
Nature-Inspired Inductive Biases in
Learning Robots

DISSERTATION

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Sebastian BLAES

aus Rüdesheim am Rhein

Tübingen

2022

https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fakultaet/
https://uni-tuebingen.de/

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 24.11.2022
Dekan: Prof. Dr. Thilo STEHLE

1. Berichterstatter/-in: Dr. Georg MARTIUS

2. Berichterstatter/-in: Prof. Dr. Martin V. BUTZ

v

Declaration of Authorship
I, Sebastian BLAES, declare that this thesis titled, “Nature-Inspired Inductive Biases
in Learning Robots” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

vii

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Abstract
Mathematisch-Naturwissenschaftliche Fakultät

Max Planck Institute for Intelligent Systems

Doktor der Naturwissenschaften

Nature-Inspired Inductive Biases in Learning Robots

by Sebastian BLAES

The work presented in this thesis studies various nature-inspired inductive biases
in the domain of model-free and model-based reinforcement learning with the goal
of designing AI agents that act more efficiently and autonomously in natural envi-
ronments. The domain of robotic manipulation tasks is particularly interesting as it
involves non-trivial system dynamics and requires abundant planning and reason-
ing. The inductive biases under investigation are primarily inspired by intelligent
agents found in nature, such as humans and other animals. The primary sources of
inspiration are as follows. (1) Hierarchically organized and specialized cortical struc-
tures facilitating efficient skills learning. (2) The self-organized playing of children
to form intuitive theories and models about the world. (3) Structured exploration
strategies based on various forms of intrinsic motivation and long-lasting tempo-
ral correlations in motor commands. (4) Imitation Learning. (5) Uncertainty-aware
planning of motor commands in imagined models of a non-deterministic world.

Consequently, this work continues a long history of ideas and research efforts
that take inspiration from nature to build more competent AI agents. These efforts
culminated in research fields such as hierarchical reinforcement learning, develop-
mental robotics, intrinsically motivated reinforcement learning, and representation
learning. This work builds on the ideas that were advanced in these fields. It com-
bines them with model-free and model-based reinforcement learning methods to
solve challenging robotic manipulation tasks from scratch. Empirical studies are
carried out to support the hypothesis that nature-inspired inductive biases might be
an essential building block in designing more competent AI agents.

HTTPS://UNI-TUEBINGEN.DE/
https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fakultaet/
https://is.mpg.de/

viii

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Abstrakt
Mathematisch-Naturwissenschaftliche Fakultät

Max Planck Institute for Intelligent Systems

Doktor der Naturwissenschaften

Nature-Inspired Inductive Biases in Learning Robots

von Sebastian BLAES

Die in dieser Dissertation vorgestellten Arbeiten studieren verschiedene von der
Natur inspirierte induktive Verzerrungen im Kontext von modellfreiem und mod-
ellbasiertem selbstverstärkenden Lernen, mit dem Ziel, KI Agenten zu entwerfen,
die effizient und autonom in der realen Welt handeln. Dabei sind von Robotern
zu bewältigende Objektmanipulationsaufgaben von besonderem Interesse, da die
zeitliche Entwicklung dieser dynamischen Systeme nicht trivial ist und Manipu-
lationsaufgaben schwierige Planungsprobleme darstellen. Die betrachteten induk-
tiven Verzerrungen sind hauptsächlich von in der Natur zu findenden intelligen-
ten Agenten, wie Tiere und Menschen, inspiriert. Die primären Inspirationsquellen
sind wie folgt. (1) Hierarchisch organisierte und spezialisierte kortikale Strukturen,
die die effektive Erlernung von Fähigkeiten unterstützen. (2) Das selbstorganisierte
Spielen von Kindern zum Zwecke der Formung intuitiver Modelle und Theorien
über die Welt. (3) Strukturierte Explorationsstrategien basierend auf unterschiedliche
Formen von intrinsischer Motivation und lang anhaltender zeitlicher Korrelationen
in motorischen Befehlen. (4) Imitationslernen. (5) Die Planung von Aktionssequen-
zen unter der Berücksichtigung von Unsicherheiten in mentalen Modellen der nicht-
deterministischen Welt.

Diese Arbeit ist die Fortsetzung einer langen Historie von Ideen und Forschungs-
bemühungen, die Inspiration aus der Natur ziehen, um kompetentere KI Agen-
ten zu entwickeln. Die Bemühungen in diesen Forschungsfeldern mündeten in
der Ausbildung verschiedener Forschungsfelder wie hierarchisches selbstverstärk-
endes Lernen, Entwicklungsrobotik, intrinsisch motiviertes selbstverstärkendes Ler-
nen und Repräsentationslernen. Diese Arbeit baut auf den in diesen Feldern en-
twickelten Ideen und Konzepten auf und kombiniert diese mit Methoden von mod-
ellfreiem und modellbasiertem selbstverstärkenden Lernen, um es Robotern zu er-
möglichen, herausfordernde Objektmanipulationsaufgaben von Grund auf zu lösen.
Die Hypothese, dass von der Natur inspirierte induktive Verzerrungen einen es-
senziellen Beitrag zur Erschaffung kompetenterer KI Agenten liefern könnten, wird
dabei durch zahlreiche empirische Studien unterstützt.

HTTPS://UNI-TUEBINGEN.DE/
https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fakultaet/
https://is.mpg.de/

ix

Acknowledgements
I want to express my deepest gratitude to my supervisor, Dr. Georg Martius, for
allowing me to pursue a Ph.D. in the Autonomous Learning group, for his invalu-
able feedback and guidance throughout my doctoral studies, and for the freedom he
gave me to explore my ideas. I am also very thankful for the financial and academic
support from the International Max Planck Research School (IMPRS) for Intelligent
Systems (IS). Special thanks to Dr. Leila Masri and Sara Sorce for their personal
support. I am also very grateful for the valuable feedback from the members of my
thesis advisory committee, Prof. Dr. Martin V. Butz and Prof. Dr. Ludovic Righetti.
I could not have undertaken this journey without the support of my parents, Jo-
hannes and Dagmar Bleas, who always encouraged me to follow my path. I also
want to thank my sisters Franziska and Julia and my brother Maximilian.

I want to thank all my collaborators, which are acknowledged at the beginning
of each section. Many thanks to Jakob Hollenstein, Dr. Pavel Kolev, Dr. Arash
Tavakoli, and especially Cansu Sancaktar for proofreading my thesis and providing
valuable feedback. Thanks to all the members of the Autonomous Learning group,
everyone at the Max Planck Institute for Intelligent Systems, and all the people I had
the pleasure to meet on this journey. They made it an unforgettable experience, and
many of them influenced me in profound ways.

I want to thank my friends who endured this long process with me, always of-
fering support and companionship.

xi

CONTENTS

Declaration of Authorship v

Abstract vii

Acknowledgements ix

List of Figures xv

List of Tables xxi

Acronyms xxiii

1 Introduction 1
1.1 Natural Intelligence: Autonomous Biological Agents 3
1.2 From Natural to Artificial Intelligence: Autonomous Artificial Agents 4
1.3 Scope of this Work . 6

2 Theoretical Background 9
2.1 Markov Decision Processes . 13
2.2 Reinforcement Learning . 14

2.2.1 Model-Free Reinforcement Learning 19
2.2.1.1 Temporal Difference Learning and Bootstrapping . . . 19
2.2.1.2 Q-Learning . 20
2.2.1.3 Policy Gradient . 21
2.2.1.4 The Actor-Critic Framework 22

2.2.2 Deep Reinforcement Learning 24
2.2.3 Model-Based Reinforcement Learning 25

2.2.3.1 Model-Based Data Generation 26
2.2.3.2 Model Derivatives . 27
2.2.3.3 Sampling-Based Planning with Model Predictive Con-

trol . 27
2.2.3.4 Value-Equivalent Predictions 30
2.2.3.5 Model-Based Reinforcement Learning and Optimal

Control . 30
2.2.4 Hierarchical Reinforcement Learning 30
2.2.5 Intrinsically Motivated Reinforcement Learning 32

3 Autonomous Hierarchical Skill Acquisition with Self-Guided Learning Cur-
riculum 35
3.1 Introduction . 37
3.2 Method . 40

3.2.1 Preliminaries . 40
3.2.2 Intrinsic Motivation . 42
3.2.3 (Self-Imposed) Task Scheduler 44
3.2.4 Task-Planning Architecture . 45
3.2.5 Subgoal Sampling . 47
3.2.6 Low-level Control . 49

3.3 Environments . 50
3.4 Baselines . 53
3.5 Experimental Results . 57

xii

3.5.1 Warehouse . 57
3.5.2 Fetch Pick&Place with Tool . 62

3.6 Ablation Studies . 63
3.7 Discussion . 65

4 Sample-Efficient Action Planning and Imitation-Based Learning of Neural
Network Policies in Model-Based Reinforcement Learning 67
4.1 Introduction . 69
4.2 Method . 71

4.2.1 Fast Sample-Based Trajectory Optimization 71
4.2.1.1 Colored Action Noise Exploration for Broad State-

Space Coverage . 71
4.2.1.2 Reusing Information Between Planning Steps 73

4.2.2 Neural Network Policy Extraction 74
4.2.2.1 Imitation Learning . 75
4.2.2.2 Neural Network Policy Informed Trajectory Optimiza-

tion . 76
4.3 Environments . 79
4.4 Baselines . 81
4.5 Experimental Results . 83
4.6 Discussion . 88

5 Uncertainty-Aware Planning in Model-Based Reinforcement Learning 91
5.1 Introduction . 93
5.2 Method . 95

5.2.1 Preliminaries . 95
5.2.2 Ensemble of Probabilistic Neural Networks 95
5.2.3 Uncertainty Estimation with Ensembles of Probabilistic Neu-

ral Networks . 96
5.2.4 Separation of Uncertainties . 97
5.2.5 Entropy vs. Variance as Uncertainty Measurement 99
5.2.6 Probabilistic Safety Constraints 99
5.2.7 Planning and Control . 100

5.3 Environments . 102
5.4 Baselines . 106
5.5 Experimental Results . 107

5.5.1 Active Learning for Model Improvement 107
5.5.2 Uncertainty-Aware Model-Based Planning 108
5.5.3 Planning under External Safety Constraints 110

5.6 Discussion . 113

6 Discussion 115

7 Conclusion & Outlook 127

Appendices 129

A Supplementary Background 129
A.1 Contraction Mapping . 129
A.2 Proof of the Policy Gradient . 130

xiii

B Relational RL 133
B.1 Algorithm . 133
B.2 Training Details and Parameters . 134

C Planning and Control 137
C.1 Fast Sample-Based Trajectory Optimization 137

C.1.1 Algorithm . 137
C.1.2 Implementation Details and Parameters 138

C.2 Neural Network Policy Extraction . 139
C.2.1 Algorithm . 139
C.2.2 Implementation Details and Parameters 140

D Risk Averse Control 141
D.1 Algorithm . 141
D.2 Implementation Details . 142

D.2.1 Model Learning . 142
D.2.2 Controller Parameters . 142
D.2.3 Timings . 143

Bibliography 145

xv

LIST OF FIGURES

2.1 Graphical depiction of a discrete-time Markov Decision Process (MDP).
At time step t, the system is in state St. By taking an action At, the
system transitions into state St+1 with probability P(St+1 | St, At).
While transitioning between states, the system provides feedback in
the form of a reward signal Rt+1. 13

2.2 Graphical depiction of the Reinforcement Learning (RL) problem. An
agent interacts with an environment by receiving its current state St
and the reward signal Rt. By sending actions At, the agent causes
the environment to transition into a new state St+1 according to the
transition probability P(St+1 | St, At). 14

2.3 Backup diagram for the value function. To update the value of state S,
a one-step look-ahead to the values of states S′ is sufficient. The next
state values are aggregated by taking the expectation over the action
distribution. 17

2.4 Backup diagrams for (A) Dynamic Programming (DP)-, (B) Monte-
Carlo (MC)- and (C) TD-learning. 19

2.5 Update scheme of Generalized Policy Iteration (GPI): Alternating be-
tween policy evaluation and policy improvement steps. Over time,
both the action-value function and the policy converge to the (approx-
imate) optimal action-value function and policy. 20

2.6 Schematics of the actor-critic framework. The monolithic agent is split
up into an actor and a critic. The actor receives the current state from
the environment and produces an action. The critic gets the state and
reward from the environment and the action from the agent. The critic
updates its current estimate of the state-action value function and pro-
vides a learning signal to the agent. 23

2.7 Graphical depiction of backpropagation through time. In the pol-
icy improvement step, the parameters ζ of the forward model f are
frozen, and analytical gradients (dashed lines) are computed through
the model (and potentially the cost function) to improve the policy. . . 27

2.8 The three phases of the CEM-Model Predictive Control (MPC) policy.
Connected arrows depict model rollouts. The optimization landscape
induced by J is visualized as contours. 29

2.9 Graphical depiction of a Hierarchical Reinforcement Learning (HRL)
policy. The low-level policy interacts with the environment at every
step. It receives the environment state st and sends actions at to the
environment. The mid- and high-level policies interact only with the
lower-level policies on a coarser temporal scale. 31

3.1 Overview of the CWYC architecture. CWYC consists of the following
components: (1) Several task spaces defined over groups of coordi-
nates in the observation vector. (2) A task scheduler that distributes
learning efforts between tasks. (3) A sub-task planner with (4) an
associated task dependency graph. (5) Sub-goal proposal networks.
(6) Low-level control policies or skills and (8) an intrinsic motivation
module that is derived from the history (7) that gets recorded for each
skill and trial. 38

xvi

3.2 Schematics of the observation vector. Observations are divided into
non-overlapping, simultaneously controllable tasks oT . Every task
has a semantic meaning that is unknown to the agent. Independent
goals gT can be set for any of the tasks. 40

3.3 Sketch of a single trial. At the beginning of each trial, the agent selects
a final task T and a self-imposed goal gT , e.g., move the anvil to the
target location marked by the giant cross. However, to solve a particu-
lar task, it might be necessary to solve multiple subtasks, e.g., move to
the forklift, pick up the anvil with the forklift, move the anvil with the
help of the forklift to its target location. In that case, the agent must
create an appropriate chain of subtasks and subgoals that connects the
individual subtasks. 41

3.4 Object- or task-based intrinsic motivation: (A) For each task spaceOT
several per-trial quantities are stored in a per-task history buffer. (B)
The per-task history buffers store quantities like the success rate, the
learning progress, and the prediction error of a forward model. 43

3.5 The agent distributes its learning resources between the different tasks.
The priority of pursuing a task is computed as a combination of learn-
ing progress and surprise. At the beginning of each trial, the agent se-
lects a final task T ⋆. This selection progress is implemented as a multi-
armed bandit that tries to maximize the reward specified in Eq. 3.9. . . 45

3.6 The task-planning module. (A) The transition matrix B of the task
planner keeps track of the time (B)k, ℓ ∝ Tℓ→k required to solve task k
if it was preceded by task ℓ. (B) By using backtracking, a task graph
is derived from the task planner. The task graph starts from the self-
imposed task T ⋆ and computes backward all possible sequences of
tasks that need to be solved in order to solve T ⋆. 46

3.7 Example of a potential subtask sequence that solves the “move anvil”
task. Once the agent figures out a viable subtask sequence, it also
needs to come up with a series of subgoals that connect the subtasks
in a meaningful way. The final goal (here shown as a cross) of the last
task is sampled independently at the beginning of the trial. 47

3.8 Network architecture of the goal proposal network. For each task
transition, the network learns three attention maps w1, w2, and w3.
The w1 and w2 model pairwise relations between coordinates in the
observation vector. The w3 models offsets and global reference points.
Here, the x- and y coordinates of the agent and the forklift have to co-
incide in the proposed goal. Only the upper triangular matrix of the
attention maps is learned because the matrices are symmetrical. 48

3.9 WAREHOUSE consists of a robot that the agent directly controls. The
robot can pick up and move a forklift. A heavy anvil cannot be con-
trolled by the agent directly but only with the help of the forklift. An
autonomous drone moves randomly in the environment and cannot
be controlled by the agent. A randomly placed cone is bolted to the
floor in some of the trials, while in others not. Hence, the robot can
move it only in some of the trials. In the bottom left corner is a screen-
shot of the simulated environment. A sphere represents the robot,
while colored blocks represent the other objects. 51

3.10 In the robotic manipulation environment, the agent controls a fetch
robot. The robot can use a hook-shaped tool to move a cube to a target
location that is otherwise unreachable for the robotic arm. 52

xvii

3.11 Oracle task graph. Locomotion does not have any prerequisites. Lo-
comotion has to be solved first to solve Move Forklift and Move Cone.
Move Forklift is a prerequisite for Move Anvil. Control Drone cannot be
solved at all. 53

3.12 Oracle attention weight maps w1 (left), w2 (middle), and w3 for the
transition between Locomotion and Move Forklift. At the end of Loco-
motion, the task space o0 = (x0, y0) has to be equal to the position of
the forklift g0 = o1 = (x1, y1). As a reminder, (xk, yk) are the po-
sitional coordinates of the different entities in the environment, with
k = 0 being the robot, k = 1 being the forklift, k = 2 being the anvil,
k = 3 being the cone, and k = 4 being the drone. 54

3.13 Oracle attention weight maps for (A) the Move Forklift to Move Anvil
and (B) the Locomotion to Move Cone task transitions. Same notation as
in Fig. 3.12. 54

3.14 Schematics of the HIRO agent. Source: Nachum et al. (2018) 55
3.15 Schematics of the ICM agent. Source: Pathak et al. (2017) 56
3.16 (A) Overall competence in WAREHOUSE and (B) success rate of the

agents in Locomotion throughout learning in the developmental phase.
The x-axis shows the number of environment steps, i.e., the number
of observations/transitioned collected in the environment. 57

3.17 Success rate of the agents in (A) Move Forklift, (B) Move Anvil, (C) Move
Cone, and (D) Control Drone throughout training in the developmental
phase. 58

3.18 The learned task prioritization of the Control What You Can (CWYC)
agent during the developmental phase. At the beginning of the devel-
opmental phase, the task scheduler concentrates most of the agent’s
learning efforts on Locomotion. After the agent masters the task, most
of the learning efforts are shifted towards Move Forklift. Once the task
is solved, the agent eventually concentrates on Move Anvil. Once all
the other tasks are solved, the agent spends the remaining time learn-
ing Move Cone. A constant low priority is assigned to Control Drone. . . 59

3.19 (A) Initial and (B) learned task transition matrices for the warehouse
environment. The labels within the cells show the probability of exe-
cuting a task k before a task j. 59

3.20 Learned task graph. The darker an arrow is, the higher the probability
for the task transition to occur according to the learned task planner
in Fig. 3.19B . 60

3.21 Attention weight matrices of the (A) untrained network, (B) the Loco-
motion to Move Forklift task transition, and (C) the Move Forklift to Move
Anvil task transition. The matrices are computed according to Eq. 3.25. 61

3.22 Distance between the learned goal g and the oracle goal g⋆ for the Lo-
comotion to Move Forklift transition as the number of positive training
samples increases. 61

3.23 (A) Trajectory of the robot (red) and the robot with the forklift (purple)
in WAREHOUSE. (B) Corresponding prediction error of the forward
model. The moment the robot collides with the forklift is identified as
a surprising event as the prediction error exceeds a certain threshold
(broken horizontal line). 62

3.24 Success rates in the (A) Move End-Effector, (B) Use Hook, and (C) Move
Cube tasks in FETCH PICK&PLACE TOOLUSE. 62

xviii

3.25 Overall competence of the CWYC, CWYCs−, and CWYC‡ agents in
the warehouse environment. 63

3.26 Number of positive samples in the training buffer of the goal proposal
network over number of environment steps (yellow) and distance be-
tween learned goal g and oracle goal g⋆ for the Locomotion to Move
Anvil task transition for (A) CWYC and (B) CWYCs−. 63

3.27 Learned (A) task scheduler and (B) task planner of the CWYCs− agent. 64

4.1 Example behaviors found by the improved Cross-Entropy Method (iCEM).
(A) In the DAPG RELOCATE environment, a 24 Degree of Freedom
(DoF) ADROID hand learns to juggle a ball around a target location.
(B) In the OPENAI GYM HUMANOID STANDUP environment, a 17
DoF humanoid robot learns to stand up and balance in an upright
position. 70

4.2 Colored random noise. (A) Random walks with colored noise of dif-
ferent temporal structures. (B) Power spectrum of colored random
action sequences for different β and two successful action sequences
in the HUMANOID STANDUP task. 73

4.3 In the OPENAI GYM FETCH PICK&PLACE environment, a fetch robot
has to pick up a cube and bring it to a target location either on the
table or in the air. The cube’s position on the table is a funnel state
through which the robot has to go through to be successful. 74

4.4 (A) A gripper robot tries to reach a cube while avoiding the obsta-
cle between gripper and cube. Arrows indicate state transitions. The
state transitions highlighted with red arrows mark a bifurcation point.
Depending on which action the robot chooses, it will either take the
upper or the lower trajectory. (B) Multi-modal action distribution
(black) results in the bifurcation point on the left. A value of a = −0.5
will lead to the lower trajectory. A value of a = 0.5 means that the
gripper follows the upper trajectory. By minimizing the Behavioral
Cloning (BC) loss, the Neural Network (NN) policy learn the average
action (red). 76

4.5 (Red) Trajectory produced by a sub-optimal NN policy. (Black) MPC
trajectories with Guided Policy Search (GPS) and a fixed cost weighting. 77

4.6 OPENAI GYM environments. The performances of iCEM and Adap-
tive Policy EXtraction (APEX) are tested in (A) HALFCHEETAH RUN-
NING, (B) HUMANOID STANDUP and (C) FETCH PICK&PLACE. 79

4.7 DAPG environments. The performances of iCEM and APEX are tested
in (A) RELOCATE and (B) DOOR. 80

4.8 Comparison between (A) a normal distribution, (B) a truncated nor-
mal distribution, and (C) a clipped normal distribution. 81

4.9 Performance of iCEM, Cross-Entropy Method (CEM), CEMMPC, and
CEMPETS relative to the planning budget for the (A) HALFCHEETAH

RUNNING, (B) HUMANOID STANDUP, (C) DOOR, and (D) RELOCATE

environments. Notice the log-scale on the x-axis. 83
4.10 Ablation studies of iCEM for (A) HALFCHEETAH RUNNING and (B)

FETCH PICK&PLACE. Blue bars show CEMMPC with each improve-
ment added separately. Yellow bars show iCEM with each feature
removed separately. 84

4.11 Policy performance on the test environments for APEX and baselines.
Soft Actor Critic (SAC) performance is provided for reference. 85

xix

4.12 Variance of Dataset Aggregation (DAgger) action relabeling after rela-
beling the same trajectory 10 times in case of (A) iCEM and (B) iCEM-
GPSλfixed

π in FETCH PICK&PLACE. 86
4.13 (A) When guiding with a weak policy, the action sampling distribu-

tion for iCEM-GPS with fixed and adaptive λ over multiple CEM-
iterations (at predefined time steps). The dashed line shows the action
of an expert policy. The dotted line shows the action of a suboptimal
policy. (B) The effect of an adaptive λ on the success rate in the FETCH

PICK&PLACE environment. 86
4.14 Interplay between APEX’s NN policy and APEX’s iCEM throughout

training in the HALFCHEETAH RUNNING environment. 87

5.1 Probabilistic Ensembles with Trajectory Sampling and Uncertainty Sep-
aration (PETSUS). Each ensemble member f k

θk
predicts the mean µk

and diagonal covariance matrix Σk of a Gaussian distribution. The
networks are repeated along the planning horizon to predict H steps
into the future in an auto-regressive fashion. The red pathways cor-
respond to the sampling procedure T1 proposed in Chua et al. (2018).
The yellow pathways are added to disentangle aleatoric and epistemic
uncertainties. 97

5.2 In the THREE BRIDGES environment, the agent controls a point mass.
The point mass is spawned on the left platform and must reach the
right platform by crossing one of three bridges. 102

5.3 In NOISY FETCH PICK&PLACE, action noise is applied to the action
dimension controlling the opening and closing of the gripper. The
noise is applied if the gripper is on the right-hand side (from the
robot’s perspective) of the vertical cyan line. Otherwise, no action
noise is applied. The task in the environment is to transport the cube
from the right side of the table to an in-air target location (red sphere)
on the left side of the table. The “glitch effect” indicates the region in
which action noise is added to the action dimension that controls the
opening and closing of the gripper. 104

5.4 In SOLO8 LEANOVEROBJECT, a quadruped robot has to stand up
from a ground position to track two targets (green spheres) with its
front and rear end (purple spheres). The front feet of the robot are
attached to the ground. Therefore, it has to lean slightly forward to
decrease the tracking error. A fragile object (unsafe region, red cube)
is in front of the robot. 105

5.5 State-space coverage of (A) Risk-Averse Zero-Order Trajectory Optimiza-
tion Method (RAZER) and (B) Probabilistic Ensembles with Trajectory Sam-
pling (PETS) during active exploration in THREE BRIDGES. States high-
lighted with a lighter color are visited earlier in the exploration, while
a darker color indicates states visited later in the exploration. 107

5.6 State-space coverage of PETS and RAZER for different values of wE.
A larger weight of the epistemic cost encourages RAZER to seek states
that maximize information gain. Means and standard deviations are
computed over 5 independent runs with different seeds. 108

5.7 Sucess rates of PETS and RAZER in THREE BRIDGES. RAZER is eval-
uated with different values of wA, resulting in varying levels of risk-
averseness. In contrast, the risk-awareness of PETS cannot be con-
trolled explicitly. 109

xx

5.8 Average velocity of the PETS and RAZER agents in NOISY HALFCHEE-
TAH. 110

5.9 (A) Dropping rates of PETS and RAZER in NOISY FETCH PICK&PLACE.
(B) Cube trajectories produced by PETS (red) and RAZER (green) in
NOISY FETCH PICK&PLACE. 111

5.10 (A) Safety violations over iterations and (B) the average number of
safety violation per step of PETS and RAZER in NOISY HALFCHEE-
TAH for different values of δ. 111

5.11 (A) Safety violation and (B) tracking error of the PETS and RAZER
agents in SOLO8 LEANOVEROBJECT for different values of δ. 112

6.1 The learned task prioritization of the CWYC agent during the devel-
opmental phase in WAREHOUSE. For more information see Fig. 3.18
in Ch. 3. 117

6.2 Learned task graph for Move Anvil in WAREHOUSE. For more infor-
mation see Fig. 3.20 in Ch. 3. 118

6.3 Overall competence of the CWYC, CWYCs−, and CWYC‡ agents in
the warehouse environment. For more details, see Fig. 3.6 in Ch. 3. . . 119

6.4 Success rate of the agents in (A) Locomotion, (B) Move Forklift, and (C)
Move Anvil throughout training in the developmental phase. For more
details, see Fig. 3.16 and Fig. 3.17 in Ch. 3. 120

6.5 Colored random noise. (A) Random walks with colored noise of dif-
ferent temporal structures. (B) Power spectrum of colored random
action sequences for different β. See Fig. 4.2 in Ch. 4 for more details. . 122

6.6 State-space coverage of an uncertainty-unaware planner and RAZER
for different values of wE. A larger weight of the epistemic cost wE

encourages RAZER to seek states for which no or only little training
data exists. For more details, see Fig. 5.6 in Ch. 5. 124

6.7 Planning in NOISY FETCH PICK&PLACE. (A) The uncertainty-aware
planner RAZER first pushes the cube out of the noisy region before it
lifts the cube to its target location (green). The uncertainty-unaware
baseline transports the cube along a straight line between the initial
and target position (red), (B) resulting in a much higher dropping rate
of the uncertainty-unaware planner compared to RAZER. See Fig. 5.9
in Ch. 5 for more details. 124

xxi

LIST OF TABLES

2.1 Table of notation used throughout the work. 12

4.1 Budget dependent internal optimizer settings (notation: CEM itera-
tions / N). 82

4.2 Sample efficiency and performance increase of iCEM w.r.t. the best
baseline. The first four columns consider the budget needed to reach
90% of the best baseline (dashed lines in Fig. 4.9). The last column
shows the average improvement over the best baseline in the budget
interval. 84

4.3 Runtimes for iCEM with different compute budgets. Times are given
in seconds per env-step (total wall-clock time = time/step × episode
length) on a Xeon® Gold 6154 CPU @ 3.00GHz. 89

6.1 Table of intrinsically motivated RL agents with the type of Intrinsic
Motivation (IM) and the computational method used for learning the
policy. 120

B.1 WAREHOUSE . 134
B.2 FETCH PICK&PLACE TOOLUSE . 135

C.1 Fixed Hyperparameters used for all experiments. 138
C.2 Env-dependent Hyperparameter choices. 138
C.3 Environment settings. 138
C.4 Expert settings for the considered methods. 140
C.5 Policy settings for iCEMπ and APEX. 140

D.1 Model parameters for THREE BRIDGES. 142
D.2 Model parameters (only differences wrt D.1 are shown) for NOISY

HALFCHEETAH environment. 143
D.3 Controller parameters in THREE BRIDGES. 144
D.4 Controller parameters in NOISY HALFCHEETAH (only difference w.r.t.

D.3 are shown). 144
D.5 Controller parameters in SOLO8 LEANOVEROBJECT (only difference

w.r.t. D.3 are shown). 144
D.6 Timings per one environment step in ms. We measured the timings

on a system with 1 GeForce GTX 1050 Ti, an Intel Core i7-6800K and
31GB of memory. 144

xxiii

ACRONYMS
A3C Asynchronous Advantage Actor Critic. 57

AI Artificial Intelligence. 4, 5

APEX Adaptive Policy EXtraction. xvi, xvii, 72, 73, 76, 77, 81–87, 89–91, 124, 125

BC Behavioral Cloning. xvi, 7, 71, 77, 78, 84, 86, 87, 91, 125

CEM Cross-Entropy Method. xiii, xvi, xvii, xix, 7, 30, 31, 72–76, 83–85, 88, 90, 123

CNN Convolutional Neural Network. 130

CWYC Control What You Can. xiii, xv, xvi, xviii, 6, 7, 39–42, 51, 52, 55–57, 59–62,
64–67, 71, 119–123

DAgger Dataset Aggregation. xvii, 77, 84, 86–88, 91, 125

DDPG Deep Deterministic Policy Gradient. 27, 51

DL Deep Learning. 26

DoF Degree of Freedom. xvi, 54, 71, 72, 81, 104–106

DP Dynamic Programming. xiii, 20–22

FRF Frequency Response Function. 74, 90, 123

GAN Generative Adversarial Network. 34

GNN Graph Neural Network. 42, 122–124

GP Gaussian Process. 32

GPI Generalized Policy Iteration. xiii, 22

GPS Guided Policy Search. xvi, xvii, 29, 77–80, 87–89, 91, 125

HER Hindsight Experience Replay. 51

HRL Hierarchical Reinforcement Learning. xiii, 6, 13, 32–34, 39, 57, 122, 130

iCEM improved Cross-Entropy Method. xvi, xvii, xix, 7, 72, 73, 75–77, 79–91, 102,
108, 123–125

IL Imitation Learning. 71, 73, 84, 86, 91, 124, 125

iLQR Iterative Linear Quadratic Regulator. 29

IM Intrinsic Motivation. xix, 5, 8, 13, 17, 34, 35, 55–57, 121, 122

IMRL Intrinsically Motivated Reinforcement Learning. 5, 6, 13, 34, 35

LQR Linear–Quadratic Regulator. 32

MBRL Model-Based Reinforcement Learning. 5–8, 30, 32, 71, 95, 103, 123

xxiv

MC Monte-Carlo. xiii, 20–22, 24, 26, 95

MDP Markov Decision Process. xiii, 6, 13, 15–17, 19–21, 27–29, 31–33, 42, 52, 54, 71,
73, 91, 95, 97–99, 102, 125

ML Machine Learning. 4, 17, 27, 39, 126

MPC Model Predictive Control. xiii, xvi, 7, 30, 31, 71–73, 75, 77–79, 83, 84, 90, 91, 95,
102, 115, 123

NN Neural Network. xvi, xvii, 4, 5, 7, 8, 27, 32, 71–73, 76–80, 84, 86–91, 95, 97, 100,
101, 122, 124, 125, 130

PETS Probabilistic Ensembles with Trajectory Sampling. xvii, xviii, 108–115

PETSUS Probabilitic Ensembles with Trajectory Sampling and Uncertainty Separa-
tion. 100, 115, 125

PILCO Probabilistic Inference for Learning Control. 29

POMDP Partially Observable Markov Decision Process. 16

PPO Proximal Policy Optimization. 27

PSD Power Spectral Density. 73–75, 90, 123, 124

RAZER Risk-Averse Zero-Order Trajectory Optimization Method. xvii, xviii, 95, 97,
99–103, 108–115, 124–127

RL Reinforcement Learning. xiii, xix, 4, 6, 7, 13, 16, 17, 20–22, 26–30, 33, 34, 39, 41,
54, 55, 64, 67, 71–73, 77, 87, 91, 95, 97, 115, 119, 121, 122, 125

RNN Recurrent Neural Network. 123

RS Random Shooting. 30

SAC Soft Actor Critic. xvi, 27, 51, 55–57, 84, 87, 89, 121

SMDP Semi-Markov Decision Process. 33

TD Temporal Difference. xiii, 21, 22, 24

TD3 Twin Delayed DDPG. 57

TRPO Trust Region Policy Optimizatio. 27

UVFA Universal Value Function Approximator. 32

1
INTRODUCTION

1.1. Natural Intelligence: Autonomous Biological Agents 3

1.1 Natural Intelligence:
Autonomous Biological Agents

The autonomy and ability to quickly adapt to a dynamic environment are critical
for the existence and survival of any intelligent creature. Throughout evolution,
nature provided humans and other animals with various innate behaviors (Versace
et al., 2015), specialized cortical structures (Kanwisher, 2010), the ability to adapt
such skills and structures to a changing environment (Kuhl et al., 1992; Saffran et al.,
1996), and learning mechanisms to acquire entirely new competencies.

In precocial species, newborns are relatively mature shortly after birth and show
a range of complex behaviors that do not require any or large amounts of learn-
ing (Versace et al., 2015). For example, to survive, prey animals like horses can stand
and run minutes after they are born (Miller et al., 2005). Altricial species like hu-
mans, on the other hand, go through a prolonged maturation period in which most
of their behavior has to be learned through social interactions, imitation learning,
and exploratory self-play (Nehaniv et al., 2007). Nonetheless, the human brain has
a variety of hard-coded components that ensure the survival of the individual and
the species as a whole. For instance, reflexes bypass the conscious part of the brain
entirely (Johns, 2014) and are direct and hard-coded motor responses to specific stim-
uli. An example of such a reflex is the sucking reflex in newborns that ensures the
baby’s access to food while it is still not in complete control of its own body. More-
over, the sucking reflex is a stepping stone for learning voluntary breastfeeding be-
havior (Sherman Ross et al., 1957) and therefore guides learning in a world full of
countless possibilities.

Imitating the behavior of others plays a vital role in the acquisition of new skills
(Aitken, 2018) in humans and many other animals. For example, human newborns
can already match facial expressions of other humans (Andrew N. Meltzoff et al.,
1997) and infants imitate facial and manual gestures from observations (Andrew N
Meltzoff et al., 1977). This mirroring behavior occurs even before the emergence
of a reflective self-awareness that typically develops between 13 and 26 months of
age (Lewis, 2012) together with the formation of self-reference and self-conscious
emotions. These observations argue for the existence of innate cortical structures
that support learning through imitation. One of these systems might be the mirror
system (Rizzolatti et al., 2001) with mirror neurons (Acharya et al., 2012) showing
a similar activation pattern independent of whether a person performs an action
directly or observes someone else performing the same activity. Not only do children
use imitation learning to acquire new skills, but humans throughout their entire life
imitate the behavior of other humans to modulate already existing skills (Möttönen
et al., 2005) or learn entirely new behavior.

An equally important role plays self- or intrinsically motivated learning in ac-
quiring new skills and adapting preexisting structures. It is believed that children
use self-play to develop and practice subroutines (Bruner, 1973) that later benefit
more goal-directed behavior (Weisler et al., 1976) and serve children as a playground
to conduct experiments and analyze the statistics in their observations to form intu-
itive theories and models about the world (Gopnik et al., 2004). There is growing
evidence that during self-play, children explore surprising events (Stahl et al., 2015),
observations that violate their prior beliefs (Legare et al., 2010) or situations that
maximize information gain (Ruggeri et al., 2019). In other animals, more rudimen-
tary but not utterly random exploration strategies are observed too. For example,
if food is scarce, sharks show an exploratory behavior described by Lévy flights in

4 Chapter 1. Introduction

that it exhibits long-lasting temporal correlations compared to a purely random ex-
ploration strategy (Sims et al., 2008; Humphries et al., 2010).

Humans and other animals form intuitive theories and models about the world
(Gopnik et al., 2004). However, they are constantly confronted with and have to
act within an inherently uncertain environment. Uncertainties can originate either
from a lack of information or inherently stochastic system dynamics. Therefore, it
is critical for acting beings to constantly reevaluate and update their inner beliefs
about the world by incorporating new or confounding information from the senso-
rimotor stream. In human cognition, this is known as metacognition (Metcalfe et
al., 1994). In humans and other animals, it is observed that uncertainties about the
world are taken into account during the planning of actions, either by taking actions
that reduce the uncertainty about the environment (Belger et al., 2018) or by acting
in a risk-averse fashion if the outcomes of certain actions are hard to predict or fail-
ure comes with a high cost. Research suggests that humans optimize motor plans
for task performance while explicitly accounting for the known uncertainty in the
environment (Alhussein et al., 2021).

All this research implies that the behavior observed in biological agents is not
purely learned from the ground up. Instead, evolution equipped biological agents
with innate skills and shaped the brain to facilitate the adaptation of these skills and
the learning of new skills. Different species occupying different ecological niches de-
veloped similar structures to different extents and even developed entirely different
systems depending on their needs. For instance, humans have developed very dis-
tinct brain areas for language processing (Friederici, 2011) because of the importance
of social interactions in human lives.

1.2 From Natural to Artificial Intelligence:
Autonomous Artificial Agents

The desire to build intelligent machines dates back to antiquity. Already one of the
first known automata from Greek mythology, Talos (McCorduck et al., 2004), has
been made by Hephaestus in the image of humans. It is not surprising that Artifi-
cial Intelligence (AI) systems are often inspired by the human brain, as it is the most
sophisticated learning system known to humankind. The actual advent of AI sys-
tems began with the development of programmable computers. Alan Turing, one
of the pioneers of theoretical computer science and artificial intelligence, stated that
to build a general AI, one must create a machine that can learn like a child (Turing,
1990). In “The Need for Biases in Learning Generalizations” (Mitchell, 1980) it is ar-
gued that a program can never make the leap necessary to classify instances beyond
those it has observed. Therefore, other sources of information in the form of biases
have to be introduced to choose one generalization over the other. Jonschkowski
et al. (2015) argues for numerous robotic priors for learning state representations,
namely a temporal coherence prior, a proportionality prior, a causality prior, and
repeatability prior. Neural Networks (NNs), one of the main drivers of modern
Machine Learning (ML), are inspired by how the brain processes information with
artificial neurons mimicking the behavior of individual cells in the brain (Rosenblatt,
1957). Reinforcement Learning (RL), a field of ML concerned with learning agents
that act in an environment to maximize a performance metric, is primarily inspired
by the trial-and-error-based learning and “reinforcement” theories in animal and hu-
man learning (Farley et al., 1954; M. L. Minsky, 1954). In recent years, RL combined

1.2. From Natural to Artificial Intelligence: Autonomous Artificial Agents 5

with powerful function approximators such as deep NN showed remarkable suc-
cesses in solving Atari games on a super-human level (Mnih, Kavukcuoglu, Silver,
Graves, et al., 2013), beating humans in two-player games like Chess and Go (Silver,
Hubert, et al., 2017), and solving challenging robotic manipulation tasks (H. Kim
et al., 2003; OpenAI et al., 2019) with high-dimensional continuous state spaces and
action spaces.

Most of these works learn a monolithic policy from raw experience in an end-
to-end fashion. However, this requires an immense amount of data that needs to
be collected through the agent’s interactions with the environment. For instance,
learning the control policy that solves a Rubik’s cube with a human-like Shadow
Dexterous Hand requires a cumulative experience equivalent to roughly 13 thou-
sand years of real-time experience (OpenAI et al., 2019). On the other hand, humans
can often learn from just a few examples (Lake et al., 2019). One potential reason
for the efficiency of humans in learning new skills is the extensive repertoire of prior
knowledge they can make use of. Another reason, as argued in the previous section,
is that evolution shaped cortical structures to facilitate learning relevant skills for
survival. Typically, AI agents are trained and evaluated in the same highly confined
environments with clearly defined and externally provided goals. In contrast, hu-
mans live in an open and dynamic environment that requires constant adaptation
and quick reactions to unforeseeable events. It is very hard to make accurate predic-
tions far into the future in the real world because of the many sources of uncertainty
that exist in the natural world.

To make learning in artificial agents more efficient and self-organized, some re-
searchers aim to simulate more aspects of human cognition with AI systems, for
instance, by incorporating inductive biases into the learning process that are often
inspired by how evolution shaped the brain to become the impressive learning ma-
chine that is known to us today or by how children explore their environment with-
out any external guidance. The research field of embodied robotics views the agent’s
embodiment and the learning algorithm in unity. In embodied robotics, it is studied
how the constraints emerging from this unity shape the learning of skills and influ-
ence the behavior of artificial agents in open-ended environments. See Lungarella
et al. (2003), Asada et al. (2009), and Oudeyer (2010) for surveys of the field.

The goal of Intrinsically Motivated Reinforcement Learning (IMRL) is to get rid
of the idea of specifying particular external goals altogether and instead define vari-
ous intrinsic reward signals that encourage the agent to learn new skills and explore
the environment in an autonomous and open-ended fashion. Numerous definitions
and implementations of Intrinsic Motivation (IM) were developed in the past, in-
cluding IM based on the disagreement between a mental model and real observa-
tions (Schmidhuber, 1991; Pathak et al., 2017), learning progress (Schmidhuber, 1991;
Lopes et al., 2012; K. Kim et al., 2020) (used in Ch. 3), or information gain (Pfaffel-
huber, 1972; Storck et al., 1995; Cover, 1999; Houthooft et al., 2016). Section 2.2.5 of
Ch. 2 discusses other forms of IM in more detail.

In representation learning, priors in the form of information bottlenecks (Yingjun
et al., 2019) or the composability of state abstractions (Burgess et al., 2019) are used
to learn state abstractions useful for downstream control tasks.

Another field of research that gained traction recently is Model-Based Reinforce-
ment Learning (MBRL). In MBRL, a mental model of the environment is learned
to make predictions about the future. “Mental simulations” are used to learn con-
trol policies from “imagined data” (Richard S Sutton, 1990; Richard S Sutton, 1991a;
Richard S Sutton, 1991b) or for planning (Richards, 2005; Chua et al., 2018). Sec-
tion 2.2.3 of Ch. 2 discusses the different research directions within MBRL in more

6 Chapter 1. Introduction

detail. Chapter 4 and Ch. 5 use planning to solve challenging robotic manipulation
tasks. One promise of MBRL is that models are more general than specialized con-
trol policies and can be transferred between tasks. An advantage of models is that
uncertainties can be modeled explicitly and considered during planning. In opti-
mal control, this is studied under robust optimization (Arruda et al., 2017; Abraham
et al., 2020). However, in MBRL, uncertainty-aware planning is less well explored.
Chapter 5 presents a method for uncertainty estimation and planning with learned
dynamics models.

1.3 Scope of this Work

The works presented in this thesis are placed between the research fields discussed
above by posing the following questions:

• How can specialized and hierarchically organized structured models aid the
training of control policies?

• How do compartmentalized policies compare to monolithic policies in the
open-ended learning setting?

• How can intrinsic motivation help structure and guide the developmental self-
play of artificial agents?

• How can other forms of exploration like the temporally structured exploration
described by Lévy flights help build more efficient agents?

• Which inductive biases are necessary to effectively learn neural network poli-
cies via imitation learning from a non-deterministic teacher?

• How can uncertainties be faithfully estimated and explicitly utilized in model-
based reinforcement learning to maximize information gain?

Chapter 2 reviews the mathematical formalisms and methods that are used through-
out this work. Markov Decision Processes (MDPs) are introduced as a popular
and widely adopted formalism to describe problems of sequential decision-making.
The remaining sections of this chapter discuss several learning methods for solving
MDPs via RL. RL as a general framework for solving MDPs is introduced in Sec. 2.2.
RL is used to solve MDPs from experience efficiently, that is, to learn control policies
that produce action sequences that maximize a given performance metric. Model-
free RL methods (Sec. 2.2.1) learn a policy directly from the raw experience of the
agent in the environment. They do not have direct access to nor make any assump-
tions about the underlying model of the MDP. Model-based RL methods (Sec. 2.2.3),
on the other hand, aim to learn a model of the MDP from data. Section 2.2.3 dis-
cusses various types of models that can be learned from data and different ways of
utilizing models to solve MDPs. Section 2.2.4 introduces Hierarchical Reinforcement
Learning (HRL) as a framework for solving complex problems through hierarchical
abstraction. Section 2.2.5 surveys the research field of Intrinsically Motivated Rein-
forcement Learning (IMRL), an area that is largely inspired by behavioral psychol-
ogy and developmental robotics.

Chapter 3 presents Control What You Can (CWYC), a HRL agent that aims to
maximize its controllability over environments through self-play. CWYC combines
model-based planning in hierarchical abstracted spaces with model-free RL to learn
low-level control policies. The design of the CWYC agent is primarily motivated

1.3. Scope of this Work 7

by how self-play in infants and small children is organized and takes place. In a
developmental phase, the agent is given time to explore its environment in a com-
pletely self-organized fashion to learn useful subroutines. Later, the agent can com-
pose these subroutines for goal-directed behavior. Learning low-level subroutines
in the developmental phase is supported by several hierarchically organized struc-
tured models and driven by the agent’s intrinsic motivation to maximize learning
progress. The structured models support the agent’s learning in two ways: (1)
They significantly reduce the low-level controllers’ computational complexity and
planning burden when solving compositional long-horizon manipulation tasks. (2)
They allow for structured exploration on the level of objects and goals instead of
unstructured exploration on the low-level actions typically used in RL. The CWYC
agent manages a self-guided learning curriculum distributing learning efforts be-
tween self-imposed tasks to maximize learning progress. An object- or task-level
planning module keeps track of task dependencies in compositional object manip-
ulation tasks, e.g., tasks requiring to go through one or multiple funnel states like
picking up a particular tool. The planning module ensures that suitable subroutines
are executed in the correct order. An object-centric relational learning module learns
and provides meaningful sub-goals that allow the agent to “glue together” the in-
dividual subroutines in a way that leads to success in downstream tasks. Although
the planning modules have a predefined internal structure that captures certain as-
pects of the planning problem, they are still learned from data and flexible enough
to adapt to the peculiarities of the different environments.

CWYC uses specialized structured models to guide the exploration and to sup-
port a low-level NN control policy in challenging compositional tasks. Chapter 4
addresses two major challenges that arise if models are used explicitly for decision
making down to the low-level control: (1) How can the space of possible future
outcomes be explored efficiently. Especially if no prior knowledge or gradient infor-
mation is available, one must resort to gradient-free or zero-order methods. (2) How
can planning methods be made fast enough to be executed in real-time on physical
robots. Specifically, zero-order planning methods combined with learned dynam-
ics models are considered to optimize action sequences in mental simulations or an
open-loop fashion without taking feedback from the real system into account. If the
mental simulation is executed in an Model Predictive Control (MPC) fashion, the
planning method can be cast as a closed-loop control policy. Section 2.2.3 of Ch. 2 in-
troduces model learning in the context of MBRL, the Cross-Entropy Method (CEM)
and MPC. Inspired by the efficient exploration of various animals like insects and
predatory species, the improved Cross-Entropy Method (iCEM) replaces the temporally
unstructured action sampling of CEM with a temporally structured action sampling
that is akin to the so-called Lévy flights. In addition, memory inside the iCEM al-
lows the reuse of information from the previous mental simulations to increase the
sample efficiency of the planner even further. Empirical studies demonstrate a sig-
nificant improvement of iCEM over CEM in sample complexity and performance,
making it more apt for real-time robotic applications. To push the planning method
even further toward real-time operation, it is combined with imitation learning tech-
niques to extract an NN policy from expert trajectories generated by iCEM. Empir-
ically it is shown that a simple Behavioral Cloning (BC) approach with a one-sided
influence from teacher to student can result in sub-optimal NN policies because of
the stochastic nature of the CEM optimizer. Implementing an adaptive mutual in-
fluence between teacher and student based on the student’s performance shows that
strong NN control policies can be learned from stochastic teachers even in challeng-
ing and high-dimensional robotic manipulation tasks. Moreover, the quality of the

8 Chapter 1. Introduction

solutions produced by the planning method even improves alongside the perfor-
mance of the NN policy.

When dealing with physical robots in the real world, the system’s failure can
lead to the robot’s destruction or dangerous situations if humans and robots interact
with each other. As discussed earlier, animals naturally incorporate any uncertain-
ties they might have about the world into their planning for future actions. This
results in more cautious or reckless behavior depending on the situation and the an-
imal’s intentions. Moreover, animals are intrinsically motivated to maximize their
information gain during exploration by explicitly seeking situations with reducible
uncertainties. To build robots that act naturally in the real world, they have to have
a sense of how much they can trust their internal beliefs about the world. To this
end, Ch. 5 studies uncertainty estimation and uncertainty-aware planning in the
context of MBRL. If models are learned from data, two types of uncertainty may
occur. Aleatoric uncertainty reflects the uncertainty originating from noise intrinsic
to the system. The aleatoric uncertainty is irreducible, and any uncertainty-aware
planner needs to take this uncertainty into account to minimize the risk of failure.
Epistemic uncertainty originates from insufficient training data and can be reduced
by collecting more and better data. The epistemic uncertainty is directly related to
the quality of the predictions produced by the model. To decrease the epistemic un-
certainty and thereby maximize information gain as well as increase the quality of
the projections, more data needs to be collected for which the model makes wrong
predictions, i.e., for which the epistemic uncertainty is high. Consequently, the epis-
temic uncertainty can be phrased as a form of IM that should drive the planner
towards situations that are difficult to predict. This work combines the estimation
and disentanglement of aleatoric and epistemic uncertainties in learned models with
model-based planning that makes explicit use of the two types of uncertainties in ac-
tive learning, risk-averse planning, and planning under external safety constraints.

Chapter 6 provides a general discussion of the presented works in the context of
biological agents and the closely related research fields discussed before. Finally, the
thesis closes with an outlook and final remarks in Ch. 7.

2
THEORETICAL BACKGROUND

Contents
2.1 Markov Decision Processes . 13
2.2 Reinforcement Learning . 14

2.2.1 Model-Free Reinforcement Learning 19
2.2.2 Deep Reinforcement Learning 24
2.2.3 Model-Based Reinforcement Learning 25
2.2.4 Hierarchical Reinforcement Learning 30
2.2.5 Intrinsically Motivated Reinforcement Learning 32

Chapter 2. Theoretical Background 11

Introduction

This chapter reviews the mathematical formalisms and concepts used throughout
this work. Section 2.1 introduces Markov Decision Processes (MDPs) as a widely
adopted mathematical formalism for modeling processes involving sequential de-
cision making. In a nutshell, in an MDP a system is fully described in terms of
states, actions, and the action conditioned transition dynamics between states. Each
project discussed in this work is about solving an MDP by using methods from Re-
inforcement Learning (RL), planning, Hierarchical Reinforcement Learning (HRL),
Intrinsically Motivated Reinforcement Learning (IMRL), and (spatial) reasoning.

Section 2.2 introduces RL as a collection of practical methods to efficiently solve
MDPs. The goal of RL is to learn a policy, or behavioral recipe, that acts optimal
w.r.t. the underlying MDP. In model-free RL (Sec. 2.2.1), the transition dynamics of
the MDP is assumed to be unknown, and a policy is learned directly from data col-
lected through interactions of the policy with the MDP. Model-based RL (Sec. 2.2.3)
methods aim to learn an explicit model of the MDP transition dynamics. Once such
a model is learned, it can be used to generate imagined data or for planning. Sec-
tion 2.2.4 introduces HRL as a way of solving complex, long-horizon tasks through
decomposition and hierarchical abstraction. This chapter closes by reviewing the
research field of HRL (Sec. 2.2.5). In HRL, numerous formulations of Intrinsic Moti-
vation (IM) are studied with the goal of building genuinely autonomous agents that
act in open-ended environments without any predefined purposes.

Even though this chapter captures many of the key results of the topics men-
tioned above, a substantial amount of research has been done in these fields. The
reader is encouraged to consult the seminal textbooks in these fields (Richard S. Sut-
ton and Andrew G. Barto, 1998; D. P. Bertsekas, 2011; D. Bertsekas, 2012) or the
survey articles referenced in the individual sections for further references.

12 Chapter 2. Theoretical Background

Notation

The following table serves as a reference for the notation used throughout this work.

(xi)
N−1
i=0 A sequence of length N

xi The i-th element of the sequence (xi)
N−1
i=0

X Capital letters denote random variables
X Calligraphic letters denote vector spaces

x ∈ X Small letters denote elements of a vector space
x(t), xt Time related indices are denoted by the letter t and appear in brackets

or as subscripts (for a compact notation)

TABLE 2.1: Table of notation used throughout the work.

2.1. Markov Decision Processes 13

2.1 Markov Decision Processes

St St+1St−1

Rt+1Rt

At−1 At At+1

(St−1, At−1) (St, At)
P P

FIGURE 2.1: Graphical depiction of a discrete-time MDP. At time step t, the sys-
tem is in state St. By taking an action At, the system transitions into state St+1
with probability P(St+1 | St, At). While transitioning between states, the system

provides feedback in the form of a reward signal Rt+1.

Formally, a Markov Decision Process (MDP) (Bellman, 1957; Howard, 1960) is
defined as the 4-tuple M =

(
S , A, Pa

ss′ , Ra
ss′
)
. In an MDP, the system is entirely

defined by its current state s ∈ S , with S being the space of all possible states the
system can be in. In the context of MDPs, the intuitive meaning is that all the his-
torical information about past states that might be needed for subsequent decision
making is already contained in the current state. Such a memory-less system, or
state, is said to have the Markov Property (see definition 2.1.1). In the following, it
is assumed that all MDPs are discrete in time, i.e., every two consecutive states st
and st+1 have the same finite distance in time between each other. In an MDP, deci-
sions are made in the form of actions a ∈ A, with A being the space of all possible
actions. Contrary to the temporal locality of states, actions can have long-lasting ef-
fects on future states or outcomes. For instance, the MDP might have two distinct,
completely disconnected branches that are reached by taking different actions from
the same root state.

Given a certain state s and action a, the transition kernel Pa
ss′ : S ×A×S → [0, 1]

defines the probability of transitioning into a new state s′ ∈ S :

Pa
ss′ = p(s′ | s, a) = P(St+1 = s′ | St = s, At = a), (2.1)

with ∫
s′∈S

p(s′ | s, a) ds′ = 1, ∀s ∈ S , a ∈ A.

The transition kernel fully describes the dynamics of an MDP.
The reward function Ra

ss′ : S × A× S → R maps every state-action-state triplet
to a real-valued number. In MDPs, the reward function is used to define goals or
tasks by providing a transition-dependent feedback signal. The general convention
is that transitions with higher rewards are higher valued w.r.t. the current task or
lead to states with a smaller distance to a goal state.

Viewed over multiple time steps, states and actions give rise to a sequence called
a trajectory:

(St, At)
t=H−1
t=0 = (S0, A0, S1, A1, . . .), (2.2)

with H being the horizon or length of the trajectory. The state St+1 is only condi-
tioned on the previous state St and action At and is distributed according to Eq. 2.1
due to the Markov Property:

14 Chapter 2. Theoretical Background

Definition 2.1.1 (Markov Property). A system or state has the Markov Property if and
only if the probability of transitioning into state St+1 depends only on the previous state St
and action At and not on the history of previous states and actions:

P(St+1 | St, At) = P(St+1 | S0, A1, S1, . . . , St, At).

Every MDP defines an optimization problem of finding an action sequence that
maximizes the cumulative rewards induced by the trajectory (St, At)

H−1
t=0 . With the

knowledge of the transition kernel, the optimization problem can be solved to opti-
mality. Yet, for most interesting problems, the transition kernel is unknown apriori,
and approximate solutions must be found. Figure 2.1 shows a graphical depiction
of an MDP. Nodes with a normal border depict states. Nodes with double borders
represent state-action pairs. Filled nodes are used for rewards. Transitions between
states or state-action pairs are depicted as directed arrows. This nomenclature is
used throughout this work.

What kind of problems can be formalized as MDPs? It turns out that many
problems involving sequential decision-making can be cast as MDPs: From discrete
state-space and action-space problems like two-player games such as Chess and the
game of Go to continuous state-space and action-space problems like robotic control
problems. Nonetheless, the real world is usually more complex than board games
or controlled robotic experiments. Partially Observable Markov Decision Processes
(POMDPs) extend MDPs to deal with problems in which only partial information
about the system is available.

2.2 Reinforcement Learning

Environment

Agent

At

Rt+1

St+1

Rt St

FIGURE 2.2: Graphical depiction of the RL problem. An agent interacts with an
environment by receiving its current state St and the reward signal Rt. By sending
actions At, the agent causes the environment to transition into a new state St+1

according to the transition probability P(St+1 | St, At).

The previous section introduced MDPs as a formal framework to model pro-
cesses of sequential decision making. This section discusses the Reinforcement Learn-
ing (RL) problem. RL translates the abstract mathematical concepts introduced in
the previous section into physical concepts and provides practical solutions, i.e., al-
gorithms, to solve MDPs. In RL, an agent interacts with an environment by receiving
the environment’s current state and reward and taking consecutive actions.

2.2. Reinforcement Learning 15

Example: In a robotic control setting, actions can be low-level commands like joint torques
or end-effector positions but also high-level goals like washing the dishes or following a pre-
defined path.

By sending actions to the environment, the agent changes the state of the envi-
ronment according to its internal dynamics, which is entirely defined by the MDP
transition kernel Pa

ss′ .
Example: In a robotic control setting, the state typically includes information about the dif-
ferent objects in the environment or information about the robot’s surroundings. In addition,
it often contains sensor readings and joint information of the robot itself. This is in con-
trast to a human-centered view of what constitutes the "self". As humans, we associate such
information with our perception and proprioception and not as part of the external world.

After executing an action, the agent receives the new state and a feedback sig-
nal in the form of a reward from the environment. The reward encodes a specific
task the agent is supposed to solve, e.g., picking up a cup from a table. By com-
mon convention, the reward is part of the environment and therefore external to the
agent. There are instances in which the reward or parts of the reward is internal
to the agent, e.g., as some form of Intrinsic Motivation (IM). Different types of IM
are reviewed in Sec. 2.2.5 and are used in the works discussed in Ch. 3 and Ch. 5.
Generally, the reward signal allows the agent to assess the quality of its action w.r.t.
its current task. Throughout this work, the reward signal is assumed to be a scalar
value, potentially in the form of a summation of multiple extrinsic and intrinsic re-
ward components. It is important to note that ideally the reward does not tell the
agent how to solve a problem but rather what kind of outcome is to be expected.
Example: For instance, the reward should not tell a robot exactly how to pick up a cup:
First, open the gripper. Then move the gripper to the cup. Pick up the cup. Finally, lift the
cup from the table. Instead, the reward should tell the robot that eventually, the cup should
not be on the table and in full control of the robot.

Nevertheless, in practice this assumption is often violated by providing shaped
and highly engineered rewards.

The existence of a reward signal and the fact that the agent can choose actions to
change the distribution of future rewards and states is one of the most notable differ-
ences between RL and other Machine Learning (ML) fields such as (un-)supervised
ML and renders the RL problem much harder than other problems in ML. Another
related issue is the so-called credit assignment problem (M. Minsky, 1961). The credit
assignment problem describes the challenge of distributing credit among the count-
less past decisions that lead to a particular reward at some later point in time. The
credit assignment problem is closely intertwined with the sequential nature of RL
problems and the fact that past actions can influence future outcomes.

Figure 2.2 depicts the interaction between the different components in the RL set-
ting. Formally, the objective of RL is to learn a policy that maximizes the discounted
return or discounted accumulated future rewards:

Gt = Rt+1 + γRt+2 + . . . =
∞

∑
k=0

γkRt+k+1. (2.3)

In Eq. 2.3, 0 < γ ≤ 1 refers to the so called discount factor. The discount factor
ensures that the infinite sum is bounded:

Gt ≤
∞

∑
k=0

γkrmax =
rmax

1− γ
, |γ| < 1, (2.4)

16 Chapter 2. Theoretical Background

with rmax being the maximum achievable reward. Another commonly used interpre-
tation of the discount factor is that it trades off recent against more distant rewards.
In other words, for γ → 0, the agent is more myopic, while for γ → 1, the agent
is more concerned about future outcomes. Immediate and future rewards in Eq. 2.3
are related by a recursive relationship:

Gt = Rt+1 + γGt+1. (2.5)

A stationary policy π ∈ Π, with π : S × A → [0, 1] and Π being the space of all
possible policies, is a function that maps states to a distribution over actions:

A ∼ π(· | S) = p(A | S). (2.6)

To find the next optimal action At at time step t, an agent has to be able to predict
the long-term outcome, i.e., the future return Gt, of following the policy starting in
a state St. To this end, a state-value function vπ : S → R for policy π can be defined
as:

vπ(s) = Eπ [Gt | St = s] = Eπ

[
∞

∑
k=0

γkRr+k+1

∣∣∣∣∣ St = s

]
, ∀s ∈ S , (2.7)

where the expectation Eπ [·] in Eq. 2.7 captures the entire agent-environment dy-
namics:

Eπ [f (s)] =
∫
A

π(a | s)
∫
S

∫
R

p(s′ | s, a)p(r | s, a) f (s) da ds′ dr. (2.8)

To access the long-term outcome of a particular action, an action-value function
qπ : S ×A → R for policy π can be defined as:

qπ(s, a) = Eπ [Gt | St = s, At = a]

= Eπ

[
∞

∑
k=0

γkRt+k+1

∣∣∣∣∣ St = s, At = a

]
, ∀s ∈ S , a ∈ A. (2.9)

Similarly to the recursive relationship between immediate and future rewards in
Eq. 2.5, a recursive relationship between the value of the current state and the value
of the next states can be derived:

vπ(s) = Eπ [Gt | St = s]
= Eπ [Rt+1 + γGt+1 | St = s]

=
∫
A

π(a | s)
∫
S

∫
R

p(s′, r | s, a)
[
r + γ Eπ

[
Gt+1

∣∣ St+1 = s′
]]

da ds′ dr

=
∫
A

π(a | s)
∫
S

∫
R

p(s′, r | s, a)
[
r + γvπ(s′)

]
da ds′ dr, ∀s ∈ S , (2.10)

with p(s′, r | s, a) = p(s′ | s, a)p(r | s, a). Equation 2.10 reveals an important
property of the value function: To determine the value of a state s, only a one-step
look-ahead to the value of the next state s′ is necessary. This allows to compute the
value function very efficiently because all future states after the next state can be
ignored in the computation.

2.2. Reinforcement Learning 17

s

vπ(s)

a ∼ π

s′

vπ(s′)

Pa
ss′

r

Eπ

FIGURE 2.3: Backup diagram for the value function. To update the value of state S,
a one-step look-ahead to the values of states S′ is sufficient. The next state values

are aggregated by taking the expectation over the action distribution.

Equation 2.10 is known as the Bellman equation (Richard E. Bellman, 1957) for
vπ. The Bellman equation can be rewritten in the form of the Bellman operator
T π : S → S :

Definition 2.2.1. Let π, v be an arbitrary policy and a value function, respectively. Then,
the Bellman operator is defined by:

[T π(v)] (s) =
∫
A

π(a|s)
∫
S

∫
R

p(s′, r|s, a)
[
r + γv(s′)

]
da ds′ dr ∀s ∈ S . (2.11)

Given a policy π, the Bellman operator has a unique fixed point:

T πvπ = vπ, (2.12)

which is a consequence of the contraction map theorem for the Bellman operator:

Theorem 2.2.1. Given an MDP with γ ∈ [0, 1). For any two value functions v1(s)
and v2(s) the Bellman operator T π is a γ-contraction mapping under the supremum norm
∥ f (x)∥∞ = supx∈X | f (x)|:

∥T πv1 − T πv2∥∞ ≤ γ∥v1 − v2∥∞. (2.13)

For the proof see Appendix A.1. From the Banach fixed-point theorem (Banach,
1922)

Theorem 2.2.2 (Banach fixed-point Theorem). Given a complete metric space (S , d),
with d being a metric on S . The contraction mapping T : S → S has a unique fixed-point
v⋆ with:

T v⋆ = v⋆. (2.14)

it follows that vπ(s) is a fixed-point of the Bellman operator T π for the policy π.
Intuitively, Eq. 2.14 states that if one starts from an arbitrary value function v(s) and
repeatedly applies the Bellman operator T π for the policy π, v will converge to the
value function vπ(s) for the policy π:

lim
k→∞

(T π)kv = vπ. (2.15)

18 Chapter 2. Theoretical Background

The Bellman equation and the iterative scheme in Eq. 2.15 are the basis for many
popular RL algorithms. Equation 2.15 is also called policy evaluation because the
quality of the current policy is evaluated in the MDP under consideration. The so-
called backup diagram for the value function is depicted in Fig. 2.3. For the action-
value function, an equivalent Bellman equation and Bellman operator exist.

Similar to the value function for an arbitrary policy π, we can define an optimal
value function v⋆ for an optimal policy π⋆. This is because value functions define
a partial ordering over policies with π ≥ π′ if and only if vπ(s) ≥ vπ′(s), ∀s ∈ S .
Hence, at least one policy π⋆ ≥ π′ exists, with vπ⋆ ≥ vπ′ , ∀π′ ∈ Π, that is better
or equal to any other policy. In fact, there might exist multiple optimal policies, all
sharing the same optimal value function. The optimal value function is defined as:

v⋆(s) = max
π∈Π

vπ(s), ∀s ∈ S . (2.16)

The optimal Bellman operator for the optimal value function is defined as:

T ⋆(v) = max
π
T π(v),

or equivalently (for any reward, there is an optimal deterministic policy (Puterman,
1994)):

[T ⋆(v)] (s) = max
a∈A

∫
S

∫
R

p(s′, r|s, a)
[
r + γv(s′)

]
ds′ dr ∀s ∈ S ,

The optimal Bellman operator has the unique solution:

T ⋆v⋆ = v⋆. (2.17)

Repeatedly applying the optimal Bellman operator to any value function v yields
the optimal value function:

lim
k→∞

(T ⋆)kv = v⋆. (2.18)

A similar optimal Bellman operator can be defined for the optimal action-value func-
tion q⋆.

Once the optimal (action-)value function is computed via the iterative scheme
defined in Eq. 2.18, the optimal policy π⋆ can be retrieved by following the greedy
policy, that is, by following the policy that maximizes the optimal (action-)value
function. One advantage of the (action-)value is that for computing the optimal
policy, the agent only has to act locally optimal or greedy w.r.t. the (action-)value
function in the current state. The reason is that the (action-)value function for a
given state already contains all the necessary information about all possible future
outcomes. Therefore, a one-step look-ahead search is sufficient to get long-term op-
timal actions.

In the case of finite state spaces and action spaces, the Bellman equation de-
fines a system of |S|, with |S| being the number of states, non-linear equations
with d unknowns. If the system’s dynamics are known, this system of equations
can be solved to optimality with Dynamic Programming (DP). Figure 2.4A shows
the backup diagram for DP. In the case of unknown dynamics, Monte-Carlo (MC)
methods can be used to approximate the stochastic variables from MC samples of
agent-environment interactions. The backup diagram for MC methods is depicted
in Fig. 2.4B. In most robotic control tasks, neither state spaces nor actions spaces
are discrete, nor are the system dynamics known apriori. In that case, one has to

2.2. Reinforcement Learning 19

resort to powerful function approximators to model the (action-)value functions or
the dynamics of the MDP.

2.2.1 Model-Free Reinforcement Learning

This section reviews some of the key algorithms and results from model-free RL.
In model-free RL, the model of the MDP is assumed to be unknown. Value func-
tions and policies are learned from data collected from interactions of the agent with
the environment. No explicit model of the system dynamics or the reward function
is learned. Section 2.2.1.1 and Sec. 2.2.1.2 discuss value-based RL methods. Sec-
tion 2.2.1.3 presents policy gradient methods and Sec. 2.2.1.4 reviews the actor-critic
framework that combines ideas from value-based and policy gradient methods.

2.2.1.1 Temporal Difference Learning and Bootstrapping

st

vπ(st)

at ∼ π

st+1

vπ(st+1)

r

Eπ

(A) Dynamic Programming

st

at ∼ π

st+1

rt+1

sH

(B) Monte-Carlo

st

Vπ(st)

at ∼ π

st+1

Vπ(st+1)

rt+1

(C) Temporal Difference

FIGURE 2.4: Backup diagrams for (A) DP-, (B) MC- and (C) TD-learning.

Temporal Difference (TD) learning (Richard S. Sutton, 1988) aims to learn a value
function by approximating the Bellman equation in various ways. Conceptually,
Temporal Difference (TD) learning can be placed between Dynamic Programming
(DP) and Monte-Carlo (MC) methods. With the former, it shares the idea of updat-
ing value estimates with estimates of the value of the next state. This is also called
bootstrapping. MC methods, on the other hand, wait for the episode to terminate to
compute a value estimate from the actual returns of the environment. Bootstrapping

20 Chapter 2. Theoretical Background

happens in the transition from the second to the third line in the following equation:

Vπ(s) = Eπ [Gt | St = s]
= Eπ [Rt+1 + γGt+1 | St = s]
= Eπ [Rt+1 + γVπ(St+1) | St = s] (2.19)

where the true expected future return Gt+1 is replaced with the value estimate Vπ(st+1)
of the next state. Similar to MC methods, the value function is learned directly from
raw experience, that is, from transition tuples that are collected while the agent in-
teracts with the environment:

D = {(si, ai, ri, si+1)}|D|−1
i=0 . (2.20)

TD learning is an iterative process and the update rule for the (approximate) value
function V is defined as:

V(st)← V(st) + α [rt+1 + γV(st+1)−V(st)] , ∀s ∈ S , (2.21)

where α > 0 is called the learning rate and the term in the square brackets is called
the td-error δt:

δt = rt+1 + γV(st+1)−V(st). (2.22)

Intuitively, the value function converges if δt → 0, ∀t, that is, the value function
converges if the value estimate of the current state is equal to the instantaneous
reward rt+1 plus the discounted value of the next state V(st+1).

Figure 2.4C shows the backup diagram of TD-learning alongside the backup di-
agrams of DP and MC.

2.2.1.2 Q-Learning

Q⋆, π⋆

π0

Qπ0

FIGURE 2.5: Update scheme of Generalized Policy Iteration (GPI): Alternating be-
tween policy evaluation and policy improvement steps. Over time, both the action-
value function and the policy converge to the (approximate) optimal action-value

function and policy.

Although the value function can be an interesting object in its own right, in RL,
we are typically interested in learning a control policy π. TD-learning can be natu-
rally extended from a pure estimation problem to a control problem by computing
the action-value function and alternating between value iteration (or policy evalu-
ation) and policy improvement steps. Eventually, this process will converge to the
optimal action-value function and policy as shown in Fig. 2.5. The resulting off-
policy TD control algorithm is called Q-learning (Watkins et al., 1992) and has the

2.2. Reinforcement Learning 21

following update rule:

Q(s, a)← Q(s, a) + α

[
r(s, a) + γ max

a′
Q(s′, a′)−Q(s, a)

]
, ∀s ∈ S , a ∈ A.

(2.23)
In Q-learning, the policy improvement step happens implicitly by locally maximiz-
ing the action-value function with respect to the action, i.e., by following the greedy
policy. Watkins et al. (1992) provides the following theorem:

Theorem 2.2.3. In the Q-learning algorithm with the update rule as defined in Eq. 2.23,
bounded rewards |rt| ≤ rmax, 0 ≤ α < 1 and

∞

∑
t=0

αt(s, a) = ∞,
∞

∑
t=0

α2
t (s, a) < ∞, ∀s ∈ S , a ∈ A (2.24)

the action-value function Q is guaranteed to converge to the optimal action-value function
Q⋆:

Qn(s, a)→ Q⋆(s, a) (2.25)

as n→ ∞ with probability 1.

The theorem guarantees the convergence of Q to Q⋆ even though Q-learning relies
on several approximations.

2.2.1.3 Policy Gradient

In continuous action spaces A = Rna , the policy πθ is typically modeled as a para-
metric function πθ(A | S) = π(A | S; θ) with model parameters θ ∈ Rnθ . Since
computing the maximum over actions in the value function update can be challeng-
ing in continuous action spaces, policy gradient methods bypass the learning of a
value function altogether. Instead, the policy is learned directly by optimizing an
objective function, that is, by maximizing the expected future reward:

J(θ) =
∫
S

ρπ(s)vπ(s) ds

=
∫
S

ρπ(s)
∫
A

πθ(a|s)qπ(s, a) ds da. (2.26)

In Eq. 2.26,

ρπ(s) =
∫
S0

∞

∑
t=0

γt · p0(s0) · p(s0 → s, t, π) ds0 (2.27)

is the stationary state distribution induced by the policy-environment interaction,
with the start-state probability p0(s0), start-states s0 ∈ S0, and p(s0 → s, t, π) being
the probability of ending up in state s after t steps of following policy π.

The advantage of policy gradient methods is that the gradient of Eq. 2.26 with
respect to θ can be computed efficiently. This is in contrast to the max-operation in
Q-learning methods that becomes intractable in the case of continuous action spaces.

The objective in Eq. 2.26 can be optimized with approximate gradient ascent:

θi+1 = θi + α∇̂θ J(θt), (2.28)

with α > 0 being the learning rate and ∇̂J(θt) being the stochastic estimate of the
gradient. To compute the gradient of Eq. 2.26, πθ has to be differentiable with respect

22 Chapter 2. Theoretical Background

to θ which can be easily achieved by choosing an appropriate model class. However,
computing the gradient of the stationary state distribution is problematic because it
depends on the policy and the environment to which we do not have access.

The policy gradient theorem (R. J. Williams, 1992) provides a solution to this
problem:

Theorem 2.2.4 (Policy Gradient Theorem). For any differentiable policy πθ and the ob-
jective function defined in Eq. 2.26, the policy gradient is proportional to:

∇θ J(θ) ∝
∫
S

ρπ(s)
∫
A

qπ(s, a)∇θπ(a | s; θ) ds da

=
∫
S

ρπ(s)
∫
A

qπ(s, a)π(a | s; θ)∇θ log π(a | s; θ) ds da

= Es∼ρ, a∼π [qπ(s, a)∇θ log π(a | s; θ)] (2.29)

with log π(a | s; θ) being the gradient of the log-likelihood or Score function.

For the proof see Appendix A.2. The key insight of the policy gradient theorem
is that the computation of the derivative of the stationary state distribution can be
avoided altogether by using the likelihood ratio trick (second to third line), which
removes any model dependency from the calculation. An intuitive interpretation of
the policy gradient is that it moves the probability mass of π(a | s; θ) onto actions
that maximize Qπ(s, a).

The expectation in Eq. 2.29 can be approximated from MC rollouts in the environ-
ment, that is, by approximating qπ with MC samples of the expected future return
Gt. The resulting algorithm is known as the REINFORCE algorithm (R. J. Williams,
1992). One downside of MC-based approaches is that they typically have high vari-
ances in their gradient estimates. This variance can be reduced by adding a so-called
baseline to the policy gradient. In the next section, one particular type of baseline in
the context of actor-critic methods will be discussed.

2.2.1.4 The Actor-Critic Framework

The actor-critic framework (Andrew G. Barto et al., 1983; Richard S Sutton, McAllester,
et al., 2000) combines the policy gradient with TD-learning and bootstrapping. This
has two significant advantages: (1) The variance of policy gradient methods is re-
duced compared to MC-based versions of the policy gradient like REINFORCE and
(2) it naturally deals with continuous control problems.

In the actor-critic framework, an actor or policy and a critic are learned from
the raw experience of the agent in the environment. In continuous state spaces and
action spaces, the actor and critic are modeled by function approximators.

The learned critic acts similar to a baseline in the policy gradient and thereby
reduces the variance of the estimated gradient. Generally, a baseline b enters the
policy gradient in the following way:

∇θ J(θ) =
∫
S

ρ(s)
∫
A
(qπ(s, a))− b(s))∇θπ(a | s; θ) ds da. (2.30)

2.2. Reinforcement Learning 23

Environment

Value
Function

Policy

At

Rt+1

St+1

Rt

target

St

td
error

critic

actor

FIGURE 2.6: Schematics of the actor-critic framework. The monolithic agent is split
up into an actor and a critic. The actor receives the current state from the envi-
ronment and produces an action. The critic gets the state and reward from the
environment and the action from the agent. The critic updates its current estimate

of the state-action value function and provides a learning signal to the agent.

The only requirement for the baseline is that it only depends on the state but not on
the action. In that case, it follows that:∫

S
ρ(s)

∫
A

b(s)∇θπ(a | s; θ) ds da

=
∫
S

ρ(s)b(s)∇θ

∫
A

π(a | s; θ) ds da

=
∫
S

ρ(s)b(s)∇θ1 ds

= 0. (2.31)

Hence, the expected value of the policy gradient remains unchanged if an appropri-
ate baseline is added:

∇θ J(θ) =
∫
S

ρ(s)
∫
A
(Qπ(s, a))− b(s))∇θπ(a | s, θ) ds da

=
∫
S

ρ(s)
∫
A

Qπ(s, a))∇θπ(a | s, θ) ds da. (2.32)

24 Chapter 2. Theoretical Background

Nonetheless, the variance of the policy gradient can still be affected by the baseline:

Eπ

[
((Qπ(s, a)− b(s))∇θ log π(a | s; θ))2

]
−Eπ [(Qπ(s, a)− b(s))∇θ log π(a | s; θ)]2

=Eπ

[
((Qπ(s, a)− b(s))∇θ log π(a | s, θ))2

]
−Eπ [Qπ(s, a)∇θ log π(a | s; θ)]2 . (2.33)

Replacing b with Vπ(s) in Eq. 2.31 gives rise to the definition of the advantage func-
tion:

Aπ(st, at) = qπ(st, at)− b(s)
∝ r(st, at) + Vπ(st+1)−Vπ(st). (2.34)

The policy is updated by following the gradient that maximizes the advantage, while
the critic can be updated from MC rollouts in the environment. If a function approx-
imator is used to model the critic, one can ask whether the function approximator
introduces any bias in the policy gradient. It turns out that the policy gradient re-
mains unbiased as long as the compatible function approximation theorem (Richard
S Sutton, McAllester, et al., 2000) holds:

Theorem 2.2.5 (Compatible Function Approximator). Let the critic Q(s, a; w) be
modeled by a function approximator with the model parameters w. The policy gradient

∇θ J(θ) =
∫
S

ρ(s)
∫
A

Q(s, a; w)∇θπ(a | s, θ). (2.35)

is unbiased, if the critic gradient is compatible with the actor score function

∇wQ(s, a; w) = ∇θ log π(s, a; θ) (2.36)

and if the model parameters w minimize

ϵ =
∫
S

ρ(s)
∫
A

π(s, a; θ)(Qπ(s, a)−Q(s, a; w))2 ds da. (2.37)

It is worth mentioning that all of the results discussed so far are exact only in the tab-
ular case or with linear function approximators. For complex problems like robotic
manipulation tasks or challenging games, linear function approximators are typi-
cally insufficient to capture all the complicated dependencies. Therefore, one has to
resort to more powerful function approximators giving rise to the field of deep RL.

2.2.2 Deep Reinforcement Learning

Deep RL builds on the successes of Deep Learning (DL) in domains such as the
classification of natural images (Krizhevsky et al., 2012), natural language process-
ing (Radford et al., 2018), recommendation systems (Elkahky et al., 2015) and many
others by applying similar techniques to challenging RL problems like robotic ma-
nipulation tasks and complex games.

DL enters RL if state spaces or action spaces become too large to be handled
by tabular approaches and the models are too complex for linear function approx-
imators. Popular deep RL algorithms (Mnih, Kavukcuoglu, Silver, Rusu, et al.,

2.2. Reinforcement Learning 25

2015; Mnih, Badia, et al., 2016; Haarnoja et al., 2018) use powerful non-linear func-
tion approximators such as deep Neural Networks (NNs) and massive amounts
of data (in the order of 106–107 data points) to learn the (action-)value function,
the policy, or a model of the MDP. On-policy methods like Trust Region Policy Op-
timizatio (TRPO) (Schulman, Levine, et al., 2015) and Proximal Policy Optimization
(PPO) (Schulman, Wolski, et al., 2017) optimize a parametrized policy directly via the
policy gradient. Off-policy methods like Deep Deterministic Policy Gradient (DDPG)
(Lillicrap et al., 2016) or Soft Actor Critic (SAC) (Haarnoja et al., 2018) learn a value-
function and are more akin to actor-critic methods with numerous adjustments to
accommodate for the training of deep NNs. In fitted value iteration algorithms (G. J.
Gordon, 1995; M. A. Riedmiller, 2005) a value function is learned offline on all the ex-
perience collected so far. It, therefore, resembles much more the classical supervised
learning setup in ML than the RL setting. One downside of deep RL is that many of
the results established in the previous sections do not hold (exactly) once deep NNs
are used somewhere inside the methods. Naively applied to the RL setting, they
typically result in notoriously unstable training (Tsitsiklis et al., 1997). Furthermore,
the convergence of RL methods with deep NNs cannot be guaranteed because of the
deadly triad (Richard S Sutton, 1995), which results from the combination of func-
tion approximation, bootstrapping, and off-policy training. Over time, many ad-hoc
solutions were developed that try to alleviate the risk of divergence during training
due to the deadly triad:

Lin (1992) introduces the concept of experience replay, or a replay buffer, to deep
RL. In experience replay, all the past interactions with the environment are stored
in a dataset from which elements are sampled i.i.d. during training. This removes
any temporal correlation between individual samples and smoothens the training
distribution over different behaviors. It also increases efficiency because training
points are seen more often during training. It can also decouple the behavior policy,
or data-collection policy, from the learned policy. In the extreme case, this leads to
offline RL (see Levine, Kumar, et al. (2020) for a survey of the field).

Mnih, Kavukcuoglu, Silver, Graves, et al. (2013) uses target networks to compute
the Q-targets in the Bellman update. However, in contrast to supervised learning,
the targets in the Bellman update depend on the parameters that are being opti-
mized, making the updates notoriously unstable. By replacing the Q-network in the
target computation of the Bellman update with a previous, immutable iteration of
the Q-network, the training can be stabilized significantly.

Computing the max-operation in the Bellman update can be challenging or even
intractable for large or continuous action spaces. Lillicrap et al. (2016) uses the action
proposed by the current policy to approximate the max-operation, while Haarnoja
et al. (2018) uses samples from a probabilistic policy. QT-OPT (Kalashnikov et al.,
2018) uses an optimization scheme to optimize for the next action explicitly.

Many more tricks, including delayed policy updates and target policy smooth-
ing (Fujimoto et al., 2018) were developed to ease the training of deep RL agents.

2.2.3 Model-Based Reinforcement Learning

So far, model-free RL methods have been discussed. These methods assume the
model to be unknown and therefore learn a policy or value function directly from
experience without modeling the system dynamics explicitly.

An alternative approach to utilize the data gathered from interactions with the
environment is to learn an explicit model of the MDP. The class of models that can
be used to approximate MDPs is extensive, including unstructured and structured

26 Chapter 2. Theoretical Background

models (Martius and Lampert, 2017; Burgess et al., 2019), state- (Wu et al., 2015),
observation- (Ebert et al., 2018) and latent state-transition models (Ha et al., 2018),
parametric (Lenz et al., 2015; Fu et al., 2016; Gal et al., 2016) and non-parametric (Ko-
cijan et al., 2004; Nguyen-Tuong et al., 2008) models, and many more. One of
the simplest model classes are unstructured state-transition models, i.e., a function
f : S × A × S → [0, 1] that maps states-action tuples to a distribution over next
states:

St+1 ∼ P(· | St, At) = f (St, At; ζ), (2.38)

with ζ being the parameters of the model. Equation 2.38 is an approximation of the
MDP transition kernel Pa

ss′ defined in Eq. 2.1. Given a datasetD = {(si, ai, ri, si+1)}|D|−1
i=0

of transitions, the model parameters can be learned via maximum likelihood learn-
ing:

ζ ← arg max
ζ

ED [log f (st+1 | st, at; ζ)] . (2.39)

Once a model of the MDP is learned, it can be used in various ways. The following
sections give an overview of the different use cases.

Notation

In optimal control, it is common to denote states by x and control inputs or actions
by u. To have a unified notation throughout this work, the RL-based notation is
adopted in which states are denoted by s and actions are denoted by a.

2.2.3.1 Model-Based Data Generation

These algorithms are also known as Dyna (Richard S Sutton, 1990; Richard S Sut-
ton, 1991a; Richard S Sutton, 1991b) style algorithms. They iterate between: (1) Data
collection with the current policy in the MDP. The interaction data is used to im-
prove the model. (2) Policy improvement by running a model-free algorithm with
imagined data from the model.

Notable entries of this type of algorithm are World Models (Ha et al., 2018),
SimPLe (Kaiser et al., 2020), and Model-Ensemble Trust-Region Policy Optimiza-
tion (Kurutach et al., 2018). Janner et al. (2019) provides a guarantee for a monotonic
improvement of Dyna style algorithms by constructing a bound on the returns of
the policy in the true MDP when using model rollouts for improving the policy:

G[π] ≥ Ĝ[π]− C(ϵm, ϵπ), (2.40)

with G[π] being the return of the policy in the true MDP and Ĝ[π] being the return
of the policy in the approximate MDP. Two sources of errors contribute to the gap
C between the actual and approximated returns. First, a generalization error due to
the difference in the expected loss and the empirical loss of the supervised learning
scheme (PAC generalization bound (Shalev-Shwartz et al., 2014)):

ϵm = max
t

Es∼ρπ̂
t

[
DTV(D(Pa

ss′ ∥ f (s′ | s, a; ζ)))
]

, (2.41)

with DTV being the total variation distance and ρπ̂
t being the time-dependent state

distribution of the data-collecting policy. Second, the distributional shift due to the
policy improvement step after which the policy might encounter states that were not
seen before:

ϵπ ≥ max
s∼ρπ

t

DTV(D(π(· | s) ∥ πD(· | s))). (2.42)

2.2. Reinforcement Learning 27

Using these two sources of errors, it follows:

Theorem 2.2.6. Given Eq. 2.41 and Eq. 2.42. The returns of the policy in the true MDP
are bounded by:

G[π] ≥ Ĝ[π]−
[

2γrmax(ϵm + 2ϵπ)

(1− γ)2 +
4rmaxϵπ

(1− γ)

]
. (2.43)

For the proof, see Janner et al. (2019).

2.2.3.2 Model Derivatives

If available, analytical model derivatives (and potentially cost function derivatives)
can be used directly for policy search. To this end, gradients of the RL objective
(Eq. 2.26) are computed by backpropagating through the frozen forward model (see
the dashed lines in Fig. 2.7) in the policy improvement step. Some notable entries in
this line of work are Probabilistic Inference for Learning Control (PILCO) (M. Deisenroth
et al., 2011), Iterative Linear Quadratic Regulator (iLQR) (Tassa et al., 2012), and Guided
Policy Search (GPS) (Levine and Abbeel, 2014).

st st+1st−1 fζ (s, a) fζ (s, a)

π(s) π(s) π(s)

at−1 at at+1

L(s, a) L(s, a) L(s, a)

ct−1 ct ct−1

Backprop

FIGURE 2.7: Graphical depiction of backpropagation through time. In the policy
improvement step, the parameters ζ of the forward model f are frozen, and analyt-
ical gradients (dashed lines) are computed through the model (and potentially the

cost function) to improve the policy.

2.2.3.3 Sampling-Based Planning with Model Predictive Control

The goal of planning-based methods is to optimize an action sequence:

(ah)
H−1
h=0 = (a0, . . . , aH−1) (2.44)

such that a performance objective:

J = φ(st′+H) +
t′+H

∑
t=t′
L(st, at, t), (2.45)

28 Chapter 2. Theoretical Background

with φ : Rns → R being a terminal cost function and L : Rns ×Rna ×R→ R being a
step-wise cost function, is minimized. The step-wise cost function in planning cor-
responds to the step-wise reward function in (model-free) RL with a flipped sign.
Hence, the maximization problem in RL becomes a minimization problem in plan-
ning. The terminal cost corresponds to a value function.

The optimization problem is subject to first-order (stochastic) dynamic constraints:

st+1 = f (st, at, t, η(t)), (2.46)

input constraints:
at ∈ Ω, (2.47)

and algebraic path constraints:

h(st, at, t) ≤ 0, h : Rns ×Rna × [t, t + H]→ Rnh . (2.48)

In Eq. 2.46, η(t) = η(st, at) is a random variable modeling the noise in the sys-
tem. In Eq. 2.47, Ω is an admissible compact region. In contrast to optimal control,
where the dynamics is often assumed to be linear, and the cost function is assumed to
be convex, in Model-Based Reinforcement Learning (MBRL) the dynamics is learned
and highly non-linear. Moreover, the cost function is non-convex. Hence, gradient-
free or zero-order optimization methods are a popular choice for optimizing the ac-
tion sequence in Eq. 2.44.

Model Predictive Control Planning methods typically compute an action sequence
offline and execute it in an open-loop fashion. In open-loop control, the entire action
sequence is executed in one shot without taking any feedback from the system into
account. Only after the action sequence is executed the planner receives feedback
from the system. However, in contact-rich robotic control tasks with non-smooth
dynamics, a feedback controller or closed-loop policy is preferred because it is much
more reactive. Model Predictive Control (MPC), or receding horizon control, trans-
forms an open-loop planning method into a feedback controller according to the
following recipe: (1) Optimize a trajectory using model rollouts. (2) Execute only
the first action of the optimized trajectory in the environment. (3) Let the system
evolve according to the system dynamics. (4) Update the model’s internal state with
feedback from the system. (5) Repeat.

The name receding horizon control comes from the fact that the planning horizon
H is typically much shorter than the task horizon T. Hence, after each iteration of
the MPC algorithm, the same problem is solved again with a horizon moved 1 step
forward in time.

Random Shooting In Random Shooting (RS) (Richards, 2005; Rao, 2009), many
random action sequences are generated by drawing actions from a fixed sampling
distribution. The resulting trajectories are ranked according to the performance in-
dex J. Then, the best action sequence is selected and executed in the environment. RS
can be combined with model-free algorithms to increase asymptotic performance.
For instance, Nagabandi et al. (2018) extracted a policy from trajectories generated
with RS and further fine-tuned the policies with model-free algorithms.

CEM for Trajectory Optimization In the Cross-Entropy Method (CEM) (R. Y. Ru-
binstein, 1997) for trajectory optimization (Chua et al., 2018), the fixed sampling dis-
tribution is replaced with an adaptive sampling scheme. The most common choice

2.2. Reinforcement Learning 29

for the sampling distribution is the Gaussian distribution at ∼ N (µt, Σt) with pa-
rameter vectors µt ∈ Rna for the means and Σt ∈ Rna×na for the covariance matrix.
Often, just the variances σ = diag(Σ) = Rna are used because the vector of variances
needs much fewer samples to be estimated faithfully than the matrix of covariances.

The CEM-MPC policy has two optimization loops: (1) The outer optimization
loop, or MPC-iteration, generates an action for every step in the environment. (2)
The inner optimization loop, or CEM-iteration, optimizes in each iteration N action
sequences (an

h)
H−1
h=0 , n = 1, . . . , N. Executing these action sequences inside the model

results in N imagined trajectories:

τ̂n = (st, an
0 , ŝn

t+1, an
1 , . . .), (2.49)

with st being the ground-truth MDP state at time step t and ŝt+h+1 being the model
prediction, or imagined state, at planning step h. The action sequences are ranked
according to the performance metric J and the K highest ranking action sequences,
or elites, are used to update the parameters of the sampling distribution according
to:

µi ←
∑K

k=1 ak
i

K
(2.50)

and:

σi ←

√
∑K

k=1(ak
i − µi)2

K− 1
. (2.51)

This process is repeated multiple times to optimize the action sequence in the CEM-
iteration. Figure 2.8 depicts one loop of the CEM-MPC policy. Figure 2.8A shows
the N action sequences (black arrows) that were sampled from the yet uninformed
sampling distribution in the first CEM-iteration. From these trajectories, a set of
elites gets selected based on their performance w.r.t. J. The optimization landscape
induced by J is visualized as contours. Figure 2.8B shows N new trajectories that
were sampled from the updated sampling distribution in the second CEM-iteration.
Figure 2.8C shows the action of the winning trajectory that eventually gets executed
in the environment.

(A) Model rollouts with unin-
formed sampling distribution.

(B) Model rollouts with updated
sampling distribution.

(C) The first action of the best
trajectory gets executed.

FIGURE 2.8: The three phases of the CEM-MPC policy. Connected arrows depict
model rollouts. The optimization landscape induced by J is visualized as contours.

30 Chapter 2. Theoretical Background

2.2.3.4 Value-Equivalent Predictions

The idea behind the value-equivalent principle (Grimm et al., 2020) is to learn mod-
els m that are specifically tailored to the control setting rather than the most gen-
eral models possible. According to the value-equivalence principle, two models are
value equivalent if they produce the same Bellman updates given a policy π and a
set of functions:

Definition 2.2.2 (Value Equivalence (Grimm et al., 2020)). Let Π be a set of policies and
let V be a set of functions. We say that models m and m̃ are value equivalent with respect to
Π and V if and only if:

Tπv = T̃πv, ∀π ∈ Π, v ∈ V , (2.52)

where Tπ and T̃π are the Bellman operators induced by m and m̃, respectively.

The general hope is that the models in the class of value-equivalent models are
easier to learn than more general models since they make use of task-specific knowl-
edge.

2.2.3.5 Model-Based Reinforcement Learning and Optimal Control

What differentiates MBRL from optimal control is that MBRL typically makes min-
imal or no prior assumptions about the functional form of the dynamics or the cost
function. Instead, in MBRL, models are entirely learned from data and with very
general parametric or non-parametric function approximators like NNs or Gaus-
sian Proccesses (GPs). On the contrary, optimal control frameworks such as the
Linear–Quadratic Regulator (LQR) (Kwakernaak et al., 1969) require a specific func-
tional form of the system dynamics and cost function. Nonetheless, optimal con-
trol methods can already involve learned components, for instance, by using system
identification (Åström et al., 1971). In system identification, the functional form of
the dynamics or the cost function is known apriori. Data collected from the system
under consideration is used to fit the analytical models to the system. For instance,
if rigid-body dynamics is used to model the movement of a robot, it is common to
fit the mass and inertia matrices from data collected from the robot.

2.2.4 Hierarchical Reinforcement Learning

The goal of HRL (Andrew G Barto et al., 2003; Pateria et al., 2021) is to decompose
a difficult and potentially long-horizon problem into smaller sub-problems through
hierarchical abstractions. Figure 2.9 depicts the general idea of HRL: The low-level
policy πlo interacts with the environment by receiving the current MDP state st from
the environment and sending low-level commands or actions at to the environment.
The high-level policies (πmid, . . . , πhi) do not interact with the environment directly
but only with the policies on the lower levels. The policies in the different levels
of the hierarchy are typically conditioned on the action from the policy above (also
known as universal policies and similar to the concept of Universal Value Function
Approximators (UVFAs) (Schaul et al., 2015)). In that way, the policy on a higher
level can modulate the behavior of a policy on a lower level:

πi = π(ϕi−1(s), πi+1), (2.53)

with ϕ : S → S ′ being a state-embedding function mapping from the state-space S
to an abstract state-space S ′ and πi being the policy at the i-th level of the hierarchy.

2.2. Reinforcement Learning 31

environment

πlo

...

πmid

...

πhi

πlo πlo

...

πmid

πlo πlo

...

πmid

...

πhi

· · ·

t = 0 t = 1 t = 2 t = 3 t = 4 T
Po

lic
y

FIGURE 2.9: Graphical depiction of a HRL policy. The low-level policy interacts
with the environment at every step. It receives the environment state st and sends
actions at to the environment. The mid- and high-level policies interact only with

the lower-level policies on a coarser temporal scale.

Similar to MDPs for RL, Semi-Markov Decision Processes (SMDPs) (Baykal-Gürsoy,
2010) can be used to formalize problems that need to be solved at the higher levels of
the HRL policy. SMDPs add an additional timing component to MDPs parametriz-
ing the number of steps for which an action gets executed. Hierarchical abstraction
can be achieved in multiple ways:

State Abstraction State abstraction (T. Dietterich, 1999; Jonsson et al., 2000) can
be implemented by embedding the MDP state space S into an abstract state space
S ′. The transformation from S to S ′ typically involves some form of compression,
for instance, by using the information bottleneck (J. Kim et al., 2021) or an attention
mechanism (Y. Chen et al., 2019).

Temporal Abstraction Temporal abstraction (Richard S Sutton, Precup, et al., 1999;
T. G. Dietterich, 2000) can be achieved by letting the policies operate on different lev-
els of temporal granularity. The lowest-level policy typically interacts with the envi-
ronment directly in every single step. However, the higher-level policies might act
only in fixed time intervals ∆t > 1 or only if certain conditions are met, for instance,
if the lower policy reaches a goal set by the higher-level policy. Temporal abstraction
can help mitigate the credit assignment problem in two ways: (1) Since the actions
of the higher-level policies are temporally extended, rewards in the distant future
can be effectively backpropagated over longer time scales. (2) Lower-level policies
solve more manageable and shorter sub-problems of the original task such that the
credit assignment problem is less pronounced.

32 Chapter 2. Theoretical Background

Reward Abstraction The policies in the different levels of the hierarchy are learned
with RL methods, and each level might receive its unique reward signal. The highest-
level RL agent typically receives the original environment reward while all the lower-
level policies are trained on internal rewards computed by the higher levels. One
of the most straightforward implementations of reward abstraction is to learn goal-
reaching policies on the lower levels with goals provided by the higher levels (Dayan
et al., 1992). Like temporal abstraction, reward abstraction can help ease the credit
assignment problem.

Using hierarchical abstractions can make the HRL problem non-stationary. For
instance, a lower-level policy might not be able to reach any targets at the beginning
of the training but improves over time, or the execution time of a lower-level policy
decreases with more training. The issue of a non-stationary training distribution
can be counteracted by subgoal re-labeling (Nachum et al., 2018) or by introducing
timed sub-goals (Gürtler et al., 2021).

Instead of learning a complicated policy, HRL can also be used for efficient ex-
ploration. Instead of action-level exploration, the higher-level policies can be used
for subtask or goal exploration (Jong et al., 2008; Nachum et al., 2018; Forestier et al.,
2020).

2.2.5 Intrinsically Motivated Reinforcement Learning

The goal of Intrinsically Motivated Reinforcement Learning (IMRL) and develop-
mental RL is to design agents that explore the environment by setting their own
goals instead of solving pre-defined goals or maximizing external rewards. Inspired
by how infants and children learn, the hope of IMRL is to design genuinely au-
tonomous agents that build a useful representation of the world and acquire new
skills in an open-ended fashion. Aubret et al. (2019) and Colas (2021) provide thor-
ough surveys of the field.

IM is closely related to the concept of embodiment (Bongard et al., 2003; Asada
et al., 2009; Cangelosi et al., 2015). The general idea of embodied learning is that the
physical constraints of a learning system profoundly influence the representations
and skills the system can learn. Therefore, the learning system must be understood
as a unit between learning methods and embodiment (Baranes et al., 2013a; Martius,
Der, et al., 2013; Gumbsch, Butz, et al., 2019). Another closely related field of re-
search is curriculum learning (Portelas et al., 2020). This field studies how a learning
curriculum can be built that facilitates acquiring new and progressively harder skills.
For instance, Florensa et al. (2018) learns a Generative Adversarial Network (GAN)
to generate goals of intermediate difficulty. The same idea for goal-generating poli-
cies is used in Sukhbaatar et al. (2018) and Campero et al. (2021). IMRL based meth-
ods can be divided into two major classes:

Knowledge-Based IM Knowledge-Based IM (see Linke et al. (2020) for a survey
of the field) is about the agent’s belief of how the world works and what it actually
observes. For instance, an agent can be motivated to recreate and explore surprising
situations (Achiam and Sastry, 2017), where surprise can be defined as the disagree-
ment between the predictions of a learned world model and the actual observations
from the environment (Schmidhuber, 1991; Pathak et al., 2017). Approaches based
on learning progress (Schmidhuber, 1991; Lopes et al., 2012; K. Kim et al., 2020) con-
centrate learning efforts on tasks the agent can learn. If a task is too difficult or too
easy, the agent’s interest in the task vanishes. Novelty (M. Bellemare et al., 2016) or

2.2. Reinforcement Learning 33

information gain (Houthooft et al., 2016) can be other measures to drive the intrinsi-
cally motivated exploration of an agent. In Schrodt et al. (2017), production rules are
learned from sensorimotor experiences to move a video game character in a purely
unsupervised fashion.

Competence-Based IM Competence-based IMRL agents are driven by the motiva-
tion to maximize their control over the environment, either by learning diverse sets
of skills (Mouret et al., 2015) or by reaching self-imposed goals (Baranes et al., 2010;
Santucci et al., 2016; Colas et al., 2019; Warde-Farley et al., 2019; Nair, Bahl, et al.,
2020; Pong et al., 2020).

IM can also be used to learn better world models (Chitnis et al., 2021). The model
can then drive further exploration (Sekar et al., 2020; Mendonca et al., 2021) or it can
be used to solve downstream tasks.

3
AUTONOMOUS HIERARCHICAL

SKILL ACQUISITION WITH
SELF-GUIDED LEARNING

CURRICULUM
This chapter is based on:

Blaes, Vlastelica, Zhu, Martius (2019). “Control What You Can: Intrinsically Motivated Task-Planning
Agent”. In: Advances in Neural Information Processing Systems (NeurIPS).

Contents
3.1 Introduction . 37
3.2 Method . 40

3.2.1 Preliminaries . 40
3.2.2 Intrinsic Motivation . 42
3.2.3 (Self-Imposed) Task Scheduler 44
3.2.4 Task-Planning Architecture 45
3.2.5 Subgoal Sampling . 47
3.2.6 Low-level Control . 49

3.3 Environments . 50
3.4 Baselines . 53
3.5 Experimental Results . 57

3.5.1 Warehouse . 57
3.5.2 Fetch Pick&Place with Tool 62

3.6 Ablation Studies . 63
3.7 Discussion . 65

3.1. Introduction 37

3.1 Introduction

This chapter presents an intrinsically motivated Hierarchical Reinforcement Learn-
ing (HRL) agent that learns to control its environment by utilizing structured models
and intrinsically motivated self-play. To enable the agent to gain control over objects
from just a few successful tries in compositional multi-object and open-ended envi-
ronments, its design is inspired by nature.

Many if not all animals show behavior that is acquired not only through learning,
but that is innate (Versace et al., 2015), i.e., that is genetically hard-wired (Kanwisher,
2010). Innate behavior increases the chances of survival of an animal and facilitates
learning by providing helpful training samples to learn complex skills (Sherman
Ross et al., 1957) in a world of countless possibilities. Reflexes are one of the most
simple forms of innate behavior and often do not involve higher cognitive processes
of the central nervous system. For instance, the patellar or knee-jerk reflex in hu-
mans is directly controlled by the spinal cord (Johns, 2014). Other reflexes serve as
an initial stimulus to aid the learning of behaviors that are critical for survival. For
example, the sucking reflex in mammals promotes the learning of breastfeeding be-
havior by encouraging the newborn to suck at any object close to the baby’s mouth.
In that way, the newborn is guaranteed to positively reinforce the sucking behavior
once it is close to the mother’s breast (Sherman Ross et al., 1957).

In precocial species, newborns show relatively mature behavior (Versace et al.,
2015), like the complex escape behavior of prey animals (Miller et al., 2005), right or
short after birth. On the contrary, newborns in altricial species are very dependent
until long after birth. They have to learn most of their behaviors or skills throughout
a prolonged maturation period. They conduct experiments and analyze the statistics
of their observations to form intuitive theories about the world (Gopnik et al., 2004).
Nonetheless, hard-wired skills like the ability of primates to identify other primates’
faces (Scalaidhe et al., 1999) or the well-tuned relationship between teacher (adult)
and student (infant) (Aitken, 2018) can facilitate the learning process. Since the op-
portunities and the number of possible skills to learn are almost endless, infants
show a pronounced intrinsic motivation for self-play, often with any objects within
their reach. The purpose may not be immediately apparent to us. However, to play
is to manipulate, to gain control.

Similar to nature, where species with different degrees of pre-structured systems
evolved, analogous design directions developed in Machine Learning (ML). One
extreme is completely uninformed learning that relies only on data, also called end-
to-end learning. The other extreme is hand-designed modules that incorporate prior
knowledge about the learning problem, also known as inductive biases, algorithmic
biases, or structural biases.

This project studies how inductive biases in the form of structured models can
facilitate learning temporally extended, low-level Reinforcement Learning (RL) poli-
cies with terminating conditions, also referred to as skills and closely related to
options (Richard S Sutton, Precup, et al., 1999). This hybrid architecture between
model-based and model-free RL is called the Control What You Can (CWYC) frame-
work. In contrast to the standard approach in model-based RL, which is to learn
one unstructured model for all the agent-environment interactions in an end-to-end
fashion (M. Deisenroth et al., 2011; Chua et al., 2018), in CWYC several structured
models are learned that can dynamically adapt to an environment by learning from
data. Similar to the innate behaviors and genetically hard-wired structures in ani-
mals, the structured models in CWYC serve multiple purposes: (1) The structured
models can learn or adapt to the peculiarities of different environments from just a

38 Chapter 3. CWYC

few training samples compared to the massive amount of training data required to
learn unstructured models. (2) Most of the planning complexity, usually done by the
low-level control policies, is offloaded to the models allowing the low-level policies
to be much simpler composable subroutines. (3) As with infants’ sucking reflex or
self-play, the structured models can be used to generate situations that create valu-
able training data for the low-level policies or skills, moving the exploration problem
from the low-level control commands to abstract goal spaces and task spaces.

Structured Models

Low-Level Control

Intrinsic Motivation

HRL

FIGURE 3.1: Overview of the CWYC architecture. CWYC consists of the follow-
ing components: (1) Several task spaces defined over groups of coordinates in the
observation vector. (2) A task scheduler that distributes learning efforts between
tasks. (3) A sub-task planner with (4) an associated task dependency graph. (5)
Sub-goal proposal networks. (6) Low-level control policies or skills and (8) an in-
trinsic motivation module that is derived from the history (7) that gets recorded for

each skill and trial.

In CWYC, the following inductive biases are introduced to solve compositional
object-manipulation tasks in complex environments (see Fig. 3.1): (1) An entity- or
object-centric state representation. (2) A task scheduler that allocates time and atten-
tion to tasks in which the agent can make progress towards learning them, creating a
self-guided learning curriculum similar to Achiam, Edwards, et al. (2018). (3) A sub-
task planner from which (4) a graph gets derived that models dependencies between
compositional multi-object tasks similar to Konidaris et al. (2009). (5) A structure to
learn geometric relations between task-relevant objects in the environment (Santoro
et al., 2017; Zambaldi et al., 2019). This model is used to generate intermediate goals
for potential intermediate subtasks similar to Florensa et al. (2018). (6) An intrinsic

3.1. Introduction 39

motivation module that models the agent’s desire to maximize learning progress. In-
trinsic motivation is implemented as a combination of prediction error and learning
progress as the primary force that drives self-guided learning (Forestier et al., 2020).
The models are organized in a hierarchy and direct the exploration and behavior of
(7) the low-level RL policies that get executed in the environment.

Section 3.2 of this chapter introduces the CWYC architecture in full detail. Sec-
tion 3.3 discusses the environments in which experiments are conducted to empiri-
cally demonstrate the effectiveness of the CWYC architecture. The CWYC agent is
compared against several baselines which are introduced in section Sec. 3.4. Sec-
tion 3.5 presents the experimental results and Sec. 3.6 discusses various ablations to
the CWYC architecture by showing their impact on the performance of the agent.
This chapter closes with a discussion in Sec. 3.7.

40 Chapter 3. CWYC

3.2 Method

The following sections introduce the CWYC framework in full detail.

3.2.1 Preliminaries

In the following, the MDP formulation introduced in Sec. 2.1 of Ch. 2 is used. The
goal of this work is to design an agent that gains control over the environment. In
other words, to design an agent that alters the observations o ∈ O = Rn from the
environment in arbitrary ways. The observations are grounded in the environment
via a perception module f obs : S → O that maps MDP states s to observations o =
f obs(s). Since the perception module grounds observations in the outside world,
the agent has to manipulate the environment in order to change the observations.
This work focuses on compositional object-manipulation environments in which an
agent is supposed to change the location or orientation of randomly scattered objects
in the environment. In particular, multi-stage goal-reaching tasks are studied that
require the agent to reach a series of task-dependent (sub-)goals. As soon as the
agent reaches a subgoal, the agent’s focus switches from one task to a potential next
task. Overall success is defined as reaching the goal of a final task.

1

2

3

...

K

semantics

Move Forklift

Locomotion

Move Anvil

o1

task o

g1

tasks goals

FIGURE 3.2: Schematics of the observation vector. Observations are divided into
non-overlapping, simultaneously controllable tasks oT . Every task has a semantic
meaning that is unknown to the agent. Independent goals gT can be set for any of

the tasks.

The observation vector is assumed to be pre-partitioned into groups of non-
overlapping, simultaneously controllable components referred to as task spacesOT .
Here, the object-centric state representation is an inductive bias hard-coded in the
observation. The same inductive bias can be introduced by using Graph Neural
Networks (GNNs) (Battaglia et al., 2018) or similar structured models. Each task
space has a corresponding goal space GT , similar as in Andrychowicz et al. (2017),
that specifies a desired target gT ∈ GT for the task-space vector oT ∈ OT .
Example: In a potential locomotion task, the agent needs to change its (x, y)-coordinates
in the observation vector by changing its position. In an object manipulation task, the agent
has to change the object’s (x, y)-coordinates in the observation vector by moving the object
from location a to location b.

3.2. Method 41

Figure 3.2 shows a graphical depiction of the observation vector and the group-
ing of coordinates into task spaces with their respective semantic meanings. The se-
mantics of the task spaces is unknown to the agent at all times. All the agent knows
is what groups of coordinates belong together. The perception problem, that is, con-
structing task spaces from high-dimensional image data or other sensor modalities
is an orthogonal line of research. Readers interested in representation learning are
referred to Péré et al. (2018) and Burgess et al. (2019).

Formally, the observation space factorizes in K object- or entity-centric subspaces
O = O1 × . . .×OK. Each subspace OT has a corresponding goal space denoted by
GT ⊆ OT . Since manipulation of a vector oT ∈ OT can be interpreted as solving a
particular task, e.g., moving an object to a target location gT ∈ GT , in the following
subspaces are also referred to as task spaces, with T ∈ {1, . . . , K}. It is assumed that
task spaces are non-overlapping and encompass only simultaneously controllable
components. Given a specific goal gT for a task T , the agent’s objective is to create
an action sequence that brings oT as close as possible to gT , according to some metric
dT : OT × GT → R. The Euclidean distance between task and goal state

dT = ||oT − gT ||22 (3.1)

is used as a metric in all the experiments discussed in Sec. 3.5. This metric has two
advantages: (1) The Euclidean distance is general and does not impose any particu-
lar structure on the goal spaces. Therefore, it can be easily applied to any goal space.
(2) This particular distance function can be easily computed by the agent because all
the relevant information is contained in the observation vector.

FIGURE 3.3: Sketch of a single trial. At the beginning of each trial, the agent selects
a final task T and a self-imposed goal gT , e.g., move the anvil to the target location
marked by the giant cross. However, to solve a particular task, it might be necessary
to solve multiple subtasks, e.g., move to the forklift, pick up the anvil with the
forklift, move the anvil with the help of the forklift to its target location. In that case,
the agent must create an appropriate chain of subtasks and subgoals that connects

the individual subtasks.

All experiments consist of two phases:
In the intrinsic phase or developmental phase, the agent does not receive any ex-
ternal goals or environment rewards. Instead, the agent has time to freely explore
the environment and gain control over as much of the environment as possible. The
developmental phase is divided into trials. At the beginning of each trial, the en-
vironment is reset to a random state and the agent creates a self-imposed goal gT

for a task T that maximizes learning progress (see Sec. 3.2.3), e.g., move to location
(x, y). While the agent tries to solve the task T , it evaluates its action at time step t
by computing an internal reward function given by:

r(t, T) = −dT (t) = −||oT (t)− gT (t)||22. (3.2)

42 Chapter 3. CWYC

The developmental phase is followed by the extrinsic phase, in which the agent is
confronted with external goals for any of the tasks T . In this phase, the agent’s
objective is to solve various given tasks and reach the externally provided goals
using skills learned during the developmental phase. The agent’s performance is
evaluated using the same metric as the agent uses to compute its internal reward.
Example: Figure 3.3 shows a sketch of a potential trial: The final task is to move a very
heavy anvil to the target location marked by a big cross. Alone, the agent cannot move the
anvil. It needs a tool. In this case, a forklift is the right tool for the job. To succeed in the
task, the agent has to reach the forklift, bring the forklift to the anvil, and eventually move
the anvil with the help of the forklift to the target location.

Note that time t is measured relative to the beginning of a trial. Each trial has a
maximum number of Tmax time steps.
Learning in the developmental phase is governed by several components as shown
in Fig. 3.1. Their detailed interplay is as follows:
Tasks T (1) define groups of components (coordinates) in the observation vector.
Each task has a semantic meaning attached to it. The semantic meanings are un-
known to the agent.
A task scheduler (2) is used by the agent at the beginning of each trial to select a
self-imposed task T (final task) to maximize expected learning progress.
Given a final task, the task planner B (3) computes a viable sub-task sequence from
a learned task-dependency graph (4).
The subgoal generators Gℓ→k (5) create a time-dependent goal gℓ(t) for each task
transition from task ℓ to task k.
Goal-conditioned control policies (6) πT (o, gT) control the agent in the environ-
ment and encapsulate the individual subroutines or skills.
Between trials, a history of different quantities like the learning progress and sur-
prising events are recorded in a per-task history buffer (7).
An intrinsic motivation module (8) computes the rewards and target signals for the
task scheduler, task planner, and subgoal generator based on learning progress
and surprise.

All components are trained concurrently from data collected during the devel-
opmental phase without external supervision. Prior knowledge enters only in the
form of the predefined task spaces and the internal structure of the models.

3.2.2 Intrinsic Motivation

In the developmental phase, the agent’s objective is to gain control over the environ-
ment, that is, to succeed in or master all potential tasks in the environment. In trial i,
the agent declares success in a self-imposed task T ⋆, if oT

⋆
is close, up to a precision

δT
⋆ ≥ 0, to the goal state gT

⋆
w.r.t. dT

⋆
:

succT
⋆
(i) =

{
1 if dT

⋆
(t) ≤ δT

⋆
for t ≤ Tmax and T ⋆ = T final,

0 otherwise.
(3.3)

It is important to note that the agent only succeeds in trial i if it attempts to solve the
self-imposed task T ⋆ as the final task in a potential sequence of subtasks.
Example: Coming back to the example depicted in Fig. 3.3 in which the agent is supposed
to move the anvil to the target location with the cross. The agent only succeeds in the task if
it executes the task sequence: reach forklift, transport forklift to anvil, move anvil to target
location. Suppose the agent instead executes the task sequence: get forklift, move forklift to
target location. In the process, the agent might pick up the anvil just by pure chance and

3.2. Method 43

History

(A) Task spaces.

History
succe

ss rate

progress

predictionerror

trials

trials

t

surprise

(B) Per-task history buffer.

FIGURE 3.4: Object- or task-based intrinsic motivation: (A) For each task space OT
several per-trial quantities are stored in a per-task history buffer. (B) The per-task
history buffers store quantities like the success rate, the learning progress, and the

prediction error of a forward model.

bring it to the cross. In that case, the agent will not succeed in the task because it was not
even attempting to move the anvil.

As some goals can be easier to reach than others, the agent does not look at a
single trial to measure success, but uses a recent history of Z trials to compute a
success rate or the controllability of the corresponding task:

srT (i) = 1/Z ∑
i∈ST

succT (i), (3.4)

with ST being the set of the last Z trial indices in which the agent attempted to solve
task T .

To effectively distribute its learning effort between the different tasks, the agent is
motivated to maximize its instantaneous learning progress on a trial-by-trial basis.
The instantaneous learning progress is defined as the derivative of the success rate
with respect to task trials:

ρT (i) =
∆srT (i)

∆i
. (3.5)

The reason for maximizing the learning progress instead of the success rate directly
is the following: Once the agent masters a task, the success rate is a constant function
of 1. Therefore, the agent would continue to concentrate its learning efforts on tasks
it has mastered already, although no further progress can be made in those tasks.
With the learning progress, however, the agent only concentrates on tasks that can
improve in terms of their success rate and stops focusing on tasks as soon as no
further progress can be made either because the agent has mastered the task or it
cannot be learned at all.

Since learning progress can be sparse, especially at the beginning of learning a
new task, the agent is also motivated to recreate surprising events it encountered
in past trials. The agent deems an event surprising if it was not predicted by an
internal forward model f fw : O × A → O of the world (see Sec. 2.2.3 in Ch. 2 for
more details) that the agent learns over time. The prediction error of the forward

44 Chapter 3. CWYC

model is defined as:

e(t) = ∥(f fw(o(t), a(t))− o(t + 1)∥2
2. (3.6)

Given the definition of the prediction error, a surprising event is defined as (see also
Gumbsch, Otte, et al., 2017):

surpriseT (t) =

{
1 if |∆eT (t)

∆t | > µT + θ · σT ,
0 otherwise,

(3.7)

where eT is the prediction error in task space OT and µT and σT are the first and
second moments of the distribution of the time derivative of the prediction error.
The time derivative of the prediction error is assumed to be Gaussian distributed :

(eT (t)− eT (t− 1))/∆t =
∆eT (t)

∆t
∼ N (µT , (σT)2). (3.8)

The parameter θ in Eq. 3.7 is a threshold that defines the confidence interval outside
which the agent labels an event as surprising. The following example can explain
why surprising events can help to guide the agent’s exploration but should be used
with care:
Example: Assuming the agent only knows how to move itself, it will just move around,
not knowing how to manipulate other parts of the environment. That means, the agent can
neither move the forklift nor the anvil yet. However, whenever the agent moves to the forklift
just by chance, the forklift suddenly starts to move and creates a high prediction error or
surprise signal. Thus, it is likely that this particular situation is a good starting point for
actually solving the “move forklift” task and to continue to explore from this situation. Now
an autonomous drone enters the scene, flying out of reach of the agent. The independent
movement of the drone will constantly create surprising events for the agent because it can
not predict the drone’s movement, disregarding how much the agent observes the drone.
Thus, the agent’s initial urge to control the drone should fade over time since the object is not
controllable by the agent.

With this example in mind, the prediction error should not be the primary driver
of the agent’s exploration but rather spark initial interest in pursuing a task. It is
worth noting that the agent does not have to pursue a particular task ℓ to encounter
unanticipated events in that task. The agent can follow any other task k as long as
the prediction error in the task ℓ is high enough. In that way, interest in any task
can be sparked at any given point in time, even though this task was only of meager
interest for the agent so far.

3.2.3 (Self-Imposed) Task Scheduler

During the learning/developmental phase, the agent can decide which task it wants
to pursue in each trial. Intuitively, it should be beneficial for the agent to concentrate
on tasks in which it can make the most learning progress in or that had surprising
events in the past.

The task scheduler (see Fig. 3.1(2) and Fig. 3.5) keeps track of the agent’s interest
in the different tasks and is implemented as a multi-armed bandit. The per-task
reward for the multi-armed bandit is defined as:

rT (i) = |ρT (i)|+ β · surpriseT (i), (3.9)

3.2. Method 45

1 2 3 . . . K
T

final task priority ∝ learning progress
+ surprise

FIGURE 3.5: The agent distributes its learning resources between the different tasks.
The priority of pursuing a task is computed as a combination of learning progress
and surprise. At the beginning of each trial, the agent selects a final task T ⋆. This
selection progress is implemented as a multi-armed bandit that tries to maximize

the reward specified in Eq. 3.9.

with the trial-based surprise:

surpriseT (i) = 1{surpriseT (k, t)), ∀t, k<i}(i), (3.10)

and 1 being the indicator function. Equation 3.10 is 1 if surpriseT (t) = 1 for any
time step t in any trial k ≤ i. While the primary quantity to maximize is the learning
progress, the surprise signal is added to the reward, with β ≪ 1, to spark an initial
interest in the agent to attempt a task that the agent has not explored before but that
showed some unexplainable behavior in the past.

The absolute value of the learning progress |ρT (i)| is used because the agent
should prioritize a task more when it can improve in a task and if performance
degrades over time (Baranes et al., 2013b). Initially, the surprise term dominates
the reward as |ρT (i)| → 0. As soon as actual progress can be made, the learn-
ing progress takes the leading role in the reward signal. The reward signal is non-
stationary because the learning progress in each task changes over time. To track the
non-stationary reward, the task scheduler updates an internal estimate of the reward
according to:

QT (i) = QT (i− 1) + α(rT (i)−QT (i− 1)), (3.11)

with the learning rate α > 0. Equation 3.11 is a running exponential average of the
per-task reward.

To promote exploration, a stochastic policy with T ⋆ ∼ p(T ⋆ = T) = QT / ∑j Qj

is used to select tasks.

3.2.4 Task-Planning Architecture

More difficult self-imposed tasks might require one or several subtasks to be per-
formed in a particular order to be solved successfully. A self-imposed task in one
trial can be a subtask of an other task in a different trial.
Example: For instance, if the agent wants to move the anvil, it has to move to the forklift
first, then move with the forklift to the anvil, and finally transport the anvil with the forklift
to its final position. But just moving to a different location can also be a valid self-imposed
task.

A task planner determines the sequence of subtasks that need to be solved in
order to solve a task T . To do so, the task planner keeps track of the time Tℓ→k
required to solve a particular task k if it was preceded by task ℓ.

46 Chapter 3. CWYC

cu
rr

en
ts

ub
-t

as
k

preceding sub-task

1

2

...

K

S 1 . . . K

(A) Transition matrix B of the task planner.

S j

S 2 1 3

K

(B) Task-dependency graph.

FIGURE 3.6: The task-planning module. (A) The transition matrix B of the task
planner keeps track of the time (B)k, ℓ ∝ Tℓ→k required to solve task k if it was
preceded by task ℓ. (B) By using backtracking, a task graph is derived from the
task planner. The task graph starts from the self-imposed task T ⋆ and computes
backward all possible sequences of tasks that need to be solved in order to solve

T ⋆.

Example: For instance, if the agent attempts to relocate the anvil right after it reaches it,
the time to solve the “move anvil” task will be Tmax. This is because the anvil is too heavy for
the agent to be transported on its own. However, if the agent performs the “move forklift”
task right before it attempts to move the anvil, the time to solve the “move anvil” task will be
smaller than Tmax because the forklift enables the agent to carry the heavy anvil. Hence, the
“move forklift” task is a prerequisite for the “move anvil” task.

As before, surprising events are used as an additional proxy signal for potential
future success.
Example: If the forklift enables the agent to move the anvil, a high prediction error will
occur the first time the agent collides with the anvil while controlling the forklift.

The values of each task transition is captured by the entry Bk,ℓ of a transition
matrix B (see Fig. 3.6A), where k ∈ [1, . . . , K] and ℓ ∈ [S, 1, . . . , K] enumerate
the current and preceding subtasks, respectively, and S represents the “start” of a
potential subtask sequence:

Bk,ℓ(i) =
Qk,ℓ(i)

∑m Qk,m(i)
, (3.12)

with:

Qk,ℓ(i) =
〈

1− Tℓ→k(i)
Tmax(i)

+ γ · surpriseT (i)
〉

. (3.13)

In Eq. 3.13, ⟨·⟩ denotes a running average and Tℓ→k is the runtime for solving task k
if it was proceeded by task ℓ. Without success, Tℓ→k equals Tmax. Similarly to Eq. 3.9,
this quantity is initially dominated by the surprise signals, with γ≪ 1.

The matrix B can also be cast as an adjacency matrix of an acyclic weighted task
graph (see Fig. 3.1(4) and Fig. 3.6B). The task graph contains all potential sequences
of subtasks starting in S and ending in T ⋆, from which the sequence with the mini-
mum total execution time is selected and executed by the agent. An ϵ-greedy policy
is used to encourage the exploration of different subtask sequences.

3.2. Method 47

S 2 1 3

move agent move forklift move anvil

FIGURE 3.7: Example of a potential subtask sequence that solves the “move anvil”
task. Once the agent figures out a viable subtask sequence, it also needs to come
up with a series of subgoals that connect the subtasks in a meaningful way. The
final goal (here shown as a cross) of the last task is sampled independently at the

beginning of the trial.

3.2.5 Subgoal Sampling

Each (sub)-task is a goal-reaching problem.
Example: For instance, in the running example depicted in Fig. 3.3, it is not enough to
move the forklift to any position in the environment in order to transport the anvil. Instead,
the forklift has to be moved precisely to the position of the anvil to do so, see Fig. 3.7.

To this end, a goal proposal network is trained for each task transition Gℓ→k in
the form of an attention network that can identify pairwise relations among similar
observations. The model Gℓ→k : O → [0, 1] associates a value/attention to each
coordinate in the observation vector o:

Gℓ→k(o) = e−γ ∑n
a=1 ∑n

b=a+1 ∥w1
aboa+w2

abob+w3
ab∥

2
, (3.14)

where w1, w2, w3 ∈ Rn×Rn, and γ > 0 are trainable parameters and w1
ab is a single

component of the matrix w1.
To get an intuition about the parametrization of the goal proposal network, con-

sider a particular pair of coordinates (a, b) in the observation vector.
Example: For instance, a could be the agent’s x coordinate and b could be the forklift’s x
coordinate. With w1

a, b = −w2
a, b ̸= 0, the model can express that both coordinates have to

have a distance of zero or coincide in the proposed goal. The network can also model offsets
or global reference points with w3

ab.
See Fig. 3.8 for the schematics of the network architecture.
The attention maps w1, w2 and w3 are learned via regression:

Lℓ→k = min
w1

ab,w2
ab,w3

ab,γ
Eo∼D ∥Gℓ→k(o)− rℓ→k(o)∥2, (3.15)

with the target being:

rℓ→k(ot) = min(1, succk · Γℓ→k(ot) + surprisek(t)). (3.16)

In Eq. 3.16, Γℓ→k is defined as:

Γℓ→k(ot) =

{
1 if the agent switches from task ℓ to task k in ot,
0 otherwise.

(3.17)

48 Chapter 3. CWYC

w1

w2

w3

Task channels

Task to task
sub-goal maps

+ e
o

x y x y
x
y

x
y

FIGURE 3.8: Network architecture of the goal proposal network. For each task
transition, the network learns three attention maps w1, w2, and w3. The w1 and
w2 model pairwise relations between coordinates in the observation vector. The w3

models offsets and global reference points. Here, the x- and y coordinates of the
agent and the forklift have to coincide in the proposed goal. Only the upper trian-
gular matrix of the attention maps is learned because the matrices are symmetrical.

The intuition behind the target signal (Eq. 3.16) is as follows: An observation counts
as a positive training sample for Gℓ→k if the agent transitioned from task ℓ to k,
hence Γℓ→k = 1, and the agent succeeds in the following task k. At the beginning
of the training, surprise is another source of positive training samples. All other
observations are labeled as negative samples during training.
Example: As in the previously presented example, let (a, b) be the agent’s and forklift’s
x coordinates. The first couple of times the agent moves to the position of the forklift it will
cause a surprise signal in the task space of the forklift by changing the forklift’s position. The
goal sampling network learns from these positive training samples that something interesting
happens with the forklift whenever the agent is close to it. Consequently, it will produce goals
that lead to such situations. Once the agent succeeds in the “move forklift” task after moving
to the forklift location, the goal proposal network will further refine its goal proposals through
the success-dependent term in Eq. 3.16.

The goal proposal network can learn relationships after a few positive examples
(in the order of 10), possibly due to its restricted model class. The goal proposal
network can also be considered a relational network (Santoro et al., 2017), albeit it is
easier to train.

Sampling a goal from the network is done by computing the maximum of the

3.2. Method 49

attention over the observation vector. For each subtask, the goal is selected with the
maximal value in the attention map. However, the coordinates I+ in the observation
vector that belong to a task T + that has still to be solved in the task chain are fixed,
because they can likely not be controlled yet:

o∗ = arg max
o′

Gℓ→k(o′) (3.18)

subject to o′k = ok, ∀k ∈ I+.

The goal for subtask ℓ is then defined as gℓ(o) = (o∗)ℓ. This is a convex program,
and its solution can be computed analytically.

In the non-stationary environments discussed in this work, the goal proposal
networks are a critical component of the CWYC framework that aim to learn rela-
tions between entities in the world. The agent sorts observations of the environment
into interesting, uninteresting, and undetermined observations. Interesting obser-
vations are those in which an unanticipated event (high prediction error) occurs or
which lead to success in a subsequent task. All other observations are labeled as
uninteresting for a particular task. There is a third class of undetermined observa-
tions. Undetermined observations contain similar situations to observations labeled
as interesting but do not spark high interest.
Example: For instance, running into, hence suddenly moving, the forklift might spark in-
terest in the “move forklift” task because of a sudden jump in the prediction error. Therefore,
the agent tries to recreate situations in which the agent and the forklift are close. However,
after the agent picks up the forklift, the movement of the forklift is entirely determined by
the agent’s actions resulting in low prediction errors and no surprise. Hence, none of the
following observations are labeled as interesting. However, the agent and the forklift are
still very close, resulting in conflicting training data. Consequently, this data is considered
undetermined by the agent.

Conclusively, we discard all undetermined transitions within a trial that come
after an observation with a positive label.

After removing all data that might prevent the goal proposal networks from
learning the proper relations, positive events remain rare compared to the massive
body of uninteresting data. Hence, the training data is balanced in each batch during
training.

3.2.6 Low-level Control

For each task space OT , the CWYC agent learns a separate goal-reaching policy
πT (ot, gT (t)). Policies are trained with the actor-critic framework for continuous
control, see Sec. 2.2.1 of Ch. 2 for more details. Specifically, policies are trained with
either Soft Actor Critic (SAC) (Haarnoja et al., 2018) or Deep Deterministic Policy Gra-
dient (DDPG)+Hindsight Experience Replay (HER) (Andrychowicz et al., 2017). The
goal-reaching policies are temporally extended. They do not have to run until the
end of the trial. Instead, each policy has a terminal condition allowing it to terminate
early at TT ≤ Tmax. A policy πT terminates if the task-space vector oT is close, up
to a threshold δT , to the desired goal state gT according to:

TT =

{
t if ∥oT (t)− gT (t)∥2

2 ≤ δT for t ≤ Tmax,
Tmax otherwise..

(3.19)

50 Chapter 3. CWYC

3.3 Environments

The capabilities of the CWYC architecture are tested in two environments. The
WAREHOUSE environment is specifically designed to highlight the difficulties in
learning compositional multi-stage tasks in environments with rare agent-object and
object-object interactions. This environment is based on the running example intro-
duced in the methods section. WAREHOUSE is used to study the different compo-
nents of the CWYC architecture more thoroughly. The FETCH PICK&PLACE TOO-
LUSE environment is a robotic object manipulation environment. The following
paragraphs present the two environments in more detail.

WAREHOUSE The WAREHOUSE environment is depicted in Fig. 3.9. The environ-
ment consists of the following elements:

Robot (T = 0) The agent’s actions directly control a robot in the environment.

Forklift (T = 1) The forklift can be controlled by the agent as soon as the robot gets
close to the forklift location.

Anvil (T = 2) The anvil is too heavy to be moved by the robot directly. The agent
can only move the anvil if it controls the forklift with the robot.

Cone (T = 3) The cone is an unreliable object, as its behavior changes randomly
between trials. In some of the trials, it can be moved by the robot. In other
trials it is bolted to the floor and therefore completely immovable.

Drone (T = 4) An autonomous drone flies around randomly in the environment.
It is out of reach of the robot; thus, it cannot be controlled by the agent.

In WAREHOUSE the 16-dimensional continuous Markov Decision Process (MDP)
state s and the observation vector o are connected by an identity mapping:

o = s = f obs(s) ∈ R16. (3.20)

The observation vector is given by:

o = [o0, o1, . . . , o4, ẋ, ẏ, p1, . . . , p4] (3.21)

with [. . .] being the concatenation operator. The oT = (xT , yT) are the different task
spaces, with xT and yT being the positional coordinates of the respective entity. The
task spaces have the following semantic meaning: (T = 0) Locomotion, (T = 1) Move
Forklift, (T = 2) Move Anvil, (T = 3) Move Cone, (T = 4) Control Drone. The (ẋ, ẏ)
are the robot’s velocities. The indicator variables p1 to p4 indicate whether the agent
is in possession of the i-th object (pi = 1) or not (pi = 0).

The agent controls the robot and any controllable object in possession of the robot
by applying forces in the x- and y-axis to the robot:

a = (Fx, Fy) ∈ R2. (3.22)

The robot’s dynamics is modeled as a 2-dimensional double integrator, which is
subject to the laws of motion with the application of friction from the environment,
rendering the control of the robot non-trivial. The other objects do not have their
own dynamics, except the drone. They are either not moving at all, or the robot’s

3.3. Environments 51

FIGURE 3.9: WAREHOUSE consists of a robot that the agent directly controls. The
robot can pick up and move a forklift. A heavy anvil cannot be controlled by the
agent directly but only with the help of the forklift. An autonomous drone moves
randomly in the environment and cannot be controlled by the agent. A randomly
placed cone is bolted to the floor in some of the trials, while in others not. Hence,
the robot can move it only in some of the trials. In the bottom left corner is a
screenshot of the simulated environment. A sphere represents the robot, while

colored blocks represent the other objects.

movement entirely governs their movement. A random policy controls the move-
ment of the drone. Some objects are more difficult to move than others and might
depend on other entities in the environment, e.g., the anvil depends on the forklift.

In the developmental phase, the agent computes a reward for each task T ac-
cording to:

rT (t) = −dT (t) = −∥oT (t)− gT (t)∥2
2. (3.23)

The reward is partially sparse in the sense that it does not include the distance be-
tween robot and object. If the robot tries to relocate an object and is not moving it,
the reward signal is constant, making the exploration problem very challenging.

The bottom left overlay in Fig. 3.9 shows the environment in the simulation. The
environment is simulated in the MuJoCo physics simulator (Todorov et al., 2012). In
the simulation, the robot is visualized as a sphere. The other objects are visualized
as colored cubes.

At the beginning of each trial, the environment gets reset. The robot always starts
in the middle of the warehouse while all the other objects are spawned at a random
location. Thus, it is not sufficient for the agent to learn one static policy. Each trial
has a total length of Tmax = 1600 steps.

The warehouse is relatively large, and objects can be placed quite far apart.
Therefore, random interactions between the agent and the objects are infrequent.
One major challenge in this environment is the exploration problem, and the agent
has to learn from these rare events efficiently.

52 Chapter 3. CWYC

FETCH PICK&PLACE TOOLUSE In the second environment, the agent controls a
7 Degree of Freedom (DoF) fetch robot. The environment is shown in Fig. 3.10. Be-
sides the robot, the environment consists of a hook-shaped tool and a cube spawned
on a table in front of but out of reach of the robotic arm. With its 4 dimensional
continuous action space, the agent controls the x-, y-, and z-movement of the end-
effector in Cartesian space and the opening and closing of a gripper attached to the
end-effector.

FIGURE 3.10: In the robotic manipulation environment, the agent controls a fetch
robot. The robot can use a hook-shaped tool to move a cube to a target location that

is otherwise unreachable for the robotic arm.

In this environment, the agent does not observe the MDP state directly, including
all the joint angles of the fetch robot. Instead, it receives an observation that contains
the Cartesian coordinates of the end-effector and the relative positions between the
end-effector and the cube and the end-effector and the tool, among other informa-
tion. The environment is derived from the FETCH PICK&PLACE environment in the
OPENAI GYM (Brockman et al., 2016) collection of RL tasks. Two modifications are
applied to the original environment: (1) A tool is added to the environment together
with the tool’s positional, rotational, and velocity information in the observation
vector. (2) The table is extended to allow the cube to be placed out of reach of the
robotic arm.

The task spaces are the 3-dimensional positions of the end-effector, the tool (mea-
sured at the location of the green sphere in Fig. 3.10), and the cube. The correspond-
ing semantic meanings/tasks are Move End-Effector, Use Hook, and Move Cube.

In the developmental phase, the agent computes its intrinsic reward according
to Eq. 3.23. Each trial has a total length of Tmax = 150 steps.

3.4. Baselines 53

3.4 Baselines

The CWYC framework is compared against several baselines: First, a version of
CWYC in which some of the components are replaced by oracles. Second, a vanilla
version of the SAC algorithm with a shaped reward function to guide the explo-
ration. CWYC is also compared against a state-of-the-art hierarchical RL algorithm
and an Intrinsic Motivation (IM) baseline. In FETCH PICK&PLACE TOOLUSE, CWYC
is compared against vanilla DDPG+HER as this algorithm is specifically tuned to the
FETCH PICK&PLACE environment. The following sections explain the baselines in
more detail.

CWYC with Oracles To assess the upper bound on the performance of CWYC in
WAREHOUSE, a baseline is crafted in which all of the learned high-level components
including the task planner, the task graph, and the subgoal generators are replaced
by oracles.

S Loco-
motion

Move
Forklift

Move
Anvil

Move
Cone

Control
Drone

FIGURE 3.11: Oracle task graph. Locomotion does not have any prerequisites. Loco-
motion has to be solved first to solve Move Forklift and Move Cone. Move Forklift is a

prerequisite for Move Anvil. Control Drone cannot be solved at all.

Figure 3.11 shows the oracle task graph. Locomotion can be solved immediately
because the agent’s actions directly control the robot. To solve Move Forklift, Locomo-
tion has to be solved first. The same goes for Move Cone. Before Move Anvil can be
solved, Move Forklift has to be solved first. But to solve Move Forklift, Locomotion has
to be solved already. Control Drone cannot be solved at all because the drone moves
autonomously and is out of reach for the robot.

Figure 3.12 and Fig. 3.13 show the oracle attention weight maps w1 (left), w2

(middle) and w3 (right) for the Locomotion to Move Forklift, Move Forklift to Move
Anvil, and Locomotion to Move Cone task transitions, respectively. Again, the (x0, y0)-
coordinates correspond to the agent’s position. The (xk, yk)-coordinates, with k =
1, . . . , 4, correspond to the objects’ positions, i.e., k = 1 is the location of the forklift,
k = 2 is the location of the anvil, k = 3 is the location of the cone, and k = 4 is the
location of the drone.

According to Fig. 3.12, to succeed in Move Forklift the positional coordinates of
the agent (x0, y0) and the forklift (x1, y1) have to be the same after transitioning
from Locomotion to Move Forklift. In other words, the goal proposed by G0→1 is given
by g0(t) = o1(t). In the case of the Move Forklift to Move Anvil transition, the posi-
tions of the agent (x0, y0), the forklift (x1, y1), and the anvil (x2, y2) have to be the
same. Since Move Anvil requires Move Forklift to be solved and Move Forklift needs
Locomotion to be solved it is already guaranteed that o0 = o1.

54 Chapter 3. CWYC

x0 y0
x1 y1

x2 y2
x3 y3

x4 y4

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x0 y0
x1 y1

x2 y2
x3 y3

x4 y4
x0 y0

x1 y1
x2 y2

x3 y3
x4 y4

FIGURE 3.12: Oracle attention weight maps w1 (left), w2 (middle), and w3 for the
transition between Locomotion and Move Forklift. At the end of Locomotion, the task
space o0 = (x0, y0) has to be equal to the position of the forklift g0 = o1 = (x1, y1).
As a reminder, (xk, yk) are the positional coordinates of the different entities in the
environment, with k = 0 being the robot, k = 1 being the forklift, k = 2 being the

anvil, k = 3 being the cone, and k = 4 being the drone.

(A) Move Forklift to Move Anvil task transition. (B) Locomotion to Move Cone task transition.

FIGURE 3.13: Oracle attention weight maps for (A) the Move Forklift to Move Anvil
and (B) the Locomotion to Move Cone task transitions. Same notation as in Fig. 3.12.

Soft Actor-Critic with Oracle Reward SAC does not make use of hierarchies or
IM. As in CWYC, SAC learns one policy per task space. However, instead of using
a sequence of policies to solve a single task, SAC has to use a single policy to solve
the entire task in one go. That makes it harder for SAC to learn the more challeng-
ing tasks such as Move Anvil since one policy has to learn a complex trajectory in
one shot. For instance, the Move Anvil policy has to first pick up the forklift, move
with the forklift to the anvil, and eventually transport the anvil to its target location.
To mitigate the issue that SAC has to learn much more complex policies and that
it has to solve the exploration problem for each task independently, a much more
dense/informative reward signal is used for the individual tasks as listed below.

Locomotion The Euclidean distance between the agent’s location and the goal loca-
tion is used.

Move Forklift The Euclidean distance between the forklift’s location and the goal
location plus the euclidean distance between the agent’s location and the fork-
lift’s location is used.

Move Anvil The Euclidean distance between the anvil’s location and the goal loca-
tion plus the euclidean distance between the agent’s location and the forklift’s
location as well as the distance between the forklift’s location and the location
of the anvil is used.

Move Cone The Euclidean distance between the cone’s location and the goal loca-
tion plus the euclidean distance between the agent’s location and the cone’s
location is used.

3.4. Baselines 55

Control Drone The Euclidean distance between the drone’s location and the goal lo-
cation plus the euclidean distance between the agent’s location and the drone’s
location is used.

In the following, SAC+ is used to refer to the SAC baseline with privileged knowl-
edge.

Hierarchical RL Baseline with Oracle Rewards HIRO (Nachum et al., 2018) is an
algorithm designed to solve HRL problems. The HIRO agent consists of a goal-
conditioned low-level policy µlo that interacts directly with the environment and a
goal-conditioned high-level policy µhi that interacts with the low-level policy by pro-
viding temporally extended goals to the low-level policy. HIRO uses Twin Delayed
DDPG (TD3) (Fujimoto et al., 2018) to learn both µlo and µhi. During the training of
µhi, goal relabeling of high-level goals is used to account for sub-optimal low-level
policies.

FIGURE 3.14: Schematics of the HIRO agent. Source: Nachum et al. (2018)

The goals for the high-level policy are the goals for the individual tasks: Locomo-
tion, Move Forklift, Move Anvil, Move Cone, and Control Drone. The actions or goals
produced by the high-level policy, which are the goals for the low-level policy, span
the entire state space following the original implementation. For each task, one pair
of low- and high-level policies are instantiated and trained independently of each
other.

The high-level policy in HIRO is trained with the same shaped and dense reward
signals as the ones used for training the SAC+ agent to account for the challenging
exploration problem. The low-level policy gets the same reward signal as in the
original implementation. This privileged baseline is referred to by HIRO+.

Intrinsic Motivation Baseline As IM baseline, ICM (Pathak et al., 2017) is used.
ICM consists of two components: (1) A policy π that is learned with Asynchronous
Advantage Actor Critic (A3C) (Mnih, Badia, et al., 2016) and a reward-generator that
generates a curiosity-driven intrinsic reward signal ri

t. The policy is trained to max-
imize the intrinsic reward and a potential extrinsic reward re

t . Figure 3.15 shows the
schematics of the ICM agent. The policy is adapted to be goal-conditioned and uses
the non-privileged reward signal as an extrinsic reward. An independent policy is
learned for each task. In Pathak et al. (2017), the prediction error of a forward model
is used as an intrinsic reward. Similarly, here the prediction error of the forward
model in the CWYC framework is provided as an intrinsic reward to the learner.

56 Chapter 3. CWYC

This baseline is called ICMe. Also, a version of ICM is tested in which the surprise
signal is provided as an intrinsic reward which should give a much cleaner signal.
This version is referred to by ICMs.

FIGURE 3.15: Schematics of the ICM agent. Source: Pathak et al. (2017)

3.5. Experimental Results 57

3.5 Experimental Results

This section presents the experimental results for WAREHOUSE and FETCH PICK&PLACE

TOOLUSE. The performance of CWYC is compared against the performance of CWYC
with oracles, HIRO+, SAC+, DDPG+HER (only in FETCH PICK&PLACE TOOLUSE),
ICMs, and ICMe.

3.5.1 Warehouse

Figure 3.16A shows the time evolution of the overall competence of the different
agents during the developmental phase. The overall competence is defined as the
average success rate among the various tasks:

competence(i) =
1
|T |∑T

srT (i). (3.24)

The means (solid lines) and standard deviations (color bands) from 10 independent
runs with different seeds are plotted. In WAREHOUSE, the maximum achievable
competence is 70% (broken horizontal line) due to the uncontrollable drone and the
unreliable cone (which is controllable only in 50% of the trials).

CWYC w oracles CWYC HIRO+ - - - - - ICMs - - - - - ICMe SAC+

0 0.2 0.4 0.6 0.8 1 1.2

·107

0.2

0.6

1

env step

co
m

pe
te

nc
e

(A) Overall competence of the agents in WARE-
HOUSE.

0 0.2 0.4 0.6 0.8 1 1.2

·107

0.2

0.6

1

env step

su
cc

es
s

ra
te

(B) Success rate of the agents in Locomotion.

FIGURE 3.16: (A) Overall competence in WAREHOUSE and (B) success rate of
the agents in Locomotion throughout learning in the developmental phase. The
x-axis shows the number of environment steps, i.e., the number of observa-

tions/transitioned collected in the environment.

CWYC with oracles achieves the maximum achievable competence the fastest.
This is expected since in this baseline the task planner, task graph and the goal gen-
erators are replaced by oracles. Therefore, all that is left to learn for the agent are the
low-level control policies. It is also important to note that the exploration problem is
solved for this baseline as the low-level goal-reaching policies receive optimal goals
right from the start of the developmental phase. CWYC also manages to reach the
maximum achievable performance. However, the CWYC agent is slower as it has to
learn all its components from experience during the developmental phase. All the
other baselines achieve only sub-optimal performance. The competences of HIRO+,
SAC+, ICMs, and ICMe plateau at 25%.

Figure 3.16B and Fig. 3.17A to Fig. 3.17D show the success rates of the different
agents for the individual tasks. All the agents are capable of learning Locomotion.
This is expected as it is the simplest goal-reaching task in which the agent has direct
control over the task space via the robot’s movement. In any of the more challenging

58 Chapter 3. CWYC

tasks, all the baselines fail to learn a successful control policy, while CWYC eventu-
ally achieves the same performance as CWYC with oracles.

CWYC w oracles CWYC HIRO+ - - - - - ICMs - - - - - ICMe SAC+

0 0.2 0.4 0.6 0.8 1 1.2

·107

0.2

0.6

1

env step

su
cc

es
s

ra
te

(A) Move Forklift.

0 0.2 0.4 0.6 0.8 1 1.2

·107

0.2

0.6

1

env step

su
cc

es
s

ra
te

(B) Move Anvil.

0 0.2 0.4 0.6 0.8 1 1.2

·107

0.2

0.6

1

env step

su
cc

es
s

ra
te

(C) Move Cone.

0 0.2 0.4 0.6 0.8 1 1.2

·107

0.2

0.6

1

env step

su
cc

es
s

ra
te

(D) Control Drone.

FIGURE 3.17: Success rate of the agents in (A) Move Forklift, (B) Move Anvil, (C) Move
Cone, and (D) Control Drone throughout training in the developmental phase.

Why do the baselines have that much trouble in solving the other tasks and how
does CWYC manage to successfully solve all of the other tasks (except for the un-
solvable Control Drone task)? To answer this question, it is insightful to look at the
different components of CWYC and what they learned during the developmental
phase.

First, let’s look at how the different agents allocate their learning resources. As
a reminder, all the baselines distribute their learning time equally between the dif-
ferent tasks. This can be inefficient because some of the tasks depend on other tasks
and progress in these tasks can only be made after the other tasks are mastered to a
certain degree. CWYC on the other hand distributes its learning efforts efficiently be-
tween the various tasks to maximize its overall learning progress. Figure 3.18 shows
the task prioritization of the task scheduler throughout the developmental phase. At
the beginning of the training, the CWYC agent spends most of its learning resources
on Locomotion since the agent has direct control over the robot and the task does not
have any prerequisites. Once the agent masters Locomotion at roughly 2 · 106 environ-
ment steps (see Fig. 3.16B) the agent starts to lose interest in the task (the probability
of selecting Locomotion lowers) and begins to shift learning efforts towards Move
Forklift (the likelihood of selecting the task increases) as Move Forklift has Locomotion
as its only prerequisite. Simultaneously, the interest in Move Cone slowly raises as it
also has Locomotion as its only prerequisite. However, the interest in the task grows
much slower than the interest in Move Forklift due to its unreliable nature. Once the
agent masters Move Forklift at around 3 · 106 environment steps, the agent switches
to Move Anvil because the agent now acquired the skill to use the forklift to move
the heavy anvil. Once all the fully controllable tasks are learned and resources free
up, the agent begins to concentrate more and more learning efforts on the unreliable

3.5. Experimental Results 59

cone. Since the agent does not have control over the autonomous drone, the agent’s
interest in that task drops quickly and stays at a constant low level.

Locomotion Move Forklift Move Anvil - - - - - Move Cone Control Drone

0 0.2 0.4 0.6 0.8 1

·107

0

0.2

0.4

0.6

env step

pr
ob

ab
ili

ty

FIGURE 3.18: The learned task prioritization of the CWYC agent during the devel-
opmental phase. At the beginning of the developmental phase, the task scheduler
concentrates most of the agent’s learning efforts on Locomotion. After the agent mas-
ters the task, most of the learning efforts are shifted towards Move Forklift. Once the
task is solved, the agent eventually concentrates on Move Anvil. Once all the other
tasks are solved, the agent spends the remaining time learning Move Cone. A con-

stant low priority is assigned to Control Drone.

All the baselines except for CWYC with oracles have to learn the different tasks
with a single per-task policy in one shot. For instance, the Move Anvil policy has to
first move the robot to the forklift, transport the forklift to the anvil, and eventually
relocate the anvil with the help of the forklift to its target location. CWYC, on the
other hand, learns specialized temporally-extended policies for the individual tasks
that are only concerned with solving that specific task. The agent can then stitch
together these expert policies to solve a final task. This has two advantages: (1)
The individual policies can be much simpler as each policy is a simple goal-reaching
policy. (2) The exploration problem becomes much easier because the individual
policies have to collect only relevant data for solving the simple goal-reaching task.

0.2 0.0 0.2 0.2 0.2 0.2

0.2 0.2 0.0 0.2 0.2 0.2

0.2 0.2 0.2 0.0 0.2 0.2

0.2 0.2 0.2 0.2 0.0 0.2

0.2 0.2 0.2 0.2 0.2 0.0

sta
rt loco

-

m
otio

n

fo
rk

lif
t

an
vil

co
ne

dro
ne

loco-
motion

forklift

anvil

cone

drone

(A) Initial task transition matrix.

0.9 0.0 0.0 0.0 0.0 0.0

0.0 0.9 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.8 0.2 0.1 0.0 0.0

0.2 0.3 0.2 0.2 0.2 0.0

sta
rt loco

-

m
otio

n

fo
rk

lif
t

an
vil

co
ne

dro
ne

loco-
motion

forklift

anvil

cone

drone

(B) Learned task transition matrix.

FIGURE 3.19: (A) Initial and (B) learned task transition matrices for the warehouse
environment. The labels within the cells show the probability of executing a task k

before a task j.

60 Chapter 3. CWYC

start
loco-

motion
forklift anvil

cone drone

FIGURE 3.20: Learned task graph. The darker an arrow is, the higher the probabil-
ity for the task transition to occur according to the learned task planner in Fig. 3.19B

Figure 3.19 shows the learned task transition matrix while Fig. 3.20 shows the
corresponding learned task graph that is used to stitch together the different policies
of the CWYC agent. The numbers in the transition matrix indicate the probability of
executing a task k before task j. For instance, the probability of executing Locomotion
before Move Cone is 80%. In comparison, the probability of executing Move Forklift
before Move Cone amounts to 20%. In the task graph, arrows are darker if the prob-
ability in the task transition matrix is higher. The CWYC agent correctly learns that
Locomotion does not have any prerequisites. In the case of Move Forklift, the agent
has the highest chance of succeeding if it is proceeded by Locomotion. Move Anvil
needs Move Forklift to be solved first to be successful. Move Cone can be solved if
Locomotion precedes it. Surprisingly, the agent also assigns a low probability to the
Move Forklift to Move Cone and Move Anvil to Move Cone transitions. This is because
it is not critical for Move Cone if one of the other two tasks get solved first. However,
as the time of solving Move Cone increases with the length of the subtask chain, these
two task transitions have a much lower probability of being executed compared to
the Locomotion to Move Cone transition.

As discussed in Sec. 3.2.5, it is not enough for the agent to know in which order
the tasks have to be executed, but the agent also has to be in the right state at the end
of each subtask to be successful in the next. These “relational funnel states” depend
on the time-varying positional relations of the different entities in the environment.
The task of the goal or attention network is to learn these relations. Figure 3.21
shows the learned attention weight maps for the Locomotion to Move Forklift (middle)
and Move Forklift to Move Anvil (right) task transitions next to an initial random
(left) attention weight map. Only the relevant part of the attention weight maps are
shown in the visualizations, i.e., coordinates like the indicator variables are omitted.
Moreover, the w1 and w2 attention weight maps belonging to one task transition are
visualized in one single map that is computed according to:

w = min{|w1|, |w2|}. (3.25)

A non-zero value in the attention weight maps shown in Fig. 3.21A to Fig. 3.21C in-
dicate that the coordinate pairs are involved in the relational attention computation.
The weight matrices are initialized with random weights. Consequently, the initial
goals produced by the goal proposal network are completely random and change
chaotically every time step. Already after a few positive samples (see Sec. 3.2.5
for the definition), the attention network learns the relevant object relations for the
different task transitions. For instance, in the Locomotion to Move Forklift transition
(Fig. 3.21B), the relation between the robot and the forklift is important. More con-
cretely, the attention is maximal if the distance between the robot and the forklift

3.5. Experimental Results 61

x0 y0
x1 y1

x2 y2
x3 y3

x4 y4

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

(A) Initial attention weight
matrix.

x0 y0
x1 y1

x2 y2
x3 y3

x4 y4

(B) Locomotion to Move Forklift.

x0 y0
x1 y1

x2 y2
x3 y3

x4 y4

(C) Move Forklift to Move Anvil.

FIGURE 3.21: Attention weight matrices of the (A) untrained network, (B) the Loco-
motion to Move Forklift task transition, and (C) the Move Forklift to Move Anvil task

transition. The matrices are computed according to Eq. 3.25.

is close to zero. In the Move Forklift to Move Anvil transition, the relationship be-
tween robot and forklift, robot and anvil, and forklift and anvil are important. The
attention is maximal if the distance between all three entities is zero.

Figure 3.22 shows the average distance between the learned goal g and the ora-
cle goal g⋆ for the Locomotion to Move Forklift transition in relation to the number of
positive samples. It is worth noting that first, the distance between g and g⋆ goes
to almost zero after just a dozen positive samples. Second, it takes around 1.4 · 106

environment transitions to collect roughly a dozen positive training samples high-
lighting how rare interactions between the different entities are in the environment.

As discussed in the Methods section of this chapter, it is not enough to solely rely
on the learning progress to learn the more difficult tasks because learning progress
is quite rare, especially early on when learning a new task. Hence, the prediction
error of a forward model is used to guide the exploration of the agent as long as no
other training signal is available. Figure 3.23A shows a trajectory of the robot (red)
in the environment. At some point in time, the robot collides with the forklift. The
trajectory of the two is visualized in purple. Figure 3.23B shows the corresponding
prediction error of the forward model. The observation of the moment in which the
robot interacts with the forklift is identified as a surprising element. The respective
observation is added to the training buffer of the attention network for the Loco-
motion to Move Forklift transition as a positive sample. All observations before this
event are added as negative examples. Observations after the event are discarded

100 101 102 103

0

2

4

6

8

10

1.4·106 env steps

pos. samples

⟨d
(g

,g
⋆

)⟩

FIGURE 3.22: Distance between the learned goal g and the oracle goal g⋆ for the
Locomotion to Move Forklift transition as the number of positive training samples

increases.

62 Chapter 3. CWYC

surprise

(A) Trajectory.

0 50 100 150 200 250

0

0.2

0.4

0.6
surprise

env step

pr
ed

.e
rr

or

(B) Prediction error.

FIGURE 3.23: (A) Trajectory of the robot (red) and the robot with the forklift (pur-
ple) in WAREHOUSE. (B) Corresponding prediction error of the forward model. The
moment the robot collides with the forklift is identified as a surprising event as the

prediction error exceeds a certain threshold (broken horizontal line).

as they are potentially misleading: They are not identified as a surprising event, but
the same relationship between robot and forklift holds as for the observation that is
identified as a surprising event. This can lead to conflicting signals during training
as discussed in Sec. 3.2.5.

3.5.2 Fetch Pick&Place with Tool

Figure 3.24 shows the success rate for the different agents in FETCH PICK&PLACE

TOOLUSE. CWYC manages to solve all three tasks close to perfection. Also, DDPG+HER
manages to solve all three tasks sufficiently as it is a strong baseline for the OPENAI
GYM FETCH PICK&PLACE environment. Still, there is a clear margin between the
sample efficiency of DDPG+HER and CWYC that is a strong argument for adding
inductive biases to increase the sample efficiency in RL. Again, the inductive biases
in the CWYC agent are not hand-designed to work in this specific environment. In-
stead, the structured models in CWYC allow the agent to adapt to any environment
from experience quickly. This observation becomes much more pronounced if the
performance of CWYC is compared against the performance of the other baselines.
HIRO+ manages to solve Move End-Effector to a certain satisfaction but fails to learn
any of the other tasks. SAC+ and ICMs struggle to even solve Move End-Effector and
are not able to solve the Use Hook or Move Cube tasks. ICMe does not manage to solve
any of the tasks in FETCH PICK&PLACE TOOLUSE.

CWYC DDPG+HER HIRO+ - - - - - ICMs - - - - - ICMe SAC+

0 1 2 3 4

·106

0.2

0.6

1

env step

su
cc

es
s

ra
te

(A) Move End-Effector.

0 1 2 3 4

·106

0.2

0.6

1

env step

su
cc

es
s

ra
te

(B) Use Hook.

0 1 2 3 4

·106

0.2

0.6

1

env step

su
cc

es
s

ra
te

(C) Move Cube.

FIGURE 3.24: Success rates in the (A) Move End-Effector, (B) Use Hook, and (C) Move
Cube tasks in FETCH PICK&PLACE TOOLUSE.

3.6. Ablation Studies 63

3.6 Ablation Studies

In this section, the impact of individual components of CWYC on the overall com-
petence is studied by performing ablations. Some parts are more crucial for success
than others. For instance, the goal proposal network is critical for the agent’s suc-
cess. Without meaningful and consistent goals, the robot moves aimlessly through
the environment without a clear goal in mind. Similarly, the task scheduler is essen-
tial to solve the more challenging hierarchical tasks. For instance, if the agent tries
to solve Move Anvil first and only afterwards Move Forklift, it will never succeed in
any of the two tasks. On the contrary, the impact of the surprise signal and the task
scheduler on the overall competence of the CWYC agent is more intricate, and it is
not straightforward to evaluate their importance. Thus, in the next two paragraphs,
these two components will be discussed in more detail by studying the following ab-
lations of CWYC: CWYCs− refers to a version of CWYC in which the surprise signal
is ablated. CWYC‡ refers to a version of CWYC in which all tasks have a uniform,
stationary priority of being sampled as the final task.

CWYC CWYCs− CWYC‡

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

0.2

0.4

0.6

env step

co
m

pe
te

nc
e

FIGURE 3.25: Overall competence of the CWYC, CWYCs−, and CWYC‡ agents in
the warehouse environment.

CWYC without surprise: Figure 3.25 shows the overall competence of CWYCs−

compared to the competence of CWYC. The CWYCs− agent achieves only a frac-
tion of the competence reached by CWYC. Only Locomotion is learned by CWYCs−

successfully as it is the most simple goal-reaching task among all the tasks.
What is the reason for the sub-optimal performance of the CWYCs− agent? Fig-

ure 3.26 highlights the problem. Figure 3.26A shows the distance between the goals
g proposed by the learned goal proposal network of CWYC and the oracle goals

0 2 4 6
·106

0

4

8

12

env step

⟨d
(g

,g
⋆

)⟩

0 2 4 6
·106

200

600

1,000

#
po

s.
sa

m
pl

es

(A) CWYC.

0 2 4 6
·106

0

4

8

12

env step

⟨d
(g

,g
⋆

)⟩

0 2 4 6
·106

200

600

1,000

#
po

s.
sa

m
pl

es

(B) CWYCs−.

FIGURE 3.26: Number of positive samples in the training buffer of the goal pro-
posal network over number of environment steps (yellow) and distance between
learned goal g and oracle goal g⋆ for the Locomotion to Move Anvil task transition

for (A) CWYC and (B) CWYCs−.

64 Chapter 3. CWYC

g⋆ in comparison to the number of positive training examples for the Locomotion to
Move Forklift transition. At the beginning of the developmental phase, it takes a very
long time to get any positive training examples at all. These initial training exam-
ples come exclusively from surprising events generated during random collisions
between the robot and the forklift. However, once the agent makes progress in learn-
ing Move Forklift, the learning progress signal leads to a sudden rise in the number of
positive training samples at around 0.2 · 107 steps. In the case of the CWYCs− agent,
the initial positive training samples from the surprise signal are missing and the
agent never comes to a point in which it can make any substantial learning progress
in Move Forklift. Consequently, the goal proposal network never learns to propose
any meaningful goals.

Due to the lack of a meaningful learning signal for the more challenging tasks,
the task scheduler and task planner are also not able to adapt to the environment
as shown in Fig. 3.27A and Fig. 3.27B. For the simple Locomotion task, the CWYCs−

agent gets a learning signal and therefore spends most of its learning resources on
that task while completely ignoring all the more difficult tasks (Fig. 3.27A). Indeed,
the task planner correctly learns that Locomotion does not have any prerequisites.
However, it does not learn any meaningful task dependencies for all the other tasks
(Fig. 3.27B).

Locomotion Move Forklift Move Anvil - - - - - Move Cone Control Drone

0 0.2 0.4 0.6 0.8 1

·107

0
0.2
0.4
0.6
0.8

1

env step

pr
ob

ab
ili

ty

(A) Task scheduler.

1.0 0.0 0.0 0.0 0.0 0.0

0.2 0.3 0.0 0.2 0.2 0.2

0.2 0.2 0.2 0.0 0.2 0.2

0.2 0.2 0.2 0.2 0.0 0.2

0.2 0.2 0.2 0.2 0.2 0.0

sta
rt loco

-

m
otio

n

fo
rk

lif
t

an
vil

co
ne

dro
ne

loco-
motion

forklift

anvil

cone

drone

(B) Task planner.

FIGURE 3.27: Learned (A) task scheduler and (B) task planner of the CWYCs−

agent.

CWYC without prioritized task scheduling: The effect of a missing task sched-
uler on the overall performance can be seen in Fig. 3.25. The impact on the overall
performance is not as abysmal as for the CWYCs− agent. Nevertheless, the agent
still suffers from a significant drop in sample complexity and overall performance
compared to CWYC. The reason for the sub-optimal performance of CWYC‡ is that
since learning efforts are distributed uniformly between the different tasks, the agent
tries to solve the more challenging tasks already early on in training. At this point,
it cannot make any substantial learning progress. This sub-optimal distribution of
learning resources results in a reduced learning speed.

3.7. Discussion 65

3.7 Discussion

This chapter presented CWYC, an intrinsically motivated agent that learns to control
its environment via self-motivated free play. CWYC can be seen as a hybrid archi-
tecture between model-based and model-free RL: The agent learns model-free low-
level control policies to solve hierarchical goal-reaching tasks by offloading some of
the planning complexity to structured models. The structured models serve mul-
tiple purposes: (1) They introduce inductive biases that allow the agent to adapt
quickly to an environment from just a few observations. (2) They remove complex-
ity from the low-level controller, and (3) they allow for a structured task-/goal-level
exploration in contrast to the unstructured action-based exploration typically used
in model-free RL.

The experimental section of this chapter demonstrated in two challenging object
manipulation environments that the inductive biases introduced in the CWYC ar-
chitecture help learn capable control policies where most of the baselines fail. The
individual components of CWYC were discussed after they adapted to the specific
environments to gain better insights into what they learned and how they facilitate
the learning of the low-level controllers. The key components are: (1) A self-guided
learning curriculum that distributes attention between tasks to maximize the over-
all learning progress. (3) An intrinsic motivation module that promotes the self-
motivated free play of the agent in the environment and provides valuable learning
signals for the other components. (4) A task-level planner with an associated task
graph that allows the agent to compose multiple simple goal-reaching policies to
solve challenging tasks. (5) A goal-proposal network that proposes goals for the
subtasks in the task chain.

The choice of the more intricate inductive biases introduced in the CWYC archi-
tecture was justified by ablating these components and studying the impact on the
overall performance. Without detecting surprising events, the CWYC agent fails to
adapt any of the structured models to the specific environment, resulting in complete
failure in any of the more challenging compositional tasks. Furthermore, without a
proper learning curriculum, the agent spends too much energy on tasks in which
it cannot make any learning progress, slowing down the learning progress signifi-
cantly.

There are also certain drawbacks of an architecture like CWYC: (1) Imposing bi-
ases on the architecture in the form of hand-designed structured models makes it
difficult for the architecture to adapt to situations that were not considered by the
human designer or to find other optimal solutions that are potentially less intuitive
for humans. (2) The disjoint nature of the individual modules increases the like-
lihood of individual points of failure. The other modules can hardly compensate
for the failure of one module in the architecture as each model has its specific pur-
pose. (3) The rigid structure of the architecture does not allow for unconventional
solutions and makes concurrent training of the entire architecture more challenging.

Given the two extremes of fully unstructured end-to-end trained architectures
and fully hand-design models, CWYC is an example of an architecture that sits be-
tween the two extremes and combines the strengths from both worlds. The struc-
tured models of the CWYC architecture inherit the benefits of hand-designed models
in that they introduce inductive biases that facilitate rapid learning from just a few
examples. Yet, these models have enough plasticity to adapt to the particularities of
different environments by learning from data.

4
SAMPLE-EFFICIENT ACTION

PLANNING AND IMITATION-BASED
LEARNING OF NEURAL NETWORK

POLICIES IN MODEL-BASED
REINFORCEMENT LEARNING

This chapter is based on:

Pinneri*, Sawant*, Blaes, Martius (2021). “Extracting Strong Policies for Robotics Tasks from Zero-
order Trajectory Optimizers”, In: International Conference on Learning Representations (ICLR). *equal
contributiol.

Pinneri, Sawant, Blaes, Achterhold, Stueckler, Rolinek, Martius (2020), In: “Sample-efficient Cross-
Entropy Method for Real-time Planning”. In: Conference on Robot Learning (CoRL).

Contents
4.1 Introduction . 69
4.2 Method . 71

4.2.1 Fast Sample-Based Trajectory Optimization 71
4.2.2 Neural Network Policy Extraction 74

4.3 Environments . 79
4.4 Baselines . 81
4.5 Experimental Results . 83
4.6 Discussion . 88

4.1. Introduction 69

4.1 Introduction

This chapter explores the direct use of models inside control policies to solve chal-
lenging robotic manipulation tasks. In the previous chapter, it was assumed that
the transition kernel of the Markov Decision Process (MDP) is unknown. Instead of
learning an (approximated) model of the transition kernel, the Control What You Can
(CWYC) agent learned various structured models that captured certain high-level
aspects of the system that allowed the agent to efficiently explore the environment
and plan for future success in compositional object-manipulation tasks.

In recent years, using simulators as models for optimizing motion patterns for
physical robots has become increasingly accepted in the Reinforcement Learning
(RL) community with the emergence of new, highly parallelizable simulators like
ISAAC GYM (Makoviychuk et al., 2021) and JAX MD (Schoenholz et al., 2020). Si-
multaneously, the simulators become more accurate by directly modeling certain
simulation aspects from data (Lee et al., 2020). Together with techniques like do-
main randomization (OpenAI et al., 2019) this enables one-shot sim-to-real transfer.
The simulator model can be considered an unstructured model f : O ×A → O that
maps from raw observations ot ∈ O and actions at ∈ A to next raw observations
ot+1 without imposing any additional structure onto the model’s output. One way
of utilizing the MDP model is to use Model-Based Reinforcement Learning (MBRL)
to find planning-based control policies. Section 2.2.3 of chapter Ch. 2 discusses the
various ways in which a model of the MDP can be used. Instead of planning in the
task space and goal space, this work focuses on planning directly in the joint space
as part of an Model Predictive Control (MPC) policy, see Sec. 2.2.3.3 in Ch. 2 for more
details. The following two types of policies will be discussed in this chapter:

MPC Policies solve an optimization problem at each step during execution. Plan-
ning methods optimize a short trajectory snippet or plan into the future. Only the
first action of the plan is executed before planning begins anew in the next time step.
That means that all the heavy computation is done during execution time. Because
this process can be very slow, MPC policies are typically hard to deploy in real-time
operation domains. Despite this shortcoming, recent work in the MBRL community
on population-based algorithms and sampling-based methods (G. Williams et al.,
2015; Chua et al., 2018; Nagabandi et al., 2018; Hafner et al., 2019; T. Wang et al.,
2020) show remarkable results in high-dimensional simulated robotic control tasks.
Figure 4.1 shows two behaviors created by an MPC policy: In the DAPG RELOCATE

environment, a 24 Degree of Freedom (DoF) simulated SCHADOW hand picks up a
ball from a table and juggles it around a target location. In the OPENAI MUJOCO

HUMANOID STANDUP environment, a 17 DoF humanoid robot stands up and bal-
ances itself in the upright position. These tasks are quite challenging to learn for
model-free policy optimization methods, as can be seen in Fig. 4.11.

NN Control Policies, on the other hand, can be learned entirely offline. Assum-
ing certain generalization capabilities, a Neural Network (NN) policy can be queried
quickly for any arbitrary point in the state space. In that way, NN policies can of-
fload most of the computational burden into the learning stage. NN policies can
be learned in multiple ways. One possibility is to continuously interact with the
environment and optimize a policy with policy gradient techniques as discussed in
Sec. 2.2.1 of Ch. 2. This is usually referred to as online RL. Another way is to use
offline RL or Imitation Learning (IL). In offline RL, access to the environment is pro-
hibited during training. The learning agent has only access to a static offline dataset.
Methods for learning NN policies from offline datasets include Behavioral Cloning

70 Chapter 4. Planning & Control

(A) DAPG RELOCATE.

(B) OPENAI GYM HUMANOID STANDUP environment.

FIGURE 4.1: Example behaviors found by the improved Cross-Entropy Method
(iCEM). (A) In the DAPG RELOCATE environment, a 24 DoF ADROID hand learns
to juggle a ball around a target location. (B) In the OPENAI GYM HUMANOID
STANDUP environment, a 17 DoF humanoid robot learns to stand up and balance

in an upright position.

(BC) or online RL methods (Hussein et al., 2017) with adaptations to the offline set-
ting. Recently, several algorithms (Kumar et al., 2020; Z. Wang et al., 2020; Yu et al.,
2021) were proposed specifically designed for the offline RL setting.

Section 4.2.1 of this chapter presents iCEM, a sample-based trajectory planning
algorithm that is based on the gradient-free Cross-Entropy Method (CEM) (R. Rubin-
stein, 1999) for trajectory optimization. By adding temporally structured exploration
and memory to the optimizer, iCEM can be used for rapid and sample efficient plan-
ning in high-dimensional robotic control tasks. Moreover, iCEM produces close to
optimal solutions in cases in which CEM completely fails to deliver any good solu-
tion. At the same time, iCEM uses only a fraction of the number of samples required
by CEM to achieve the same or better performance.

Although iCEM is a big step toward making sample-based planning algorithms
more suitable for real-time robotic control tasks, the disadvantage of doing most of
the heavy computation during runtime remains challenging. Section 4.2.2 of this
chapter presents Adaptive Policy EXtraction (APEX), a framework for extracting NN
policies from the near-optimal trajectories produced by iCEM. The MPC policy acts
as a teacher for the NN student policy in APEX. Instead of having a purely one-sided
influence between teacher and student, APEX allows for a mutual influence between
the two. In that way, the NN policy improves over time, but the MPC policy also
improves with a more capable NN policy. During the execution, the NN policy can
be run alone, or the NN policy can be used to warm start the planner inside the MPC
policy to decrease the sample complexity and runtime of the planner further.

4.2. Method 71

4.2 Method

The following two sections present the iCEM algorithm for fast sample-based tra-
jectory optimization and APEX, an IL-based NN policy extraction scheme with a
planning-based teacher. In the following, the standard MDP formulation introduced
in Sec. 2.1 of Ch. 2 is used. Additional remarks regarding notation differences be-
tween the RL and control literature can be found in Sec. 2.2.3.

4.2.1 Fast Sample-Based Trajectory Optimization

Section 2.2.3.3 of Ch. 2 introduces CEM as a gradient-free sample-based trajectory
optimizer that recently gained traction in the model-based RL community, e.g., by
the work of Chua et al. (2018), Hafner et al. (2019), and T. Wang et al. (2020). The
particular appeal of methods like CEM lies in several important factors: (1) The pos-
sibility of optimizing black-box functions. All that is required from a function under
consideration is that it can be queried for arbitrary inputs. (2) A lower sensitivity to
hyperparameter tuning and thus higher robustness. (3) No requirement of gradient
information. (4) A lower susceptibility to local optima.

However, there is a problem intrinsic to the nature of sample-based optimiz-
ers, which makes these methods often unsuitable for real-time planning. Planning
methods as part of a closed-loop MPC policy do all the heavy computation during
runtime. After each step in the environment, a new plan has to be computed incor-
porating the incoming stream of recent sensory information.

To make sample-based optimization for trajectory planning more applicable for
real-time control, iCEM enhances CEM in several ways. The following sections dis-
cuss all the modifications.

4.2.1.1 Colored Action Noise Exploration for Broad State-Space Coverage

CEM adapts the parameters θ of its sampling distribution according to the popu-
lation statistics of an elite set. The elites get selected from the sample population
based on a ranking computed by evaluating each sample w.r.t. a performance met-
ric. While the parameters of the sampling distribution are adapted along the action
dimension, there is no correlation between actions along the time axis. Applying
temporally uncorrelated actions to a robotic system typically leads to only minor
deviations of the joints from their initial position, resulting in a poor coverage of
the full state space. This is shown by the blue state-space trajectory in Fig. 4.2A

for a 1-dimensional point-mass system. However, finding an optimal solution of
the trajectory planning problem heavily relies on an initially highly diverse sample
population, i.e., in a broad coverage of the state space. The lower the diversity in the
sample population, the more samples are needed and the longer the planning hori-
zon has to be in order to find an optimal solution. Consequently, this will increase
the computational burden of each planning step in the MPC policy.

In nature, animals revert to different exploration strategies when they need to
efficiently explore the space in search for food, rather than plain Brownian explo-
ration. When prey is scarce, animals like sharks or other predatory species pro-
duce trajectories which can be described by the so-called Lévy walks (Humphries
et al., 2010). Classically, Lévy walks exhibit velocities with long-term correlations
and consequentially produce trajectories with higher variance than a Brownian mo-
tion (Shlesinger et al., 1982).

A way of analyzing the temporal correlation structure of an action sequence sam-
pled from different types of noises is via the Power Spectral Density (PSD) of the

72 Chapter 4. Planning & Control

action sequence:

PSDa0,...,aH−1(f) ∝
1
f β

, (4.1)

with (ai)
H−1
i=0 being the action sequence under consideration and f being a partic-

ular frequency component of the signal. Intuitively, the PSD quantifies how much
each frequency is present in the time series or, in other words, how the energy is
distributed between the frequency components in the time series.

For instance, CEM samples temporally independent actions from a multivariate
Gaussian sampling distribution N (µa, Σa), with means µa and diagonal covariance
matrix Σ = σ2

a · 1. This results in a constant power spectrum, with β = 0 (also known
as white noise), as it is shown by the blue curve in Fig. 4.2B.

To achieve a broader coverage of the state space as shown by the pink and brown
curves in Fig. 4.2A, a larger exponent β of the power-law distribution can be chosen.
As it can be seen by Fig. 4.2B, a larger exponent results in a larger contribution of
the lower frequency components in the respective PSD, while higher frequencies get
more and more suppressed. This corresponds to less erratic changes in the control
outputs; thus, to much smoother behavior of a robot.

To this end, generalized colored-noise for the action sequence (ai)
H−1
i=0 is intro-

duced as power-law distributed noise as defined in Eq. 4.1. An exponent β = 0
corresponds to white noise while an exponent of β > 0 means that higher frequen-
cies are less prominent in the PSD than lower ones. In signal processing this type
of noise is also called colored noise and some exponents have a particular name.
For instance, colored noise with an exponent of β = 1 is known as pink noise, and
Brownian or red noise has an exponent of β = 2.

An efficient implementation of a noise generator (Timmer et al., 1995) is used that
is based on the Fast Fourier Transform (Cochran et al., 1967) to produce correlated
action sequences. The implementation relies on the fact that the PSD of a time series
can be directly modified in the frequency space. To sample actions with a PSD as
in Eq. 4.1, the following transformation needs to be applied to the original action
sequence (ai)

H−1
i=0 sampled from a white noise process:

ai =F−1
[

1
f β/2F [ai]

]
gives PSDa(f)=

∥∥∥∥ 1
f β/2F [ai](f)

∥∥∥∥2

=
1
f β

PSDa(f)∝
1
f β

. (4.2)

The resulting sampling function, which is called Cβ(d, h), returns d (one for each
action dimension) sequences of length H sampled from a colored noise distribution
with exponent β and with zero mean and unit variance.

Evidence for the benefit of non-constant power spectra in robotic control tasks
can be seen in Fig. 4.2B. From frequency response analysis for dynamical systems,
it is well known that different dynamical systems, like robotic systems, have very
specific Frequency Response Functions (FRFs) (Sinha, 1989). The green curves in
Fig. 4.2B show the PSDs of action sequences that allow a humanoid robot to stand
up. The two successful runs are far away from white noise (β = 0) with exponents
between β = 2 and β = 4.

4.2. Method 73

β = 0 (white noise) β = 1 (pink noise) β = 2 (red noise) β = 4 act:β = 2 act:β = 4

0 100 200 300 400 500

0

200

400

steps

sp
ac

e
(x

)

(A) 1D random walks with colored noise.

100 101
10−5

10−4

10−3

10−2

frequency [Hz]

PS
D

(B) PSD of different power-law distributions.

FIGURE 4.2: Colored random noise. (A) Random walks with colored noise of differ-
ent temporal structures. (B) Power spectrum of colored random action sequences
for different β and two successful action sequences in the HUMANOID STANDUP

task.

4.2.1.2 Reusing Information Between Planning Steps

The MPC policy is closed-loop. Consequently, replanning needs to happen anew in
every step to incorporating all the new sensory information coming from the envi-
ronment. Typically, only information in the form of the updated sampling distribu-
tions gets transferred between planning steps, while all the other information, e.g.,
the actual solution set, gets discarded entirely. According to the parameters used in
Chua et al. (2018), this amounts to an average of ∼55000 discarded actions per step.

This is despite two observations: (1) Although there might be a deviation be-
tween the imagined model state prediction and the actual system state after exe-
cuting the first action, this deviation is typically small. (2) The solution set rarely
collapses to a singular solution but covers a small neighborhood around the best
solution from which the first action gets executed. These two observations make it
clear that the previous solution can contain valuable information for the next plan-
ning step. To acknowledge this fact, memory is added to iCEM that allows it to reuse
some of the data from the previous plan.

Keep Elites
iCEM keeps a fraction of the previous elites between inner CEM-iterations and adds
them to the new sample population in the next CEM iteration. Again, previous
solutions might still be valid if the deviation between imagined and actual outcomes
is small enough and if the elites cover a small neighborhood around the optimal
solution. There are a lot of settings, e.g., sparse-reward settings or settings in which
certain funnel states have to be reached, in which a very particular solution has to
be found. Once such a solution is found by iCEM, it should not lose this solution
between CEM iterations.
Example: In the FETCH PICK&PLACE environment shown in Fig. 4.3, the task of the
robot arm is to pick up a cube that is randomly spawned on a table in front of the robot and
bring it to a target location either on the table or in the air. The reward signal in this envi-
ronment is partially sparse in that only the distance between the cube and target location is
considered but not the distance between end-effector and cube. As long as the end-effector is
not in contact with the cube, the reward signal is constant. Consequently, finding a solution

74 Chapter 4. Planning & Control

FIGURE 4.3: In the OPENAI GYM FETCH PICK&PLACE environment, a fetch robot
has to pick up a cube and bring it to a target location either on the table or in the
air. The cube’s position on the table is a funnel state through which the robot has to

go through to be successful.

in which the end-effector touches the cube is very unlikely with purely sampling-based ex-
ploration. Once such a solution is found, it might be the only viable candidate in the sample
population, marginalizing out its impact in the update of the parameters of the sampling
distribution.

Shift Elites
To not lose a promising solution found in one time step, iCEM carries over the elites
of the previous planning step to the next. In experiments, it can be observed that a
particularly good solution typically survives for a longer time in the elite set over
multiple consecutive planning steps. Thus, these solutions are more emphasized in
the updated of the sampling distribution parameters. Not the entire elite-set is car-
ried over, though, because that would drastically shrink the variance of the sampling
distribution in the first CEM-iteration. Consequently, only a fraction of the elites are
kept.

Once some of the elites are carried over to the next time step, the first action
needs to be discarded from the action plans because it was already sent to the robot.
Ergo, the previous elite plans are too short, as they are now missing the last action.
To restore the full planning horizon, iCEM samples a new action from the sampling
distribution and appends it to the plans carried over from the previous time step.

4.2.2 Neural Network Policy Extraction

Figure 4.1 shows some of the behaviors found by iCEM in high-dimensional robotic
control tasks. This section discusses how high-performing NN policies can be ex-
tracted from these behaviors.

Extracting an NN policy from a powerful sample-based optimizer like iCEM is
one of the missing pieces to truly bridge the gap between model-based RL in sim-
ulation and real-time robotics. As of today, this is still an open challenge (T. Wang
et al., 2020).

The following sections discuss the issues that arise during distillation of a multi-
modal stochastic teacher into a NN policy. To this end, APEX is introduced as an

4.2. Method 75

adaptive policy extraction procedure that integrates iCEM with BC and Dataset Ag-
gregation (DAgger) (Stéphane Ross, G. Gordon, et al., 2011), and a novel adaptive
variant of Guided Policy Search (GPS) (Levine and Koltun, 2013). Although the
main goal of APEX is to distill an NN policy, the specific integration of methods also
produces an improving adaptive teacher with higher performance than the original
iCEM optimizer.

4.2.2.1 Imitation Learning

BC is used to imitate the actions of the iCEM-MPC teacher policy with an NN stu-
dent policy. BC is the simplest form of imitation learning in that it minimizes the
log-likelihood loss between the teacher action distribution and the student distribu-
tion in a purely supervised fashion:

Lθ = E(s, a)∼DiCEM
[− log πθ(a | s)] , (4.3)

with πθ being the NN policy with parameters θ and state-action tuples (s, a) being
sampled from a dataset DiCEM of iCEM rollouts.

There is an issue with the vanilla BC loss. It is only minimized on samples from
the teacher state-visitation distribution. Thus, as soon as the student leaves the dis-
tribution of states visited by the teacher, no guarantees can be given regarding the
student’s performance. This problem is known as covariate shift (Stéphane Ross and
Bagnell, 2010) between teacher and student distribution and arises from the interac-
tive and sequential nature of RL.

DAgger
A straightforward way of mitigating the covariate shift is to use DAgger (Stéphane
Ross, G. Gordon, et al., 2011). In DAgger, data is collected not only from the teacher
but also from the student. Whenever the student creates data outside of the teacher
distribution, i.e., the student visits states not visited by the teacher while executing
suboptimal actions, the data gets relabeled with optimal actions from the teacher.
This limits the class of teachers to those that can be queried for arbitrary observations
such as iCEM.

Guided Policy Search
Even if started from the same initial configuration, iCEM can yield vastly different
solutions for the same problem due to its stochastic nature and the finite sample size
during planning. This renders the NN training very challenging
Example: In the situation depicted in Fig. 4.4A, a robotic gripper tries to reach a cube
far away. Between the gripper’s and cube’s position is an obstacle that the gripper has to
bypass to get the cube. The robotic gripper can decide to take the upper or lower trajectory.
Since the iCEM planner is stochastic, sometimes it will find one and some other times the
second solution, resulting in the multi-modal distribution (black) shown in Fig. 4.4B. If an
NN policy gets trained from the multi-modal distribution shown in Fig. 4.4B, it will learn
the average action shown as a red curve. This results in a catastrophic failure as the robotic
gripper collides with the obstacle.

GPS is used to mitigate the multi-modality issue. GPS adds a penalty term to the
cost function of the iCEM planner that penalizes large deviations between the action
distribution of the NN policy π(a | s) and the empirical action distribution of the

76 Chapter 4. Planning & Control

(A) Model planning.

−1 −0.5 0 0.5 1
follow lower trajectory follow upper trajectory

action amplitude

(B) Multi-modal action distribution.

FIGURE 4.4: (A) A gripper robot tries to reach a cube while avoiding the obstacle
between gripper and cube. Arrows indicate state transitions. The state transitions
highlighted with red arrows mark a bifurcation point. Depending on which action
the robot chooses, it will either take the upper or the lower trajectory. (B) Multi-
modal action distribution (black) results in the bifurcation point on the left. A value
of a = −0.5 will lead to the lower trajectory. A value of a = 0.5 means that the
gripper follows the upper trajectory. By minimizing the BC loss, the NN policy

learn the average action (red).

sample population N (µa, σ2
a):

a ⋆
t ← arg min

at

Jt(at, st) + λDKL(πθ ||N (µa, σ2
a)), (4.4)

with λ being the Lagrange multiplier for the relaxed constrained optimization prob-
lem and DKL(P||Q) being the Kullback–Leibler divergence (Kullback et al., 1951)
between distributions P and Q. The µa and σ2

a are estimated from the sample popu-
lation.

4.2.2.2 Neural Network Policy Informed Trajectory Optimization

The GPS cost establishes a mutual influence between the NN and MPC policies via
the Kullback–Leibler divergence between their respective action distributions. The
following sections discuss issues of vanilla GPS, a possible solution to these issues,
and other ways of making the connection between the NN and MPC policies tighter.

Adaptive Auxiliary Cost Weighting
There is a fundamental problem with the GPS cost term (as well as with any other
auxiliary cost term). Instead of solving the original optimization problem, a mod-
ified optimization problem is solved. The new problem has the form of a linear
combination between the original cost J and any additional cost terms with a fixed
mixing term λ. There are instances in which the modified optimization problem
does not yield a viable solution although such a solution exists for the original opti-
mization problem.
Example: In the situation depicted in Fig. 4.5, the NN policy (shown in red) is subopti-
mal and proposes a solution in which the robotic gripper collides with the obstacle. Since
the weighting term of the GPS cost is fixed, the optimizer (black) cannot account for the
suboptimality of the policy and therefore fails to find one of the viable solutions shown in
Fig. 4.4A.

4.2. Method 77

This issue is solved by introducing an adaptive λj-term for each auxiliary task
Caux

j in the total cost:

a ⋆
t ← arg min

at

Jt(at, st) + ∑
j

λjCaux
j (at, st), (4.5)

with λj being defined as:

λj = cj
R(J)

R(Caux
j) + ϵ

(4.6)

and
R(X) = max

elite-set
X− min

elite-set
X . (4.7)

To understand how the adaptive λ works intuitively, it helps to consider the case in
which there is no variance in the main objective J, i.e., R(J) = 0. With a locally
flat cost landscape, there is no point in further restricting the solution set of the
optimizer by adding any auxiliary costs. The planner should explore the solution
space as freely as possible by setting λj = 0 as its main objective is to decrease
J. Only if the optimizer gets a proper signal for the original cost, i.e., R(J) > 0,
it makes sense to restrict the solution set to respect any further constraints of the
optimization problem. The denominator in Eq. 4.6 ensures that the auxiliary cost
weight increases the more the solution violates the constraint. The λj are upper
bounded by the constants cj ≥ 1 and ϵ≪ 1 is a regularization constant.

FIGURE 4.5: (Red) Trajectory produced by a sub-optimal NN policy. (Black) MPC
trajectories with GPS and a fixed cost weighting.

Policy Informed Shift Initialization
To further strengthen the coupling between the NN and MPC policies, iCEM uses
the mean action proposed by the NN policy to initialize the last step of any plan that
results from shifting an elite from a previous planning step to the next, see Sec. 4.2.1.2
for more details about shifting elites.

Warmstarting
In addition, the MPC policy gets warmstarted with the NN policy. Two versions of
warmstarting are tested: (1) The mean of the iCEM sampling distribution is initial-
ized with the mean of the action distribution of the NN policy. (2) A sample is added

78 Chapter 4. Planning & Control

to the iCEM sample population in which the actions along the planning horizon are
the mean actions proposed by the NN policy.

Both versions have a slightly different effect on the sampling distribution: Ver-
sion (1) directly influences the sampling distribution by changing its mean param-
eter. This can result in a collapse of the sample population to a suboptimal region
of the optimization landscape, as discussed in the case of the adaptive auxiliary cost
weighting. The effect of version (2) on the sampling distribution is more subtle. The
NN policy sample affects the sampling distribution only indirectly if it is part of the
elite set and gets used in the update of the sampling distribution parameters. If the
NN policy is already well trained, the sample from the NN policy might already
solve the task.

The version of GPS with warmstarting is referred to by GPSπ.

4.3. Environments 79

4.3 Environments

The performance of iCEM and APEX is studied in various challenging high-dimen-
sional simulated robotic control tasks with continuous observation and action spaces.
From OPENAI GYM (Brockman et al., 2016), the HALFCHEETAH RUNNING (Fig. 4.6A),
HUMANOID STANDUP (Fig. 4.6B) and FETCH PICK&PLACE (Fig. 4.6C) tasks are con-
sidered. In HALFCHEETAH RUNNING, the goal of a 6 DoF cheetah is to maximize the
velocity along the x-axis without falling. The cheetah can only move in the xz-plane.
A rolling motion of the cheetah, commonly found by strong optimization schemes,
is prohibited by heavily penalizing large angles of the root joint. The observation-
space of the HALFCHEETAH RUNNING environment is 18 dimensional and includes
the absolute position of the cheetah, all the joint angles, as well as the joint angular
velocities. In HUMANOID STANDUP, the goal of a 17 DoF humanoid robot is to stand
up from a lying position and balance itself in an upright position. The observation-
space of HUMANOID STANDUP is 376-dimensional and includes the humanoid’s
absolute position, joint angles, and angular velocities, as well as measurements of
external forces and mass and inertia information. In FETCH PICK&PLACE, a 7 DoF
FETCH robot has to pick up a cube and bring it to a target location on the ground
or in the air. The (25 + 3 + 3)-dimensional observation space contains information
about the FETCH robot and the cube, as well as their relative positioning. Addition-
ally, the desired and achieved goal states (each 3-dimensional) are appended to the
observation vector. The 4 actions control the movement of the end-effector in Carte-
sian space and the opening and closing of the gripper. The reward signal is partially
sparse in that it is computed as the distance between the cube and target location.
Thus, the reward is constant as long as the cube is not moving. This makes the ex-
ploration problem particularly hard in this environment, since the agent does not
receive any feedback as long as it does not make progress on the actual task.

(A) HALFCHEETAH RUN-
NING.

(B) HUMANOID STANDUP
.

(C) FETCH PICK&PLACE
.

FIGURE 4.6: OPENAI GYM environments. The performances of iCEM and APEX
are tested in (A) HALFCHEETAH RUNNING, (B) HUMANOID STANDUP and (C)

FETCH PICK&PLACE.

The other set of environments comes from the DAPG project (Rajeswaran et al.,
2018) and includes a 24 DoF ADROID hand that has to solve various dexterous hand
manipulation tasks. The ADROID hand is not attached to a body and can freely float
in the air.

In this work, the RELOCATE (Fig. 4.7A) and DOOR (Fig. 4.7B) environments are
considered. The task in RELOCATE is to pick up a ball and bring it to a random
target location in the air. The ball is randomly spawned on a table in front of the
hand. The reward signal in this environment is the sum of the distance between

80 Chapter 4. Planning & Control

the palm and the ball and the distance between the ball and the target location, as
well as bounties for lifting the ball and getting the ball close to the target. The 39-
dimensional observation space contains information about the hand, the ball, the
target location, and their relative relationship. The task in DOOR is to open a door in
front of the robot. The reward in this environment is partially sparse. It is computed
as a real-valued indicator variable of the door’s openness and does not consider the
distance between palm and door. The reward signal is constant if the hand cannot
open the door at all. Again, this makes the exploration problem in this environment
very hard. The 39 dimensional observation space contains information about the
hand and the door, including the position of the latch and handle and their relative
positions to the hand, as well as an indicator variable for the door’s openness.

(A) RELOCATE. (B) DOOR.

FIGURE 4.7: DAPG environments. The performances of iCEM and APEX are tested
in (A) RELOCATE and (B) DOOR.

4.4. Baselines 81

4.4 Baselines

This section discusses the different baselines used to compare the performances
of iCEM and APEX with their respective state-of-the-art counterpart algorithms.
Where applicable, the same settings are used across all baselines.

Fast Sample-Based Trajectory Optimization iCEM is compared against the fol-
lowing baselines. The first baseline is the plain CEM as discussed in Sec. 2.2.3.3 of
Ch. 2.

The second baseline adds various standard modifications to the vanilla CEM: (1)
A momentum term (De Boer et al., 2005) in the refitting of the distributions between
the CEM-iterations:

µi+1
t = αµi

t + (1− α)µelite−seti , (4.8)

where α ∈ [0, 1] and i is the index of the inner CEM-iterations. The µi
t are the cur-

rent means of the sampling distributions and µelite−seti are the estimates of the new
means based on the elite set. The reasoning behind the momentum term is that
only a small elite set is used to estimate the sampling distribution’s many param-
eters, resulting in a poor signal-to-noise ratio. (2) For sampling bounded actions,
a truncated normal distribution (Fig. 4.8B) with suitable bounds is used instead of
an unbounded normal distribution (Fig. 4.8A) with clipping (Fig. 4.8C). The differ-
ence between truncating and clipping is that in the case of clipping, samples outside
of the bounds are clipped to the nearest boundary, resulting in a probability mass
concentration around the boundaries as an artifact of the clipping operation. An
accept-reject sampling method is used to sample from a truncated normal distribu-
tion, e.g., new samples are generated until a sample falls inside the bounds. This
avoids the oversampling of values at the boundaries. (3) As discussed in Sec. 2.2.3.3,
executing a plan in an MPC fashion means to solve the exact same problem again
going from one time step to the next with the horizon shifted by one. As a typical
modification (Chua et al., 2018; T. Wang et al., 2020), the initial mean µt of the CEM
distribution is shift initialized from the optimized µt−1 according to:

µt(·, j) = µt−1(·, j + 1) for 1 ≤ j ≤ h− 1 (4.9)

µt(·, h) = 0⃗, (4.10)

where the parenthesis denote index-access: (action dimension, horizon timestep).
This variance of CEM is called CEMMPC. Also iCEM applies the same standard mod-
ifications to iCEM as CEMMPC, with the exception of initializing µt(·, h) in Eq. 4.10
with µt−1(·, h).

To make the comparison between iCEM and the baselines more intuitive, an

x

(A) Normal distribution.

x

(B) Truncated normal distribu-
tion.

x

(C) Clipped normal distribution.

FIGURE 4.8: Comparison between (A) a normal distribution, (B) a truncated normal
distribution, and (C) a clipped normal distribution.

82 Chapter 4. Planning & Control

TABLE 4.1: Budget dependent internal optimizer settings
(notation: CEM iterations / N).

Budgets
50 70 100 150 200 250 300 400 500 1000 2000 4000

iCEM 2 / 25 2 / 40 3 / 40 3 / 60 4 / 65 4 / 85 4 / 100 5 / 120 5 / 150 6 / 270 8 / 480 10 / 900
CEM 2 / 25 2 / 35 2 / 50 2 / 75 3 / 66 3 / 83 3 / 100 4 / 100 4 / 125 4 / 250 6 / 333 8 / 500

overall planning budget is defined as the total number of trajectories per step. Ta-
ble 4.1 shows the different budgets used in the experimental evaluations. For any
given budget, the first number indicates the number of internal CEM iterations per
step (see Sec. 2.2.3.3 of Ch. 2) and the second number shows the number of sampled
imagined trajectories.

Chua et al. (2018) modifies the truncated sampling distribution such that the
bounds are always set to 2σ, where σ is adapted to be not larger than 1

2 b, with b
being the minimum distance to the action bounds. This variance is referred to as
CEMPETS.

NN Policy Extraction APEX is compared against several IL baselines, as well as
ablations of APEX. Since the main interest is in the performance of the extracted NN
policy, the same iCEM-MPC teacher policy is used in all the baselines.

As the simplest baseline, BC is used without any feedback loop between the NN
and MPC policies. The BC-DAgger baseline adds DAgger to BC, still without any
feedback loop between the NN and MPC policies. Finally, BC is tested with guidance
cost (fixed λ) and warm-starting (BC-GPSλfixed

π).
For reference, the performance of Soft Actor Critic (SAC) as a model-free RL

baseline is provided to get an idea of the difficulty of the learned tasks.

4.5. Experimental Results 83

4.5 Experimental Results

The following sections present and discuss the experimental results for iCEM and
APEX.

Fast Sample-Based Trajectory Optimization Figure 4.9 shows the performances
of iCEM (yellow), CEM (purple), CEMMPC (blue), and CEMPETS (red) for different
planning budgets. Again, the budget is defined as the total number of imagined tra-
jectories per step. Intuitively, a higher planning budget means that the planner has
access to more computational resources. Results are averaged over 50 independent
runs with different seeds. Solid lines show means and the color bands around the
solid lines indicate the standard deviations. Notice the log scale on the x-axis. In all
the tasks, iCEM achieves the best results among all budgets. Even for the extremely
low budget settings (around 10 trajectories per step), iCEM can solve most of the
tasks where the other baselines fail.

iCEM CEM CEMMPC CEMPETS

102 103

0

5

10

·103

budget (trajectories per step)

re
tu

rn

(A) HALFCHEETAH RUNNING.

102 103

0

200

400
·103

budget (trajectories per step)

re
tu

rn

(B) HUMANOID STANDUP.

102 103

0

0.3

0.6

1

budget (trajectories per step)

su
cc

es
s

ra
te

(C) DOOR.

102 103

0

0.3

0.6

1

budget (trajectories per step)

su
cc

es
s

ra
te

(D) RELOCATE.

FIGURE 4.9: Performance of iCEM, CEM, CEMMPC, and CEMPETS relative to the
planning budget for the (A) HALFCHEETAH RUNNING, (B) HUMANOID STANDUP,

(C) DOOR, and (D) RELOCATE environments. Notice the log-scale on the x-axis.

To quantify the improvements of iCEM over the baselines, Table 4.2 compares the
performance of iCEM with the respective best baseline in each environment. A sam-
ple efficiency factor for iCEM is reported based on the approximate budget needed
to reach 90% of the best baseline performance (at budget 4000). In conclusion, iCEM
is 2.7 − 21.9× more sample efficient than the baselines, which is a significant im-
provement. Similarly, it is evaluated how much the performance of iCEM improved
w.r.t. the best baseline for a given budget (averaged over budgets < 1000). Again,
the evaluation reveals that iCEM achieves 120− 1030% of the best baseline perfor-
mance.

What is the reason for the considerable reduction in sample complexity and
gain in performance of iCEM compared to the baselines? Figure 4.10 sheds light

84 Chapter 4. Planning & Control

on this question by adding individual components to CEMMPC (blue bars) and re-
moving individual components from iCEM (yellow bars) in HALFCHEETAH RUN-
NING and FETCH PICK&PLACE. Among the environments, adding colored noise
has the biggest impact on the performance for reasons discussed in Sec. 4.2.1.1. In
HALFCHEETAH RUNNING, for instance, running fast requires a fast and coordinated
movement of the legs, while in FETCH PICK&PLACE smooth and temporally ex-
tended motions typically lead to higher successes. In FETCH PICK&PLACE, keeping
the previous elites also has a noticeable impact on the performance. This is due to
the partially sparse reward setting; thus, the small likelihood of finding a solution
with a non-constant cost signal as discussed in Sec. 4.2.1.2. Once such a solution
is found, keeping it over multiple planning steps highly increases the likelihood of
success.

While adding individual components to CEMMPC can have a significant impact
on the planner’s performance, removing individual parts from iCEM (yellow bars)
does not have the same magnitude of impact. This indicates that not one single
component of iCEM is responsible for its overall performance but that the interplay
between all the additions to CEMMPC is essential to achieve the highest performance.

C
EM

M
PC

+k
ee

p

+s
hi

ft

+c
ol

or

iC
EM

-k
ee

p

-s
hi

ft

-c
ol

or

0

2

4

6 ·103

re
tu

rn

(A) HALFCHEETAH RUNNING.

C
EM

M
PC

+k
ee

p

+s
hi

ft

+c
ol

or

iC
EM

-k
ee

p

-s
hi

ft

-c
ol

or

0
0.2
0.4
0.6
0.8

1
su

cc
es

s
ra

te

(B) FETCH PICK&PLACE.

FIGURE 4.10: Ablation studies of iCEM for (A) HALFCHEETAH RUNNING and (B)
FETCH PICK&PLACE. Blue bars show CEMMPC with each improvement added

separately. Yellow bars show iCEM with each feature removed separately.

NN Policy Extraction This section presents the results of the IL-based NN policy
extraction scheme APEX. The high-quality data produced by iCEM is used as refer-
ence trajectories for the BC loss. Additionally, iCEM is used inside DAgger to relabel
suboptimal actions taken by the NN policy.

TABLE 4.2: Sample efficiency and performance increase of iCEM w.r.t. the best
baseline. The first four columns consider the budget needed to reach 90% of the best
baseline (dashed lines in Fig. 4.9). The last column shows the average improvement

over the best baseline in the budget interval.

90% base- ∼ budget ∼ budget efficiency iCEM w.r.t. baseline
line@4000 iCEM baseline factor budgets %

HALFCHEETAH RUNNING 7744 312 840 2.7 50–1000 120%
HUMANOID STANDUP 378577 121 372 3.06 50–1000 128%

FETCH PICK&PLACE 0.87 185 1330 7.2 50–1000 243%
DOOR 0.86 45 985 21.9 100–1000 1030%

RELOCATE 0.88 95 1300 13.7 100–1000 413%

4.5. Experimental Results 85

APEX BC BC-DAgger iCEM-GPSλfixed
π · · · · · SAC

0 200 400 600 800 1,000

0

2

4

6
·103

iteration

re
tu

rn

(A) HALFCHEETAH RUNNING.

0 100 200 300
0

0.2
0.4
0.6
0.8

1
·105

iteration

re
tu

rn

(B) HUMANOID STANDUP.

0 100 200 300
0

0.2
0.4
0.6
0.8

1

iteration

su
cc

es
s

ra
te

(C) DOOR.

0 100 200 300 400 500
0

0.2
0.4
0.6
0.8

1

iteration
su

cc
es

s
ra

te

(D) FETCH PICK&PLACE.

FIGURE 4.11: Policy performance on the test environments for APEX and baselines.
SAC performance is provided for reference.

Figure 4.11 shows the performance of the NN policy learned with APEX (blue)
as well as the performance of the NN policies learned with the vanilla BC loss (yel-
low), BC-DAgger (green), iCEM-GPSλfixed

π (red), and the asymptotic performance of
the model-free and off-policy RL baseline SAC (dotted horizontal line). Results are
averaged over 10 independent runs with different seeds. In HALFCHEETAH RUN-
NING, SAC achieves the best asymptotic performance, closely followed by APEX.
BC and BC-DAgger fail completely to learn a good policy. iCEM-GPSλfixed

π achieves
slightly better performance than BC-DAgger but is also not able to match the perfor-
mance of SAC or APEX. Given these results, it can be concluded that adding DAgger
or GPS alone to BC does not solve the policy extraction problem to full satisfaction.
In HUMANOID STANDUP, SAC only finds the sub-optimal solution of sitting, cor-
responding to a reward of around 50000. While all other methods achieve better
performance than SAC, only the policy learned with APEX can stand up. However,
even the policy learned with APEX fails to balance in an upright position for longer
time periods because of the many ways the humanoid robot can fall. In DOOR and
FETCH PICK&PLACE, SAC does not learn any reasonable policy. Only APEX can
learn acceptable NN policies in these environments.

Figure 4.12 and Fig. 4.13 provide insights into why the NN policies learned with
APEX show much better performances then the ones learned by the baselines. Fig-
ure 4.12 compares the variance of the actions produced by multiple runs of DAgger
with iCEM and iCEM-GPSλfixed

π as teachers on a single policy rollout. Because of the
inherently stochastic nature of the unconstrained iCEM, the distribution of relabeled
actions is very broad (Fig. 4.12A). In comparison, the additional GPS cost in iCEM-
GPSλfixed

π leads to solutions of the planner that concentrate more around the solution
of the NN policy (Fig. 4.12B). In the case of the unconstrained iCEM, this makes
learning a good performing NN policy very hard because the BC loss learns an av-
erage action from the data. If the data is conflicting, this might lead to catastrophic

86 Chapter 4. Planning & Control

----- NN policy iCEM iCEM-GPSλfixed
π

0 10 20 30 40 50

−1

0

1

steps

ac
ti

on
s

(d
im

=1
)

(A) iCEM.

0 10 20 30 40 50

−1

0

1

steps

ac
ti

on
s

(d
im

=1
)

(B) iCEM-GPSλfixed

π .

FIGURE 4.12: Variance of DAgger action relabeling after relabeling the same trajec-
tory 10 times in case of (A) iCEM and (B) iCEM-GPSλfixed

π in FETCH PICK&PLACE.

failure. For instance, in the example depicted in Fig. 4.4, an average policy learned
from both types of solutions (moving around the obstacle via the upper or lower
path) might move directly into the obstacle. Constraining the solution set produced
by the planning method to stay close to the solution of the NN policy helps stabilize
the training of the policy and minimizes the likelihood of conflicting reference data.
However, constraining the planner too much might lead to suboptimal solutions as
well if the NN policy is too far away from the optimal solution. Figure 4.13 shows
the difference between an adaptive and a fixed λ in the GPS cost for the FETCH

PICK&PLACE environment. With a fixed λ, the action variance of iCEM-GPSλfixed

π

shrinks too fast and concentrates around the actions proposed by the suboptimal
NN policy shown as the dotted horizontal line. In FETCH PICK&PLACE, the optimal
solution corresponds to moving the gripper closer to the cube’s location. Suppose
the NN policy is too far away from this solution and the planner is too constrained.
In that case, the planner will not even get close to the cube’s position resulting in
a completely flat, thus uninformative, cost signal because of the partially sparse re-
ward/cost that depends only on the distance between the cube and target but not
on the distance between the gripper and the cube. With an adaptive λ, however,

iCEM-GPSλadaptive
iCEM-GPSλfixed

- - - - - expert action · · · · · NN policy

2 4 6

−1

−0.5

0

0.5

1

CEM iterations

ac
ti

on
va

lu
es

(A) Action sampling distribution.

----- iCEM

random π medium π

0.2

0.6

1

su
cc

es
s

ra
te

(B) Success rate.

FIGURE 4.13: (A) When guiding with a weak policy, the action sampling distri-
bution for iCEM-GPS with fixed and adaptive λ over multiple CEM-iterations (at
predefined time steps). The dashed line shows the action of an expert policy. The
dotted line shows the action of a suboptimal policy. (B) The effect of an adaptive λ

on the success rate in the FETCH PICK&PLACE environment.

4.5. Experimental Results 87

iCEM-GPSλadaptive

π keeps a larger action variance; thus, it is flexible enough to find the
optimal actions shown as the broken horizontal line. The performance plot shown in
Fig. 4.13B for iCEM-GPS with adaptive and fixed λ in FETCH PICK&PLACE confirms
the benefit of an adaptive λ in the GPS cost. In the case of a medium NN policy
iCEM-GPSλadaptive

π outperforms the pure iCEM expert.
Finally, the feedback loop between the NN policy and the iCEM planner in-

side APEX needs to be discussed. Figure 4.14 shows the performance of APEX’s
NN policy (solid blue line) next to the performance of APEX’s iCEM (broken blue
line) throughout training in the HALFCHEETAH RUNNING environment. At the
beginning of training, APEX’s iCEM achieves the same performance as the purely
planning-based iCEM. This is due to the adaptive λ in the GPS cost that prevents
the planner inside APEX from collapsing to the suboptimal solution proposed by
the NN policy. During training, the NN policy inside APEX becomes more capable,
also boosting the planner’s performance far above the performance of the purely
planning-based iCEM. In HALFCHEETAH RUNNING, vanilla iCEM is not able to beat
the performance of SAC, while the NN policy boosted iCEM inside APEX achieves
even higher performance than SAC.

APEX’s NN policy - - - - - APEX’s iCEM - - - - - purely planning-based iCEM · · · · · SAC

0 500 1,000 1,500

0

0.2

0.4

0.6

0.8

1
·104

iteration

re
tu

rn

FIGURE 4.14: Interplay between APEX’s NN policy and APEX’s iCEM throughout
training in the HALFCHEETAH RUNNING environment.

88 Chapter 4. Planning & Control

4.6 Discussion

This chapter presented iCEM and APEX. iCEM aims to close the gap between sample-
based global trajectory optimization and real-time robotic control. iCEM is based on
CEM for MPC. CEMMPC showed to produce compelling solutions to the trajectory
optimization problem in simulated environments (Chua et al., 2018; Hafner et al.,
2019). Applying sample-based planning methods like CEM in real robotic control
tasks is challenging, however, because all the heavy computation is done during
the deployment. In particular, if the planner is used inside an MPC policy to close
the action-perception loop. Executed in closed loop, the CEM optimizer must com-
pute a new plan after each step in the environment to incorporate all the new in-
formation from the sensorimotor stream. iCEM extends CEMMPC in several ways to
decrease the sample complexity in each planning step significantly. (1) From (lin-
ear) system identification it is known that (linear and time-invariant) dynamical sys-
tems have characteristic FRFs and corresponding transfer functions that are used to
efficiently explore the operation space and estimate the parameters of the (linear)
system (Sinha, 1989). iCEM leverages this knowledge about the frequency-specific
response of dynamical systems by replacing the Gaussian action sampling distribu-
tion inside CEM with a power-law distribution. While action sequences sampled
from a Gaussian distribution have a uniform PSD, lower frequencies in the PSD of
action sequences sampled from a power-law distribution are amplified. In compar-
ison, higher frequencies are repressed depending on the exponent of the power-law
distribution. In Fig. 4.2 of Sec. 4.2 it was shown that the state-space coverage of a
point mass depends on the type of power-low distributed exploration noise. More-
over, it was shown that successful trajectories in HUMANOID STANDUP result from
power-law distributed action sequences with an exponent between 2 and 4, while
Gaussian distributed (β = 0) action sequences do not lead to success. Consequently,
the experimental results presented in Fig. 4.10 revealed that adding colored noise to
CEMMPC leads to the most significant boost in the performance of the optimizer. (2)
iCEM makes use of the observation that the imagined plans computed in one time
step are still mostly valid in the next step because deviations between the imag-
ined and actual observed outcomes are typically small. Moreover, the solution set
produced by the planner rarely collapses to a singular solution but covers a small
neighborhood around the best solution. To this end, iCEM keeps a memory of pre-
viously computed plans and reuses them in the next time step. The experimental
results shown in Fig. 4.10 suggest that iCEM benefits from its memory, especially
in environments where the exploration problem is challenging and the likelihood
of finding any viable solution is very low. Once such a rare solution is found, the
memory allows iCEM to remember this solution over multiple time steps; thus, in-
creasing the likelihood of overall success dramatically. All in all, the additions to
CEMMPC presented in this chapter make iCEM 2.7 − 21.9 times more sample effi-
cient than the best next baseline and boost the performance by 120− 1030%. That
means that iCEM can achieve the same performance as the baselines by using much
fewer samples, reducing the computational complexity per step significantly.

Table 4.3 shows the runtimes of iCEM for different budgets and environments. In
the simplest HALFCHEETAH RUNNING environment, iCEM already reaches close to
real-time performance while using a computationally expensive CPU-based simula-
tor as a model. With highly parallelizable GPU-based simulators like ISAAC GYM
or learned NN-based models, the runtime can be reduced much further, pushing
iCEM even further toward the realm of real-time control (Pinneri et al., 2020).

Suppose a planning method cannot be used directly for control, for instance,

4.6. Discussion 89

TABLE 4.3: Runtimes for iCEM with different compute budgets. Times are given
in seconds per env-step (total wall-clock time = time/step × episode length) on a

Xeon® Gold 6154 CPU @ 3.00GHz.

Budget (trajectories per step)
Envs Threads 100 300 500 2000 dt

HALFCHEETAH RUNNING 1 0.326 0.884 1.520 5.851 0.05
32 0.027 0.066 0.109 0.399

HUMANOID STANDUP 1 2.745 8.811 13.259 47.469 0.015
32 0.163 0.456 0.719 2.79

FETCH PICK&PLACE 1 8.391 26.988 40.630 166.223 0.04
32 0.368 1.068 1.573 6.010

because of limited onboard computational resources. In that case, another way of
utilizing the strengths of iCEM for (real-time) control is by using IL techniques to
extract an NN control policy from the near-optimal trajectories produced by iCEM.
NN policies have advantages over planning methods. (1) All the computational
complexity is moved to the training phase while querying the policy for actions
during runtime is computationally cheap. (2) NN policies can be queried on any
arbitrary state, even those not seen during training. Yet, no optimality or safety
guarantees can be given outside the data distribution. However, learning an NN
policy from a stochastic teacher can be challenging and lead to suboptimal results if
done naively, as shown for several BC-based IL baselines in Fig. 4.11. In APEX, the
iCEM-MPC policy is used as a teacher to train an NN student policy. The NN policy
is trained with a BC loss. To mitigate a potential covariate shift due to different state-
visitation distributions between the teacher and the student policy, DAgger is used
to relabel the suboptimal actions taken by the student with actions from the teacher.
In addition, GPS is used to constrain the solution set of the teacher to be close to
the student’s solution. As shown by Fig. 4.12, this can help provide more consistent
training examples for the BC loss, especially if the teacher is stochastic and does not
converge to a single best solution. If applied naively, GPS can result in a suboptimal
teacher performance as shown by Fig. 4.13. This effect is especially prevalent early
on in training, where the solution found by the student is far away from the optimal
solution. With an adaptive λ in the GPS cost, this effect can be attenuated by making
the influence of the student on the teacher dependent on the performance of the
student.

Despite all these improvements, BC-based IL techniques have some drawbacks.
For instance, they are upper bounded by the teacher’s performance and cannot be
trained from mixed behaviors. Offline-RL is a different type of IL technique that
gained traction recently (Kumar et al., 2020; Nair, Dalal, et al., 2020; Z. Wang et
al., 2020; Kostrikov et al., 2021). In offline-RL, an RL agent is trained on the sub-
MDP induced by a fixed dataset of agent-environment interactions. Offline-RL has
several advantages over BC. (1) It can deal with datasets produced by a mixture of
behavioral policies. (2) In principle, it can surpass the performance of the behavioral
policies that generated the dataset by learning a policy in the sub-MDP that is more
optimal. (3) It can learn different and new tasks from the same data using reward
relabeling. When this work was published, the field of offline-RL was not mature
enough to be used out-of-the-box in APEX. In the future, it would be an exciting
direction to replace the BC-based IL part in APEX with methods from offline-RL.

5
UNCERTAINTY-AWARE PLANNING

IN MODEL-BASED REINFORCEMENT
LEARNING

This chapter is based on:

Vlastelica*, Blaes*, Pinneri, Martius (2021) “Risk-Averse Zero-Order Trajectory Optimization”. In: Con-
ference on Robot Learning (CoRL). *Equal Contribution.

Contents
5.1 Introduction . 93
5.2 Method . 95

5.2.1 Preliminaries . 95
5.2.2 Ensemble of Probabilistic Neural Networks 95
5.2.3 Uncertainty Estimation with Ensembles of Probabilistic Neu-

ral Networks . 96
5.2.4 Separation of Uncertainties 97
5.2.5 Entropy vs. Variance as Uncertainty Measurement 99
5.2.6 Probabilistic Safety Constraints 99
5.2.7 Planning and Control . 100

5.3 Environments . 102
5.4 Baselines . 106
5.5 Experimental Results . 107

5.5.1 Active Learning for Model Improvement 107
5.5.2 Uncertainty-Aware Model-Based Planning 108
5.5.3 Planning under External Safety Constraints 110

5.6 Discussion . 113

5.1. Introduction 93

5.1 Introduction

The works summarized in the previous chapter discussed several improvements
to the control side of Model-Based Reinforcement Learning (MBRL). Another ma-
jor challenge in the MBRL domain is to design or learn accurate dynamics models.
Especially if applied to real-world systems, special care is needed to account for the
inevitably noisy dynamics of the environment. Noise can originate from unobserved
variables, like external perturbations, or irreducible noise in the system, e.g., from
unreliable sensor readings. To account for the possible uncertainties about the dy-
namics of a robotic system and the environment during planning, this work presents
Risk-Averse Zero-Order Trajectory Optimization Method (RAZER), a framework for un-
certainty estimation and uncertainty-aware planning. RAZER consists of two com-
ponents: (1) A learned model of the Markov Decision Process (MDP) that allows to
estimate and disentangle between different types of uncertainties accurately. (2) An
uncertainty-aware Model Predictive Control (MPC) planning policy that explicitly
handles uncertainties in the optimization objective.

Previous works in the MBRL literature use learned models to estimate uncer-
tainties in parametric (Chua et al., 2018) and non-parametric (M. P. Deisenroth et
al., 2013; Kamthe et al., 2018) models. In these methods, uncertainties are merely
used for sampling-based estimation of the expected task cost, while most of the in-
formation contained in the underlying noise distributions is unused. Also, these
methods do not distinguish between the different types of uncertainties present in
the learned models, namely aleatoric and epistemic uncertainties (Hora, 1996; Der
Kiureghian et al., 2009). The aleatoric or statistical uncertainty stems from any in-
herent noise in the system under consideration. The aleatoric uncertainty cannot be
further reduced regardless of how much more the system is observed. In the context
of learned models, epistemic or systemic uncertainty stems from insufficient training
data. This type of uncertainty can be reduced by collecting more training data; thus,
reducing the model’s prediction error to the system’s noise level. These two types of
uncertainties are well known in the model-free Reinforcement Learning (RL) litera-
ture (Mihatsch et al., 2002; Garcıa et al., 2015) and control literature (Arruda et al.,
2017; Abraham et al., 2020) but are not well explored in the context of MBRL.

This work presents RAZER, a planning-based RL agent that utilizes learned en-
sembles of probabilistic Neural Networks (NNs) to model the dynamics of the MDP.
A carefully designed model architecture allows RAZER to differentiate between the
aleatoric and the epistemic uncertainties. An MPC policy inside RAZER uses these
uncertainties explicitly in the optimization objective for uncertainty-aware planning.
The performance of the uncertainty-aware planner RAZER is compared to a method
that only estimates the expected cost via Monte-Carlo (MC) sampling in three do-
mains: (1) In the active learning domain, the goal of the agent is to actively seek
states for which the prediction accuracy of the learned model is suboptimal. In
this setting, the epistemic uncertainty serves as a proxy measure for information
gain (Pfaffelhuber, 1972) and is maximized as an intrinsic reward during planning,
similar to how humans and other animals take actions that reduce the uncertainty
about the environment (Belger et al., 2018). The epistemic uncertainty is measured in
terms of the multi-step ensemble disagreement of the learned forward model. (2) In
the uncertainty-aware planning domain, the agent’s goal is to optimize the task cost
using the learned model while minimizing the uncertainty about the future. Being
able to assess the uncertainty about future outcomes of certain actions is an essential
ability of living beings (Alhussein et al., 2021) that increases the chance of survival.
Thus, it is crucial to equip robots with the same skill to minimize the risk of failure

94 Chapter 5. Uncertainty-Aware Planning in MBRL

and allow for safe human-robot interactions. In this setting, the agent uses the model
acquired during active learning. (3) In the third domain, the agent’s goal is to opti-
mize the task cost while complying with external safety constraints and accounting
for the environmental uncertainties. Being able to define explicit constraints in the
optimization objective is very important in industrial environments. Furthermore,
accounting for the uncertainty in the environment becomes vital in multi-agent en-
vironments where the robot has only partial information.

5.2. Method 95

5.2 Method

The following sections present the three main contributions of RAZER: (1) The accu-
rate estimation and separation of uncertainties in learned ensembles of probabilistic
NNs. (2) An uncertainty-aware trajectory planning method with the explicit han-
dling of aleatoric and epistemic uncertainties in the optimization objective. (3) The
explicit handling of probabilistic safety constraints in sampling-based trajectory op-
timizers with learned models.

5.2.1 Preliminaries

In the following, the standard MDP formulation introduced in Sec. 2.1 of Ch. 2 is
used. Moreover, the notation commonly found in the RL literature is adopted as
discussed in Sec. 2.2.3.

This work is concerned with the accurate estimation and disentanglement of un-
certainties in systems with noisy dynamics. Therefore, it is assumed that the time
evolution of states s ∈ S ⊆ Rns is governed by the following equation:

st+1 = f (st, at, η(t)), (5.1)

with a ∈ A ⊆ Rna being a control input or action, f : S × A ×Rns → S being the
noisy system dynamics governing the transition from state st to st+1 and

η(t) = η(st, at) (5.2)

being a random variable modeling the noise in the system. No restrictions are put
on the functional form of f nor η. For instance, f might be a non-linear function
and η might be sampled from any arbitrary distribution and might enter the system
dynamics in a non-linear way.

Consequently, without prior knowledge about the system dynamics f , a class of
general function approximators, such as NNs, can be used that can be learned purely
from data in an end-to-end fashion. Furthermore, since this work is interested in
estimating and separating uncertainties in the system arising from the noise model
η and the inherently erroneous approximations of the learned models, RAZER uses
ensembles of probabilistic NNs to estimate and separate these uncertainties.

5.2.2 Ensemble of Probabilistic Neural Networks

RAZER learns a model fθ : S × A → (S ×R
ns
>0)

K, with parameters θ, that approx-
imates the system dynamics in Eq. 5.1. In many cases, the model does not directly
predict the true MDP state s but an observation o = f obs(s) produced by a perception
model f obs : S → O. The following analysis remains valid independent of whether
the model predicts states or observations.

Like Chua et al. (2018), RAZER uses an ensemble of NNs with stochastic outputs
as model class for its forward model. Each ensemble member f k

θk
: S ×A → S ×R

ns
>0,

k = 1, . . . , K, predicts the parameters:

f k
θk
(st−1, at−1) = (µk

θk
(t), Σk

θk
(t)) (5.3)

of a multivariate diagonal Gaussian distribution:

Ŝt ∼ N (µk
θk
(t), Σk

θk
(t)), (5.4)

96 Chapter 5. Uncertainty-Aware Planning in MBRL

where θk are the parameters of the k-th model. The µk
θk

: S ×A → S :

µk
θk
(t) = µk

θk
(st−1, at−1) (5.5)

are the output from the network head estimating the means and Σk
θk

: S ×A → R
ns
>0:

Σk
θk
(t) = Σk

θk
(st−1, at−1) (5.6)

are the output of the network head estimating the diagonal covariance matrix Σk
θk
=

σk
θk
· 1 of the Gaussian distribution.
The ensemble is trained with the negative log-likelihood loss on the Gaussian

outputs of the individual networks:

Lθ = ∑
k
Lk

θk

= ∑
k

E(st, at, st+1)∼D

[
− log(N (µk

θk
(t), Σk

θk
(t)))

]
, (5.7)

with D being the dataset of state-action transitions.
Although the model is trained on individual transition tuples (st, at, st+1) sam-

pled i.i.d. from the datasetD, it is queried on consecutive steps in an auto-regressive
fashion during planning. Consequently, any sequence of actions (ah)

H−1
h=0 defines a

predictive distribution over imagined trajectories τ = (st, a0, Ŝt+1, a1, . . .):

ψτ(st, a0,..., h−1) = p(τ | st, a0,..., h−1), (5.8)

starting from the ground-truth state st of the MDP.
Since probabilistic models f k

θk
are used for approximating the actual system dy-

namics in Eq. 5.1, the model predictions (or particles) Ŝk
t+h are distributed according

to Eq. 5.4. Furthermore, the ensemble of probabilistic models induces an empirical
distribution over the parameters f k

θk
(st+h)) = (µθ(t + h), Σθ(t + h)) of the Gaussian

distribution at a certain planning step h:

ψϑ(st+h, ah) = p(fθ(st+h, ah)). (5.9)

This allows the ensemble model to approximate non-trivial and potentially multi-
modal distributions of trajectories despite the assumption that the particles are Gaus-
sian distributed.

5.2.3 Uncertainty Estimation with Ensembles of Probabilistic Neural Net-
works

Every action sequence (ah)
H−1
h=0 with initial state st induces a distribution ψτ over

trajectories. To efficiently sample from ψτ, the sampling procedure T1 from Chua
et al. (2018) is used: At each planning step h, K particles are sampled, one from each
ensemble member f k

θk
:

Ŝk
t+h ∼ N (µk

θk
(t + h), Σk

θk
(t + h))

= N (µk
θk
(Ŝπ(k)

t+h−1, at+h−1),

Σk
θk
(Ŝπ(k)

t+h−1, at+h−1)). (5.10)

5.2. Method 97

st

a0

St+h

ah

NN

f 1
θ1

f K
θK

f 1
θ1

f K
θK

f 1
θ1

f K
θK

Horizon0 H Mean

Particle

FIGURE 5.1: Probabilistic Ensembles with Trajectory Sampling and Uncertainty
Separation (PETSUS). Each ensemble member f k

θk
predicts the mean µk and diag-

onal covariance matrix Σk of a Gaussian distribution. The networks are repeated
along the planning horizon to predict H steps into the future in an auto-regressive
fashion. The red pathways correspond to the sampling procedure T1 proposed in
Chua et al. (2018). The yellow pathways are added to disentangle aleatoric and

epistemic uncertainties.

Afterward, the order of the particles is rearranged according to the permutation op-
erator π, and the procedure repeats itself in an auto-regressive fashion until the end
of the planning horizon H. In Eq. 5.10, Ŝπ(k)

t+h−1 is the particle from the π(k)-th model
sampled in the previous planning step. For h = 0, the ground-truth MDP state s(t)
and the first action a0 are fed into the models. The red pathways in Fig. 5.1 depict
the sampling procedure.

In Chua et al. (2018), sampled trajectories are used to perform a Monte Carlo
estimation of the expected trajectory cost Eτ∼ψτ [c(τ)]. However, the sampling-based
estimation does not consider the properties of the trajectory distribution ψτ. For
instance, ψτ might be a high-entropy or heavy-tailed distribution. Sampling from
such distributions with a limited number of samples may lead to overly risky or
unsafe behavior. Moreover, computing the cost of a trajectory as the expectation
over sampled trajectories makes it difficult to differentiate between aleatoric and
epistemic uncertainties during planning, nor does it give explicit control over the
degree of risk-averseness of the agent.

5.2.4 Separation of Uncertainties

RAZER alleviates these shortcomings by directly looking at the statistical proper-
ties of ψτ. This allows RAZER to differentiate between the epistemic uncertainty,
denoted as E, and the aleatoric uncertainty, denoted as A.

Aleatoric Uncertainty One way of estimating the aleatoric uncertainty is to look
at the ensemble disagreement of the forward model. This, however, is typically
a bad estimate as it can be entangled with the epistemic uncertainty of the model.
Therefore, RAZER measures aleatoric uncertainty in terms of the differential entropy
of the particle sampling distributions defined by Eq. 5.4. More concretely, given the

98 Chapter 5. Uncertainty-Aware Planning in MBRL

k-th particle Ŝt+h at planning step h, the corresponding differential entropy is defined
as:

hk
h(Ŝt+h) = hk

h[− logN (µk
θk
(t + h), Σk

θk
(t + h))]. (5.11)

Equation 5.11 uses the definition of the differential entropy h[f] of a continuous ran-
dom variable X with probability density function f (x) and support X :

h[f] = E[− ln(f (x))] = −
∫
X

f (x) ln(f (x))dx. (5.12)

The aleatoric uncertainty Ah at planning step h is defined as the mean differential
entropy of the particle sampling distributions:

Ah =
1
K

K

∑
k=1

hk
h. (5.13)

Since 1-step predictive Gaussian distributions are assumed, Eq. 5.13 is an expectation
over differential Gaussian entropies, which can be computed in closed form (Cover,
1999).

An alternative approach for computing the aleatoric uncertainty is to look at the
entropy of the distribution of network parameters θk induced by the ensemble. How-
ever, this is not entirely satisfying since large NNs tend to be over-parametrized.
Therefore, the ensemble members might find vastly different solutions to the same
optimization problem.

Intuitively, Eq. 5.14 says that the aleatoric uncertainty decreases the more the in-
dividual particle sampling distributions are peaked, corresponding to less noisy sys-
tem dynamics. Conversely, the more noise gets injected into the system, the more
“tailedness” the particle sampling distributions and higher the entropies are, result-
ing in a large aleatoric uncertainty.

Epistemic Uncertainty For estimating the model’s epistemic uncertainty, RAZER
extends the ensemble model from Chua et al. (2018) by an additional forward-path
(yellow pathways in Fig. 5.1). In addition to the particle sampling, which involves
permutations of the particles after each planning step (shown in red), a so-called
“mean path” propagates only the mean predictions of the ensemble members along
the planning horizon while keeping the order of the “mean particles” fixed. The
resulting network architecture is called Probabilitic Ensembles with Trajectory Sampling
and Uncertainty Separation (PETSUS). The additional mean path in PETSUS allows
RAZER to capture the statistical properties of the particle sampling distributions
for each ensemble member independently. With this, the epistemic uncertainty E is
defined as the entropy of the mean particle sampling distribution parameters f k

θk
=

(µk
θk
(t), Σk

θk
(t)):

Eh = H[f k
θk
(µk

θk
(t + h− 1), at+h−1)]. (5.14)

Notice that in the case of the mean path, the mean prediction µk
θk
(t + h − 1) of the

previous step is fed into f k
θk

instead of the previous particle Ŝt+h−1.
Intuitively, Eq. 5.14 can be understood as follows: If every ensemble member

faithfully captures the underlying noise distribution of the dynamical system, then
the entropy of the distribution over the parameters of the sampling distributions
goes to zero. On the contrary, if the moments of the different ensemble members
do not match the moments of the noise distribution because of a lack of sufficient
training data, the entropy will be non-zero.

5.2. Method 99

An alternative approach for computing the epistemic uncertainty is to calcu-
late the Fisher information metric I := Var[∇θ logL(st+1|st, at)] (Hüllermeier et al.,
2021), where L denotes the likelihood function. However, this tends to be expensive
to compute, especially for larger NNs.

5.2.5 Entropy vs. Variance as Uncertainty Measurement

The Gaussian distribution is the maximum entropy distribution for a given variance
σ2. Its entropy scales linearly with log(σ2) (Cover, 1999). Therefore, the entropy
of a Gaussian distribution and its variance can be used interchangeably to estimate
the uncertainties. However, experiments showed that utilizing the variance directly
causes RAZER to be much more risk-averse, which can be explained by the fact
that the log-term inside the entropy squashes the variance. Moreover, variances are
much easier to relate to because they have the same unit as the observations. Conse-
quently, equations Eq. 5.13 and Eq. 5.14 can be formulated in terms of variances:

Ah =
1
K

K

∑
k=1

Σk
θk
(t + h) (5.15)

and
Eh = Var[µk

θk
(t + h)] + Var[Σk

θk
(t + h)]. (5.16)

5.2.6 Probabilistic Safety Constraints

Safety is of utmost importance whenever data-driven control algorithms are applied
to real systems. One option of introducing safety constraints in constrained opti-
mization is by applying a constant penalty to constraint-violating imagined trajecto-
ries (A. E. Smith et al., 1997). Nevertheless, erroneous stochastic non-linear models
often lead to non-trivial predictive distributions making assessing the risk of failure
challenging using only a limited number of samples. For this reason, it would be fa-
vorable to control the risk of violating the safety constraints by considering the full
predictive distribution.

Given a state space S with a constraint-violation region C ⊆ S , the probability of
the action sequence (ah)

H−1
h=0 entering the region C at planning step h is defined as:

p(Ŝt+h ∈ C | st, a0,..., h−1) =
∫
C

ψτ(s | st, a0,..., h−1) ds. (5.17)

In practice, this integral is intractable due to the non-linear propagation of the un-
certainties and the potentially non-trivial topology of the constraint-violation region
C.

To simplify the computation, only box violations are considered in this work. As
a result, each dimension of s is constrained to be outside of the interval [a, b] ∈ {a, b |
a, b ∈ R2, a < b}. Furthermore, Ŝt+h is estimated through moment-matching
between a diagonal Gaussian distributionN (s; µ̂, σ̂) and the empirical distribution
induced by the particle population at planning step h. With this, the probability of
particle Ŝ entering the constraint-violation set C is given by the integral:

p(Ŝt+h ∈ C | st, a0,..., h−1) =
d

∏
i=0

∫
C
N (si; µ̂i, σ̂i) dsi. (5.18)

100 Chapter 5. Uncertainty-Aware Planning in MBRL

5.2.7 Planning and Control

RAZER uses the improved Cross-Entropy Method (iCEM) (see Ch. 4) to generate a finite
number of action sequences (an

h)
H−1
h=0 , n = 1, . . . , N, inside an MPC policy. In each

time step t, the current ground-truth MDP state st and the first actions a0,...,N
0 are fed

through the ensemble resulting in N×K particles per step, with N being the number
of independent action sequences and K being the number of ensemble members.
This process is repeated in an auto-regressive fashion until the end of the planning
horizon H.

Task Cost Like Chua et al. (2018), RAZER computes the task specific cost for an
action sequence (an

h)
H−1
h=0 according to:

cn(st, an
0,..., H−1) = c(st, an

0) +
H−1

∑
h=1

1
K

K

∑
k=1

c(Ŝk,n
t+h, an

h). (5.19)

Already the expected task cost accounts for the uncertainty in the predictions to a
certain degree; thus, encourages risk-averse behavior. For instance, if some of the
particles Ŝ·,n for an action sequence n incur a high cost, the expected cost of the tra-
jectory will increase. This makes it less likely for the action sequence to appear in
the elite set. Consequently, the agent will avoid plans that lead to high expected
costs and therefore are riskier. Nevertheless, using just the expected trajectory cost
has several drawbacks: (1) It relies on a finite sampling size to estimate the expected
cost. Especially for heavy-tailed distributions, this can lead to an overly optimistic
behavior that might result in catastrophic failure. (2) It does not differentiate be-
tween aleatoric and epistemic uncertainties. (3) Since the expected task cost does
not differentiate between the different types of uncertainties, they cannot be treated
differently, nor can their effect on the agent’s behavior be influenced.

RAZER solves these issues by modeling and separating the aleatoric and epis-
temic uncertainties explicitly in the optimization objective.

Aleatoric Cost With the definition of the aleatoric uncertainty given in Eq. 5.15, the
corresponding auxiliary cost term is defined as:

cn
A(st, an

0,..., H−1) = wA

H−1

∑
h=0

√
An

h , (5.20)

where wA ≥ 0 controls the risk-averseness of the agent.

Epistemic Cost Similarly, the definition of the epistemic uncertainty in Eq. 5.16 can
be used to formulate an auxiliary cost term:

cn
E(st, an

0,..., H−1) = −wE

H−1

∑
h=0

√
En

h , (5.21)

where wE ≥ 1 controls the agent’s intrinsic motivation to maximize its information
gain by exploring yet unexplored states.

5.2. Method 101

Safety Cost Finally, RAZER’s capability to efficiently compute violations of prob-
abilistic safety constraints can be used to formulate an auxiliary cost term:

cn
C(st, a0,..., H−1) = wC

H−1

∑
h=0

q
p(Ŝn

t+h ∈ C) > δ
y

(5.22)

in which wC ≥ controls how strongly safety violation are penalized and δ ≥ 0 is a
threshold on the confidence that the constraint is violated. The J·K in Eq. 5.22 is called
the Iverson bracket and is 1 if the argument is true and 0 otherwise. An alternative
way of implementing safety constraints in sampling-based planners is by changing
the ranking function as done in Wen et al. (2018).

Equation 5.20 and 5.21 are computed in the state space while Eq. 5.19 is com-
puted in the task-specific cost space. This makes it difficult to weigh the different
terms against each other in the total cost. Alternatively, Eq. 5.20 and Eq. 5.21 can be
computed in the task cost space as well. However, the task cost space formulation
has several drawbacks: (1) One advantage of MBRL is that the learned models are
task agnostic; thus, they can be used to solve a wide variety of tasks. If the epistemic
cost is computed in the task cost space, the resulting exploration is coupled to a spe-
cific task, and the transferability of the learned model might suffer. (2) On the one
hand, computing the aleatoric cost in the task-specific cost space seems reasonable
because a failure typically results in a high task cost, for instance, because a human
designer adds prior knowledge about failure cases to the cost function. On the other
hand, it can be argued that high uncertainty in the state space typically results in
control difficulties which should be avoided independent of the task at hand. Ad-
ditionally, treating aleatoric uncertainty in a task-independent way can reduce the
complexity of designing cost functions. Because of these reasons, the state-space
formulation is used in all of the presented experiments.

102 Chapter 5. Uncertainty-Aware Planning in MBRL

5.3 Environments

The following sections introduce the different environments studied in the experi-
mental section. What differentiates these environments from all the environments
studied so far is that their system dynamics is noisy. All environments are simulated
with the MuJoCo physics engine (Todorov et al., 2012).

THREE BRIDGES This toy environment is specifically designed for showcasing the
different qualities of the epistemic and aleatoric uncertainties in planning. The agent
controls a 2 Degree of Freedom (DoF) point mass in three dimensional space. The
point mass is subject to the laws of motion. With its continuous actions, the agent
applies forces in the x- and y-direction to the robot:

a = (Fx, Fy) ∈ R2. (5.23)

The 10 dimensional continuous state vector:

s = (x, y, z, a, b, c, d, ẋ, ẏ, ż) (5.24)

contains the 3 positional (x to z), 4 quaternion- (a to d) and 3 velocity-based (ẋ to ż)
agent-centric coordinates.

FIGURE 5.2: In the THREE BRIDGES environment, the agent controls a point mass.
The point mass is spawned on the left platform and must reach the right platform

by crossing one of three bridges.

As shown in Fig. 5.2, THREE BRIDGES consists of the agent controlled point mass
(visualized as blue cube), two platforms and three bridges that connect the plat-
forms. Below the platforms and bridges is lava that immediately destroys the robot
as soon as it comes in contact with the lava. Walls around the outer edges of the
landmass (except for the south edge of the lower bridge and all the edges of the
landmass that are inside of it) prevent the robot from falling into the lava.

The agent’s task is to steer the point mass from its starting platform on the left
to the goal platform on the right by crossing one of the three bridges without falling

5.3. Environments 103

into the lava. More precisely, the domain reward is defined as

r(st, at, st+1) =

−|xt − x⋆| if zt+1 ≥ −1.5,
0 if xt+1 ≥ x⋆,

and zt+1 ≥ −1.5,
−1 otherwise,

(5.25)

where x⋆ is the x-coordinate of the finish line. The task-specific cost is defined as the
negative reward:

c(st, at, st+1) = −r(st, at, st+1). (5.26)

Intuitively, the agent receives a reward equal to the negative distance to the finish
line in every step. The reward is zero as long as the agent is right from the finish
line. If the agent steers the point mass into the lava (z < −1.5), the agent receives a
reward of −1 in every step until the end of the trial.

The noise in THREE BRIDGES is modeled in the form of random external forces
(visualized by the fans in the environment) sampled every 5 steps anew from Fext ∈
U (0, Fext

max). They are applied to the point mass whenever it is on the middle bridge.
Otherwise, the system is entirely deterministic. Since the external forces are strong
enough to push the point mass from the central bridge, this is the most dangerous
bridge to cross. However, going over the middle bridge is the shortest path from the
starting point to the finish, resulting in a minimum task-specific cost. The route over
the lower bridge is longer than the path over the middle bridge but safer since the
movement of the point mass is entirely deterministic. The upper bridge is the safest
because it is broader than the two other bridges, it has a guard on the north edge of
the bridge, and the movement of the point mass is fully deterministic. However, the
path over the upper bridge is the longest.

NOISY HALFCHEETAH This environment adds simulator state noise to the OPE-
NAI GYM environment HALFCHEETAH. In HALFCHEETAH, the agent controls a 6
DoF cheetah and the goal is to maximize the velocity along the x-axis without flip-
ping over. The observation space in HALFCHEETAH is 18 dimensional and includes
the absolute position of the cheetah, the joint angles, as well as the joint angular ve-
locities. The cheetah can only move in the xz-plane. The simulator-state noise gets
sampled from a Normal distribution:

η(t) ∼ N (µ, Σ), (5.27)

with µ = [0, · · · , 0]T and diagonal covariance matrix Σ = 0.2 · 1. The noise is added
to the simulator state according to:

s′t = st + η(t) · 1ẋ>6, (5.28)

with 1(·) being the indicator function and ẋ being the velocity in the x-direction.
Consequently, simulator state noise is only added if the cheetah’s velocity in the
x-direction is greater than 6.

To evaluate external safety constraints, a virtual ceiling at height z = 0.3 is added
to NOISY HALFCHEETAH. In the experiment, the agent has to maximize the task-
specific reward while avoiding violations of the safety constraints.

104 Chapter 5. Uncertainty-Aware Planning in MBRL

NOISY FETCH PICK&PLACE This environment adds action noise to the OPENAI
GYM environment FETCH PICK&PLACE. In FETCH PICK&PLACE the agent controls
a 7 DoF fetch robot with the task of picking up a cube and bringing it to a target
location either on the table or in the air. The (25 + 3 + 3) dimensional observa-
tion space contains information about the fetch robot and the cube as well as their
relative positioning. Two 3 dimensional vectors holding the achieved and the de-
sired goal positions are appended to the observation vector. The 4 actions control
the movement of the end-effector in Cartesian space and the opening and closing
of the gripper. The reward signal is partially sparse in that it is computed from the
distance between the cube and the target only and does not contain the distance
between the end-effector and the cube. That means the reward signal is constant
as long as the end-effector does not touch the cube. The Gaussian distributed ac-
tion noise ηagripper(t) ∼ N (µ, Σ) is only applied to the action dimension controlling
the opening and closing of the gripper. Furthermore, it is only applied if the end-
effector’s y-position is smaller than 1.67. Figure 5.3 shows the environment. The
goal in the environment is to transport the cube from the left side of the table to a
target location on the right side of the table that is in the air (red sphere in Fig. 5.3).
The initial position and target position are fixed in this environment to keep the fo-
cus on the uncertainty-aware planning aspect. In particular, the cube’s position is
centered at y = −1.5 while the target is in the air at y = 2.0.

FIGURE 5.3: In NOISY FETCH PICK&PLACE, action noise is applied to the action
dimension controlling the opening and closing of the gripper. The noise is applied
if the gripper is on the right-hand side (from the robot’s perspective) of the vertical
cyan line. Otherwise, no action noise is applied. The task in the environment is to
transport the cube from the right side of the table to an in-air target location (red
sphere) on the left side of the table. The “glitch effect” indicates the region in which
action noise is added to the action dimension that controls the opening and closing

of the gripper.

Given the difficulty in learning the dynamics of the environment, we concentrate
on the planning aspect in NOISY FETCH PICK&PLACE. To this end, experiments are
performed with access to the ground-truth model which simulates a learned model.
The same noise is applied to the real system and the “mental model”. In that way,
the mental model simulates a learned model with no epistemic uncertainty and an
accurate estimation of the aleatoric uncertainty.

SOLO8 LEANOVEROBJECT In this environment, the agent controls a quadruped
robot (Grimminger et al., 2020) and the goal is to track two targets (green markers)

5.3. Environments 105

with the purple markers at the front and rear ends of the robot’s base (Fig. 5.4) with-
out hitting the red volume in front of the robot. The robot starts in a laying position
as shown in the inset of Fig. 5.4. Gaussian distributed action noise η ∼ N (µ, Σ),
with zero mean and diagonal covariance matrix Σ = 0.3 · 1, is applied to all action
dimensions to mimic real-world disturbances. The state-space of the environment
is 47 dimensional. It contains the absolute position, rotation, velocity, and angular
velocity of the robot’s base, as well as the positions and velocities of all the joints.
In addition, the state contains the positions of the end-effectors and of the markers
at the front and back of the robot. The action space is 8 dimensional and controls
the relative positions of the joints. The two front legs of the robot are attached to
the ground using soft constraints to prevent the robot from jumping uncontrollably,
which would make the task much more challenging.

FIGURE 5.4: In SOLO8 LEANOVEROBJECT, a quadruped robot has to stand up from
a ground position to track two targets (green spheres) with its front and rear end
(purple spheres). The front feet of the robot are attached to the ground. Therefore,
it has to lean slightly forward to decrease the tracking error. A fragile object (unsafe

region, red cube) is in front of the robot.

As in the NOISY FETCH PICK&PLACE experiments, the ground-truth model is
used to simulate a learned model. The same noise is applied in the mental model
and the real system to simulate a learned model with no epistemic uncertainty and
an accurate estimate of the aleatoric uncertainty.

106 Chapter 5. Uncertainty-Aware Planning in MBRL

5.4 Baselines

In the experiment discussed in the next section, the uncertainty-aware planner RAZER
is compared against Probabilistic Ensembles with Trajectory Sampling (PETS) (Chua et
al., 2018). RAZER’s architecture is an extension of the PETS architecture. Hence, both
share the same base regarding model learning and sampling-based trajectory opti-
mization. RAZER extends PETS in two aspects. First, the learned model in RAZER
can separate and accurately estimate its forward predictions’ aleatoric and epistemic
uncertainties using the full information of the predictive distributions. PETS, on the
other hand, relies on sample-based estimations of uncertainties and does not sepa-
rate the aleatoric from the epistemic uncertainty explicitly. Second, RAZER explic-
itly considers the aleatoric and epistemic uncertainties in its optimization objective.
This allows RAZER to use the epistemic uncertainty (Eq. 5.20 and Eq. 5.21) in an ac-
tive learning context to improve the model predictions and the aleatoric uncertainty
(Eq. 5.20 and Eq. 5.21) for risk-averse planning. Since PETS does not model the
two uncertainties explicitly, uncertainties enter the planning only implicitly during
the computation of the mean trajectory cost (Eq. 5.19). Furthermore, RAZER allows
handling probabilistic safety constraints (Eq. 5.22) in a principled way (Eq. 5.2.6).

To make the comparison between PETS and RAZER fair, both use the same
model architecture for the ensemble network, including the same hyperparameters.
PETS, however, does not make use of the information from the mean particle path-
way (yellow pathway in Fig. 5.1). For planning, both PETS and RAZER use the
sampling-based trajectory optimizer iCEM with the same set of hyper-parameters.

PETS and RAZER are compared in three domains: (1) In the active learning set-
ting (Settles, 2010), it is studied how the learned model can be actively improved by
maximizing the epistemic uncertainty as a proxy for information to drive the agent’s
exploration. (2) In the risk-averse planning setting, the planners’ capabilities to cope
with noisy system dynamics is studied. (3) The third domain deals with planning
under external safety constraints. In this domain, the PETS agent receives a high
penalty cost whenever a particle violates the safety constraint, while RAZER opti-
mizes Eq. 5.22.

5.5. Experimental Results 107

5.5 Experimental Results

RAZER is studied in 4 continuous state- and action-space environments and com-
pared against PETS in three domains: (1) Active learning, (2) risk-averse planning,
and (3) planning under safety constraints.

5.5.1 Active Learning for Model Improvement

If model uncertainties are used for uncertainty-aware planning, they are only mean-
ingful if the model has a good understanding and estimation of the uncertainty land-
scape. Uncertainty about the model predictions might stem from the noisy system
dynamics or the model’s erroneous predictions. Learning the parameters of the ap-
proximate noise model requires a sufficient amount of diverse data from the system
under consideration. With too little or too similar data, the agent might avoid parts
of the state space due to overestimating the model’s aleatoric uncertainty. However,
if the agent underestimates the aleatoric uncertainty, it might enter unsafe regions.
By adding the epistemic bonus to the domain-specific cost, RAZER can actively seek
states with high epistemic uncertainty, that is, states that maximize information gain
because no or only little training data exists yet.

(A) RAZER. (B) PETS.

FIGURE 5.5: State-space coverage of (A) RAZER and (B) PETS during active explo-
ration in THREE BRIDGES. States highlighted with a lighter color are visited earlier
in the exploration, while a darker color indicates states visited later in the explo-

ration.

Figure 5.6 shows qualitatively the state coverage of RAZER (Fig. 5.5A) and PETS
(Fig. 5.5B) in THREE BRIDGES. The state coverage is computed by projecting the
continuous states to the xy-plane and dividing them into 50 equally spaced bins
in the range −20 ≤ x0 ≤ 20 and −10 ≤ x1 ≤ 15. To produce Fig. 5.5, the bins
contain the first timestep (over the course of the entire training) in which the agent
visited the state. If the agent visited the state earlier in the training, the respective
state in Fig. 5.5 has a lighter color. States that are visited later have a darker color.
Figure 5.6 shows the state coverage over time, computed as the fractions between
states visited at least once and the total number of states. In each step, the agents
receive the task reward defined by Eq. 5.25. PETS finds the solution of taking the
lower bridge quite early in the exploration phase and fully commits to this particular
solution without exploring any of the other options much further. RAZER, on the
other hand, receives the epistemic uncertainty cost defined in Eq. 5.21 in addition to
the task-specific cost. Hence, exploring states with a large ensemble disagreement
is more incentivized. At the end of the active exploration phase, RAZER explored

108 Chapter 5. Uncertainty-Aware Planning in MBRL

wE = 0.05 wE = 0.01 wE = 0.005 wE = 0.0 (PETS)

0 0.2 0.4 0.6 0.8 1

·105

0

0.2

0.4

0.6

0.8

1

steps

st
at

e
co

ve
ra

ge

FIGURE 5.6: State-space coverage of PETS and RAZER for different values of wE. A
larger weight of the epistemic cost encourages RAZER to seek states that maximize
information gain. Means and standard deviations are computed over 5 indepen-

dent runs with different seeds.

most of the state space, including all three bridges, sufficiently well to better estimate
the global uncertainty landscape. In contrast, PETS only explores the lower bridge
extensively and therefore lacks sufficient training data to learn a globally accurate
model of the uncertainty landscape in THREE BRIDGES.

Figure 5.6 shows quantitatively the state coverage of PETS and RAZER for differ-
ent values of wE. The quantitative result for the state coverage of PETS confirms the
qualitative observation in Fig. 5.5B. After an initial exploration phase, the state cov-
erage plateaus once the agent finds the solution of taking the lower bridge. RAZER,
on the other hand, keeps exploring the environment until the end of the active ex-
ploration phase. The weight of the epistemic uncertainty cost, wE, controls how
much emphasis the agent puts on active exploration versus solving the actual task.
With a large enough wE, the agent even starts to extensively explore the dangerous
middle bridge ignoring the task success altogether. While this leads to inferior task
performance and might even be dangerous in the real world, it gives RAZER a bet-
ter estimate of the global uncertainty landscape, which is important for risk-averse
planning during deployment, for instance, on a real robot.

5.5.2 Uncertainty-Aware Model-Based Planning

The previous section verified that the epistemic uncertainty cost in RAZER indeed
encourages the agent to actively seek novel states to understand the global uncer-
tainty landscape better.

This section shows that a planner that explicitly handles aleatoric uncertainties
(Eq. 5.13) in the cost (Eq. 5.20) is better at avoiding overly risky behavior compared
to a planner that optimizes the mean task cost (Eq. 5.19) exclusively.

THREE BRIDGES This experiment is designed to study the uncertainty-aware plan-
ning capabilities of RAZER and PETS. The same learned model is used for planning
to make the comparison between the two methods fair. To properly account for
the uncertainties during planning, the planner needs to have a good estimate of
the overall uncertainty landscape. To this end, the model learned with RAZER and
wE = 0.05 is used since this model is trained with the most diverse data covering
most of the state space (see Fig. 5.6).

5.5. Experimental Results 109

Figure 5.7 shows the success rate of PETS and RAZER in THREE BRIDGES. The
random forces applied to the point mass on the middle bridge are tuned such that
there is only a small but greater than zero chance for the agent to steer the point
mass over that bridge without falling into the deadly lava. During exploration, PETS
avoids the middle bridge altogether (see Fig. 5.5B) because its model overestimates
the uncertainties along that path due to a lack of sufficient training data. With the ac-
curate model of RAZER, though, PETS sometimes sees a chance to cross the middle
bridge because of the finite sample size during the computation of the expected task
cost per imagined trajectory. If the samples do not contain a trajectory that results in
the agent’s death, the agent might be tempted to cross the middle bridge as the task
cost for this path is minimal. This can result in the agent falling into the lava or some-
times the agent might be lucky and succeeds. In the other case, the samples contain
a deadly trajectory resulting in an increased task cost for the path over the middle
bridge and the agent chooses to go over the upper or lower bridge. Consequently,
PETS achieves only a success rate of ∼58%. RAZER, on the other hand, handles the
aleatoric uncertainty explicitly in the optimization objective and does not rely on
sampling to compute it. This has two consequences in THREE BRIDGES: (1) RAZER
achieves generally higher success rates than PETS because RAZER can accurately
estimate the high probability of failure taking the middle bridge and therefore fa-
vors the paths with the lower and upper bridges over the path going over the central
bride. (2) Since the aleatoric uncertainty is explicitly modeled in the optimization ob-
jective, the risk-averseness of the RAZER agent can be varied. According to Fig. 5.7,
wA has an optimum w.r.t. the success rate in the task at around 0.12 with a success
rate of ∼96%. If wA is increased above this level, the agent sometimes becomes too
afraid to move at all, resulting in a drop in the success rate. On the other hand, if wA

is smaller, RAZER shows more risk-taking behavior and might try to reach the goal
platform by taking the middle bridge in favor of a smaller task reward, leading to a
lower success rate as well.

0.0 (PETS) 0.05 0.12 0.14 0.16
0

0.2

0.4

0.6

0.8

1

aleatoric penalty

su
cc

es
s

ra
te

FIGURE 5.7: Sucess rates of PETS and RAZER in THREE BRIDGES. RAZER is eval-
uated with different values of wA, resulting in varying levels of risk-averseness. In

contrast, the risk-awareness of PETS cannot be controlled explicitly.

NOISY HALFCHEETAH Although in this experiment the agents have access to the
ground-truth model of the environment (in the form of a “mental” simulation that
has the same noise profile as the simulation used for evaluation), PETS consistently
underestimates the uncertainty in the environment and tends to increase the instan-
taneous velocity above the point at which the noise sets in and destabilizes the chee-
tah. This results in a lower average velocity of the PETS agent (Fig. 5.8) as the noise

110 Chapter 5. Uncertainty-Aware Planning in MBRL

RAZER PETS

0 50 100 150

0

1

2

3

4

training iterations

av
g.

ve
lo

ci
ty

FIGURE 5.8: Average velocity of the PETS and RAZER agents in NOISY
HALFCHEETAH.

at higher velocities renders the solution found by the planner more and more sub-
optimal. On the other hand, RAZER, with wE > 0 and wA > 0, manages to safely
push its average velocity close to the boundary of the noisy region by avoiding over-
shooting of its instantaneous velocity. On average, this leads to a higher velocity of
the RAZER agent compared to the PETS agent.

NOISY FETCH PICK&PLACE In this experiment, the agent controls a fetch robot
and has to bring a cube from one side of the table to an in-air target position at the
opposite side of the table. The shortest path from start to goal is in a straight line,
meaning the agent has to lift the cube and simultaneously move it to the target loca-
tion. However, with noise applied to the action controlling the gripper on the side
of the table where the cube is spawned, there is a certain probability of dropping
the cube along the way. Again, PETS optimizes only for the task cost and does not
take into account the environment’s uncertainty explicitly. This results in an overly
optimistic behavior of the PETS agent that is close to the optimal solution for the
deterministic case (red trajectories in Fig. 5.9B). RAZER optimizes for a low aleatoric
uncertainty explicitly; therefore, it adopts a much more cautious behavior (green tra-
jectories in Fig. 5.9B), that is, the agent slides the cube on the table and lifts it only in
the region in which no action noise is applied. Figure 5.9A shows the dropping rates
for PETS and RAZER for different levels of action noise. RAZER maintains a drop-
ping rate lower than 20%, even when considerable noise is applied. The dropping
rate of PETS, however, increases dramatically with higher action noise.

5.5.3 Planning under External Safety Constraints

This section discusses the experiments dealing with external safety constraints. The
RAZER agent handles probabilistic safety constraints (Sec. 5.2.6) explicitly in the
optimization objective via the auxiliary cost defined in Eq. 5.22. PETS does not have
an explicit way of handling safety constraints; therefore, it is given a high penalty
cost whenever it violates the constraint. In addition to the safety constraints, the
agents optimize for the forward velocity of the cheetah.

NOISY HALFCHEETAH In this experiment, a safety constraint is implemented as
a maximum allowed height of the cheetah’s body above the ground, simulating
a narrow passage. Figure 5.10A shows the number of safety violations over time
and Fig. 5.10B shows the average number of safety violation per step for PETS and

5.5. Experimental Results 111

RAZER PETS

0.1 0.5 1.0 2.0 5.0
0

0.1
0.2
0.3
0.4
0.5

gripper noise

dr
op

pi
ng

ra
te

(A) Dropping rate (B) Trajectories

FIGURE 5.9: (A) Dropping rates of PETS and RAZER in NOISY FETCH
PICK&PLACE. (B) Cube trajectories produced by PETS (red) and RAZER (green)

in NOISY FETCH PICK&PLACE.

RAZER. With a higher forward velocity of the cheetah (from training iteration 90
onwards), PETS cannot avoid violating the safety constraints resulting in a sudden
rise in the number of violations. RAZER, on the other hand, manages to keep the
number of safety violations low. The threshold parameter, δ, allows adjusting the
agent’s confidence in respecting the constraint. Figure 5.10B shows that the agent is
willing to risk more safety violations with a higher δ. A value of δ = 1 corresponds
to a sharp decision boundary as it is used here to implement safety constraints in
PETS.

δ = 0.05 δ = 0.2 δ = 0.5 (PETS)

0 50 100 150
0

20

40

60

80

100

training iteration

sa
fe

ty
vi

ol
at

io
ns

(A) Safety violations over iterations.

0.05 0.2 0.5 1.0 (PETS)

0

200

400

600

800

δ

av
g.

#
sa

fe
ty

vi
ol

at
io

ns

(B) Average safety violations per step

FIGURE 5.10: (A) Safety violations over iterations and (B) the average number of
safety violation per step of PETS and RAZER in NOISY HALFCHEETAH for different

values of δ.

SOLO8 LEANOVEROBJECT In this experiment, the agent has to control the Solo8
robot while tracking two targets (green spheres in Fig. 5.4) with two markers at-
tached to the front and rear ends of its base (purple spheres in Fig. 5.4). At the same
time, the agent must avoid entering a rectangular volume in front of the robot (red
volume Fig. 5.4). The front feet of the robot are attached to the floor such that the
robot has to lean slightly forward to track the points accurately. However, because
of the action noise in this environment, leaning too much forward can easily lead to
the robot losing balance and falling into the restricted volume. Figure 5.11A shows

112 Chapter 5. Uncertainty-Aware Planning in MBRL

the number of safety violations per step for PETS and RAZER with different values
of δ, while Fig. 5.11B shows the corresponding tracking error. Although a high safety
violation penalty is added to the loss optimized by PETS, it still favors the task cost,
that is a low tracking error, over avoiding safety violations. RAZER, on the other
hand, co-optimizes for a small tracking error and a low count of safety violations
in a probabilistic way, allowing it to drive down the number of safety violations
while maintaining a reasonable tracking accuracy. However, due to the more deli-
cate optimization objective, satisfying the safety constraint comes with the cost of an
increased tracking error (Fig. 5.11B).

RAZER PETS

0.01 0.95 1.0 (PETS)

0

20

40

60

80

100

120

δ

sa
fe

ty
vi

ol
at

io
ns

(A) Safety violations.

0.01 0.95 1.0 (PETS)

20

40

60

80

100

120

δ

tr
ac

ki
ng

er
ro

r

(B) Tracking error.

FIGURE 5.11: (A) Safety violation and (B) tracking error of the PETS and RAZER
agents in SOLO8 LEANOVEROBJECT for different values of δ.

5.6. Discussion 113

5.6 Discussion

This chapter presented RAZER and demonstrated that with its specific model archi-
tecture PETSUS it is possible to learn accurate probabilistic models of noisy system
dynamics that can be used for uncertainty-aware task-oriented planning. A vital
component of the introduced PETSUS model is that it can separate aleatoric from
epistemic uncertainty. As argued earlier in this chapter and empirically evaluated in
the experimental section, it is very important to make a clear distinction between the
two uncertainties. The aleatoric uncertainty is inherent to the system which is to be
modeled; thus, this uncertainty is irreducible. However, the epistemic uncertainty
is a function of the model itself and either reflects a lack of enough training data
or a too restricted model class. Hence, this type of uncertainty can in principle be
reduced. This has important consequences for autonomous robotic agents. In one
hand, a robot can use its knowledge about its epistemic uncertainty to improve its
mental model. For instance, if the robot has to learn how to manipulate an object
reliably, it can quickly start to concentrate on corner cases that need a lot of data
to be predicted accurately instead of spending valuable time on easy-to-predict in-
teractions, for instance, in which the robot has full control over the object. In fact,
Sancaktar et al. (2022) showed in an unsupervised skill-discovery setting in which
an agent maximizes the ensemble disagreement as a proxy for information gain that
this is precisely the kind of behavior the agent adopts. An agent can freely play with
several cubes in an FETCH PICK&PLACE like construction environment. What is ob-
served in this environment is that the agent very quickly losses interest in lifting the
cube after it discovers this behavior. This is because once the agent can lift a cube, it
has full control over the object and there is no uncertainty about the future. Throw-
ing the cube around, however, is very unpredictable; hence, the agent spends a lot
of time trying to master that skill. On the other hand, knowing where and when
the uncertainty stems from an inherently unpredictable system is equally important.
Suppose a robot can solve a task or execute a motion in multiple ways. In that case,
it should always take the option that minimizes the overall aleatoric uncertainty to
maximize its controllability over the environment.

This work has demonstrated that an approach such as PETS to data-driven MPC
that relies on zero-order trajectory optimization of the expected cost is not enough
to manage uncertain environments and safety constraints as purely sample-based
approaches struggle to accurately estimate the risk of specific actions especially if
the distribution of potential outcomes is heavy-tailed and the number of samples is
very low.

Another important domain in which these problems need to be addressed is sim-
to-real transfer. With the advent of highly parallelizable simulators like ISAAC GYM
it becomes more and more common to train model-free RL agents in simulation to
deploy them on real systems in a zero-shot fashion, that is, without further training
in the new domain. To get this transfer to work, techniques like domain random-
ization are used to prevent the agent from overfitting to the simulated environment.
However, it is not clear how to use domain randomization in the context of plan-
ning methods. Moreover, planning methods are very susceptible to exploiting the
particularities of the environment. Accurately modeling uncertainties in simulation
and grounding them in the real world might be one way of opening up the sim-to-
real pipeline for planning-based policies. However, as of now, this is still an open
challenge.

6
DISCUSSION

Chapter 6. Discussion 117

This thesis presented a collection of works studying nature-inspired inductive bi-
ases in model-free and model-based Reinforcement Learning (RL). With the theoret-
ical analysis and empirical results presented, this work supports the long-lasting hy-
pothesis that inductive or structural biases are necessary for sample efficient learn-
ing and learning generalizations. Yet, this argument is not supposed to be against
data-driven and end-to-end learning approaches. Instead, the argumentation put
forward here aligns with the view stated in “The Need for Biases in Learning Gen-
eralizations” (Mitchell, 1980):

“Although removing all biases from a generalization system may seem to be a desirable
goal, in fact, the result is nearly useless. An unbiased learning system’s ability to classify
new instances is no better than if it simply stored all the training instances and performed a
lookup when asked to classify a subsequent instance.”

Likewise, natural intelligent agents like humans and other animals are not born
as blank slates. Instead, nature equipped these agents with numerous inductive
biases throughout evolution to help them learn more efficiently and survive in the
natural world.

This chapter discusses the results presented in the previous chapters in the con-
text of this hypothesis and highlights similarities between the learning behavior of
natural and the presented artificial agents. The discussion is an attempt to encour-
age further studies of inductive biases in artificial agents, hoping to lead to more
intelligent and autonomously behaving robots.

Locomotion Move Forklift Move Anvil

0 0.2 0.4 0.6 0.8 1

·107

0

0.2

0.4

0.6

env step

pr
ob

ab
ili

ty

FIGURE 6.1: The learned task prioritization of the Control What You Can (CWYC)
agent during the developmental phase in WAREHOUSE. For more information see

Fig. 3.18 in Ch. 3.

Control What You Can Chapter 3 introduced CWYC, an RL agent that explores
its environment and learns various skills in open-ended environments, that is, envi-
ronments that do not provide any external goals during a developmental phase. In
this phase, the agent is purely driven by the intention to maximize its controllability
over the environment. Afterward, the learned skills or subroutines are used in an
extrinsic phase for goal-directed behavior. To solve multi-stage object manipulation
tasks, several hierarchically organized structured models are learned from data of
agent-environment interactions and used by the CWYC agent to manage its learning
efforts and plan on the subroutine level. The structured models implement different
types of inductive biases.

118 Chapter 6. Discussion

Figure 6.1 shows the self-guided learning curriculum that is created during the
developmental phase in WAREHOUSE. See Sec. 3.3 in Ch. 3 for more details about
the environment. At the beginning of the training, the agent concentrates most of
its learning efforts on the easiest task, that is, on Locomotion since the agent’s ac-
tions directly control the robot’s movement. Once the agent masters Locomotion, it
switches its learning efforts to Move Forklift because the task does not have any pre-
requisites other than that the robot has to be able to reach the location of the forklift.
On the contrary, the anvil can only be relocated with the help of the forklift. Con-
sequently, the agent starts to learn Move Anvil only once it masters Move Forklift.
A similar self-created learning curriculum can be observed in the statistical learn-
ing of infants (L. B. Smith et al., 2018). One early driver of this curriculum is the
baby’s growing sensory-motor competence. From the first intentional movements
and reaching towards nearby items to crawling and the dexterous in-hand manipu-
lation of objects, an infant acquires many new abilities over time that give it access
to new objects to interact with and new sources of information (James et al., 2014;
Ueno et al., 2018).

start
loco-

motion
forklift anvil

FIGURE 6.2: Learned task graph for Move Anvil in WAREHOUSE. For more infor-
mation see Fig. 3.20 in Ch. 3.

In WAREHOUSE, Move Anvil is a rather complex task in which the agent has to
go through multiple funnel states or stepping stones. First, the robot has to go to
the forklift, then move the forklift to the anvil, and only then can it relocate the anvil
to its target location. Instead of solving Move Anvil with a single control policy that
might become very complicated, the CWYC agent has the ability to decompose the
long-horizon task into multiple smaller subproblems that are easier to handle one at
a time. The task-dependency graph that the agent learns for Move Anvil is shown
in Fig. 6.2. The agent learns a simple control policy for each subtasks while the
task-planner takes care of the planning at the subtask level and the suitable subtask
composition. A similar decomposition of complex tasks into easier-to-manage sub-
tasks can be observed in natural agents. For instance, Capuchin monkeys solve the
task of cracking a nut by first carrying the nut to a large stone, then picking up a
smaller stone to finally use the small stone as a hammer to crack the nut (de Resende
et al., 2008).

Suppose a task requires multiple objects to be manipulated. In that case, it is
usually not enough to know which objects must be manipulated but also in which
relation the objects have to be with respect to each other. For instance, it is not
the same in a tower building task whether two blocks are placed next to or on top
of each other. In the example of the Capuchin monkeys, it matters whether the
monkey smashes the small stone onto the big stone right next to the nut or right
onto the nut itself. In WAREHOUSE, the CWYC agent learns that the relationship be-
tween the agent, forklift, and anvil matters for the success in Move Anvil. The agent
can solve the final task only if the locations of all three entities coincide. Humans
and other primates do not know about the importance of object relations right from
birth (Marcinowski, Campbell, et al., 2016). For instance, newborns cannot reliably

Chapter 6. Discussion 119

build non-trivial constructions like towers (Marcinowski, Nelson, et al., 2019) or suc-
cessfully play the game “shape sorter” in which they have to put all kinds of differ-
ently shaped objects through a similarly shaped hole. With training, however, this
skill becomes quickly much more reliable (Hayashi and Matsuzawa, 2003) even if
the task’s difficulty is deliberately increased by altering the properties of the objects
in a non-intuitive way (Hayashi and Takeshita, 2009). This might not be surprising
since humans and other primates are very talented in utilizing tools.

CWYC CWYCs− CWYC‡

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

0.2

0.4

0.6

env step

co
m

pe
te

nc
e

FIGURE 6.3: Overall competence of the CWYC, CWYCs−, and CWYC‡ agents in
the warehouse environment. For more details, see Fig. 3.6 in Ch. 3.

The different high-level components of the CWYC agent take some of the com-
plexity out of the low-level control policies by capturing certain aspects of the plan-
ning problem. At the same time, they help to structure the agent’s exploration by
sampling goals and tasks instead of random unstructured noise in the action space.
What stimulates the agent to explore its environment and learn new skills in the first
place, however, is its intrinsic motivation to recreate surprising situations and max-
imize its learning progress. In Fig. 6.3, it is shown that removing these intrinsically
motivated reward signals leads to a significantly reduced learning speed and even
to a complete lack of any learning progress in the more complicated tasks. In Fig. 6.3,
CWYCs− ablates the surprising signal and CWYC‡ ablates the learning curriculum.
Likewise, it is observed that infants seek events that violate their expectations about
the world instead of events that are in accordance with their inner beliefs (Stahl et al.,
2015). Studies in pedagogy indicate that students are more intrinsically motivated
to study if they are in a learning-oriented environment rather than the student’s
self-perceived ability in a subject (Spinath et al., 2012). Similarly, the CWYC agent’s
interest in a task is not determined by its absolute competence but by how much
progress the agent can make in learning the task.

Figure 6.4 shows that even a single control policy per task learned with Soft Actor
Critic (SAC) (SAC+) cannot solve the more complicated Move Forklift and Move Anvil
tasks and that even a hierarchical abstraction (HIRO+) or intrinsically motivated
exploration based on surprise (ICMs) or prediction error (ICMe) is not enough to
solve these tasks. Only the CWYC agent can solve these tasks by combining various
inductive biases and Intrinsic Motivation (IM) in the different planning stages.

Already the works summarized in Table 6.1 utilize some of the inductive bi-
ases also found in the CWYC framework to build more autonomously exploring RL
agents. What makes the CWYC unique is its capability to learn object relations and
inter-task dependencies from just a few agent-object and object-object interactions
(in the order of a few dozens). The CWYC does this by utilizing a particular network
structure for the goal proposal network that can learn pairwise object relations very
efficiently from data collected by the agent during the developmental phase. With

120 Chapter 6. Discussion

CWYC w oracles CWYC HIRO+ - - - - - ICMs - - - - - ICMe SAC+

0 0.2 0.4 0.6 0.8 1 1.2

·107

0.2
0.6

1

env step

su
cc

es
s

ra
te

(A) Locomotion.

0 0.2 0.4 0.6 0.8 1 1.2

·107

0.2
0.6

1

env step

su
cc

es
s

ra
te

(B) Move Forklift.

0 0.2 0.4 0.6 0.8 1 1.2

·107

0.2
0.6

1

env step

su
cc

es
s

ra
te

(C) Move Anvil.

FIGURE 6.4: Success rate of the agents in (A) Locomotion, (B) Move Forklift, and (C)
Move Anvil throughout training in the developmental phase. For more details, see

Fig. 3.16 and Fig. 3.17 in Ch. 3.

this, the agent can propose new goals that maximize learning progress without re-
lying on a database of previously visited states. Moreover, with Colas et al. (2019)
and Röder et al. (2020), CWYC is one of the few methods that use curiosity in a Hi-
erarchical Reinforcement Learning (HRL) setting. In CWYC, curiosity and learning
progress are used to drive the exploration and a self-imposed learning curriculum
that guides the learning of all the other components of the HRL agent.

There are also certain drawbacks of the proposed architecture: (1) Imposing bi-
ases on the architecture in the form of hand-designed structured models makes it
difficult for the architecture to adapt to situations that were not considered by the hu-
man designer or to find other optimal solutions that are potentially less intuitive for
humans. For example, Sancaktar et al. (2022) uses Graph Neural Networks (GNNs)
to model agent-object and object-object relations and interactions, which in princi-
ple can deal with more complex situations because of a non-linear Neural Network
(NN) that is used inside the GNN to model the relations and interactions between
the nodes in the graph. (2) The disjoint nature of the individual modules increases
the likelihood of individual points of failure. The other modules can hardly compen-
sate for the failure of one module in the architecture as each module has its specific
purpose. One solution to this problem can be to learn monolithic policies that solve
the final tasks in one shot. This can be done by providing all the data collected in
the developmental phase to the individual policies and using reward relabeling to
train them to solve a specific task, e.g., relocating the anvil. In that way, the policies
can compensate for a miscalibrated goal proposal network or subtask planner. Ide-
ally, these components can even be removed altogether during the extrinsic phase.
However, that also means that the individual policies become much more complex,
making them potentially more challenging to train. In addition, such monolithic
policies do not have the same compositional power as the more fine-grained skill

Intrinsic motivation Computational methods
CWYC learning progress + surprise task-level planning, relational attention
h-DQN (Kulkarni et al., 2016) reaching subgoals HRL, DQN
IMGEP (Forestier et al., 2020) learning progress memory-based
CURIOUS (Colas et al., 2019) learning progress DDPG, HER, E-UVFA
SAC-X (M. A. Riedmiller et al., 2018) auxiliary task HRL, (DDPG-like) PI
Relational RL (Zambaldi et al., 2019) - relation net, IMPALA
ICM (Pathak et al., 2017) prediction error A3C, ICM
Goal GAN (Florensa et al., 2018) adversarial goal GAN, TRPO
Asymmetric self-play (Sukhbaatar et al., 2018) self-play Alice/Bob, TRPO, REINFORCE

TABLE 6.1: Table of intrinsically motivated RL agents with the type of IM and the
computational method used for learning the policy.

Chapter 6. Discussion 121

policies making them less suitable for one-shot solving of new tasks. (3) The rigid
structure of the architecture does not allow for unconventional solutions and makes
concurrent training of the entire architecture more challenging. In future work, ex-
ploring more adaptive architectures with looser couplings between the individual
modules would be interesting so that the network can decide which modules to use
and when.

iCEM Intelligent behavior is not only driven by high-level cognitive processes like
the ones discussed in the context of the CWYC agent. In most animals, far more
primitive behavioral patterns are even more dominant. For instance, it is known
that certain species, such as predatory animals (Humphries et al., 2010) or honey
bees (Reynolds et al., 2009) fall back to search strategies with long-lasting tempo-
ral patterns if resources are scarce. Such search strategies can be described by Lévy
walks or Lévy flights (Shlesinger et al., 1982). Also, in robotics, it is known that dif-
ferent robotic systems have specific Frequency Response Functions (FRFs), i.e., their
response profile varies with the frequency of alternating stimuli (Sinha, 1989). In
motor babbling, random motor commands are sent to a robot to explore its motor-
control system in an unsupervised fashion. Sending actions to the robot, that are
sampled from a white noise distribution, usually does little in terms of exploration,
as shown by the blue state-space trajectory in Fig. 6.5A. Instead, tiny and jittery
movements of the robot are observed. One alternative is to send action sequences
with different frequency profiles (see Fig. 6.5B for the Power Spectral Density (PSD)
of different power-law distributed noise patterns) to the robot to explore a larger part
of the operational space as shown by the brown and pink state-space trajectories in
Fig. 6.5A. The improved Cross-Entropy Method (iCEM) discussed in Ch. 4 uses tem-
porally correlated action samples to increase the sample efficiency and performance
of a Model-Based Reinforcement Learning (MBRL) planning method compared to a
method that does not produce any temporally correlated action samples. In the em-
pirical studies discussed in Sec. 4.5 of Ch. 4, the temporally correlated exploration of
iCEM shows a significant advantage over the exploration of vanilla Cross-Entropy
Method (CEM) and produces much more coherent behavior among a variety of dif-
ferent environments and robotic manipulation tasks. Moreover, iCEM is 2.7− 21.9×
more sample efficient than the next best baseline and, at the same time, achieves
120− 1030% of the best baseline performance in the considered tasks. That means
that iCEM can run with a much lower computation budget to achieve the same per-
formance as the baselines. Even if used inside a Model Predictive Control (MPC)
policy to close the action-perception loop, this pushes the iCEM planning method
closer to the realm of real-time control, making it especially suitable for real-world
robotic applications and other tasks with long-lasting temporal dependencies. For
instance, in Gumbsch, Butz, et al. (2021), iCEM is used in conjunction with a par-
ticular type of Recurrent Neural Network (RNN) to solve partially observable en-
vironments with sparsely changing latent states. In Sancaktar et al. (2022), iCEM
is used together with a learned GNN for planning trajectories that maximize infor-
mation gain to improve the model. With the improved model, iCEM can perform
zero-shot generalization to long-horizon object-manipulation tasks. It is worth not-
ing that temporally-correlated noise is not always the preferable choice for explo-
ration noise. In fact, random search has the advantage of being unbiased and typi-
cally works best across many domains. The temporally-correlated exploration noise
shines in domains with inertia (e.g., robotics) and sparse-reward long-horizon tasks
such as FETCH PICK&PLACE.

122 Chapter 6. Discussion

One essential ingredient that is still missing to make planning methods such as
iCEM truly capable of real-time control of real robotic systems are fast models that
can be efficiently learned from data. This is still an open challenge, especially for
interaction-rich settings with non-smooth dynamics. GNNs (Battaglia et al., 2018)
and transformer (Vaswani et al., 2017) like attention networks are just two types
of promising model classes that are particularly suited for modeling object-object in-
teractions. Risk-Averse Zero-Order Trajectory Optimization Method (RAZER) (see Sec. 5)
addresses this challenge by learning a model of probabilistic NNs and by separat-
ing and accurately estimating the aleatoric and epistemic uncertainties that arise in
the context of model learning. Another avenue that opened up recently is to use
highly parallelizable GPU-based simulators such as ISAAC GYM (Makoviychuk et
al., 2021) for planning. Some other shortcoming of iCEM is its finite planning hori-
zon. This can be especially problematic in sparse-reward tasks or high-frequency
control. Terminal value functions are one option to transform the finite-horizon
planning problem into an infinite-horizon planning problem (Silver, Schrittwieser,
et al., 2017; Lowrey et al., 2019). However, learning a good value function in contin-
uous state spaces and action spaces is a challenge on its own and typically requires
abundant data.

β = 0 (white noise) β = 1 (pink noise) β = 2 (red noise) β = 4

0 100 200 300 400 500

0

200

400

steps

sp
ac

e
(x

)

(A) 1D random walks with colored noise.

100 101
10−5

10−4

10−3

10−2

frequency [Hz]

PS
D

(B) PSD of different power-law distributions.

FIGURE 6.5: Colored random noise. (A) Random walks with colored noise of differ-
ent temporal structures. (B) Power spectrum of colored random action sequences

for different β. See Fig. 4.2 in Ch. 4 for more details.

APEX One other major disadvantage of planning methods such as iCEM is that
they do all the heavy computation during runtime. NN policies, on the other hand,
are expensive to train but are cheap to query on any arbitrary state during runtime.
To combine the strength of planning methods and NN-based policies, the Adaptive
Policy EXtraction (APEX) agent discussed in Ch. 4 learns and runs an NN policy in
tandem with the iCEM planning method. In this setup, the iCEM planner takes the
role of the teacher and the NN policy the role of the student in an Imitation Learning
(IL) arrangement. In Sec. 4.5, it was empirically shown that a one-sided influence
from the teacher to the student might not be sufficient to learn a strong NN policy
from an inherently stochastic teacher like the iCEM planning method. One reason
for this could be that the policy class is not expressive enough to capture the multi-
modal output distribution of the teacher. In the student-teacher relationship found
in social learning, a good teacher constantly gathers feedback from the student to
adapt its teaching strategy. This work showed that such a mutual influence could

Chapter 6. Discussion 123

also be beneficial in the discussed IL setting. In the case of the APEX agent, adap-
tive Guided Policy Search (GPS) is used to constrain the solution space of the iCEM
teacher such that it stays close to the behavior of the NN student policy the more
competent it gets. Constraining the planning method’s solution space helps con-
siderably in stabilizing the training of the NN policy by generating more consistent
training data that aligns with the solution already found by the student for the Be-
havioral Cloning (BC) objective. Moreover, the more tightly coupled teacher-student
relationship in the APEX agents even improves the solutions of the planning method
over time alongside the policy.

Even considering all the improvements added to APEX to make the policy learn-
ing more stable, BC-based IL methods have been proven to produce suboptimal
solutions (Stéphane Ross and Bagnell, 2010). One reason for this suboptimal perfor-
mance is the covariate shift between the teacher’s state visitation distribution and
the student’s state visitation distribution. Hence, methods such as Dataset Aggre-
gation (DAgger) (Stéphane Ross, G. Gordon, et al., 2011) were proposed to miti-
gate the covariate shift. However, these methods are also not entirely satisfying as
they require an extensive amount of data for relabeling and access to an expert who
can be queried for actions on arbitrary states. Recently, a new type of IL methods
emerged under the name of offline RL (Kumar et al., 2020; Z. Wang et al., 2020;
Yu et al., 2021). The idea in offline RL is to extract a policy from a fixed dataset of
agent-environment interactions without the possibility of collecting new data in the
environment. In contrast to BC, in offline RL actions are not just reproduced, but
RL methods are used to solve the sub-Markov Decision Process (MDP) induced by
the fixed dataset. This has several advantages. (1) If a state(-action) value function
is learned, the policy can be actively discouraged from taking actions not present in
the dataset (Kumar et al., 2020). (2) Offline RL is, in principle, able to learn from
multiple or stochastic behavioral policies as the RL loss takes care of choosing the
optimal action in each state. (3) While BC merely copies the expert, offline RL has
the chance to learn a better policy than the one that generated the data. When this
work was published, offline RL was not yet ready for off-the-shelf usage. But with
the progress made recently in offline RL, it would be an exciting future direction to
pair APEX with offline RL methods to extract even stronger policies from the iCEM
expert trajectories. Another way of combining the optimizer and the NN policy is to
use the policy to warmstart the optimization (Jetchev et al., 2013; S. W. Chen et al.,
2022) to reduce the runtime of the optimizer further if used for real-time control. But
also the opposite direction is possible by coupling RL methods with trajectory opti-
mization to learn an optimal long-term decision-making strategy (Mirchevska et al.,
2021).

RAZER Learning good predictive models is important to make real-world robotic
control feasible because not all aspects of the real world can be modeled with ana-
lytical equations. However, to act robustly in an inherently uncertain environment
such as the natural world, any autonomous agent also has to take the uncertainties in
the environment into account during planning. The RAZER agent presented in Ch. 5
learns a model of the environment that is later used for planning. In contrast to prior
work (M. Deisenroth et al., 2011; Chua et al., 2018), the Probabilitic Ensembles with Tra-
jectory Sampling and Uncertainty Separation (PETSUS) model inside the RAZER agent
can separate the two main sources of uncertainty that may arise in the domain of
learned models: aleatoric and epistemic uncertainties. While the former type of un-
certainty originates from the inherent noise in the system or any unobserved system
variables, the latter stems from a lack of enough or good training data. Empirical

124 Chapter 6. Discussion

wE = 0.05 wE = 0.01 wE = 0.005 wE = 0.0

0 0.2 0.4 0.6 0.8 1

·105

0

0.2

0.4

0.6

0.8

1

steps

st
at

e
co

ve
ra

ge

FIGURE 6.6: State-space coverage of an uncertainty-unaware planner and RAZER
for different values of wE. A larger weight of the epistemic cost wE encourages
RAZER to seek states for which no or only little training data exists. For more

details, see Fig. 5.6 in Ch. 5.

studies in developmental psychology suggest that infants seek new information by
actively exploring their environment (Begus et al., 2018) and through social interac-
tion (Bazhydai et al., 2020). In Machine Learning (ML), corresponding information-
seeking exploration approaches are studied under the name of active learning (Set-
tles, 2010). The RAZER agent implements active learning by seeking states with high
epistemic uncertainty, i.e., states that maximize the information gain to improve the
model predictions and uncertainty estimates. Figure 6.6 shows the state-space cover-
age of an uncertainty-unaware planner (red) during the active learning phase versus
the state-space coverage of RAZER (green). The uncertainty-unaware planner does
not have direct access to the model uncertainties and therefore explores the state
space only in the vicinity of its solution to the externally provided task. RAZER, on
the other hand, has direct access to the epistemic uncertainty estimates of the model
and uses this information to maximize the information gain during exploration.

RAZER wE = 0.0

(A) Trajectories.

0.1 0.5 1.0 2.0 5.0
0

0.1
0.2
0.3
0.4
0.5

gripper noise

dr
op

pi
ng

ra
te

(B) Dropping rate.

FIGURE 6.7: Planning in NOISY FETCH PICK&PLACE. (A) The uncertainty-aware
planner RAZER first pushes the cube out of the noisy region before it lifts the
cube to its target location (green). The uncertainty-unaware baseline transports the
cube along a straight line between the initial and target position (red), (B) resulting
in a much higher dropping rate of the uncertainty-unaware planner compared to

RAZER. See Fig. 5.9 in Ch. 5 for more details.

Chapter 6. Discussion 125

Once a good model of the noisy dynamics is learned, the solutions of the uncertainty-
aware planner RAZER can be actively shaped in goal-directed behavior, as shown
by Fig. 6.7. In NOISY FETCH PICK&PLACE, the agent controls a fetch robot with the
task of transporting a cube from its initial position on a table to a target position in
the air. If the robot’s end-effector is right (from the perspective of the robot) from
the cyan colored line in Fig. 6.7A, action noise is applied to the robot such that the
gripper opens and closes randomly. An uncertainty-unaware planner might take the
direct path from the cube’s initial position to the target location (red trajectories in
Fig. 6.7A), resulting in a high dropping rate as shown in Fig. 6.7B. The uncertainty-
aware planner RAZER, however, adopts a much safer behavior by first pushing the
cube along the table’s surface and lifting the cube only if it is right from the cyan-
colored line where no action noise is applied (green trajectories in Fig. 6.7A). Conse-
quently, the dropping rate of the RAZER agent is much lower even for high levels of
action noise.

What makes the design of RAZER unique is that the method is very general as
it is learned in an entirely data-driven and end-to-end fashion. Hence, RAZER can
be applied to any system without incorporating much prior knowledge. This is in
stark contrast to other methods. In system identification, for instance, the analyti-
cal equations governing the state evolution are known and only the system-specific
constants are learned from data.

The access to the uncertainty measures of the model’s predictions could also help
close the sim-to-real gap, for instance, by learning a notion of uncertainty in simula-
tion to act more carefully in parts of the state space of the real world that have high
uncertainties. In that way, the robot’s dangerous and tedious exploration phase can
be done entirely offline and in the safe space of the simulation. During deployment
on the real system, the model learned in simulation can then be used for robust
planning and control. However, the uncertainties learned in simulation need to be
calibrated with respect to the uncertainties incurred in the real system, which is still
an unsolved problem.

7
CONCLUSION & OUTLOOK

128 Chapter 7. Conclusion & Outlook

The works presented in this thesis discuss nature-inspired inductive biases in Hi-
erarchical Reinforcement Learning (HRL), model-based planning, and model learn-
ing for robotic control. The first project relied heavily on human-designed biases.
First, in the form of specific architectural choices that can be adapted to an envi-
ronment from just a few training examples. Second, in the form of design choices
regarding the agent’s intrinsic motivation that help to structure the exploration in
sparse-interaction environments with compositional object-manipulation tasks. Yet,
robots might have very different demands, perceive and interact differently with the
world, and solve other tasks than humans. Consequently, removing the human de-
signer from the equation and letting data-driven approaches find suitable inductive
biases for robotic systems would be desirable. This idea is not new. In the field of
meta-learning (Duan et al., 2016; Finn et al., 2017), policies are learned such that they
can be adapted to new environments with just a few gradient steps. In neural archi-
tecture search (Negrinho et al., 2017; J. X. Wang et al., 2017; Zoph et al., 2017), the
architecture of Neural Networks (NNs) and the learning algorithms are optimized
directly by data-driven approaches. Entire programs can be synthesized (Balog et
al., 2017), for instance, to create sketches of various geometrical shapes (Ganin et al.,
2018). In robotics, it would be of great interest to deploy these meta-learning tech-
niques in the constrained optimization spaces of physical systems to find the proper
priors for autonomous robotic systems. A closely related research field is continual
or lifelong learning (Z. Chen et al., 2018). The idea of life-long learning is that a robot
is exposed to a continuous stream of sensorimotor information. In the natural world,
some of this information shares some similarities between tasks, while other infor-
mation is unique for a specific task. Thus, learning a new task should not always
start from zero but instead should be embedded into all the previous experience and
the already existing competencies of the robot. Combined with the ideas from meta-
learning, an interesting future research direction is to identify and learn common in-
ductive biases that are transferable between different robots and tasks and inductive
biases that are robot or even task-specific. This repertoire of inductive biases might
serve as a prior to accelerate the development of more efficient and self-organized
learning robots. Consequently, the remaining works discussed in this thesis look
into more data-driven approaches that are applicable to a broader range of problem
domains. Especially model-based approaches have the potential to be used inside
architectures that implement life-long learning as they provide a straightforward
way of continuously incorporating new information to update the inner beliefs of
the agent about the world. However, to make model-based approaches truly apt for
real-world robotic control, one essential ingredient seems to be still missing: Model
architectures that incorporate the necessary biases to effectively model agent-object
and object-object interactions commonly found in the real world and that allow for
causal reasoning. Similar to how the inductive biases in Convolutional Neural Net-
works (CNNs) lead to a paradigm shift from hand-designed solutions to data-driven
solutions in natural image processing and how transformers did the same in the do-
main of natural language processing.

129

A
SUPPLEMENTARY BACKGROUND

A.1 Contraction Mapping

Theorem A.1.1. There exists a γ ∈ [0, 1) such that for any two value functions v1(s) and
v2(s) the Bellman operator T π is a γ-contraction mapping under the sup-norm ∥ f (x)∥∞ =
supx∈X | f (x)|:

∥T πv1 − T πv2∥∞ ≤ γ∥v1 − v2∥∞ (A.1)

Proof.

∥T πv1 − T πv2∥∞ = ∥R(s, a) + γ
∫
S

Pπ
ss′v1(s′) ds′

− R(s, a) + γ
∫
S

Pπ
ss′v2(s′) ds′∥∞

= γ sup
s′∈S
|
∫
S

Pπ
ss′v1(s′) ds′ −

∫
S

Pπ
ss′v2(s′) ds′|

= γ sup
s′
|
∫
S

Pπ
ss′v1(s′)− v2(s′) ds′| (A.2)

Since 0 ≤ Pπ
ss′ ≤ 1 it follows

∥T πv1 − T πv2∥∞ = γ sup
s′

∫
S

Pπ
ss′ |v1(s′)− v2(s′)| ds′ (A.3)

From Jensen’s inequality (Jensen, 1906) it follows:

∥T πv1 − T πv2∥∞ ≤ γ
∫
S

Pπ
ss′ sup

s′
|v1(s′)− v2(s′)| ds′

= γ
∫
S

Pπ
ss′ ds′ sup

s′
|v1(s′)− v2(s′)|

≤ γ sup
s′
|v1(s′)− v2(s′)|

= γ∥v1(s′)− v2(s′)∥∞ (A.4)

130 Appendix A. Supplementary Background

A.2 Proof of the Policy Gradient

Theorem A.2.1 (Policy Gradient Theorem). For any differentiable policy πθ and the ob-
jective function defined in Eq. 2.26, the policy gradient is proportional to:

∇θ J(θ) ∝
∫
S

ρπ(s)
∫
A

Qπ(s, a)∇θπ(a | s; θ) ds da

=
∫
S

ρπ(s)
∫
A

Qπ(s, a)π(a | s; θ)∇θ log π(a | s; θ) ds da

= Es∼ρ, a∼π [Qπ(s, a)∇θ log π(a | s; θ)] (A.5)

with log π(a | s; θ) being the gradient of the log-likelihood or Score function.

Proof. We start the proof of the policy gradient theorem with

J(θ) =
∫
S0

p0(s0)Vπ(s0) ds0

=
∫
S0

p0(s0)
∫
A0

πθ(a0 | s0)Qπ(s0, a0) ds0 da0. (A.6)

By noting that the start-state distribution p0(s0) is independent of θ, it follows:

∇θ J(θ) = ∇θ

∫
S0

p0(s0)Vπ(s0) ds0

=
∫
S0

p0(s0)∇θVπ(s0) ds0

=
∫
S0

p0(s0)
∫
A0

∇θ (πθ(a0 | s0)Qπ(s0, a0)) ds0 da0

=
∫
S0

p0(s0)
∫
A0

∇θπθ(a0 | s0)Qπ(s0, a0) ds0 da0

+
∫
S0

p0(s0)
∫
A0

πθ(a0 | s0)∇θQπ(s0, a0) ds0 da0. (A.7)

Substituting Qπ with its respective Bellman equation yields

∇θ J(θ) =
∫
S0

p0(s0)
∫
A0

∇θπθ(a0 | s0)Qπ(s0, a0) ds0 da0

+
∫
S0

p0(s0)
∫
A0

πθ(a0 | s0)

· ∇θ

(∫
S

p(s1 | s0, a0) (R + γ ·Vπ(s1))

)
ds0 da0 ds1. (A.8)

With R being independent of θ, we can remove it from the equation and interchange
the gradient operation with the integration:

∇θ J(θ) =
∫
S0

p0(s0)
∫
A0

∇θπθ(a0 | s0)Qπ(s0, a0) ds0 da0

+
∫
S0

p0(s0)
∫
A0

πθ(a0 | s0)
∫
S

p(s1 | s0, a0) · γ

· ∇θVπ(s1) ds0 da0 ds1. (A.9)

A.2. Proof of the Policy Gradient 131

By reordering the integrals, it follows:

∇θ J(θ) =
∫
S0

p0(s0)
∫
A0

∇θπθ(a0 | s0)Qπ(s0, a0) ds0 da0

+
∫
S

∫
S0

γ · p0(s0)
∫
A0

πθ(a0 | s0)p(s1 | s0, a0)

· ∇θVπ(s1) ds1 ds0 da0. (A.10)

Using
∫
A π(S, a; θ)p(S′ | S, a) = p(S→ S′, 1, π) yields:

∇θ J(θ) =
∫
S0

p0(s0)
∫
A0

∇θπθ(a0 | s0)Qπ(s0, a0) ds0 da0

+
∫
S

∫
S0

γ · p0(s0) · p(s0 → s1, 1, π)

· ∇θVπ(s1) ds1 ds0 da0. (A.11)

Notice that at this point, we can recursively substitute Eq. A.7 into Eq. A.11 and get:

∇θ J(θ) =
∞

∑
t=0

∫
S

∫
S0

γt · p0(s0) · p(s0 → s, t, π)

·
∫
A
∇θπθ(a | s)Qπ(s, a) ds ds0 da

=
∫
S

ρπ(s)
∫
A
∇θπθ(a | s)Qπ(s, a) ds da. (A.12)

Finally, we can use ∇x log f (x) = ∇x f (x)/ f (x) (also known as the log trick) and
write Eq. A.12 as an expectation:

∇θ J(θ) =
∫
S

ρπ(s)
∫
A

πθ(a | s)∇θ log πθ(a | s)Qπ(s, a) ds da

= Es∼ρ,a∼π [Qπ(St, a)∇θ log πθ(a | St)] . (A.13)

133

B
RELATIONAL RL

B.1 Algorithm

Algorithm 1: CWYC

1 for episode in episodes do
2 sample final task T ⋆ ∼ T
3 sample final goal gT

⋆
from environment

4 compute task chain κ using (B)k, l starting from T ⋆ ; // κ contains

list task indices

5 i = 1
6 while t < Tmax and no success in T ⋆ do
7 T ′ = Tκ[i]

8 if T ′ ̸= T ⋆ then
9 sample goal gT

′
from Gκ[i],κ[i+1] ; // Eq. 3.18

10 try to reach gT
′

with policy πT
′

11 if succT
′

then
12 i = i + 1 ; // next task in task chain

13 store episode in history buffer
14 calculate statistics based on history
15 train policies for each task
16 train task scheduler ; // Sec. 3.2.3

17 train task planner ; // Sec. 3.2.4

18 train goal proposal networks ; // Sec. 3.2.5

134 Appendix B. Relational RL

B.2 Training Details and Parameters

TABLE B.1: WAREHOUSE

(A) Training.

Parameter Value

parallel rollout worker 5

(B) Environment.

Parameter Value

arena size 20× 20
Tmax 1600
δ 1.0

(C) SAC.

Parameter Value

lr 3× 10−4

batch size 64
policy type gaussian
discount 0.99
reward scale 5
target update interval 1
tau (soft update) 5× 10−3

action prior uniform
reg 1× 10−3

layer size (π, q, v) 256
layers (π, q, v) 2
train iterations 200
buffer size 1× 106

(D) Forward Model.

Parameter Value

lr 10−4

batch size 64
input (ot−1, ut−1)
confidence interval 5
network type MLP
layer size 100
θ 5
layers 9
train iterations 100

(E) Task Scheduler.

Parameter Value

βT 10−1

lr 10−1

random_eps 0.05
surprise history weighting 0.99

(F) Task Planner.

Parameter Value

βB 10−3

avg. window size 100
surprise history weighting 0.99
sampling_eps 0.05

(G) Goal Proposal Network.

Parameter Value

lr 10−4

batch size 64
L1 reg. 0.0
L2 reg. 0.0
γ init 1.0
γ trainable True
train iterations 100

B.2. Training Details and Parameters 135

TABLE B.2: FETCH PICK&PLACE TOOLUSE

(A) Training.

Parameter Value

parallel rollout workers 5

(B) Environment.

Parameter Value

Tmax 150
δ 0.05

(C) DDPG+HER.

Parameter Value

Q_lr 10−3

pi_lr 10−3

batch size 256
polyak 0.95
layer size (π, q) 256
layers (π, q) 3
train iterations 80
buffer size 1× 106

action_l2 1.0
relative goals false
replay strategy future
replay_k 4
random_eps 0.3
noise_eps 0.2

(D) Forward Model.

Parameter Value

lr 10−4

batch size 64
input (ot−1, ut−1)
confidence interval 3
network type MLP
layer size 100
θ 3
layers 9
train iterations 100

(E) Task Scheduler.

Parameter Value

βT 10−1

lr 10−1

random_eps 0.05
surprise history weighting 0.99

(F) Task Planner.

Parameter Value

βB 10−3

avg. window size 100
surprise history weighting 0.99
sampling_eps 0.05

(G) Goal Proposal Network.

Parameter Value

lr 10−4

batch size 64
L1 reg. 0.0
L2 reg. 0.0
γ init 1.0
γ trainable True
train iterations 30

137

C
PLANNING AND CONTROL

C.1 Fast Sample-Based Trajectory Optimization

C.1.1 Algorithm

Algorithm 2: Proposed iCEM algorithm. Color brown is iCEM and blue is
CEMMPC and iCEM.
1 Parameters:
2 N: number of samples; h: planning horizon; d: action dimension; K: size

of elite-set; β: colored-noise exponent
3 CEM-iterations: number of iterations; γ: reduction factor of samples; σinit:

noise strength
4 for t = 0 to T−1 ; // loop over episode length
5 do
6 if t == 0 then
7 µ0 ← constant vector in Rd×h

8 else
9 µt ← shifted µt−1 (and repeat last time-step); // see Eq. 4.10

10 σt ← constant vector in Rd×h with values σinit
11 for i = 0 to CEM-iterations−1 do
12 Ni ←max(N · γ−i, 2 · K)
13 samples← N samples from N (µt, diag(σ2

t)) ; // only CEM & CEMMPC

14 samples← Ni samples from clip(µt + Cβ(d, h)⊙ σ2
t) ; // only iCEM, see

Eq. 4.2
15 if i == 0 then
16 add fraction of shifted elite-sett−1 to samples
17 else
18 add fraction of elite-sett to samples

19 if i == last-iter then
20 add mean to samples

21 costs← cost function f (x) for x in samples
22 elite-sett ← best K samples according to costs
23 µt, σt ← fit Gaussian distribution to elite-sett with momentum

24 execute action in first µt ; // only CEM and CEMMPC

25 execute first action of best elite sequence ; // only iCEM

138 Appendix C. Planning and Control

C.1.2 Implementation Details and Parameters

TABLE C.1: Fixed Hyperparameters used for all experiments.

elites initial std. momentum decay fraction reused elites
K σinit α γ ξ

iCEM 10 0.5 0.1 1.25 0.3
CEM 10 0.5 – 1.0 0

TABLE C.2: Env-dependent Hyperparameter choices.

iCEM/CEM with ground truth

horizon h 30

colored-noise exponent β 0.25 HALFCHEETAH RUNNING

2.0 HUMANOID STANDUP

2.5 DOOR

3.0 FETCH PICK&PLACE

3.5 RELOCATE

TABLE C.3: Environment settings.

iCEM/CEM with ground truth

Episode length 1000 HALFCHEETAH RUNNING

1000 HUMANOID STANDUP

200 DOOR

50 FETCH PICK&PLACE

200 RELOCATE

C.2. Neural Network Policy Extraction 139

C.2 Neural Network Policy Extraction

C.2.1 Algorithm

Algorithm 3: Adaptive Policy EXtraction procedure (APEX)
Input: iCEMπ ; πθ : policy network; n: # rollouts per iteration
1 init θ randomly;
2 D ← ∅;
3 i← 1
4 while not converged do
5 f (a, s)← Jt(a, st) + λ1DKL(πθ ||a) + λ2∥a∥; // see Eq. 4.4, Eq. 4.5, and Eq. 4.6
6 τCEM ← n Rollout with iCEMπ(f (a, s), πθ); // τ is the resulting trajectory
7 add τCEM to D
8 θ← train policy πθ on D
9 τπ ← Rollout with πθ

10 τDAgger ← relabel actions in τπ with iCEMπ(f (a, s), πθ) ; // DAgger
11 add τDAgger to D
12 θ← train policy πθ on D
13 i← i + 1 ; // one APEX iteration

14 return πθ

140 Appendix C. Planning and Control

C.2.2 Implementation Details and Parameters

TABLE C.4: Expert settings for the considered methods.

elites Initial std. Momentum Decay Fraction reused Guidance scaling Horizon
K σinit α γ elites ζ constant c h

iCEM 10 0.5 0.1 1.25 0.3 − 30
iCEMπ 10 0.5 0.1 1.25 0.3 − 30
APEX 10 0.5 0.1 1.25 0.3 0.025 30

Warm Add Policy # rollouts per
Start Sample iteration n

iCEM False False −
iCEMπ/ True True 1 (HALFCHEETAH RUNNING, HUMANOID STANDUP)
APEX 10 (DOOR), 25 (FETCH PICK&PLACE)

TABLE C.5: Policy settings for iCEMπ and APEX.

layers Size Activation fn l1 reg. l2 reg. Optimizer Learning rate

3 128 ReLu 1e-6 1e-5 Adam 5e-4

Batch size Iterations # latest rollouts used for training

1024 1000 50 (HALFCHEETAH RUNNING), 100 (HUMANOID STANDUP)
150 · 25 (FETCH PICK&PLACE), 100 · 10 (DOOR)

141

D
RISK AVERSE CONTROL

D.1 Algorithm

Algorithm 4: RAZER: Risk-aware and safe CEM-MPC

1 Parameters:
2 N: number of samples; B: Number of particles, H: planning horizon; wA,

wE, wS CEM-iterations
3 for t = 1 to T ; // loop over episode length

4 do
5 for i = 1 to CEM-iterations do
6 (samplesp)

P
p=1 ← N samples from CEM(µi

t, Σi
t), with P particles per

sample
7 c, cA, cE, cS← compute cost functions over particles
8 ctot = c + cA + cE + cS ; // compute total cost

9 elite-sett ← best K samples according to total cost
10 µi+1

t , Σi+1
t ← fit Gaussian distribution to elite-sett

11 execute first action of best elite sequence
12 shift-initialize µ1

t+1

142 Appendix D. Risk Averse Control

D.2 Implementation Details

D.2.1 Model Learning

TABLE D.1: Model parameters for THREE BRIDGES.

(A) Ensemble parameters.

Parameter Value

num_layers 6
size 400
activation silu
ensemble_size (n) 5
output_activation None
l1_reg 0
weight_initializer truncated_normal
bias_initializer 0
use_spectral_normalization False

(B) Stochastic NN parameters.

Parameter Value

var_clipping_low −10.0
var_clipping_high 4
state_dependent_var True
regularize_automatic_var_scaling False

(C) Remaining parameters.

Parameter Value

lr 0.002
grad_norm 2.0
batch_size 512
weight_decay 1e−5

use_input_normalization True
use_output_normalization False
epochs 25
predict_deltas True
train_epochs_only_with_latest_data False
iterations 0
optimizer Adam
propagation_method TS1
sampling_method sample

The predicted log variance is bounded by applying (as in Chua et al., 2018, A.1)

logvar = max_logvar - softplus(max_logvar - logvar)

logvar = min_logvar + softplus(logvar - min_logvar)

to the output of the network that predicts the log variance, logvar. In principle,
it would be possible to differentiate through this bound to automatically adjust the
bounds max_logvar and min_logvar. However, this can lead to instabilities during
training. Hence, these parameters are fixed during training.

The predictive model is trained by alternating between two phases: data collec-
tion and model fitting. In THREE BRIDGES, 5 rollouts are collected of length 80 steps
and appended to the previous rollouts. Afterwards, the model gets fit to the data for
25 epochs. For NOISY HALFCHEETAH, 1 rollout is collected and the model is fit for
50 epochs. For NOISY FETCH PICK&PLACE and SOLO8 LEANOVEROBJECT the f̂ in
Fig. 5.1 is replaced by independent instances of noisy ground truth simulators.

D.2.2 Controller Parameters

The parameters used in the controller can be found in Table D.3 and D.4.

D.2. Implementation Details 143

TABLE D.2: Model parameters (only differences wrt D.1 are shown) for NOISY
HALFCHEETAH environment.

(A) Ensemble parameters.

Parameter Value

num_layers 4
size 200

(B) Stochastic NN parameters.

Parameter Value

var_clipping_low −6.0
state_dependent_var True

(C) Remaining parameters.

Parameter Value

lr 0.0002
grad_norm None
batch_size 256
weight_decay 3e−5

epochs 50

D.2.3 Timings

While the code is not tuned for speed specifically, table D.6 provides some tim-
ings for a single step in the environment (hyper-parameters are set as specified in
Suppl. D.2.1 and Suppl. D.2.2, with num_simulated_trajectories = 128 and op_iterations
= 3).

144 Appendix D. Risk Averse Control

TABLE D.3: Controller parameters in THREE BRIDGES.

(A) Action sampler parameters.

Parameter Value

alpha 0.1
colored_noise true
elite_size 10
execute_best_elite true
finetune_first_action false
fraction_elites_reused 0.3
init_std 0.5
keep_previous_elites true
noise_beta 2.0
opt_iterations 3
relative_init true
shift_elites_over_time true
use_mean_actions true

(B) Remaining parameters.

Parameter Value

cost_along_trajectory sum
delta 0.0
factor_decrease_num 1
horizon 30
num_simulated_trajectories 128

TABLE D.4: Controller parameters in NOISY HALFCHEETAH (only difference w.r.t.
D.3 are shown).

(A) Action sampler parameters.

Parameter Value

noise_beta 0.25
opt_iterations 4

(B) Remaining parameters.

Parameter Value

num_simulated_trajectories 120

TABLE D.5: Controller parameters in SOLO8 LEANOVEROBJECT (only difference
w.r.t. D.3 are shown).

Action sampler parameters

Parameter Value

init_std 0.3
noise_beta 3.0

TABLE D.6: Timings per one environment step in ms. We measured the timings on
a system with 1 GeForce GTX 1050 Ti, an Intel Core i7-6800K and 31GB of memory.

Environment Timing [ms]

THREE BRIDGES 0.25
NOISY HALFCHEETAH 0.14

145

BIBLIOGRAPHY
Abraham, Ian et al. (2020). “Model-Based Generalization under Parameter Uncer-

tainty Using Path Integral Control”. In: IEEE Robotics and automation letters 5.2,
pp. 2864–2871 (cit. on pp. 6, 93).

Acharya, Sourya and Samarth Shukla (2012). “Mirror Neurons: Enigma of the Meta-
physical Modular Brain”. In: Journal of natural science, biology, and medicine 3.2,
pp. 118–124 (cit. on p. 3).

Achiam, Joshua, Harrison Edwards, et al. (2018). “Variational Option Discovery Al-
gorithms”. In: arXiv:1807.10299 (cit. on p. 38).

Achiam, Joshua and Shankar Sastry (2017). “Surprise-Based Intrinsic Motivation for
Deep Reinforcement Learning”. In: arXiv:1703.01732 (cit. on p. 32).

Aitken, Stuart C. (2018). “The Gardener and the Carpenter: What the New Science of
Child Development Tells Us about the Relationship between Parents and Chil-
dren”. In: The AAG Review of Books 6.2, pp. 101–103 (cit. on pp. 3, 37).

Alhussein, Laith and Maurice A Smith (2021). “Motor Planning under Uncertainty”.
In: Elife 10, e67019 (cit. on pp. 4, 93).

Andrychowicz, Marcin et al. (2017). “Hindsight Experience Replay”. In: Conference
on Neural Information Processing Systems (NeurIPS), pp. 5048–5058 (cit. on pp. 40,
49).

Arruda, Ermano et al. (2017). “Uncertainty Averse Pushing with Model Predictive
Path Integral Control”. In: IEEE/RAS International Conference on Humanoid Robotics
(Humanoids), pp. 497–502 (cit. on pp. 6, 93).

Asada, Minoru et al. (2009). “Cognitive Developmental Robotics: A Survey”. In:
IEEE transactions on autonomous mental development 1.1, pp. 12–34 (cit. on pp. 5,
32).

Åström, Karl Johan and Peter Eykhoff (1971). “System Identification - A Survey”. In:
Automatica 7.2, pp. 123–162 (cit. on p. 30).

Aubret, Arthur, Laetitia Matignon, and Salima Hassas (2019). “A Survey on Intrinsic
Motivation in Reinforcement Learning”. In: arXiv:1908.06976 (cit. on p. 32).

Balog, Matej et al. (2017). “DeepCoder: Learning to Write Programs”. In: International
Conference on Learning Representations (ICLR) (cit. on p. 128).

Banach, Stefan (1922). “Sur Les Opérations Dans Les Ensembles Abstraits et Leur
Application Aux Équations Intégrales”. In: Fund. math 3.1, pp. 133–181 (cit. on
p. 17).

Baranes, Adrien and Pierre-Yves Oudeyer (2010). “Intrinsically Motivated Goal Ex-
ploration for Active Motor Learning in Robots: A Case Study”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 1766–1773 (cit. on p. 33).

— (2013a). “Active Learning of Inverse Models with Intrinsically Motivated Goal
Exploration in Robots”. In: Robotics and Autonomous Systems 61.1, pp. 49–73 (cit.
on p. 32).

— (2013b). “Active Learning of Inverse Models with Intrinsically Motivated Goal
Exploration in Robots”. In: Robotics and autonomous systems 61.1, pp. 49–73 (cit.
on p. 45).

Barto, Andrew G and Sridhar Mahadevan (2003). “Recent Advances in Hierarchical
Reinforcement Learning”. In: Discrete event dynamic systems 13.1, pp. 41–77 (cit.
on p. 30).

Barto, Andrew G., Richard S. Sutton, and Charles W. Anderson (1983). “Neuron-
like Adaptive Elements That Can Solve Difficult Learning Control Problems”.
In: IEEE Transactions on systems, man, and cybernetics SMC-13.5, pp. 834–846 (cit.
on p. 22).

146 Bibliography

Battaglia, Peter W. et al. (2018). “Relational Inductive Biases, Deep Learning, and
Graph Networks”. In: arXiv: 1806.01261 (cit. on pp. 40, 122).

Baykal-Gürsoy, Melike (2010). “Semi-Markov Decision Processes”. In: Wiley encyclo-
pedia of operations research and management science (cit. on p. 31).

Bazhydai, Marina, Gert Westermann, and Eugenio Parise (2020). ““I Don’t Know but
I Know Who to Ask”: 12-Month-Olds Actively Seek Information from Knowl-
edgeable Adults”. In: Developmental science 23.5, e12938 (cit. on p. 124).

Begus, Katarina and Victoria Southgate (2018). “Curious Learners: How Infants’ Mo-
tivation to Learn Shapes and Is Shaped by Infants’ Interactions with the Social
World”. In: Active Learning from Infancy to Childhood: Social Motivation, Cognition,
and Linguistic Mechanisms, pp. 13–37 (cit. on p. 124).

Belger, Julia and Juliane Bräuer (2018). “Metacognition in Dogs: Do Dogs Know They
Could Be Wrong?” In: Learning & behavior 46.4, pp. 398–413 (cit. on pp. 4, 93).

Bellemare, Marc et al. (2016). “Unifying Count-Based Exploration and Intrinsic Moti-
vation”. In: Conference on Neural Information Processing Systems (NeurIPS). Vol. 29
(cit. on p. 32).

Bellman, Richard (1957). “A Markovian Decision Process”. In: Journal of mathematics
and mechanics, pp. 679–684 (cit. on p. 13).

Bertsekas, Dimitri (2012). Dynamic Programming and Optimal Control: Volume I. Vol. 1.
Athena scientific (cit. on p. 11).

Bertsekas, Dimitri P (2011). “Dynamic Programming and Optimal Control 3rd Edi-
tion, Volume II”. In: Belmont, MA: Athena Scientific (cit. on p. 11).

Bongard, Josh C and Rolf Pfeifer (2003). “Evolving Complete Agents Using Artificial
Ontogeny”. In: Morpho-Functional Machines: The New Species, pp. 237–258 (cit. on
p. 32).

Brockman, Greg et al. (2016). “OpenAI Gym”. In: arXiv:1606.01540 (cit. on pp. 52,
79).

Bruner, Jerome S. (1973). “Organization of Early Skilled Action”. In: Child development
44.1, pp. 1–11 (cit. on p. 3).

Burgess, Christopher P. et al. (2019). “MONet: Unsupervised Scene Decomposition
and Representation”. In: arXiv:1901.11390 (cit. on pp. 5, 26, 41).

Campero, Andres et al. (2021). “Learning with AMIGo: Adversarially Motivated In-
trinsic Goals”. In: International Conference on Learning Representations (ICLR) (cit.
on p. 32).

Cangelosi, Angelo and Matthew Schlesinger (2015). Developmental Robotics: From Ba-
bies to Robots. MIT press (cit. on p. 32).

Chen, Steven W. et al. (2022). “Large Scale Model Predictive Control with Neural
Networks and Primal Active Sets”. In: Autom. 135, p. 109947 (cit. on p. 123).

Chen, Yilun et al. (2019). “Attention-Based Hierarchical Deep Reinforcement Learn-
ing for Lane Change Behaviors in Autonomous Driving”. In: IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (cit. on p. 31).

Chen, Zhiyuan and Bing Liu (2018). “Lifelong Machine Learning”. In: Synthesis lec-
tures on artificial intelligence and machine learning 12.3, pp. 1–207 (cit. on p. 128).

Chitnis, Rohan et al. (2021). “GLIB: Efficient Exploration for Relational Model-Based
Reinforcement Learning via Goal-Literal Babbling”. In: Conference on Artificial In-
telligence (AAAI), pp. 11782–11791 (cit. on p. 33).

Chua, Kurtland et al. (2018). “Deep Reinforcement Learning in a Handful of Trials
Using Probabilistic Dynamics Models”. In: Conference on Neural Information Pro-
cessing Systems (NeurIPS), pp. 4759–4770 (cit. on pp. xix, 5, 28, 37, 69, 71, 73, 81,
82, 88, 93, 95–98, 100, 106, 123, 142).

Bibliography 147

Cochran, William T et al. (1967). “What Is the Fast Fourier Transform?” In: Proceed-
ings of the IEEE 55.10, pp. 1664–1674 (cit. on p. 72).

Colas, Cédric (2021). “Towards Vygotskian Autotelic Agents : Learning Skills with
Goals, Language and Intrinsically Motivated Deep Reinforcement Learning. (Agents
Autotéliques Vygostkiens : Buts, Langage et Apprentissage Intrinsèquement Mo-
tivé)”. PhD thesis. University of Bordeaux, France (cit. on p. 32).

Colas, Cédric et al. (2019). “CURIOUS: Intrinsically Motivated Modular Multi-Goal
Reinforcement Learning”. In: International Conference on Machine Learning (ICML).
Vol. 97, pp. 1331–1340 (cit. on pp. 33, 120).

Cover, Thomas M (1999). Elements of Information Theory. John Wiley & Sons (cit. on
pp. 5, 98, 99).

Dayan, Peter and Geoffrey E Hinton (1992). “Feudal Reinforcement Learning”. In:
Conference on Neural Information Processing Systems (NeurIPS). Vol. 5 (cit. on p. 32).

De Boer, Pieter-Tjerk et al. (2005). “A Tutorial on the Cross-Entropy Method”. In:
Annals of operations research 134.1, pp. 19–67 (cit. on p. 81).

de Resende, Briseida Dogo, Eduardo B. Ottoni, and Dorothy M. Fragaszy (2008).
“Ontogeny of Manipulative Behavior and Nut-Cracking in Young Tufted Ca-
puchin Monkeys (Cebus Apella): A Perception-Action Perspective”. In: Devel-
opmental science 11.6, pp. 828–840 (cit. on p. 118).

Deisenroth, Marc and Carl E Rasmussen (2011). “PILCO: A Model-Based and Data-
Efficient Approach to Policy Search”. In: International Conference on Machine Learn-
ing (ICML), pp. 465–472 (cit. on pp. 27, 37, 123).

Deisenroth, Marc Peter, Dieter Fox, and Carl Edward Rasmussen (2013). “Gaussian
Processes for Data-Efficient Learning in Robotics and Control”. In: IEEE Transac-
tions on pattern analysis and machine intelligence 37.2, pp. 408–423 (cit. on p. 93).

Der Kiureghian, Armen and Ove Ditlevsen (2009). “Aleatory or Epistemic? Does It
Matter?” In: Structural safety 31.2, pp. 105–112 (cit. on p. 93).

Dietterich, Thomas (1999). “State Abstraction in MAXQ Hierarchical Reinforcement
Learning”. In: Conference on Neural Information Processing Systems (NeurIPS). Vol. 12
(cit. on p. 31).

Dietterich, Thomas G (2000). “Hierarchical Reinforcement Learning with the MAXQ
Value Function Decomposition”. In: Journal of artificial intelligence research 13, pp. 227–
303 (cit. on p. 31).

Duan, Yan et al. (2016). “RL$2̂$: Fast Reinforcement Learning via Slow Reinforce-
ment Learning”. In: arXiv:1611.02779 (cit. on p. 128).

Ebert, Frederik et al. (2018). “Visual Foresight: Model-based Deep Reinforcement
Learning for Vision-Based Robotic Control”. In: arXiv:1812.00568 (cit. on p. 26).

Elkahky, Ali Mamdouh, Yang Song, and Xiaodong He (2015). “A Multi-View Deep
Learning Approach for Cross Domain User Modeling in Recommendation Sys-
tems”. In: International Conference on World Wide Web, pp. 278–288 (cit. on p. 24).

Farley, BWAC and W Clark (1954). “Simulation of Self-Organizing Systems by Dig-
ital Computer”. In: Transactions of the IRE professional group on information theory
4.4, pp. 76–84 (cit. on p. 4).

Finn, Chelsea, Pieter Abbeel, and Sergey Levine (2017). “Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks”. In: International Conference on Machine
Learning (ICML). Vol. 70, pp. 1126–1135 (cit. on p. 128).

Florensa, Carlos et al. (2018). “Automatic Goal Generation for Reinforcement Learn-
ing Agents”. In: International Conference on Machine Learning (ICML). Vol. 80, pp. 1514–
1523 (cit. on pp. 32, 38, 120).

148 Bibliography

Forestier, Sébastien et al. (2020). “Intrinsically Motivated Goal Exploration Processes
with Automatic Curriculum Learning”. In: arXiv:1708.02190 (cit. on pp. 32, 39,
120).

Friederici, Angela D. (2011). “The Brain Basis of Language Processing: From Struc-
ture to Function”. In: Physiological reviews 91.4, pp. 1357–1392 (cit. on p. 4).

Fu, Justin, Sergey Levine, and Pieter Abbeel (2016). “One-Shot Learning of Manipu-
lation Skills with Online Dynamics Adaptation and Neural Network Priors”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
pp. 4019–4026 (cit. on p. 26).

Fujimoto, Scott, Herke van Hoof, and David Meger (2018). “Addressing Function
Approximation Error in Actor-Critic Methods”. In: International Conference on Ma-
chine Learning (ICML). Vol. 80, pp. 1582–1591 (cit. on pp. 25, 55).

Gal, Yarin, Rowan McAllister, and Carl Edward Rasmussen (2016). “Improving PILCO
with Bayesian Neural Network Dynamics Models”. In: Data-Efficient Machine
Learning Workshop (ICML). Vol. 4, p. 25 (cit. on p. 26).

Ganin, Yaroslav et al. (2018). “Synthesizing Programs for Images Using Reinforced
Adversarial Learning”. In: International Conference on Machine Learning (ICML).
Vol. 80, pp. 1652–1661 (cit. on p. 128).

Garcıa, Javier and Fernando Fernández (2015). “A Comprehensive Survey on Safe
Reinforcement Learning”. In: Journal of machine learning research 16.1, pp. 1437–
1480 (cit. on p. 93).

Gopnik, Alison et al. (2004). “A Theory of Causal Learning in Children: Causal Maps
and Bayes Nets”. In: Psychological review 111.1, pp. 3–32 (cit. on pp. 3, 4, 37).

Gordon, Geoffrey J. (1995). “Stable Function Approximation in Dynamic Program-
ming”. In: International Conference on Machine Learning (ICML), pp. 261–268 (cit.
on p. 25).

Grimm, Christopher et al. (2020). “The Value Equivalence Principle for Model-Based
Reinforcement Learning”. In: Conference on Neural Information Processing Systems
(NeurIPS) (cit. on p. 30).

Grimminger, Felix et al. (2020). “An Open Torque-Controlled Modular Robot Archi-
tecture for Legged Locomotion Research”. In: IEEE robotics and automation letters
5.2, pp. 3650–3657 (cit. on p. 104).

Gumbsch, Christian, Martin V. Butz, and Georg Martius (2019). “Autonomous Iden-
tification and Goal-Directed Invocation of Event-Predictive Behavioral Primi-
tives”. In: IEEE transactions on cognitive and developmental systems 13.2, pp. 298–
311 (cit. on p. 32).

— (2021). “Sparsely Changing Latent States for Prediction and Planning in Par-
tially Observable Domains”. In: Conference on Neural Information Processing Sys-
tems (NeurIPS), pp. 17518–17531 (cit. on p. 121).

Gumbsch, Christian, Sebastian Otte, and Martin V. Butz (2017). “A Computational
Model for the Dynamical Learning of Event Taxonomies”. In: Annual Meeting of
the Cognitive Science Society (CogSci) (cit. on p. 44).

Gürtler, Nico, Dieter Büchler, and Georg Martius (2021). “Hierarchical Reinforce-
ment Learning with Timed Subgoals”. In: Conference on Neural Information Pro-
cessing Systems (NeurIPS). Vol. 34 (cit. on p. 32).

Ha, David and Jürgen Schmidhuber (2018). “World Models”. In: arXiv:1803.10122
(cit. on p. 26).

Haarnoja, Tuomas et al. (2018). “Soft Actor-Critic: Off-policy Maximum Entropy
Deep Reinforcement Learning with a Stochastic Actor”. In: International Confer-
ence on Machine Learning (ICML). Vol. 80, pp. 1856–1865 (cit. on pp. 25, 49).

Bibliography 149

Hafner, Danijar et al. (2019). “Learning Latent Dynamics for Planning from Pixels”.
In: International Conference on Machine Learning (ICML). Vol. 97, pp. 2555–2565 (cit.
on pp. 69, 71, 88).

Hayashi, Misato and Tetsuro Matsuzawa (2003). “Cognitive Development in Object
Manipulation by Infant Chimpanzees”. In: Animal cognition 6.4, pp. 225–233 (cit.
on p. 119).

Hayashi, Misato and Hideko Takeshita (2009). “Stacking of Irregularly Shaped Blocks
in Chimpanzees (Pan Troglodytes) and Young Humans (Homo Sapiens)”. In: An-
imal cognition 12 Suppl 1, S49–58 (cit. on p. 119).

Hora, Stephen C (1996). “Aleatory and Epistemic Uncertainty in Probability Elicita-
tion with an Example from Hazardous Waste Management”. In: Reliability engi-
neering & system safety 54.2-3, pp. 217–223 (cit. on p. 93).

Houthooft, Rein et al. (2016). “Vime: Variational Information Maximizing Explo-
ration”. In: Conference on Neural Information Processing Systems (NeurIPS). Vol. 29
(cit. on pp. 5, 33).

Howard, Ronald A (1960). “Dynamic Programming and Markov Processes.” In: (cit.
on p. 13).

Hüllermeier, Eyke and Willem Waegeman (2021). “Aleatoric and Epistemic Uncer-
tainty in Machine Learning: An Introduction to Concepts and Methods”. In: Ma-
chine learning 110.3, pp. 457–506 (cit. on p. 99).

Humphries, Nicolas E et al. (2010). “Environmental Context Explains Lévy and Brow-
nian Movement Patterns of Marine Predators”. In: Nature 465.7301, pp. 1066–
1069 (cit. on pp. 4, 71, 121).

Hussein, Ahmed et al. (2017). “Imitation Learning: A Survey of Learning Methods”.
In: ACM Computing Surveys (CSUR) 50.2, pp. 1–35 (cit. on p. 70).

James, Karin H et al. (2014). “Young Children’s Self-Generated Object Views and
Object Recognition”. In: Journal of cognition and development 15.3, pp. 393–401 (cit.
on p. 118).

Janner, Michael et al. (2019). “When to Trust Your Model: Model-based Policy Opti-
mization”. In: Conference on Neural Information Processing Systems (NeurIPS), pp. 12498–
12509 (cit. on pp. 26, 27).

Jensen, J. L. W. V. (1906). “Sur Les Fonctions Convexes et Les Inégalités Entre Les
Valeurs Moyennes”. In: Acta Mathematica 30.none, pp. 175–193 (cit. on p. 129).

Jetchev, Nikolay and Marc Toussaint (2013). “Fast Motion Planning from Experience:
Trajectory Prediction for Speeding up Movement Generation”. In: Auton. Robots
34.1-2, pp. 111–127 (cit. on p. 123).

Johns, Paul (2014). “Chapter 4 - Sensory and Motor Pathways”. In: Clinical Neuro-
science. Churchill Livingstone, pp. 49–59 (cit. on pp. 3, 37).

Jong, Nicholas K, Todd Hester, and Peter Stone (2008). “The Utility of Temporal
Abstraction in Reinforcement Learning.” In: Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 299–306 (cit. on p. 32).

Jonschkowski, Rico and Oliver Brock (2015). “Learning State Representations with
Robotic Priors”. In: Autonomous robots 39.3, pp. 407–428 (cit. on p. 4).

Jonsson, Anders and Andrew Barto (2000). “Automated State Abstraction for Op-
tions Using the U-tree Algorithm”. In: Conference on Neural Information Processing
Systems (NeurIPS). Vol. 13 (cit. on p. 31).

Kaiser, Lukasz et al. (2020). “Model Based Reinforcement Learning for Atari”. In:
International Conference on Learning Representations (ICLR) (cit. on p. 26).

Kalashnikov, D et al. (2018). “Qt-Opt: Scalable Deep Reinforcement Learning for
Vision-Based Robotic Manipulation”. In: arXiv:1806.10293 (cit. on p. 25).

150 Bibliography

Kamthe, Sanket and Marc Deisenroth (2018). “Data-Efficient Reinforcement Learn-
ing with Probabilistic Model Predictive Control”. In: International Conference on
Artificial Intelligence and Statistics, pp. 1701–1710 (cit. on p. 93).

Kanwisher, Nancy (2010). “Functional Specificity in the Human Brain: A Window
into the Functional Architecture of the Mind”. In: Proceedings of the national academy
of sciences 107.25, pp. 11163–11170 (cit. on pp. 3, 37).

Kim, H et al. (2003). “Autonomous Helicopter Flight via Reinforcement Learning”.
In: Conference on Neural Information Processing Systems (NeurIPS). Vol. 16 (cit. on
p. 5).

Kim, Jaekyeom, Seohong Park, and Gunhee Kim (2021). “Unsupervised Skill Dis-
covery with Bottleneck Option Learning”. In: International Conference on Machine
Learning (ICML). Vol. 139, pp. 5572–5582 (cit. on p. 31).

Kim, Kuno et al. (2020). “Active World Model Learning with Progress Curiosity”. In:
International Conference on Machine Learning (ICML), pp. 5306–5315 (cit. on pp. 5,
32).

Kocijan, Juš et al. (2004). “Gaussian Process Model Based Predictive Control”. In:
IEEE American Control Conference (cit. on p. 26).

Konidaris, George and Andrew Barto (2009). “Skill Discovery in Continuous Re-
inforcement Learning Domains Using Skill Chaining”. In: Conference on Neural
Information Processing Systems (NeurIPS) (cit. on p. 38).

Kostrikov, Ilya, Ashvin Nair, and Sergey Levine (2021). “Offline Reinforcement Learn-
ing with Implicit Q-learning”. In: arXiv: 2110.06169 (cit. on p. 89).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet Clas-
sification with Deep Convolutional Neural Networks”. In: Conference on Neural
Information Processing Systems (NeurIPS). Vol. 25 (cit. on p. 24).

Kuhl, Patricia K. et al. (1992). “Linguistic Experience Alters Phonetic Perception in
Infants by 6 Months of Age”. In: Science 255.5044, pp. 606–608 (cit. on p. 3).

Kulkarni, Tejas D. et al. (2016). “Hierarchical Deep Reinforcement Learning: Inte-
grating Temporal Abstraction and Intrinsic Motivation”. In: Conference on Neural
Information Processing Systems (NeurIPS), pp. 3675–3683 (cit. on p. 120).

Kullback, Solomon and Richard A Leibler (1951). “On Information and Sufficiency”.
In: The annals of mathematical statistics 22.1, pp. 79–86 (cit. on p. 76).

Kumar, Aviral et al. (2020). “Conservative Q-learning for Offline Reinforcement Learn-
ing”. In: Conference on Neural Information Processing Systems (NeurIPS) (cit. on
pp. 70, 89, 123).

Kurutach, Thanard et al. (2018). “Model-Ensemble Trust-Region Policy Optimiza-
tion”. In: International Conference on Learning Representations (ICLR) (cit. on p. 26).

Kwakernaak, Huibert and Raphael Sivan (1969). Linear Optimal Control Systems. Vol. 1072.
Wiley-interscience (cit. on p. 30).

Lake, Brenden M., Tal Linzen, and Marco Baroni (2019). “Human Few-Shot Learning
of Compositional Instructions”. In: Annual Meeting of the Cognitive Science Society
(CogSci), pp. 611–617 (cit. on p. 5).

Lee, Joonho et al. (2020). “Learning Quadrupedal Locomotion over Challenging Ter-
rain”. In: Science Robotics 5.47 (cit. on p. 69).

Legare, Cristine H., Susan A. Gelman, and Henry M. Wellman (2010). “Inconsistency
with Prior Knowledge Triggers Children’s Causal Explanatory Reasoning”. In:
Child development 81.3, pp. 929–944 (cit. on p. 3).

Lenz, Ian, Ross A Knepper, and Ashutosh Saxena (2015). “DeepMPC: Learning Deep
Latent Features for Model Predictive Control.” In: Robotics: Science and Systems
(cit. on p. 26).

Bibliography 151

Levine, Sergey and Pieter Abbeel (2014). “Learning Neural Network Policies with
Guided Policy Search under Unknown Dynamics”. In: Conference on Neural Infor-
mation Processing Systems (NeurIPS) (cit. on p. 27).

Levine, Sergey and Vladlen Koltun (2013). “Guided Policy Search”. In: International
Conference on Machine Learning (ICML) (cit. on p. 75).

Levine, Sergey, Aviral Kumar, et al. (2020). “Offline Reinforcement Learning: Tuto-
rial, Review, and Perspectives on Open Problems”. In: arXiv:2005.01643 (cit. on
p. 25).

Lewis, Michael (2012). Social Cognition and the Acquisition of Self. Springer Science &
Business Media (cit. on p. 3).

Lillicrap, Timothy P. et al. (2016). “Continuous Control with Deep Reinforcement
Learning”. In: International Conference on Learning Representations (ICLR) (cit. on
p. 25).

Lin, Long-Ji (1992). Reinforcement Learning for Robots Using Neural Networks. Carnegie
Mellon University (cit. on p. 25).

Linke, Cam et al. (2020). “Adapting Behavior via Intrinsic Reward: A Survey and
Empirical Study”. In: Journal of artificial intelligence research 69, pp. 1287–1332 (cit.
on p. 32).

Lopes, Manuel et al. (2012). “Exploration in Model-Based Reinforcement Learning
by Empirically Estimating Learning Progress”. In: Conference on Neural Informa-
tion Processing Systems (NeurIPS) (cit. on pp. 5, 32).

Lowrey, Kendall et al. (2019). “Plan Online, Learn Offline: Efficient Learning and Ex-
ploration via Model-Based Control”. In: International Conference on Learning Rep-
resentations (ICLR) (cit. on p. 122).

Lungarella, Max et al. (2003). “Developmental Robotics: A Survey”. In: Connection
science 15.4, pp. 151–190 (cit. on p. 5).

Makoviychuk, Viktor et al. (2021). “Isaac Gym: High Performance GPU Based Physics
Simulation for Robot Learning”. In: Track on Datasets and Benchmarks (NeurIPS)
(cit. on pp. 69, 122).

Marcinowski, Emily C., Julie M. Campbell, et al. (2016). “Do Hand Preferences Pre-
dict Stacking Skill during Infancy?” In: Developmental psychobiology 58.8, pp. 958–
967 (cit. on p. 118).

Marcinowski, Emily C., Eliza Nelson, et al. (2019). “The Development of Object Con-
struction from Infancy through Toddlerhood”. In: Infancy: The official journal of the
international society on infant studies 24.3, pp. 368–391 (cit. on p. 119).

Martius, Georg, Ralf Der, and Nihat Ay (2013). “Information Driven Self-Organization
of Complex Robotic Behaviors”. In: PloS one 8.5, e63400 (cit. on p. 32).

Martius, Georg and Christoph H. Lampert (2017). “Extrapolation and Learning Equa-
tions”. In: International Conference on Learning Representations (ICLR) (cit. on p. 26).

McCorduck, Pamela and Cli Cfe (2004). Machines Who Think: A Personal Inquiry into
the History and Prospects of Artificial Intelligence. CRC Press (cit. on p. 4).

Meltzoff, Andrew N and M Keith Moore (1977). “Imitation of Facial and Manual
Gestures by Human Neonates”. In: Science 198.4312, pp. 75–78 (cit. on p. 3).

— (1997). “Explaining Facial Imitation: A Theoretical Model”. In: Early development
& parenting 6.3-4, pp. 179–192 (cit. on p. 3).

Mendonca, Russell et al. (2021). “Discovering and Achieving Goals via World Mod-
els”. In: Conference on Neural Information Processing Systems (NeurIPS). Vol. 34 (cit.
on p. 33).

Metcalfe, Janet, Arthur P Shimamura, et al. (1994). Metacognition: Knowing about Know-
ing. MIT press (cit. on p. 4).

152 Bibliography

Mihatsch, Oliver and Ralph Neuneier (2002). “Risk-Sensitive Reinforcement Learn-
ing”. In: Machine learning 49.2, pp. 267–290 (cit. on p. 93).

Miller, Robert M and Rick Lamb (2005). The Revolution in Horsemanship and What It
Means to Mankind. The lyons press (cit. on pp. 3, 37).

Minsky, Marvin (1961). “Steps toward Artificial Intelligence”. In: Proceedings of the
IRE 49.1, pp. 8–30 (cit. on p. 15).

Minsky, Marvin Lee (1954). Theory of Neural-Analog Reinforcement Systems and Its Ap-
plication to the Brain-Model Problem. Princeton University (cit. on p. 4).

Mirchevska, Branka et al. (2021). “Amortized Q-learning with Model-Based Action
Proposals for Autonomous Driving on Highways”. In: International Conference on
Robotics and Automation (ICRA), pp. 1028–1035 (cit. on p. 123).

Mitchell, Tom M (1980). The Need for Biases in Learning Generalizations. Department of
Computer Science, Laboratory for Computer Science Research . . . (cit. on pp. 4,
117).

Mnih, Volodymyr, Adria Puigdomenech Badia, et al. (2016). “Asynchronous Meth-
ods for Deep Reinforcement Learning”. In: International Conference on Machine
Learning (ICML), pp. 1928–1937 (cit. on pp. 25, 55).

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, et al. (2013).
“Playing Atari with Deep Reinforcement Learning”. In: arXiv:1312.5602 (cit. on
pp. 5, 25).

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, et al. (2015).
“Human-Level Control through Deep Reinforcement Learning”. In: Nature 518.7540,
pp. 529–533 (cit. on p. 24).

Möttönen, Riikka et al. (2005). “Viewing Speech Modulates Activity in the Left SI
Mouth Cortex”. In: NeuroImage 24.3, pp. 731–737 (cit. on p. 3).

Mouret, Jean-Baptiste and Jeff Clune (2015). “Illuminating Search Spaces by Map-
ping Elites”. In: arXiv:1504.04909 (cit. on p. 33).

Nachum, Ofir et al. (2018). “Data-Efficient Hierarchical Reinforcement Learning”. In:
Conference on Neural Information Processing Systems (NeurIPS) (cit. on pp. xvii, 32,
55).

Nagabandi, Anusha et al. (2018). “Neural Network Dynamics for Model-Based Deep
Reinforcement Learning with Model-Free Fine-Tuning”. In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 7559–7566 (cit. on pp. 28, 69).

Nair, Ashvin, Shikhar Bahl, et al. (2020). “Contextual Imagined Goals for Self-Supervised
Robotic Learning”. In: Conference on Robot Learning (CoRL), pp. 530–539 (cit. on
p. 33).

Nair, Ashvin, Murtaza Dalal, et al. (2020). “Accelerating Online Reinforcement Learn-
ing with Offline Datasets”. In: arXiv: 2006.09359 (cit. on p. 89).

Negrinho, Renato and Geoff Gordon (2017). “DeepArchitect: Automatically Design-
ing and Training Deep Architectures”. In: arXiv:1704.08792 (cit. on p. 128).

Nehaniv, Chrystopher L. and Kerstin Dautenhahn, eds. (2007). Imitation and Social
Learning in Robots, Humans and Animals: Behavioural, Social and Communicative Di-
mensions. Cambridge University Press (cit. on p. 3).

Nguyen-Tuong, Duy, Jan Peters, and Matthias Seeger (2008). “Local Gaussian Pro-
cess Regression for Real Time Online Model Learning and Control”. In: Confer-
ence on Neural Information Processing Systems (NeurIPS), pp. 1193–1200 (cit. on
p. 26).

OpenAI et al. (2019). “Solving Rubik’s Cube with a Robot Hand”. In: arXiv:1910.07113
(cit. on pp. 5, 69).

Bibliography 153

Oudeyer, Pierre-Yves (2010). “On the Impact of Robotics in Behavioral and Cognitive
Sciences: From Insect Navigation to Human Cognitive Development”. In: IEEE
Transactions on autonomous mental development 2.1, pp. 2–16 (cit. on p. 5).

Pateria, Shubham et al. (2021). “Hierarchical Reinforcement Learning: A Compre-
hensive Survey”. In: Acm computing surveys 54.5, pp. 1–35 (cit. on p. 30).

Pathak, Deepak et al. (2017). “Curiosity-Driven Exploration by Self-Supervised Pre-
diction”. In: International Conference on Machine Learning (ICML). Vol. 70, pp. 2778–
2787 (cit. on pp. xvii, 5, 32, 55, 56, 120).

Péré, Alexandre et al. (2018). “Unsupervised Learning of Goal Spaces for Intrinsi-
cally Motivated Goal Exploration”. In: International Conference on Learning Repre-
sentations (ICLR) (cit. on p. 41).

Pfaffelhuber, E (1972). “Learning and Information Theory”. In: International journal
of neuroscience 3.2, pp. 83–88 (cit. on pp. 5, 93).

Pinneri, Cristina et al. (2020). “Sample-Efficient Cross-Entropy Method for Real-Time
Planning”. In: Conference on Robot Learning (CoRL). Vol. 155, pp. 1049–1065 (cit. on
p. 88).

Pong, Vitchyr et al. (2020). “Skew-Fit: State-covering Self-Supervised Reinforcement
Learning”. In: International Conference on Machine Learning (ICML). Vol. 119, pp. 7783–
7792 (cit. on p. 33).

Portelas, Rémy et al. (2020). “Automatic Curriculum Learning for Deep RL: A Short
Survey”. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 4819–
4825 (cit. on p. 32).

Puterman, Martin L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley Series in Probability and Statistics (cit. on p. 18).

Radford, Alec et al. (2018). “Improving Language Understanding by Generative Pre-
Training”. In: (cit. on p. 24).

Rajeswaran, Aravind et al. (2018). “Learning Complex Dexterous Manipulation with
Deep Reinforcement Learning and Demonstrations”. In: Conference on Robotics:
Science and Systems (RSS) (cit. on p. 79).

Rao, Anil V (2009). “A Survey of Numerical Methods for Optimal Control”. In: Ad-
vances in the astronautical sciences 135.1, pp. 497–528 (cit. on p. 28).

Reynolds, A. M. et al. (2009). “Honeybees Use a Levy Flight Search Strategy and
Odour-Mediated Anemotaxis to Relocate Food Sources”. In: Behavioral ecology
and sociobiology 64, pp. 115–123 (cit. on p. 121).

Richard E. Bellman (1957). Dynamic Programming. Princeton University Press (cit. on
p. 17).

Richards, Arthur George (2005). “Robust Constrained Model Predictive Control”.
PhD thesis. Massachusetts Institute of Technology (cit. on pp. 5, 28).

Riedmiller, Martin A. (2005). “Neural Fitted Q Iteration - First Experiences with a
Data Efficient Neural Reinforcement Learning Method”. In: European Conference
on Machine Learning (ECML). Vol. 3720, pp. 317–328 (cit. on p. 25).

Riedmiller, Martin A. et al. (2018). “Learning by Playing Solving Sparse Reward
Tasks from Scratch”. In: International Conference on Machine Learning (ICML). Vol. 80,
pp. 4341–4350 (cit. on p. 120).

Rizzolatti, Giacomo, Leonardo Fogassi, and Vittorio Gallese (2001). “Neurophysio-
logical Mechanisms Underlying the Understanding and Imitation of Action”. In:
Nature reviews neuroscience 2.9, pp. 661–670 (cit. on p. 3).

Röder, Frank et al. (2020). “Curious Hierarchical Actor-Critic Reinforcement Learn-
ing”. In: International Conference on Artificial Neural Networks (ICANN). Vol. 12397,
pp. 408–419. DOI: 10.1007/978-3-030-61616-8_33 (cit. on p. 120).

https://doi.org/10.1007/978-3-030-61616-8_33

154 Bibliography

Rosenblatt, Frank (1957). The Perceptron, a Perceiving and Recognizing Automaton Project
Para. Cornell aeronautical laboratory (cit. on p. 4).

Ross, Sherman, Alan E. Fisher, and David King (1957). “Sucking Behavior: A Review
of the Literature”. In: The journal of genetic psychology 91.1, pp. 63–81 (cit. on pp. 3,
37).

Ross, Stéphane and Drew Bagnell (2010). “Efficient Reductions for Imitation Learn-
ing”. In: Conference on Artificial Intelligence and Statistics, pp. 661–668 (cit. on pp. 75,
123).

Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell (2011). “A Reduction of Im-
itation Learning and Structured Prediction to No-Regret Online Learning”. In:
Conference on Artificial Intelligence and Statistics, pp. 627–635 (cit. on pp. 75, 123).

Rubinstein, Reuven (1999). “The Cross-Entropy Method for Combinatorial and Con-
tinuous Optimization”. In: Methodology and computing in applied probability 1.2,
pp. 127–190 (cit. on p. 70).

Rubinstein, Reuven Y (1997). “Optimization of Computer Simulation Models with
Rare Events”. In: European journal of operational research 99.1, pp. 89–112 (cit. on
p. 28).

Ruggeri, Azzurra et al. (2019). “Shake It Baby, but Only When Needed: Preschoolers
Adapt Their Exploratory Strategies to the Information Structure of the Task”. In:
Cognition 193, p. 104013 (cit. on p. 3).

Saffran, Jenny R., Richard N. Aslin, and Elissa L. Newport (1996). “Statistical Learn-
ing by 8-Month-Old Infants”. In: Science 274.5294, pp. 1926–1928 (cit. on p. 3).

Sancaktar, Cansu, Sebastian Blaes, and Georg Martius (2022). “Curious Exploration
via Structured World Models Yields Zero-Shot Object Manipulation”. In: arXiv:2206.11403
(cit. on pp. 113, 120, 121).

Santoro, Adam et al. (2017). “A Simple Neural Network Module for Relational Rea-
soning”. In: Conference on Neural Information Processing Systems (NeurIPS), pp. 4967–
4976 (cit. on pp. 38, 48).

Santucci, Vieri Giuliano, Gianluca Baldassarre, and Marco Mirolli (2016). “Grail: A
Goal-Discovering Robotic Architecture for Intrinsically-Motivated Learning”. In:
IEEE transactions on cognitive and developmental systems (TCDS) 8.3, pp. 214–231
(cit. on p. 33).

Scalaidhe, S. P., F. A. Wilson, and P. S. Goldman-Rakic (1999). “Face-Selective Neu-
rons during Passive Viewing and Working Memory Performance of Rhesus Mon-
keys: Evidence for Intrinsic Specialization of Neuronal Coding”. In: Cerebral cor-
tex 9.5, pp. 459–475 (cit. on p. 37).

Schaul, Tom et al. (2015). “Universal Value Function Approximators”. In: Interna-
tional Conference on Machine Learning (ICML), pp. 1312–1320 (cit. on p. 30).

Schmidhuber, Jürgen (1991). “A Possibility for Implementing Curiosity and Bore-
dom in Model-Building Neural Controllers”. In: International Conference on Sim-
ulation of Adaptive Behavior: From Animals to Animats (SAB), pp. 222–227 (cit. on
pp. 5, 32).

Schoenholz, Samuel S. and Ekin D. Cubuk (2020). “JAX, M.D.: A Framework for
Differentiable Physics”. In: arXiv:1912.04232 (cit. on p. 69).

Schrodt, Fabian et al. (2017). “Mario Becomes Cognitive”. In: Topics in cognitive science
9.2, pp. 343–373 (cit. on p. 33).

Schulman, John, Sergey Levine, et al. (2015). “Trust Region Policy Optimization”. In:
International Conference on Machine Learning (ICML). Vol. 37, pp. 1889–1897 (cit. on
p. 25).

Schulman, John, Filip Wolski, et al. (2017). “Proximal Policy Optimization Algo-
rithms”. In: arXiv:1707.06347 (cit. on p. 25).

Bibliography 155

Sekar, Ramanan et al. (2020). “Planning to Explore via Self-Supervised World Mod-
els”. In: International Conference on Machine Learning (ICML). PMLR, pp. 8583–
8592 (cit. on p. 33).

Settles, Burr (2010). Active Learning Literature Survey. University of Wisconsin. Tech.
rep. (cit. on pp. 106, 124).

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding Machine Learning:
From Theory to Algorithms. Cambridge university press (cit. on p. 26).

Shlesinger, Michael F, Joseph Klafter, and YM Wong (1982). “Random Walks with In-
finite Spatial and Temporal Moments”. In: Journal of statistical physics 27.3, pp. 499–
512 (cit. on pp. 71, 121).

Silver, David, Thomas Hubert, et al. (2017). “Mastering Chess and Shogi by Self-Play
with a General Reinforcement Learning Algorithm”. In: arXiv:1712.01815 (cit. on
p. 5).

Silver, David, Julian Schrittwieser, et al. (2017). “Mastering the Game of Go without
Human Knowledge”. In: Nat. 550.7676, pp. 354–359 (cit. on p. 122).

Sims, David W. et al. (2008). “Scaling Laws of Marine Predator Search Behaviour”.
In: Nature 451, pp. 1098–1102 (cit. on p. 4).

Sinha, Naresh K. (1989). “System Identification - Theory for the User : Lennart Ljung”.
In: Autom. 25.3, pp. 475–476 (cit. on pp. 72, 88, 121).

Smith, Alice E et al. (1997). “Penalty Functions”. In: Handbook of evolutionary compu-
tation 97.1, p. C5 (cit. on p. 99).

Smith, Linda B. et al. (Apr. 2018). “The Developing Infant Creates a Curriculum for
Statistical Learning”. In: Trends in cognitive sciences 22.4, pp. 325–336. DOI: 10.
1016/j.tics.2018.02.004 (cit. on p. 118).

Spinath, Birgit and Ricarda Steinmayr (2012). “The Roles of Competence Beliefs and
Goal Orientations for Change in Intrinsic Motivation.” In: Journal of educational
psychology 104.4, p. 1135 (cit. on p. 119).

Stahl, Aimee E and Lisa Feigenson (2015). “Observing the Unexpected Enhances
Infants’ Learning and Exploration”. In: Science 348.6230, pp. 91–94 (cit. on pp. 3,
119).

Storck, Jan, Sepp Hochreiter, Jürgen Schmidhuber, et al. (1995). “Reinforcement Driven
Information Acquisition in Non-Deterministic Environments”. In: International
Conference on Artificial Neural Networks (ICANN). Vol. 2, pp. 159–164 (cit. on p. 5).

Sukhbaatar, Sainbayar et al. (2018). “Intrinsic Motivation and Automatic Curricula
via Asymmetric Self-Play”. In: Conference on Learning Representations (ICLR) (cit.
on pp. 32, 120).

Sutton, Richard S (1990). “Integrated Architectures for Learning, Planning, and Re-
acting Based on Approximating Dynamic Programming”. In: Machine Learning
Proceedings, pp. 216–224 (cit. on pp. 5, 26).

— (1991a). “Dyna, an Integrated Architecture for Learning, Planning, and React-
ing”. In: ACM sigart bulletin 2.4, pp. 160–163 (cit. on pp. 5, 26).

— (1991b). “Planning by Incremental Dynamic Programming”. In: Machine Learning
Proceedings. Elsevier, pp. 353–357 (cit. on pp. 5, 26).

— (1995). “On the Virtues of Linear Learning and Trajectory Distributions”. In: Work-
shop on Value Function Approximation, Machine Learning Conference, p. 85 (cit. on
p. 25).

Sutton, Richard S, David McAllester, et al. (2000). “Policy Gradient Methods for Re-
inforcement Learning with Function Approximation”. In: Conference on Neural
Information Processing Systems (NeurIPS). Vol. 12 (cit. on pp. 22, 24).

https://doi.org/10.1016/j.tics.2018.02.004
https://doi.org/10.1016/j.tics.2018.02.004

156 Bibliography

Sutton, Richard S, Doina Precup, and Satinder Singh (1999). “Between MDPs and
Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learn-
ing”. In: Artificial intelligence 112.1-2, pp. 181–211 (cit. on pp. 31, 37).

Sutton, Richard S. (1988). “Learning to Predict by the Methods of Temporal Differ-
ences”. In: Machine learning 3.1, pp. 9–44 (cit. on p. 19).

Sutton, Richard S. and Andrew G. Barto (1998). “Reinforcement Learning: An Intro-
duction”. In: IEEE trans. Neural networks 9.5, pp. 1054–1054 (cit. on p. 11).

Tassa, Yuval, Tom Erez, and Emanuel Todorov (2012). “Synthesis and Stabilization of
Complex Behaviors through Online Trajectory Optimization”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 4906–4913 (cit. on
p. 27).

Timmer, J and M Koenig (1995). “On Generating Power Law Noise.” In: Astronomy
and astrophysics 300, p. 707 (cit. on p. 72).

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “MuJoCo: A Physics Engine
for Model-Based Control”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 5026–5033 (cit. on pp. 51, 102).

Tsitsiklis, John N and Benjamin Van Roy (1997). “An Analysis of Temporal-Difference
Learning with Function Approximation”. In: IEEE transactions on automatic con-
trol 42.5, pp. 674–690 (cit. on p. 25).

Turing, Alan M. (1990). “Computing Machinery and Intelligence”. In: The Philosophy
of Artificial Intelligence. Oxford Readings in Philosophy. Oxford University Press,
pp. 40–66 (cit. on p. 4).

Ueno, Moeko et al. (2018). “Crawling Experience Relates to Postural and Emotional
Reactions to Optic Flow in a Virtual Moving Room”. In: Journal of motor learning
and development 6.s1, S63–S75 (cit. on p. 118).

Vaswani, Ashish et al. (2017). “Attention Is All You Need”. In: Conference on Neural
Information Processing Systems (NeurIPS), pp. 5998–6008 (cit. on p. 122).

Versace, Elisabetta and Giorgio Vallortigara (2015). “Origins of Knowledge: Insights
from Precocial Species”. In: Frontiers in behavioral neuroscience 9 (cit. on pp. 3, 37).

Wang, Jane X. et al. (2017). “Learning to Reinforcement Learn”. In: arXiv:1611.05763
(cit. on p. 128).

Wang, Tingwu and Jimmy Ba (2020). “Exploring Model-Based Planning with Policy
Networks”. In: International Conference on Learning Representations (ICLR) (cit. on
pp. 69, 71, 74, 81).

Wang, Ziyu et al. (2020). “Critic Regularized Regression”. In: Conference on Neural
Information Processing Systems (NeurIPS) (cit. on pp. 70, 89, 123).

Warde-Farley, David et al. (2019). “Unsupervised Control through Non-Parametric
Discriminative Rewards”. In: International Conference on Learning Representations
(ICLR) (cit. on p. 33).

Watkins, Christopher J. C. H. and Peter Dayan (1992). “Q-Learning”. In: Machine
learning 8.3, pp. 279–292 (cit. on pp. 20, 21).

Weisler, Ann and Robert R. McCall (1976). “Exploration and Play: Resume and Redi-
rection”. In: American psychologist 31.7, pp. 492–508 (cit. on p. 3).

Wen, Min and Ufuk Topcu (2018). “Constrained Cross-Entropy Method for Safe Re-
inforcement Learning”. In: Conference on Neural Information Processing Systems
(NeurIPS), pp. 7461–7471 (cit. on p. 101).

Williams, Grady, Andrew Aldrich, and Evangelos Theodorou (2015). “Model Pre-
dictive Path Integral Control Using Covariance Variable Importance Sampling”.
In: arXiv:1509.01149 (cit. on p. 69).

Bibliography 157

Williams, Ronald J. (1992). “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning”. In: Machine learning 8.3, pp. 229–256 (cit.
on p. 22).

Wu, Jiajun et al. (2015). “Galileo: Perceiving Physical Object Properties by Integrat-
ing a Physics Engine with Deep Learning”. In: Conference on Neural Information
Processing Systems (NeurIPS), pp. 127–135 (cit. on p. 26).

Yingjun, Pei and Hou Xinwen (2019). “Learning Representations in Reinforcement
Learning: An Information Bottleneck Approach”. In: arXiv:1911.05695 (cit. on
p. 5).

Yu, Tianhe et al. (2021). “Combo: Conservative Offline Model-Based Policy Opti-
mization”. In: Conference on Neural Information Processing Systems (NeurIPS), pp. 28954–
28967 (cit. on pp. 70, 123).

Zambaldi, Vinícius Flores et al. (2019). “Deep Reinforcement Learning with Rela-
tional Inductive Biases”. In: International Conference on Learning Representations
(ICLR) (cit. on pp. 38, 120).

Zoph, Barret and Quoc V. Le (2017). “Neural Architecture Search with Reinforcement
Learning”. In: International Conference on Learning Representations (ICLR) (cit. on
p. 128).

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Natural Intelligence: Autonomous Biological Agents
	From Natural to Artificial Intelligence: Autonomous Artificial Agents
	Scope of this Work

	Theoretical Background
	Markov Decision Processes
	Reinforcement Learning
	Model-Free Reinforcement Learning
	Temporal Difference Learning and Bootstrapping
	Q-Learning
	Policy Gradient
	The Actor-Critic Framework

	Deep Reinforcement Learning
	Model-Based Reinforcement Learning
	Model-Based Data Generation
	Model Derivatives
	Sampling-Based Planning with Model Predictive Control
	Value-Equivalent Predictions
	Model-Based Reinforcement Learning and Optimal Control

	Hierarchical Reinforcement Learning
	Intrinsically Motivated Reinforcement Learning

	Autonomous Hierarchical Skill Acquisition with Self-Guided Learning Curriculum
	Introduction
	Method
	Preliminaries
	Intrinsic Motivation
	(Self-Imposed) Task Scheduler
	Task-Planning Architecture
	Subgoal Sampling
	Low-level Control

	Environments
	Baselines
	Experimental Results
	Warehouse
	Fetch Pick&Place with Tool

	Ablation Studies
	Discussion

	Sample-Efficient Action Planning and Imitation-Based Learning of Neural Network Policies in Model-Based Reinforcement Learning
	Introduction
	Method
	Fast Sample-Based Trajectory Optimization
	Colored Action Noise Exploration for Broad State-Space Coverage
	Reusing Information Between Planning Steps

	Neural Network Policy Extraction
	Imitation Learning
	Neural Network Policy Informed Trajectory Optimization

	Environments
	Baselines
	Experimental Results
	Discussion

	Uncertainty-Aware Planning in Model-Based Reinforcement Learning
	Introduction
	Method
	Preliminaries
	Ensemble of Probabilistic Neural Networks
	Uncertainty Estimation with Ensembles of Probabilistic Neural Networks
	Separation of Uncertainties
	Entropy vs. Variance as Uncertainty Measurement
	Probabilistic Safety Constraints
	Planning and Control

	Environments
	Baselines
	Experimental Results
	Active Learning for Model Improvement
	Uncertainty-Aware Model-Based Planning
	Planning under External Safety Constraints

	Discussion

	Discussion
	Conclusion & Outlook
	Appendices
	Supplementary Background
	Contraction Mapping
	Proof of the Policy Gradient

	Relational RL
	Algorithm
	Training Details and Parameters

	Planning and Control
	Fast Sample-Based Trajectory Optimization
	Algorithm
	Implementation Details and Parameters

	Neural Network Policy Extraction
	Algorithm
	Implementation Details and Parameters

	Risk Averse Control
	Algorithm
	Implementation Details
	Model Learning
	Controller Parameters
	Timings

	Bibliography

