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Many real-world decision-making problems involve multiple conflicting objectives that

can not be optimized simultaneously without a compromise. Such problems are known

as multi-objective Markov decision processes and they constitute a significant challenge

for conventional single-objective reinforcement learning methods, especially when an

optimal compromise cannot be determined beforehand. Multi-objective reinforcement

learning methods address this challenge by finding an optimal coverage set of

non-dominated policies that can satisfy any user’s preference in solving the problem.

However, this is achieved with costs of computational complexity, time consumption,

and lack of adaptability to non-stationary environment dynamics. In order to address

these limitations, there is a need for adaptive methods that can solve the problem in an

online and robust manner. In this paper, we propose a novel developmental method that

utilizes the adversarial self-play between an intrinsically motivated preference exploration

component, and a policy coverage set optimization component that robustly evolves

a convex coverage set of policies to solve the problem using preferences proposed

by the former component. We show experimentally the effectiveness of the proposed

method in comparison to state-of-the-art multi-objective reinforcement learning methods

in stationary and non-stationary environments.

Keywords:multi-objective optimization, intrinsicmotivation, adversarial, self-play, reinforcement learning,Markov

process, decision making

1. INTRODUCTION

Reinforcement learning (RL) is a learning paradigm that works by interacting with the environment
in order to evolve an optimal policy (action selection strategy) guided by the objective to maximize
the return of a reward signal (Sutton and Barto, 1998). Recently, deep reinforcement learning (DRL)
benefit from the automatic hierarchical features extraction and complex functional approximation
of deep neural networks (DNNs) (LeCun et al., 2015). This has led to many breakthroughs (Mnih
et al., 2015; Silver et al., 2016, 2017) in solving sequential decision-making problems fulfilling the
Markov property [known as Markov decision processes (MDPs)]. While the majority of problems
addressed by DRLmethods involve only one objective of maximizing a scoring function (e.g., score
in an Atari game, or the game of Go), many real-world problems constitute multiple conflicting
objectives that cannot be optimized simultaneously without a tradeoff (prioritization) among the
defined objectives. Take a search and rescue task as an example in which a robot has to maximize
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the number of victims found, minimize exposure to fire risk to
avoid destruction, and minimize the total task time. Another
example could be a patrolling drone aiming at maximizing
the area of the scanned region, maximizing the number
of detected objects of interest, and maximizing battery life.
Such problems are known as multi-objective Markov decision
processes (MOMDPs)1.

Multi-objective reinforcement learning (MORL) extends the
conventional RL paradigm to accept multiple reward signals
instead of a single reward signal, each one is dedicated to
an objective (Roijers and Whiteson, 2017). Basically, MORL
methods fall into two broad groups: single policy group, and
multiple policy group (Roijers and Whiteson, 2017). In the
former group, it is assumed that the user’s preference is defined
before solving the problem, therefore, it can be used to transform
it into a single objective problem using scalarization functions.
Albeit, this assumption can be difficult to satisfy inmany practical
scenarios. Alternatively, the latter group aims at finding a set of
optimal policies that can satisfy any user’s preference in solving
the problem. In order to achieve this, these methods perform
an intensive search process using an environment’s model to
find such a set of policies. This makes them difficult to operate
in an online manner and to efficiently adapt to non-stationary
dynamics in the environment.

In this paper, we do not assume the existence of an optimal
user’s preference beforehand, so we will consider the multiple
policy MORL approach. In order to deal with the limitations
of this approach, we look at the two building blocks of
these methods depicted in Figure 1: the preference exploration
component; and the policy coverage set optimization component.
Currently, preference exploration is achieved through random
exploration in evolutionary methods (Busa-Fekete et al., 2014),
or by systematic heuristic approaches such as the optimistic
linear support (OLS) (Roijers et al., 2014). However, these
approaches adopt exhaustive search scheme that can not adapt
efficiently to the non-stationary dynamics in the environment. In
order to overcome these limitations, our proposed intrinsically
motivated preference exploration component targets three
main characteristics. First, it actively explores preferences that
contribute to the large mass of uncertainty about the policy
coverage set’s performance. Second, it performs this exploration
automatically guided by an intrinsic reward signal. Third, it
can adapt to non-stationary dynamics in the environment by
revisiting the affected preference areas. While for the policy
coverage set optimization component, we utilize the concept of
policy bootstrapping using steppingstone policies. Basically, this
concept is based on the assumption that while there is a large
number of policies each is specialized for a specific preference,
there is a smaller number of steppingstone policies that can
bootstrap policies within intervals of preferences. By targeting
steppingstone policies instead of specialized policies during the
evolution of the policy coverage set, we can adapt robustly to
non-stationary dynamics in the environment.

1This should not be confused with mixed observability Markov decision processes

abbreviated similarly as MOMDPs.

FIGURE 1 | A block diagram for a multiple policy MORL approach

for solving MOMDPs.

In this paper, we address the MOMDP problem through
an adversarial intrinsically motivated self-play approach. Our
contribution comes into three folds. First, we propose a novel
preference exploration technique based on knowledge-seeking
intrinsic motivation. Second, we propose a novel algorithm for
fuzzy policy bootstrapping to developmentally evolve the policy
coverage set in MOMDP problems. Third, we experimentally
evaluate the performance of our proposed method using
common multi-objective environments in MORL literature and
comparing to the state-of-the-art MORL methods.

The rest of this paper is organized as follows. Section 2
introduces the background concepts. Section 3 reviews the
related literature. Section 4 describes our proposed method.
Section 5 illustrates our experimental design. Section 6 presents
the results and discusses the findings. Finally, section 7 concludes
the work and indicates the future work.

2. BACKGROUND

In this section, we are going to introduce the related background
concepts and the research problem definition.

2.1. Multi-Objective Optimization
In a multi-objective optimization problem there are multiple
objectives that are naturally in conflict with each other and can
not be optimized simultaneously without a compromise (Deb,
2014). The problem can bemathematically formulated as follows:

max (R1 (π) ,R2 (π) , . . . ,RM (π)) (1)

s.t. gj (π) ≤ 0, j = 1, 2, . . . , J

The aim is to optimize (maximize or minimize) a set of reward
functions

{

R1(π),R2(π), . . . ,RM(π)
}

, where each function is
dedicated to a single objective om (m = 1, 2, . . . ,M), the
parameter π ∈ 5 represents the policy parametrization (decision
variables) to be optimized over the parameters search space
5, and the set

{

g1(π), g2(π), . . . , gJ(π)
}

represents the defined
constraint functions of the problem.

In order to find the coverage set of policies that can satisfy any
user’s preference in solving the problem, a search procedure has
to find and rank policies based on the dominance over the defined
objectives.

Definition 2.1. Dominance: A solution (A) dominates solution
(B) if (A) is better than (B) for at least one objective and is equal
to (B) for all other objectives.

For further illustration of Definition 2.1, Figure 2 shows the
solution space for a two-objective problem. It can be noticed
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FIGURE 2 | The solution space of a two-objective problem. The red circles are

representing the set of non-dominated solutions known as the Pareto front.

that solutions (A) and (C) dominate solution (B), while the set
of solutions represented in red circles are the Pareto front of
non-dominated solutions in this problem.

Definition 2.2. Pareto Front: The Pareto front is the set of non-
dominated solutions that solves the multi-objective problem.

The Pareto front is represented by the red dots in the example
illustrated by Figure 2.

Definition 2.3. Preference: A preference is defined as a weight
vector with each weight element dedicated to a specific objective

Ew =
[

w1,w2, . . . ,wM
]T
, such that the sum of all the elements

equals one
∑M

m= 1 w
m = 1.

Definition 2.4. Scalarization Function: A scalarization function
h, transforms a vector of multiple objectives’ values into a single
objective scalar value given a preference as parameter oEw =
h(Eo, Ew).

When the scalarization function is linear or piecewise linear,
the front shaped by intersecting functions parametrized by
different preferences is the convex hull (CH).

Definition 2.5. Convex Hull: A convex hull is a subset of the
policy space (5) that contains optimal policies that can match
any user’s preference:

CH(5) =
{

π :π ∈ 5 ∧ ∃Ew ∀
(

π ′ ∈ 5
)

Ew · Erπ ≥ Ew · Erπ
′
}

We illustrate graphically the CH concept for a linear scalarization
function over two objectives in Figure 3. In Figure 3A, the two
axes indicate the normalized reward values for each objective.
The CH is represented by the convex solid line surface that

includes all the red dots. While the Pareto front is represented
by the non-convex surface drawn by dashed and solid lines that
includes all the red and blue points. The red dots represent
undominated policies that fall in the CH. The blue dots represent
the undominated policies that fall outside the CH and within the
Pareto front. The black dots represent dominated policies. Given
a linear scalarization function, Figure 3B shows the scalarized
reward output (a line) for each different preference. We depict
the first weight component (w1) on the x-axis (w2 = 1 − w1),
and the scalarized reward value on the y-axis. The set of optimal
policies that lie in the CH can be found in the surface represented
by black bold lines in Figure 3B. This upper surface is a piecewise
linear and convex function.

The CH surface can contain excess policies (Roijers et al.,
2013). Therefore, we can define a subset of it that contains the
minimal number of unique policies that solve the problem.

Definition 2.6. Convex Coverage Set: A convex coverage set
(CCS) is a subset of the CH that can provide for each preference
(Ew) a policy whose scalarized reward value is maximal:

CCS (5) ⊆ CH (5) ∧

(∀Ew) (∃π)

(

π ∈ CCS (5) ∧ ∀
(

π ′ ∈ 5
)

Ew · Erπ ≥ Ew · Erπ
′
)

2.2. Multi-Objective Markov Decision
Processes
Markov decision processes (MDPs) formulate a sequential
decision making framework in which an agent observes the
environment’s state (st) at time t, takes an action (at), transits to
a new state (st+1), and gets a reward value (rt+1) for being in the
new state (Papadimitriou and Tsitsiklis, 1987). A multi-objective
Markov decision process (MOMDP) extends this sequential
decision making framework by allowing a vector of reward
signals to be passed to the agent after transiting to the new
state (Roijers et al., 2013). The difference between a MDP and
MOMDP is depicted in Figure 4. The MOMDP formalism is
represented by a tuple

〈

S,A,Pss
′ , ER,µ, γ

〉

, where S is the state
space, A is the action space, Pss′ = Pr(st+1 = s′|st = s, at = a)
is the state transition probability, ER ∈ R

M ∀R : S × A × S′ →
r ∈ R is the vector of reward functions dedicated to M number
of objectives, µ = Pr(s0) is the probability distribution of initial
states, and γ ∈ [0, 1) is the discounting factor for the influence of
the future rewards.

The objective of the learning agent is tomaximize the expected
scalarized reward return starting from time t using a scalarization
function h given a user’s preference Ew:

REwt =

T
∑

l= 0

γ lh (Ert+l+1, Ew) (2)

where T constitutes the time horizon which is equal to∞ in the
infinite time horizon scenario.

2.3. Problem Definition
Given aMOMDP problem formalism

〈

S,A,Pss
′ , ER,µ, γ

〉

, we need
to find the CCS with the minimal cardinality that maximizes the
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FIGURE 3 | Graphical representation of the Convex hull concept in comparison to the Pareto front using a two objective example. (A) Pareto front surface represented

by solid and dotted lines vs. Convex hull surface represented only by solid lines. (B) Convex hull surface in the weight space represented by the bold lines.

FIGURE 4 | Markov decision process (MDP) in comparison to multi-objective Markov decision process (MOMDP). (A) Markov decision process (MDP). (B)

Multi-objective Markov decision process (MOMDP).

scalarized reward return for any given set of preferences within a
T time horizon:

max REw
i

t = E[

T
∑

j= 0

γ jh (Ert+j+1, Ew
i)] (3)

min |CCS|

s.t. Ewi ∈W ∀Ewi ∈ R
M ,

M
∑

m= 1

wm = 1

Where W is the set of all legitimate user’s preferences over the
defined objectives.

3. RELATED WORK

In this section, we explore the related work for multi-objective
reinforcement learning (MORL) and intrinsically motivated
reinforcement learning (IMRL), to highlight the contribution of
our paper.

3.1. Multi-Objective Reinforcement
Learning (MORL)
MORL methods address the MOMDP problem by two main
approaches: single policy approaches; and multiple policy

approaches (Roijers et al., 2013). If the user’s preference is
known before solving the problem, then a single policy can be
found by scalarizing the multiple reward signals and optimizing
the scalarized reward return using conventional single objective
reinforcement learning methods. However, this assumption
is rarely satisfied. Alternatively, the multiple policy approach
aims at exploring and ranking the non-dominated policies
in order to find the policy coverage set that can satisfy any
user’s preference for solving the problem. In the following
subsections, we review relevant literature for each of these two
approaches.

3.1.1. Single Policy Approaches
Lizotte et al. (2010) proposed a value iteration algorithm
for ranking actions in finite state spaces using a linear
scalarization function. Moffaert et al. (2013) proposed an
updated version of the Q-learning algorithm (Watkins and
Dayan, 1992) using the Chebyshev scalarization function to
solve an MOMDP grid-world problem. Castelletti et al. (2013)
utilized non-linear scalarization methods with a random weight
space exploration technique to optimize the operation of
water resource management systems. Perny and Weng (2010)
addressed the MOMDP problem using a linear programming
technique adopting the Chebyshev scalarization function.
Ogryczak et al. (2011) extended previously mentioned linear
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programming method by replacing the non-linear scalarization
with an ordered weighted regret technique for ranking actions.
Their technique estimates the regret value per each objective with
respect to a reference point, then actions are ranked using the
combined regret value overall objectives.

Alternatively to the scalarization approach, constrained
methods for the MOMDP problem have been introduced by
Feinberg and Shwartz (1995) and Altman (1999). These methods
optimize a single objective, while treating the other objectives as
constraints on the optimization problem.

3.1.2. Multiple Policy Approaches
A preference elicitation approach has been proposed by Akrour
et al. (2011) to incorporate an expert’s preference during the
policy learning process in an algorithm called preference-based
policy learning (PPL). Basically, the proposed algorithm needs
a parameterized formalism of the policy in order to sample
different trajectories by sampling from the parameter space,
then the expert provides his qualitative preference based on
the lately demonstrated trajectories, which is used to optimize
the policy’s parameters in a way that maximizes the expert’s
expected feedback. Similarly, Fürnkranz et al. (2012) proposed
a framework for ranking policy trajectories based on qualitative
feedback provided by the user. However, this methodology
requires reaching the Pareto front of optimal policies in the
beginning, then ranking trajectories samples from those policies
according to the user’s feedback.

An evolutionary computation method was introduced by
Busa-Fekete et al. (2014) in order to generate the set of non-
dominated policies shaping the Pareto front. Then, at each state,
they rollout actions from this Pareto optimal set and rank them
given the user’s feedback in order to identify the optimal action
to follow.

Roijers et al. (2014) proposed the Optimistic Linear Support
(OLS) algorithm which aims at evolving an approximate policy
coverage set by examining different possible weight vectors of
the defined objectives. For example, if there are two objectives in
the problem, it starts by examining the two corner preferences
(i.e., [0.1, 0.9], [0.9, 0.1]) and evolves two optimal policies for
those preferences through single-objective reinforcement learner
(i.e., Q-learning). Then, the algorithm is going to evaluate the
performance of the two evolved policies in terms of average
reward achieved given a threshold value (epsilon). The policy
that will exceed this value will be added to the coverage
set. Afterwards, the algorithm will try to find a mid-point
preference between each explored preference pairs and repeat the
performance evaluation against the defined threshold until no
more performance enhancements are achieved.

Gábor et al. (1998) introduced the Threshold Lexicographic
Ordering (TLO) algorithm which starts with a sample of
uniformly distributed preferences and for each of them it evolves
a policy by selecting at each state one of the optimal actions
(each dedicated with a specific single objective given its weight)
exceeding a threshold value or taking the action with the max
value if all actions are below the threshold value. Similarly, the
decision to add a policy to the coverage set is made given a specific
performance threshold value.

The two latter algorithms have been used in many of
MORL literature (Geibel, 2006; Roijers et al., 2015; Mossalam
et al., 2016) to find a coverage set of policies that solves
the MOMDP problem. It has to be noted that both of these
algorithms follow an iterative preference exploration approach
that require simulation on the environment assuming stationary
dynamics in order to evolve the policy coverage set. However,
our proposed method aims at evolving such coverage set in a
developmental and adaptive manner with stationary and non-
stationary environment’s dynamics.

3.2. Intrinsically Motivated Reinforcement
Learning (IMRL)
Inspired by the learning paradigms in humans and animals,
computational models for intrinsically motivated learning aim at
learning guided by internally generated reward signals. Ryan and
Deci (2000) defined intrinsic motivation as performing activities
for their inherit satisfaction instead of separable consequences.
They further explained that this is similar to humans performing
actions for fun or challenge rather than being directed to
perform it due to external pressure or rewards. Intrinsically
motivated reinforcement learning (IMRL) aims at extending
the conventional reinforcement learning paradigm by allowing
the learner agent to generate an intrinsic reward signal that
either can supplement the extrinsic reward signal or completely
replace it (Barto, 2013). Basically, this intrinsic reward signal
can provide assistance to the learning agent when dealing with a
sparse extrinsic reward signal, enhance the exploration strategy,
or completely guides it to achieve the task.

There are multiple drives to the intrinsic motivation in
literature such as curiosity, novelty, happiness, emotions, or
surprise (Singh et al., 2009). Despite of the differences between
their fitness functions, they are positioned around the same
assumption that the learning agent only needs to use its internal
and external state representations in order to calculate the
intrinsic reward signal. Therefore, the agent can generate such
a reward independent of external (task-specific) reward signals.
Schmidhuber (2010) describes the learning assumption of IMRL
as “maximizing the fun or internal joy for the discovery or
creation of novel patterns.” According to his perspective, a
pattern is a sequence of observed data that is compressible.
Compression here means that an encoding program can find a
compact representation of the data sequence that is sufficient
to regenerate the original sequence or predict any occurrence
within it given the predecessor occurrences (Ming and Vitányi,
1997). While the novelty of the pattern means that the learning
agent initially did not expect it but it could learn it. The pattern
discovering/creation progress can be projected into an intrinsic
reward for a conventional RL algorithm that acts to optimize it
and consequently encouraging the agent to discover/create more
novel patterns.

IMRL methods can be categorized differently based on
either a reward source perspective or an objective perspective.
For the reward source perspective categorization, Merrick and
Maher (2009) indicated that IMRL methods can fall into two
broad categories: methods that use both extrinsic and intrinsic
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reward signals; and methods that use only intrinsic reward
signals. Alternatively, Oudeyer and Kaplan (2009) proposed
a different categorization from an objective perspective. They
divided the IMRL literature into three main groups based on the
objective of the intrinsicmotivation learning process: knowledge-
based models, competency-based models, and morphological
models. We adopt a knowledge-based intrinsic motivationmodel
according to the objective categorization that falls into the
first category of the reward source perspective as it used both
extrinsic and intrinsic reward signals. Accordingly, we only
explore knowledge-based intrinsic motivation relevant literature
in this paper.

One of the early approaches to knowledge-based IMRL
was proposed by Schmidhuber (1991b) which included two
recurrent neural networks (RNNs): a model network, and a
control network. The model network aimed at learning to
model environmental dynamics in terms of predicting the state
transitions conditioned on action taken. While the control
network optimizes the action selection policy to explore states
space regions in which the model network has high marginal
uncertainty (prediction error). The control network is guided by
intrinsic reward represented by the model network’s prediction
error. This method is considered a category II as it works mainly
with intrinsic reward signals.

Pathak et al. (2017) proposed an intrinsically motivated
exploration technique following a predictive perspective. They
indicated two main objectives for the proposed technique.
First, to learn representative features that distill the state-space
features that are controllable by the agent capabilities from those
that are out of the agent’s control. Then, using these learned
representative features, they optimize a predictive model for the
state transition probability distribution. In order to achieve the
first objective, an inverse dynamics model was used to learn the
action taken based on the encoding (features) of the states before
and after taking the action, using the experience replay buffer.
The authors stated that this inverse dynamics inference technique
will discourage learning encodings (features) that cannot affect
or being affected by the agent’s actions. While for the second
objective, a forward dynamics model was proposed to predict
the next state encoding based on the current state encoding and
the action taken. The intrinsic reward was formulated as the
prediction error of the forward dynamics model and combined
with the extrinsic reward using summation. The learning agent
uses the combined version of the extrinsic and intrinsic rewards
to optimize the current policy.

Qureshi et al. (2018) targeted robotics domains for the
application of intrinsic motivation. The authors proposed an
intrinsically motivated learning algorithm for a humanoid robot

FIGURE 5 | Intrinsically motivated multi-objective reinforcement learning (IM-MORL) design scenarios. (A) The conventional MORL approach. (B) IM-MORL design

approach guided by the user’s preference. (C) IM-MORL design approach for learning the feasible preferences over multiple extrinsic rewards. (D) IM-MORL design

approach for learning both internal goals and preferences.

Frontiers in Neurorobotics | www.frontiersin.org 6 October 2018 | Volume 12 | Article 65

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Abdelfattah et al. Evolving Robust Policy Coverage Sets

to interact with a human given three basic events to represent
the current state of the interaction: eye contact, smile, and
handshake. Their algorithm is based on an event predictive
objective where a predictive neural network called Pnet is
learning to predict the coming event conditioned on the current
one and the action taken, while another controller network
called Qnet is optimizing the action selection policy guided only
with the intrinsic reward represented by the prediction error
of the Pnet. The authors showed that their proposed algorithm
outperformed a conventional reinforcement learning algorithm
using only extrinsic sparse reward signal in a real interaction
experiment with humans that lasted for 14 days.

One drawback of formulating the intrinsic reward based on
prediction error is that it encourages the action sampler (e.g.,
control network) to favor state space regions that involve noisy
observation or require further sensing capabilities beyond the
currently available to the agent, this might limit the learning
progress of the whole system in such situations.

In order to overcome this drawback, we need to change
the formulation of the intrinsic reward to depend on the
model’s improvement (e.g., prediction accuracy) rather than its
prediction error. Consequently, the learning agent will be bored
from state-space regions that either completely predictable (high
prediction accuracy) or completely unpredictable (due to noise
or lack of sufficient sensors) as for both scenarios the gradient of
the improvement will be small.

A first attempt to tackle this issue was proposed by
Schmidhuber (1991a), where the intrinsic reward was formulated
based on prediction reliability rather than the error. A
probabilistic inference model was optimized to learn the state
transition probability distribution conditioning on the taken
action, then four different metrics were proposed to estimate
the prediction reliability locally and globally based on the past

FIGURE 6 | The division of the linear scalarization of the preference space into

a finite set of regions based on the combination of fuzzy membership values of

the weight components.

interactions with the environment. A Q-learning algorithm was
adopted to optimize the action selection policy guided by the
reliability value as an intrinsic reward signal. The proposed
methodology was evaluated on a non-deterministic environment
with noisy state regions and compared with a random-search
exploration technique, results showed that the intrinsically
motivated agent was 10 times faster to decrease the prediction
error.

Oudeyer et al. (2007) proposed a developmental learning
system for robotics called intelligent adaptive curiosity (IAC).
The IAC system aims at maximizing the learning progress of the
agent represented by focusing the learning process on situations
that neither fully predictable nor fully unpredictable, as the
derivative of the progress will be small in both situations. The
novelty in this method comes in the division of the state space
into regions that share common dynamics and for each region,
the IAC evolves an expert predictive model (e.g., neural network)
to learn the state transition dynamics. The division of the state
space into regions was done in a developmental manner, so at
the beginning, there is only one region and when the number
of examples exceeds a specific threshold value (C1) then it is
split into two regions based on a second metric (C2) that aims
at minimizing the variance between samples in a specific region
(i.e., this is symmetric to density-based clustering techniques
Kriegel et al., 2011). The intrinsic reward is calculated using
the first derivative of the prediction error between times (t and
t + 1). Finally, a Q-learning algorithm is adopted to optimize
the action selection policy guided by the intrinsic reward. The
authors showed by experiments the effectiveness of the proposed
system in comparison to conventional exploration strategies.

Our propose intrinsically motivated preference exploration
component follows the same intrinsic reward formulation
approach as the last two methods based on the predictive model
improvement rather than the prediction error. However, we
extend the existing work to multi-objective scenarios.

4. METHODS

In comparison to the conventional MORL approach presented
in Figure 5A, we propose three possible scenarios in which
intrinsically motivated multi-objective reinforcement learning
(IM-MORL) approaches can be designed. In the first scenario, the
user can supply his/her preference over a defined set of intrinsic
motivation rewards, while the intrinsic motivation system can
utilize this preference to formulate a combined intrinsic reward
to guide the learning agent according to the user’s preference
(see Figure 5B). An example of this scenario is for a child

TABLE 1 | Configuration of the utilized triangular fuzzy membership functions.

Function A B C

Low 0.00 0.18 0.35

Medium 0.28 0.45 0.65

High 0.57 0.75 1.00
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that has multiple intrinsic motives, while his/her parent is
guiding his/her behavior by providing feedback that can form
an acceptable trade-off among these internal motives. While
in the second scenario, the environment will supply a vector
of extrinsic rewards and the task of the intrinsic motivation
system will be to learn the feasible preferences that could solve
the task and evolve a policy for each of them (see Figure 5C).
An example of this scenario is for a student who is given

curricula of learning courses and his/her mission is to find an
optimal strategy to maximize the total grade among all of them.
Finally, the intrinsic motivation can generate both the rewards
and preferences completely internally without depending on
any external source for each of them (see Figure 5D). This
scenario is similar to a human adult who is behaving in
a free-willed manner in order to learn a set of internally
generated goals, while evolving his/her prioritization among

FIGURE 7 | A flowchart diagram describing the RFPB algorithm workflow.
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them according to his/her current achievement level on each
goal.

Our proposed IM-MORL method follows the second
approach depicted in Figure 5C. We leave the other approaches
for future exploration. In this paper, the agent gets extrinsic
rewards from the environment and automatically explores
the preference space in order to evolve the optimum policy
coverage set that solves the MOMDP problem. This is achieved
through adversarial self-play between two main components:
the intrinsically motivated preference explorer; and the convex
coverage set optimizer. The former component explores
preferences for which there is no an optimum policy in the CCS,
while the latter component optimizes policies that can maximize
the scalarized reward return for preferences proposed by the
former component. Consequently, through this adversarial
interaction, the proposed method developmentally evolves the
CCS that converges to the optimal CCS to solve the problem.
We are going to describe each of these components in details as
follows.

4.1. Convex Coverage Set Optimizer
In order to respond to preferences proposed by the
preference exploration component, we propose a novel
convex coverage set optimization algorithm called robust
fuzzy policy bootstrapping (RFPB). The main assumption
of the RFPB algorithm is While there is a large number of
policies that can satisfy different preferences over the defined
objectives, a fewer number of steppingstone policies can be
used to solve the problem by bootstrapping specialized policies
that can fit any feasible preference. The concept of policy
bootstrapping from steppingstone policies achieves better
robustness to changes in the environment setup in comparison
to greedy policies optimized for a specific setup or user’s
preference.

The RFPB algorithm divides the linear scalarization of
the preference space into a finite number of regions each
is dedicated to a specific combination of fuzzy membership
values for the weight components in the preference. The
advantage of using fuzzy representation instead of alternative
heuristic discretization methods is that it enables automatic
categorization of the preference regions in terms of combinations
of different fuzzy membership functions without the need
to tailor specific rules for such categorization in the crisp
representation case.

For further explanation of this fuzzy representation, consider
the example in Figure 6. In this example, there are two defined
objectives: o1; and o2. Accordingly, the user’s preference can be
defined as a two-dimensional vector Ewi = [w1, w2], Ewi ∈ R

2

defining a tradeoff across these two objectives. If we define three
triangular membership functions (low, medium, and high) for
each weight component in the preference, we will end up with
(3× 3) nine combinations of membership values. Consequently,
the convex hull can be represented using these nine regions of the
weight space membership values. The shaded square in Figure 6

represents the region for the fuzzy membership combination
w1 = High, and w2 = Low.

In this paper, we use the triangular fuzzy membership
functions (Zadeh, 1996). Thus, there are three fuzzy membership
functions for each weight component including low, medium,
and high functions. The configuration of these sets is presented in
Table 1. Each combination of these fuzzy membership functions
gives a fuzzy preference region. As the weight components are
constrained to sum to one (Definition 2.3), the extreme regions
(low,low or high, high in the example presented in Figure 6) are
excluded from the set of legitimate regions.

After defining this fuzzy regions, the RFPB algorithm evolves
a single steppingstone policy for each region. A policy (pg) is
assigned to the fuzzy region (g) if there is no other policy that
dominates (pg) on the robustness metric (βg) for the region
(g). In this paper, we use the robustness metric defined in
Equation (4):

βk =
Ŵk

σ k
(4)

The logic behind this metric is that it calculates the robustness of
a policy (pk) as a tradeoff between its performance represented
by it average reward value (Ŵk) and its variability represented
by its standard deviation value (σ k). Therefore, this metric
favors stable policies that can serve as steppingstones to evolve
specialized policies within its fuzzy preference region. The
robustness metric utilizes the average and standard deviation of
the values generated by the scalarized reward function presented
in Equation (2) during the time period from deploying the
policy to the time of the preference region change. Moreover,
this metric is related to the problem definition in section 2.3
through assuring the robustness of the steppingstone policy
assigned for each preference region, therefore, the performance

TABLE 2 | Parameters configuration for the DNN predictive model.

Parameter Value

Layers Sigmoid(3), ReLU(32), ReLU(16), ReLU(8), Linear(1)

α 0.09

Dropout 0.3

Cost function Cross entropy

Optimizer ADAM

TABLE 3 | Parameters configuration for the utilized DDPG algorithm in the

exploration component.

Parameter Value

τ 0.001

γ 0.99

Actor α 0.0001

Critic α 0.001

Ornstein-Uhlenbeck Noise θ 0.15

Ornstein-Uhlenbeck Noise σ 0.2

Optimizer ADAM
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Algorithm 1 Scalarized Q-Learning (S-QL)

Input: A preference Ew.
1: if π init = φ then

2: Initialize Q(s, a) ∀ s ∈ S, a ∈ A(s) arbitrarily
3: else

4: Initialize Q(s, a) ∀ s ∈ S, a ∈ A(s) from π init

5: repeat

6: for each episode do
7: Initialize S
8: Take a from s using policy derived from Q (e.g.,
9: ǫ-greedy) , observe Er, s′

10: Calculate scalarized reward ρ = Ew · Er
11: Q(s, a)← Q(s, a)+α

[

ρ+γmaxa′Q(s
′, a′)−Q(s, a)

]

12: s← s′

13: until s is terminal

overall legitimate preferences can bemaximized as targeted in the
objective function.

Our proposed methodology adopts a scalarized version of Q-
learning for solving the MOMDP task using linear scalarization
given the weights vector as depicted in Algorithm 1. We refer to
this algorithm as Scalarized QL abbreviated as (S-QL).

As shown in Algorithm 2, when a new user’s preference (Ewt) is
introduced at the time (t), it is assigned a fuzzy representation
based on the membership functions that have the maximum
values for its weight components. Consequently, a region (gi)
is determined from the fuzzified representation of the convex
hull corresponding to the new preference. The new policy will
be bootstrapped from the non-dominated policy of the region
(gi). In the case that region (gi) was not explored before, the new
policy is bootstrapped from the policy that achieved the higher
robustness value over adjacent regions (gi−1) and (gi+1). The
two adjacent regions are determined by measuring the Euclidean
distance (see Equation 5) between the centroids vectors (i.e.,
the b components of the corresponding triangular membership
functions) of the current region and each of the remaining
regions, then, taking the top two nearest regions. In the case that
the adjacent regions were not explored, then the new policy is
initialized arbitrarily. The policy for the last preference (pwt−1 )
is compared to the current non-dominated policy of its fuzzy
region p(gj) based on the robustness metric (β). If it exceeds the
non-dominated policy, then it will take its position in the policy
repository (5) for that region.

EuclideanDistance(gi, gk) =

√

√

√

√

M
∑

m= 1

(gi
bm
− gk

bm
)2 (5)

The RFPB algorithm stores the past explored non-dominated
policies over the preference fuzzy regions in a policy repository
5. As mentioned previously, a non-dominated policy pk

outperforms, in terms of the robustness metric (βk), all explored
policies within its kth region. For each single non-dominated

policy pk, we store three basic parameters
〈

πk, gk, βk
〉

. Where

Algorithm 2 Robust Fuzzy Policy Bootstrapping (RFPB)

Input: Preferences at times t and t − 1 (−→w t ,
−→w t−1).

1: Get the fuzzy region of the new preference
FuzzyMembership(−→w t)→ gi

2: if p(gi) 6= ∅ then
3: p′ := p(gi)
4: else if p(gi−1) 6= ∅ and p(gi+1) 6= ∅ then
5: p′ := argmaxp∈{p(gi−1), p(gi+1)} β(p)

6: else if p(gi−1) = ∅ and p(gi+1) = ∅ then
7: p′ := φ

8: else

9: p′ := argp∈{p(gi−1), p(gi+1)} p 6= φ

10: Get the fuzzy region of the old preference
FuzzyMembership(−→w t−1)→ gj

11: if p(gj) 6= ∅ then
12: p(gj) := argmaxp∈{p(gj), pwt−1 } β(p)
13: else

14: p(gj) := pwt−1

15: Store p(gj) in 5

16: if p
′
= ∅ then

17: π
′
:= φ

18: else

19: π
′
:= π(p

′
)

20: Follow the Scalarized Q-Learning algorithm, S-QL(−→w t , π ′)

πk∈ R
N×L is the Q-value matrix for each state and action pair,

gk is the preference region assigned to the policy, and βk is the
robustness metric value calculated using Equation (4).

After bootstrapping, the RFPB algorithm will continue to
optimize the policy with regard to the new preference region
following the scalarized Q-learning (S-QL) algorithm depicted in
Algorithm 1.

For further insights on the RFPB algorithm, Figure 7 provides
a flowchart diagram that describes the processes involved in its
workflow.

4.2. Intrinsically Motivated Preference
Exploration
This component adopts a knowledge-based intrinsic motivation
approach (Oudeyer and Kaplan, 2009) to actively explore the
preference space. Mainly, this component includes two building
blocks. First, a predictive model, which is implemented as a
deep feed-forward neural network (see Table 2 for parameters
configuration), is trained in a supervised learning manner to
predicts the scalarized reward return (Equation 2) given a
preference fuzzy region. The input to the predictor is the
preference fuzzy region as one hot encoding vector (a binary
valued vector with the length equal to the number of regions
with only 1 value at the corresponding location of the current
region), while the output is the predicted return to be achieved
by the evolved CCS from the time of the preference proposal
(t − k) to the end time of the policy execution (t + j). Before
the beginning of the training process, there is a warming
up period to accumulate training set of 200 samples for
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the predictor. During this period, preferences are proposed
randomly (uniformly sampled) to the RFPB algorithm, which
is given a maximum number of 100 episodes to evolve a
corresponding policy and recording the resulting reward return
at the end. Afterwards, the predictor is initialized based on
this warm up data and the intrinsically motivated preference
exploration is activated.

The second building block is responsible for the adaptive
preference exploration. Mainly, it utilizes a reinforcement
learning algorithm that observes the current preference fuzzy
region as the state, takes an action with M dimensions
representing the weight components for the defined objectives,
and gets an intrinsic reward formulated as the difference (gain)
in prediction accuracy (ρ) of the predictive model for the
explored region (g) within the time period [t − k, t + j], as per
Equation (11). Basically, the reinforcement learning algorithm
works as an active learning trainer to the predictive model
and it is rewarded through maximizing the prediction accuracy
gain after sampling a new interaction with the RFPB algorithm

FIGURE 8 | A block diagram for the working mechanism of the proposed

method.

formulated as a tuple of (preference region, scalarized reward
return) and adding it to the training set of the predictive
model.

We utilized the deep deterministic policy gradient algorithm
(DDPG) as described in Lillicrap et al. (2016) for the
implementation of the reinforcement learning algorithm. The
implementation configuration for the DDPG algorithm is
presented in Table 3. The DDPG algorithm falls into the
actor-critic reinforcement algorithms, therefore, there are two
neural networks mainly involved in the learning process: the
actor network (µ) which is responsible for taking actions, and
the critic network (Q) which is responsible for estimating the Q-
value of each state-action pairs. Using (N) number of transitions
samples randomly from a previous transitions experience buffer,
the critic aims at minimizing the loss function (L), while the actor
is updated using the policy gradient (∇θµ J).

L =
1

N

N
∑

n= 1

(yn − Q(sn, an|θ
Q))2 (6)

Where yn = rn + γQ′(sn+1,µ
′(sn+1|θ

µ′ )|θQ
′
)

∇θµ J ≈
1

N

N
∑

n= 1

∇aQ(s, a |θ
Q) |s= sn ,a=µ(sn)∇θµµ(s |θµ) |sn

(7)

In addition to these two main networks, the DDPG uses the
concept of target networks (µ′,Q′), which are basically replicas
of the actor and critic networks but with an older version of
the parameters (weight) configuration. The logic behind this is
to enable stable learning by separating the network that is being
optimized from the one that is performing the exploration. The
parameters of the target networks are updated in proportional to
their current values and latest values of the actor-critic networks
using the τ parameter as follows:

θQ
′←τθQ + (1− τ )θQ

′
(8)

θµ′ ← τθµ + (1− τ )θµ′ (9)

FIGURE 9 | Layouts of the experimental environments. (A) The search and rescue (SAR) environment. (B) The deep sea treasure (DST) environment. (C) The resource

gathering (RG) environment.
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FIGURE 10 | Comparing our IM-MORL with the RM-MORL agent in terms of reward prediction error averaged over 15 runs to assess the impact of intrinsically

motivated preference exploration. (A) The search and rescue (SAR) environment. (B) The deep sea treasure (DST) environment. (C) The resource gathering (RG)

environment.
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TABLE 4 | Comparison results between our IM-MORL agent and RM-MORL

agent in terms of average prediction error with standard deviation in 100

percentage over 15 runs per each of the experimental environments.

Environment IM-MORL RM-MORL

SAR 16.4 ± 3.7 48.1 ± 4.2

DST 7.6 ± 2.9 38.7 ± 5.1

RG 9.2 ± 5.3 35.2 ± 6.3

Bold value indicates best results.

The actions are explored using the OrnsteinUhlenbeck stochastic
process, which generates temporally correlated exploration noise
to make smooth transitions between action values. Accordingly,
the preference exploration moves smoothly from one preference
region to its adjacent regions, while exploring the preference
space. The equation for this process is as follows:

dat = θ(µ− at)dt + σdWt (10)

Where θ , σ , and µ are parameters andWt represents the Wiener
process.

rintrinsic = 1(ρ
g
t , ρ

g

t+k) (11)

Figure 8 presents a block diagram for the interaction between the
two described components of the proposed method.

5. EXPERIMENTAL DESIGN

In this section, we describe our experimental design to evaluate
the proposed method.

5.1. Experiments
5.1.1. Assessing the Impact of the Intrinsically

Motivated Preference Exploration
Aim: The aim of this experiment is to assess the impact
of the intrinsically motivated preference exploration on the
performance of the reward prediction model, which reflects the
stability of the CCS performance.

Workflow: We compare our proposed intrinsically motived
agent with a randomly motivated agent that samples preference
uniformly from the M-dimensional weight space to train
both the reward predictive model and the CCS optimizer.
We execute 15 runs, each one lasts for 2,500 episodes per
each experimental environment. We refer to our proposed
agent as IM-MORL and the randomly motivated agent as
RM-MORL.

Evaluation Criteria: We calculate the average and standard
deviation of the prediction error of the reward predictive
model over the 15 runs, each with a different environment
setup (different distribution of objects), per each experimental
environment. The less the reward prediction error value, the
more effective the preference exploration strategy and the more
stable the performance of the resultant CCS.

5.1.2. Comparison to the State-of-the-Art MORL

Algorithms
Aim: This experiment aims at contrasting the performance of
our IM-MORL method with the state-of-the-art MORL methods
under both stationary and non-stationary environments.

Workflow: We compare our method with two well-known
and highly adopted methods in MORL literature (as described in
section 3): the Optimistic Linear Support (OLS) method (Roijers
et al., 2014); and the Threshold Lexicographic Ordering (TLO)
method (Gábor et al., 1998). We conduct this experiment in
two environment groups: stationary environments; and non-
stationary environments. In the former, the distribution of
objects in the environment is stationary per each run. While in
the latter, the distribution of objects is non-stationary as 25% of
them change their locations randomly every 100 episodes. For
each group, we execute 15 runs that differ in the distribution of
objects in the experimental environment. Each run is divided into
a training phase and a testing phase, each of them includes 2,500
episodes. The training phase allows each method to evolve its
CCS. While in the testing phase, we sample ten user preferences
uniformly, and every 250 episodes the preference changes to
evaluate the performance of the evolved CCS for each method.
Moreover, during the testing phase, the exploration component
in our proposed method is inactive, while the RFPB algorithm
keeps updating the CCS by replacing inferior steppingstone
policies with better ones based on the robustness metric defined
in Equation (4). For the parameter configuration of the OLS and
TLO algorithms we follow the same configuration in Roijers et al.
(2014) and Geibel (2006) respectively.

Evaluation Criteria: We evaluate the three comparative
methods over twomainmetrics. First, the sum ofmedian rewards
metric, which is calculated by taking the median reward value
for each preference, sum them for each run, then taking the
average of this sum over the 15 runs. This metric reflects the
overall performance of the evolved CCS for each comparative
method over the 15 independent runs executed. For visualizing
this evaluation, we show the average median value with standard
deviation for each sampled preference. Second, the hypervolume
metric which measures the coverage and diversity of the CCS.
The higher the value of this metric the better the CCS. We
followed the algorithm described in Beume et al. (2009) to
calculate the value of this metric.

5.2. Environments
We use three different multi-objective sequential decision-
making environments: search and rescue; deep-sea treasure; and
resources gathering. The two later environments are well-known
benchmarks in theMORL literature (Vamplew et al., 2011), while
the first environment is a new and firstly proposed in this paper.
The proposed environment poses an additional challenge of
stochastic state transition distribution. Figure 9 shows the layout
of the experimental environments.

5.2.1. Search and Rescue (SAR) Environment
This 9 × 9 grid world represents a SAR scenario that has fire
danger, obstacles, and human victims to be rescued. The agent’s
state is a tuple 〈X,Y , F,O,H〉, where X, Y are the coordinates of
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FIGURE 11 | Comparing the median reward values for each user preference averaged over 15 runs with standard deviation bars in the stationary environments. (A)

The search and rescue (SAR) environment. (B) The deep sea treasure (DST) environment. (C) The resource gathering (RG) environment.
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the current location, and F, O, H are binary values indicating
whether a fire danger, an obstacle, or a human victim is in the
current location or not. Moving to an obstacle won’t change the
location while getting a time penalty. Each human victim die after
a random time ξi, i ∈ {1, 2, 3, . . . ,N} for N victims. The action
space is A =

{

MoveEast, MoveWest, MoveNorth, MoveSouth
}

with one square per each movement. There are three objectives
in this environment: maximizing the number of detected human
victims; minimizing exposure to fire risk; and minimizing the
overall task’s time. The agent gets a vector of three rewards Er =
[

rvictim, rfire, rtime
]

, Er ∈ R
3. The victim reward function rvictim

is +3 for each detected victim and 0 elsewhere, the fire penalty
function rfire is −5 for each exposure and 0 elsewhere, and the
time penalty function rtime is always set to−1.

5.2.2. Deep Sea Treasure (DST) Environment
This is a 10 × 11 grid world. The agent controls a submarine
searching for an undersea treasure. The agent’s state is a tuple
of〈X,Y〉, where X, Y are the coordinates of the current position.
There are four actions tomove one square per each directionA =
{

Left, Right, Up, Down
}

. All actions that result in leaving the grid
will not change the submarine’s position. Multiple treasures can

TABLE 5 | Comparing the OLS, TLO, and IM-MORL agents in terms of sum of

median reward values averaged over 15 runs in the stationary environments.

Environment OLS TLO IM-MORL

SAR 125.3 ± 2.5 124.7 ± 2.1 123.9 ± 4.5

DST 539.4 ± 2.8 536.7 ± 2.5 535.2 ± 4.5

RG 18.1 ± 2.8 17.5 ± 1.8 16.9 ± 1.2

Bold value indicates best results.

FIGURE 12 | A bar-chart comparing the normalized average hypervolume

values with standard deviation for the OLS, TLO, and IM-MORL agents

grouped by each stationary environment.

be found in this environment each with a different reward value.
It has two objectives. First, to minimize needed time to find the
treasure. Second, to maximize the treasure’s value. Accordingly,
the reward vector has two rewards Er =

[

rtime, rtreasure
]

, Er ∈ R
2,

where rtime is a time penalty of −1 on all turns and rtreasure is the
captured treasure reward which depends on the treasure’s value.

5.2.3. Resources Gathering (RG) Environment
In this 5× 5 grid world, the task is to collect resources (gold and
gems) and return home. The agent’s state is a tuple 〈X,Y ,G,Y ,E〉,
where X, Y are the coordinates of the current location, and
G,Y ,E are binary values indicating whether a gold resource, a
gem resource, or an enemy is in the current location or not.
The enemy attack may occur with a 10% probability. If an
attack happens, the agent loses any resources currently being
carried and is returned to the home location. The action space is
A =

{

MoveEast, MoveWest, MoveNorth, MoveSouth
}

with one
square per each movement. The objectives are to maximize the
resources gathered while minimizing enemy attacks. The rewards
vector is defined as Er = [ rresources, renemy] , Er ∈ R

2, with rresources

is+1 for each resource collected and renemy is−1 for each attack.

6. RESULTS AND DISCUSSION

In this section, we present and discuss the results of the two
experiments defined in our experimental design.

6.1. Assessing the Impact of the
Intrinsically Motivated Preference
Exploration
Figure 10 presents the comparison results between our
intrinsically motivated multi-objective reinforcement learning
(IM-MORL) agent and a randomly motivated mullti-objective
reinforcement learning (RM-MORL) agent, in order to assess the
effectiveness of intrinsic motivation in preferences exploration.
The results show the average prediction error over 15 runs for
the DNN prediction model described in section 4.2, which aims
at predicting the expected reward return per each preference
fuzzy region given the current performance of the CCS.

Figure 10A shows the prediction error results in the
search and rescue (SAR) environment. Our IM-MORL agent
significantly outperformed the RM-MORL with 33% less error
on average. Figure 10B shows the results in the deep sea treasure
(DST) environment. Similarly, our IM-MORL agent significantly
outperformed the RM-MORL with 21% less error on average.
Finally, Figure 10C shows that our IM-MORL agent significantly
outperformed the RM-MORL agent with 26% on average. We

TABLE 6 | Comparing the OLS, TLO, and IM-MORL agents in terms of average

hypervolume over 15 runs in the stationary environments.

Environment OLS TLO IM-MORL

SAR 0.73 ± 0.05 0.67 ± 0.05 0.65 ± 0.04

DST 0.82 ± 0.05 0.85 ± 0.06 0.75 ± 0.05

RG 0.55 ± 0.03 0.58 ± 0.04 0.48 ± 0.03

Bold value indicates best results.
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FIGURE 13 | Comparing the median reward values for each user preference averaged over 15 runs with standard deviation bars in the non-stationary environments.

(A) The search and rescue (SAR) environment. (B) The deep sea treasure (DST) environment. (C) The resource gathering (RG) environment.
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conducted statistical significance t-test between the results of
the two agents and it showed that all of them are statistically
significant with p < 0.005. Table 4 summarizes these results in
terms of average prediction error and standard deviation.

These findings confirms the effectiveness of the proposed
intrinsically motivated preference exploration mechanism as it
succeeded to sample preferences that can enhance the prediction
performance of the predictive model reflecting the stability
of CCS policies. While the randomly motivated exploration
does not have this ability to guide the search process toward
the regions that need enhancements. Basically, it samples
preferences uniformly from the weight space without considering
the current performance levels of the predictive model or the
evolved CCS.

6.2. Comparison to the State-of-the-Art
MORL Methods
In this section, we present the results for comparing our IM-
MORL agent with agents running two of the state-of-the art
MORL methods namely OLS and TLO. As indicated in section
5.1.2, we compare between the three agents using two metrics:
the sum of median rewards over the ten uniformly sampled
user preferences; and the hypervolume metric. Firstly, we will
present the results for the stationary environments, then for the
non-stationary environments afterwards.

6.2.1. Comparison in Stationary Environments
Figure 11 depicts the median reward value for each user
preference results averaged over 15 runs with standard deviation
bars. While Table 5 summarizes the average and standard
deviation of the sums of median rewards for each run. For the
SAR environment shown in Figure 11A, the OLS agent achieved
an average of 125.3, followed by the TLO agent which achieved an
average of 124.7 , finally, our IM-MORL achieved an average of
123.9. Similarly, in the DST environment shown in Figure 11B,
the OLS agent achieved an average of 539.4, followed by the TLO
agent with an average of 536.7, and our IM-MORL agent achieved
and average of 535.2. Finally, Figure 11C shows the results in
the RG environment. The OLS and TLO agents achieved close
results of 18.1 and 17.5, respectively, while our IM-MORL agent
achieved an average of 16.9.

To asses the statistical significance of the results, we compare
the sum of median rewards for each run (15 independent values)
over the three comparative methods. We conducted the t-test of
statistical significance and found the results are not statistically
significant across the three methods (p > 0.05).

For the hypervolume metric, Figure 12 presents a bar-
chart for comparing results of the three agents grouped by
each experimental environment. To neutralize the effect of
different reward values per each environment, we show the
normalized value of the metric per each environment. In the
SAR environment,the OLS agent achieved the highest value of
0.73, followed by the TLO agent with value of 0.67, then our IM-
MORL agent with value of 0.65. While in the DST environment,
the TLO agent achieved the highest value of 0.85, followed by
the OLS agent with value of 0.82, then our IM-MORL agent
with value of 0.75. Similarly, in the RG environment, the TLO

agent achieved the highest value of 0.58, followed by the OLS
agent with value of 0.55, then our IM-MORL agent with value of
0.48.Table 6 summarizes these results. Similarly, the difference in
results was not statistically significant (p > 0.05) across the three
comparative methods.

6.2.2. Comparison in Non-stationary Environments
For the median reward values, Figure 13 presents the
comparison results between the three agents. While Table 7

summarizes the average and standard deviation of the sums
of median rewards for each run. A common finding in these
results is that the IM-MORL agent significantly outperformed
the two other agents over the three experimental environment.
In the SAR environment, the IM-MORL agent outperformed
the OLS and TLO agents by a magnitude of 35.3 and 38.7,
respectively. While in the DST environment, the IM-MORL
agent outperformed the OLS and TLO agents by a magnitude of
130.6 and 149.2, respectively. Finally, in the RG environment,
the IM-MORL agent outperformed the OLS and TLO agents
by a average magnitude of 3.1 and 3.5, respectively. All
the performance results achieved by IM-MORL agent were
statistically significant with p < 0.05 in comparison to the two
other agents.

The significant performance achieved by the IM-MORL agent
was emphasized by the normalized average hypervolume results
in comparison to the two other agents. Figure 14 depicts the
comparison results for the hypervolume metric showing the
average and standard deviation over the executed 15 runs
and grouped by the experimental environment. In the SAR
environment, the IM-MORL agents outperformed the OLS
and TLo agents by a average magnitude of 0.29 and 0.24,
respectively. While in the DST environment, the IM-MORL
agents outperformed the OLS and TLo agents by a average
magnitude of 0.34 and 0.39, respectively. Finally in the RG
environment, the IM-MORL agents outperformed the OLS
and TLo agents by a average magnitude of 0.34 and 0.27,
respectively. Conducting the statistical significance test for the
results showed that the IM-MORL significantly outperformed
the two other agents with p < 0.05. Table 8 summarizes these
results.

The finding from results in the non-stationary environments
indicate that the IM-MORL agent proved to be more robust
and adaptive to non-stationary dynamics in the environment
in comparison to the two other state-of-the-art MORL
agents. Mainly, there are two main reasons behind this
finding.

TABLE 7 | Comparing the OLS, TLO, and IM-MORL agents in terms of sum of

median reward values averaged over 15 runs in the non-stationary environments.

Environment OLS TLO IM-MORL

SAR 60.1 ± 5.6 56.7 ± 6.2 95.4 ± 4.1

DST 314.2 ± 3.9 295.6 ± 2.8 444.8 ± 3.4

RG 12.2 ± 1.2 11.8 ± 1.6 15.3 ± 1.7

Bold value indicates best results.
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FIGURE 14 | A bar-chart comparing the normalized average hypervolume

values with standard deviation for the OLS, TLO, and IM-MORL agents

grouped by each non-stationary environments.

TABLE 8 | Comparing the OLS, TLO, and IM-MORL agents in terms of average

hypervolume over 15 runs in the non-stationary environments.

Environment OLS TLO IM-MORL

SAR 0.52 ± 0.04 0.57 ± 0.03 0.81 ± 0.03

DST 0.53 ± 0.02 0.48 ± 0.04 0.87 ± 0.04

RG 0.31 ± 0.03 0.38 ± 0.02 0.65 ± 0.02

Bold value indicates best results.

The first reason is the adaptive preference exploration
mechanism of the IM-MORL agent, which is guided by the
intrinsic motivation to enhance the performance of the predictive
model. This intrinsic motive lead to actively learning the
preference areas that the current CCS is not addressing well.
During the training phase in the non-stationary environments,
this characteristic allowed the IM-MORL agent to re-explore
the affected preference regions after changes occur in the
environment, while the OLS and TLO agents lack this adaptive
preference exploration characteristic. Consequently, they did
not adapt sufficiently to the non-stationary dynamics in the
environment. An additional note on the performance in the non-
stationary is that training on diverse scenarios resulting from
changes in the objects location aided the exploration process,

which led to evolving better policies during the training phase
in comparison to the stationary environments case.

While the second reason is the robustness of the steppingstone
policies adopted by the IM-MORL agent to changes in the
environment, in comparison to the greedy specialized policies
adopted by the OLS and TLO agents. During the non-stationary
environments, bootstrapping new policies from steppingstone
policies optimized for preference regions adapted better than
bootstrapping from policies that were greedily optimized for
specific preferences.

7. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel multi-objective reinforcement
learningmethod that is adaptive in non-stationary environments.
The proposed method achieves this objective through
an adversarial self-play between an intrinsically motivated
preference exploration component and a robust policy coverage
set optimization component in order to developmentally evolve
the optimal convex coverage set that can solve the MOMDP
problem. We experimentally assessed the effectiveness of
the proposed intrinsically motivated preference exploration
and compared our method with two of the state-of-the-art
multi-objective reinforcement learning methods over stationary
and non-stationary environments. Results showed that there
is no statistical significance on the evaluation metrics values
in comparison to the two other state-of-the-art methods
within the stationary environment, while our proposed
method significantly outperformed them in the non-stationary
environments.

In the future work of this research, we will investigate how
to allow our IM-MORL method to achieve generalization and
transfer learning over a varying number of objectives and tasks
using hierarchical intrinsically motivated multi-objective policy
learning.

AUTHOR CONTRIBUTIONS

SA designed and implemented the algorithms, executed the
experiments and visualized the results, and wrote themanuscript.
KK and SA designed and the experimental design. JH and
KK reviewed the results and provided feedback for presenting
the research contribution, provided theoretical guidance for the
research. KK reviewed the manuscript and provided feedback.

ACKNOWLEDGMENTS

This research is supported by an Australian Government
Research Training Program (RTP) Scholarship.

REFERENCES

Akrour, R., Schoenauer, M., and Sebag, M. (2011). Preference-Based Policy

Learning. Berlin; Heidelberg: Springer Berlin Heidelberg.

Altman, E. (1999). Constrained Markov Decision Processes, Vol. 7. London: CRC

Press.

Barto, A. G. (2013). “Intrinsic motivation and reinforcement learning,” in

Intrinsically Motivated Learning in Natural and Artificial Systems, eds G.

Baldassarre and M. Mirolli (Berlin; Heidelberg: Springer), 17–47.

Beume, N., Fonseca, C. M., Lopez-Ibanez, M., Paquete, L., and Vahrenhold, J.

(2009). On the complexity of computing the hypervolume indicator. IEEE

Trans. Evol. Comput. 13, 1075–1082. doi: 10.1109/TEVC.2009.2015575

Frontiers in Neurorobotics | www.frontiersin.org 18 October 2018 | Volume 12 | Article 65

https://doi.org/10.1109/TEVC.2009.2015575
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Abdelfattah et al. Evolving Robust Policy Coverage Sets

Busa-Fekete, R., Szörényi, B., Weng, P., Cheng, W., and Hüllermeier, E.

(2014). Preference-based reinforcement learning: evolutionary direct policy

search using a preference-based racing algorithm. Mach. Learn. 97, 327–351.

doi: 10.1007/s10994-014-5458-8

Castelletti, A., Pianosi, F., and Restelli, M. (2013). A multiobjective reinforcement

learning approach to water resources systems operation: pareto frontier

approximation in a single run. Water Resour. Res. 49, 3476–3486.

doi: 10.1002/wrcr.20295

Deb, K. (2014).Multi-Objective Optimization. Boston, MA: Springer.

Feinberg, E. A., and Shwartz, A. (1995). Constrained markov decision

models with weighted discounted rewards. Math. Oper. Res. 20, 302–320.

doi: 10.1287/moor.20.2.302

Fürnkranz, J., Hüllermeier, E., Cheng, W., and Park, S.-H. (2012). Preference-

based reinforcement learning: a formal framework and a policy

iteration algorithm. Mach. Learn. 89, 123–156. doi: 10.1007/s10994-012-

5313-8

Gábor, Z., Kalmár, Z., and Szepesvári, C. (1998). “Multi-criteria reinforcement

learning,” in ICML, Vol. 98 (Madison, WI), 197–205.

Geibel, P. (2006). “Reinforcement learning for MDPs with constraints,” in ECML,

Vol. 4212 (Heidelberg: Springer), 646–653.

Kriegel, H.-P., Kröger, P., Sander, J., and Zimek, A. (2011). Density-based

clustering.Wiley Interdisc. Rev. 1, 231–240. doi: 10.1002/widm.30

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521:436.

doi: 10.1038/nature14539

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2016).

“Continuous control with deep reinforcement learning,” in International

Conference on Learning Representations (ICLR) (San Juan).

Lizotte, D. J., Bowling, M. H., and Murphy, S. A. (2010). “Efficient reinforcement

learning with multiple reward functions for randomized controlled trial

analysis,” in Proceedings of the 27th International Conference on Machine

Learning (ICML-10) (Citeseer), 695–702.

Merrick, K. E., and Maher, M. L. (2009). Motivated Reinforcement Learning:

Curious Characters for Multiuser Games. Berlin: Springer Science & Business

Media.

Ming, L., and Vitányi, P. (1997). An Introduction to Kolmogorov Complexity and

Its Applications. Berlin: Springer Heidelberg.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et

al. (2015). Human-level control through deep reinforcement learning. Nature

518:529. doi: 10.1038/nature14236

Moffaert, K. V., Drugan, M. M., and Nowé, A. (2013). “Scalarized multi-objective

reinforcement learning: novel design techniques,” in 2013 IEEE Symposium

on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)

(Singapore), 191–199.

Mossalam, H., Assael, Y. M., Roijers, D. M., and Whiteson, S. (2016). Multi-

objective deep reinforcement learning. arXiv preprint arXiv:1610.02707.

Ogryczak, W., Perny, P., and Weng, P. (2011). “On minimizing ordered

weighted regrets in multiobjective markov decision processes,” in Algorithmic

Decision Theory, eds R. I. Brafman, F. S. Roberts, and A. Tsoukiàs (Berlin;

Heidelberg:Springer Berlin Heidelberg), 190–204.

Oudeyer, P.-Y., and Kaplan, F. (2009). What is intrinsic motivation?

a typology of computational approaches. Front. Neurorobot. 1:6.

doi: 10.3389/neuro.12.006.2007

Oudeyer, P. Y., Kaplan, F., and Hafner, V. V. (2007). Intrinsic motivation systems

for autonomous mental development. IEEE Trans. Evol. Comput. 11, 265–286.

doi: 10.1109/TEVC.2006.890271

Papadimitriou, C. H., and Tsitsiklis, J. N. (1987). The complexity of markov

decision processes. Math. Oper. Res. 12, 441–450. doi: 10.1287/moor.

12.3.441

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). “Curiosity-driven

exploration by self-supervised prediction,” in International Conference on

Machine Learning (ICML) (Sydney).

Perny, P., and Weng, P. (2010). “On finding compromise solutions in

multiobjective markov decision processes,” in Proceedings of the 2010

Conference on ECAI 2010: 19th European Conference on Artificial Intelligence

(Amsterdam: IOS Press), 969–970.

Qureshi, A. H., Nakamura, Y., Yoshikawa, Y., and Ishiguro, H. (2018). Intrinsically

motivated reinforcement learning for human-robot interaction in the real-

world. Neural Netw. doi: 10.1016/j.neunet.2018.03.014. [Epub ahead of print].

Roijers, D. M., Vamplew, P., Whiteson, S., and Dazeley, R. (2013). A survey of

multi-objective sequential decision-making. J. Artif. Intell. Res. 48, 67–113.

doi: 10.1613/jair.3987

Roijers, D. M., and Whiteson, S. (2017). A survey of multi-objective sequential

decision-making. Synthesis Lectures on Artificial Intelligence and Machine

Learning, 34.

Roijers, D. M., Whiteson, S., and Oliehoek, F. A. (2014). “Linear support for

multi-objective coordination graphs,” in Proceedings of the 2014 International

Conference on Autonomous Agents and Multi-agent Systems (Richland, SC),

1297–1304.

Roijers, D. M., Whiteson, S., and Oliehoek, F. A. (2015). “Point-based planning for

multi-objective pomdps,” in IJCAI (Buenos Aires), 1666–1672.

Ryan, R. M., and Deci, E. L. (2000). Intrinsic and extrinsic motivations:

Classic definitions and new directions. Contemp. Educ. Psychol. 25, 54–67.

doi: 10.1006/ceps.1999.1020

Schmidhuber, J. (1991a). “Curious model-building control systems,” in IEEE

International Joint Conference on Neural Networks, 1991 (Seattle, WA), 1458–

1463.

Schmidhuber, J. (1991b). “A possibility for implementing curiosity and boredom

in model-building neural controllers,” in Proceedings of the International

Conference on Simulation of Adaptive Behavior: From Animals to Animats

(Paris), 222–227.

Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic

motivation (1990-2010). IEEE Trans. Auton. Mental Dev. 2, 230–247.

doi: 10.1109/TAMD.2010.2056368

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et

al. (2016). Mastering the game of go with deep neural networks and tree search.

Nature 529, 484–489. doi: 10.1038/nature16961

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et

al. (2017). Mastering the game of go without human knowledge. Nature 550,

354–359. doi: 10.1038/nature24270

Singh, S., Lewis, R. L., and Barto, A. G. (2009). “Where do rewards come

from,” in Proceedings of the Annual Conference of the Cognitive Science Society

(Amsterdam), 2601–2606.

Sutton, R. S., and Barto, A. G. (1998). Introduction to Reinforcement Learning, Vol.

135. Cambridge: MIT Press.

Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., and Dekker, E. (2011). Empirical

evaluation methods for multiobjective reinforcement learning algorithms.

Mach. Learn. 84, 51–80. doi: 10.1007/s10994-010-5232-5

Watkins, C. J. C. H., and Dayan, P. (1992). Q-learning.Mach. Learn. 8, 279–292.

Zadeh, L. A. (1996). Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst.

4, 103–111. doi: 10.1109/91.493904

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Abdelfattah, Kasmarik and Hu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 19 October 2018 | Volume 12 | Article 65

https://doi.org/10.1007/s10994-014-5458-8
https://doi.org/10.1002/wrcr.20295
https://doi.org/10.1287/moor.20.2.302
https://doi.org/10.1007/s10994-012-5313-8
https://doi.org/10.1002/widm.30
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14236
https://doi.org/10.3389/neuro.12.006.2007
https://doi.org/10.1109/TEVC.2006.890271
https://doi.org/10.1287/moor.12.3.441
https://doi.org/10.1016/j.neunet.2018.03.014
https://doi.org/10.1613/jair.3987
https://doi.org/10.1006/ceps.1999.1020
https://doi.org/10.1109/TAMD.2010.2056368
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1007/s10994-010-5232-5
https://doi.org/10.1109/91.493904
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Evolving Robust Policy Coverage Sets in Multi-Objective Markov Decision Processes Through Intrinsically Motivated Self-Play
	1. Introduction
	2. Background
	2.1. Multi-Objective Optimization
	2.2. Multi-Objective Markov Decision Processes
	2.3. Problem Definition

	3. Related Work
	3.1. Multi-Objective Reinforcement Learning (MORL)
	3.1.1. Single Policy Approaches
	3.1.2. Multiple Policy Approaches

	3.2. Intrinsically Motivated Reinforcement Learning (IMRL)

	4. Methods
	4.1. Convex Coverage Set Optimizer
	4.2. Intrinsically Motivated Preference Exploration

	5. Experimental Design
	5.1. Experiments
	5.1.1. Assessing the Impact of the Intrinsically Motivated Preference Exploration
	5.1.2. Comparison to the State-of-the-Art MORL Algorithms

	5.2. Environments
	5.2.1. Search and Rescue (SAR) Environment
	5.2.2. Deep Sea Treasure (DST) Environment 
	5.2.3. Resources Gathering (RG) Environment


	6. Results and Discussion
	6.1. Assessing the Impact of the Intrinsically Motivated Preference Exploration
	6.2. Comparison to the State-of-the-Art MORL Methods
	6.2.1. Comparison in Stationary Environments
	6.2.2. Comparison in Non-stationary Environments


	7. Conclusion and Future Work
	Author Contributions
	Acknowledgments
	References


