploit the elasticity of the probe in the region close to the base to

provide the required degree of mobility. The reaction forces can then provide the stabilising

moment to make the probe align. In this manner, the probe deployment is expected to intrin-

sically correct for small orientation misalignments provided that some mobility is allowed by

the flexible probes proximal part.

The majority of deployment mechanism designs require a structure to transmit force from the

fine-positioner to the back of the probe. A rigid structure as in Figure 6.13 (b)-(d) provides

su�cient force, but presents a limited tolerance to longitudinal misalignments if a backing such

as a balloon or foam is used. Considering Figure 6.14 (a), it can be seen that a deployment

mechanism without backing and with a rigid structure can pivot around the tip of the structure

to tolerate orientation variations that correspond to a rotation along an axis perpendicular to

the plane of symmetry of the probe, although it leads to lift-o↵ at the proximal part of the

probe. Designs with backing and a rigid structure as in Figure 6.14 (b) cannot pivot, and

instead the end of the structure must slide relative to the backing if orientation variations

occur, which also leads to lift-o↵ and limits the admissible misalignments.

A flexible structure presents a higher tolerance to misalignments since it does not require

pivoting in the presence of orientation variations. The deformation of the structure also leads

to some variations in the position of the structure end relative to the probe, although the sliding
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Figure 6.14: Schematic diagram of probe deployment with a rigid structure in (a) a mechanism
with no backing on the probe, and (b) a mechanism with backing such as a balloon or foam.
The probe is depicted in orange, its base in black, the structure in dark gray, any probe backing
in blue, and the component in light gray.

is considered lower than in a rigid structure. Thus, a flexible bar from the fine-positioner to

the back of the probe (or foam) together with a plaque at the end to distribute the force was

concluded the most suitable solution. The degree of misalignment tolerable for each deployment

mechanism design needs to be investigated, as reported in the next subsection.

6.5.2 Deployment mechanism for rigid probes

The deployment mechanism for rigid probes is simpler than that for flexible probes. It only

needs to compensate for misalignments, and ensure that any couplant medium used between

the probe and the component has no bubbles. Thus, the solutions in this case are focussed on

orientation corrections, and removal of bubbles.

As in the previous subsection, reaction forces from the component can also be used to create

the moment that corrects for probe misalignments. In this case, the probe does not have any

flexibility that can be exploited. Thus, the main solution identified here is to use a pivoting

point between the probe and the fine-positioner that provides the required degree of mobility,

as schematised in Figure 6.15, in an equivalent manner as in the previous subsection. Then, in

the case of misalignment in the approximation by the fine-positioner, the contact forces from

the component make the probe realign, for moderate misalignments. As before, this pivoting

point can be mechanical or simply an elastic element. In the realignment due to contact forces,

the probe can be expected to slide to some extent relative to the component until it reaches
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Figure 6.15: Schematic of solution involving a pivoting point between the probe and the fine-
positioner to provide a degree of mobility that tolerates misalignments together with reaction
forces from the component.

the correct orientation. The resulting position can present small errors, which are ultimately

due to errors in the initial approximation from the fine-positioner, and these are expected to

be compensated by the fine-positioner.

It should be noted that in the case of a rigid probe there is no need for a structure to transmit

forces from the fine-positioner to the probe. The pivoting point can already transmit the

required forces. The removal of bubbles in this case of a rigid probe is expected to be performed

by sliding the probe on the component. However, the assessment of this solution needs to be

considered for each application, probe, and inspection system.

6.6 Feedback system

A feedback system is required to obtain information about the robot state, and then control

it accurately to deploy the probes in the correct location. In general, feedback systems can

be regarded as a chain of physical phenomena relating a set of magnitudes of interest (in this

case the robot state), with a magnitude that can be measured. The surrounding engine in this

project obstructs the use of conventional exteroceptive systems such as external cameras or
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Figure 6.16: Examples of potential cameras from (a) Medigus (Tel Aviv, Israel), (b) AWAIBA
(Yverdon-les-Bains, Switzerland), (c) Fujikura (Tokyo, Japan), (d) Omnivision (California,
USA). Images courtesy of the respective companies.

electromagnetic trackers, requiring the use of a proprioceptive system.

Considering this feedback problem, a suitable solution was identified in this work. This is a

combination of an optical fibre shape sensing technology, together with a camera mounted at

the distal end of the robot with an algorithm that combines the camera images with infor-

mation about the engine in order to infer its position. These two technologies complement

appropriately. The former provides feedback of the continuous robot shape with high preci-

sion, but presents errors proportional to the fibre length, and is blind to unexpected issues.

The latter only informs about the tip pose and can have issues with localisation in the case of

limited features in the image, but its accuracy is independent of the cable length, and provides

information regarding unexpected issues, as well as a record of the inspection.

In terms of shape sensing, technologies based on Rayleigh backscattering [218] are considered

preferrable over those relying on Fibre Bragg Gratings [219]. In particular, shape sensing based

on phase interference employing coherent optical frequency domain reflectometry is advanta-

geous since it o↵ers quasi-continuous shape sensing, it provides high spatial resolution, it is

commercially available, and the fibres required are inexpensive; only the interrogator system

external to the robot is costly. Luna Innovations Incorporated (Virginia, USA) was identified

as the most suitable supplier considering the technology they can provide.

Regarding the camera with a localisation algorithm, possible technologies were identified. Ex-

amples of miniature cameras available are shown in Figure 6.16 (a)-(d). In terms of localisation

algorithms, monoSLAM [220] or patch descriptors [221] are potential solutions.

The selection of a specific imaging algorithm and camera is considered dependent on each
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application. The selection of a specific camera and algorithm is expected to be performed

in future work. The selected camera and shape sensing technologies are then expected to be

incorporated on the complete inspection system also in future work.

6.7 Integrated robotic system

The integrated robotic system consists on the gross-positioner, fine-positioner, deployment

mechanism, feedback system, and any potential probe, assembled into a robotic system, as

illustrated in Figure 1.4, and working together. The weight of the probe that the system can

carry depends on the dimensions of the cabling associated to it, on the dimensions of the

feedback system, and on the desired workspace for the fine-positioner carrying the payload.

However, in a first estimate, the system could be capable of carrying a probe weight of up to

10 g.

The proposed, integrated robotic system must also include a central computer that processes

information from the feedback system, and determines the control inputs to the pressure regula-

tors for the fine-positioner, and potentially to the linear actuators for the gross-positioner. This

central computer that acts as the brain of the system, and all components of the system should

communicate to it. The communication between components is envisaged to be implemented

using ROS, where each component part is expected to be a node, and the computer to be the

master node. The computer is then expected to receive information from the feedback system,

and potentially process it to generate an estimate of the robot state. Then it is expected to

use the control laws, and possibly path planning algorithm, to determine the control inputs to

the fine-positioner, and if applicable, to the gross-positioner as well. The implementation of

this communication in ROS, and the subsequent assembly of the di↵erent components into an

integrated robotic system is expected to be performed in future work, as described in Chapter

8.
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6.8 Conclusions on inspection system

A robotic system capable of performing on-wing inspections was proposed, which is composed

of a gross-positioner, a fine-positioner, a deployment mechanism, a feedback system, and any

potential probe. Research was conducted on the fine-positioner, as presented in the previous

chapters, leading to advancements and new solutions to design and control. A concept for the

gross-positioner was selected, as presented in this chapter, and a method to navigate inside the

engine combining the gross-positioner and fine-positioner was proposed to reach the regions

of interest. Methods to fabricate the fine-positioner and gross-positioner were also proposed,

as described in this chapter, which in the case of the fine-positioner were used to fabricate

segments of it. Moreover, the electronics and pressure regulators required to actuate and

control the fine-positioner were also developed.

Solutions to the deployment mechanism and feedback system were also proposed. In addition, a

path planner for nonholonomic systems was also developed, which can be used in the inspection

system to navigate inside jet engines. In order to create the inspection system, the solutions

found to its di↵erent parts need to be assembled. This is expected to be conducted in future

work, as described in Chapter 8.



Chapter 7

Study of Illustrative Inspection Case

An example of application of the work presented in this thesis is the reference on-wing inspection

case previously defined in subsection 1.1.3. In that reference case, and more generally in on-wing

inspections, the inspection procedure used for the detection of any potential defects may di↵er

from those used o↵-wing, and can be challenging to determine. In this regard, the reference

on-wing inspection case is extended in this chapter both to consider the viability of a typical

inspection performed with the robotic system developed in this project, and more generally

to illustrate the selection of the most suitable technique, the optimization of the inspection

strategy, and the quantification of the corresponding SNR in a reference case.

The inspection requirements in terms of characteristics of the reference defects and components

to be inspected are first described in section 7.1, together with the access constraints. The

suitability of the main existing NDE techniques is then discussed in section 7.2, leading to the

selection of a specific NDE technique and probe. A set of possible inspection strategies for

the selected technique are also identified. 2D simulations are reported in section 7.3, which

are used to select the most suitable of these inspection strategies, together with the optimal

implementation parameters. The impact of 3D e↵ects and typical noise levels in practice

is considered in section 7.4, where the expected SNR of the selected inspection strategies is

quantified. Lastly, the final conclusions of the inspection study are presented in section 7.5,

together with a discussion of the results.

341
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7.1 Inspection requirements

The components to be inspected in the reference on-wing inspection case are selected to be

the HPC discs. As previously mentioned in Chapter 1, these discs are located in a chamber

near the centre of the engine in the arrangement shown in Figure 7.1. The discs have all their

surfaces available for the deployment of any desired probe, as can be seen in Figure 7.1, and the

surface roughness is practically negligible for standard NDE inspection techniques. However,

any inspection device must respect the surrounding structural obstacles shown in Figure 7.1.

In addition, and as previously mentioned, it needs to be possible to enter any inspection device

into the chamber with the HPC discs through the access route shown in Figure 1.3, which

requires any inserted device to fit through 6 mm ID holes. Moreover, any probe or inspection

device must be compatible with the robotic system described in previous chapters. It should be

noted that this robotic system is expected to be capable of reaching the chamber with the HPC

discs by relying on a combined motion of the gross-positioner and fine-positioner, as described

in Chapters 6 and 1.

The HPC discs are solid and made of a titanium superalloy. The discs can be considered to

present isotropic characteristics, distributed uniformly. The reference structural properties for

the discs are a Young’s modulus of approximately 120 GPa, a Poisson ratio of near 0.31, and

an approximate density of 4450 kg/m3. The discs are conductive but not ferromagnetic.

The potential defects to be inspected for are considered to be cracks, as these are typical

defects of interest in NDE. These potential cracks are considered to present relatively uniform

characteristics. They are considered to be located in the subsurface, near the centre of the

HPC disc bores, which is typically more than 10 mm below any available surface of the discs.

The cracks are also considered to be flat with negligible width, smooth, and elliptical in shape,

generally presenting a low eccentricity. The size of the potential cracks to be detected is

selected to be 0.7 mm in their major axis, which is also representative of typical inspection

requirements in the aerospace sector. Lastly, the potential cracks are considered to be oriented

nearly parallel to the radial-axial plane, with a potential variation of ±20�. This represents a

challenging inspection case, which aims to be illustrative of a di�cult on-wing inspection in the
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Figure 7.1: Sketch of a cross section of the engine chamber with HPC discs, and surrounding
structural elements. The blue arrows indicate the access route, which passes through the gap
between the shafts, enters the chamber with the HPC discs via a hole in the shaft, and finally
reaches the HPC disc bores. A combined motion of the gross-positioner and fine-positioner is
expected to be used to follow the access route and reach the disc bores, as described in previous
chapters.

aerospace sector.

7.2 Technique selection

A technique capable of detecting the potential cracks described in the previous section while

respecting the access and manoeuvrability constraints is necessary. The technique should also

be executable using a payload, typically a probe, that can be deployed with a robotic system

and imposes a minimal restrictions on it. These requirements are stringent, and constrain sig-

nificantly the NDE techniques applicable. Techniques are reviewed in the following subsection

7.2.1, and a technique and probe are selected in subsection 7.2.2. Possible strategies for the

implementation of the technique are then identified in subsection 7.2.3.
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7.2.1 NDE techniques

A wide variety of NDE techniques exist [1]. These generally involve exploiting the e↵ect that

the presence of a defect causes on a physical phenomenon by relating it to a variable that can

be measured through a subsequent chain of physical phenomena. The phenomena exploited

in NDE techniques are broad, including static and dynamic electromagnetic fields [4], high

frequency electromagnetic waves [222], elastic waves [2], and thermal conductivity [223]. The

suitability of the main NDE techniques for the inspection considered here is discussed in the

following.

Electromagnetic

Electromagnetic techniques involve the use of either constant or variable electromagnetic fields

for the detection of defects or characterisation of materials [224]. One of the most common

electromagnetic techniques is eddy current testing [5]. In general, this involves using a coil

to generate a varying magnetic field which, when interacting with the inspected component,

induces eddy currents. The induced currents generate subsequent magnetic fields, which in-

teract with the excitation coil, a↵ecting its impedance. The impedance of the coil is thus

determined by the electromagnetic characteristics of the inspected component. The presence of

a defect disturbs the behaviour of eddy currents in the component, which creates a change in

the impedance of the excitation coil, and can therefore be used for inspection. Eddy currents,

however, generally o↵er a low penetration depth due to the so-called skin e↵ect [225]. In prac-

tice, this translates into a maximum inspection depth of only a few millimetres, which renders

eddy current testing unsuitable for the detection of the defects described in the previous section

7.1.

Another type of electromagnetic techniques are potential drop techniques, either alternating

current potential drop (ACPD) [226–228] or direct current potential drop (DCPD) [229]. Both

techniques involve placing electrodes on the inspected component and injecting a current. This

current has a potential drop associated to it, which is a↵ected by the presence of defects between
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the electrodes, as these force the current to divert around it. Thus, by measuring the value of

the potential drop, defects can be detected and sized [230]. Both techniques, however, share

the main disadvantage of not being applicable to detect subsurface defects at significant depth.

As a result, potential drop methods are not applicable for the reference inspection case defined

in the previous section 7.1.

Alternating current field measurement (ACFM) is a technique similar to ACPD but relying

on eddy currents for excitation. ACFM o↵ers a sizing capability [231], as in ACPD, but

without requiring contact with the inspected component or calibration, as in the case of eddy

currents. In ACFM, a uniform current is induced with a coil, and the deflections caused on it

by any potential defect, which causes changes in the magnetic field above the component, are

detected [231,232]. As in the case of potential drop techniques, however, ACFM is not suitable

for the detection of subsurface defects such as the defects of interest defined in the previous

section 7.1.

Finally, magnetic flux leakage (MFL) is a technique that relies on steady magnetic fields to

detect defects [233]. In MFL, a steady magnetic field is induced on a component, which deflects

around potential defects [234]. At high levels of induction, this deflected field leaks out from

the component, and can be detected using either Hall sensors, coils or magnetic particles,

indicating the presence of a defect, [235]. In practice, however, MFL is not suitable for the in

situ detection of defects significantly below the surface such as the potential cracks of interest

defined in the previous section 7.1, since it requires very voluminous equipment.

Ultrasonic

Ultrasonic techniques involve the use of elastic waves for either the detection of defects or the

measurement of structural properties [236]. In general, in ultrasonic testing, elastic waves are

excited, which propagate through a structure and, in the presence of a defect, scatter [237].

The scattering then creates additional waves that also travel through the structure and can be

measured. This enables both detection of defects and in some cases sizing of these.
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Multiple embodiments of ultrasonic testing exist. In general, these can be divided into tech-

niques that rely on surface waves, and techniques that rely on bulk waves. The potential cracks

of interest defined in the previous subsection 7.1 are considered to be located in the subsurface,

near the centre of disc bores. The techniques of interest are then those employing bulk waves

that propagate through the bulk of the material to produce a crack scattering.

In traditional bulk wave techniques, a piezoelectric element, either placed on the surface of

the inspected component or coupled to it through a fluid medium, is excited with an electric

impulse to force the element to vibrate, and thereby generate a bulk wave [238]. This wave

propagates through the component, and any scattering from potential defects is then recorded

either with the same element, or with another piezoelectric element also placed on the inspected

component. The use of a single element enables the detection of cracks, but presents a low

sensitivity to subsurface cracks that are perpendicular to the surface of the component. The use

of two elements placed on the same surface of the component and separated a certain distance

enables the detection of cracks perpendicular to the surface of the component, as well as the

location and sizing of these. This is achieved by measuring the time at which the scattering

from the two crack tips arrive at the receiving element relative to the excitation time, as well as

the time it takes for a surface wave to travel between both elements, and using trigonometry.

This corresponds to a technique known as time of flight di↵raction (TOFD) [3,239]. In practice,

however, TOFD requires a distance between both elements in the same order of magnitude as

the defect depth.

An array of individual piezoelectric elements arranged together in a single transducer can also

be used. These are commonly referred to as phased array ultrasonic transducers (PAUT) [240],

and have become increasingly popular in the recent decade. The use of an array of elements

generally enables a higher detectability than the use of single elements since the array can

capture the information corresponding to the excitation and recording in each element, as well

as the information corresponding to the excitation and recording in di↵erent elements, for all

pairs of elements in the array. This is referred to as the full matrix capture [241], and can be

combined with post-processing algorithms to produce images of the inspected region [242].
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Both PAUT, TOFD, and single-element ultrasound are techniques that could be applicable

for the detection of the cracks in the reference on-wing inspection case defined in the previous

section 7.1. They are all suitable for the inspection of subsurface defects, and can be used in

solid discs such as HPC discs. TOFD o↵ers the highest detectability for cracks perpendicular

to the surface of the component [239], but it requires the deployment of two probes separated a

few centimetres, which is not practical in situ. Thus, either single-element ultrasound or PAUT

are the most appropriate techniques. The only disadvantage of these techniques is that the

SNR can be low for cracks perpendicular to the surface, and therefore an inspection study is

required.

Alternative methods to generate ultrasonic, bulk waves exist. One of them are electromagnetic

acoustic transducers (EMATs), where either a coil or a magnet are used to generate ultrasonic

waves relying on magnetostriction or Lorenz forces [243–245]. This enables the excitation

of acoustic waves without requiring contact in conductive and ferromagnetic materials, and

therefore EMATs can be used to perform inspections in components with coatings or rough

surfaces, in harsh environments, and in scenarios where accurate deployment of ultrasonic

probes is challenging. Another alternative to generate ultrasonic, bulk waves are lasers [246].

The localised heating created by a laser on a material can produce a rapid expansion which

generates elastic waves. The waves then propagate and scatter, and this scattering can be

measured at the surface of the component using a laser vibrometer [247]. As a result, laser

ultrasound techniques are also non-contact and can be used in any material provided that the

surface is polished. The main advantage of both EMATs and laser ultrasound over piezoelectric

transducers is that they are non-contact techniques. However, these techniques generally lead

to lower SNR than ultrasonic techniques using piezoelectric elements [243], and involve larger

equipment to generate and detect waves. In the reference on-wing inspection case defined in

the previous section 7.1, contact is not an issue, and instead the inspection SNR and miniature

dimensions of the equipment required are important. Thus, piezoelectric elements are the most

suitable method to generate ultrasonic, bulk waves.
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Radiographic

Radiographic techniques rely on a beam of high energy radiation and a detector to find potential

defects [222]. In general, the beam is directed to the inspected component and attenuates as it

traverses it. The presence of a defect reduces the beam attenuation due to the void associated

with the defect, and therefore defects can be imaged using a film or detector plate placed at

the opposite site of the component in the direction of the beam.

Radiographic techniques can be implemented either by taking a single radiograph obtained

from a specific orientation [248], or by combining multiple radiographs obtained from di↵erent

orientations, which is referred to as computed tomography (CT) [249]. In general, single radio-

graphs are only able to detect cracks oriented such that the incident beam lies in the same plane

as the crack. CT, on the other hand, is able to detect cracks in any general orientation. CT,

however, requires scanning the component, which is time-consuming, costly, and can generally

not be performed in situ as the scanning system needs to surround the inspected component.

The cracks of interest defined in the previous section 7.1 are located near the centre of jet en-

gines. Any in situ radiographic inspection would therefore require either entering a radioactive

source and detector film near the HPC discs, or performing the inspection from the outside of

the engine with a beam traversing the entire engine structure. The first option is di�cult to

implement, as the source and film would need to be deployed at opposite sides of the discs,

which is very challenging in practice since only one robotic manipulator can be entered through

the access route. The second option involves a beam path intersecting multiple structures in

the engine in addition to the HPC discs, which adds a significant noise level to the inspec-

tion, masking any indication from potential cracks. In addition, any radiographic technique

requires stringent health and safety precautions, which typically include a shielded bay that is

not practical in in situ inspections.
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Visual

Visual techniques involve visually examining a component to find defects [6]. These techniques

include inspections with the naked eye [250], inspections using optical devices such as lenses,

mirrors and borescopes [251], and inspections aided by elements to improve the visibility of

defects, which are referred to as enhanced visual techniques [6].

The main enhanced visual technique is liquid penetrant inspection (LPI) [7]. In LPI, a highly

visible fluid is applied on the surface of the inspected component, and is let to flow into any

potential defect. The surface of the component is subsequently cleaned, and any potential

defects, typically cracks, are revealed as the highly visible fluid emerges from the defect [252].

A developer can be applied to help draw the fluid from the defects [253].

Visual techniques are generally limited to the inspection for surface-breaking defects. In this

regard, they are not applicable for the detection of the cracks of the reference on-wing inspection

case.

Thermographic

Thermographic techniques generally involve heating the inspected component and measuring

its surface temperature over time. The temperature of the surface of the component depends

on the conductivity of heat within the component. The presence of a defect generally obstructs

heat conductivity, which causes a localised change in the surface temperature, and can therefore

be used for inspection purposes [254,255].

Thermography is generally used for the inspection for delaminations, cracks and similar planar

defects that lie in a plane parallel to the surface of the component [256–258], as these act as

insulators of the heat applied to the surface. However, it is not suitable for the detection of

subsurface cracks perpendicular to the surface of the component, such as the cracks defined

in the previous section 7.1, since the presence of these cracks has a negligible e↵ect on the

conductivity of heat applied to the surface. In addition, thermographic techniques require a

heat source and an infrared camera to increase and measure the temperature of the component,
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respectively, which are typically large and cannot be inserted into an engine through bore

holes [259]. Thus, thermography is not applicable for the detection of the cracks in the reference

on-wing inspection case.

7.2.2 Selected technique and probe

Considering the discussion in the previous subsection, the technique selected for the reference

on-wing inspection case is ultrasound. Ultrasound has the potential of detecting the cracks

defined in the previous section 7.1, as opposed to electromagnetic, visual, and thermographic

techniques, and it o↵ers the possibility of being deployed in situ using a single robotic manip-

ulator with a single probe, unlike radiographic techniques.

Ultrasound is a common technique for the inspection of discs in the aerospace sector. The

established, standard frequency for the inspection of discs in the sector is 10 MHz.

The inspection of defects similar to those defined in the previous section 7.1 using ultrasound

is tackled in [260], where a possible inspection procedure using a single probe is reported.

However, that study considers defect sizes and depths somewhat di↵erent from the inspection

requirements here, and it only considers a single, predefined inspection strategy relying on

direct scattering from the defect. In addition, the study in [260] focusses on immersion testing,

which is not practical in situ, and only considers probes made of a single element. Inspections

using single-element probes can be considered as a simple and specific case of inspections using

PAUT, and typically an inspection study for PAUT includes the beams and strategies that can

be achieved with single-element probes.

The use of PAUT for the in situ detection of the cracks defined in the previous section 7.1

is thus explored in this project. The inspection frequency is selected to be 10 MHz, as it is

the established standard in the inspection of these discs in the aerospace sector. The velocity

of longitudinal, bulk waves in the material is 6046 m/s. A PAUT with an element pitch

corresponding to half of the longitudinal wavelength is selected as the probe design for the

inspection since it yields the highest performance, which corresponds to a pitch of approximately
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0.3 mm. A probe with these characteristics can also be miniaturised in size, rendering it well

suited for an in situ inspection.

PAUTs with an operating frequency of 10 MHz and a 0.3 mm pitch are commercially available.

They generally have an element width of 0.2 mm, and a total number of elements that can

be 16, 32, or 64. A larger number of elements leads to higher SNR in the inspection, but

it also entails a probe wire with a larger diameter, which is undesirable as it needs to pass

through the fine-positioner and gross-positioner. Hence, the most suitable number of elements

is a compromise and needs to be determined.

A particularly relevant PAUT is the BFAP probe, manufactured by JP-Probes (Yokohama,

Japan) and supplied by Phoenix ISL (Warrington, UK). In particular, the design shown in

Figure 7.2 presents desirable features. It is a linear, flexible array composed of 32 elements,

with an operation frequency of 10 MHz, a 0.3 mm pitch, and a 0.2 mm element size, which

matches the specifications previously outlined. In addition, since it is flexible and can bend

up to a curvature radius of 3 mm, it can conform to a wide range of surfaces not only limited

to HPC discs, which agrees with the desired versatility of the inspection system mentioned in

Chapter 1. One possible disadvantage of using this flexible probe is that deployment can be

di�cult, as discussed in section 6. Thus, the possibility of using a rigid probe with an equivalent

layout, and connectors to the elements routed through the back of the probe so that the probe

can fit through a 6 mm ID hole cannot be discarded a priori.

The selected, reference probe for the inspection is therefore the small version of the BFAP,

or rigid version of it, with a number of elements initially considered to be 32. The current

design of this probe is 10 mm wide and its rigid casing is 12 mm wide, as shown in Figure

7.2, which is 6 mm wider than the holes in the access route that it must fit through. Potential

redesigns to reduce the probe width are possible, as confirmed in correspondence with the

supplier, although those would need to be tested to ensure a correct probe performance. In

order to obtain a probe that can fit through 6 mm ID holes, the distance between connectors

to the individual piezoelectric elements would need to be reduced, and the lateral margins at

the size of the connectors as well; the dimensions of the rigid casing where these connectors are
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wired to the cables would also need to be reduced; and the total width of the cable would also

need to be reduced. The length of the piezoelectric elements, which is currently 4 mm, could

also be reduced if necessary, although this entails a reduction in performance, so it should be

avoided if possible.

These reductions are considered to be possible but challenging. Reducing the distance between

the connectors is considered to be possible with high accuracy manufacturing, but it can lead

to a more fragile probe. Alternatively, the connectors could be routed through a layer above

the piezoelectric elements, but the capability of bending of the probe would need to be tested

to ensure that the connectors do not break. Reducing the lateral margins at the side of the

connectors is considered to be simpler, although the probe robustness would also need to be

tested. Reducing the size of the rigid casing where the connectors are wired to the cable is also

considered to be viable, and major technical problems are not expected. Lastly, reducing the

width of the cable while maintaining the number of elements in the array is considered to be

possible, especially given the fact that electric shielding may not be required for inspections

inside a jet engine that acts as a Faraday cage, and that cable protection may not be necessary

when incorporating the cable on the robotic system.

It should also be noted that the existing probe shown in Figure 7.2 has 32 elements. This leads

to an existing probe cable of 4.2 mm diameter, which is near the 6 mm diameter constraint of the

access route, and is excessive for the fine-positioner. The potential cable reduction mentioned

in the previous paragraphs could be used to reduce this diameter so that it is more suitable

for the fine-positioner. However, a reduction in the number of elements in the probe can also

be considered to reduce the cable diameter. The inspection study presented in the following

subsections is initially developed considering a probe with 32 elements, since it is a viability

study in the most desirable conditions, but if the SNR is found to be su�cient, a reduction in

the number of elements can be considered.
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Figure 7.2: Drawing of the BFAP probe selected as reference probe for the inspection. All units
are in millimetres. Drawing courtesy of JP-Probes.

7.2.3 Possible inspection strategies

Despite the advantages of ultrasound relative to other NDE techniques, the orientation and

location of the defects of interest defined in section 7.1 makes them challenging to detect.

In particular, the fact that the cracks are considered to lie near the radial-axial plane of the

disc implies that they are nearly perpendicular from any available surface. In this regard,

the inspection strategy must be carefully considered to select the strategy and implementation

parameters that yield the highest possible SNR.

Single-probe inspection strategies are the focus of this work since only one robotic manipulator

can be entered through the access route, and this can only deploy a probe in one location at

a given time. The position of the cracks is nearly equidistant from both the lateral and inner

surfaces of the disc bores. The lateral walls of the bores are parallel, and therefore one of them

can be used as a reflecting wall for the inspection. Thus, both inspection strategies using direct

scattering from the crack and strategies involving reflections on the opposite wall are possible

a priori. Any reflection on the wall opposing the surface with the probe requires the wave to

travel a relatively long path, which implies a significant beam spread associated with it. Given

the disc dimensions and crack orientations of interest, the inspection strategies with a single
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probe considered relevant in this reference on-wing inspection case are those using either direct

scattering signals, or using signals that scatter on the crack, reflect at the opposite wall, and

return to the probe.

These inspection strategies of interest can be executed using either longitudinal waves, shear

waves, or combinations of longitudinal and shear waves that mode convert at the scattering

events. The strategies using direct scattering signals have one event where the wave mode can

change, whereas the tandem strategies include two events where the wave mode can change.

This leads to twelve, single-probe inspection strategies to be explored, which are described in

the following two paragraphs.

The first four strategies rely on direct scattering. These involve positioning the probe either

at the lateral or inner part of the disc, as shown in Figures 7.3 (a) and (b), respectively,

and generating a beam that interacts with the crack and produces either a lateral or crack tip

scattering that returns to the same probe where it is measured, as schematically shown in Figure

7.4 (a). The transmitted wave can be either a longitudinal or shear wave, and the returning

wave can be either the same mode of the transmitted wave or mode-converted. Thus, the four

possible strategies with direct scattering are: to use a longitudinal transmitted wave and a

longitudinal returning wave, which is denoted by LL; to use a longitudinal transmitted wave

and a shear returning wave, denoted by LS; to use a shear transmitted wave and a longitudinal

returning wave, denoted by SL; and to use a shear transmitted wave and a shear returning

wave, denoted by SS. The SS strategy is equivalent to the strategy proposed in [260] for a

similar scenario.

The next eight inspection strategies are tandem strategies. These involve positioning the probe

at the lateral side of the disc, as shown in Figure 7.3 (a), and generating a beam that strikes

the crack laterally to produce a reflection that proceeds towards the opposite wall, where it

is reflected a second time, and then returns to the same probe where it is captured, as shown

in Figure 7.4 (b). The use of this same path but in opposite direction is possible, and is

equivalent using the imaging technique described in subsection 7.3.3, so it is included in these

tandem strategies. The wave path in these tandem strategies is composed of three segments:
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the segment between the probe and the crack; the segment between the crack and the opposite

wall; and the segment between the opposite wall and the probe. Each of these segments can

be completed by a longitudinal or shear wave, leading to eight possible strategies: LLL, LLS,

LSL, LSS, SLL, SLS, SSL, SSS, where the first letter refers to the wave mode in the segment

between the probe and the crack (L referring to longitudinal wave and S to shear wave), the

second letter refers to the wave mode in the segment between the crack and the opposite wall,

and the third letter refers to the wave mode in the segment between the opposite wall and the

probe, following the same notation as that used in the direct scattering strategies.

An inspection strategy using two probes is also available. This involves placing the two trans-

ducers at opposite sides of the disc, as shown in Figure 7.3 (c), and generating a skewed beam

with one of the transducers, which strikes the crack laterally, and produces a reflection that is

received by other second transducer, as depicted in Figure 7.4 (c). This last alternative requires

positioning two probes at opposite sides of the disc (these can be 40 mm in thickness), which

is practically inviable since only one robotic manipulator can be entered through the single

access route available. Thus, the other strategies employing a single probe represent the main

inspection strategies considered in this work.

The dimensions of the probe are small relative to the size of the disc bores, so the entire region

of interest in a given disc section cannot be inspected from a single probe position. In addition,

the discs need to be inspected in all sections circumferentially. In this regard, for any of the

strategies, the inspection procedure involves deploying the probe in a selected position (one of

the positions shown in Figure 7.3), performing the inspection with the selected strategy, and

then rotating the disc as indicated in Figure 7.3 (a), (b), (c) while keeping the probe in a

fixed position relative to the ground to repeat the inspection at constant intervals over the disc

circumference, and thus scan it circumferentially. The probe is then displaced to a neighbouring

position with an equal orientation, and the circumferential inspection scan is repeated. This

is executed for probe positions over the entire lateral or inner side of the disc to achieve full

coverage.

For the inspection strategies of interest, the probe position relative to the region with potential
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Figure 7.3: Sketches of possible probe positions at the side of the disc (a), at the inner part of
the disc (b), and two probes at both sides of the disc (c). The dimensions are not to scale.
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Figure 7.4: Sketches of inspection strategies corresponding to direct scattering strategies (a);
tandem strategies (b); and strategy using two probes (c). The potential crack is represented by
a red bar, the beam propagation is indicated using green arrows, and the probe is represented
in yellow.

cracks a↵ects the inspection signal intensity. The optimal probe position relative to the imaged

region must therefore be determined for each inspection strategy and for the crack orientations

of interest. The maximum signal intensity achievable with each strategy can then be compared,

and the optimal strategy and corresponding probe positioning can be selected. The SNR can

then be evaluated to determine the viability of the inspection. Analytical solutions to the signals

expected from the inspection in each configuration are not available. Thus, either numerical

solutions or experiments are required, as described in the following section.
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7.3 Study in planar case

The selection of the most suitable inspection strategy and corresponding probe positioning

requires determining the expected signal intensity for the di↵erent configurations of interest.

Considering the di�culty of producing representative subsurface defects in practice, and the

various factors a↵ecting the inspection, the approach adopted in this work is a combination

of finite element (FE) simulations of ultrasound propagation and scattering from the crack,

together with experiments to take into account the noise in practice. The FE simulations are

initially developed in a planar case to have a first study of the inspection strategies, and select

a shortlist of strategies of interest together with the corresponding optimal probe positioning.

This simulation study in the planar case is reported in this section.

7.3.1 Set up of 2D simulations

The aim of the FE simulations is to determine the magnitude of the signals received by the probe

using either of the previously identified inspection strategies for all relevant probe positions and

crack orientations, enabling the subsequent selection of the most suitable strategy. The sim-

ulations were developed using Abaqus - SimuliaTM, Dassaut Systemes R� (Velizy-Villacoublay,

France). Considering that the probe is a linear array of elements, and that the ultrasound prop-

agation and scattering relevant to the inspection occurs in a plane, a two-dimensional domain

was selected for the FE simulations in a first instance, as shown in Figure 7.5. This corresponds

to an idealised situation in terms of measured signal amplitude since it is equivalent to an in-

finitely long crack and an infinite element length in a three-dimensional scenario. However, it

is considered su�ciently representative of the behaviour of ultrasound in a first approximation,

and allows for the formulation of a numerical problem of an addressable size. The probe width

does not a↵ect these simulations, which can therefore be used to provide a first study of the

inspection independently of any probe modifications done in the future to reduce the probe

width.

In order to consider all relevant probe positions and crack orientations, a significant number
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Figure 7.5: Illustrative snapshot of FE simulation corresponding to a single array element
exciting a 5-cycle tone-burst at 10 MHz with a 1 N force normal to the component, which
generates ultrasound that propagates and scatters. The di↵erent colours in the resulting waves
indicate the magnitude of node displacement, although the absolute magnitude is arbitrary
considering a linear behaviour of the waves.

of simulations need to be studied. Instead of simulating each configuration independently, the

FMC [241] corresponding to elements placed over the entire surface of the relevant domain

and spaced 0.3 mm (a distance equal to the probe pitch) is simulated in this work. This then

enables reproducing any beam generated with the probe positioned anywhere in the relevant

domain within a 0.3 mm discretisation interval. The width of the domain selected here, shown

in Figure 7.5, is 100 mm since it is considered to include all relevant probe positions. The

height is 39 mm, which corresponds to the standard thickness of the discs.

Reflections from the lateral boundaries of the domain are undesirable since these boundaries do

not correspond to walls in the discs. Absorbing layers using increasing damping (ALIDs) can

be added to prevent reflections [261,262], but they complicate the preparation of the simulation

and increase the simulation size to some extent. In this work, signal subtraction was employed.

This involves conducting the simulations exciting one element and monitoring in all elements of

the FMC both with and without the crack, and then subtracting the resulting signals to isolate

only the signals associated with scattering from the crack. In this manner, the undesirable

boundary reflections are e↵ectively eliminated from the simulated signals. This is also useful
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when reflections such as that from the back wall need to be suppressed to isolate the signals

associated with crack scattering only.

In the simulations, the crack was approximated as a slit of 0.7 mm height and negligible width,

as highlighted in Figure 7.5, which matches the characteristics of the cracks of interest. This

was created in Abaqus CAE, by untying the nodes corresponding to each side of the crack using

the command Assign Seam. Since the orientation of the cracks of interest can vary between ±20

degrees relative to the vertical direction, crack angles at 0�, 5�, 10�, and 20� were all simulated

in order to determine the evolution of the received signals with crack orientation. In this case,

positive crack angles denote clockwise rotations of the crack in Figure 7.5. The symmetry of the

domain implies that the response from negative crack angles can be inferred from the positive

crack angles studied.

The presence of a crack a↵ects the mesh generated by Abaqus to discretise the domain, particu-

larly if it is an angled crack. Variations in the mesh lead to small variations in the signal, which

translates as noise in the final signals obtained after signal subtraction. In order to prevent

numerical noise due to mesh di↵erences, simulations without crack were repeated for all the

di↵erent meshes used in the simulations with crack.

The material properties of the disc were assumed isotropic and homogeneous, without grain

scattering. The frequency employed in the simulations is 10 MHz. The global element size of

the mesh is 0.0198 mm to allow 16 elements per wavelength of the slower wave, the shear wave.

The simulation time step is 2.5·10�9 s to ensure stability and therefore convergence according

to Lax’s equivalence theorem [263]. The total simulation time is 5.4·10�5 s to allow the signals

corresponding to the shear wave to complete the longest paths, which correspond to tandem

strategies.

The simulated excitation of an element was applied to specific nodes selected based on the

geometric position corresponding to the element, and the received signals were also monitored

in specific nodes based on position of the receiving elements. A five-cycle toneburst was used

as a representative approximation of the excitation signal, with a sampling period equal to the

simulation step time.
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7.3.2 Implementation of 2D simulations

The FE simulations were initially implemented in Abaqus Explicit to ensure valid results.

Pogo [264] was subsequently employed to repeat the simulations exciting each of the nodes over

the top surface of the domain in order to simulate the entire FMC. The use of Pogo enabled a

reduction of the computational time by near two orders of magnitude relative to Abaqus.

The total number of simulations required was significant. The full FMC corresponding to 333

elements had to be simulated for each crack angle and also for each mesh without crack, resulting

in a total of over 3000 simulations. In order to fully automate the process of executing the

simulations in Pogo, a Matlab code was developed. Using this code, the full FMC simulations

corresponding to all relevant crack angles, as well as the absence of crack were completed.

The resulting, simulated time-traces corresponding to a pair of elements in the FMC present a

low numerical noise, as can be seen in Figure 7.6, which corresponds to a time-trace without

signal subtraction. The resulting time-traces also show that in general the signals associated

with crack scattering are practically indistinguishable in amplitude compared to the back wall

reflection or surface waves, which suggests that an in situ inspection using single-element probes

is unlikely to be viable, and instead PAUT is preferrable. An imaging technique that combines

the signals corresponding to all pairs of transmitter-receiver elements in a probe is therefore

required to generate an image of the crack with a higher signal amplitude.

7.3.3 Imaging

A signal received at a given instant of time for a pair of transmitter-receiver elements is gen-

erally the result of a scattering event that can have occurred at any point such that the wave

propagation time from the transmitter to that point plus the propagation time from that point

to the receiver is equal to the time at which the signal is received in the time-trace. For each

inspection strategy and each time instant in the time-trace, the possible origin of the scattering

event can be on a one-dimensional set of points in the imaged region, provided that the received

signal is the result of primary scattering, and that the inspection strategy in terms of number
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Figure 7.6: Representative time-trace associated to a pair of transmitter-receiver of the FMC
without signal subtraction.

of reflections of the wave on boundaries is specified. For a direct scattering inspection strategy

using longitudinal waves (an LL strategy), this one-dimensional set of points defines half of an

elliptical curve. The foci of the ellipse are at the positions of the transmitter and receiver, and

the major axis of the ellipse is equal to the product of the time at which the signal is received

and the longitudinal wave propagation velocity. For other inspection strategies such as direct

scattering strategies combining two wave modes or tandem strategies, the points define a more

general curve.

The behaviour of ultrasonic waves in a bulk medium can be considered to be linear provided that

the wave amplitude is relatively low. The signals received in each pair of transmitter-receiver

elements can then be combined using superposition to form an image. The one-dimensional

curves of points associated to a scattering event for di↵erent pairs of transmitter-receiver gen-

erally coincide at the image points with a scatterer, and di↵er in the rest of the image. In

this regard, a suitable imaging method is to assign a value to each pixel equal to the sum of

the signals received in all pairs of transmitter-receiver, evaluated at the instant of time cor-

responding to the propagation time from the transmitter to the pixel of interest and to the

receiver, with the selected inspection strategy. This method uses all the information available

from any scattering occurring at any point in the image, for the inspection strategy selected.
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In addition, the sum of signals in a point with a scatterer is constructive, whereas the sum

of signals in points that do not correspond to a scatterer tends to cancel out. This imaging

method is equivalent to the standard total focussing method (TFM) [241] when used with an

LL inspection strategy. In this regard, TFM is the reference imaging method selected in this

work.

For the direct scattering inspection strategies, TFM with the wave propagation velocity of

either longitudinal or shear waves corresponding to each strategy was used to generate simulated

images corresponding to the crack inspected with a 32-element probe of the same proportions as

the BFAP, from all relevant probe positions introduced in subsection 7.3.1, and for the di↵erent

crack angles. The value in each image pixel was thus calculated as

I(x, z) =

�����

n2X

i=1

h

 p
(xti � x)2 + z2

c1
+

p
(xri � x)2 + z2

c2

!����� (7.1)

where I is the value of the pixel positioned at coordinates x, z in the domain shown in Figure

7.5, xti, xri are the horizontal coordinates of the centres of the transmitter and receiver elements,

respectively, for element pair i which are positioned over the top surface of the domain, c1 is

the wave velocity corresponding to the outgoing wave travelling from the excited element to the

imaged pixel, c2 is the wave velocity corresponding to the returning wave, n is the number of

array elements (32 in this case), and h(t) is the Hilbert transform of the simulated time-traces,

which is used to smooth the resulting TFM image, following [241].

The time-traces employed to generate the images included signal subtraction. This involved

simulating the time-traces in a set-up with the crack, then simulating them in an equivalent

set-up without the crack, and subtracting both signals to remove reflections from the lateral

boundaries of the domain that do not correspond to any boundaries in practice, as previously

described in subsection 7.3.1. It should be noted that ALIDs are an alternative to remove

undesirable reflections from the boundaries of the domain, as previously discussed in subsection

7.3.1, but in this work signal subtraction was employed.

An example of an image produced with (7.1) for an LL strategy is shown in Figure 7.7 (left),
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which corresponds to a 0� crack imaged with a BFAP probe with its centre positioned 15 mm to

the left of the crack. The magnitude in this example image is normalised. As can be seen, the

indication corresponding to the crack is clear, although some artefacts appear in the image. The

artefacts generally correspond to either direct scattering from the crack in wave modes that do

not match the modes used in the strategy selected to produce image (such as mode-converted

waves in the LL strategy used for the image in Figure 7.7 (left)), to scattering from the crack

that reflects on the domain boundaries, or to shadowing created by the crack on the back wall

for probe positions near the centre of the domain. The artefacts, however, do not interfere with

the relevant part of the image, which is the scattering from the crack. Therefore, the image

can be used to determine the magnitude of the indication corresponding to the crack, which is

the desired information.

For the tandem inspection strategies, an adaptation of TFM was used as the imaging method. In

this case, the value in each pixel is the sum of the signals received for all pairs of transmitter-

receiver in the probe, evaluated at the time corresponding to a wave propagating from the

transmitter to the pixel through a specular back wall reflection, plus the time to propagate

from the pixel to the receiver, all with the propagation velocity of the modes corresponding to

each segment in the inspection strategy selected. This can be expressed as

I(x, z) =

����
Pn2

i=1 h

✓p
d2(x�xti)2+4d2(d�z)2

2(d�z)c3
+
p

(x�xti)2(4(d�z)2�4(d�z)d+d2)+4(d�z)4

2(d�z)c4
+
p

(xri�x)2+z2

c5

◆����
(7.2)

where d is the height of the domain, which corresponds to the disc thickness and is taken as 39

mm, c3 is the velocity of the wave travelling between the excited element and the opposite wall,

c4 is the velocity of the wave travelling between the opposite wall and the pixel of interest, c5

is the velocity of the wave travelling between the pixel and the receiving element, and the rest

of variables are equal to those in the previous case. Simulated images were then obtained with

this imaging method for a BFAP probe is all relevant positions and for all crack angles, with

the di↵erent tandem strategies, using the simulated FMC data with signal subtraction.

An example of image corresponding to an LLL tandem inspection strategy is shown in Figure

7.7 (right). As in the previous case, the indication from the crack is clear, but some artefacts
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Figure 7.7: Simulated TFM images for an LL direct scattering inspection (left) and an LLL
tandem inspection (right). Both images correspond to a BFAP probe positioned with its centre
o↵set 15 mm to the left of the crack, which is 19.5 mm below the surface, and are obtained
from the simulated FMC using signal subtraction. The colour scale in the images is expressed
in decibels relative to the maximum magnitude in the image.

are present. The artefacts are generally caused by signals resulting from interactions with the

crack in wave modes that do not match those of the strategy used in the imaging, and by

the shadowing created by the crack over the domain boundaries. The shadowing artefacts only

a↵ect the region of the image with the crack when part of the probe is positioned above the crack.

In tandem inspections, however, the imaged region exactly below the probe is not relevant, since

the back wall signal masks any crack signal in that region. In practice, this appears as a large

region with back wall signal only, as confirmed in Figure 7.14 (right) of subsection 7.4.3. Hence,

the relevant information, which is the magnitude of the crack indication, can be extracted from

the simulated images for the probe positions of interest.

In all simulated images, the axes used were selected to match the XZ axes of the simulation

set-up shown in Figure 7.5. Using these axes, the position of the crack in all images was 50 mm

in the horizontal direction (X direction in Figure 7.5), and 19.5 mm in the vertical direction (Z

direction in Figure 7.5). The position of the probe was also defined in these same axes when

reporting results of crack indication intensity as a function of probe position. The imaging

region was defined such that the indications from the crack and from the back wall were clearly
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visible, with a significant margin. This generally led to images that were 48 mm in the vertical

direction, and 40 mm in the horizontal direction (20 mm at each side of the crack), such as

those shown in Figure 7.7. In specific configurations where the position of the probe was near

the lateral boundaries of the domain in Figure 7.5, the imaging region was increased in the

horizontal direction to ensure that the regions corresponding to the probe position and back

wall indication were included in the image, with at least a 5 mm margin.

7.3.4 Results of 2D simulations

The quality of the images obtained with each inspection strategy and configuration is assessed

based on the maximum amplitude from the indication corresponding to the crack in the TFM

image, since the objective of the inspection is the detection of the cracks of interest. This was

implemented by defining a square region surrounding the crack, 2.5 mm from the crack centre

in the vertical direction and 3 mm in the horizontal direction, for all simulated images, and

recording the value of maximum amplitude.

The value of amplitude of the crack indication was extracted relative to the amplitude of

the back wall reflection in order to have a reference. This was implemented by recording

the maximum amplitude of the crack indication in the images obtained using the simulated

FMC with signal subtraction, and then recording the maximum amplitude from the back wall

indication in images generated using a simulated FMC without signal subtraction. The ratio of

amplitudes in decibels was then saved. It should be noted that signal subtraction only removes

signals corresponding to reflections from boundaries, but it does not a↵ect the amplitude of the

signals scattering from the crack, so the desired ratios can be reliably obtained. The probe is

composed of 32 elements with a 0.3 mm pitch, as previously described in section 7.2.2.

The results of ratios between crack indication and back wall indication corresponding to direct

scattering inspection strategies LL, LS, SL, and SS are plotted in Figure 7.8 as a function of

probe position, and for a 0� crack. As described in the previous subsection, the probe position

here is defined as the position of the centre of the probe in the domain and axes shown in Figure

7.5, and the position of the crack is always at 0.05 m. Thus, a probe position of 0.05 m in
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Figure 7.8 corresponds to a configuration with the probe directly above the crack. A 0� crack

is used to initially evaluate the strategies since it is the most critical orientation, so it can be

used to select the strategies that can be viable and need to be explored further. The results of

the simulations in Figure 7.8 show that the intensity of the crack indication can reach values of

approximately -30 dB relative to the back wall indication, and that these are achieved with the

LL and SS strategies. With the LS and SL strategies, the crack indication can reach maximum

values of approximately -34 dB relative to the back wall indication.

The results in Figure 7.8 also show that the crack intensity varies significantly as a function

of probe position. Interestingly, the maximum amplitude when inspecting a 0� crack is not

achieved with the probe centred above the crack, but with the probe centre o↵set 12 mm with

respect to the crack. This result agrees with some of the results in the literature, e.g. [265], [266],

which suggest that the maximum scattering amplitude is achieved when striking a crack at

angles of approximately 30� for similar cracks. Performing the inspection with a probe position

relative to the inspected region near the configuration with maximum amplitude is important,

since the significant variations in amplitude shown in Figure 7.8 for di↵erent probe positions

can have an important impact on detectability.

The results of ratios between crack indication and back wall indication corresponding to tandem

inspection strategies LLL, LLS, LSL, LSS, SLL, SLS, SSL, SSS are plotted in Figure 7.9 as a

function of the probe position, for the same 0� crack. As in the previous case, the probe position

is defined as the position of the centre of the probe in the domain and axes shown in Figure 7.5,

and the position of the crack is always at 0.05 m. In the case of tandem inspection strategies,

probe positions near the region above the crack are not valid since, in these configurations, the

indications from the crack and the back wall overlap and cannot be distinguished, as previously

mentioned in subsection 7.3.3. The invalid range of probe positions was determined by imaging

various experimental FMC acquisitions of a disc with a back wall signal, as described in section

7.4.3 and shown in Figure 7.14 (right) for an LLL strategy, and visually identifying the image

region covered by the back wall signals. The approximate invalid interval of probe positions

is marked with a red band in Figure 7.9. Interestingly, some of the results obtained in these

invalid probe positions follow a di↵erent trend from those in the rest of positions for some
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Figure 7.8: Curves of ratio between crack indication and back wall indication for direct scat-
tering strategies LL, LS, SL, SS, and vertical crack, as a function of position of array centre.
The position of the array centre is relative to left domain boundary in Figure 7.5. The crack
is positioned at 0.05 m relative to the same left domain boundary, so an array position of 0.05
m corresponds to the array positioned directly above the crack. The probe is composed of 32
elements with a 0.3 mm pitch.
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Figure 7.9: Curves of ratio between crack indication and back wall indication for the tandem
strategies LLL, LLS, LSL, LSS, SLL, SLS, SSL, SSS, and vertical crack, as a function of position
of array centre relative. The position of the array centre is relative to left domain boundary
in Figure 7.5, so it is expressed in the same X axis in Figure 7.5. The crack is positioned
at 0.05 m relative to the same left domain boundary. The interval marked with a red band
corresponds to the invalid probe positions, where the reflections from the back wall mask any
crack indications. The probe is composed of 32 elements with a 0.3 mm pitch.

of the strategies. This is a consequence of the fact that back wall shadowing from the crack

occurs in these configurations, and this back wall shadowing appears in the images generated

when performing signal subtraction, overlapping with the region corresponding to the crack

indications, and a↵ecting the magnitude of the indications.

7.3.5 Selection of strategies of interest

Considering the results shown in Figures 7.8 and 7.9, the strategy that yields the highest crack

indications is the tandem strategy LLL. The magnitude of the indications of the SLL strategy

can be near that of the LLL strategy. However, the SLL strategy involves exciting shear waves,

which can be di�cult to achieve in an on-wing inspection since the BFAP probe is designed to

generate longitudinal waves. Thus, considering that both LLL and SLL are tandem strategies

that are expected to yield similar crack indications, and that the SLL strategy can be di�cult



7.3. Study in planar case 369

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Position of array centre relative to left boundary of the domain [m]

-55

-50

-45

-40

-35

-30

-25

-20

-15

R
a

tio
 b

e
tw

e
e

n
 m

a
xi

m
u

m
 in

d
ic

a
tio

n
 

fr
o

m
 t

h
e

 c
ra

ck
 a

n
d

 t
h

e
 b

a
ck

 w
a

ll 
[d

B
]

0 deg
5 deg
10 deg
20 deg

Figure 7.10: Curves of ratios between crack indication and back wall indication for direct
scattering strategy LL, and crack orientations of 0�, 5�, 10�, and 20�, as a function of position
of array centre. The position of the array centre is relative to left domain boundary in Figure
7.5. The crack is positioned at 0.05 m relative to the same left domain boundary.

to implement in practice, the SLL is disregarded.

The LLL strategy is then considered the most suitable strategy based on the 2D results. The

LLL, however, involves the use of waves travelling a relatively long path, which, when con-

sidering 3D e↵ects, can lead to a significant reduction in signal intensity due to beam spread.

Direct scattering strategies involve shorter paths, and therefore a less significant reduction in

signal due to beam spread, particularly in the 3D case. The direct scattering strategies that

yield the highest signals are LL and SS. SS is not considered suitable in practice since the

shear wave signals from the crack arrive at approximately the same time as the longitudinal

wave reflections from the back wall, which mask any crack indication. Therefore, the selected

strategies are LL and LLL, which need to be explored further.
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Figure 7.11: Curves of ratio between crack indication and back wall indication for the tandem
strategy LLL, and crack orientations of 0�, 5�, 10�, and 20�, as a function of position of array
centre relative. The position of the array centre is relative to left domain boundary in Figure
7.5. The crack is positioned at 0.05 m relative to the same left domain boundary. The invalid
interval of probe positions is marked with a red band.

7.3.6 Optimal probe positioning

The intensity of the crack indications depends on the probe positioning and on the crack

orientation. In order to determine the optimal probe positioning for the selected strategies

LL and LLL, the ratios between crack indication and back wall indication as a function of

probe positioning were also generated for crack orientations of 0�, 5�, 10�, and 20�. The results

corresponding to the LL strategy are plotted in Figure 7.10, and the results corresponding to

the LLL strategy are plotted in Figure 7.11. As can be seen in the plots, in both cases the curves

corresponding to a 0� crack are symmetrical as expected, whereas the other curves present an

asymmetry that increases as the crack angle increases. The plots also show that the maximum

intensity of the crack indication varies for the di↵erent crack orientations, with lower values as

the crack orientation is closer to vertical, as expected.

The optimal probe positioning for the LL strategy is relatively similar for all crack orientations,

as can be seen in Figure 7.10. The probe centre needs to be o↵set between 8 mm and 12 mm
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from the position above the potential crack. Since the variation in intensity in this interval is

relatively low, and the most critical crack orientation is the vertical crack, the optimal probe

positioning for the LL strategy is taken to be with a 12 mm o↵set relative to the crack. Or,

in other words, imaging in a region o↵set 12 mm from the probe centre yields the highest

detectability. This corresponds to an inspection at an angle of approximately 31.6�.

The optimal probe positioning for the LLL strategy is also similar for all crack orientations, as

can be seen in Figure 7.11. The probe centre relative to the imaged region needs to be o↵set

the minimum distance from the position above the crack, provided that it does not involve

entering into the invalid interval marked in red in Figure 7.11. This corresponds to an o↵set of

approximately 12 mm, which coincides with the optimal probe positioning for the LL strategy.

Thus, only one probe positioning needs to be considered when exploring further the LL and

LLL strategies to determine their viability, which is with an o↵set of 12 mm and approximately

corresponds to the probe positioning shown in Figure 7.3 (a) for a crack lying on the plane

cutting the disc in the same image.

7.4 Study considering 3D e↵ects

The simulations presented in the previous section were developed in 2D. The planar case pro-

vides a valid first approximation, but 3D e↵ects are expected in practice, which can reduce

the intensity of the signals from the crack. The impact of 3D e↵ects on the resulting signal

intensity, as well as the noise levels in practice, need to be quantified. 3D simulations and

experiments were therefore conducted for the inspection strategies selected and the optimal

probe positioning in order to estimate the expected inspection performance in the reference

on-wing inspection case. These are presented in this section.



372 Chapter 7. Study of Illustrative Inspection Case

7.4.1 Simulations in 3D

The commercial simulation software CIVA [267] was used to develop 3D simulations. The

development of the 3D simulations using Pogo was considered, but it was disregarded since the

required number of nodes to simulate the entire domain in 3D was excessively large for the

computational resources available. The use of a hybrid model such as [268], which combines

FE simulations of complex parts of the model such as defect scattering together with analytical

solutions of simple parts such as beam propagation, was also considered, but it was not used

since the technology readiness level (TRL) of the software available was not su�cient to conduct

all the simulations required in this work.

The 3D simulations in CIVA involved simulating the FMC for the selected strategies LL and

LLL and for the optimal probe positioning, which corresponds to the probe centre o↵set 12 mm

relative to the crack. The simulations were implemented for a probe with the characteristics

of the BFAP, described in subsection 7.2.2. The crack was selected to be circular with 0.7 mm

diameter and vertical orientation, as it is the most critical case. The probe was positioned on

the surface of a prismatic domain. The distance between the probe and the opposite wall was

selected to be 39 mm, to match the disc thickness, and only reflections on this opposite wall

were considered (the lateral dimensions of the domain were significantly larger and reflections

from these were not included). The material properties, crack positioning, inspection frequency,

and excitation used in the 3D simulations were the same as those in the 2D case.

The main result of the simulations in 3D was an FMC dataset that was used to produce

simulated TFM images corresponding to the selected inspection strategies LL and LLL. The

images were generated using the same imaging techniques described in subsection 7.3.3. Two

TFM images for the LL and LLL inspection strategies considering 3D e↵ects are shown in

Figure 7.12. As can be seen, the simulated images show the crack indication for both LL and

LLL strategies, as well as the back wall signals.

The images in Figure 7.12 also present artefacts. In particular, Figure 7.12 (left) presents

artefacts that are due to the signals from the back wall reflection extending towards the laterals,
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which are typical in TFM images, and additional artefacts near the horizontal position of 55

mm and vertical position of 30 mm, which are due to mode-converted waves scattering from

the crack.

Figure 7.12 (right) also presents artefacts, which are more significant. The main artefact in

Figure 7.12 (right) is vertical and covers a significant part of the image, approximately between

horizontal positions of 30 mm and 47 mm. This is caused by the signals reflecting at the back

wall, which arrive at a similar time at the probe as any signals corresponding to a tandem

inspection for any potential defects in the region directly below the probe, and thus are imaged

as an artefact. The similar arrival time is due to the fact that any signals corresponding to

a tandem inspection for any potential defects directly below the probe would travel from the

probe to the back wall, then to the crack, and back to the probe, following a very similar path

to signals simply travelling from the probe to the back wall, and back to the probe. The artefact

disappears in the regions at the sides of the probe location, where the path of any signals of

a tandem inspection for any potential defects di↵er significantly in length with respect to the

path of signals reflecting at the back wall only. Figure 7.12 (right) also presents additional,

smaller artefacts, which are due to mode-converted waves.

The crack signal was determined for both the LL and LLL strategies. In both cases, the crack

signal was recorded relative to the back wall reflection in order to have a reference. The crack

signal relative to the back wall reflection is -43.54 dB for the LL strategy, and -47.58 dB for the

LLL strategy, both of them for the optimal probe positioning with an o↵set of 12 mm relative

to the crack.

7.4.2 Convergence of 3D simulations to 2D

The results of intensity of the crack indication in 3D present a significant reduction from those

in the 2D case shown in Figures 7.8 and 7.9, which is a consequence of the 3D e↵ects. In order

to elucidate the impact of the 3D e↵ects, and determine whether the 3D results tend towards

matching the 2D results as the crack length increases in the passive direction of the probe, a

set of 3D simulations with di↵erent crack lengths were conducted in CIVA. It should be noted
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Figure 7.12: TFM images generated with the 3D simulated FMC for a 0.7 mm vertical crack
with a 12 mm o↵set from the probe, and for the inspection strategy LL (left) and LLL (right).
Both images are normalised. (left) presents artefacts due to mode-converted waves, and due to
the back wall signals extending laterally. (right) presents a significant artefact, which is due to
the back wall reflection arriving at the same time as any potential defects in the region directly
below the probe, as well as additional, smaller artefacts due to mode-converted waves.

that the signals simulated with CIVA are more approximate than those of the FE simulations,

and this is more prominent for smaller defects.

The FMC was simulated using CIVA for a set of vertical cracks with 0.7 mm height and lengths

of 100 mm, 5 mm, 2 mm and 0.7 mm. The inspection strategy selected here was LL, as it is

considered to be representative of the trends in the convergence of 3D simulations to a planar

case. The inspection parameters and probe used in the simulations were the same as in those

described previous subsection.

The results of ratios between crack indication intensity and back wall intensity for di↵erent crack

lengths are shown in Figure 7.13. The results show that the intensity of the crack indication

varies significantly with crack length. It increases rapidly as crack length increases for lengths

of a few millimetres, and then presents an asymptotic trend. The results also show that, in

the case of a 100 mm long crack, the intensity of the crack signal relative to the back wall

signal in 3D converges to the 2D results in Figure 7.8, confirming a good agreement between

the planar and 3D cases. It should be noted, however, that the results obtained with CIVA
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Figure 7.13: Ratio between intensity of crack indication and back wall indication for vertical
cracks of 0.7 mm height and various crack lengths, showing the impact of 3D e↵ects on crack
signals. The ratio between intensity of crack indication and back wall from the planar simula-
tions is also included with a dashed line as a reference, elucidating the convergence of the 3D
simulations to a planar case. A logarithmic scale is used in the horizontal axis.

present a certain degree of inaccuracy, especially for the smaller defects, which is associated to

the approximate methods employed by the software.

7.4.3 Experimental noise incorporation

The signals and images generated with the simulations correspond to an ideal scenario. In

order to consider the noise levels in practice, 50 FMC acquisitions with an averaging of 10 were

conducted in a disc sample. The probe was positioned at the lateral side of the disc in all 50

acquisitions, but it was repositioned to a di↵erent location for each of the 50 acquisitions in

order to obtain a di↵erent measurement of any potential coherent noise originating from the

material.

The experimental measurements confirmed a certain level of coherent noise, which is attributed

to grain scattering. A set of ten equivalent FMC acquisitions were also conducted on two

aluminium blocks with a similar thickness to the disc and a fine grain in order to determine

whether the noise changed. The TFM images from the aluminium blocks showed a marked
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Figure 7.14: Illustrative TFM images resulting from the combination of the simulated scattering
from the crack in 3D with experimental noise. The images correspond to an LL direct scattering
strategy (left), and an LLL tandem strategy (right), with a 12 mm o↵set between probe centre
and crack position, and both images are normalised.

reduction in coherent noise levels, confirming that the noise in the disc measurements can be

attributed to grain scattering.

The 50 experimental FMC acquisitions on the disc containing the noise were combined with

the 3D simulated signals described in subsection 7.4.1, using the amplitude of the back wall

indication as common reference for amplitude. The direct reflection from the back wall was

removed from the simulated signals before combining them with the experimental measurements

in order to retain only the simulated signals associated to crack scattering. TFM images were

subsequently generated in the same manner as described in subsection 7.3.3. Two of these

images are shown in Figure 7.14 for the two inspection strategies LL and LLL. These resulting

images reproduce the images that would be obtained in practice when inspecting for the cracks

of interest in the reference on-wing inspection case, since they correspond to the superposition of

the experimental measurements of noise and back wall reflection in a disc with the 3D simulated

signals of scattering from the crack.

The resulting images indicate that the crack is not visible, neither with the LL strategy nor

with the LLL strategy, as can be seen in Figures 7.14 (left) and (right), respectively. This is

due to the fact that the noise magnitude is higher than the magnitude of the crack signals. The



7.4. Study considering 3D e↵ects 377

noise is particularly localised in the region below the probe, and tends to reduce in the lateral

direction. The results in the previous section indicate that probe positioning that yields the

highest intensity of the crack indication is with the probe centre o↵set 12 mm from the imaged

region, both for the LL and LLL strategies. In addition, as previously mentioned in section

7.1, any potential cracks are considered to be near the centre of the discs. In this regard, a

region of interest can be defined, such that the inspection only considers indications in that

region. The magnitude of the crack indications relative to the noise can then be evaluated in

that region. The region of interest used in this work is depicted in Figure 7.14, and corresponds

to a rectangular region that is 7 mm from the disc surfaces, with a lateral edge 10 mm from

the probe centre, and the other lateral edge 30 mm from the probe centre.

The SNR in the region of interest for each inspection strategy can then be evaluated in two

steps. First, the maximum amplitude corresponding to the noise in the region of interest

can be measured relative to the back wall amplitude for 50 images generated with the 50

experimental noise measurements obtained moving the probe to di↵erent positions, without

any crack signal. Second, the maximum amplitude of the crack indication relative to the back

wall can be measured in an image generated using the 3D simulations for a vertical crack (the

most challenging orientation), as previously described in subsection 7.4.1. Then, using the

back wall indication as a common reference, the SNR can then be evaluated as the di↵erence

between the maximum amplitude of the crack indication expressed in decibels and the maximum

amplitude corresponding to the noise also expressed in decibels. It should be noted that this

evaluation of the SNR is based on 50 FMC measurements with the probe in di↵erent positions

on a given disc to consider variations in the grain noise. The grain noise in di↵erent discs is

assumed to be similar to the grain noise in the disc used for the experiments, which is taken as

a representative reference.

The evaluation of the SNR was implemented for both the LL and LLL inspection strategies.

The maximum amplitude of noise in the region of interest, relative to the back wall, for the 50

experimental acquisitions is plotted in Figure 7.15 (left) for the LL strategy, and in Figure 7.15

(right) for the LLL strategy. The plots show some variation in the noise levels, which is due to

the variation in the grain scattering noise in each measurement. However, in general the plots
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Figure 7.15: Maximum noise amplitude relative to maximum back wall amplitude in the region
of interest for 50 images produced using experimental data and the LL strategy (left), and the
LLL strategy (right).

show that the maximum noise indication is between -31.5 dB and -36 dB relative to the back

wall for the LL strategy, and between -28.5 dB and -33 dB for the LLL strategy. The values

of crack indications obtained from the simulated signals are -43.54 dB for the LL strategy and

-47.58 dB for the LLL strategy, which are lower than the noise levels. Therefore, the resulting

SNR is negative, which implies that the crack is not detectable with either inspection strategy.

7.5 Results of inspection viability and discussion

The results of the inspection study described in the previous sections indicate that, in the refer-

ence on-wing inspection case, the inspection is not viable using a single probe. The maximum

intensity of the signals corresponding to the crack is more than 10 dB lower than the maximum

intensity of the noise in the region of interest for both the LL and LLL strategies, which are

the most suitable inspection strategies. It should be noted that the SNR was evaluated for a

vertical crack, which is the most challenging orientation to inspect. However, given that the

crack orientation is considered to vary between ±20 degrees with an unspecified probability

distribution of crack orientation, it is necessary to consider the most critical case.

The fusion of the data corresponding to di↵erent inspection strategies, such as LL and LLL,

could be considered to improve the intensity of the crack signals relative to the noise, following
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the work reported in [269]. However, given the low intensity of the signals corresponding to the

cracks of interest, which are over 10 dB lower than the noise, the potential improvements from

the fusion of data is not expected to be su�cient to make the inspection viable.

The inspection study was developed for a 32 element probe, which is 9.6 mm long. The use

of a longer probe could lead to higher signals corresponding to the crack indication. However,

the improvement is not expected to be significant. In addition, the increase in probe length is

limited by the access requirements, and any larger probe with more elements would require a

greater number of wires to pass through the robot, which would lower its force and could easily

fill the limited space available.

The inspection study suggests that a crack of approximately 2.5 mm in size would be detectable,

based on the simulation results shown in Figure 7.13, and the noise levels measured experimen-

tally. This crack size is significantly larger than the 0.7 mm crack size specified in the reference

on-wing inspection case, which is representative of typical crack sizes that are currently desir-

able to detect in the aerospace sector. However, the availability of a robotic system for on-wing

inspections could enable a higher frequency of inspections in the future, making larger defects

admissible. Thus, it can be relevant to revisit the defect size to be detected in the future, when

a system capable of on-wing inspections is available.

The study was conducted using an inspection frequency of 10 MHz since it is the typical

frequency used for the inspection of discs in the aerospace sector. A lower frequency could be

considered to reduce the noise due to grain scattering in future work. However, the reduction

in frequency cannot be significant as the wavelength of longitudinal waves at 10 MHz is already

near the size of the crack of interest. In order to achieve a viable inspection, it would be

necessary to improve the intensity of the crack signal relative to the noise by over 10 dB, which

is considered to be very di�cult with a moderate frequency reduction.

The most promising inspection solution for the reference on-wing inspection case is considered

to be the use of two probes deployed at opposite sides of the disc, adopting the alternative

inspection strategy mentioned in section 7.2.3 and schematised in Figure 7.4 (d) and (g). How-

ever, the simultaneous deployment of two probes at opposite sides of the disc is not considered
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to be viable using a single robotic manipulator such as those investigated in this work, and

instead would require a di↵erent robot concept.



Chapter 8

Conclusions

8.1 Concluding remarks

8.1.1 General robotic system for on-wing inspections

There is a need for new technology to perform on-wing operations such as inspection and repair

of jet engines, as described in Chapter 1. This need was addressed in this work, focussing on

on-wing inspections in di�cult to access locations.

The on-wing inspection problem was analysed, literature was reviewed, and a novel robotic sys-

tem was proposed to perform on-wing inspections, and potentially repairs. This robotic system

resembles a ’snake-robot’, and is conceived to be capable of inserting an end-e↵ector relying

on reaction forces from the engine, and then deploy it in a desired location. Its development

can be divided into five parts: a fine-positioner, a gross-positioner, an inspection strategy, a

deployment mechanism, and a feedback system. The key part of the work is the development

of the fine-positioner, which was the centre of the research presented in this thesis.

A soft robotic manipulator with fluidic actuation was concluded the most suitable concept for

the fine-positioner. The FMA was identified as a relevant reference device for the fine-positioner.

However, the FMA is designed mostly by intuition, and as a result it has a relatively low force.
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In addition, neither kinematic solutions nor control laws are available for it. Research on design

and control was therefore conducted.

8.1.2 Design

The design of soft robotic manipulators with fluidic actuation was studied from a general

perspective, as presented in Chapter 4. This led to the development of a general framework for

the design of soft robotic manipulators. A set of design principles were derived, which can be

used to determine the most suitable design in each application. These were first applied in a

MIS case study to illustrate the work, verify the study, and provide a foundation for the design

of the fine-positioner. The application of the principles in the case study led to two layouts of

interest. The design principles also served to identify compromises in a set of design parameters

that needed to be optimised. An optimisation procedure was outlined and implemented using

FE simulations. These produced successful results, verifying the work, and leading to the most

suitable design for the MIS case study.

In order to apply the design study to determine the most suitable fine-positioner design, this

was extended to consider the possibility of using any maximum pressure. In addition, a non-

dimensional analysis was developed. The extended design principles, together with the non-

dimensional analysis, were then applied to the design of the fine-positioner. Two main layouts

of interest were found, in a similar manner as in the MIS case study, and compromises were

identified. An optimisation procedure with FE simulations was implemented to resolve these

compromises. This yielded the most suitable design of the fine-positioner, which shows an

important performance improvement with respect to the FMA, which is representative of the

highest performing existing designs.

8.1.3 Control

In terms of control, research on kinematics of continuum robots, on mechanical modelling of the

fine-positioner, and on preliminary control laws was conducted, as described in Chapter 5. The
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kinematics of continuum robots composed of segments with constant curvature bending and

extension capabilities were investigated, which correspond to FMA-type devices. Closed-form

solutions to the full kinematics were derived, which closes a currently open problem. However,

the final design selected for the fine-positioner does not match the deformation modes of this

work, so the control e↵orts then focussed on the derivation of control laws relying on mechanical

modelling.

In terms of mechanical modelling, after exploring various approaches, a model was developed,

which approximates the robot segments as a set of rigid links with articulated joints. The

specific parameters of the model were extracted from FE simulations and experimental mea-

surements. The development of control laws was started in collaboration with Dr Enrico Franco.

Control laws were obtained for planar operation of a robot segment. These are based on the

mechanical model developed. The performance of these new control laws was evaluated in sim-

ulations and successful results were obtained. These control laws in the planar case represent

the basis for the development of control laws for the fine-positioner in 3D, which is expected to

be the next main step of the control work.

In addition to the work on control laws, path planning algorithms were also explored in another

collaboration with Dr Fangde Liu. This resulted in a fast and robust path planning algorithm

for nonholonomic systems, which can be used for navigation inside cluttered environments like

a jet engine.

8.1.4 Concentric tube robots

As part of the exploration of continuum robots for on-wing inspections, research on CTRs

was also conducted, presented in Chapter 3. This led to the discovery of the complete set of

trajectories where follow-the-leader motion is possible in the case of no torsion of the tubes,

closing an open question. The e↵ects of torsion were subsequently studied, and a closed-form

solution to torsion for the case of two tubes was derived. Simulations and an experiment were

finally developed to discuss the e↵ects of torsion, and illustrate the work with a case study.

The results of this research indicate that CTRs are not suitable for on-wing inspections of jet



384 Chapter 8. Conclusions

engines. However, the trajectories discovered show promise in MIS. In addition, it was found

that the use of CTRs with a non-annular cross section would be a suitable solution for the

gross-positioner.

8.1.5 Fabrication and complementary systems

The fabrication of the fine-positioner was also explored, which was aided by a placement at

Tokyo Institute of Technology. A method to fabricate the fine-positioner was selected and

implemented in practice, as summarised in Chapter 6. This method, however, leads to devices

with a low reliability, and needs to be improved.

The development of the other parts of the robotic system for on-wing inspections was also

analysed, and appropriate solutions were identified, as also outlined in Chapter 6. For the

gross-positioner, the solution proposed is to use a non-annular CTR composed of three tubes.

The work completed on CTRs in Chapter 3 is applicable to develop this device. For the

deployment mechanism, various solutions were identified, both for rigid and flexible probes.

These generally rely on the use of a pivoting point between the probe and the fine-positioner, or

the probe elasticity, together with reaction forces from the component to passively compensate

for small misalignments. For the feedback system, shape sensing based on optical fibres together

with a camera and a localisation algorithm were identified as the most promising solutions.

8.1.6 Inspection study

A reference on-wing inspection case was defined and studied using analytical discussion, simula-

tions, and experimental measurements, as presented in Chapter 7. The most suitable inspection

strategy was identified. However, it was found that the inspection is not viable using a single

probe, even with the optimal strategy, since the SNR is excessively low.

Nonetheless, the robotic system proposed is still expected to be useful in general for the on-wing

insertion and deployment of probes inside jet engines. This can be applied to other on-wing
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inspections that can be conducted with a single probe, which include current inspections. In

addition, the fine-positioner developed, and the work on CTRs, are also applicable to MIS,

where there is a significant need for miniature robotic manipulators and similar devices.

8.2 Future Work

The work presented in this thesis addresses the primary challenges for the development of the

inspection system proposed to conduct on-wing inspections of jet engines. In order to create

a working prototype of the complete inspection system that can be translated to industry, the

research conducted on control needs to be extended, and the di↵erent parts of the complete

system need to be further developed and assembled, as summarised in this section.

8.2.1 Control of fine-positioner

In terms of control, experiments need to be conducted to evaluate the performance of the

control law derived in Chapter 5 for a segment of the fine-positioner operating in a plane, and

determine whether it performs as expected in practice, despite the various discrepancies in the

model developed in this work. Once these validation experiments are successfully completed,

this work on control needs to be generalised to obtain control laws for operation of a full

fine-positioner with 6 DOFs in 3D space.

This is expected to be possible by applying the adaptive energy shaping approach used in this

thesis to a full manipulator. However, the generalisation to 3D requires modifications to the

model of a segment of fine-positioner in Chapter 5 to consider deformations out of plane. The

modified, 3D model is expected to be composed of a set of rigid links and elastic joints, in an

equivalent manner as in the model proposed in this work for 2D operation, although research

to select the specific model in 3D and confirm its suitability may be necessary. This future

work on control is expected to lead to a relatively robust fine-positioner capable of accurate

positioning in 3D.
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8.2.2 Fabrication of fine-positioner

The main limitation of the current fine-positioner is its short durability. The method for

fabricating the fine-positioner described in Chapter 6 thus needs to be improved in future work

to achieve longer durability and reliability. This future work on fabrication should lead to a

method to fabricate a fine-positioner composed of three segments that can operate reliably for

tens or hundreds of hours without rupture.

8.2.3 Complete fine-positioner

The combination of the future work on control laws and on fabrication are expected to lead

to a working prototype of the fine-positioner, which represents the key part of the inspection

system. Testing of the prototype of the fine-positioner inside a cluttered region of a jet engine

may also be conducted in the future to confirm its reliable operation when in contact with

representative environments.

This prototype of fine-positioner is not expected to include any specific payload initially, since

the inspection system is developed to be versatile. However, the prototype should include a

working channel to be able to accommodate payload. In this regard, once a first prototype is

available, it can also be relevant to explore minor variations of the design of the fine-positioner

to include working channels of di↵erent diameters. This can be conducted by applying the same

design procedure presented in Chapter 4 but adding working channels of di↵erent diameters

along the central rod.

Another independent, potential future avenue for research in the fine-positioner is to explore the

alternative designs, mostly in terms of the outer wall, derived in Chapter 4. These correspond

to a design with a notched outer structure, and a design with a pleated outer wall, schematised

in Figure 4.10. The main challenge in this potential work is the fabrication of these outer wall

structures in miniature size. If the outer walls can be fabricated, the design framework and

procedure in Chapter 4 can then be applied to determine the optimal design in each case. It

should be noted that the derivation in Chapter 4 relies on a set of assumptions, which are
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noted throughout the chapter, to enable the derivation of a general design framework. Another

independent future avenue for research then is to explore the limitations of these assumptions,

and investigate design layouts outside the boundaries of the design framework defined by these

assumptions.

8.2.4 Further development of other system parts

The gross-positioner described in Chapter 6 is also expected to be fabricated and tested in

future work. This was not conducted as part of the work reported in this thesis since the

reference on-wing inspetion case was found to be inviable using a single probe, and a specific

application for the inspection system was not immediately available. In addition, the fabrication

and testing of a gross-positioner requires equipment that is not readily available, and from a

research perspective is not considered to represent a significant challenge. Instead, the e↵orts

were focussed on developing the main research required to be able to create an inspection system

for each given application, which primarily corresponds to research on the fine-positioner, and

on finding solutions to the di↵erent parts of the inspection system.

The fabrication and testing of the gross-positioner is thus expected to be implemented in the

future, once an application of inspection that can be conducted using a single probe is selected.

A certain degree of redesign of the geometry of the tubes comprising the gross-positioner is

likely to be necessary to adapt it to each application. This can be performed by following an

equivalent procedure as that described in Chapters 3 and 6.

The fabrication and testing of the deployment mechanism is also expected to be conducted in

future work, once a specific application and probe are selected, and a working prototype of

the fine-positioner is available. Similarly, the selection of a specific feedback system, and its

incorporation on the fine-positioner to then test it and improve it iteratively is also expected

to be performed in future work, once a specific application is selected, and a working prototype

of the fine-positioner is available.
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8.2.5 Assembly of complete inspection system

The assembly of the di↵erent parts of the inspection system represents the last main task to

create a working prototype of the inspection system for on-wing inspections. This assembly can

be conducted to some extent for a general gross-positioner, fine-positioner, probe, deployment

mechanism, and feedback system. However, it is expected to require refinement for each specific

application, since all these parts depend in part on the application, so the final assembly of the

inspection system is expected to be conducted once an application that is viable using a single

probe is selected.

The assembly of the di↵erent parts is also expected to require some iteration and testing in a

jet engine to tend to an optimal integration of all parts, and thus create a working prototype of

the inspection system. Once a working prototype is available, entry manoeuvres such as those

described in Chapter 6 can be tested to confirm their viability. The path planner for navigation

inside an engine can also be implemented onto the inspection system once a prototype of

this that can be tested in a jet engine is available. Finally, the technology readiness level of

the working prototype can be advanced, preparing the robotic system for implementation in

industry.

8.2.6 Medical applications

The set of trajectories discovered in Chapter 3 for follow-the-leader motion using CTRs show

promise in MIS. The exploitation of these trajectories to perform new or improved medical

procedures using CTRs may also be explored in future work.

The fine-positioner design found in this work, and the design framework developed in Chapter

4, also show significant promise in MIS. A soft robotic manipulator is well-suited for MIS since

it is compliant and inherently safe, it is MRI compatible, it can be miniaturised, it is low-cost

so it can be disposable, and it is relatively modular and can be easily coupled to other tools.

In addition, the design framework and design procedure developed in this work enable the

determination of the most suitable design for each application. In this regard, applications of
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the fine-positioner to MIS are also an interesting avenue to explore in future work.
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Appendix A

Path planning

The work on path planning completed in collaboration with Dr Fangde Liu is presented in this

appendix.

The work presented in this appendix is an edited version of the work published in:

• F. Liu, A. Garriga-Casanovas, R. Secoli, and F. Rodriguez y Baena. Fast and Adap-

tive Fractal Tree-Based Path Planning for Programmable Bevel Tip Steerable Needles.

Robotics and Automation Letters, 1.2, pp. 601-608, 2016. c� 2016 IEEE.

and is reprinted with permission of the authors.

A.1 Introduction

MIS is becoming the standard of care for a range of medical procedures, including biopsies,

targeted drug delivery, and brachytherapy cancer treatment. The advantages of MIS include

less trauma for the patient, lower risk of complications, and a shorter full-recovery time. Current

standard medical practice uses rigid tools, which enable good accuracy, but are not capable

of accessing locations behind delicate regions. Steerable needles [270], [271] have the potential
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to overcome these limitations, and to improve reliability through automation, resulting in a

significant advancement in keyhole surgery.

Existing steerable needle concepts can be classified in seven di↵erent groups, as outlined in [272]:

base manipulation [273], bevel tip (with and without a ”kinked tip”) [274–276], pre-curved

stylet [277], active cannula [278,279], optically controlled needle [280], tendon actuated tip [281]

and programmable bevel tip [282–284]. The design developed by this author’s colleagues, code-

named Soft Tissue Intervention and Neurosurgical Guide (STING) [285]), has a bio-inspired

design that reproduces the multi-segment ovipositor of certain parasitic wasps, is made of

flexible plastic and is fully Magnetic Resonance Imaging (MRI) compatible. It has the ability

to steer along three-dimensional paths without duty cycle spinning along the insertion axis, as

shown in Figure A.1, and thus o↵ers an ideal target system for the path planning technique

described in this work.

In most of these applications, the uncertainties arising from tissue deformation during insertion

and consequent need of frequent path replanning to track the motion of one or several targets,

warrants a real-time path planning algorithm, with a high update frequency [286]. The design of

real-time path planning algorithms capable of online updates, however, is challenging, especially

when di↵erential constraints are present. The problem is NP-hard [287]. General methods

from variational optimization [288] [289], or approaches from optimal control such as the Gauss

pseudospectral method [290], are capable of accurately finding the optimal solution; however,

they require significant computational time. Potential fields based methods [291] and most other

probabilistic methods are unable to handle nonholonomic constraints. Linear path planners for

chained-form systems [292] have been applied for some steerable needle designs, but cannot

cope with control saturation associated with large tissue deformation. The limited robustness

of probability maps [293] or inverse kinematics based approaches [294] prevents their use in

safety-critical applications, such as in surgery. Path planners based on homotopy groups [295]

or Lie groups [296] exploit symmetries in the path to accelerate the processing speed. However,

these solutions must be computed iteratively due to their nonlinear nature, leading to an

unbounded computational time.
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Figure A.1: a) Rendering of the STING distal end [297] b) STING cross-section with inter-
locking mechanism. c� 2016 IEEE.

Sampling-based methods are the dominant trend [298] in problems with di↵erential constraints.

Standard approaches such as the Dijkstra method, or the improved, heuristics based version,

A* [298], are able to e↵ectively find paths with obstacle avoidance, but the search is excessively

time consuming. Even algorithms that improve on A* by reusing previous search information

[299] require significant computational time, and can only be scaled to multiple CPUs. Rapidly-

Exploring Random Trees (RRTs) [300] [301], and specifically Reachability-Guided RRTs (RG-

RRTs) [302], are becoming increasingly popular due to their ability to quickly explore the

entire domain and cope with curvature constraints for needle steering. RRTs perform well

in environments with relatively simple obstacles, presenting short computational times that

allow online path replanning during insertion [303]. However, in congested environments, with

complex obstacles, even purpose-developed heuristically accelerated RRTs present computation

times that are relatively long and unbounded [304] [305].

A common issue in the majority of existing approaches is that they perform the search sequen-

tially, relying on serial CPU computing, the speedup potential of which is limited. Instead, by

exploiting the power of the Graphics Processing Unit (GPU) for general purpose processing,

the computation time can be reduced by over one order of magnitude. Some early approaches
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to path planning on the GPU are reported in [306] [307], highlighting their potential advan-

tages over CPU-based algorithms. However, the performance improvement of these algorithms

is limited to ten times that of CPU based implementations, a result which can be improved.

Parallelization of RRTs is also reported in the literature [308], although the algorithm is only

scalable to multiple CPUs, and presents a limited speed improvement. This is a consequence of

the search procedure in RRTs, which leads to a variable computational load due to an iterative

growth, potentially causing the system to stall when multiple threads require the same tree

to update simultaneously, and may not meet the ”single instruction multiple data operations”

requirement, which the GPU is designed for.

This paper proposes a novel approach to path planning, which is tailored for a GPU-based

implementation. The strategy introduced in this work employs fractal theory to create a data

structure that enables e�cient parallel path planning. The resulting parallelized problem has a

recursive structure, is adaptable in size, is constructed procedurally, and allows a dense coverage

of the entire domain, as illustrated in Fig. 6.10. For this, the method has been termed Adaptive

Fractal Trees (AFT). The approach adopted in this work presents three main advantages with

respect to existing imaged-based algorithms. First, it works directly with voxels, optimizing

computational performance. Second, it is capable of real-time replanning with a bounded

computational time. Third, it can be used regardless of the number or complexity of the

obstacles, rendering it robust and versatile, with a high success rate compared to other path

planning algorithms.

The paper is structured as follows. The path planning problem for a steerable needle is formally

stated in Section II. Section III provides a description of the AFT approach, together with

an analysis of its specific properties for parallelization. Simulated results, together with the

corresponding discussion, are presented in Section IV, leading to the conclusion of this paper

in Section V.
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A.2 Problem formulation

A.2.1 Path Planning for Programmable Bevel Tip Needles

For the purpose of path planning, only a description of the STING’s distal end is necessary,

since it can be assumed that the body will follow the path dictated by the tip [283]. The robot

configurations form a subspace of the special Euclidian group, with q(t) 2 SE(2) for 2D [284]

and q(t) 2 SE(3) for 3D [297]. The initial and target configurations are indicated by qi and qf ,

respectively. The interaction between needle and tissue, together with the robot design, lead

to a set of nonholonomic constraints, valid at least locally in an infinitesimal neighborhood of

time and space. Defining a direction x tangent to the insertion path, two first constraints arise

from a no-slip condition, Vy = Vz = 0, which are the linear velocities along the y and the z axes

respectively. The STING is designed to steer in 3D without duty-cycling along the insertion

axis, x, hence a kinematic constraint on the rotational velocity along the insertion axis arises,

wx = 0. The curvatures of the resulting path along the y and z directions, defined as ky,z =
wy,z

Vx
,

are determined by the bevel tip geometry. This is specifically calculated to prevent excessive

stress on the needle, leading to a bounded curvature between a minimum Ly,z and a maximum

Uy,z: Ly,z  wy,z

Vx
 Uy,z. Considering these premises, along with a needle design that su↵ers

from negligible torsional e↵ects, we employed the Bishop frame [176] as the most suitable frame

to describe the needle motion.

The obstacles in the configuration space correspond to either physical obstacles or virtual

constraints. Due to tissue deformation, the spatial position of the obstacles may vary [309]. It is

assumed that feedback from their position, as well as from the current and target configurations

of the needle tip, is available from an appropriate source (e.g. an intraoperative imaging or

tracking system).

The aim of a path planner is to find a feasible path from qi to qf that respects all of the

constraints, and optimizes a cost function. In general, the cost function to minimize is defined

as a risk-based function, possibly with additional components, such as the minimization of the

insertion length, as to reduce tissue damage.
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A.2.2 General Path Planning Problem

More generally, we are considering a system described in implicit form by q 2 Rn, with a set of

k  n smooth linearly independent1 nonholonomic Pfa�an constraints

wi(q)q̇ = 0 i = 1, ..., k (A.1)

which may also include any number of obstacles of any complexity, denoted in the configuration

space by Qobs. The path planning problem for this system can be equivalently formulated as a

steering control problem [310].

The corresponding system can be expressed as

q̇ =
mX

i=1

gi(q)ui (A.2)

where m = n� k and u 2 U ⇢ Rm are the control inputs, with

span{g1, ..., gm} = span{w1, ..., wk}? (A.3)

Considering the obstacles Qobs to be static, the path planning problem is then to find the input

functions u1,...,k that steer the system from an initial qi to a target configuration qf , while

optimizing a cost function and avoiding Qobs.

A.3 Adaptive Fractal Trees Algorithm

The recursive nature of motion in nonholonomic systems closely resembles the topological

structure of a tree. The possible motion at each step depends on the previous one, a process

that reverses recursively to the initial point, or the tree origin. Despite the advantages of

1A subset of the constraints may be locally linearly dependent. In such case, the rank of the distribution
associated to the action vectors gi increases locally, without further consequences on the path planning presented
in this paper.
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the parametric form (A.2), path planning for systems with di↵erential constraints remains

challenging; the majority of existing numerical solutions are sampling-based and rely on serial

iterative computing processes, requiring often excessive, and unbounded computational time.

Their parallelization to suit GPU specifications is either di�cult or impossible.

By uniformly discretizing the control space, the path adopts a fractal structure. Such fractal

space can be divided into sub-spaces, in a coarse to fine manner, as

Ts = Ts1 + Ts12 + Ts13 + ...+ Tsi (A.4)

Each subspace Tsi can be parallel processed by the GPU. This results in a novel method for

massively parallel path planning, with an e�cient search. The resolution increases exponentially

with each subspace, leading to fast convergence.

A.3.1 Motion Fractal Tree

Relying on the parametric form of a nonholonomic system (A.2), all possible paths can be

mapped to an L-tree, as shown in Fig. 6.10. Beginning at qi, the first set of tree ramifications

corresponds to the action vectors gi of the system, advancing by an increment that can be

symbolized by �u in each of the s directions. Then, each branch is divided and subsequently

given the motion action inputs, generating a fractal structure.

The number of required increments is determined by the needle insertion distance, and the

computational time is bounded by the limited needle length. A path is then determined by a

string of configurations qT = [i1, i2, ..., iN ], where N is the total number of increments required.

The entire domain of possible motions is discretized exhaustively using a fractal tree, as il-

lustrated in Fig. 6.10. A di↵erential increment between ramifications would lead to an exact

approximation of all possible paths. However, the number of paths increases exponentially

with the number of ramifications and, as the discretization step decreases, the size of the path

space grows, becoming infinite for a di↵erential increment. Hence, for any given application, a

specific incremental step must be selected.
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Figure A.2: Illustration of the adaptive search concept in a two-stage approach. The coarse
tree (green) first explores the entire domain. The fine tree (red) is concentrated around the
most promising region, providing higher resolution. The blue line highlights the most suitable
path. c� 2016 IEEE.

This structured construction of the tree is implemented e�ciently by the GPU, as explained in

the following subsections. This property is in contrast with the random construction of RRTs,

and it represents one of the distinctive advantages of AFT for fast computation.

A.3.2 Adaptive Discretization

By exploiting the tree property, as in (A.4), it is possible to break down the search into sub-

spaces. This division has the particular property that all subspaces share the same number of

motion segments and topology.

Each tree can be parametrized by three elements: l, which corresponds to the segment’s length,
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�k, which describes the branch’s aperture, and C, the tree’s central path. The latter is either

provided by a previous coarse search, or taken as a straight line for the first generated tree.

The size of a tree is therefore adaptable, depending on the construction parameters.

In this way, the path search can be executed in a coarse to fine manner, reducing the problem’s

complexity exponentially, and achieving high accuracy in the fine search. First, the path planner

creates and searches a coarse tree Ts1. Then, the path that minimizes a cost function within Ts1

is used to build a second, finer tree around it, the density of which is increased exponentially

with respect to the previous one.

The adaptable search concept is illustrated in Fig. A.2, where a two-stage approach is depicted.

First, a coarse tree is generated covering the entire domain, in order to determine the most

promising region. Then, a second tree is constructed to perform the fine search, focusing the

computational resources around the region identified by the coarse tree, with a higher density

of paths that minimizes the error. In general, after two or three stages, the desired resolution

is reached.

A.3.3 Parallel Path Planning Algorithm

The AFT path planning algorithm is composed of three parts: (1) motion segment recon-

struction, (2) collision detection and distance to target calculation, and (3) back-tracking and

pooling.

A cost function is defined in order to evaluate the paths and determine the most suitable one.

In this case, the cost function is composed of three parts, as

C(qT ) = w1R(qT ) + w2T (qT ) + w3D(qT ) (A.5)

where wi represents a weighting parameter, R is a risk-based function, T is a function associated

to trauma, and D represents the distance between the needle tip and the target configuration.

The distance to target is defined here as the Euclidean distance.
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The database of paths is generated at any time using the aforementioned tree parameters. The

cache does not need to be stored in memory, which suits the GPU architecture. The initial and

target configurations, as well as the obstacles, are assumed to be available from an appropriate

feedback source. The tree is constructed starting from the initial point. The limited path

length of steerable needles allows a fast computation of the action list.

Figure A.3: Diagram of the enumeration and allocation of tree segments to the GPU threads.
Each tree segment is assigned to one GPU thread. The most suitable path and corresponding
threads are highlighted in cyan. c� 2016 IEEE.

Collision detection is then applied to the cache of paths. Medical applications require high

accuracy, and the anatomical obstacles tend to present complex/irregular boundaries. Here, it

is assumed that some image processing has been applied on the raw feedback data, and the

voxels representing the obstacles have been identified. The path planner proposed in this work

then checks each voxel on the tree for possible collision, marking the path segments where this

occurs. The distance to target is also computed and stored for each segment.



434 Appendix A. Path planning

Back-tracing is then performed. It begins with checking whether the segments are collision-

free. Then it proceeds towards the tree root, assessing possible collisions within the paths. If

all segments of a path are collision-free, then it is marked as viable.

Finally, a parallel maximum pooling is executed, selecting, among the collision-free paths, the

one that minimizes the cost function. This path then becomes the central line for the next

stage, around which the path planner then refines the search.

Algorithm 1 AFT Basic Algorithm
Input: qi, qf , Qobs

Output: qcmin

Initialization
1: N,B, J
2: qT = ;

Recursion Loop
3: for j = 1 to J do
4: RefineTreeAround(qT )
5: for all ID: i  N do
6: qi  MotionPlan(i)
7: ci  Cost(qi)
8: end for
9: T  IndexOfMin(c1, c2, . . . , cN)
10: end for
11: return qT

As a result, the method described here combines the robustness of RRTs with the parallelization

possibilities of path caches, leading to an algorithm that is advantageous with respect to both.

This algorithm is reported as Algorithm 1. The initial and target configurations, as well as the

obstacles, are first inputted. The parameters for the tree construction, l, �k and C, are then

determined according to the number of segments, N , and branches, B. The recursion depth, J ,

is also introduced, which represents the number of tree refinements (typically two). A recursion

loop is then executed to generate and evaluate a tree at each step. The tree is adapted in the

function RefineTreeAround(qT ) around path qT , which is taken to be straight for the first

iteration. All processes are executed in parallel to construct the tree and compute the cost of

each path, as defined in equ.(A.5), which represents the function Cost(qT ). Subsequently, the

minimum cost path is identified in the function IndexOfMin, which is executed by parallel

reduction. This minimum cost path is used in the next iteration of the ”for loop”. When
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iteration J is reached, the path that minimizes the cost function, qT , is determined, which is

the output of the algorithm.

Fractal trees can be easily parallelized. Each tree segment can be allocated to a GPU thread,

as shown in Figure A.3, optimizing the use of computational resources. The cost evaluation

and motion plan reconstruction are the kernel for parallel computing, which consumes the

majority of computational time and space. Due to the GPU architecture, the kernel (line 5-8

of Algorithm 1) is optimized, as described in Algorithm 2.

Algorithm 2 AFT Optimized Kernel
Input: ID, qi, qf
Output: cID

Initialization
q  qi

2: i 0
parentID is rootID

4: childID is rootID
Cost(qparentID) 0

6: while childID 6= ID do
childID, parentID  Child(parentID, ID)

8: if childID 6= ; then
parentIDcur  parentID

10: q  q +Action(childID)
continue

12: end if{Calculating the last segment cost}
Slast  BuildSegment(parentIDcur, parentID)

14: p1, p2, p3, . . . , pw  Dice(Slast).
cID =

PN
i=1 Cost(pi)

16: end while
SYNCHRONIZE GPU THREADS

18: while parentID is not rootID do
parentID  Parent(parentID)

20: cID  cID +Cost(qparentID)
end while

The inputs of Algorithm 2 are the ID of each segment, and the initial and target configurations.

The algorithm initializes by establishing the maximum path length L and variable i, as well as

as creating an array of costs Cost(qID). To maximize e�ciency, the cost for each segment is

only computed once. As the ID of each segment is allocated, the cost is then calculated and

stored into an array for all segments. The BuildSegment function builds the segment Slast

between the parentIDcur and parentID. Slast is then sampled into p1, p2, ..., pw sub-segments,
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using the Dice function. The corresponding cost of each sample is calculated and accumulated

to define the total cost cID of the whole segment Slast. After synchronizing the parallel threads,

back tracking is then applied to calculate the cost of each path. This is executed using the

function Parent, which determines the parent segment corresponding to each segment. In this

manner, the system tracks back each node to its parent, summing the contribution of each

segment to the aggregate cost, and thus obtaining the total cost associated with each path.

The array of costs for each path is the output of the algorithm.

An important factor for e�cient parallelization is the enumeration of each segment with an

ID. Exploiting the fractal structure of the tree, parent and child IDs have a regular pattern.

By travelling up and down the tree, an enumeration maps each path ID to a series of control

actions.

A.4 Simulation Setup

An application of AFT to minimally invasive surgery is presented in this section, in order to

validate the algorithm in a statistically significant manner. In particular, simulations corre-

sponding to 3D liver navigation are reported, as they showcase the capability of AFT to plan

a path in real-time in a highly congested and complex environment.

Tissue deformation during needle insertion can lead to displacements of a few centimeters.

As a consequence, target migration and variations in the spatial position of the obstacles can

be significant, requiring path replanning with a high update frequency, as the needle is being

inserted. In this work, it is assumed that the initial and target configurations of the steerable

needle, as well as the obstacles, are available from a suitable intra-operative imaging modality,

e.g. Interventional Magnetic Resonance Imaging or Ultrasound.

AFT is specifically designed to recalculate a path as the environment varies during needle

insertion. The short and fixed computational time associated with AFTs allows replanning

with an update frequency that can match the feedback imaging system, eliminating the need

for complex low level control.
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The simulations reported here include a representative set of 100 di↵erent 3D path planning

problems encountered during needle insertion into liver, and simulated online replanning during

needle insertion, with target motion. The 100 problems correspond to di↵erent initial config-

urations randomly generated within a bounded domain, and three fixed targets, as shown in

Figures A.5,A.6. The online replanning is simulated in a particularly complicated needle in-

sertion, with a target moving continuously during the insertion, with a total displacement of

2 cm. The simulations are in a common 3D environment, which represents a segmented CT

scan of a liver (Liver Dataset [311]) in voxel format, with a resolution of 256x256x256. This

CT scan image volume was selected as it includes a high number of vessels that define a chal-

lenging obstacle map, where existing algorithms such as RRTs experience di�culties in finding

a solution. It is assumed that an image processing algorithm is available to label the obstacles

in the intra-operative images [312]. Similarly, it is assumed that the needle configuration can

be estimated from the images [313].

In the simulations, the Cost function is defined to favor the shortest path that arrives closest

to the target, without intersecting any obstacle. The Euclidean distance was used to measure

the proximity to the target. The parameters for the simulations were as follows: maximum

needle curvature = 0.014mm�1; search space = 100⇥ 100⇥ 200mm3; discretization AFT step

= 2mm; maximum insertion length = 160mm; entry points randomly generated in a bounding

box of �30  x  0mm, �5  y  5 [mm] and �83  z  100 [mm] in position, and a

variation of 10 degrees with respect to vector [0, 1, 0] in orientation; target positions [x, y, z] =

[57, 157, 58] , [�57, 157, 58] , [57, �157, �5]mm; cost function parameters: w1 = w2 = w3 = 1;

number of search paths N = 1024 ⇤ 1024 ⇤ 17, B = 17 and �k = 1/280.

In the setup used in this work, the code is implemented in Matlab 2014b (Mathworks Inc.),

Linux Ubuntu 64bit, and executed on an Intel CORE i7 CPU @ 3.2Ghz with a GTX TITANX

from NVIDIA corp., with 3072 threads, a 1GHz base-clock and 12GB of memory. This GPU

has an approximate computing power of 7 TFLOP and supports CUDA 7.5 API [216].

The simulation of RRTs in the same path planning problems is also reported in order to

compare the performance of AFT with one of the most widely used algorithms in MIS. RRTs
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are implemented in the same setup, with a maximum number of iterations of 16,000. An RG-

RRT implementation is adopted, as it provided faster convergence in the tests performed in

this work. A goal bias sampling strategy was used, with 50% of the samples on the target and

the remaining 50% randomly distributed.

The performance tests conducted indicate that, with the setup used in this work, 300 million

paths per second can be evaluated. Consequently, considering a typical surgical application,

where a 20Hz update frequency is required, the algorithm would be capable of assessing 15

million paths per second. This computational power translates into a resolution that approaches

the limits of the imaging device.

A.5 Results and Discussion

The results of an illustrative AFT path planning problem are shown in Fig. A.4. As can be

seen, a high density of paths (red) are surveyed, and the path that minimizes the cost function

is selected (green), with a total computation time of just 5.2 ms.

The results of the simulation of 100 di↵erent AFT path planning problems in a prototypical

scenario are shown in Figure A.5. In this case, only the selected paths are displayed for clarity,

showing the ability of the AFT algorithm to negotiate complex obstacles. The average final error

in the feasible paths identified is 1.45 mm, with a standard deviation of 1.19 mm. The average

computation time is 5.15 ms, with a corresponding standard deviation of 0.048 ms. The small

variation in computation time between the di↵erent simulations is a result of the automatic

speed adjustment of the GPU. However, the computation time is fixed and independent of

the complexity of the obstacles. This represents a significant advantage of AFT in surgical

applications.

In comparison, a standard RRTs implementation, which is taken here to be one of the best

competing algorithms in the literature, performs considerably worse than the algorithm pro-

posed in this work. The RRTs simulation performed on the same data set and with the same

setup indicates that, after 16000 iterations (corresponding to an approximate computation time
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of 30s in the non-optimized implementation in this work), a path is found in 42% less cases

than in AFT. The preliminary paths found using RRTs after 16,000 iterations are shown in

Figure A.6. As can be seen, only the simpler cases are solved, whereas the remaining cases

would require a significantly higher number of iterations to reach a solution.

The relatively low success rate of RRTs in an environment with complex obstacles is a conse-

quence of the search strategy employed by the algorithm. In RRTs, the space is sampled, and

then paths linking to the tree are searched. While this strategy is successful in many environ-

ments, links to the tree can be di�cult to find in the presence of complex obstacles, requiring

high sampling resolution. The computational cost increases exponentially with the number of

samples, hindering the use of RRTs in highly congested environments.

AFTs, on the other hand, provide a higher success rate in real-time, regardless of the number

and complexity of the obstacles. Such robustness is a result of the algorithm construction

and implementation, which exploits the GPU architecture to survey a high number of paths in

parallel. In this regard, the AFT algorithm is particularly suited to surgical applications, where

the ability to update a plan in real-time in the presence of any number of complex obstacles,

would be advantageous.

The result of a simulated online replanning using AFT during needle insertion is shown in

Fig. 6.11. As can be seen, the algorithm initially calculates a path (green). However, as the

target moves during insertion, the online replanning finds a more suitable path (red), which is

re-calculated and improved to account for target motion.

A.6 Conclusion on path planning

E�cient three-dimensional path planning in complex environments remains challenging, es-

pecially in scenarios requiring a real-time implementation. In this work, the path planning

problem can be solved in real-time, even for systems with nonholonomic constraints and com-

plex environments, with a novel algorithm which we named Adaptive Fractal Trees (AFT).

The application of AFT enables the parallelization of the path planning problem, which in
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turn unlocks the massive computational speedup potential of the GPU, leading to ms long

path searches, regardless of the complexity of the surgical scenario. The use of AFT enables

the search to be conducted in a coarse to fine manner, with a database of paths that can be

procedurally produced. In this way, a perfect match between the algorithm and the hardware

capabilities is achieved. In addition, the fractal tree that is generated translates into a dense,

invariant and organized exploration of the entire domain. This represents an advancement

with respect to existing algorithms in terms of robustness and success rate of path planning

in highly constrained and complex environments. As a result, the approach described in this

paper allows the path planning problem to be computed in real-time, with the resolution and

update frequency necessary for many surgical applications.



A.6. Conclusion on path planning 441

Figure A.4: Simulation of a coarse 3D search through the segmented vasculature of liver. The
full tree of paths is colored red. The best path is shown in green. c� 2016 IEEE.
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Figure A.5: Simulation results of liver path planning with the AFT algorithm, showing all of
the best paths which intersect three random targets (blue, green and magenta), varying the
entry position (black dots) and insertion direction. c� 2016 IEEE.
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Figure A.6: Simulation results of liver path planning with the RG-RRT algorithm, showing all
of the best paths that intersect three random targets (blue, green and magenta), varying the
entry position (black dots) and insertion direction. For some entry points, the algorithm fails
to provide suitable paths to reach the targets. c� 2016 IEEE.
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Regarding your request, we are pleased to grant you non-exclusive, non-transferable
permission, to republish the AAAS material identified above in your work identified above,
subject to the terms and conditions herein. We must be contacted for permission for any uses
other than those specifically identified in your request above.
The following credit line must be printed along with the AAAS material: "From [Full
Reference Citation]. Reprinted with permission from AAAS."
All required credit lines and notices must be visible any time a user accesses any part of the
AAAS material and must appear on any printed copies and authorized user might make.
This permission does not apply to figures / photos / artwork or any other content or materials
included in your work that are credited to non-AAAS sources. If the requested material is
sourced to or references non-AAAS sources, you must obtain authorization from that source
as well before using that material. You agree to hold harmless and indemnify AAAS against
any claims arising from your use of any content in your work that is credited to non-AAAS
sources.
If the AAAS material covered by this permission was published in Science during the years
1974 - 1994, you must also obtain permission from the author, who may grant or withhold
permission, and who may or may not charge a fee if permission is granted. See original
article for author's address. This condition does not apply to news articles.
The AAAS material may not be modified or altered except that figures and tables may be
modified with permission from the author. Author permission for any such changes must be
secured prior to your use.
Whenever possible, we ask that electronic uses of the AAAS material permitted herein
include a hyperlink to the original work on AAAS's website (hyperlink may be embedded in
the reference citation).
AAAS material reproduced in your work identified herein must not account for more than
30% of the total contents of that work.
AAAS must publish the full paper prior to use of any text.
AAAS material must not imply any endorsement by the American Association for the
Advancement of Science.
This permission is not valid for the use of the AAAS and/or Science logos.
AAAS makes no representations or warranties as to the accuracy of any information
contained in the AAAS material covered by this permission, including any warranties of
merchantability or fitness for a particular purpose.
If permission fees for this use are waived, please note that AAAS reserves the right to charge
for reproduction of this material in the future.
Permission is not valid unless payment is received within sixty (60) days of the issuance of
this permission. If payment is not received within this time period then all rights granted
herein shall be revoked and this permission will be considered null and void.
In the event of breach of any of the terms and conditions herein or any of CCC's Billing and
Payment terms and conditions, all rights granted herein shall be revoked and this permission
will be considered null and void.
AAAS reserves the right to terminate this permission and all rights granted herein at its
discretion, for any purpose, at any time. In the event that AAAS elects to terminate this
permission, you will have no further right to publish, publicly perform, publicly display,
distribute or otherwise use any matter in which the AAAS content had been included, and all
fees paid hereunder shall be fully refunded to you. Notification of termination will be sent to
the contact information as supplied by you during the request process and termination shall
be immediate upon sending the notice. Neither AAAS nor CCC shall be liable for any costs,
expenses, or damages you may incur as a result of the termination of this permission, beyond
the refund noted above.
This Permission may not be amended except by written document signed by both parties.
The terms above are applicable to all permissions granted for the use of AAAS material.
Below you will find additional conditions that apply to your particular type of use.
FOR A THESIS OR DISSERTATION

 If you are using figure(s)/table(s), permission is granted for use in print and electronic
versions of your dissertation or thesis. A full text article may be used in print versions only
of a dissertation or thesis.



Permission covers the distribution of your dissertation or thesis on demand by ProQuest /
UMI, provided the AAAS material covered by this permission remains in situ.
If you are an Original Author on the AAAS article being reproduced, please refer to your
License to Publish for rules on reproducing your paper in a dissertation or thesis.
FOR JOURNALS:

 Permission covers both print and electronic versions of your journal article, however the
AAAS material may not be used in any manner other than within the context of your article.
FOR BOOKS/TEXTBOOKS:

 If this license is to reuse figures/tables, then permission is granted for non-exclusive world
rights in all languages in both print and electronic formats (electronic formats are defined
below).
If this license is to reuse a text excerpt or a full text article, then permission is granted for
non-exclusive world rights in English only. You have the option of securing either print or
electronic rights or both, but electronic rights are not automatically granted and do garner
additional fees. Permission for translations of text excerpts or full text articles into other
languages must be obtained separately.
Licenses granted for use of AAAS material in electronic format books/textbooks are valid
only in cases where the electronic version is equivalent to or substitutes for the print version
of the book/textbook. The AAAS material reproduced as permitted herein must remain in
situ and must not be exploited separately (for example, if permission covers the use of a full
text article, the article may not be offered for access or for purchase as a stand-alone unit),
except in the case of permitted textbook companions as noted below.
You must include the following notice in any electronic versions, either adjacent to the
reprinted AAAS material or in the terms and conditions for use of your electronic products:
"Readers may view, browse, and/or download material for temporary copying purposes only,
provided these uses are for noncommercial personal purposes. Except as provided by law,
this material may not be further reproduced, distributed, transmitted, modified, adapted,
performed, displayed, published, or sold in whole or in part, without prior written permission
from the publisher."
If your book is an academic textbook, permission covers the following companions to your
textbook, provided such companions are distributed only in conjunction with your textbook
at no additional cost to the user:
 
- Password-protected website

 - Instructor's image CD/DVD and/or PowerPoint resource
 - Student CD/DVD

All companions must contain instructions to users that the AAAS material may be used for
non-commercial, classroom purposes only. Any other uses require the prior written
permission from AAAS.
If your license is for the use of AAAS Figures/Tables, then the electronic rights granted
herein permit use of the Licensed Material in any Custom Databases that you distribute the
electronic versions of your textbook through, so long as the Licensed Material remains
within the context of a chapter of the title identified in your request and cannot be
downloaded by a user as an independent image file.
Rights also extend to copies/files of your Work (as described above) that you are required to
provide for use by the visually and/or print disabled in compliance with state and federal
laws.
This permission only covers a single edition of your work as identified in your request.
FOR NEWSLETTERS:

 Permission covers print and/or electronic versions, provided the AAAS material reproduced
as permitted herein remains in situ and is not exploited separately (for example, if
permission covers the use of a full text article, the article may not be offered for access or for
purchase as a stand-alone unit)
FOR ANNUAL REPORTS:

 Permission covers print and electronic versions provided the AAAS material reproduced as
permitted herein remains in situ and is not exploited separately (for example, if permission
covers the use of a full text article, the article may not be offered for access or for purchase
as a stand-alone unit)



FOR PROMOTIONAL/MARKETING USES:
 Permission covers the use of AAAS material in promotional or marketing pieces such as

information packets, media kits, product slide kits, brochures, or flyers limited to a single
print run. The AAAS Material may not be used in any manner which implies endorsement or
promotion by the American Association for the Advancement of Science (AAAS) or
Science of any product or service. AAAS does not permit the reproduction of its name, logo
or text on promotional literature.
If permission to use a full text article is permitted, The Science article covered by this
permission must not be altered in any way. No additional printing may be set onto an article
copy other than the copyright credit line required above. Any alterations must be approved
in advance and in writing by AAAS. This includes, but is not limited to, the placement of
sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto the
article copies.
Additionally, article copies must be a freestanding part of any information package (i.e.
media kit) into which they are inserted. They may not be physically attached to anything,
such as an advertising insert, or have anything attached to them, such as a sample product.
Article copies must be easily removable from any kits or informational packages in which
they are used. The only exception is that article copies may be inserted into three-ring
binders.
FOR CORPORATE INTERNAL USE:

 The AAAS material covered by this permission may not be altered in any way. No
additional printing may be set onto an article copy other than the required credit line. Any
alterations must be approved in advance and in writing by AAAS. This includes, but is not
limited to the placement of sponsorship identifiers, trademarks, logos, rubber stamping or
self-adhesive stickers onto article copies.
If you are making article copies, copies are restricted to the number indicated in your request
and must be distributed only to internal employees for internal use.
If you are using AAAS Material in Presentation Slides, the required credit line must be
visible on the slide where the AAAS material will be reprinted
If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you
must include the following notice in any electronic versions, either adjacent to the reprinted
AAAS material or in the terms and conditions for use of your electronic products: "Readers
may view, browse, and/or download material for temporary copying purposes only, provided
these uses are for noncommercial personal purposes. Except as provided by law, this
material may not be further reproduced, distributed, transmitted, modified, adapted,
performed, displayed, published, or sold in whole or in part, without prior written permission
from the publisher." Access to any such CD, DVD, Flash Drive or Web page must be
restricted to your organization's employees only.
FOR CME COURSE and SCIENTIFIC SOCIETY MEETINGS:

 Permission is restricted to the particular Course, Seminar, Conference, or Meeting indicated
in your request. If this license covers a text excerpt or a Full Text Article, access to the
reprinted AAAS material must be restricted to attendees of your event only (if you have
been granted electronic rights for use of a full text article on your website, your website must
be password protected, or access restricted so that only attendees can access the content on
your site).
If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you
must include the following notice in any electronic versions, either adjacent to the reprinted
AAAS material or in the terms and conditions for use of your electronic products: "Readers
may view, browse, and/or download material for temporary copying purposes only, provided
these uses are for noncommercial personal purposes. Except as provided by law, this
material may not be further reproduced, distributed, transmitted, modified, adapted,
performed, displayed, published, or sold in whole or in part, without prior written permission
from the publisher."
FOR POLICY REPORTS:

 These rights are granted only to non-profit organizations and/or government agencies.
Permission covers print and electronic versions of a report, provided the required credit line
appears in both versions and provided the AAAS material reproduced as permitted herein
remains in situ and is not exploited separately.



FOR CLASSROOM PHOTOCOPIES:
 Permission covers distribution in print copy format only. Article copies must be freestanding

and not part of a course pack. They may not be physically attached to anything or have
anything attached to them.
FOR COURSEPACKS OR COURSE WEBSITES:

 These rights cover use of the AAAS material in one class at one institution. Permission is
valid only for a single semester after which the AAAS material must be removed from the
Electronic Course website, unless new permission is obtained for an additional semester. If
the material is to be distributed online, access must be restricted to students and instructors
enrolled in that particular course by some means of password or access control.
FOR WEBSITES:

 You must include the following notice in any electronic versions, either adjacent to the
reprinted AAAS material or in the terms and conditions for use of your electronic products:
"Readers may view, browse, and/or download material for temporary copying purposes only,
provided these uses are for noncommercial personal purposes. Except as provided by law,
this material may not be further reproduced, distributed, transmitted, modified, adapted,
performed, displayed, published, or sold in whole or in part, without prior written permission
from the publisher."
Permissions for the use of Full Text articles on third party websites are granted on a case by
case basis and only in cases where access to the AAAS Material is restricted by some means
of password or access control. Alternately, an E-Print may be purchased through our reprints
department (brocheleau@rockwaterinc.com).
REGARDING FULL TEXT ARTICLE USE ON THE WORLD WIDE WEB IF YOU ARE
AN ‘ORIGINAL AUTHOR’ OF A SCIENCE PAPER
If you chose "Original Author" as the Requestor Type, you are warranting that you are one
of authors listed on the License Agreement as a "Licensed content author" or that you are
acting on that author's behalf to use the Licensed content in a new work that one of the
authors listed on the License Agreement as a "Licensed content author" has written.
Original Authors may post the ‘Accepted Version’ of their full text article on their personal
or on their University website and not on any other website. The ‘Accepted Version’ is the
version of the paper accepted for publication by AAAS including changes resulting from
peer review but prior to AAAS’s copy editing and production (in other words not the AAAS
published version).
FOR MOVIES / FILM / TELEVISION: 

 Permission is granted to use, record, film, photograph, and/or tape the AAAS material in
connection with your program/film and in any medium your program/film may be shown or
heard, including but not limited to broadcast and cable television, radio, print, world wide
web, and videocassette.
The required credit line should run in the program/film's end credits.
FOR MUSEUM EXHIBITIONS:

 Permission is granted to use the AAAS material as part of a single exhibition for the
duration of that exhibit. Permission for use of the material in promotional materials for the
exhibit must be cleared separately with AAAS (please contact us at permissions@aaas.org).
FOR TRANSLATIONS: 

 Translation rights apply only to the language identified in your request summary above.
The following disclaimer must appear with your translation, on the first page of the article,
after the credit line: "This translation is not an official translation by AAAS staff, nor is it
endorsed by AAAS as accurate. In crucial matters, please refer to the official English-
language version originally published by AAAS."
FOR USE ON A COVER: 

 Permission is granted to use the AAAS material on the cover of a journal issue, newsletter
issue, book, textbook, or annual report in print and electronic formats provided the AAAS
material reproduced as permitted herein remains in situ and is not exploited separately
By using the AAAS Material identified in your request, you agree to abide by all the terms
and conditions herein.
Questions about these terms can be directed to the AAAS Permissions department
permissions@aaas.org.
Other Terms and Conditions:
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Terms and Conditions

 
The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright. 
 
You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-
alone basis), non-transferable, worldwide, limited license to reproduce the Wiley
Materials for the purpose specified in the licensing process. This license, and any

CONTENT (PDF or image file) purchased as part of your order, is for a one-time
use only and limited to any maximum distribution number specified in the license. The
first instance of republication or reuse granted by this license must be completed
within two years of the date of the grant of this license (although copies prepared
before the end date may be distributed thereafter). The Wiley Materials shall not be
used in any other manner or for any other purpose, beyond what is granted in the
license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the
copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission.

  
With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner.For STM Signatory Publishers

clearing permission under the terms of the STM Permissions Guidelines only, the

terms of the license are extended to include subsequent editions and for editions

in other languages, provided such editions are for the work as a whole in situ and

does not involve the separate exploitation of the permitted figures or extracts,

You may not alter, remove or suppress in any manner any copyright, trademark or
other notices displayed by the Wiley Materials. You may not license, rent, sell, loan,
lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone
basis, or any of the rights granted to you hereunder to any other person.

  
The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto

  
NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES



ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU. 

  
WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.

  
You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

  
IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN. 

  
Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby. 

  
The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party. 

  
This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

  
Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

  
These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns. 

  
In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail.

  



WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms
and conditions.

  
This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

  
This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

  

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses. The license type is clearly identified on the article.
The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-
Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

  
Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)
Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.
Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html
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The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright. 
 
You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-
alone basis), non-transferable, worldwide, limited license to reproduce the Wiley
Materials for the purpose specified in the licensing process. This license, and any

CONTENT (PDF or image file) purchased as part of your order, is for a one-time
use only and limited to any maximum distribution number specified in the license. The
first instance of republication or reuse granted by this license must be completed
within two years of the date of the grant of this license (although copies prepared
before the end date may be distributed thereafter). The Wiley Materials shall not be
used in any other manner or for any other purpose, beyond what is granted in the
license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the
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party re-use of these open access articles is defined by the author's choice of Creative
Commons user license. See our open access license policy for more information.
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Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY
NC ND license requires permission from Elsevier and will be subject to a fee.
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should it consider that the Work infringes those rights in any way.



For STM Signatories ONLY (as agreed as part of the STM Guidelines)

Any licence granted for a particular edition of a Work will apply also to subsequent editions of it and for editions in other 
languages, provided such editions are for the Work as a whole in situ and do not involve the separate exploitation of the 
permitted illustrations or excerpts. 

Other Terms and Conditions:

 

STANDARD TERMS AND CONDITIONS

1. Description of Service; Defined Terms. This Republication License enables the User to obtain licenses for republication 
of one or more copyrighted works as described in detail on the relevant Order Confirmation (the “Work(s)”). Copyright 
Clearance Center, Inc. (“CCC”) grants licenses through the Service on behalf of the rightsholder identified on the Order 
Confirmation (the “Rightsholder”). “Republication”, as used herein, generally means the inclusion of a Work, in whole or 
in part, in a new work or works, also as described on the Order Confirmation. “User”, as used herein, means the person 
or entity making such republication.

2. The terms set forth in the relevant Order Confirmation, and any terms set by the Rightsholder with respect to a 
particular Work, govern the terms of use of Works in connection with the Service. By using the Service, the person 
transacting for a republication license on behalf of the User represents and warrants that he/she/it (a) has been duly 
authorized by the User to accept, and hereby does accept, all such terms and conditions on behalf of User, and (b) shall 
inform User of all such terms and conditions. In the event such person is a “freelancer” or other third party independent 
of User and CCC, such party shall be deemed jointly a “User” for purposes of these terms and conditions. In any event, 
User shall be deemed to have accepted and agreed to all such terms and conditions if User republishes the Work in any 
fashion.

3. Scope of License; Limitations and Obligations.

3.1 All Works and all rights therein, including copyright rights, remain the sole and exclusive property of the Rightsholder. 
The license created by the exchange of an Order Confirmation (and/or any invoice) and payment by User of the full 
amount set forth on that document includes only those rights expressly set forth in the Order Confirmation and in these 
terms and conditions, and conveys no other rights in the Work(s) to User. All rights not expressly granted are hereby 
reserved.

3.2 General Payment Terms: You may pay by credit card or through an account with us payable at the end of the month. 
If you and we agree that you may establish a standing account with CCC, then the following terms apply: Remit Payment 
to: Copyright Clearance Center, 29118 Network Place, Chicago, IL 606731291. Payments Due: Invoices are payable 
upon their delivery to you (or upon our notice to you that they are available to you for downloading). After 30 days, 
outstanding amounts will be subject to a service charge of 11/2% per month or, if less, the maximum rate allowed by 
applicable law. Unless otherwise specifically set forth in the Order Confirmation or in a separate written agreement signed 
by CCC, invoices are due and payable on “net 30” terms. While User may exercise the rights licensed immediately upon 
issuance of the Order Confirmation, the license is automatically revoked and is null and void, as if it had never been 
issued, if complete payment for the license is not received on a timely basis either from User directly or through a 
payment agent, such as a credit card company.

3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is “onetime” (including the 
editions and product family specified in the license), (ii) is nonexclusive and nontransferable and (iii) is subject to any 
and all limitations and restrictions (such as, but not limited to, limitations on duration of use or circulation) included in the 
Order Confirmation or invoice and/or in these terms and conditions. Upon completion of the licensed use, User shall either 
secure a new permission for further use of the Work(s) or immediately cease any new use of the Work(s) and shall 
render inaccessible (such as by deleting or by removing or severing links or other locators) any further copies of the Work 
(except for copies printed on paper in accordance with this license and still in User's stock at the end of such period).

3.4 In the event that the material for which a republication license is sought includes third party materials (such as 
photographs, illustrations, graphs, inserts and similar materials) which are identified in such material as having been 
used by permission, User is responsible for identifying, and seeking separate licenses (under this Service or otherwise) 
for, any of such third party materials; without a separate license, such third party materials may not be used.

3.5 Use of proper copyright notice for a Work is required as a condition of any license granted under the Service. Unless 
otherwise provided in the Order Confirmation, a proper copyright notice will read substantially as follows: “Republished 
with permission of [Rightsholder’s name], from [Work's title, author, volume, edition number and year of copyright]; 
permission conveyed through Copyright Clearance Center, Inc. ” Such notice must be provided in a reasonably legible 
font size and must be placed either immediately adjacent to the Work as used (for example, as part of a byline or 
footnote but not as a separate electronic link) or in the place where substantially all other credits or notices for the new 
work containing the republished Work are located. Failure to include the required notice results in loss to the Rightsholder 
and CCC, and the User shall be liable to pay liquidated damages for each such failure equal to twice the use fee specified 
in the Order Confirmation, in addition to the use fee itself and any other fees and charges specified.

3.6 User may only make alterations to the Work if and as expressly set forth in the Order Confirmation.  No Work may be 
used in any way that is defamatory, violates the rights of third parties (including such third parties' rights of copyright, 
privacy, publicity, or other tangible or intangible property), or is otherwise illegal, sexually explicit or obscene.  In 
addition, User may not conjoin a Work with any other material that may result in damage to the reputation of the 
Rightsholder.  User agrees to inform CCC if it becomes aware of any infringement of any rights in a Work and to 
cooperate with any reasonable request of CCC or the Rightsholder in connection therewith.

4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and their respective employees 
and directors, against all claims, liability, damages, costs and expenses, including legal fees and expenses, arising out of 
any use of a Work beyond the scope of the rights granted herein, or any use of a Work which has been altered in any 
unauthorized way by User, including claims of defamation or infringement of rights of copyright, publicity, privacy or 
other tangible or intangible property.

5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, 
INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS OF 
BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO 
USE A WORK, EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any event, the 



total liability of the Rightsholder and CCC (including their respective employees and directors) shall not exceed the total 
amount actually paid by User for this license. User assumes full liability for the actions and omissions of its principals, 
employees, agents, affiliates, successors and assigns.

6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC HAS THE RIGHT TO GRANT TO USER 
THE RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL OTHER 
WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT 
LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ADDITIONAL 
RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER 
PORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED BY USER; USER 
UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO 
GRANT.

7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User of a Work beyond the scope of 
the license set forth in the Order Confirmation and/or these terms and conditions, shall be a material breach of the 
license created by the Order Confirmation and these terms and conditions. Any breach not cured within 30 days of written 
notice thereof shall result in immediate termination of such license without further notice. Any unauthorized (but 
licensable) use of a Work that is terminated immediately upon notice thereof may be liquidated by payment of the 
Rightsholder's ordinary license price therefor; any unauthorized (and unlicensable) use that is not terminated 
immediately for any reason (including, for example, because materials containing the Work cannot reasonably be 
recalled) will be subject to all remedies available at law or in equity, but in no event to a payment of less than three 
times the Rightsholder's ordinary license price for the most closely analogous licensable use plus Rightsholder's and/or 
CCC's costs and expenses incurred in collecting such payment.

8. Miscellaneous.

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the Service or to these terms and 
conditions, and CCC reserves the right to send notice to the User by electronic mail or otherwise for the purposes of 
notifying User of such changes or additions; provided that any such changes or additions shall not apply to permissions 
already secured and paid for.

8.2 Use of Userrelated information collected through the Service is governed by CCC’s privacy policy, available online 
here:  http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html.

8.3 The licensing transaction described in the Order Confirmation is personal to User. Therefore, User may not assign or 
transfer to any other person (whether a natural person or an organization of any kind) the license created by the Order 
Confirmation and these terms and conditions or any rights granted hereunder; provided, however, that User may assign 
such license in its entirety on written notice to CCC in the event of a transfer of all or substantially all of User’s rights in 
the new material which includes the Work(s) licensed under this Service.

8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed by the parties. The 
Rightsholder and CCC hereby object to any terms contained in any writing prepared by the User or its principals, 
employees, agents or affiliates and purporting to govern or otherwise relate to the licensing transaction described in the 
Order Confirmation, which terms are in any way inconsistent with any terms set forth in the Order Confirmation and/or in 
these terms and conditions or CCC's standard operating procedures, whether such writing is prepared prior to, 
simultaneously with or subsequent to the Order Confirmation, and whether such writing appears on a copy of the Order 
Confirmation or in a separate instrument.

8.5 The licensing transaction described in the Order Confirmation document shall be governed by and construed under 
the law of the State of New York, USA, without regard to the principles thereof of conflicts of law. Any case, controversy, 
suit, action, or proceeding arising out of, in connection with, or related to such licensing transaction shall be brought, at 
CCC's sole discretion, in any federal or state court located in the County of New York, State of New York, USA, or in any 
federal or state court whose geographical jurisdiction covers the location of the Rightsholder set forth in the Order 
Confirmation. The parties expressly submit to the personal jurisdiction and venue of each such federal or state court.If 
you have any comments or questions about the Service or Copyright Clearance Center, please contact us at 978750
8400 or send an email to info@copyright.com.
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INTRODUCTION

1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in connection
with completing this licensing transaction, you agree that the following terms and conditions
apply to this transaction (along with the Billing and Payment terms and conditions
established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your
Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to
the terms and conditions indicated.
3. Acknowledgement: If any part of the material to be used (for example, figures) has
appeared in our publication with credit or acknowledgement to another source, permission
must also be sought from that source.  If such permission is not obtained then that material
may not be included in your publication/copies. Suitable acknowledgement to the source
must be made, either as a footnote or in a reference list at the end of your publication, as
follows:
"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of
chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE
SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The
Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with
permission from Elsevier."
4. Reproduction of this material is confined to the purpose and/or media for which
permission is hereby given.
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be
altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions
and/or any other alterations shall be made only with prior written authorization of Elsevier
Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications can be made
to any Lancet figures/tables and they must be reproduced in full.
6. If the permission fee for the requested use of our material is waived in this instance,
please be advised that your future requests for Elsevier materials may attract a fee.
7. Reservation of Rights: Publisher reserves all rights not specifically granted in the
combination of (i) the license details provided by you and accepted in the course of this
licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment
terms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed
immediately upon issuance of the license at the end of the licensing process for the
transaction, provided that you have disclosed complete and accurate details of your proposed
use, no license is finally effective unless and until full payment is received from you (either
by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions.  If
full payment is not received on a timely basis, then any license preliminarily granted shall be
deemed automatically revoked and shall be void as if never granted.  Further, in the event
that you breach any of these terms and conditions or any of CCC's Billing and Payment
terms and conditions, the license is automatically revoked and shall be void as if never
granted.  Use of materials as described in a revoked license, as well as any use of the
materials beyond the scope of an unrevoked license, may constitute copyright infringement
and publisher reserves the right to take any and all action to protect its copyright in the
materials.
9. Warranties: Publisher makes no representations or warranties with respect to the licensed
material.
10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and
their respective officers, directors, employees and agents, from and against any and all
claims arising out of your use of the licensed material other than as specifically authorized
pursuant to this license.
11. No Transfer of License: This license is personal to you and may not be sublicensed,
assigned, or transferred by you to any other person without publisher's written permission.
12. No Amendment Except in Writing: This license may not be amended except in a writing
signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any
purchase order, acknowledgment, check endorsement or other writing prepared by you,



which terms are inconsistent with these terms and conditions or CCC's Billing and Payment
terms and conditions.  These terms and conditions, together with CCC's Billing and Payment
terms and conditions (which are incorporated herein), comprise the entire agreement
between you and publisher (and CCC) concerning this licensing transaction.  In the event of
any conflict between your obligations established by these terms and conditions and those
established by CCC's Billing and Payment terms and conditions, these terms and conditions
shall control.
14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described
in this License at their sole discretion, for any reason or no reason, with a full refund payable
to you.  Notice of such denial will be made using the contact information provided by you. 
Failure to receive such notice will not alter or invalidate the denial.  In no event will Elsevier
or Copyright Clearance Center be responsible or liable for any costs, expenses or damage
incurred by you as a result of a denial of your permission request, other than a refund of the
amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied
permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:
15. Translation: This permission is granted for non-exclusive world English rights only
unless your license was granted for translation rights. If you licensed translation rights you
may only translate this content into the languages you requested. A professional translator
must perform all translations and reproduce the content word for word preserving the
integrity of the article.
16. Posting licensed content on any Website: The following terms and conditions apply as
follows: Licensing material from an Elsevier journal: All content posted to the web site must
maintain the copyright information line on the bottom of each image; A hyper-text must be
included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at
http://www.elsevier.com; Central Storage: This license does not include permission for a
scanned version of the material to be stored in a central repository such as that provided by
Heron/XanEdu.
Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier
homepage at http://www.elsevier.com . All content posted to the web site must maintain the
copyright information line on the bottom of each image.
 
Posting licensed content on Electronic reserve: In addition to the above the following
clauses are applicable: The web site must be password-protected and made available only to
bona fide students registered on a relevant course. This permission is granted for 1 year only.
You may obtain a new license for future website posting.
17. For journal authors: the following clauses are applicable in addition to the above:
Preprints:

A preprint is an author's own write-up of research results and analysis, it has not been peer-
reviewed, nor has it had any other value added to it by a publisher (such as formatting,
copyright, technical enhancement etc.).
Authors can share their preprints anywhere at any time. Preprints should not be added to or
enhanced in any way in order to appear more like, or to substitute for, the final versions of
articles however authors can update their preprints on arXiv or RePEc with their Accepted
Author Manuscript (see below).
If accepted for publication, we encourage authors to link from the preprint to their formal
publication via its DOI. Millions of researchers have access to the formal publications on
ScienceDirect, and so links will help users to find, access, cite and use the best available
version. Please note that Cell Press, The Lancet and some society-owned have different
preprint policies. Information on these policies is available on the journal homepage.
Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an
article that has been accepted for publication and which typically includes author-
incorporated changes suggested during submission, peer review and editor-author
communications.
Authors can share their accepted author manuscript:



immediately
via their non-commercial person homepage or blog
by updating a preprint in arXiv or RePEc with the accepted manuscript
via their research institute or institutional repository for internal institutional
uses or as part of an invitation-only research collaboration work-group
directly by providing copies to their students or to research collaborators for
their personal use
for private scholarly sharing as part of an invitation-only work group on
commercial sites with which Elsevier has an agreement

After the embargo period
via non-commercial hosting platforms such as their institutional repository
via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

link to the formal publication via its DOI
bear a CC-BY-NC-ND license - this is easy to do
if aggregated with other manuscripts, for example in a repository or other site, be
shared in alignment with our hosting policy not be added to or enhanced in any way to
appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final
record of published research that appears or will appear in the journal and embodies all
value-adding publishing activities including peer review co-ordination, copy-editing,
formatting, (if relevant) pagination and online enrichment.
Policies for sharing publishing journal articles differ for subscription and gold open access
articles:
Subscription Articles: If you are an author, please share a link to your article rather than the
full-text. Millions of researchers have access to the formal publications on ScienceDirect,
and so links will help your users to find, access, cite, and use the best available version.
Theses and dissertations which contain embedded PJAs as part of the formal submission can
be posted publicly by the awarding institution with DOI links back to the formal
publications on ScienceDirect.
If you are affiliated with a library that subscribes to ScienceDirect you have additional
private sharing rights for others' research accessed under that agreement. This includes use
for classroom teaching and internal training at the institution (including use in course packs
and courseware programs), and inclusion of the article for grant funding purposes.
Gold Open Access Articles: May be shared according to the author-selected end-user
license and should contain a CrossMark logo, the end user license, and a DOI link to the
formal publication on ScienceDirect.
Please refer to Elsevier's posting policy for further information.
18. For book authors the following clauses are applicable in addition to the above:  
Authors are permitted to place a brief summary of their work online only. You are not
allowed to download and post the published electronic version of your chapter, nor may you
scan the printed edition to create an electronic version. Posting to a repository: Authors are
permitted to post a summary of their chapter only in their institution's repository.
19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be
submitted to your institution in either print or electronic form. Should your thesis be
published commercially, please reapply for permission. These requirements include
permission for the Library and Archives of Canada to supply single copies, on demand, of
the complete thesis and include permission for Proquest/UMI to supply single copies, on
demand, of the complete thesis. Should your thesis be published commercially, please
reapply for permission. Theses and dissertations which contain embedded PJAs as part of
the formal submission can be posted publicly by the awarding institution with DOI links
back to the formal publications on ScienceDirect.
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2000 established subscription journals that support open access publishing. Permitted third
party re-use of these open access articles is defined by the author's choice of Creative
Commons user license. See our open access license policy for more information.
Terms & Conditions applicable to all Open Access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the
article nor should the article be modified in such a way as to damage the author's honour or
reputation. If any changes have been made, such changes must be clearly indicated.
The author(s) must be appropriately credited and we ask that you include the end user
license and a DOI link to the formal publication on ScienceDirect.
If any part of the material to be used (for example, figures) has appeared in our publication
with credit or acknowledgement to another source it is the responsibility of the user to
ensure their reuse complies with the terms and conditions determined by the rights holder.
Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new
works from the Article, to alter and revise the Article and to make commercial use of the
Article (including reuse and/or resale of the Article by commercial entities), provided the
user gives appropriate credit (with a link to the formal publication through the relevant
DOI), provides a link to the license, indicates if changes were made and the licensor is not
represented as endorsing the use made of the work. The full details of the license are
available at http://creativecommons.org/licenses/by/4.0.
CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts,
abstracts and new works from the Article, to alter and revise the Article, provided this is not
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formal publication through the relevant DOI), provides a link to the license, indicates if
changes were made and the licensor is not represented as endorsing the use made of the
work. Further, any new works must be made available on the same conditions. The full
details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.
CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article,
provided this is not done for commercial purposes and further does not permit distribution of
the Article if it is changed or edited in any way, and provided the user gives appropriate
credit (with a link to the formal publication through the relevant DOI), provides a link to the
license, and that the licensor is not represented as endorsing the use made of the work. The
full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0.
Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY
NC ND license requires permission from Elsevier and will be subject to a fee.
Commercial reuse includes:

Associating advertising with the full text of the Article
Charging fees for document delivery or access
Article aggregation
Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.
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appeared in our publication with credit or acknowledgement to another source, permission
must also be sought from that source.  If such permission is not obtained then that material
may not be included in your publication/copies. Suitable acknowledgement to the source
must be made, either as a footnote or in a reference list at the end of your publication, as
follows:
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9. Warranties: Publisher makes no representations or warranties with respect to the licensed
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Friday, January 4, 2019 at 2:43:28 PM Greenwich Mean Time
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Subject: RE: Form Submission: Technical Support
Date: Thursday, 3 January 2019 at 12:23:48 Greenwich Mean Time
From: Tehzeeb Gunja
To: Garriga Casanovas, Arnau
CC: Elson, Daniel S, Mylonas, George
AGachments: Pepper.jpg, Rice.jpg

Hello Arnau,
 
If you just need to use an image – please use the one aRached.
 
Regards,
 
Tehzeeb
+44 7720 974 895
 
From: Garriga Casanovas, Arnau [mailto:a.garriga-casanovas14@imperial.ac.uk] 
Sent: 03 January 2019 12:20
To: Tehzeeb Gunja <tehzeeb.gunja@ovt.com>
Cc: Elson, Daniel S <daniel.elson@imperial.ac.uk>; Mylonas, George <george.mylonas@imperial.ac.uk>
Subject: Re: Form Submission: Technical Support
 
Hi Tahzeeb,
 
As George men^oned, I’m finishing my doctorate at the Mechanical Engineering Department, supervised
by Prof Ferdinando Rodriguez y Baena, so not related to Dan or George.
 
I did my doctorate on miniature robots, and wanted to include an image of the smallest Omnivision
camera in my thesis to illustrate exis^ng technology.
 
Best wishes,
 
Arnau
 
From: "Mylonas, George" <george.mylonas@imperial.ac.uk>
Date: Thursday, 3 January 2019 at 13:12
To: Tehzeeb Gunja <tehzeeb.gunja@ovt.com>
Cc: "Garriga Casanovas, Arnau" <a.garriga-casanovas14@imperial.ac.uk>, "Elson, Daniel S"
<daniel.elson@imperial.ac.uk>
Subject: Re: Form Submission: Technical Support
 
Hi Tehzeeb,
 
This seems to be coming from the MechEng department, so not from us. 
 
BW,

George
 
Sent from my phone 

On 3 Jan 2019, at 13:00, Tehzeeb Gunja <tehzeeb.gunja@ovt.com> wrote:

Dan / George: Is this project connected to the work that we are doing together?
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From: Mario Heid 
Sent: 03 January 2019 11:30
To: Tehzeeb Gunja <tehzeeb.gunja@ovt.com>
Cc: Maeas Gustafsson <maeas.gustafsson@ovt.com>
Subject: FW: Form Submission: Technical Support
 
Tez
 
Please can you advise on this?
 
Thanks,
Mario
 
From: John Li 
Sent: Sonntag, 30. Dezember 2018 23:17
To: Mario Heid; Mattias Gustafsson
Subject: Fwd: Form Submission: Technical Support
 
 

Sent from my iPhone

Begin forwarded message:

From: OVT <noreply@ovt.com>
Date: December 31, 2018 at 5:49:20 AM GMT+8
To: johnl@ovt.com
Subject: Form Submission: Technical Support
Reply-To: OVT <noreply@ovt.com>

Select a Region 
Europe 

Name 
Arnau Garriga Casanovas 

Company Name 
Imperial College London 

Address 1
Dept. of Mechanical Engineering 

Address 2
South Kensington Campus 

City 
London 

State / Province
London 

Zipcode 
SW7 2AZ 

Country 
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United Kingdom (GB) 

Phone 

Email 
a.garriga-casanovas14@imperial.ac.uk 

Application
Medical Imaging 

Form Factor
Module

Output Data Format
n/a 

Resolution
Digital 

Additional Requests or Comments 
Hello, Iâ€™m finishing my doctoral thesis at Imperial College on
miniature robots, and I would like to include an image of the smallest
Omnivision camera as an example of existing technology. I found some
examples in the catalogue online, and I wanted to use one of them. I would
like to ask for your permission to include such an image in my thesis,
which will be added to Spiral, Imperial's institutional repository
http://spiral.imperial.ac.uk/ , and made available to the public under a CC-
BY license. If you are happy to grant me the permission requested, please
let me know. Yours sincerely, Arnau Garriga Casanovas



Friday, January 4, 2019 at 2:46:06 PM Greenwich Mean Time
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Subject: RE: Permission to Include Catalogue Image in Thesis

Date: Monday, 31 December 2018 at 08:02:23 Greenwich Mean Time

From: Yaron Silberman

To: Garriga Casanovas, Arnau

AEachments: image003.jpg

 

 

From: Garriga Casanovas, Arnau [mailto:a.garriga-casanovas14@imperial.ac.uk] 

Sent: Sunday, December 30, 2018 11:38 PM

To: Info <Info@medigus.com>

Subject: Permission to Include Catalogue Image in Thesis

 

Hello,

 

I’m finishing my doctoral thesis at Imperial College on miniature robots, and I would like to include an

image of the Medigus camera as an example of exisXng technology. In parXcular, I would like to include

the aYached image.

 

I would like to ask for your permission to include this image in my thesis, which will be added to Spiral,

Imperial's insXtuXonal repository hYp://spiral.imperial.ac.uk/ , and made available to the public under a

CC-BY license.

 

If you are happy to grant me the permission requested, please return a signed copy of this leYer.

 

Yours sincerely,

 

Arnau Garriga Casanovas

 

 

Permission granted for the use requested above:
 

I confirm that I am the copyright holder of the image above and hereby give permission to include it in

your thesis which will be made available, via the internet, for non-commercial purposes under the terms

of the user licence.

 

[please edit the text above if you wish to grant more specific permission]
 

Signed: 

Name: Yaron Silberman

OrganisaXon: Medigus

Job Xtle: VP Sales & MarkeXng

 



Monday, January 7, 2019 at 11:20:08 AM Greenwich Mean Time
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Subject: RE: Permission to Reuse Figure in Thesis
Date: Friday, 4 January 2019 at 19:38:28 Greenwich Mean Time
From: Bar-Cohen, Yoseph (355N)
To: Garriga Casanovas, Arnau
AFachments: image001.png

Dear Arnau,
 
You have my permission to use Fig. 5 and please use the following acknowledgement: "Courtesy of
Yoseph Bar-Cohen, JPL/Caltech/NASA".
 
Yosi

 
From: Garriga Casanovas, Arnau <a.garriga-casanovas14@imperial.ac.uk> 
Sent: Friday, January 4, 2019 7:03 AM
To: Bar-Cohen, Yoseph (355N) <Yoseph.Bar-Cohen@jpl.nasa.gov>
Subject: Permission to Reuse Figure in Thesis
 
Dear Dr Bar-Cohen,
 
I’m finishing my doctoral thesis at Imperial College on new miniature robo`c manipulators, and I would
like to include an image of an electroac`ve gripper published in this ar`cle
haps://www.spiedigitallibrary.org/conference-proceedings-of-spie/4695/0000/Electroac`ve-polymers-
current-capabili`es-and-challenges/10.1117/12.475159.short?SSO=1
 
In par`cular, I would like to include figure 5 of the paper.
 
I would like to ask for your permission to include this image in my thesis, which will be added to Spiral,
Imperial's ins`tu`onal repository hap://spiral.imperial.ac.uk/ , and made available to the public under a
CC-BY license.
 
I asked the publisher, SPIE, for permission, and they said they grant me permission provided that you
approve. Please let me know if you are happy for me to use this image.
 
Yours sincerely,
 
Arnau Garriga Casanovas
 
From: Ka`e Sinclair <ka`es@spie.org>
Date: Wednesday, 2 January 2019 at 16:52
To: "Garriga Casanovas, Arnau" <a.garriga-casanovas14@imperial.ac.uk>
Subject: RE: Permission to Reuse Figure in Thesis
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Dear Mr. Arnau,
 
Thank you for seeking permission from SPIE to reprint material from our publica`ons. Publisher's
permission is hereby granted under the following condi`ons:
        (1) you obtain permission of one of the authors;
        (2) the material to be used has appeared in our publica`on without credit or acknowledgment to
another source; and
        (3) you credit the original SPIE publica`on. Include the authors' names, `tle of paper, volume `tle,
SPIE volume number, and year of publica`on in your credit statement.
 
Best,
Ka`e Sinclair
Editorial Assistant, Publica`ons
SPIE
+1 360 685 5436
ka`es@spie.org
 
SPIE is the interna`onal society for op`cs and photonics
hap://SPIE.org
 
 
 
From: Garriga Casanovas, Arnau <a.garriga-casanovas14@imperial.ac.uk> 
Sent: Sunday, December 30, 2018 11:51 AM
To: reprint_permission <reprint_permission@spie.org>
Subject: Permission to Reuse Figure in Thesis
 
Hello,
 
I’m finishing my doctoral thesis at Imperial College on new miniature robo`c manipulators, and I would
like to include an image of an electroac`ve gripper published in this ar`cle
haps://www.spiedigitallibrary.org/conference-proceedings-of-spie/4695/0000/Electroac`ve-polymers-
current-capabili`es-and-challenges/10.1117/12.475159.short?SSO=1
 
In par`cular, I would like to include figure 5 of the paper.
 
I would like to ask for your permission to include this image in my thesis, which will be added to Spiral,
Imperial's ins`tu`onal repository hap://spiral.imperial.ac.uk/ , and made available to the public under a
CC-BY license.
 
If you are happy to grant me the permission requested, please return a signed copy of this leaer.
 
Yours sincerely,
 
Arnau Garriga Casanovas
 
 
Permission granted for the use requested above:
 
I confirm that I am the copyright holder of the image above and hereby give permission to include it in
your thesis which will be made available, via the internet, for non-commercial purposes under the terms
of the user licence.
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[please edit the text above if you wish to grant more specific permission]
 
Signed:
Name:
Organisa`on:
Job `tle:



Monday, January 7, 2019 at 10:53:41 AM Greenwich Mean Time
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Subject: Image use

Date: Monday, 7 January 2019 at 10:03:06 Greenwich Mean Time

From: Debby.Dawson@olympus.co.uk

To: Garriga Casanovas, Arnau

Dear Arnau 

Thank you for your request received via our website. 

We would be happy for you to use the image requested, and would ask that you add the following text below the image 'Courtesy of
Olympus - Copyright remains the property of Olympus'. 

If you have any questions or require further assistance, please let me know. 

Kind regards
Debby Dawson
Marketing Specialist - UK and Ireland
Olympus - Scientific Solutions Division

Mobile: +44 (0)7976 330953
Office: +44 (0)1702 452010
Email: debby.dawson@olympus.co.uk
Website: www.olympus.co.uk

Olympus KeyMed is an operating division of KeyMed (Medical & Industrial Equipment) Ltd KeyMed House, Stock Road, Southend-
on-Sea, Essex SS2 5QH, UK

Registered in England No. 966736. Registered office and address for services as above.

P Think before you print



Tuesday, January 8, 2019 at 11:40:38 AM Greenwich Mean Time

Page 1 of 4

Subject: RE: FEL//ICL/ include an image of the Fujikura miniature camera
Date: Tuesday, 8 January 2019 at 10:43:37 Greenwich Mean Time
From: Anthony Rickatson
To: Garriga Casanovas, Arnau
CC: ḕ᯾ ຂ, Ishii, Shingo, Robert Walker
AHachments: B-15D5004B-160k CIS Brochure(UK).pdf, B-17D5003D_40k CIS Brochure(for UK).pdf

Hi Arnau,

You are welcome to use these images in our Brochures (a^ached).

Best Regards

Anthony Rickatson
Technical Sales Execu`ve
Electronics Division

Fujikura Europe Ltd
C51 Barwell Business Park, Leatherhead Road, Chessington, Surrey, KT9 2NY, England
Direct +44 (0)20 8240 2036 • Mobile +44(0)79 2181 8402 • Main Line +44 (0)20 8240 2000 • Fax +44 (0)20 8240
2010
Email: arickatson@fujikura.co.uk  • Web: h^p://www.fujikura.co.uk • h^p://www.picoramedic.fujikura.com

-----Original Message-----
From: Garriga Casanovas, Arnau <a.garriga-casanovas14@imperial.ac.uk>
Sent: 08 January 2019 10:30
To: Anthony Rickatson <arickatson@fujikura.co.uk>
Cc: ḕ᯾ ຂ <kaori.matsumura@jp.fujikura.com>; Ishii, Shingo <Shingo@fujikura.com>; Robert Walker
<rwalker@fujikura.co.uk>
Subject: Re: FEL//ICL/ include an image of the Fujikura miniature camera

Hi Anthony,

Thank you for your response.

The image I would like to include in my thesis is the a^ached one.

Best wishes,

Arnau

On 08/01/2019, 09:36, "Anthony Rickatson" <arickatson@fujikura.co.uk> wrote:

    Hi Arnau Garriga Casanovas,
    
    Happy new year.
    
    I am in charge of your request.
    Please can you resend the image to me for review?
    
    Best Regards
    
    Anthony Rickatson
    Technical Sales Execu`ve
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    Technical Sales Execu`ve
    Electronics Division
    
    Fujikura Europe Ltd
    C51 Barwell Business Park, Leatherhead Road, Chessington, Surrey, KT9 2NY, England
    Direct +44 (0)20 8240 2036 ? Mobile +44(0)79 2181 8402 ? Main Line +44 (0)20 8240 2000 ? Fax +44 (0)20
8240 2010
    Email: arickatson@fujikura.co.uk  ? Web: h^p://www.fujikura.co.uk ? h^p://www.picoramedic.fujikura.com
    
    -----Original Message-----
    From: Inquiries from Fujikura Global Web site [mailto:wwwadmin@jp.fujikura.com]
    Sent: Sunday, December 30, 2018 1:45 PM
    To: Fujikura Web contents Manager <medical@jp.fujikura.com>
    Subject: Inquiries from Fujikura Global Web site
    
    We have just received new inquiry from Arnau Garriga Casanovas.
    ====================================================================
    <<Inquiry from Fujikura Global Web Site >>
====================================================================
    [selected product or bussiness category] Medical
    --------------------------------------------------------------------
    [User informa`on]
    companyғImperial College London
    country:United Kingdom
    address:Dept. of Mechanical Engineering, Imperial College London, London, SW7 2AZ name:Arnau Garriga
Casanovas
    --------------------------------------------------------------------
    [Contact informa`on]
    PHONE:7835146371
    FAX:
    e-mail:a.garriga-casanovas14@imperial.ac.uk
    --------------------------------------------------------------------
    [Inquiry details]
    Hello,
    
    I’m finishing my doctoral thesis at Imperial College on miniature robots, and I would like to include an image of
the Fujikura miniature camera as an example of exis`ng technology. This is an image that I found in the Fujikura
catalogue online.
    
    I would like to ask for your permission to include this image in my thesis, which will be added to Spiral,
Imperial's ins`tu`onal repository h^ps://urldefense.proofpoint.com/v2/url?u=h^p-
3A__spiral.imperial.ac.uk_&d=DwICJg&c=F5444X0jUwQFtHEnmCJj7w&r=qtAFMPAQ2ylSgxswMlVBPPalleaNyVM
eunX8g0xbtlk&m=swkN4AIaqudq-
GdUAfmMpv85EGGWsW_vg2C0NHBmJnQ&s=8NwDQJGZ0agCgkvsKTVSbQANhfIfr7GHDIrnPIRsGv0&e= , and
made available to the public under a CC-BY license.
    
    Yours sincerely,
    
    Arnau Garriga Casanovas
    
    
    ====================================================================
    Note:
    
    This mail get automa`cally transferred from "Contact Form" and we cannot receive any replay to this email
address.
    
    For more informa`on, please send your email to the address below.
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    Customer's email addressғa.garriga-casanovas14@imperial.ac.uk
    
    URL : h^p://www.fujikura.com/solu`ons/medical/
    
    op`ons parameter:
    
    **** This email has been sent from an EXTERNAL contact. Please be cau`ous of any a^achments and/or links.
**** _______________________________________________________________________
    This e-mail has been scanned for all viruses by Claranet. The service is powered by MessageLabs. For more
informa`on on a proac`ve an`-virus service working around the clock, around the globe, visit:
    h^p://www.claranet.co.uk
    ________________________________________________________________________
    
    Fujikura Europe Ltd Registered in England No. 2237808
    Registered Address: C51 Barwell Business Park, Leatherhead Road, Chessington, Surrey, KT9 2NY. VAT Reg. No.
GB 493 6044 31
    This e-mail and any files transmi^ed with it are confiden`al and may contain copyright material. If you have
received this e-mail in error please no`fy the sender using the reply facility in your e-mail soyware. Although this
e-mail and any a^achments are believed to be free from any virus or other defects, Fujikura Europe Limited
accept no responsibility for any loss or damage arising from its use. Any opinions expressed in this e-mail are
those of the sender and not necessarily those of Fujikura Europe Limited
    
    At Fujikura we take your Privacy seriously. You can view how we use your data, how to contact us regarding
your data or request an erasure of informa`on by visi`ng our website and viewing our Privacy No`ce. You can
find this at h^ps://www.fujikura.co.uk/about-us/gdpr
    _
    _______________________________________________________________________
    This e-mail has been scanned for all viruses by Claranet. The
    service is powered by MessageLabs. For more informa`on on a proac`ve
    an`-virus service working around the clock, around the globe, visit:
    h^p://www.claranet.co.uk
    ________________________________________________________________________
    

**** This email has been sent from an EXTERNAL contact. Please be cau`ous of any a^achments and/or links.
**** _______________________________________________________________________
This e-mail has been scanned for all viruses by Claranet. The service is powered by MessageLabs. For more
informa`on on a proac`ve an`-virus service working around the clock, around the globe, visit:
h^p://www.claranet.co.uk
________________________________________________________________________

Fujikura Europe Ltd Registered in England No. 2237808
Registered Address: C51 Barwell Business Park, Leatherhead Road, Chessington, Surrey, KT9 2NY. VAT Reg. No. GB
493 6044 31
This e-mail and any files transmi^ed with it are confiden`al and may contain copyright material. If you have
received this e-mail in error please no`fy the sender using the reply facility in your e-mail soyware. Although this
e-mail and any a^achments are believed to be free from any virus or other defects, Fujikura Europe Limited
accept no responsibility for any loss or damage arising from its use. Any opinions expressed in this e-mail are
those of the sender and not necessarily those of Fujikura Europe Limited

At Fujikura we take your Privacy seriously. You can view how we use your data, how to contact us regarding your
data or request an erasure of informa`on by visi`ng our website and viewing our Privacy No`ce. You can find this
at h^ps://www.fujikura.co.uk/about-us/gdpr
_
_______________________________________________________________________
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_______________________________________________________________________
This e-mail has been scanned for all viruses by Claranet. The
service is powered by MessageLabs. For more informa`on on a proac`ve
an`-virus service working around the clock, around the globe, visit:
h^p://www.claranet.co.uk
________________________________________________________________________
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license and a DOI link to the formal publication on ScienceDirect.
If any part of the material to be used (for example, figures) has appeared in our publication
with credit or acknowledgement to another source it is the responsibility of the user to
ensure their reuse complies with the terms and conditions determined by the rights holder.
Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new
works from the Article, to alter and revise the Article and to make commercial use of the
Article (including reuse and/or resale of the Article by commercial entities), provided the
user gives appropriate credit (with a link to the formal publication through the relevant
DOI), provides a link to the license, indicates if changes were made and the licensor is not
represented as endorsing the use made of the work. The full details of the license are
available at http://creativecommons.org/licenses/by/4.0.
CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts,
abstracts and new works from the Article, to alter and revise the Article, provided this is not
done for commercial purposes, and that the user gives appropriate credit (with a link to the
formal publication through the relevant DOI), provides a link to the license, indicates if
changes were made and the licensor is not represented as endorsing the use made of the
work. Further, any new works must be made available on the same conditions. The full
details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.
CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article,
provided this is not done for commercial purposes and further does not permit distribution of
the Article if it is changed or edited in any way, and provided the user gives appropriate
credit (with a link to the formal publication through the relevant DOI), provides a link to the
license, and that the licensor is not represented as endorsing the use made of the work. The
full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0.
Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY
NC ND license requires permission from Elsevier and will be subject to a fee.
Commercial reuse includes:

Associating advertising with the full text of the Article
Charging fees for document delivery or access
Article aggregation
Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.
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Friday, January 11, 2019 at 12:06:28 PM Greenwich Mean Time
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Subject: RE: Permission to Reuse Image
Date: Thursday, 10 January 2019 at 20:07:20 Greenwich Mean Time
From: Beth Darchi
To: Garriga Casanovas, Arnau

Dear Mr. Casanovas,
It is our pleasure to grant you permission to use the ASME Figure 1 only from “Tensor arm
manipulator design”, by Victor Anderson, ASME TransacOons, 1967, cited in your leQer for inclusion
in a thesis to be published by Spiral, Imperial's insOtuOonal repository.
 
Permission is granted for the specific use as stated herein and does not permit further use of the
materials without proper authorizaOon.  As is customary, we request that you ensure full
acknowledgment of this material, the author(s), source and ASME as original publisher.
Acknowledgment must be retained on pages where figure is printed and distributed.
 
Unfortunately, we do not supply a copy of a figure. 
 
Many thanks for your interest in ASME publicaOons.
 
 
Sincerely,
 
Beth Darchi
Publishing Administrator
ASME
2 Park Avenue
New York, NY 10016-5990
Tel  1.212.591.7700
darchib@asme.org
 
 
 
From: Garriga Casanovas, Arnau [mailto:a.garriga-casanovas14@imperial.ac.uk] 
Sent: Tuesday, January 8, 2019 5:35 AM
To: Beth Darchi <DarchiB@asme.org>
Subject: Re: Permission to Reuse Image
 
Hi Beth,
 
Thank you for your response.
 
The image I would like to reuse in my thesis is the aQached one, which I believe is Figure 1 in the paper.
 
Best wishes,
 
Arnau
 
From: Beth Darchi <DarchiB@asme.org>
Date: Monday, 7 January 2019 at 18:46
To: "Garriga Casanovas, Arnau" <a.garriga-casanovas14@imperial.ac.uk>
Subject: RE: Permission to Reuse Image
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Dear Mr. Casanovas,
Please give me the exact ASME Figure number.  Once I receive this I will conOnue with your
request.
 
Regards,
 
Beth Darchi
Publishing Administrator
ASME
2 Park Avenue
New York, NY 10016-5990
Tel  1.212.591.7700
darchib@asme.org
 
 
 
From: Garriga Casanovas, Arnau [mailto:a.garriga-casanovas14@imperial.ac.uk] 
Sent: Friday, December 28, 2018 1:13 PM
To: permissions@asme.org
Subject: Permission to Reuse Image
 
Hello,
 
I’m wriOng to you because I would like to include a figure from a paper of the ASME in my doctoral thesis
that I’m finishing at Imperial College London. In parOcular, I would like to include a figure from the paper
enOtled “Tensor arm manipulator design”, published at the ASME transacOons on 1967, and authored by
Victor Anderson.
 
I would like to ask for your permission to include one image of this paper in my thesis, which will be
added to Spiral, Imperial's insOtuOonal repository hQp://spiral.imperial.ac.uk/ , and made available to the
public under a CC-BY license.
 
Please let me know if you are happy to grant me the permission requested. 
 
Yours sincerely,
 
Arnau Garriga Casanovas
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This is a License Agreement between Arnau Garriga Casanovas ("You") and American
Society of Mechanical Engineers ASME ("American Society of Mechanical Engineers
ASME") provided by Copyright Clearance Center ("CCC"). The license consists of your
order details, the terms and conditions provided by American Society of Mechanical
Engineers ASME, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see

information listed at the bottom of this form.

License Number 4505410633397

License date Dec 30, 2018

Licensed content publisher American Society of Mechanical Engineers ASME

Licensed content title Journal of mechanisms and robotics

Licensed content date Aug 1, 2008

Type of Use Thesis/Dissertation

Requestor type Academic institution

Format Electronic

Portion chart/graph/table/figure

Number of
charts/graphs/tables/figures

1

The requesting
person/organization is:

Arnau Garriga Casanovas / Imperial College London

Title or numeric reference of
the portion(s)

Figure 6

Title of the article or chapter
the portion is from

Inclined Links HyperRedundant Elephant TrunkLike Robot

Editor of portion(s) N/a

Author of portion(s) Oded Salomon and Alon Wolf

Volume of serial or
monograph.

4

Issue, if republishing an
article from a serial

4

Page range of the portion 045001

Publication date of portion Aug 10, 2012

Rights for Main product

Duration of use Life of current edition

Creation of copies for the
disabled

no

With minor editing privileges no

For distribution to Worldwide

In the following language(s) Original language of publication

With incidental promotional
use

no

The lifetime unit quantity of
new product

Up to 499



Title Robotic Manipulators for In Situ Inspections of Jet Engines

Institution name Imperial College London

Expected presentation date Nov 2019

Billing Type Invoice

Billing Address Arnau Garriga Casanovas
 Imperial College London, Exhibition Road

 South Kensington Campus
  

London, United Kingdom SW7 2AZ
 Attn: Arnau Garriga Casanovas

Total (may include CCC user
fee)

0.00 USD

Terms and Conditions

TERMS AND CONDITIONS

The following terms are individual to this publisher:

None
Other Terms and Conditions:

STANDARD TERMS AND CONDITIONS

1. Description of Service; Defined Terms. This Republication License enables the User to
obtain licenses for republication of one or more copyrighted works as described in detail on
the relevant Order Confirmation (the “Work(s)”). Copyright Clearance Center, Inc. (“CCC”)
grants licenses through the Service on behalf of the rightsholder identified on the Order
Confirmation (the “Rightsholder”). “Republication”, as used herein, generally means the
inclusion of a Work, in whole or in part, in a new work or works, also as described on the
Order Confirmation. “User”, as used herein, means the person or entity making such
republication.
2. The terms set forth in the relevant Order Confirmation, and any terms set by the
Rightsholder with respect to a particular Work, govern the terms of use of Works in
connection with the Service. By using the Service, the person transacting for a republication
license on behalf of the User represents and warrants that he/she/it (a) has been duly
authorized by the User to accept, and hereby does accept, all such terms and conditions on
behalf of User, and (b) shall inform User of all such terms and conditions. In the event such
person is a “freelancer” or other third party independent of User and CCC, such party shall
be deemed jointly a “User” for purposes of these terms and conditions. In any event, User
shall be deemed to have accepted and agreed to all such terms and conditions if User
republishes the Work in any fashion.
3. Scope of License; Limitations and Obligations.

3.1 All Works and all rights therein, including copyright rights, remain the sole and
exclusive property of the Rightsholder. The license created by the exchange of an Order
Confirmation (and/or any invoice) and payment by User of the full amount set forth on that
document includes only those rights expressly set forth in the Order Confirmation and in
these terms and conditions, and conveys no other rights in the Work(s) to User. All rights not
expressly granted are hereby reserved.
3.2 General Payment Terms: You may pay by credit card or through an account with us
payable at the end of the month. If you and we agree that you may establish a standing
account with CCC, then the following terms apply: Remit Payment to: Copyright Clearance
Center, 29118 Network Place, Chicago, IL 60673-1291. Payments Due: Invoices are payable
upon their delivery to you (or upon our notice to you that they are available to you for
downloading). After 30 days, outstanding amounts will be subject to a service charge of 1-
1/2% per month or, if less, the maximum rate allowed by applicable law. Unless otherwise
specifically set forth in the Order Confirmation or in a separate written agreement signed by
CCC, invoices are due and payable on “net 30” terms. While User may exercise the rights
licensed immediately upon issuance of the Order Confirmation, the license is automatically
revoked and is null and void, as if it had never been issued, if complete payment for the
license is not received on a timely basis either from User directly or through a payment
agent, such as a credit card company.



3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is
“one-time” (including the editions and product family specified in the license), (ii) is non-
exclusive and non-transferable and (iii) is subject to any and all limitations and restrictions
(such as, but not limited to, limitations on duration of use or circulation) included in the
Order Confirmation or invoice and/or in these terms and conditions. Upon completion of the
licensed use, User shall either secure a new permission for further use of the Work(s) or
immediately cease any new use of the Work(s) and shall render inaccessible (such as by
deleting or by removing or severing links or other locators) any further copies of the Work
(except for copies printed on paper in accordance with this license and still in User's stock at
the end of such period).
3.4 In the event that the material for which a republication license is sought includes third
party materials (such as photographs, illustrations, graphs, inserts and similar materials)
which are identified in such material as having been used by permission, User is responsible
for identifying, and seeking separate licenses (under this Service or otherwise) for, any of
such third party materials; without a separate license, such third party materials may not be
used.
3.5 Use of proper copyright notice for a Work is required as a condition of any license
granted under the Service. Unless otherwise provided in the Order Confirmation, a proper
copyright notice will read substantially as follows: “Republished with permission of
[Rightsholder’s name], from [Work's title, author, volume, edition number and year of
copyright]; permission conveyed through Copyright Clearance Center, Inc. ” Such notice
must be provided in a reasonably legible font size and must be placed either immediately
adjacent to the Work as used (for example, as part of a by-line or footnote but not as a
separate electronic link) or in the place where substantially all other credits or notices for the
new work containing the republished Work are located. Failure to include the required notice
results in loss to the Rightsholder and CCC, and the User shall be liable to pay liquidated
damages for each such failure equal to twice the use fee specified in the Order Confirmation,
in addition to the use fee itself and any other fees and charges specified.
3.6 User may only make alterations to the Work if and as expressly set forth in the Order
Confirmation. No Work may be used in any way that is defamatory, violates the rights of
third parties (including such third parties' rights of copyright, privacy, publicity, or other
tangible or intangible property), or is otherwise illegal, sexually explicit or obscene. In
addition, User may not conjoin a Work with any other material that may result in damage to
the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware of any
infringement of any rights in a Work and to cooperate with any reasonable request of CCC
or the Rightsholder in connection therewith.
4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and
their respective employees and directors, against all claims, liability, damages, costs and
expenses, including legal fees and expenses, arising out of any use of a Work beyond the
scope of the rights granted herein, or any use of a Work which has been altered in any
unauthorized way by User, including claims of defamation or infringement of rights of
copyright, publicity, privacy or other tangible or intangible property.
5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE
RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR
INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR
LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS
INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK,
EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their
respective employees and directors) shall not exceed the total amount actually paid by User
for this license. User assumes full liability for the actions and omissions of its principals,
employees, agents, affiliates, successors and assigns.
6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC
HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER
CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL
OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR



PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS,
GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE
WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED
BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE
RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.
7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User of
a Work beyond the scope of the license set forth in the Order Confirmation and/or these
terms and conditions, shall be a material breach of the license created by the Order
Confirmation and these terms and conditions. Any breach not cured within 30 days of
written notice thereof shall result in immediate termination of such license without further
notice. Any unauthorized (but licensable) use of a Work that is terminated immediately upon
notice thereof may be liquidated by payment of the Rightsholder's ordinary license price
therefor; any unauthorized (and unlicensable) use that is not terminated immediately for any
reason (including, for example, because materials containing the Work cannot reasonably be
recalled) will be subject to all remedies available at law or in equity, but in no event to a
payment of less than three times the Rightsholder's ordinary license price for the most
closely analogous licensable use plus Rightsholder's and/or CCC's costs and expenses
incurred in collecting such payment.
8. Miscellaneous.

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the
Service or to these terms and conditions, and CCC reserves the right to send notice to the
User by electronic mail or otherwise for the purposes of notifying User of such changes or
additions; provided that any such changes or additions shall not apply to permissions already
secured and paid for.
8.2 Use of User-related information collected through the Service is governed by CCC’s
privacy policy, available online here:
http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html.
8.3 The licensing transaction described in the Order Confirmation is personal to User.
Therefore, User may not assign or transfer to any other person (whether a natural person or
an organization of any kind) the license created by the Order Confirmation and these terms
and conditions or any rights granted hereunder; provided, however, that User may assign
such license in its entirety on written notice to CCC in the event of a transfer of all or
substantially all of User’s rights in the new material which includes the Work(s) licensed
under this Service.
8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed
by the parties. The Rightsholder and CCC hereby object to any terms contained in any
writing prepared by the User or its principals, employees, agents or affiliates and purporting
to govern or otherwise relate to the licensing transaction described in the Order
Confirmation, which terms are in any way inconsistent with any terms set forth in the Order
Confirmation and/or in these terms and conditions or CCC's standard operating procedures,
whether such writing is prepared prior to, simultaneously with or subsequent to the Order
Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a
separate instrument.
8.5 The licensing transaction described in the Order Confirmation document shall be
governed by and construed under the law of the State of New York, USA, without regard to
the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding
arising out of, in connection with, or related to such licensing transaction shall be brought, at
CCC's sole discretion, in any federal or state court located in the County of New York, State
of New York, USA, or in any federal or state court whose geographical jurisdiction covers
the location of the Rightsholder set forth in the Order Confirmation. The parties expressly
submit to the personal jurisdiction and venue of each such federal or state court.If you have
any comments or questions about the Service or Copyright Clearance Center, please contact
us at 978-750-8400 or send an e-mail to info@copyright.com.
v 1.1
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This is a License Agreement between Arnau Garriga Casanovas ("You") and American
Society of Mechanical Engineers ASME ("American Society of Mechanical Engineers
ASME") provided by Copyright Clearance Center ("CCC"). The license consists of your
order details, the terms and conditions provided by American Society of Mechanical
Engineers ASME, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see

information listed at the bottom of this form.

License Number 4505411163915

License date Dec 30, 2018

Licensed content publisher American Society of Mechanical Engineers ASME

Licensed content title ASME 2003 International Mechanical Engineering Congress and

Exposition: Microelectromechanical Systems

Licensed content date Jan 1, 2003

Type of Use Thesis/Dissertation

Requestor type Academic institution

Format Electronic

Portion chart/graph/table/figure

Number of

charts/graphs/tables/figures

1

The requesting

person/organization is:

Arnau Garriga Casanovas / Imperial College London

Title or numeric reference of

the portion(s)

Figure 2

Title of the article or chapter

the portion is from

Characterization of BalloonJointed MicroFingers

Editor of portion(s) N/a

Author of portion(s) Yenwen Lu and ChangJin Kim

Volume of serial or

monograph.

n/a

Page range of the portion 311316

Publication date of portion November 15–21, 2003

Rights for Main product

Duration of use Life of current edition

Creation of copies for the

disabled

no

With minor editing privileges no

For distribution to Worldwide

In the following language(s) Original language of publication

With incidental promotional

use

no

The lifetime unit quantity of

new product

Up to 499
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Institution name Imperial College London

Expected presentation date Nov 2019

Billing Type Invoice

Billing Address Arnau Garriga Casanovas

 Imperial College London, Exhibition Road

 South Kensington Campus

  

London, United Kingdom SW7 2AZ

 Attn: Arnau Garriga Casanovas

Total (may include CCC user

fee)

0.00 USD

Terms and Conditions

TERMS AND CONDITIONS

The following terms are individual to this publisher:

None
Other Terms and Conditions:

STANDARD TERMS AND CONDITIONS

1. Description of Service; Defined Terms. This Republication License enables the User to
obtain licenses for republication of one or more copyrighted works as described in detail on
the relevant Order Confirmation (the “Work(s)”). Copyright Clearance Center, Inc. (“CCC”)
grants licenses through the Service on behalf of the rightsholder identified on the Order
Confirmation (the “Rightsholder”). “Republication”, as used herein, generally means the
inclusion of a Work, in whole or in part, in a new work or works, also as described on the
Order Confirmation. “User”, as used herein, means the person or entity making such
republication.
2. The terms set forth in the relevant Order Confirmation, and any terms set by the
Rightsholder with respect to a particular Work, govern the terms of use of Works in
connection with the Service. By using the Service, the person transacting for a republication
license on behalf of the User represents and warrants that he/she/it (a) has been duly
authorized by the User to accept, and hereby does accept, all such terms and conditions on
behalf of User, and (b) shall inform User of all such terms and conditions. In the event such
person is a “freelancer” or other third party independent of User and CCC, such party shall
be deemed jointly a “User” for purposes of these terms and conditions. In any event, User
shall be deemed to have accepted and agreed to all such terms and conditions if User
republishes the Work in any fashion.
3. Scope of License; Limitations and Obligations.

3.1 All Works and all rights therein, including copyright rights, remain the sole and
exclusive property of the Rightsholder. The license created by the exchange of an Order
Confirmation (and/or any invoice) and payment by User of the full amount set forth on that
document includes only those rights expressly set forth in the Order Confirmation and in
these terms and conditions, and conveys no other rights in the Work(s) to User. All rights not
expressly granted are hereby reserved.
3.2 General Payment Terms: You may pay by credit card or through an account with us
payable at the end of the month. If you and we agree that you may establish a standing
account with CCC, then the following terms apply: Remit Payment to: Copyright Clearance
Center, 29118 Network Place, Chicago, IL 60673-1291. Payments Due: Invoices are payable
upon their delivery to you (or upon our notice to you that they are available to you for
downloading). After 30 days, outstanding amounts will be subject to a service charge of 1-
1/2% per month or, if less, the maximum rate allowed by applicable law. Unless otherwise
specifically set forth in the Order Confirmation or in a separate written agreement signed by
CCC, invoices are due and payable on “net 30” terms. While User may exercise the rights
licensed immediately upon issuance of the Order Confirmation, the license is automatically
revoked and is null and void, as if it had never been issued, if complete payment for the
license is not received on a timely basis either from User directly or through a payment
agent, such as a credit card company.
3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is
“one-time” (including the editions and product family specified in the license), (ii) is non-



exclusive and non-transferable and (iii) is subject to any and all limitations and restrictions
(such as, but not limited to, limitations on duration of use or circulation) included in the
Order Confirmation or invoice and/or in these terms and conditions. Upon completion of the
licensed use, User shall either secure a new permission for further use of the Work(s) or
immediately cease any new use of the Work(s) and shall render inaccessible (such as by
deleting or by removing or severing links or other locators) any further copies of the Work
(except for copies printed on paper in accordance with this license and still in User's stock at
the end of such period).
3.4 In the event that the material for which a republication license is sought includes third
party materials (such as photographs, illustrations, graphs, inserts and similar materials)
which are identified in such material as having been used by permission, User is responsible
for identifying, and seeking separate licenses (under this Service or otherwise) for, any of
such third party materials; without a separate license, such third party materials may not be
used.
3.5 Use of proper copyright notice for a Work is required as a condition of any license
granted under the Service. Unless otherwise provided in the Order Confirmation, a proper
copyright notice will read substantially as follows: “Republished with permission of
[Rightsholder’s name], from [Work's title, author, volume, edition number and year of
copyright]; permission conveyed through Copyright Clearance Center, Inc. ” Such notice
must be provided in a reasonably legible font size and must be placed either immediately
adjacent to the Work as used (for example, as part of a by-line or footnote but not as a
separate electronic link) or in the place where substantially all other credits or notices for the
new work containing the republished Work are located. Failure to include the required notice
results in loss to the Rightsholder and CCC, and the User shall be liable to pay liquidated
damages for each such failure equal to twice the use fee specified in the Order Confirmation,
in addition to the use fee itself and any other fees and charges specified.
3.6 User may only make alterations to the Work if and as expressly set forth in the Order
Confirmation. No Work may be used in any way that is defamatory, violates the rights of
third parties (including such third parties' rights of copyright, privacy, publicity, or other
tangible or intangible property), or is otherwise illegal, sexually explicit or obscene. In
addition, User may not conjoin a Work with any other material that may result in damage to
the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware of any
infringement of any rights in a Work and to cooperate with any reasonable request of CCC
or the Rightsholder in connection therewith.
4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and
their respective employees and directors, against all claims, liability, damages, costs and
expenses, including legal fees and expenses, arising out of any use of a Work beyond the
scope of the rights granted herein, or any use of a Work which has been altered in any
unauthorized way by User, including claims of defamation or infringement of rights of
copyright, publicity, privacy or other tangible or intangible property.
5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE
RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR
INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR
LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS
INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK,
EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their
respective employees and directors) shall not exceed the total amount actually paid by User
for this license. User assumes full liability for the actions and omissions of its principals,
employees, agents, affiliates, successors and assigns.
6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC
HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER
CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL
OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS,
GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE



WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED
BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE
RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.
7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User of
a Work beyond the scope of the license set forth in the Order Confirmation and/or these
terms and conditions, shall be a material breach of the license created by the Order
Confirmation and these terms and conditions. Any breach not cured within 30 days of
written notice thereof shall result in immediate termination of such license without further
notice. Any unauthorized (but licensable) use of a Work that is terminated immediately upon
notice thereof may be liquidated by payment of the Rightsholder's ordinary license price
therefor; any unauthorized (and unlicensable) use that is not terminated immediately for any
reason (including, for example, because materials containing the Work cannot reasonably be
recalled) will be subject to all remedies available at law or in equity, but in no event to a
payment of less than three times the Rightsholder's ordinary license price for the most
closely analogous licensable use plus Rightsholder's and/or CCC's costs and expenses
incurred in collecting such payment.
8. Miscellaneous.

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the
Service or to these terms and conditions, and CCC reserves the right to send notice to the
User by electronic mail or otherwise for the purposes of notifying User of such changes or
additions; provided that any such changes or additions shall not apply to permissions already
secured and paid for.
8.2 Use of User-related information collected through the Service is governed by CCC’s
privacy policy, available online here:
http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html.
8.3 The licensing transaction described in the Order Confirmation is personal to User.
Therefore, User may not assign or transfer to any other person (whether a natural person or
an organization of any kind) the license created by the Order Confirmation and these terms
and conditions or any rights granted hereunder; provided, however, that User may assign
such license in its entirety on written notice to CCC in the event of a transfer of all or
substantially all of User’s rights in the new material which includes the Work(s) licensed
under this Service.
8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed
by the parties. The Rightsholder and CCC hereby object to any terms contained in any
writing prepared by the User or its principals, employees, agents or affiliates and purporting
to govern or otherwise relate to the licensing transaction described in the Order
Confirmation, which terms are in any way inconsistent with any terms set forth in the Order
Confirmation and/or in these terms and conditions or CCC's standard operating procedures,
whether such writing is prepared prior to, simultaneously with or subsequent to the Order
Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a
separate instrument.
8.5 The licensing transaction described in the Order Confirmation document shall be
governed by and construed under the law of the State of New York, USA, without regard to
the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding
arising out of, in connection with, or related to such licensing transaction shall be brought, at
CCC's sole discretion, in any federal or state court located in the County of New York, State
of New York, USA, or in any federal or state court whose geographical jurisdiction covers
the location of the Rightsholder set forth in the Order Confirmation. The parties expressly
submit to the personal jurisdiction and venue of each such federal or state court.If you have
any comments or questions about the Service or Copyright Clearance Center, please contact
us at 978-750-8400 or send an e-mail to info@copyright.com.
v 1.1
Questions? customercare@copyright.com or +18552393415 (toll free in the US) or

+19786462777.
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Billing Address Arnau Garriga Casanovas
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London, United Kingdom SW7 2AZ
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The following terms are individual to this publisher:

None
Other Terms and Conditions:

STANDARD TERMS AND CONDITIONS

1. Description of Service; Defined Terms. This Republication License enables the User to
obtain licenses for republication of one or more copyrighted works as described in detail on
the relevant Order Confirmation (the “Work(s)”). Copyright Clearance Center, Inc. (“CCC”)
grants licenses through the Service on behalf of the rightsholder identified on the Order
Confirmation (the “Rightsholder”). “Republication”, as used herein, generally means the
inclusion of a Work, in whole or in part, in a new work or works, also as described on the
Order Confirmation. “User”, as used herein, means the person or entity making such
republication.
2. The terms set forth in the relevant Order Confirmation, and any terms set by the
Rightsholder with respect to a particular Work, govern the terms of use of Works in
connection with the Service. By using the Service, the person transacting for a republication
license on behalf of the User represents and warrants that he/she/it (a) has been duly
authorized by the User to accept, and hereby does accept, all such terms and conditions on
behalf of User, and (b) shall inform User of all such terms and conditions. In the event such
person is a “freelancer” or other third party independent of User and CCC, such party shall
be deemed jointly a “User” for purposes of these terms and conditions. In any event, User
shall be deemed to have accepted and agreed to all such terms and conditions if User
republishes the Work in any fashion.
3. Scope of License; Limitations and Obligations.

3.1 All Works and all rights therein, including copyright rights, remain the sole and
exclusive property of the Rightsholder. The license created by the exchange of an Order
Confirmation (and/or any invoice) and payment by User of the full amount set forth on that
document includes only those rights expressly set forth in the Order Confirmation and in
these terms and conditions, and conveys no other rights in the Work(s) to User. All rights not
expressly granted are hereby reserved.
3.2 General Payment Terms: You may pay by credit card or through an account with us
payable at the end of the month. If you and we agree that you may establish a standing
account with CCC, then the following terms apply: Remit Payment to: Copyright Clearance
Center, 29118 Network Place, Chicago, IL 60673-1291. Payments Due: Invoices are payable
upon their delivery to you (or upon our notice to you that they are available to you for
downloading). After 30 days, outstanding amounts will be subject to a service charge of 1-
1/2% per month or, if less, the maximum rate allowed by applicable law. Unless otherwise
specifically set forth in the Order Confirmation or in a separate written agreement signed by
CCC, invoices are due and payable on “net 30” terms. While User may exercise the rights
licensed immediately upon issuance of the Order Confirmation, the license is automatically
revoked and is null and void, as if it had never been issued, if complete payment for the
license is not received on a timely basis either from User directly or through a payment
agent, such as a credit card company.
3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is
“one-time” (including the editions and product family specified in the license), (ii) is non-
exclusive and non-transferable and (iii) is subject to any and all limitations and restrictions



(such as, but not limited to, limitations on duration of use or circulation) included in the
Order Confirmation or invoice and/or in these terms and conditions. Upon completion of the
licensed use, User shall either secure a new permission for further use of the Work(s) or
immediately cease any new use of the Work(s) and shall render inaccessible (such as by
deleting or by removing or severing links or other locators) any further copies of the Work
(except for copies printed on paper in accordance with this license and still in User's stock at
the end of such period).
3.4 In the event that the material for which a republication license is sought includes third
party materials (such as photographs, illustrations, graphs, inserts and similar materials)
which are identified in such material as having been used by permission, User is responsible
for identifying, and seeking separate licenses (under this Service or otherwise) for, any of
such third party materials; without a separate license, such third party materials may not be
used.
3.5 Use of proper copyright notice for a Work is required as a condition of any license
granted under the Service. Unless otherwise provided in the Order Confirmation, a proper
copyright notice will read substantially as follows: “Republished with permission of
[Rightsholder’s name], from [Work's title, author, volume, edition number and year of
copyright]; permission conveyed through Copyright Clearance Center, Inc. ” Such notice
must be provided in a reasonably legible font size and must be placed either immediately
adjacent to the Work as used (for example, as part of a by-line or footnote but not as a
separate electronic link) or in the place where substantially all other credits or notices for the
new work containing the republished Work are located. Failure to include the required notice
results in loss to the Rightsholder and CCC, and the User shall be liable to pay liquidated
damages for each such failure equal to twice the use fee specified in the Order Confirmation,
in addition to the use fee itself and any other fees and charges specified.
3.6 User may only make alterations to the Work if and as expressly set forth in the Order
Confirmation. No Work may be used in any way that is defamatory, violates the rights of
third parties (including such third parties' rights of copyright, privacy, publicity, or other
tangible or intangible property), or is otherwise illegal, sexually explicit or obscene. In
addition, User may not conjoin a Work with any other material that may result in damage to
the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware of any
infringement of any rights in a Work and to cooperate with any reasonable request of CCC
or the Rightsholder in connection therewith.
4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and
their respective employees and directors, against all claims, liability, damages, costs and
expenses, including legal fees and expenses, arising out of any use of a Work beyond the
scope of the rights granted herein, or any use of a Work which has been altered in any
unauthorized way by User, including claims of defamation or infringement of rights of
copyright, publicity, privacy or other tangible or intangible property.
5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE
RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR
INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR
LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS
INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK,
EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their
respective employees and directors) shall not exceed the total amount actually paid by User
for this license. User assumes full liability for the actions and omissions of its principals,
employees, agents, affiliates, successors and assigns.
6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC
HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER
CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL
OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS,
GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE
WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED



BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE
RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.
7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User of
a Work beyond the scope of the license set forth in the Order Confirmation and/or these
terms and conditions, shall be a material breach of the license created by the Order
Confirmation and these terms and conditions. Any breach not cured within 30 days of
written notice thereof shall result in immediate termination of such license without further
notice. Any unauthorized (but licensable) use of a Work that is terminated immediately upon
notice thereof may be liquidated by payment of the Rightsholder's ordinary license price
therefor; any unauthorized (and unlicensable) use that is not terminated immediately for any
reason (including, for example, because materials containing the Work cannot reasonably be
recalled) will be subject to all remedies available at law or in equity, but in no event to a
payment of less than three times the Rightsholder's ordinary license price for the most
closely analogous licensable use plus Rightsholder's and/or CCC's costs and expenses
incurred in collecting such payment.
8. Miscellaneous.

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the
Service or to these terms and conditions, and CCC reserves the right to send notice to the
User by electronic mail or otherwise for the purposes of notifying User of such changes or
additions; provided that any such changes or additions shall not apply to permissions already
secured and paid for.
8.2 Use of User-related information collected through the Service is governed by CCC’s
privacy policy, available online here:
http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html.
8.3 The licensing transaction described in the Order Confirmation is personal to User.
Therefore, User may not assign or transfer to any other person (whether a natural person or
an organization of any kind) the license created by the Order Confirmation and these terms
and conditions or any rights granted hereunder; provided, however, that User may assign
such license in its entirety on written notice to CCC in the event of a transfer of all or
substantially all of User’s rights in the new material which includes the Work(s) licensed
under this Service.
8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed
by the parties. The Rightsholder and CCC hereby object to any terms contained in any
writing prepared by the User or its principals, employees, agents or affiliates and purporting
to govern or otherwise relate to the licensing transaction described in the Order
Confirmation, which terms are in any way inconsistent with any terms set forth in the Order
Confirmation and/or in these terms and conditions or CCC's standard operating procedures,
whether such writing is prepared prior to, simultaneously with or subsequent to the Order
Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a
separate instrument.
8.5 The licensing transaction described in the Order Confirmation document shall be
governed by and construed under the law of the State of New York, USA, without regard to
the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding
arising out of, in connection with, or related to such licensing transaction shall be brought, at
CCC's sole discretion, in any federal or state court located in the County of New York, State
of New York, USA, or in any federal or state court whose geographical jurisdiction covers
the location of the Rightsholder set forth in the Order Confirmation. The parties expressly
submit to the personal jurisdiction and venue of each such federal or state court.If you have
any comments or questions about the Service or Copyright Clearance Center, please contact
us at 978-750-8400 or send an e-mail to info@copyright.com.
v 1.1
Questions? customercare@copyright.com or +18552393415 (toll free in the US) or

+19786462777.



Monday, January 14, 2019 at 4:08:07 PM Greenwich Mean Time

Page 1 of 1

Subject: Rightlink request 501453455

Date: Friday, 11 January 2019 at 20:48:21 Greenwich Mean Time

From: Mary Ann Price

To: Garriga Casanovas, Arnau

Dear Mr. Arnau Garriga Casanovas,

Thank you for your request placed on Rightslink Job Ncket # 501453455

I am pleased to report we can grant your request  to use Figure 25 from the arNcle “Design, kinemaNcs, and
control of a soR spaNal fluidic elastomer manipulator” found in The Interna*onal Journal of Robo*cs Research
 without a fee as part of your thesis.

Please accept this email as permission for your request as you’ve detailed below. Permission is granted for the
life of the ediLon on a non-exclusive basis, in the English language, throughout the world in all formats
provided full citaLon is made to the original SAGE publicaLon.  Permission does not include any third-party
material found within the work. 

As we have responded to your inquiry via this email, we will cancel your RightsLink order. If you have any
quesNons, or if we may be of further assistance, please let us know.

Kind Regards,
 
 
Mary Ann PriceMary Ann Price
Rights Coordinator
SAGE Publishing
2600 Virginia Ave NW, Suite 600
Washington, DC 20037
USA
 
T: 202-729-1403
www.sagepublishing.com
 
Los Angeles | London | New Delhi
Singapore | Washington DC | Melbourne
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Registered in England and Wales. Registered Number: 1072954 
Registered Office: 5 Howick Place, London, SW10 1WG   
 

Our Ref: AF/TADR/P19/0092 
 
14 January 2019 
 
Dear Arnau Garriga Casanovas, 
 
Material requested: Figure 18: ‘Development of a shape memory alloy actuator. 
Measurement of material characteristics and development of active endoscopes’ by Shigeo 
Hirose , Koji Ikuta & Masahiro Tsukamoto Advanced Robotics Vol. 4:1 pp. 3-27 (1989). 
 
Thank you for your correspondence requesting permission to reproduce the above mentioned material 
from our Journal in your printed Thesis and to be posted in the university’s repository – Spiral, 
Imperial's institutional repository (Imperial College, London). 
 
We will be pleased to grant entirely free permission on the condition that you include a full 
acknowledgement showing article title, author, full Journal title, copyright © Taylor & Francis and 
Robotics Society of Japan, reprinted by permission of Taylor & Francis Ltd, http://www.tandfonline.com 
on behalf of Taylor & Francis and Robotics Society of Japan. 
 
Please note that this licence does not allow you to post our content on any third party websites or 
repositories.   
 
Thank you for your interest in our Journal. 
  
Yours sincerely,  
 
 
 Annabel Flude – Permissions Administrator, Journals  
Taylor & Francis Group  
3 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN, UK. 
Tel: +44 (0)20 7017 7617 
Fax: +44 (0)20 7017 6336 
Web: www.tandfonline.com 
e-mail: annabel.flude@tandf.co.uk  

 
Taylor & Francis is a trading name of Informa UK Limited,  
registered in England under no. 1072954 
 
 
 


