1,197 research outputs found

    Evolving Robust Policy Coverage Sets in Multi-Objective Markov Decision Processes Through Intrinsically Motivated Self-Play

    Get PDF
    Many real-world decision-making problems involve multiple conflicting objectives that can not be optimized simultaneously without a compromise. Such problems are known as multi-objective Markov decision processes and they constitute a significant challenge for conventional single-objective reinforcement learning methods, especially when an optimal compromise cannot be determined beforehand. Multi-objective reinforcement learning methods address this challenge by finding an optimal coverage set of non-dominated policies that can satisfy any user's preference in solving the problem. However, this is achieved with costs of computational complexity, time consumption, and lack of adaptability to non-stationary environment dynamics. In order to address these limitations, there is a need for adaptive methods that can solve the problem in an online and robust manner. In this paper, we propose a novel developmental method that utilizes the adversarial self-play between an intrinsically motivated preference exploration component, and a policy coverage set optimization component that robustly evolves a convex coverage set of policies to solve the problem using preferences proposed by the former component. We show experimentally the effectiveness of the proposed method in comparison to state-of-the-art multi-objective reinforcement learning methods in stationary and non-stationary environments

    Autotelic Agents with Intrinsically Motivated Goal-Conditioned Reinforcement Learning: a Short Survey

    Full text link
    Building autonomous machines that can explore open-ended environments, discover possible interactions and build repertoires of skills is a general objective of artificial intelligence. Developmental approaches argue that this can only be achieved by autotelicautotelic agentsagents: intrinsically motivated learning agents that can learn to represent, generate, select and solve their own problems. In recent years, the convergence of developmental approaches with deep reinforcement learning (RL) methods has been leading to the emergence of a new field: developmentaldevelopmental reinforcementreinforcement learninglearning. Developmental RL is concerned with the use of deep RL algorithms to tackle a developmental problem -- the intrinsicallyintrinsically motivatedmotivated acquisitionacquisition ofof openopen-endedended repertoiresrepertoires ofof skillsskills. The self-generation of goals requires the learning of compact goal encodings as well as their associated goal-achievement functions. This raises new challenges compared to standard RL algorithms originally designed to tackle pre-defined sets of goals using external reward signals. The present paper introduces developmental RL and proposes a computational framework based on goal-conditioned RL to tackle the intrinsically motivated skills acquisition problem. It proceeds to present a typology of the various goal representations used in the literature, before reviewing existing methods to learn to represent and prioritize goals in autonomous systems. We finally close the paper by discussing some open challenges in the quest of intrinsically motivated skills acquisition

    Intrinsically Motivated Goal-Conditioned Reinforcement Learning: a Short Survey

    Get PDF
    Building autonomous machines that can explore open-ended environments, discover possible interactions and autonomously build repertoires of skills is a general objective of artificial intelligence. Developmental approaches argue that this can only be achieved by autonomous and intrinsically motivated learning agents that can generate, select and learn to solve their own problems. In recent years, we have seen a convergence of developmental approaches, and developmental robotics in particular, with deep reinforcement learning (RL) methods, forming the new domain of developmental machine learning. Within this new domain, we review here a set of methods where deep RL algorithms are trained to tackle the developmental robotics problem of the autonomous acquisition of open-ended repertoires of skills. Intrinsically motivated goal-conditioned RL algorithms train agents to learn to represent, generate and pursue their own goals. The self-generation of goals requires the learning of compact goal encodings as well as their associated goal-achievement functions, which results in new challenges compared to traditional RL algorithms designed to tackle pre-defined sets of goals using external reward signals. This paper proposes a typology of these methods at the intersection of deep RL and developmental approaches, surveys recent approaches and discusses future avenues

    A Practical Guide to Multi-Objective Reinforcement Learning and Planning

    Get PDF
    Real-world decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems

    A practical guide to multi-objective reinforcement learning and planning

    Get PDF
    Real-world sequential decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems. © 2022, The Author(s)

    Antecipação na tomada de decisão com múltiplos critérios sob incerteza

    Get PDF
    Orientador: Fernando José Von ZubenTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: A presença de incerteza em resultados futuros pode levar a indecisões em processos de escolha, especialmente ao elicitar as importâncias relativas de múltiplos critérios de decisão e de desempenhos de curto vs. longo prazo. Algumas decisões, no entanto, devem ser tomadas sob informação incompleta, o que pode resultar em ações precipitadas com consequências imprevisíveis. Quando uma solução deve ser selecionada sob vários pontos de vista conflitantes para operar em ambientes ruidosos e variantes no tempo, implementar alternativas provisórias flexíveis pode ser fundamental para contornar a falta de informação completa, mantendo opções futuras em aberto. A engenharia antecipatória pode então ser considerada como a estratégia de conceber soluções flexíveis as quais permitem aos tomadores de decisão responder de forma robusta a cenários imprevisíveis. Essa estratégia pode, assim, mitigar os riscos de, sem intenção, se comprometer fortemente a alternativas incertas, ao mesmo tempo em que aumenta a adaptabilidade às mudanças futuras. Nesta tese, os papéis da antecipação e da flexibilidade na automação de processos de tomada de decisão sequencial com múltiplos critérios sob incerteza é investigado. O dilema de atribuir importâncias relativas aos critérios de decisão e a recompensas imediatas sob informação incompleta é então tratado pela antecipação autônoma de decisões flexíveis capazes de preservar ao máximo a diversidade de escolhas futuras. Uma metodologia de aprendizagem antecipatória on-line é então proposta para melhorar a variedade e qualidade dos conjuntos futuros de soluções de trade-off. Esse objetivo é alcançado por meio da previsão de conjuntos de máximo hipervolume esperado, para a qual as capacidades de antecipação de metaheurísticas multi-objetivo são incrementadas com rastreamento bayesiano em ambos os espaços de busca e dos objetivos. A metodologia foi aplicada para a obtenção de decisões de investimento, as quais levaram a melhoras significativas do hipervolume futuro de conjuntos de carteiras financeiras de trade-off avaliadas com dados de ações fora da amostra de treino, quando comparada a uma estratégia míope. Além disso, a tomada de decisões flexíveis para o rebalanceamento de carteiras foi confirmada como uma estratégia significativamente melhor do que a de escolher aleatoriamente uma decisão de investimento a partir da fronteira estocástica eficiente evoluída, em todos os mercados artificiais e reais testados. Finalmente, os resultados sugerem que a antecipação de opções flexíveis levou a composições de carteiras que se mostraram significativamente correlacionadas com as melhorias observadas no hipervolume futuro esperado, avaliado com dados fora das amostras de treinoAbstract: The presence of uncertainty in future outcomes can lead to indecision in choice processes, especially when eliciting the relative importances of multiple decision criteria and of long-term vs. near-term performance. Some decisions, however, must be taken under incomplete information, what may result in precipitated actions with unforeseen consequences. When a solution must be selected under multiple conflicting views for operating in time-varying and noisy environments, implementing flexible provisional alternatives can be critical to circumvent the lack of complete information by keeping future options open. Anticipatory engineering can be then regarded as the strategy of designing flexible solutions that enable decision makers to respond robustly to unpredictable scenarios. This strategy can thus mitigate the risks of strong unintended commitments to uncertain alternatives, while increasing adaptability to future changes. In this thesis, the roles of anticipation and of flexibility on automating sequential multiple criteria decision-making processes under uncertainty are investigated. The dilemma of assigning relative importances to decision criteria and to immediate rewards under incomplete information is then handled by autonomously anticipating flexible decisions predicted to maximally preserve diversity of future choices. An online anticipatory learning methodology is then proposed for improving the range and quality of future trade-off solution sets. This goal is achieved by predicting maximal expected hypervolume sets, for which the anticipation capabilities of multi-objective metaheuristics are augmented with Bayesian tracking in both the objective and search spaces. The methodology has been applied for obtaining investment decisions that are shown to significantly improve the future hypervolume of trade-off financial portfolios for out-of-sample stock data, when compared to a myopic strategy. Moreover, implementing flexible portfolio rebalancing decisions was confirmed as a significantly better strategy than to randomly choosing an investment decision from the evolved stochastic efficient frontier in all tested artificial and real-world markets. Finally, the results suggest that anticipating flexible choices has lead to portfolio compositions that are significantly correlated with the observed improvements in out-of-sample future expected hypervolumeDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétric

    Final report key contents: main results accomplished by the EU-Funded project IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots

    Get PDF
    This document has the goal of presenting the main scientific and technological achievements of the project IM-CLeVeR. The document is organised as follows: 1. Project executive summary: a brief overview of the project vision, objectives and keywords. 2. Beneficiaries of the project and contacts: list of Teams (partners) of the project, Team Leaders and contacts. 3. Project context and objectives: the vision of the project and its overall objectives 4. Overview of work performed and main results achieved: a one page overview of the main results of the project 5. Overview of main results per partner: a bullet-point list of main results per partners 6. Main achievements in detail, per partner: a throughout explanation of the main results per partner (but including collaboration work), with also reference to the main publications supporting them

    Nature-Inspired Inductive Biases in Learning Robots

    Get PDF
    Die in dieser Dissertation vorgestellten Arbeiten studieren verschiedene von der Natur inspirierte induktive Verzerrungen im Kontext von modellfreiem und modellbasiertem selbstverstärkenden Lernen, mit dem Ziel, KI Agenten zu entwerfen, die effizient und autonom in der realen Welt handeln. Dabei sind von Robotern zu bewältigende Objektmanipulationsaufgaben von besonderem Interesse, da die zeitliche Entwicklung dieser dynamischen Systeme nicht trivial ist und Manipulationsaufgaben schwierige Planungsprobleme darstellen. Die betrachteten induktiven Verzerrungen sind hauptsächlich von in der Natur zu findenden intelligenten Agenten, wie Tiere und Menschen, inspiriert. Die primären Inspirationsquellen sind wie folgt. (1) Hierarchisch organisierte und spezialisierte kortikale Strukturen, die die effektive Erlernung von Fähigkeiten unterstützen. (2) Das selbstorganisierte Spielen von Kindern zum Zwecke der Formung intuitiver Modelle und Theorien über die Welt. (3) Strukturierte Explorationsstrategien basierend auf unterschiedliche Formen von intrinsischer Motivation und lang anhaltender zeitlicher Korrelationen in motorischen Befehlen. (4) Imitationslernen. (5) Die Planung von Aktionssequenzen unter der Berücksichtigung von Unsicherheiten in mentalen Modellen der nichtdeterministischen Welt. Diese Arbeit ist die Fortsetzung einer langen Historie von Ideen und Forschungsbemühungen, die Inspiration aus der Natur ziehen, um kompetentere KI Agenten zu entwickeln. Die Bemühungen in diesen Forschungsfeldern mündeten in der Ausbildung verschiedener Forschungsfelder wie hierarchisches selbstverstärkendes Lernen, Entwicklungsrobotik, intrinsisch motiviertes selbstverstärkendes Lernen und Repräsentationslernen. Diese Arbeit baut auf den in diesen Feldern entwickelten Ideen und Konzepten auf und kombiniert diese mit Methoden von modellfreiem und modellbasiertem selbstverstärkenden Lernen, um es Robotern zu ermöglichen, herausfordernde Objektmanipulationsaufgaben von Grund auf zu lösen. Die Hypothese, dass von der Natur inspirierte induktive Verzerrungen einen essenziellen Beitrag zur Erschaffung kompetenterer KI Agenten liefern könnten, wird dabei durch zahlreiche empirische Studien unterstützt.The work presented in this thesis studies various nature-inspired inductive biases in the domain of model-free and model-based reinforcement learning with the goal of designing AI agents that act more efficiently and autonomously in natural environments. The domain of robotic manipulation tasks is particularly interesting as it involves non-trivial system dynamics and requires abundant planning and reasoning. The inductive biases under investigation are primarily inspired by intelligent agents found in nature, such as humans and other animals. The primary sources of inspiration are as follows. (1) Hierarchically organized and specialized cortical structures facilitating efficient skills learning. (2) The self-organized playing of children to form intuitive theories and models about the world. (3) Structured exploration strategies based on various forms of intrinsic motivation and long-lasting temporal correlations in motor commands. (4) Imitation Learning. (5) Uncertainty-aware planning of motor commands in imagined models of a non-deterministic world. Consequently, this work continues a long history of ideas and research efforts that take inspiration from nature to build more competent AI agents. These efforts culminated in research fields such as hierarchical reinforcement learning, developmental robotics, intrinsically motivated reinforcement learning, and representation learning. This work builds on the ideas that were advanced in these fields. It combines them with model-free and model-based reinforcement learning methods to solve challenging robotic manipulation tasks from scratch. Empirical studies are carried out to support the hypothesis that nature-inspired inductive biases might be an essential building block in designing more competent AI agents
    corecore