
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Deep Reinforcement Learning Methods
for Cooperative Robotic Navigation

José Pedro Ferreira Pinheiro de Carvalho

MASTER IN ELECTRICAL AND COMPUTER ENGINEERING

Supervisor: Professor A. Pedro Aguiar

October 11, 2023

© José Pedro Carvalho, 2023

Abstract

The field of intelligent autonomous systems has experienced exponential growth, with robots be-
ing developed for a wide range of applications. Research in this area is moving towards fully
autonomous robots, and cooperation among multiple robots emerges as a natural next step in
their evolution. Collaborative robots offer inherent advantages, such as the ability to handle more
complex tasks, increased redundancy, and improved overall efficiency. Artificial Intelligence has
witnessed significant advancements, with Reinforcement Learning standing out as a solution that
exhibits super-human performance in various decision-making problems, some of which directly
apply to enhancing autonomous robot systems.

Robotic navigation plays a crucial role in any autonomous mobile robotic system, with path
planning being a key component. However, traditional path-planning solutions for autonomous
robots often rely on extensive, specialized software stacks tailored to specific robots, configura-
tions, and tasks.

Furthermore, in a future where robots become part of everyday life, they will seldom exist
in isolation from the world. Thus, awareness of other agents and the ability to cooperate be-
come crucial. Tasks like coverage path planning and active exploration inherently benefit from
the collaboration of multiple robots, enabling faster completion times or tackling more complex
environments. However, combining robotic navigation with multiple agents introduces greater
complexity, especially in real-life scenarios with constraints imposed by limited and distributed
communication networks, uncertainty, dynamic environments, and onboard computation and sens-
ing limitations.

In this context, this dissertation introduces a novel approach to robotic navigation by harness-
ing the potential of Deep Reinforcement Learning. In this document, multiple algorithms based on
this framework will be introduced with the objective of handling diverse tasks, including point-to-
point path planning, coverage path planning, and active exploration, either in single or multi-agent
domains. Taking this into consideration, this dissertation focuses on developing algorithms for
both single-agent and multi-agent robotic navigation, utilizing a Reinforcement Learning frame-
work. Through this approach, the achievement of a one-size-fits-all solution to robotic navigation
is demonstrated, yielding near-optimal results across various tasks and even surpassing existing
approaches in the literature.

i

ii

Resumo

Nos últimos anos, tem-se verificado um enorme crescimento na área dos sistemas autónomos
inteligentes, com robôs a serem desenvolvidos para várias aplicações. A investigação nesta área
orienta-se para o desenvolvimento de robôs totalmente autónomos, sendo que a cooperação entre
múltiplos robôs surge como uma etapa natural na sua evolução. Os robôs colaborativos apresentam
vantagens inerentes, nomeadamente a capacidade de efetuar tarefas mais complexas, uma maior
redundância e melhor eficiência. A área de Inteligência Artificial tem experienciado progressos
significantivos, com o Reinforcement Learning a destacar-se como uma solução eficaz com melhor
desempenho que o ser humano em vários problemas de tomada de decisão, alguns dos quais
diretamente aplicáveis a sistemas robóticos autónomos.

A navegação robótica apresenta um papel fulcral em qualquer sistema robótico móvel, tendo
o planeamento de trajetórias como uma componente-chave. Contudo, as soluções tradicionais
de planeamento de trajetórias para robôs autónomos frequentemente dependem de bibliotecas de
software extensas e especializadas, concebidas para robôs específicos, com configurações e tarefas
pouco flexíveis.

Adicionalmente, num futuro em que os robôs se tornam parte integrante do quotidiano, dificil-
mente um robô irá operar de uma forma completamente isolada. Consequentemente, a consciência
acerca da existência de outros agentes e a capacidade de cooperação tornam-se fundamentais para
qualquer robô a vir a ser desenvolvido. Tarefas como o planeamento de trajetórias e a exploração
ativa beneficiam da colaboração entre múltiplos robôs, permitindo reduzir os tempos de conclusão
ou aumentar a complexidade das tarefas exigidas. No entanto, a navegação robótica com múltip-
los agentes acarreta maior complexidade, sobretudo em cenários reais, onde se verificam restrições
impostas por redes de comunicação, incertezas, ambientes dinâmicos, e limitações de computação
e perceção.

Neste contexto, esta dissertação apresenta uma abordagem inovadora para a navegação robótica,
capitalizando o potencial do Deep Reinforcement Learning. Serão introduzidos uma série de al-
goritmos baseados neste paradigma, com o objetivo de lidar com diversas tarefas, incluindo o
planeamento de trajetórias ponto-a-ponto, o planeamento de trajetórias de cobertura de áreas e a
exploração ativa, quer em cenário cooperativos ou a solo. Deste modo, o foco da dissertação é o
desenvolvimento de algoritmos para navegação robótica, tanto para agentes individuais como para
múltiplos agentes, recorrendo a uma base de Reinforcement Learning. Através desta abordagem,
demonstra-se a possibilidade de alcançar uma solução genérica para a navegação robótica, obtendo
resultados excelentes em diversas tarefas, ultrapassando abordagens existentes na literatura.

iii

iv

Acknowledgements

I would like to express my deepest gratitude to all those who have played a significant role in my
academic journey. Your unwavering support and guidance have not only shaped this work but have
also been instrumental in my personal growth, molding me into the person I have become today.

First and foremost, I am immensely thankful to my supervisor, Professor António Pedro
Aguiar. Throughout this journey, he not only believed in my potential but also provided me with
numerous opportunities to flourish both academically and personally. Professor Pedro’s expertise,
invaluable mentorship, and unwavering support played a pivotal role in shaping this dissertation,
and I am profoundly thankful for his guidance.

I extend my sincere appreciation to Professor Paulo Tabuada, who provided me with the op-
portunity to work within the Cyber-Physical Systems Laboratory at the University of California,
Los Angeles. His insightful suggestions and enduring support were essential in realizing this dis-
sertation. Additionally, I want to express my gratitude to the Ph.D. candidates Jonathan Bunton,
Matteo Marchi, Marcus Lucas, and Master Yskandar Gas for going out of their way to help me
with my research and making me feel at home on the other side of the planet.

Additionally, I would like to thank C2SR Lab and SYSTEC for providing me with excellent
working conditions and the necessary hardware for this dissertation. I am also grateful to the lab
members for their support and integration. In particular, I would like to thank Gustavo Andrade
for always being available to help me with the computer simulations.

I would also like to express my gratitude to all my friends who accompanied me throughout
this journey, especially João Martins, Maria Lopes, and João Costa. I will never forget all the
memories we have created these last few years, and I hope we will keep accomplishing great
things together. My gratitude is also extended to all members of the 5dpo robotics team, to my
colleagues Lourenço Pinho, Marco Costa, Maria Fonseca, and my childhood friend Helena Vaz.
You were all the greatest support net I could ever hope for.

Lastly, I want to express my heartfelt gratefulness to my incredible family, particularly my
parents, sister, and grandmother, who have been my pillars of support throughout my entire aca-
demic journey. They have supported and encouraged me to reach my full potential, and without
such amazing role models and their support, this dissertation would never have been possible. I
would also like to extend a special thank you to my girlfriend, Maria João. I can not thank you
enough for all you have done for me. From the time I was just a freshman to the current day, you
have helped me become the best version of myself. From the darkest times to the brightest days,
you were always there looking after me. Whether it was the shared coffee breaks, study sessions,
or trips downtown, your companionship and love permeated into every aspect of my life.

Thank you all,

José Pedro Carvalho

v

vi

“Machines take me by surprise with great frequency.”

Alan M. Turing

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2

1.2.1 Applications . 3
1.3 Objectives . 4
1.4 Contributions . 5
1.5 Dissertation Outline . 6

2 Background 9
2.1 Machine Learning . 9

2.1.1 Artificial Neural Networks . 10
2.1.2 Convolutional Neural Networks . 13
2.1.3 Learning Process . 14

2.2 Reinforcement Learning . 17
2.2.1 Markov Decision Processes . 17
2.2.2 Reinforcement Learning Methods . 21
2.2.3 Model-Based Reinforcement Learning 22
2.2.4 Model-Free Reinforcement Learning 23
2.2.5 Temporal Differences Learning . 26
2.2.6 Function Representation . 30

2.3 Value-Based Reinforcement Learning Methods 31
2.3.1 Tabular Temporal Differences Learning - Q-Learning and SARSA 32
2.3.2 The Overestimation Problem - Double Q-Learning 32
2.3.3 TD(λ) methods - Q(λ) and SARSA(λ) 33
2.3.4 Deep Q Networks . 33
2.3.5 Extensions to the DQN - The Rainbow DQN 38

2.4 Multi-Agent Reinforcement Learning . 41
2.4.1 MARL Taxonomy . 43
2.4.2 Challenges of Multi-Agent Reinforcement Learning 44
2.4.3 Multi-Agent Reinforcement Learning Methods 46

3 State of the Art 47
3.1 Coverage Path Planning . 47

3.1.1 Performance Metrics . 48
3.1.2 Area of Interest . 49

3.2 Exact Cellular Decomposition . 49
3.2.1 Trapezoidal Decomposition . 50
3.2.2 Boustrophedon Decomposition . 50

ix

x CONTENTS

3.2.3 Morse-Based Exact Cellular Decomposition 51
3.2.4 Online Morse-Based Decomposition . 51

3.3 No Decomposition . 52
3.3.1 Energy-Aware Back-and-Forth . 53
3.3.2 Energy-Aware Spiral . 53

3.4 Approximate Cellular Decomposition . 54
3.4.1 Wavefront Propagation Algorithm . 54

3.5 Reinforcement Learning Approaches . 55
3.5.1 Offline Q-Learning . 55
3.5.2 Distributed Multi-Agent Online Q-Learning 55
3.5.3 Work Developed by LG Electronics Advanced AI Team 56
3.5.4 DQN Methods for CPP and Data Harvesting 57
3.5.5 Patrolling the Lake Ypacarai . 57
3.5.6 PPO For Cleaning Robots . 58

3.6 Final Considerations . 58

4 System Architecture 59
4.1 Architecture . 59
4.2 Environment . 60

4.2.1 Architecture . 60
4.2.2 State . 62
4.2.3 Reward Function . 66
4.2.4 Visualization . 67

4.3 Agent . 67
4.3.1 Tabular Reinforcement Learning Agent 68
4.3.2 Deep Reinforcement Learning Agent 68

5 Online Coverage Path Planning with no Explicit Map Representation 71
5.1 Objectives and Challenges . 71
5.2 Problem Statement . 72
5.3 Methodology . 73

5.3.1 Observation Space . 73
5.3.2 Action Space . 74
5.3.3 Policy . 75
5.3.4 Reward Function . 75

5.4 Results . 76
5.4.1 Comparison Between Algorithms . 77
5.4.2 Q-Learning for Coverage Path Planning 78

5.5 Final Considerations . 79

6 Deep Reinforcement Learning for Single Agent Navigation 81
6.1 Objectives and Challenges . 81
6.2 Problem Statement . 82
6.3 Partially Observed Markov Decision Process . 83

6.3.1 Action Space . 83
6.3.2 State and Observation Space . 84
6.3.3 Reward Function . 92

6.4 Learning Algorithm . 96
6.4.1 Neural Network Architecture . 97

CONTENTS xi

6.4.2 Training Algorithm . 101
6.5 Results . 108

6.5.1 Methodology . 108
6.5.2 Full Information Coverage Path Planning 110
6.5.3 Sensor-Based Coverage Path Planning 113
6.5.4 Point-To-Point Coverage . 117
6.5.5 Comparison With State-Of-The-Art Algorithms 119

6.6 Final Considerations . 121

7 Multi-Agent Reinforcement Learning for Coverage Path Planning 123
7.1 Challenges and Objectives . 123
7.2 Problem Formulation . 124
7.3 Decentralized Partial Observable Markov Decision Process 126

7.3.1 Action Space . 126
7.3.2 Observation Space . 127
7.3.3 Reward Function . 128

7.4 Learning Algorithm . 131
7.4.1 Network Architecture and Parameter Sharing 131
7.4.2 Training Algorithm . 133

7.5 Results . 136
7.5.1 Methodology . 136
7.5.2 Comparison Between Different Reward Structures 137
7.5.3 Comprehensive Analysis of The Best Model 140

7.6 Final Considerations . 143

8 Conclusions 145
8.1 Future Work . 147

References 149

xii CONTENTS

List of Figures

1.1 Example of Swarm of UAVs for Wildfire Monitoring [1] 4

2.1 On the left is an example of a Supervised Learning algorithm, where the task is
to exclusively get knowledge from data, and on the right, an example of a Rein-
forcement Learning algorithm where a decision-making process takes place and
interacts with the data. [2] . 10

2.2 Visualization of a Perceptron . 11
2.3 A typical fully connected neural network. It is a 3-layer network with four inputs,

two hidden layers of seven neurons each, and two neurons in the output layer. . . 13
2.4 A convolution kernel of size 3×3 being used on a 5×5 image. 14
2.5 Interaction model between an RL agent and a generic environment. 17
2.6 Sequence of state, action and rewards based on the interaction between the agent

and the environment. 19
2.7 Reinforcement Learning Taxonomy. 22
2.8 The three main classes of model-free Reinforcement-Learning methods. 24
2.9 Actor-Critic Typical Architecture. 25
2.10 Representation of Generalized Policy Iteration; Up Arrows correspond to Policy

Evaluation, whereas Downwards arrows are Policy Improvement [3]. 27
2.11 A visualization of a Q-Table where Ns is the dimension of the state space and Na

is the dimension of the action space [4]. 30
2.12 A visualization of a Deep Neural Network used for approximating the state-action

value function Q(s,a). 31
2.13 The Nature DQN architecture . 38
2.14 The Proposed Dueling Network Architecture. On top is the Value Stream, with a

single output neuron, and on the bottom is the Advantage Stream, with a number
of neurons in the output layer equal to the action-space size. Image adapted from [5] 40

2.15 Interaction model in a Markov Game, N agents and a generic environment. . . . 42

3.1 Different areas of interest in CPP Tasks: a) Convex Polygon with Obstacles; b)
Non-Convex Polygon . 49

3.2 Graph representation of an area of interest with trapezoidal decomposition 50
3.3 Comparison between Trapezoidal and Boustrophedon Decomposition. The trape-

zoidal decomposition a), has more cells, needing an extra strip to cover when
compared to b). 51

3.4 Cell decomposition using Morse Function f (x,y) = x [6]. 52
3.5 Critical Points can be missed in online Morse decomposition if the agent only

performs back-and-forth motions [6]. 53

xiii

xiv LIST OF FIGURES

3.6 a) Energy-Aware Back-and-Forth Algorithm; b) Energy-Aware Spiral Algorithm
[7]. 53

3.7 Discretization of a polygonal environment with an obstacle. 54
3.8 Wavefront distance transform for start position (S) and goal (G) and the corre-

sponding coverage path [6]. 55

4.1 UML Class Diagram depicting the high-level architecture. 59
4.2 UML Class Diagram depicting the high-level architecture. 61
4.3 UML Sequence Diagram of the proposed architecture. 61
4.4 On the left is a scenario that is impossible to finish, and on the right is the same

scenario after applying the fixing algorithm. 64
4.5 Flowchart of the move_agent method. 66
4.6 An example of environment rendering with the associated color code. 67
4.7 UML Class Diagram of the Deep Reinforcement Learning Agent. 68

5.1 Example of a 10×10 environment featuring three obstacles. 73
5.2 Example of the transformation form rt → r′t . Sensor range r = 2. 74
5.3 An example of the heuristic-based modified Policy. 76
5.4 Average episode ratio in the first 100000 episodes of training in a 6× 6 with the

heuristic action . 77
5.5 Obtained results for the evaluation of the Q-Learning CPP algorithm. 79

6.1 The Navigation Spectrum Framework. 82
6.2 Example of the Action Space and Neural Network Output Layer. 84
6.3 Visualization of all types of cells. 86
6.4 Example of the map centering function on a 16×16 Map. 87
6.5 Example of a deterministic loop. The agent is stuck moving North and South with

its policy. 89
6.6 An example of Frame Stacking applied to the Map Representation Mp with K=3

Frames. 91
6.7 An example of three different states with the same evaluation. Since it is possible

to complete all the scenarios with a path that does not overlap, then the value of
the state will be zero. 96

6.8 The designed Neural Network Architecture. 97
6.9 Example of two scenarios with different difficulty levels. 103
6.10 Flowchart of the adaptive episode generation algorithm. 104
6.11 On the left, an example of a commonly agent-generated pattern, and on the right,

an example of a randomly generated pattern. 106
6.12 Example of a point-to-point path planning scenario. 109
6.13 Box plot with the overlap distribution for six sets of maps. 111
6.14 Box plot with the overlap distribution for six sets of maps, in the case of not using

the heuristic. 111
6.15 Overlap Statistics Across the Size Spectrum for Full Information Agent. 112
6.16 Occurrences of Outliers Episodes for Different Map Sizes, Not Using the Heuristic. 113
6.17 Box Plot with the Overlap Distribution for Six Sets of Maps in the Partial Observed

Scenario. 113
6.18 Overlap Statistics Across the Size Spectrum for Camera-Based Agent. 114
6.19 Comparison of Mean Overlap Between Camera and Full Information Agent. . . . 115
6.20 Comparison Between Different Sensor Range K for the Camera-Based Agent. . . 116

LIST OF FIGURES xv

6.21 Comparison Between Different Sensor Range K for the LiDAR-Based Agent. . . 116
6.22 Sensor Failure Analysis. 117
6.23 Overlap Statistics Across the Size Spectrum for Camera-Based Agent. 118
6.24 The Six Maps That Are Used In The Benchmark. 119

7.1 A typical multi-agent coverage path planning scenario on a 20× 20 map with a
group of 5 agents. 125

7.2 An illustrative example of how the Map Representation Mp changes depending on
the agent that is visualizing. To ease visualization, Agent 1 is the one on the top
right of the map, and the black background is part of the centered map representation.128

7.3 The Neural Network Architecture. 131
7.4 An illustration of centralized and decentralized schemes for learning and execu-

tion. On the left is the centralized paradigm, and on the right, is the decentralized
version. 133

7.5 The process of adapting maps to different numbers of agents. 136
7.6 Mean Time Save Factor comparison Between Models Trained With Different Strate-

gies. 138
7.7 Comparison Between Different Gain Values K for the Non-Size Invariant Reward

Structure. 138
7.8 Comparison Between Different Gain Values K for the Cooperative Size Invariant

Reward Structure. 139
7.9 Comparison Between Reward Functions For Scenarios With 5 Agents. 140
7.10 Comparision Between Old Models and Newly Trained Model. 141
7.11 Comparision Between Different Number of Agents. 142
7.12 Analysis of the robustness of the algorithm when subjected to agent failure. . . . 142

xvi LIST OF FIGURES

List of Tables

2.1 Levels of Information in Multi-Agent Reinforcement Learning. 44

4.1 Environment Configuration. 62
4.2 Available Events . 66
4.3 Hyperparameters for Configuring an Agent . 69

5.1 Training Times (s) for all used methods in both situations, with and without the
usage of the heuristic action. 78

6.1 Deep Reinforcement Learning Single-Agent Algorithm Hyperparameters. 101
6.2 Environment Configurations for Curriculum Training on the Single-Agent Full

Information Setting. 107
6.3 Environment Configurations for Curriculum Training on the Single-Agent Camera

Settings. 108
6.4 Comparing overlap (%) of state-of-the-art CPP algorithms. 120

7.1 Multi-Agent Algorithm Hyperparameters . 134
7.2 Environment Configurations for Curriculum Training 135

xvii

xviii LIST OF TABLES

Abbreviations

A3C Asynchronous Advantage Actor-Critic
ACER Actor-Critic with Experience Replay
AI Artificial Intelligence
ALE Atari Learning Environment
ANN Artificial Neural Network
CNN Convolutional Neural Network
CPP Coverage Path Planning
CTDE Centralized Learning Distributed Execution
DAG Directed Acyclic Graph
DDPG Deep Deterministic Policy Gradient
Dec-POMDP Decentralized Partially Observed Markov Decision Process
DFS Depth-First Search
DNN Deep Neural Networks
DQL Double Q-Learning
DQN Deep Q Network
DQN-PER Deep Q Network with Prioritized Experience Replay
E-BF Energy-Aware Back-and-Forth
E-Spiral Energy-Aware Spiral Algorithm
GPI Generalized Policy Iteration
GUI Graphical User Interface
IQR Inter-Quartile Range
LiDAR Light Detection and Ranging
MADDPG Multi-Agent Deep Deterministic Policy Gradient
MARL Multi-Agent Reinforcement Learning
MAS Multi-Agent Systems
MDP Markov Decision Process
MSE Mean Square Error
MRP Markov Reward Process
Nash Equilibrium NE
Neural Network Neural Network
NSI Non Size Invariant
PBRS Potential-Based Reward Shaping
POMDP Partially Observed Markov Decision Process
POMG Partially Observed Markov Game
POI Point of Interest
PPO Proximal Policy Approximation
ReLU Rectified Linear Unit
RL Reinforcement Learning

xix

xx Abbreviations

SARSA State-Action-Reward-State-Action
SGD Stochastic Gradient Descent
SI Size Invariant
SLAM Simultaneous Location and Mapping
UAV Unmanned Aerial Vehicle
UML Universal Modeling Language

Chapter 1

Introduction

1.1 Context

The number of intelligent autonomous systems has been increasing in recent years as advances in

electronics and Artificial Intelligence (AI) has allowed the systems to take on more challenging and

complex tasks. The next natural step of evolution for these kinds of systems is to communicate and

cooperate with each other, forming Multi-Agent Systems (MAS). Having systems composed of

more than one entity (agent) has inherent advantages as it unlocks more complex tasks, coexistence

with other agents while having more redundancy and overall efficiency.

Despite these advantages, MAS have a lot of complex problems to overcome before their use

can become widespread. As the number of agents increases, so does the complexity of the system,

having constraints imposed by limitations of the communication network, sensor uncertainty, and

the inherent difficulty of decision-making over a large number of variables, some of which are not

observable by the agent.

Multi-agent systems find applications in a variety of domains ranging from swarm robotics,

distributed control, resource management, collaborative decision support systems, and data mining

[2]. For the purpose of this dissertation, the application considered will be swarm robotics, mainly

developing algorithms for robotic navigation, while giving special attention to the Coverage Path

Planning (CPP) problem, where the main goal is to compute collision-free paths that pass through

all points of an area or volume [6].

Coverage Path Planning is a hard problem to solve, being classified as NP-Hard in terms of

complexity [7]. Naturally, the problem in a multi-agent setting is also NP-Hard, but also signif-

icantly more complex and harder to solve. In literature [6, 7, 8] there are many approaches to

solving this problem in a single-agent setting, however, it is quite lacking in multi-agent solutions

and most of them are heuristic or graph-based, requiring full information of the environment and

having poor performance in dynamic environments.

One of the most interesting solutions that are emerging for decision-making and control in

robotics is Reinforcement Learning (RL) [9], and recent advancements in this research domain

1

2 Introduction

show potential to solve complex and dynamic problems [2] such as Multi-Agent Coverage Path

Planning (mCPP).

The work developed in this dissertation is a novel approach to Robotic Navigation and Path

Planning. It will introduce an unifying approach to robotic navigation tasks, where instead of using

a specific algorithm for a specific situation, an intelligent agent with competencies in navigation is

able to extract semantic information from a map representation and complete multiple navigation

tasks. These tasks include Coverage Path Planning, Active-Exploration or Sensor-Based Coverage

Path Planning, and Point-To-Point Path Planning either in single-agent or multi-agent scenarios.

The intelligent agents will be developed by leveraging Machine Learning techniques such as

Deep Reinforcement Learning (DRL) and Multi-Agent Reinforcement Learning (MARL). As far

as the author’s knowledge, it will be the first work in the literature to develop a generic reinforce-

ment learning-based algorithm for single and multi-agent robotic navigation on 2D Spaces and

provide results on its capabilities to generalize to different maps, starting positions, number of

obstacles, sensor type and range, tasks, and number of agents.

1.2 Motivation

In recent years, there have been incredible breakthroughs in Reinforcement Learning, mainly due

to the increase in the availability of computational power and the development of Deep Learn-

ing methods [10]. These methods rely on Deep Neural Networks (DNNs), which are function

approximators that enable algorithms to work on high-dimensional data, bringing significant de-

velopments to various research topics in Machine Learning.

Although there has been a recent rise in the prominence of Reinforcement Learning in the

last decade, the field has already achieved impressive results decades ago. In 1995, the algorithm

TD-Gammon achieved super-human performance, being capable of beating world-class players to

the point where the best players now play positions inspired by TD-Gammon [11]. More recently,

the AlphaGo Series marks a huge milestone in single-agent decision-making problems, as an RL

agent trained through self-play achieved super-human performance in the game of Go [12], which

has a search space of 10761[2]. Later, in 2018, the AlphaGo algorithm was generalized to a single

general algorithm, Alpha Zero, that achieved world-class levels of performance in chess, shogi,

and naturally Go [13].

These impressive results in single-agent Reinforcement Learning were soon followed by sig-

nificant achievements in Multi-Agent Reinforcement Learning, first by the algorithm AlphaStar,

achieving a performance level higher than 99.8% of players [14] in Starcraft II. This multiplayer

game has its own professional league, in which the agent has to control thousands of units and

make high-level economic decisions in a planning horizon that is thousands of actions long while

having only imperfect information [14]. Another impressive feat of MARL is in the game Dota2,

in which the RL agent has not only to cooperate with four agents that are part of his team but

also to compete with five agents in the enemy team. In this context, the OpenAI Five achieved

1.2 Motivation 3

super-human performance, defeating the 2019 reigning world champions, once again showing the

potential of Reinforcement Learning in difficult decision-making problems [15].

Motivated by the successes of Reinforcement Learning in these problems, this dissertation

aims to extend the RL methodologies to Robotic Navigation Tasks. This class of problems has

many applications that are useful for society and can be greatly improved by the combination of

introducing multiple agents and reinforcement learning. Despite this document being focused on

navigation as a whole, most of the focus, especially on the Multi-Agent setting, will be towards

Coverage Path Planning, as it is the most complete and complex task, and an intelligent agent

capable of performing it a near-optimal level should be able to complete similar, less demanding

navigation tasks. The next subsection will present applications of Multi-Agent Coverage Path

Planning to contextualize the importance of this work further.

1.2.1 Applications

Coverage path planning is a common task in robotics that consists of computing collision-free

paths that cover all points of interest (POI) of a determined area or volume. It has varied applica-

tions in cleaning robots [16], agriculture [17], surveillance and monitoring [18], photogrammetry

[19], search and rescue [20], exploration and mapping [21], structural inspection [22], and wire-

less sensor networks [23] to name a few. Some more specific applications that were the motivation

for the work in this dissertation will be presented below in more detail.

1.2.1.1 Wildfire Monitoring and Prevention

In the year 2022, Europe experienced the highest number since 2006, with a burnt area that is

over 8600 km2 [24], corresponding to more than four times the size of the Porto Metropolitan

Area. Besides the economic damage caused by wildfires, in 2021 alone, more than 1000 km2 were

burnt in protected areas of Europe’s Natura 2000 network, causing long-lasting effects in Europe’s

biodiversity reservoirs [24].

In the JRC Technical Report - Forest Fires in Europe, Middle East, and North Africa 2021

[24], it is mentioned that 96% of wildfires are man-made. Therefore, most of the measures to

mitigate the wildfire problem are preventive. One of the mentioned measures is "the development

of early warning and information systems for wildfires" [24], in which a solution based on UAV

long-term coverage of critical areas would help towards this cause.

This research problem was already approached in literature with classical methods such as

Kalman Estimation and swarm consensus protocols [25] and leader-follower swarm topology [1].

Another approach based on the Deep Reinforcement Learning techniques was also explored in

[26].

4 Introduction

Figure 1.1: Example of Swarm of UAVs for Wildfire Monitoring [1]

1.2.1.2 Long-Term Monitoring and Patrolling

One advantage of using multiple robots for coverage path planning is the long-term potential of

operations and the cooperation between agents with different attributes and capabilities. The usage

of reinforcement learning techniques can be of great value for these types of problems, as it can

merge the cooperation between agents with the extraction of features from sensor data.

In [27], the authors develop a DRL-based algorithm for patrolling areas with different coverage

requirements. On the other hand, in [18], a learning-based algorithm for persistence surveillance

was developed, with an emphasis on a more military application, where the agent tries to find

targets in an area while being risk-aware of the surrounding environment.

Another interesting application for long-term monitoring is data harvesting. In this task, the

goal of the robots is to collect data from several Internet of Things devices distributed in the envi-

ronment. It is interesting in scenarios where the devices are in an area without connectivity, and the

robot can operate as a data mule. In [28], the author developed a DRL algorithm that can perform

the data harvesting task and also perform a generic coverage path planning task, demonstrating

that the reinforcement learning framework has the potential for adapting to dynamical scenarios

and is capable of generalization.

1.3 Objectives

In light of the context and motivation outlined in the previous sections, the primary objective

of this dissertation is to develop algorithms for robotic navigation tasks based on reinforcement

learning methodologies. From these tasks, cases of point-to-point path planning, coverage path

planning, and active exploration will be considered, with special attention to the coverage path

planning task. The problems will be formulated in a comprehensive and unifying view, where the

algorithm should be able to complete any of the mentioned tasks with proficiency. The robotic

1.4 Contributions 5

navigation will also be extended to cooperative multi-agent scenarios to augment the algorithm’s

potential. Overall, the goals of this dissertation can be summarized in the following items:

1. Conduct a literature review on Reinforcement Learning Methodologies, Coverage Path

Planning approaches, and the intersection of both.

2. Develop a sandbox Gym-like 1 environment for robotic navigation tasks on 2D Grid Worlds.

3. Study and formulate a solution based on classical reinforcement learning methods for sensor-

based coverage path planning that can cope with the large state space.

4. Design and develop a Deep Reinforcement Learning framework for generic robotic naviga-

tion, test its generalization capabilities and proficiency on different scenarios and compare

it to other state-of-the-art approaches on the Coverage Path Planning task.

5. Extend the single-agent framework to a Multi-Agent Reinforcement Learning method fo-

cused on solving Multi-Agent Coverage Path Planning.

1.4 Contributions

From the work developed in this dissertation, the following contributions to the field of Artificial

Intelligent Robotics were made:

1. Conducted a review of the existing literature on Reinforcement Learning, Multi-Agent Re-

inforcement Learning, Coverage Path Planning, and their intersection.

2. Developed an open-source customizable Gym-like Reinforcement Learning environment

that can be used for any generic navigation task on 2D Grid Worlds 2.

3. Developed an algorithm based on Classical Reinforcement Learning methods and Heuris-

tics to solve the sensor-based coverage path planning task without using an explicit map

representation.3

4. Formulated the Robotic Navigation Problem as a unified Partial Observed Markov Decision

Process with a generalizable and map-size invariant value function.

5. Implemented the state-of-the-art Deep Reinforcement Learning Method Rainbow DQN and

customized the architecture and training algorithm to fit the robotic navigation paradigm.

6. Introduced a dataset for benchmarking of Coverage Path Planning algorithms 4.

1OpenAI Gym Documentation: https://gymnasium.farama.org/
2https://gitlab.com/jpfpc/drl_cpp/-/tree/main/src/Environment?ref_type=heads
3https://github.com/Jose-PCarvalho/GridWorld-RL
4https://gitlab.com/jpfpc/drl_cpp/-/tree/main/maps/datasets?ref_type=heads

https://gymnasium.farama.org/
https://gitlab.com/jpfpc/drl_cpp/-/tree/main/src/Environment?ref_type=heads
https://github.com/Jose-PCarvalho/GridWorld-RL
https://gitlab.com/jpfpc/drl_cpp/-/tree/main/maps/datasets?ref_type=heads

6 Introduction

7. Developed an algorithm that can perform single-agent point-to-point path planning, cover-

age path planning, and active exploration at a near-optimal level from any scenario. This

algorithm outperforms other state-of-the-art approaches.

8. Extended the single-agent formulation to a Decentralized Partial Observed Markov Decision

Process for the Multi-Agent Approach.

9. Introduced various reward structures for the cooperative coverage path planning problem

and compared their performance.

10. Adapted the Rainbow DQN for multi-agent settings using the Parameter Sharing Technique.

11. Developed a Multi-Agent Reinforcement Learning based algorithm that can perform coop-

erative coverage path planning without explicit limitation on the number of simultaneous

agents. The algorithm works with minimal information sharing and synchronization and

displays significant cooperation skills between agents.

Additionally, a conference paper has been derived from this research and accepted for publica-

tion at the 23rd IEEE International Conference on Autonomous Robot Systems and Competitions

(ICARSC2023) with the title "A Reinforcement Learning Based Online Coverage Path Planning

Algorithm" [29]. Furthermore, two additional journal publications on the single-agent and multi-

agent approaches detailed in this dissertation are currently in progress and will be published in due

course.

1.5 Dissertation Outline

Besides the Introduction, the remainder of this document is structured as follows:

• Chapter 2 presents the necessary theoretical background on Machine Learning, Reinforce-

ment Learning, and Multi-Agent Reinforcement Learning.

• Chapter 3 analyzes the existing literature on classical methods for coverage path planning

and the current state-of-the-art Reinforcement Learning algorithms for coverage path plan-

ning. It also identifies gaps and opportunities for further research.

• Chapter 4 delineates the system architecture and the software developed for the Reinforce-

ment Learning Environment.

• In Chapter 5, a case study on Tabular Temporal Differences Reinforcement Learning Al-

gorithms for sensor-based Coverage Path Planning without Explicit Map Representation is

presented and analyzed.

• Chapter 6 delves into the development of a Deep Reinforcement Learning-based solution

for generic robotic navigation, presenting results and comparisons with other state-of-the-

art approaches.

1.5 Dissertation Outline 7

• Chapter 7 presents the culmination of all the research conducted in this dissertation, extend-

ing the single-agent approach to a versatile multi-agent reinforcement learning algorithm

for Coverage Path Planning.

• Chapter 8 provides the main conclusions drawm from this dissertation and outlines future

work.

8 Introduction

Chapter 2

Background

This chapter aims to give the reader a comprehensive explanation and description of the theoret-

ical background necessary through this document. With this objective in mind, this chapter is

divided into four sections. First, Section 2.1 gives a brief introduction to the fundamental concepts

of Machine Learning algorithms. Afterward, Section 2.2 introduces serves as an introduction to

Reinforcement Learning and its theoretical background. That is followed by Section 2.3, where

the previous concepts are expanded into the main learning framework that is used in this disserta-

tion, Value-Based Reinforced Learning Methods. This chapter ends by exploring the Multi-Agent

Reinforcement Learning paradigm in Section 2.4.

2.1 Machine Learning

The concept of Machine Learning (ML) can be seen as algorithms that transform raw data into

knowledge [2]. A simple example of such an algorithm is a computer program that receives

as input an image of a cat or a dog and gives as output the animal that was identified (Figure

2.1). In recent years, this domain of research has seen multiple breakthroughs, mainly due to the

increasing computational power available and the introduction of Deep Neural Networks (DNNs)

as a function approximator [10].

In Machine Learning, there are three types of learning algorithms: Supervised Learning, Unsu-

pervised Learning, and Reinforcement Learning (RL). The example given earlier is a classic usage

of supervised learning, being that these kinds of algorithms are the ones that are most commonly

associated with ML. In terms of differences between the first two classes of learning, the main

difference is the existence of labeled data, where supervised learning algorithms need labeling of

the data to extract hidden knowledge. In contrast, unsupervised learning algorithms try to find

hidden patterns in the data in order to analyze and cluster the data into groups. Finally, Reinforce-

ment Learning operates within an interaction loop with an environment. This loop provides raw

data to the algorithm, which it subsequently analyses to make informed decisions. This process

creates a feedback loop where the decisions made based on previously acquired knowledge shape

the algorithm’s interpretation of new data.

9

10 Background

Figure 2.1: On the left is an example of a Supervised Learning algorithm, where the task is to
exclusively get knowledge from data, and on the right, an example of a Reinforcement Learning
algorithm where a decision-making process takes place and interacts with the data. [2]

This section will provide the essential background for understanding various Machine Learn-

ing algorithms. The emphasis will be on the foundational concepts of a Deep Learning framework,

particularly concerning Artificial Neural Networks (ANNs), and their utilization in the creation of

learning algorithms.

2.1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are data processing systems consisting of nodes and connec-

tions in an architecture inspired by the cerebral cortex portion of the brain [30]. In the context of

machine learning, ANNs are formally described as weighted directed-acyclic graphs, where each

edge of the graph carries a specific weight. From a mathematical perspective, a Neural Network

(NN) can be considered a parameterized non-linear function f (x,θ), where the parameter θ can

be tuned to approximate a specific target function.

2.1.1.1 The Perceptron

The fundamental building block of an Artificial Neural Network is the Perceptron or neuron, a

simplified mathematical model of a biological neuron, first introduced by Frank Rosenblatt [31].

A perceptron functions as a linear map from RN → R, transforming an input vector x ∈ RN into

an output scalar value o ∈ R, resulting in:

o = ∑
i

wixi +b, (2.1)

2.1 Machine Learning 11

where w and b are the weights and biases which can be adjusted to fit the target function. In this

document, the set of weights and biases, or in other words, the parameters of the network, will be

referred to as θ for simplicity of notation.

The linear transformation depicted in (2.1) can be followed by a non-linear activation function

to enhance the approximation capabilities of the neural network. An illustration of the perceptron

can be seen in Figure 2.2.

Figure 2.2: Visualization of a Perceptron1

.

2.1.1.2 Activation Functions

While neurons serve as linear maps converting an input vector to an output scalar, the effectiveness

of a neural network can be enhanced by incorporating non-linearities. This nonlinearity is intro-

duced by using an activation function f on the neuron’s output f (o). Although any mathematical

operation can serve as an activation function, it should be differentiable, or at least piece-wise

differentiable, to facilitate gradient computation. Some of the most common activation functions

are:

Sigmoid: The sigmoid function, often used as an activation function in neural networks, has

characteristics resembling the behavior of biological neurons due to the saturating nature of the

function. This function is a special case of the logistic function and can be defined as:

f (x) =
1

1+ e−x (2.2)

However, this function has certain limitations. It’s not zero-centered, and the gradient approaches

zero at both ends of the function (saturating regions), which can lead to slower convergence during

the training process. These issues are often referred to as the vanishing gradients problem.

ReLU: The Rectified Linear Unit (ReLU) has emerged as one of the most essential and popular

activation functions in recent years. Not only is it less computationally intensive than many other

functions, but it also significantly accelerates the convergence speed of the learning process [32].

f (x) = max(0,x) (2.3)

1Image taken from http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

12 Background

However, ReLU has a limitation. Because the function outputs zero for all negative inputs, in

some situations, a parameter update can cause a neuron to output zero regardless of the input – a

state often referred to as a "dying ReLU". This can significantly slow down the learning process

and can cause non-convergence. To mitigate this issue, variants of the ReLU function, such as the

Leaky ReLU, have been proposed. Leaky ReLU introduces a small slope α on the left half plane,

which can prevent this problem. However, the effectiveness of this technique is not consistent.

f (x) =

x if x > 0,

αx otherwise,
(2.4)

Tanh: The tanh function has very similar properties to the sigmoid but is, in general, an im-

provement over it. It maps the inputs into an output bounded in [−1,1], making it zero-centered.

However, the saturation makes it so that the gradients will still be small in those regions.

f (x) = tanh(x) =
ex− e−x

ex + e−x (2.5)

The selection of an activation function is often not trivial and remains an active area of research.

2.1.1.3 Architecture of a Neural Network

A neural network can be thought of as a collection of neurons organized into multiple layers. Each

neuron takes in inputs, processes them, and then forwards the output to units in the subsequent

layer. Crucially, these connections are directed (meaning information flows in one direction),

and no loops or cycles are allowed. This arrangement, which prevents the creation of infinite

loops during the input feeding process, makes the network a type of structure known as a directed

acyclic graph (DAG). A typical neural network has the following organization of layers:

• Input Layer: This layer serves as the interface between the neural network and external

input. Typically, the number of neurons in this layer corresponds to the number of input

scalars.

• Hidden Layer: It is considered a hidden layer, any layer that is in between the input and

output layers. Its size can be arbitrarily big or small, depending on the needs of the problem.

• Output Layer: The final layer of the network, its size reflects the dimension of the function

the network is approximating. Its activation function needs to be selected accordingly. For

instance, in a binary classification problem, a single neuron with a sigmoid function might

be used.

Whenever all the neurons of a previous layer are connected to every neuron of the next layer,

the architecture is known as a fully connected network (or layer if it is not consistent throughout

the whole network). A fully connected network example can be visualized in 2.3.

2.1 Machine Learning 13

Figure 2.3: A typical fully connected neural network. It is a 3-layer network with four inputs, two
hidden layers of seven neurons each, and two neurons in the output layer.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specific class of neural networks optimized for pro-

cessing structured grid data, notably images. They utilize a set of convolutional filters or kernels

with learnable weights, making them especially effective in feature extraction from structured

data. This approach is superior to traditional methods that rely on manually tuned convolution

filters and hand-picked features, as CNNs can also learn the most beneficial features directly from

the data. Similar to Artificial Neural Networks, CNNs are organized in layers, each hosting its

unique set of filters. The filters have key hyperparameters that the user needs to define. These

parameters include the size of the kernel, the stride (which determines the step size that the filter

moves after each computation), the type of padding (if any), and the number of filters in the layer.

It is important to note that while convolution filters can theoretically be n-dimensional, the

ones most commonly available in popular Machine Learning libraries are 1D, 2D, and 3D. Among

these, 2D convolution filters are the most widely used due to their applicability in image processing

and computer vision tasks. Figure 2.4 provides a visualization of the effect of a 2D kernel filter on

an image.

After the convolution operation, it is common practice to apply an operation to the resulting

values. This process, known as pooling, can be understood as a form of downsampling that helps

to make the output invariant to small translations and rotations and reduces the amount of data to

be processed by following layers. The most common types of pooling are Average Pooling and

Max Pooling, which respectively compute the average and maximum value of a particular patch

of the output.

In Average Pooling, an averaging kernel is used in the output, calculating the average of var-

ious patches, which provides a smoothing effect. Conversely, Max Pooling selects the maximum

2Image Taken from https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+
1T2019/courseware/Week8/ .

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week8/
https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week8/

14 Background

Figure 2.4: A convolution kernel of size 3×3 being used on a 5×5 image.2

value from each patch, preserving the most significant features while reducing the spatial size of

the output.

In addition to pooling operations, activation functions can also be applied to introduce non-

linearity into the model. Due to its efficacy and computational efficiency, the ReLU function is

one of the most commonly used activation functions in convolutional networks. These additional

steps contribute to the ability of CNNs to learn complex patterns and features from input data

effectively.

2.1.3 Learning Process

The remaining question is how to adjust the learnable parameters θ to achieve the desired purpose

of the network. Then, the learning process of any machine learning algorithm can be seen as an

optimization problem, where the objective is to find the optimal set of parameters θ for the specific

approximation task. This is usually done by minimizing a Loss Function.

2.1.3.1 Loss Functions

Considering that the neural network represented by ŷ = f (x,θ) approximates the function y, one

can define a loss or cost function to quantify how well the neural network fits the target function.

Many candidate loss functions exist, such as the Mean Square Error (MSE), Cross-Entropy Loss,

Kullback-Leibler Divergence, etc. Now focusing on the most simple and popular one, the Mean

Square Error, consider a vector y ∈RN consisting of N data points sampled on the target function,

and the vector ŷ ∈ RN with the N corresponding data points approximated by the neural network,

one can define the Loss Function L(θ) as:

2.1 Machine Learning 15

L(θ) =
1
N

N

∑
i=1

[yi− ŷi]
2

=
1
N

N

∑
i=1

[yi− f (x,θ)]2
(2.6)

Some small variations to the MSE loss can be made, leading to other loss functions, such as

the Smooth L1 Loss. This function can make the loss less sensitive to outliers and in some cases

prevents exploding gradients [33]

L(θ) =

0.5 · (y− ŷ)2 if |y− ŷ|< β ,

|y− ŷ|−0.5β otherwise.
(2.7)

In this function, a squared loss term (analogous to MSE) is used when the absolute difference

between the target and predicted values (L1 norm) falls below a predefined threshold, denoted by

the hyperparameter β . Conversely, an L1 term is applied when this difference exceeds β . The

utility of this function lies in its ability to combine the benefits of both MSE and L1 loss types,

thereby accommodating both small and large errors effectively in different scenarios.

2.1.3.2 Backpropagation

After defining a loss function, the problem can be transformed into an optimization task. Here, the

optimization objective can be represented as follows:

min
θ

L(θ), (2.8)

where the goal is to identify the optimal set of parameters, θ , that would minimize the loss func-

tion. A common method to achieve this is by using gradient-based techniques such as Stochastic

Gradient Descent (SGD) or ADAM. Assuming the Mean Squared Error (MSE) as the loss function

as defined in equation 2.6, the gradient with respect to θ can be expressed as:

∇θ L(θ) =− 2
N

N

∑
i=1

(yi− f (xi,θ)) ·∇θ f (xi,θ). (2.9)

In the above equation, ∇θ f (xi,θ) denotes the derivative of the network output with respect to

its parameters. Considering the gradient defined in equation (2.9), it is possible to do a gradient

descent step by following:

θi+1 = θi−α∇θ L(θ), (2.10)

in which the hyperparameter α > 0 is the gradient-step size or learning rate. This value must be

small enough to ensure smooth parameter updates yet large enough to facilitate a rapid conver-

gence. Please note that a negative sign is added to the gradient term to follow the direction that

leads to a decrease in the loss function, which is the aim of the optimization process.

16 Background

The derivative of the network with respect to its parameters ∇θ f (xi,θ) is calculated using

a technique called backpropagation. The name "backpropagation" comes from how the method

operates: it calculates the gradient by moving backward through the network, starting from the

output layer to the input layer, applying the chain rule to compute the derivative of each layer’s

output with respect to its input. This process is automated in automatic differentiation libraries

such as PyTorch and TensorFlow3 4.

2.1.3.3 Strategies for Learning

A spectrum of learning strategies exists in most Machine Learning algorithms, particularly in

training neural networks. At one end of this spectrum is Batch Learning, with Online Learning

standing at the opposite end.

Batch Learning refers to a training approach in which the entire dataset is utilized to compute

the gradient of the loss function for each iteration during the model’s training process. In other

words, model parameters are updated only once the entire dataset has been processed. This method

offers better computational efficiency as large operations can be parallelized or distributed. How-

ever, batch learning may not be an adequate choice when dealing with rapidly changing datasets

or scenarios that require a real-time response.

On the other hand, Online Learning involves a process where model parameters are updated

after each individual data point in the dataset is processed. Generally, these methods are more

computationally demanding, hence slower. They also typically exhibit slower rates of conver-

gence.

Despite the polarities of these two strategies, a middle ground does exist - Mini-batch Learn-

ing. In this strategy, the hyperparameter M for mini-batch size replaces the need to process the

whole dataset or a single data point at a time. Instead, a batch of size M is used to update the

model parameters. This approach enables a compromise between the advantages and disadvan-

tages associated with batch and online learning methods.

2.1.3.4 Transfer Learning

Transfer Learning is a method used in Machine Learning where a model initially developed for

a specific task is repurposed to perform a related yet distinct task [34]. The objective of this

technique is to leverage the knowledge gained during the initial task to enhance performance and

potentially accelerate the parameter optimization process during the subsequent task.

The level of similarity between the initial and subsequent tasks largely determines the degree

of modification required for the model and the amount of time needed to re-adapt it. It is also

important to note that the model architecture must be suited for both situations. For example, if

the input type or shape changes, the model might have to suffer more substantial changes that

might undermine the utility of Transfer Learning.

3https://pytorch.org/ , https://www.tensorflow.org/ .
4These libraries are more than just automatic differentiation libraries. They are comprehensive machine learning

frameworks that provide end-to-end tools for building and deploying machine learning models.

https://pytorch.org/
https://www.tensorflow.org/

2.2 Reinforcement Learning 17

2.2 Reinforcement Learning

Reinforcement Learning (RL), unlike other Machine Learning algorithms, is intrinsically goal-

oriented. It is essentially a decision-making framework wherein an agent seeks to understand the

system’s behavior and determine how it should act optimally to achieve a specified goal, usually

through a trial-and-error approach. This learning process can be succinctly represented through

the following sequence of steps:

• Observe the environment through raw data (observation).

• Deciding the optimal action based on the most recent observation, the existing model, and

the overarching goal.

• Update the model based on the taken action, the previous and new state, and the received

reward.

A visualization of the interaction loop between an RL agent and the environment can be seen

in Figure 2.5. It is essential to note that the "model" is inherent to the agent and serves as its

decision-making tool, and is not necessarily a model of the environment. Furthermore, this model

is continuously updated throughout the agent’s interactions with the environment.

Figure 2.5: Interaction model between an RL agent and a generic environment.

2.2.1 Markov Decision Processes

As mentioned, a reinforcement learning agent tries to find the optimal set of actions that maximize

its long-term reward, which can be seen as achieving the goal in an optimal way. This problem is

formalized as a Markov Decision Process (MDP), which can be defined by the tuple ⟨S,A,P,R,γ⟩
[2]:

• S - Set that contains all states s of the environment.

• A - Set that contains all possible actions a of the environment.

• P: S×A→ S - State Transition Probability Function; Given a state s ∈ S and an action

a ∈ A, the probability of the state being s′ ∈ S in the next time step is given by P.

18 Background

• R: S×A× S→ R - Reward function; Given the action-state pair (s,a) ∈ (S,A) and the

next state s′ ∈ S, the function returns a scalar value corresponding to the reward of the state-

transition.

• γ - Discount Factor; a scalar value in [0,1], representing the discount factor for future re-

wards. Note that if γ = 1, the value of any future reward is equivalent to the next immediate

reward. Conversely, if γ = 0, all future rewards are disregarded, considering only the imme-

diate reward.

Markov Decision Processes, therefore, provide a robust framework for modeling decision-

making problems in stochastic domains. They characterize an agent that synchronously interacts

with an environment, receiving the environmental state as input and returning an action as output,

which in turn influences the state. It should be highlighted, however, that while the effect of the

action on the future state embodies inherent uncertainty, the current state is entirely deterministic,

as the agent maintains full observability.

2.2.1.1 Partially Observed Markov Decision Processes

In certain scenarios, the agent lacks full observability of the state, resulting in Partially Observed

stochastic domains. Drawing parallels between stochastic optimization and modern control the-

ory, there are control challenges wherein obtaining measurements over the entire state space is

unfeasible. As such, observers and state-estimation techniques are used to retrieve the missing in-

formation. Analogously, in situations of state uncertainty within a Markov Decision Process, the

problem is formulated as Partially Observed Markov Decision Processes (POMDP) [35], defined

by the tuple ⟨S,A,P,R,Ω,O,γ⟩:

• S, A, P, R, γ - Describe the Markov Decision Process.

• Ω Set that contains all the observations the agent can experience.

• O : S→Ω: Is the observation function, which maps the current state s to the observation of

the agent o.

It is worth noting, however, that the observation function O is modeled as in [28], which is a

simplified approach to POMDPs, where the observation solely depends on the current state and

the agent’s observation mechanisms. In a more comprehensive approach [35], the observation

function can be modeled as O : S×A→ Π(Ω), which yields a probability distribution over pos-

sible observations for any action a and subsequent state s′. Hence, the probability of observing o

given the subsequent state s′ and the executed action a is denoted as O(s′,a,o). Throughout this

document, the simplified approach will be employed, and for the sake of simplifying notation, the

state s will represent all types of MDPs, unless explicitly stated otherwise.

2.2 Reinforcement Learning 19

2.2.1.2 Markovian Propriety

A Markov Decision Process is a specific formulation of a class of stochastic processes known

as Markov Chains [36]. Markov Chains provide an interesting framework to study and analyze

discrete event systems and stochastic processes in general.

The main characteristic of a Markov Chain is that it is memoryless, which in this situation

is also called Markovian Propriety. In practical terms, it implies that the probability P of the

following state being st+1 ∈ S only depends on the current state s.

P[St+1 = st+1|St = st ,St−1 = st−1, ...,S0 = s0] = P[St+1 = st+1|St = st] (2.11)

2.2.1.3 Interaction between Agent and Environment

Unlike a regular Markov Chain, an MDP is conditioned by the interaction between an agent and

the environment. For the sake of simplicity, it will be assumed that the agent can observe the whole

state space. As for the interaction, at each time step t, the agent observes the environment state

st , and executes an action at . This action is chosen based on the policy π of the agent. Without

loss of generality, a policy can be defined as a stochastic function that maps states into actions

π : S→ ∆(A), where ∆(.) denotes the probability simplex [2]. Meaning that one can specify the

probability distribution over actions given states as:

π(a|s) = P[At = at|St = st] (2.12)

After every action, the environment transitions into the next state st+1 with probability P(st+1|st ,at),

and a scalar reward is given to the agent based on the reward function R(st ,at ,st+1). A general

finite interaction between an agent and the environment can be seen in Figure 2.6.

Figure 2.6: Sequence of state, action and rewards based on the interaction between the agent and
the environment.

2.2.1.4 Value Functions

As seen in the previous subsection, at each time step t, the agent receives a scalar reward Rt .

When considering the evolution of the process over a larger time horizon, one can look into the

cumulative reward obtained by the agent. As such, the cumulative reward Gt at the time step t is

20 Background

defined as:

Gt = Rt+1 + γRt+2 + γ
2Rt+3 + ...=

∞

∑
k=0

γ
kRt+k+1 (2.13)

The discount factor γ , gives the possibility of changing the value of future rewards. If γ = 1,

then future rewards are valued just as much as the next, and if γ = 0 then only the next reward is

considered. This factor is natural for these kinds of learning algorithms, as it is a natural behavior

in decision-making and cognitive models found in animals and humans to give more value to

proximal rewards [3].

Without loss of generality, a state value-function v(s) : S→ R can be defined as:

v(s) = E[Gt |St = s] (2.14)

The state value function is the value of cumulative rewards that the agent is expected to receive

if it is in state s at a time t. As the analysis is based on MDPs 5, the value function is dependent

on the policy that the agent is following, and therefore the value function is usually defined as

Vπ(s) = Eπ [Gt |St = s]. In an intuitive way, this function tells the agent the value, as in the future

cumulative rewards, of being in the state s and following the policy π .

On the other hand, one might also define the state-action value function that gives information

regarding how good is taking action a when in state s, and then continue following policy π as

Qπ(s,a) :

Qπ(s,a) = Eπ [Gt |St = s,At = a] (2.15)

These equations can be expressed recursively by using the Bellman Expectation function [37].

It decomposes the value functions into immediate reward plus the discounted value function of the

successor state. For the state-value function, it can be written as:

Vπ(s) = Eπ [Rt+1 +
∞

∑
n=1

γ
nRt+n+1|St = s]

= Eπ [Rt+1 + γVπ(st+1)|St = s]

(2.16)

As for the state-action value function, yields:

Qπ(s,a) = Eπ [Rt+1 +
∞

∑
n=1

γ
nRt+n+1|St = s,At = a]

= Eπ [Rt+1 + γQπ(st+1,at+1)|St = s,At = a]

(2.17)

2.2.1.5 Solving Markov Decision Processes

By analyzing the Markov Decision Process formulation, one can infer that the overall goal of

using this setup is to find a policy that maximizes the overall expected cumulative reward. This

5The value function presented in equation 2.14 is derived from Markov Reward Processes (MRPs), which would
be the equivalent of an MDP where the agent can not take any actions, making the state transitions purely stochastic.
However, since any MDP can be reduced to an MRP, it is the most generic way to represent a value function.

2.2 Reinforcement Learning 21

framework intuitively gives rationality to the agents, as based on the expected utility theory [38],

rationality can be modeled as the maximization of an expected value, in other words, a rational

agent will always choose the action that maximizes the expected utility.

With this goal in mind, and using the Bellman Optimality Equation, the state-value function

can be re-written as:
v∗(s) = max

a
Ra

s + γ ∑
s′∈S

Pa
ss′v∗(s

′)

= max
π

vπ(s)

= max
a

Q∗(s,a)

(2.18)

For the case of the state-action value function, we obtain:

Q∗(s,a) = Ra
s + γ ∑

s′∈S
Pa

ss′ max
a′

Q∗(s′,a′)

= max
π

Qπ(s,a)
(2.19)

Reinforcement Learning is one of the methods used to solve Markov Decision Processes,

where the agent learns the optimal policy through trial and error. The process is based on turning

the information gained through interaction with the environment into knowledge about the dy-

namics of the environment. The following subsection will present a brief overview of the existing

reinforcement learning methods.

2.2.2 Reinforcement Learning Methods

Reinforcement Learning algorithms can be seen as a subset of Machine Learning concerned with

learning to make a finite set of decisions over an environment. In this setting, there are two main

classes: 1) One that can learn to make decisions without any explicit knowledge (a model) of the

environment, which is model-free; and 2) those that use a model, learned or not, to plan a solution

for the problem, being this approach called model-based.

A model-based approach to Reinforcement Learning can naturally seem the better choice, as

having a model may allow one to transfer knowledge to different tasks and to plan a task better

than a model-free approach could. However, having an accurate model of the environment can

be a challenge in itself, and learning one that is imperfect can be worse than having none to start

with, as one can argue that directly sampling from the environment will provide more reliable

information and in general be less computationally intensive [39]. Nonetheless, model-based can

be significantly more sample-efficient, especially in high-dimensional environments.

From a psychology perspective, these two approaches can be linked to different aspects of

intelligence [40]. Model-Free Reinforcement Learning relies on trial and error to learn learning to

get a grasp on the environment dynamics, putting more emphasis on a reactive decision-making

type of thinking. On the other hand, Model-Based Reinforcement Learning relies on understand-

ing the environment on a deeper level and making decisions based on planning with the knowledge

that the agent has of the environment.

22 Background

The Reinforcement Learning taxonomy is illustrated in Figure 2.7. The following subsections

will provide an overview of existing model-based and model-free methods. Note, however, that

this document will mainly focus on model-free methods. This choice is due mainly to model-

based methods being underdeveloped, especially in multi-agent domains [2], while keeping in

mind that a model-based approach could be interesting for a Coverage Path Planning algorithm

with complete information on the environment because of the planning component.

Figure 2.7: Reinforcement Learning Taxonomy.

2.2.3 Model-Based Reinforcement Learning

When solving decision-making problems, one recurring theme is to plan ahead. In reinforcement

learning literature, a class of methods explicitly has this capacity: model-based. In this case, the

expression to plan will refer to any algorithm that can use computational means to improve its

decision-making without requiring sampling the environment for data, which on the other side of

the spectrum, "to learn" is to depend on new sampled information to update the decision-making

process [39].

The capacity to plan is due to the fact that the agent has a model. This model can be seen

as a function that takes the state and action as inputs and outputs what would be sampled in the

next timestep: the next state and reward. This can be seen as an advantage when sampling the

environment is costly or risky, for example, in robotic applications. By repeatedly sampling a

model, an agent can experiment with multiple trajectories over the state space and choose the best

one.

The model-based methods are divided into two classes regarding how the model is obtained:

Given The Model or Learn The Model. The first, as the name suggests, the agent is given a

model at the beginning of training and sticks to it during the process. These models are usually

handcrafted or learned by other methods, such as supervised learning. The latter are methods

where the agent constructs a model of the environment from the data that is sampled from the

environment. This approach can be the most interesting as it’s the most versatile and the most

similar to a concept of general artificial intelligence.

In algorithm 1 [39], a generic model-based reinforcement learning is provided.

2.2 Reinforcement Learning 23

Algorithm 1 Model-based reinforcement learning

Input: state sample procedure d, policy π , predictions v, environment E
Input: model m (if given, otherwise initialize arbitrarily)
Get initial state s← E
for iteration ∈ {1, ...,K} do

for interaction ∈ {1, ..,M} do
Generate action: a← π(s)
Generate reward, next state: r,s′← E(a)
m,d← UPDATE MODEL(s,a,r,s′)
π,v← UPDATE AGENT(s,a,r,s′)
Update current state: s← s′

end for
for planning step ∈ {1, ...,P} do

Generate state, action s̃, ã← d
Generate reward, next state: r̃, s̃′← m(s̃, ã)
π,v← UPDATE AGENT(s̃, ã, r̃, s̃′)

end for
end for

By doing slight variations on this generic algorithm, it is possible to implement various model-

based RL methods from the literature [39]. It is also important to note that for Given The Model

methods, the update of the model step might not be necessary. Furthermore, algorithms might

not treat the update of the agent step the same way depending on if the information is generated

from the model or sampled. In the case they are both treated the same, the prediction is the state-

action values, and the update is the same as in Q-Learning, then the obtained algorithm is Dyna-Q

[41, 42].

2.2.4 Model-Free Reinforcement Learning

Model-Free Reinforcement Learning methods appear as a valuable tool for solving many real-

world problems. Their usefulness stems from the fact that the agent does not need to have any

information about the environment, discarding the model entirely. This approach is beneficial in

cases where the model is too complex, the dynamics are unknown, or when the tasks performed

by the agent are challenging to replicate with model-based algorithms.

An RL agent learns how to achieve the optimal policy by exploiting the information that it

receives by interacting with the environment. RL algorithms can be categorized into value-based

and policy-based methods based on how this process is done. Either the agent can directly search

the policy space to find the best course of action or learn the value of each action and then act

greedily with respect to the value. The first approach is called policy-based, and the latter is

value-based. There is also a mixture of both concepts, the actor-critic methods, where an actor

searches the policy space, and a critic evaluates the state-action pairs for credit assignment. This

classification is illustrated in Figure 2.8.

24 Background

The next sections will present the concepts behind the different types of model-free RL meth-

ods, with an emphasis on value-based, as they are the ones more commonly used in coverage path

planning literature.

Figure 2.8: The three main classes of model-free Reinforcement-Learning methods.

2.2.4.1 Policy-Based and Actor-Critic Methods

Policy-based is a class of methods that learn a policy πθ by directly searching over the policy

space [43]. This policy πθ is a parametrization of the policy as π ≈ πθ (a|s), where πθ (a|s) is a

function that is differentiable with respect to the parameters. The θ parameter is updated based

on the gradient ascent of some scalar performance measure J(θ) with respect to the parameter θ .

More intuitively, the update is done in the direction that maximizes the performance:

θ ← θ +α∇θ J(θ) (2.20)

To delve a bit deeper into the mechanisms of policy-based methods, the classic REINFORCE

algorithm [44] will be used as an explanation, as most of the concepts are similar to other policy

gradient methods. In this algorithm, the scalar performance measure is the value function vπθ
from

the initial episode:
J(θ) = vπθ

(s0),

= Eπθ

[
T

∑
t=0

Rt

]
(2.21)

Then, by using the policy gradient theorem, the gradient of the score function can be derived,

arriving at (see [40] for more details):

∇θ J(θ) = Eπθ

[
T

∑
t=0

∇θ πθ (at |st)

πθ (at |st)
qπ(st ,at)

]
= Eπθ

[∇θ logπθ (at |st)Gt]

(2.22)

where Gt is the return of the episode. Then, the REINFORCE algorithm simply samples the

Monte Carlo return at the end of every episode, with equation (2.13) and updates the policy with

the expression:

2.2 Reinforcement Learning 25

θ ← θ +α∇θ logπθ (at |st)Gt (2.23)

This makes REINFORCE a purely policy-based method, as no explicit value-function esti-

mation exists. However, this fact makes the algorithm converge slower and suffer from a higher

variance in the return Gt , which are also common downsides of Monte-Carlo methods. Further-

more, not having a value function estimation and relying only on episodic returns makes the credit

assignment problem more challenging, as there is no clear way for the agent to learn the good and

bad actions in the episode.

In the most recent literature, new policy-based methods are scarce as actor-critic methods have

risen in popularity. Since the value function is usually the score function, and there are a lot of

methods that are good at estimating this function, then having a "critic" that supports the "actor"

with estimates of the value function and its gradient (Figure 2.9) with respect to the parameters

is the natural evolution of policy-gradient methods. This fact makes actor-critic appear in the

same class as policy-based in some recent surveys [2], and being some of the newest and most

promising Reinforcement Learning algorithms, such as Proximal Policy Approximation (PPO)

[45], Deep Deterministic Policy Gradient (DDPG) [43], Asynchronous Advantage Actor-Critic

(A3C) [46], Actor-Critic with Experience Replay (ACER) [47].

Figure 2.9: Actor-Critic Typical Architecture.

2.2.4.2 Value-Based Methods

As the name suggests, value-based methods do not search directly for the optimal policy. Instead,

they estimate the value functions. After the estimation, there is an implicit optimal policy in ref-

erence to the state-action value function, which corresponds to acting greedily, or in other words,

choosing the action that has the highest expected cumulative returns:

π
∗(a|s) =

1 if a = argmaxa Q∗(s,a)

0 Otherwise
(2.24)

26 Background

For MDPs with a finite number of states and actions, it is proven that at least one deterministic

optimal policy exists [40].

The classical Q-Learning [42] algorithm is an example of a value-based method, that estimates

the state-action value function Q(s,a) by Off-Policy Temporal Difference Learning. The following

sections will look in more detail into the inner workings of classic Temporal Differences Algo-

rithms, as they are one of the simplest and most effective RL methods, and most of the ideas are

used in other Model-Free algorithms.

2.2.5 Temporal Differences Learning

Temporal Differences (TD) methods have emerged as a game-changing concept in reinforcement

learning, deriving their fundamental ideas from Dynamic Programming and Monte Carlo (MC)

approaches, both classical solutions for solving Markov Decision Processes.

One of the most important concepts of TD Learning is Bootstrapping, which allows for the up-

date of value function estimations without awaiting the final outcome [40]. This attribute enables

TD methods to converge faster, a particularly notable advantage in scenarios involving long-time

horizons. To illustrate, consider an agent that is learning to drive. While training, the agent is in

a collision course and it does not need to wait for the actual crash to understand that its current

course is not correct.

However, the process of bootstrapping, which estimates the value of a state based on the value

estimate of the subsequent state, can cause increased instability in the learning process and, in

some cases, even divergence. Moreover, when compared to Monte Carlo estimation approaches,

a trade-off between bias and variance is apparent. TD methods tend to have a higher bias, while

MC methods tend to have a higher variance. Nevertheless, TD methods’ ability to work without

having to sample a complete episode makes them a more practical solution for most situations.

2.2.5.1 Generalized Policy Iteration

The majority of model-free Reinforcement Learning (RL) methods employ a universal framework

inspired by Dynamic Programming to compute the value functions. This framework, known as

Generalized Policy Iteration (GPI), encompasses two stages: Policy Evaluation and Policy Im-

provement.

The initial phase, Policy Evaluation, poses a prediction challenge, where the algorithm focuses

on estimating the state-action value function. Conversely, the subsequent phase, Policy Improve-

ment, represents a control problem concerned with identifying the optimal action.

By iterating this process, the algorithm is guided towards convergence to the optimal value

function and the corresponding greedy policy, as illustrated in Figure 2.10.

2.2 Reinforcement Learning 27

Figure 2.10: Representation of Generalized Policy Iteration; Up Arrows correspond to Policy
Evaluation, whereas Downwards arrows are Policy Improvement [3].

2.2.5.2 TD Prediction - TD(0)

The most novel idea of TD Learning is the way it predicts the value function. In the most simple

form, the prediction algorithm is called TD(0) and corresponds to doing a one-step look ahead and

updating the value function.

In this way, at time step t in the state s, after taking action a, receiving the reward Rt and

transitioning to state s′, the estimation of the state-action value function Q̂ can be updated with :

Q̂(s,a)← Q̂(s,a)+α[Rt + γQ̂(s′,a′)− Q̂(s,a)]

Q̂(s,a)← Q̂(s,a)+αδt

(2.25)

where α is a hyperparameter called the learning rate, that should be tuned to help with convergence

and δt is the TD error, which is equal to Rt + γQ̂(s′,a′)− Q̂(s,a).

A general description of the algorithm is seen in algorithm 2:

Algorithm 2 TD(0) Policy Evaluation

Require: policy π , learning rate α

1: Initialize Q(s,a), for all s ∈ S and a ∈ A, arbitrarily except Q(terminal) = 0
2: for each episode do
3: Initialize s
4: for each step of episode do
5: Select action a based on policy π

6: Take action a, and observe R,s′

7: Choose action a′, with policy π

8: Q(s,a)← Q(s,a)+α[R+Q(s′,a′)−Q(s,a)]
9: s← s′

10: end for
11: Continue until s is terminal
12: end for

28 Background

2.2.5.3 Eligibility Traces - TD(λ)

Despite the differences that were mentioned between MC and TD methods, there is a unifying

and generalizing view between both methods that is possible by using Eligibility Traces. This

mechanism enables the augmentation of TD methods that produces a family of methods that range

from being equal to TD(0) when the hyperparameter λ = 0 and equivalent to Monte Carlo methods

when λ = 1. This often makes it possible to create methods between extremes that can be better

suited for a specific problem. The name of this family of algorithms is TD(λ).

Eligibility traces provide a mechanism for temporal credit assignment, where the trace is a

temporary record for an event during the training process, making it possible to assign credit or

blame to a specific event in the training process instead of being limited to just one-step lookaheads

like in TD(0). There are multiple types of eligibility traces such as accumulating, dutch, and

replacing traces.

The backward view TD(λ) is the one of most interest, as it enables an equivalent implemen-

tation of MC without having to wait for the termination of the episode, and in general, is the most

suited for implementation. This implementation can be seen in algorithm 3 [40].

Algorithm 3 TD(λ) Policy Evaluation

1: Initialize V (s), for all s ∈ S, arbitrarily except V (terminal) = 0
2: for each episode do
3: Initialize s
4: for each step of episode do
5: Select action a based on policy π

6: Take action a, and observe R,s′

7: δ ← R+V (s′)−V (s)
8: E(s)← E(s)+1 (Accumulating traces)
9: or E(s)← (1−α)E(s)+1 (Dutch Traces)

10: or E(s)← E(s)+1 (replacing traces)
11: for all ŝ ∈ S do
12: V (ŝ)←V (ŝ)+αδE(ŝ)
13: E(ŝ)← γλE(ŝ)
14: end for
15: s← s′

16: end for
17: Continue until s is terminal
18: end for

2.2.5.4 On-Policy vs Off-Policy

In the TD(0) update equation 2.25, the next action a′ was left open as a generic action. However,

there are two distinct ways to go about choosing the action, which are On-Policy and Off-Policy

prediction.

2.2 Reinforcement Learning 29

In On-Policy prediction, the agent uses the policy π to decide the next action and to update the

state-action value function using the TD(0) equation, as shown in algorithm 2. A classic example

of an On-Policy Temporal-Difference Learning algorithm is SARSA.

In Off-Policy prediction, the agent uses two different policies π and µ . The agent follows

policy π to choose the next action but samples from policy µ to get the value for action a′ in the

update equation. Q-Learning [42], one of the most popular RL algorithms uses this approach.

There is no definitive method to know the optimal approach for a particular problem. On-

Policy prediction, typically, offers the advantage of simultaneously improving the policy employed

for exploration and exploitation and can converge faster in scenarios with larger time horizons.

However, this approach tends to yield more conservative policies [40], since its formulation leads

to more risk-aware agents.

Off-Policy algorithms, despite these considerations, remain the most popular choice. They

allow the agent to utilize both a greedy policy for exploitation and an exploratory policy for un-

derstanding the environment. Conceptually, these algorithms can be visualized as enabling the

agent to "look over its own shoulder" and learn from a different policy than the one it uses for con-

trol. Consequently, Off-Policy methods are widely regarded as having more potential for future

advancements in reinforcement learning [40]. This is confirmed by the fact that the most recent

developments in value-based deep RL methods such as DQN[48] and the further improvements

that culminated in the Rainbow DQN [49] all use off-policy learning.

2.2.5.5 Exploitation vs Exploration

One of the main questions in TD Learning is the trade-off between Exploitation and Exploration.

As seen previously, TD Learning methods use the information obtained from the interaction with

the environment to update the value function. However, a question remains: How should we get

the information?

It might be intuitive to always choose the greedy action for controlling the agent, however,

this policy will run into trouble and eventually not converge. This is because the agent has zero

information about the environment, therefore, making the greedy choice is the same as taking a

random action. After sampling this random action, it will be biased into taking the same action,

when it is possible (and likely) that there are better actions.

The problem described above is the lack of exploration. To solve this problem, a possible

solution is using the ε-greedy policy instead of the greedy policy, which can be defined by either

of the two equations:

π(a|s) =

 ε

m +1− ε if a*=argmaxa Q(s,a)
ε

m Otherwise
(2.26)

at =

argmaxa Q(s,a) w.p 1− ε

Random action in A w.p ε

, (2.27)

30 Background

where ε is a hyperparameter that determines the probability of the action being random, and m

is the number of actions in the action space. This way, the agent can both explore and exploit

continuously. The ε-greedy policy can be improved using a decaying ε that converges to a small

value over time.

Now, it is possible to thoroughly analyze the difference between Q-Learning and SARSA, be-

ing that SARSA uses the ε-greedy policy both for predicting and controlling, whereas Q-Learning

differs by using the greedy policy for the evaluation phase.

2.2.6 Function Representation

Until this point, the representation of the value functions has not been addressed. This subsection

will look into the two main ways to represent the value functions, the first and the most used in

classical reinforcement learning literature is Tabular representations, and the latter is the usage of

function approximation techniques to parameterize the value functions.

2.2.6.1 Tabular Methods

The classical algorithms store the values of the functions in look-up tables, usually called Tabular

Methods. In the most common case where the state-action value function Q(s,a) is stored, the

look-up table will have to have an entry for all possible combinations of actions a ∈ A and states

s ∈ S, as illustrated in Figure 2.11.

Figure 2.11: A visualization of a Q-Table where Ns is the dimension of the state space and Na is
the dimension of the action space [4].

2.3 Value-Based Reinforcement Learning Methods 31

The Curse of Dimensionality naturally limits the potential of this type of method [40], as

memory usage will grow exponentially with the number of states and actions. Furthermore, any

non-visited state-action pair during training will not have an estimated value, and even if visited,

the convergence guarantees are lost if the state-action pairs are not visited multiple times. These

limitations make these approaches unsuitable for problems with high-dimensional state spaces or

continuous control problems, as discretization will always be necessary.

2.2.6.2 Function Approximation

A first approach to this problem was using Linear Functions for approximating the value function

[50], obtaining a parameterized function Q(θ ,s,a), where the value function is given by a linear

combination with θ as controllable parameters. This approach can work well, especially with

policy-gradient methods, as good convergence and stability properties exist.

However, this approach is somewhat outdated, as Deep Neural Networks (DNN) started to be

seen as a feasible tool for non-linear function approximation [10], making it possible to approxi-

mate the value functions with a much more powerful tool when compared to linear approximation.

However, the convergence guarantees are lost compared to the latter, and the training is consider-

ably unstable, necessitating various tricks to make it work.

Despite that, the introduction of DNNs made the field explode in popularity when DeepMind

unveiled the Deep Q Network [51] and showed that reinforcement learning agents could display

super-human potential in very complex and highly-dimensional tasks such as Atari Games. Later,

even more impressive developments were achieved, such as the strongest chess, shogi, and Go

engines with the AlphaZero/Go series [13] and being as strong as the best players in modern

online games like Dota2 [15], Starcraft II [14] and Gran Turismo [52].

Figure 2.12: A visualization of a Deep Neural Network used for approximating the state-action
value function Q(s,a).

2.3 Value-Based Reinforcement Learning Methods

This section provides a comprehensive discussion of the reinforcement learning methods utilized

in this dissertation. The discussion will be kept at a high level, focusing on the conceptual un-

32 Background

derstanding of the methods, while specific details regarding the methods’ implementation and

their adaptations to the particular problem at hand will be reserved for subsequent sections of the

document.

2.3.1 Tabular Temporal Differences Learning - Q-Learning and SARSA

Q-Learning and SARSA are classical Reinforcement Learning algorithms that use a tabular func-

tion representation and TD(0) as the policy evaluation mechanism. They differ in the On-Policy vs.

Off-Policy dichotomy, where SARSA is an On-Policy method, usually using the ε-greedy policy

both for control and evaluation. In contrast, Q-Learning is Off-Policy, meaning it will use a greedy

policy for evaluation while keeping the control policy untouched. As mentioned previously, this

will mean that, in general, SARSA can be more risk-aware since a bad action can be selected as

the following action in the evaluation scheme. A pseudo-code scheme for both algorithms can be

seen in the following algorithm 4, where the text written in blue is exclusive to SARSA and the

one in red refers to Q-Learning.

Algorithm 4 SARSA and Q-Learning Pseudocode

Require: Initialize values for Q, typically Q(s,a) = 0, for all s ∈ S, a ∈ A
1: for each episode do
2: Initialize s
3: Choose a using the ε-greedy policy.
4: for each step of episode do
5: Take action a, observe R and s′

6: Choose a′ from s′ using the ε-greedy policy.
7: Q(s,a)← Q(s,a)+α[R+ γQ(s′,a′)−Q(s,a)] ▷ SARSA Update
8: Q(s,a)← Q(s,a)+α[R+ γ maxa∗ Q(s′,a∗)−Q(s,a)] ▷ Q-Learning Update
9: s← s′, a← a′

10: end for
11: end for

2.3.2 The Overestimation Problem - Double Q-Learning

Tabular Reinforcement Learning methods such as Q-Learning are proven to converge to the opti-

mal action values as long as all actions are continuously sampled in all states, and the state-action

values are represented in a discrete manner [42].

However, it is known property that Q-Learning tends to overestimate the state-action values,

and it is proven in [53] that the single estimator of Q-Learning is biased, introducing this over-

estimation. While the values could be overestimated and the policy still be optimal, usually, this

estimation error is not uniform and leads to poor policies.

Van Hasselt introduced the concept of Double-Q Learning in [53]. The main difference is

the introduction of two different Q-Tables, A and B. With two different estimates for state-action

values QA(s,a) and QB(s,a), the novel idea of a double estimator is introduced and proven to

be unbiased, removing the overestimation problem. The double estimator is implemented by

2.3 Value-Based Reinforcement Learning Methods 33

selecting an action using either QA or QB. When updating the Q-Table using equation (2.25), the

Q-Table not used for action selection will be used to estimate the next state-action value Q(s′,a′).

Algorithm 5 Tabular Double Q-Learning

1: Initialize QA, QB

2: for each episode do
3: Initialize s
4: for each step of episode do
5: Choose a, based on QA and QB, observe r, s′

6: Choose either UPDATE(A) or UPDATE(B)
7: if UPDATE(A) then
8: a∗ = argmaxa QA(s′,a)
9: QA(s,a)← QA(s,a)+α

[
r+ γQB(s′,a∗)−QA(s,a)

]
10: else if UPDATE(B) then
11: b∗ = argmaxa QB(s′,a)
12: QB(s,a)← QB(s,a)+α

[
r+ γQA(s′,b∗)−QB(s,a)

]
13: end if
14: s← s′

15: end for
16: end for

Algorithm 5 outlines the basic pseudocode for tabular Double Q-Learning. An important point

to note, specifically for line 5 of the algorithm, is that the usual implementation involves averaging

both Q-tables, treating it as a singular table. This strategy is also typically applied when utilizing

the Q-tables post-training.

2.3.3 TD(λ) methods - Q(λ) and SARSA(λ)

The previously discussed algorithms utilize the TD(0) scheme for policy evaluation. However, a

broader class of algorithms, known as TD(λ), extends this framework by not being limited to a

one-step lookahead when estimating value functions. This ability is tuned with a hyperparameter

λ bounded in [0,1]. At the extremes of this range, TD(λ) can function equivalently as TD(0) or

Monte Carlo methods. Pseudocode for the SARSA(λ) and Q(λ) algorithms, which embody this

principle, can be found in Algorithm 6 [42]. Once again, lines colored in blue are exclusive of

SARSA(λ) and lines in red are only for Q(λ).

2.3.4 Deep Q Networks

Deep Reinforcement Learning began to garner widespread attention with the introduction of Deep

Q Networks (DQN) [51]. Developed by DeepMind, these networks marked a substantial ad-

vance in reinforcement learning techniques by incorporating deep learning to approximate the

state-action value function. This breakthrough approach alleviated the scalability issues of tabular

methods and surpassed the performance of linear function approximation, solving problems that

were not feasible with the available techniques.

34 Background

Algorithm 6 Q(λ) and SARSA(λ)
1: Initialize Q(s,a) arbitrarily for all s ∈ S, a ∈ A(s)
2: repeat ▷ for each episode
3: Set E(s,a) = 0 for all s ∈ S, a ∈ A(s)
4: Initialize state S and action A
5: repeat ▷ for each step of episode
6: Take action A, observe R, S′

7: Choose A′ from S′ using policy derived from Q (e.g., ε-greedy)
8: Compute δ = R+ γQ(S′,A′)−Q(S,A) ▷ SARSA(λ)
9: A∗ = argmaxa Q(S′,a) ▷ If A′ ties for the max, then A∗ = A′

10: Compute δ = R+ γQ(S′,A∗)−Q(S,A) ▷ Q(λ)
11: Increment trace: E(S,A) = E(S,A)+1
12: for each s ∈ S, a ∈ A(s) do
13: Update Q(s,a) = Q(s,a)+αδE(s,a)
14: Update E(s,a) = γλE(s,a)
15: if A′ = A∗ then
16: E(s,a) = γλE(s,a)
17: else
18: E(s,a) = 0
19: end if
20: end for
21: Update S = S′, A = A′

22: until S is terminal
23: until termination

The results of the DQNs were remarkable. The network exhibited super-human performance

across 49 Atari 2600 games [54, 48], showcasing the potential and efficacy of deep reinforcement

learning techniques. Notably, the DQN model maintained the same architecture and hyperparam-

eters across all games, demonstrating its impressive versatility and adaptability. This achievement

set the stage for a new era in the development and application of reinforcement learning methods.

Before going more in-depth on the in-workings of this algorithm, firstly, it is essential to know

why it was such a significant breakthrough and what were and are the challenges of using neural

networks for reinforcement learning problems.

2.3.4.1 The Deadly Triad

The significance of DQNs and the challenges of integrating neural networks with reinforcement

learning cannot be overstated. This intersection presents a unique set of issues, famously known

as the "Deadly Triad."

The Deadly Triad, as described by Sutton and Barto [40], consists of three aspects of rein-

forcement learning methods that individually can be beneficial but, when combined, can lead to

instability and divergence of the learning process. These aspects are:

• Function Approximation: The representation of the value function, or the policy, as a

parameterized function. This is necessary to handle large state spaces or continuous state-

action spaces.

2.3 Value-Based Reinforcement Learning Methods 35

• Bootstrapping: The use of existing estimates to update estimates, as is done in TD methods.

This can significantly speed up learning compared to Monte Carlo methods, which wait until

the return is known.

• Off-policy Learning: Learning using a distribution of experiences other than the one pro-

duced by the target policy (the ones experienced by the agent).

It is crucial to consider that these three aspects are not only part of the DQN, but they are desir-

able for it to achieve good results. The function approximation can not be given up at all, as it is the

most significant novelty and strength of the DQN. As for bootstrapping, while it introduces some

instability, it also allows for more sample-efficient learning than Monte Carlo methods, which

only update after a complete episode. Bootstrapping is a more practical choice in complex envi-

ronments with long time horizons, such as Atari games. Finally, although the off-policy learning

strategy could technically be given up, it is not in the best interest as it would lose the possibility

of learning from a replay buffer or even imitating another agent.

Therefore, while these factors pose challenges, they constitute the essence of the DQN ap-

proach. Rather than trying to eliminate these elements, the key lies in mitigating their negative

effects.

2.3.4.2 Mitigating The Issues

Although the Deadly Triad was addressed, the problems that it caused were not expanded beyond

the fact that the combination leads to instability in training. Before going more in-depth on the

issues caused by this combination of factors, first is important to present how the learning is done.

Without going into much detail, the DQN generally uses a loss function equal to the squared TD

error and updates its parameters using a gradient-descent scheme in this loss function.

L(θ) = (Rt+1 + γ max
a

Qθ (St+1,a′)−Qθ (St ,At))
2 (2.28)

From looking at this loss function, several problems can arise.

• Correlation in Transitions. The sequence of transitions (also called experience) (st ,st+1,at ,RT+1)

acquired by an agent is often highly correlated. This is because the state at time t +1 is of-

ten very similar to the state at time t, and the actions taken are based on the agent’s current

policy, which usually changes slowly over time. Suppose the updates are done in an on-

line fashion. In that case, the strong correlation between subsequent states and actions can

severely affect learning stability, as this issue breaks the "independent and identically dis-

tributed" (i.i.d) assumption of many popular stochastic gradient-based algorithms.

• Correlation Between Target Values and Network Parameters. The process of updating

the parameters of the approximated Q-function involves adjusting them based on the dif-

ferences between current estimates and target values. In traditional Q-learning, the target

36 Background

values are also produced by the same Q-function that is being updated. This creates a sit-

uation where the target values and the estimates are interdependent. As a result, an update

to the estimate can immediately influence future target values, leading to a bootstrapping

problem. In this case, the "moving target" is a consequence of the correlation between the

current estimate and the target value. It leads to a form of circular reasoning where the

algorithm can end up chasing its tail, resulting in unstable or divergent behavior.

• Non-Stationary Targets. Reinforcement Learning algorithms often operate in a dynamic

environment where the Q-values (or targets for learning) are non-stationary. This refers to

the phenomenon where the Q-values, serving as targets for future learning updates, are con-

tinuously revised and updated due to the environment’s changing conditions or the agent’s

evolving policy. This aspect of non-stationarity poses significant challenges to the learning

process. When the agent explores different sections of the environment, or the state of the

environment itself alters, it influences the Q-values.

These issues are addressed with two mechanisms that are part of the DQN algorithm: The

target network and an experience replay buffer [55].

The target network is a mechanism introduced to address the issue of correlation between

targets and parameters, as well as non-stationary targets. In the DQN algorithm, two networks are

used. One, the value network, is updated continually to learn and adapt to the agent’s experiences.

The other, the target network, is ’frozen’ and updated less frequently, typically every few thousand

timesteps, by copying the parameters from the value network. This approach creates a set of

more stable target values, reducing oscillations and fluctuations during the learning process, thus

promoting stability and improving the algorithm’s effectiveness.

On the other hand, the experience replay buffer is utilized to break the correlation between

consecutive transitions. In this process, all agent’s transitions (st ,st+1,at ,Rt+1) are stored in a

buffer. These transitions are then randomly sampled during the learning process. This means that

the strong temporal correlations between them are broken. This approach helps prevent the value

estimates from swinging back and forth in response to consecutive, highly correlated updates while

also making it possible that some rare transitions are not instantly forgotten after the first update,

once again improving the algorithm’s stability.

2.3.4.3 The Vanilla DQN

The Vanilla DQN, or Nature DQN from the DeepMind article in the Nature journal [48], serves

as a baseline for almost every algorithm for Atari Learning Environment (ALE). A more thorough

investigation to the DQN will be provided in this subsection.

Consider the state-action value function estimated by the value network Qθ and the one esti-

mated by the target network as Qθ− . Furthermore, consider that at every timestep t the agent stores

an experience ei = (st ,at ,Rt+1,st+1) on the replay buffer D = {e1, ...et}. During learning, the al-

gorithm randomly samples a minibatch m of size M from the replay buffer, using it to calculate

the loss function:

2.3 Value-Based Reinforcement Learning Methods 37

L(θ) = Em∼D

[(
Rt + γ max

a
Qθ−(st+1,a)−Qθ (st ,at)

)2
]
. (2.29)

Here, the term Rt + γ maxa Qθ−(st+1,a) serves as an estimate of the expected return from the

state-action pair (st ,at), taking into account both the immediate reward Rt and the discounted

future return from state st+1 as estimated by the target network. The optimization process aims to

minimize the discrepancy between this estimate and the value given by the current estimate given

by the value network Qθ (st ,at).

This optimization is done through a stochastic gradient descent scheme, so the expectation

operation is removed. The value network parameters are updated based on the optimization min-

imization of the loss function. The target network is updated every C steps (10000 in the Nature

DQN) by copying the parameters of the value network. The whole pseudocode algorithm can be

seen in Algorithm 7.

Algorithm 7 Deep Q-Learning
1: Initialize replay memory D to capacity N
2: Initialize action-value function Qθ with random weights θ

3: Initialize target action-value function Qθ− with weights θ− = θ

4: for episode = 1,M do
5: Initialize the State st

6: for t = 1,T do
7: Select action at using ε-greedy policy on Qθ

8: Take a step with action at and observe next state st+1 and next reward Rt+1
9: Store transition (st ,at ,Rt+1,st+1) in D

10: Sample random minibatch m of transitions (s j,a j,R j,s j+1) from D
11: Perform a gradient descent step on [R j + γ maxa′ Qθ−(s j+1,a′)−Qθ (s j,a j)]

2 w.r.t θ

12: Every C steps reset Qθ− = Qθ

13: end for
14: end for

The DQN architecture, illustrated in Figure 2.13, is built on the foundation of a convolutional

neural network (CNN), which makes it well-suited to handling image-based inputs. In the context

of Atari games, the agent’s state or observation at a given moment is represented by a stack of the

four most recent frames from the game.

Upon receiving this stacked input, the DQN’s convolutional extracts and learn useful features

from the raw image data. Following this process, the CNN’s output is flattened and fed to a dense

fully connected network with seven neurons with no activation function on the output layer. Each

of these neurons outputs one of the values Q(s,a),∀a ∈ A, being that the greedy policy would

choose the neuron with the maximum output value.

It is important to note that this architecture can be changed and adapted to a myriad of other

problems, even outside of ALE. However, the DQN is still not an adequate solution for continuous

control problems or big action spaces, as the number of neurons on the output layer discretizes the

Q function.

38 Background

Figure 2.13: The Nature DQN architecture6

2.3.5 Extensions to the DQN - The Rainbow DQN

After the proposed vanilla DQN algorithm, multiple extensions, improvements, and new concepts

were proposed on top of this framework. These improvements culminated in the Rainbow DQN,

proposed by Hessel et al. [49], a version of the DQN algorithm with six extensions that were added

over the years, proving to be a significant improvement over the other approaches in the Arcade

Learning Environment. The following subsections will present a concise overview of these key

extensions.

2.3.5.1 Double Deep Q-Learning

While the principle of "optimism in the face of uncertainty" is one of the main tenants of Rein-

forcement Learning, as analyzed in Section 2.3.2, the tabular Q-Learning is known to overestimate

the state-action values. This issue persists in the Deep Learning version of Q-Learning, where it

becomes even more critical due to the resultant instabilities during training.

A solution to mitigate this problem was the Double Deep Q Network (DDQN), proposed by

Hasselt et al. [56]. The DDQN implements the double estimator by decoupling the selection from

the evaluation by using the online network to select the action and the target network to evaluate

that action.

L(θ) =
[

Rt+1 + γQθ−(St+1,argmax
a

Qθ (st+1,a′))−Qθ (st ,at)

]2

(2.30)

2.3.5.2 Prioritized Experience Replay

In the standard DQN framework, all samples in the experience replay buffer are treated equally

during the sampling process. The Prioritized Experience Replay (PER) [57] introduces the concept

6Taken from https://paperswithcode.com/method/dqn.

https://paperswithcode.com/method/dqn

2.3 Value-Based Reinforcement Learning Methods 39

that not all transitions should be treated the same. It prioritizes the most "important" transitions,

with importance, in this case, being defined by the magnitude of the Temporal Difference (TD)

error δ .

Given pi = |δi|+ ε , where ε is a small positive constant to ensure all experiences have a non-

zero probability of being sampled, the probability of transition i being sampled is defined as:

P(i) =
pα

i

∑k pα
i
, (2.31)

where α is a hyperparameter that determines the degree of prioritization. This sampling method,

however, introduces bias as it modifies the distribution of the expected value. To correct the bias,

an importance-sampling weight is used:

wi = (
1
N
· 1

P(i)
)β (2.32)

This equation presents the importance-sampling weights wi, a function of the probability of

a transition being sampled P(i), and the total number of stored transitions N. The parameter β

controls the degree to which these weights influence learning. Initially, β is set to a low value

to facilitate learning from a broader range of experiences. It is then gradually annealed to 1 to

compensate for the bias introduced by prioritized sampling. These weights are normalized by the

term 1/maxiwi for stability purposes and then multiplied by the TD error on the gradient descent

step.

2.3.5.3 Dueling Networks

Another improvement of the DQN is the dueling network architecture[58]. In this architecture,

instead of having a single stream with an output layer equal to the size of the action space that

estimates the state-action value function, a second stream is introduced. This results in the value

stream that estimates the state value function V (s) and the advantage stream, estimating respec-

tively the advantage function A(s,a). An intuition for this function is that it gives the advantage,

as in value, of choosing an action a when compared to the expected value of choosing the other

possible actions. Then, the Q-Function is possible to be estimated via:

Q(s,a) =V (s)+A(s,a)− 1
|A|∑a′

A(s,a′) (2.33)

This scheme for estimating the state-action values proves beneficial when actions hold similar

values or are considered redundant. A visualization of the architecture can be seen in Figure 2.14.

2.3.5.4 n-Step Learning

Traditional TD-Learning methods use a one-step lookahead to estimate the value functions. One

alternative to this method is to use forward view multi-step targets, utilizing the n-step return

40 Background

Figure 2.14: The Proposed Dueling Network Architecture. On top is the Value Stream, with a
single output neuron, and on the bottom is the Advantage Stream, with a number of neurons in the
output layer equal to the action-space size. Image adapted from [5]

.

instead of looking only one step into the future.

L(θ) =
t+n

∑
t

Rt + γ
n max

a
Qθ−(s

′
t+n,a

′)−Qθ (st ,at) (2.34)

This learning scheme can also help deal with the bootstrapping on the deadly triad dilemma.

Furthermore, it reduces the bias in learning, with the downside that the variance will be higher.

2.3.5.5 Noisy Nets

The exploitation-exploration problem is one of the core problems of every TD Learning method.

While ε-greedy has proven to be a reliable solution in most situations, this policy can fail in spe-

cific environments. Noisy Nets [59] propose a novel approach to exploration by introducing pa-

rameter space noise. In Noisy Nets, noise is injected into the linear layers of a neural network, and

this noise is updated through gradient descent. This creates a state-dependent and automatically

tuned exploration strategy. The noisy layer outputs are computed as:

y = (b+Wx)+(bnoisy⊙ ε
b +(Wnoisy⊙ ε

w)x) (2.35)

where b and W are the weights of the original network, ⊙ denotes the element-wise product,

bnoisy and Wnoisy are the learned noise parameters, and εb and εw are independent random variables

sampled from a factorized normal distribution. By making the random variables equal to zero, it

is possible to implement a deterministic policy that is only used for exploiting, for example, when

deploying the model in the real world.

2.4 Multi-Agent Reinforcement Learning 41

2.3.5.6 C51-Distributional RL

Bellemare et al. [60] introduced Distributional Reinforcement Learning as a novel concept in

Deep Reinforcement Learning. Instead of approximating the expected return, this approach learns

to approximate the distribution of returns.

The distributions are modeled with probability masses on a support vector z with Natoms ∈N+,

defined by zi = vmin +(i− 1) vmax−vmin
Natoms−1 for i ∈ {1, ...Natoms}. Considering the probability mass of

each atom i pi
θ
(St ,At), the approximating distribution can be defined as dt = (z, pθ (St ,At)), and

the goal becomes to update θ to approximate this distribution to the actual distribution of returns.

The target distribution can be formulated as

d′t = (Rt+1 + γz, p−
θ
(St+a, ā∗t+1)), (2.36)

and the network weights are optimized by minimizing the Kullbeck-Leibler divergence between

distributions DKL(φZd′t ||dt), where φz is a L2-projection of the target distribution onto the fixed

support z and , ā∗t+1 = argmaxa qθ (St+1,a) is the greedy action, where qθ (St+1,a)= zT pθ−(St+1,a).

The parameterized distribution is represented by a neural network, similar to the DQN, but

with Natoms×Nactions outputs. To ensure that the distribution for each action is appropriately nor-

malized, a softmax function is applied independently for each action dimension of the output. The

softmax function takes the values of each dimension and transforms them into a valid probability

distribution, where the probabilities of all actions sum up to 1.

2.4 Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) expands upon the traditional reinforcement learn-

ing (RL) framework, accommodating scenarios involving multiple agents. Conventional RL typi-

cally involves a singular agent interacting with an environment to optimize its behavior. However,

real-world situations can involve the presence of multiple agents, each with distinct objectives

and policies. These scenarios complicate decision-making as the environment’s evolution is now

dictated by the collective actions of all agents. Consequently, each agent must contemplate the

behaviors of others when making decisions and negotiate optimally to achieve their respective

goals.

The study of multi-agent systems (MAS), is of particular interest in robotics. Most applications

and use cases inevitably involve robots directly or indirectly interacting with other agents in the

environment. Consequently, a framework that equips these agents with the awareness of others

is critical to fully harnessing a robot’s capabilities and potential. This section will present a brief

overview of the main concepts of MARL.

42 Background

2.4.0.1 Markov Games

In Multi-Agent Reinforcement Learning, a decision-making problem can be formulated as a Markov

or Sthocastic Game. A Markov Game (MG) can be interpreted as a multi-agent extension to the

MDP. Therefore, analogously to the single case, an MG can be defined by the tuple

⟨N,S,{Ai}i∈{1,...,N},P,Ri∈{1,...,N},γ⟩ [2]:

• N - The number of agents in the environment.

• S - Set encompassing all states s of the environment, shared by all agents.

• Ai - Set of actions of agent i. The joint action space if denoted as AAA := Ai× ...×AN .

• P: S×AAA→ S - State Transition Probability Function; Given a state s ∈ S and a combination

of actions ai ∈Ai, where i varies from 1 to N, the function defines the probability of the next

state being s′ ∈ S.

• Ri: S×AAA×S→ R - A reward function for each agent i; Given the current state and action

tuple (s,ai) ∈ (S,Ai) and the next state s′ ∈ S, the function yields a scalar value equivalent

to the reward of the state-transition for agent i.

• γ ∈ [0,1] Is the Discount Factor, the same as in the MDP.

Ultimately, the approach is very similar to the single-agent scenario. A visualization of the

interaction loop between the agents and the environment can be seen in Figure 2.15.

Figure 2.15: Interaction model in a Markov Game, N agents and a generic environment.

2.4 Multi-Agent Reinforcement Learning 43

2.4.0.2 Partially Observed Markov Games

Similar to the Markov Decision process framework, a Markov Game can also be formulated in a

partially observed setting, being a Partially Observed Markov Game (POMG). To the definition in

the previous setting, a POMG adds to the existing tuple the following terms:

• Ωi Set that contains all observations of agent i. The joint observation space if denoted as

ΩΩΩ := Ωi× ...×ΩN .

• O : S→ΩΩΩ: Is the observation function, which maps the current state s to the observation of

the agent o.

A particularly significant instance of a POMG is the Decentralized Partially Observed Markov

Decision Process (Dec-POMDP). In this scenario, the Reward function for all agents is the same:

R1 = R2 = . . .= RN .

2.4.1 MARL Taxonomy

The categorization of Multi-Agent Reinforcement Learning (MARL) strategies can be quite di-

verse, primarily due to the multiple aspects that differentiate multi-agent environments. In the

following subsections, some of the main aspects of MARL will be covered.

2.4.1.1 Task Nature: Cooperative vs. Competitive

One of the main classifications can be related to the objective of each agent and if there is a

common goal. This can create three types of settings: cooperative, competitive, and mixed [61].

• Cooperative Setting: In most cooperative settings, the agents usually share a common

reward function R1 = R2 = . . . = RN , or at the very least share a similar reward function,

with the same goal in mind. In the latter case, the objective of the agents is to maximize the

Average Reward R̄(s,a,s′) := 1
N ·∑

N
i Ri(s,a,s′), ∀(s,a,s′) ∈ S×A×S. It is noteworthy

that, in the average reward model, the agents consistently act in the interest of the collective

rather than prioritizing individual gains.

• Competitive Setting: This type of MARL problem features self-interested agents who often

compete with others for rewards. The problem is typically a zero-sum game, where the sum

of all rewards equals zero, implying that one agent’s gain necessitates an equal loss for

others.

• Mixed Setting: This type of setting is the least restrictive and known as general-sum games.

In these problems, no specific regulations regarding the goals or relationships among agents

apply. This flexibility makes the problem as general as possible, where, within the same

game, an agent can act in the best interest of a team, compete with other agents, or a combi-

nation of both, in which there is a common team objective, but individual agent goals may

conflict with those of other team members.

44 Background

2.4.1.2 Types of Agent

Multi-Agent Reinforcement Learning systems can also be classified based on the homogeneity

of the agents. In the most straightforward approach, homogeneous agents are those that share

observation and action spaces, reward functions, and typically also the end goal. On the contrary,

heterogeneous agents can have a wide range of differences. They might share the same action

space but have individual goals or be identical in all aspects except their objectives. For ease of

classification, any group of agents that do not strictly conform to the definition of homogeneous

agents is considered heterogeneous.

2.4.1.3 Information Availability

The classification of Multi-Agent Reinforcement Learning (MARL) problems can also be based

on the level of information available to the agents. As outlined in the survey by Yang[2], there

are seven distinct levels of information, ranging from the most basic - where an agent can only

observe its own reward - to the most comprehensive, where the agent has the so-called perfect

information and can therefore solve the problem in its entirety. These levels of information are

detailed in Table 2.1 [2].

Table 2.1: Levels of Information in Multi-Agent Reinforcement Learning.

Level Assumption
0 Each agent observes the reward of his selected action.
1 Each agent observes the rewards of all possible actions.
2 Each agent observes others’ selected actions.
3 Each agent observes others’ reward values.
4 Each agent knows others’ exact policies.
5 Each agent knows others’ exact reward functions.
6 Each agent has perfect information.

2.4.2 Challenges of Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning is a much less mature field when compared to the single-

agent approaches. There are still a lot of challenges, both from a theoretical and technical point of

view, having a lot of opportunities for innovation and new ideas. Some of these challenges will be

summarized below. The following sections will outline some of these prevalent challenges.

2.4.2.1 The Scalablity Problems

In a multi-agent learning problem, the agent policy is no longer limited to itself, considering all

other agents’ policies when determining the best action. This naturally leads to the joint action

space |A|N growing exponentially, and the same applies to the state space, as every agent will

inherently influence the state. As the number of agents increases, the complexity of the problem

2.4 Multi-Agent Reinforcement Learning 45

grows, resulting in more computationally demanding algorithms and potentially infeasible real-

time solutions. Furthermore, issues related scalability of communication networks, information

sharing, coordination, and negotiation also become significantly more complex as the number of

agents increases.

From a theoretical standpoint, multi-agent system analyses often limit to scenarios involving

only two agents. Thus, algorithms that guarantee convergence and an equilibrium solution are

typically confined to these scenarios [2]. These issues indicate a considerable scope and potential

for further in-depth research on large multi-agent systems in MARL.

2.4.2.2 Non-Stationary

One of the most common and most addressed problems from MARL is the non-stationary nature

of the environment [62]. This issue arises because an agent’s actions can influence another agent’s

reward, disrupting the stationary assumption typically maintained in reinforcement learning algo-

rithms. Since all agents are learning policies, and part of learning its policy is to learn how the

other behaves, from the agent’s point-of-view, it is learning behavior that is consistently changing.

This creates a chain of reactions where one’s policy changes because of the others, and the other’s

policy changes because of the change in the agent’s behavior.

Despite not having a concrete solution to this issue, numerous strategies have been proposed

to mitigate its effects [62]. These include promoting communication between agents, deploying

decentralized learning techniques, utilizing meta-learning, and modeling agent behaviors. Interest-

ingly, in scenarios where agents share similar interests, one might act selfishly without considering

the impact on others, knowing that others will do the same, thereby preserving the environment’s

stationarity [2].

2.4.2.3 Learning Goals and Credit Assignment

Another issue is that the overall goal of a MARL algorithm is not as clearly defined as in single-

agent RL, making it difficult to align it with a single metric. In a heterogeneous team, for example,

in robotic soccer [63], while the overall goal can be described as scoring more goals than the

opponent team, a goalkeeper robot will have a very different role than a striker. This creates a

problem where the problem is significantly harder to model, especially when it comes to learning

cooperation between very different agents of the same team.

Furthermore, there are also credit assignment problems. If a robotic soccer team concedes

multiple goals, should the goalkeeper bear all the blame, or should in-field players also shoulder

some responsibility? Even in homogeneous teams, is it fair to rely excessively on an overperform-

ing agent or to single out an underperforming one for blame? These questions remain unresolved,

but several methods have been proposed to mitigate these issues, involving complex models and

comprehensive frameworks, including game theory approaches.

46 Background

2.4.3 Multi-Agent Reinforcement Learning Methods

Similarly to the single-agent paradigm, solution methods can also be divided into model-free and

model-based. However, compared to model-free methods, model-based techniques are consider-

ably less developed in the MARL context [2].

In terms of model-free approaches, there are value-based algorithms such as QMIX [64], and

policy-gradient methods like the Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

[65], which draw parallels to the single-agent RL strategies.

Nevertheless, this document will mainly concentrate on the usage of a method termed "pa-

rameter sharing" [66]. This technique allows the application of single-agent RL methods in multi-

agent contexts by employing the same model for all agents. Typically, these methods utilize a cen-

tralized learning and decentralized deployment framework, where agents are trained collectively

using the shared model and complete information but are subsequently deployed individually.

This technique was considered restricted to homogenous cooperative agents due to the inherent

nature of using a shared model. However, a more recent work [67] shows that by using "agent

indicators," padding the inputs and outputs layers and using adequate masks for both, parameter

sharing can effectively be extended to heterogeneous agents as well, achieving state-of-the-art

performance.

Chapter 3

State of the Art

The purpose of this chapter is to give an overview of the current state-of-the-art in Coverage Path

Planning algorithms. The chapter is divided into six sections. The first Section 3.1 provides a

brief introduction to the CPP Task. It is followed by Section 3.2, which explores Exact Cellu-

lar Decomposition algorithms. Section 3.3 presents algorithms with No Celullar Decomposition,

whereas Section 3.4 reviews Approximate Celular Decomposition methods. Afterward, attention

is shifted to Reinforcement Learning approaches to Coverage Path Planning in Section 3.5. Fi-

nally, some brief conclusions on the current state-of-the-art and research opportunities are given

in Section 3.6.

3.1 Coverage Path Planning

Coverage path planning is a common task in robotics, where the main goal is to compute collision-

free paths that pass through all points of an area or volume [6]. Some of the most common

applications were already presented in Chapter 1. However, in this section, the discussion will

focus on generic CPP tasks in a 2D plane, with different approaches regarding online or offline

planning, algorithms, optimality, and performance metrics.

In one of the first works on the topic [68], a CPP task is defined with the following goals and

constraints:

(1) The agent must move through all the defined area of interest.

(2) The agent path must not overlap.

(3) Continuous and sequential operation without any repetition of paths is required.

(4) The paths must be collision-free.

(5) The agent should follow simple motion (straight-line, circle).

(6) An "optimal" path is desired under available conditions.

47

48 State of the Art

It is clear from analyzing these criteria that they cannot always be met, especially in complex

environments with local maximums and non-convex settings. Moreover, there are certain tasks

where there is no information about the environment, and it is necessary to construct local infor-

mation based on sensor data. In these cases, it is rather obvious that criteria such as "optimality",

full coverage, and non-overlapping path may just not be feasible. It is therefore necessary to take

into consideration priorities when developing CPP algorithms.

In one of the first surveys on the topic, Choset [69] classifies CPP algorithms as either complete

or heuristic. This classification is based on whether the algorithm has a guarantee of coverage of

the full area of interest, being a complete algorithm in the case of meeting this requirement.

Nonetheless, the algorithms can also be defined as offline or online (also called sensor-based

[69]). In the first case, the agent has a priori knowledge of the environment, and the path planning

is done before the start of the mission. This situation is, however, sometimes unrealistic on real

robotic applications and also not adaptable to very dynamic environments [6]. On the other hand,

online algorithms have to extract data about the environment through the sensors and build a model

of the surroundings during the mission. In this approach to CPP, being complete or heuristic, there

are no guarantees of optimality of the algorithm, as one can always create an antagonistic example

[69].

The following subsections will give an overview of coverage path planning underlying con-

cepts.

3.1.1 Performance Metrics

Coverage Path Planning is a task that can be used in varied applications, therefore, there is no

performance metric that can truly fit all cases. One can look into the six goals defined in the

previous section to evaluate how good an algorithm is. However, even in these concrete goals,

some might not be desirable depending on the application. For example, in patrolling, it might be

desirable to have paths overlap in points that have a higher priority in coverage.

For the case of continuous coverage, such as patrolling, the survey [7] defines as possible

performance metrics the number of detected objects/events, interval, and frequency of visit in a

determined cell as well as the quadratic mean of the first and the standard deviation of the latter.

As for the simple coverage case, some of the most common metrics for evaluation are: energy

usage [19, 7, 70], number of turns [71], total traveled distance [72], covered area [73], path overlap

[21] or repetition rate [74], and time-to-complete [75].

For offline methods, the metrics such as time-to-complete and total traveled distance might

seem the same, but often not, the shortest path is not the fastest, needing to take into consideration

kinodynamic limitations of the robot. These optimization concerns are more relevant in offline

methods with full knowledge of the environment, where the question moves from "can the area

be covered" to "how the area can be covered". As such, for online methods, path overlap and

repetition rate are the most relevant metrics.

However, the most important metric for CPP in UAVs is energy usage [75], as battery auton-

omy is the main setback of using these robots in coverage path planning missions. This criterion

3.2 Exact Cellular Decomposition 49

is sometimes formulated as minimizing the number of turns, as whenever a robot performs a turn-

ing maneuver, it will most likely reduce the velocity, rotate, and then accelerate again, and all of

these actions directly lead to energy consumption. Formulating the problem this way also eases

the optimization problem by reducing the number of variables involved, since if one considers the

total energy, it is necessary to consider the dynamics of the vehicle and motion constraints, and

the optimal values for variables such as velocity are dependent on the trajectory, as mentioned in

[19].

3.1.2 Area of Interest

Following the notation in [7], one can define an area of interest as a sequence of vertex {v1, ...,vp},
and the respective connections between vertices, edges {e1, ...,ep}. Each vertex vi can be de-

scribed by the pair of cartesian coordinates in the global reference frame (vx(i),vy(i)), and the

internal angle can be represented as γi. The set of vertices and edges can be represented in a

graph. Furthermore, one can also define obstacles inside the area of interest as a series of points

{u1, ...,up}. A visualization of two examples of areas of interest can be seen in Figure 3.1.

Figure 3.1: Different areas of interest in CPP Tasks: a) Convex Polygon with Obstacles; b) Non-
Convex Polygon

One important aspect to consider when implementing a CPP algorithm is the shape of the

area of interest. Some algorithms only have optimality and coverage guarantees when the area is

rectangular or convex or do not consider obstacles [7].

The majority of CPP algorithms can only be used on simple and convex areas. Therefore, one

of the main components of most algorithms is decomposing the area of interest in smaller and

simpler subareas.

3.2 Exact Cellular Decomposition

Exact cellular decomposition methods decompose the obstacle-free space of the area of interest

down into smaller, non-overlapping subareas called cells [6].

50 State of the Art

Just as in the case for the area of interest, cells can be represented by an adjacency graph,

where a cell corresponds to a node, and boundaries between cells are represented by edges, as can

be seen in Figure 3.2.

This type of algorithm can usually be divided into three phases: Decomposition, Planning,

and Execution [7]. The decomposition is usually generated by sweeping a line through the area of

interest, in a top-down or left-right approach. Then, cell boundaries can be formed when an event

occurs. The events that are considered for this decomposition, define the type of algorithm used,

which will be analyzed later in the following subsections.

After being done with decomposition, the algorithm will go to the planning phase, where it

usually computes a sequence that visits each node in the graph exactly once (if possible). Finally,

in the execution phase, the agent will use simple motions to cover each cell. Simple movements

that are usually used are back-and-forth [76] or spiral motions [75].

Figure 3.2: Graph representation of an area of interest with trapezoidal decomposition

3.2.1 Trapezoidal Decomposition

Trapezoidal Decomposition is one of the simplest offline coverage path planning algorithms that

can be implemented, with the limitation that only polygonal obstacles and areas of interest can be

considered [6]. The decomposition phase of the algorithm consists in sweeping the environment

until finding the vertices of the obstacles. Whenever a vertex is found, a cell boundary is defined.

This decomposition can be seen in Figure 3.2.

3.2.2 Boustrophedon Decomposition

Boustrophedon Decomposition is another offline CPP algorithm based on exact cell decomposi-

tion. It builds upon the ideas of trapezoidal decomposition, minimizing the length of the coverage

path.

This optimization is achieved by changing the decomposition method. Instead of considering

every vertex as a cell boundary, boustrophedon decomposition only considers vertices where a

3.2 Exact Cellular Decomposition 51

segment can be extended both above and below the vertex. These vertices are called critical points

[76].

In comparison with regular trapezoidal composition, this method produces fewer cells. By

inspection of Figure 3.2, one can see that could easily be merged, which is what boustrophedon

decomposition does. A comparison between both decomposition techniques can be seen in Figure

3.3.

Figure 3.3: Comparison between Trapezoidal and Boustrophedon Decomposition. The trapezoidal
decomposition a), has more cells, needing an extra strip to cover when compared to b).

3.2.3 Morse-Based Exact Cellular Decomposition

In an attempt to introduce a general framework for exact cellular decomposition, Acar [77] intro-

duced decomposition based on Morse Functions.

By definition, all critical points of a Morse Function are non-degenerate. A critical point p∈R
of a real valued function f : Rn→R can be defined as a non-differentiable point of the f or a point

where all the partial-derivatives of the gradient ∇ f (p) = [∂ f
∂x1

, ..., ∂ f
∂xn

]T are equal to zero, and the

Hessian matrix ∂ 2 f
∂xi∂x j

is non-singular.

Such as in the case of the previous techniques, the critical points are used for determining cell

boundaries, however, the usage of different Morse functions can change the shape of the cells.

For a demonstration of how the algorithm works, the Morse function f : R2 → R, will be

f (x,y) = x. In fact, this will make the slices a vertical line in the 2D plane, corresponding to the

boustrophedon decomposition seen previously. The algorithm will define a sweeping direction

parallel to the y-axis and will define a cell boundary whenever it finds a critical point. A critical

point can be seen when the surface normal of the obstacle is parallel to the sweeping direction

vector, or when the surface normal is perpendicular to the cell boundary defined by the Morse

function. This method can be seen in Figure 3.4.

3.2.4 Online Morse-Based Decomposition

A great advantage of Morse-Based decomposition is that, unlike previous techniques, it can be

expanded to online algorithms, as demonstrated initially by Acar and Choset in [78] and later a

robust algorithm that can handle false readings from the sensors in [79]. To achieve this online

52 State of the Art

Figure 3.4: Cell decomposition using Morse Function f (x,y) = x [6].

coverage, the authors used an omnidirectional ranger sensor, such as an ultrasonic sensor or a

LiDAR, to find critical points in the environment. As such, considering the current agent position

as x, let c be a point on the surface obstacle Ci, one can define c0 as the closest point to the robot

as:

c0 = argmin
c∈Ci

∥x− c∥ (3.1)

Now one can define the distance function between the agent and the obstacle Ci as:

di(x) = x− c0 (3.2)

And therefore, the gradient of the distance function is:

∇di(x) =
x− c0

∥x− c0∥
(3.3)

The gradient of the distance function ∇di(x) corresponds to a unit vector normal to the surface

that points from c0 towards x. By following the same logic as in the Morse function decomposition,

one can detect critical points by finding points of the obstacle where the gradient is parallel to the

current sweeping direction.

As such, the online algorithm combines the coverage mission with the cellular decomposition

by adding cells to the graph while covering. By doing an exhaustive walk through the graph, after

covering every cell, the environment should be fully covered.

However, with this algorithm, by performing only back-and-forth motions, some critical points

might be missed as seen in Figure 3.5. One solution for this drawback is to combine back-and-forth

motion with wall following [6].

3.3 No Decomposition

For CPP missions where the environment is well known, non-complex, regular shape, obstacle-

free decomposition might now be necessary. This is the case in a lot of UAV applications, where

other than no-fly zones, obstacles are not common or can easily be avoided by a change in altitude.

3.3 No Decomposition 53

Figure 3.5: Critical Points can be missed in online Morse decomposition if the agent only performs
back-and-forth motions [6].

In these situations, simple geometric patterns such as back-and-forth or spiral [7]. As such,

one can focus their attention on an optimization problem regarding energy usage, in the following

subsections two energy-aware approaches will be considered.

3.3.1 Energy-Aware Back-and-Forth

Di Franco and Buttazzo [19] proposed an energy-aware back-and-forth (E-BF) CPP algorithm, for

UAVs in a photogrammetry application.

The algorithm is based on finding one of the vertexes of the longest edge. The sweeping

direction is always parallel to this edge, after this, it calculates the optimal number of turns, the

length of the segments and turns, and the UAV optimal speed. An example of the algorithm can

be seen in Figure 3.6.

Figure 3.6: a) Energy-Aware Back-and-Forth Algorithm; b) Energy-Aware Spiral Algorithm [7].

3.3.2 Energy-Aware Spiral

Inspired by the E-BF algorithm, Cabreira proposed the energy-aware Spiral algorithm (E-Spiral)

[75].

This algorithm starts by building a path that contains all the vertex of the area of interest and

afterward starts reducing the radius, converging to the center of the polygon. In this approach, the

UAV performs wider turns in comparison with the back-and-forth, enabling it to maintain more

54 State of the Art

speed and therefore waste less energy in accelerations. An example of this algorithm can be found

in Figure 3.6

According to the author, it is currently the most efficient CPP algorithm for convex polygons,

considering energy usage.

3.4 Approximate Cellular Decomposition

One of the most common approaches is approximate cellular decomposition[69]. It is usually

based on grid maps, where the environment is discretized in square cells, usually the size of the

robot or the size of the sensors. It is an approximate technique, as a there is loss of information on

the discretization process as seen in Figure 3.7.

Figure 3.7: Discretization of a polygonal environment with an obstacle.

Despite these drawbacks, grid maps are very versatile, as a cell can have associated informa-

tion, such as if it is an obstacle, if it was already seen, or the coverage priority, and it can easily be

represented as an array. However, grid maps suffer from the curse of dimensionality, with an ex-

ponential growth of memory usage with its growth in size and resolution, moreover, they typically

require accurate localization systems [6].

3.4.1 Wavefront Propagation Algorithm

One of the first online approaches to CPP is the wavefront (distance transform) propagation algo-

rithm proposed by Zelinsky et al. [80]. In this algorithm, it is necessary to specify a starting and

final position, which is already a feature that the previously presented algorithms do not have.

The algorithm is based on the distance transform, as it propagates a wavefront from the goal

towards the start cell, assigning a number to each member of the grid in the process. It starts

by assigning the value 0 to the goal cell and a 1 to all adjacent cells. This process is repeated

iteratively, where all unmarked cells that are adjacent to cells with value n, are assigned with value

n+1. It finishes when the wavefront reaches the start cell.

After computing the distance transform, the path is defined by starting on the start cell and

choosing the unvisited cell with the highest value. In case of having more than one possible cell,

it chooses a legal cell by random choice. An example of the algorithm can be seen in Figure 3.8.

3.5 Reinforcement Learning Approaches 55

This process is equivalent to doing a pseudo-gradient descent from the start point on a potential

function that considers the value of each cell, following the equipotential curves from the top to

bottom [6].

Figure 3.8: Wavefront distance transform for start position (S) and goal (G) and the corresponding
coverage path [6].

3.5 Reinforcement Learning Approaches

Most of the surveys in the literature are somewhat outdated and do not consider Reinforcement

Learning solutions [6, 7, 69], and the work in [8] does not dwell much time on the topic either.

In this section, some RL approaches to CPP will be presented and discussed.

3.5.1 Offline Q-Learning

The work presented in [72] develops a simple Tabular Q-Learning algorithm for offline coverage

path planning in an environment with known obstacles. The performance of the algorithm is non-

optimal, although shows better results than the genetic algorithm it was paired against in an 8×8

grid map. Although it shows that RL can be applied to CPP tasks, the choice of tabular algorithms

does not enable it to scale to bigger maps, and the utility of the algorithm is somewhat reduced

by the fact that the performance is non-optimal and there are a lot of existing algorithms that can

solve the proposed problem.

3.5.2 Distributed Multi-Agent Online Q-Learning

In [73], the authors present a Distributed Multi-Agent Online Q-Learning area coverage algorithm.

It is once again based on Tabular Q-Learning with an adaptation of the learning process for multi-

agent (Q-Transversal). It introduces some relevant ideas such as having an information map γ that

is shared between all agents, its environment state-space contains the next action of each agent,

enabling recursive thinking and the use of a heuristic in the training process when it is priorly

known that there are no good moves.

56 State of the Art

It clearly shows the potential of RL for this specific problem, especially for multi-agent set-

tings, which are inherently more difficult to tackle with conventional algorithms. However, the

usage of a Tabular algorithm when the state space has the whole map, makes the algorithm scale

poorly with map size. Despite that, the work shows interesting results when compared to state-of-

the-art multi-agent algorithms and has built-in fault tolerance and coverage guarantees.

3.5.3 Work Developed by LG Electronics Advanced AI Team

The LG Electronics Advanced AI team has carried out a series of studies [81, 82, 21] exploring the

use of Deep Reinforcement Learning (Deep RL) algorithms for Coverage Path Planning (CPP).

Notably, these works represent some of the few Deep RL studies aimed at developing a general,

application-agnostic algorithm, with a broader focus on evaluating the potential of DRL for this

type of problem.

In [21] a study on Deep RL for the CPP is conducted, comparing various state-of-the-art algo-

rithms. The algorithms used were Proximal Policy Optimization (PPO), Advantage Actor-Critic

(A2C), Deep Q Network (DQN), and Deep Q Network with Prioritized Experience Replay (DQN-

PER). They showed that from all of them, DQN-PER performed the best. After training the RL

algorithm, the authors compared it to five different state-of-the-art classical CPP algorithms and

achieved significantly better coverage and less overlap. Another important result of this work is a

Hybrid RL approach that combines the BA* algorithm with the DQN-PER algorithm, substituting

the A* with RL. This proved a significant improvement when compared to the simple RL approach

by reducing the policy space of the RL algorithm.

Another work focused on an algorithm that could generalize across various environments [82].

Using DQN-PER again, the authors demonstrated that a model trained in one environment could

generalize to others with minimal transfer learning. However, without retraining the model on

the new environment, the results exhibited around 40% overlap, and even after training, overlap

remained high at about 20%. One could argue that because transfer learning is necessary, the agent

may not genuinely be learning to generalize, and the application could always be limited by the

need to include a learning process whenever it encounters a new environment. Another interesting

finding was developing an area-agnostic agent, which could achieve 90% coverage in a 19x19

environment using a 15x15 representation. Still, there were no guarantees for complete coverage

or a clear understanding of how generalizable the results were. Nevertheless, this approach is

among the most promising for developing a general CPP algorithm.

A final work [81], shows that the algorithm can handle dynamic obstacles. However, it was

unclear how the agent could identify dynamic obstacles, as the state-space representation was

based on a single frame with all obstacles in the same channel. This suggested that the agent had

no way of discerning which obstacles were moving and in which direction. As the algorithm was

always trained on the same scenario, it is plausible that the agent "memorized" the environment’s

patterns. The work only documents the initial location of the moving obstacles, and the number

and location are fixed and deterministic, but their movement pattern and ranges are not elaborated.

3.5 Reinforcement Learning Approaches 57

3.5.4 DQN Methods for CPP and Data Harvesting

The works of Mirco Theile and Harald Bayerlein [28, 83, 84, 85] offer a significant contribution to

the field of deep reinforcement learning approaches for coverage path planning and data harvesting

for UAV applications. As these works build incrementally upon each other, the focus of this

document will be on the latest single-agent paper [28] and the multi-agent work [84].

One of the most promising approaches to the CPP problem is [28]. The authors developed

a Deep RL algorithm based on Deep Q Networks that receive as input images corresponding to

grid maps. One of the grid maps is global, containing all the information about the problem with

little detail. There is another map with local information observed by the agent, with greater detail

and resolution. This approach combines both the offline and online methods of CPP, and gives an

intuition where the local map is used for more immediate decision-planning and the global map is

used for long-term planning. The authors also show another innovation. By centering the image on

the agent’s position, the results are improved significantly. This can be seen as the agent learning

in its own inertial referential, being that all positions in the map are relative to it.

The results of the work are promising, showing not only good performance but also the ability

of the algorithm to generalize. In the paper, the algorithm is benchmarked in a generic CPP

scenario and a Data Harvesting scenario, showing that the same agent could perform well in both

situations. However, the main limitation is that the framework is limited to a single map, not being

flexible to size and different configurations. This limitation is evident in the paper, as two different

network configurations are used for the two distinct scenarios.

All the innovations presented in the single-agent framework are generalized to a Multi-Agent

Reinforcement Learning Algorithm that uses the Double Deep Q Network in a parameter-sharing

scheme [84]. While the algorithm is specifically tailored to a data-harvesting scenario, it is one of

the most important works in the literature, and some techniques and ideas presented in this work

will be expanded in this dissertation.

3.5.5 Patrolling the Lake Ypacarai

One example of Deep Reinforcement Learning being used in real-world scenarios is in the pro-

posed Automated Surface Vessels to patrol Lake Ypacarai [86, 87].

In the first work [86], algorithms based on the Deep-Q Network are used to perform patrolling

tasks in a known environment. In this specific task, the agent can have two roles: homogenous

patrolling or heterogenous patrolling. The state space is represented in an RGB image representing

the importance matrices, or the priority of visiting a specific region. The authors show that the

Double DQN achieves better results than the vanilla DQN and that the agent can perform well

in both scenarios. However, it is mentioned that if any non-modeled obstacles appear, retraining

would be necessary, and the algorithm is also restricted to this naturally specific to this scenario.

In the latter work, the authors expand the work to a multi-agent framework once again by

parameter sharing. They also introduce the Dueling architecture to the RL scheme, showing that it

improves the results, even in the single-agent scenario. The results for multi-agent are better than

58 State of the Art

classical algorithms and show that this type of task can be adequately solved with Deep RL and

parameter sharing.

3.5.6 PPO For Cleaning Robots

An example of work developed in this area getting to consumer electronics can be seen in [88, 74],

where PPO offline algorithms are developed and tested for the LG cleaning robot R9, improving

the results obtained with classical algorithms and showing the interest of companies to develop

Reinforcement Learning solutions for their products. LG Korea developed this work, and the main

objective was to minimize energy consumption during cleaning tasks on the R9 robot. Compared

to the other works in the literature, it is one of the only works focusing more on Policy Gradient

methods.

3.6 Final Considerations

The CPP problem has a very large literature on classical and heuristic methods. Although these

methods can provide satisfactory solutions, they are often tailored for specific scenarios and lack

flexibility for scenarios that require real-time decision-making or involve complex problem con-

straints, especially in multi-agent scenarios.

Reinforcement Learning is an interesting and promising solution for Coverage Path Planning

[8]. It gives the adaptability that classical algorithms can not, and if used correctly, can give the

potential to achieve better solutions than the classical methods. Despite that, it is clear that the

literature on this topic is still evolving, with new approaches being presented every year.

One thing to take away from the literature analysis is the lack of general algorithms for CPP.

Most of the works are focused on only specific maps [85], or designed thinking about only a use

case [86]. The closest to a general algorithm is the work done by the LG Electronics Advanced

AI Team [21], as in some of their works, the starting position is randomly generated, but the

tested map pool is still very shallow and limited. The author of this document finds that the

current literature lacks algorithms capable of generalizing to any scenario, known or unknown, and

capable of handling different map sizes, especially when the size exceeds the state representation.

Another interesting, unexplored approach is to have an algorithm that can deal with different

sensor payloads and work in both online and offline scenarios without requiring retraining.

Keeping these considerations in mind, the remainder of this document will describe the devel-

oped work, aimed at addressing the gaps identified in the existing literature.

Chapter 4

System Architecture

This chapter will focus on the software development side of the dissertation. It is divided into

three sections. Section 4.1 will give a brief overview of the overall software architecture. This

will be followed by a more in-depth overview of the Environment in Section 4.2 and the Agents

in Section 4.3.

4.1 Architecture

A Reinforcement Learning algorithm has two main components to take into consideration: the

Environment and the Agent. With this in mind, the chapter will begin by analyzing this overall

architecture.

Every reinforcement learning method assumes an episodic format, where one or multiple

agents interact with an environment, which will evolve until episode termination. As seen in

the theory of Markov Decision Processes, at every timestep, the agent takes an action and re-

ceives a reward and an observation of the environment. On the software side of development, the

work must ensure this fundamental interaction is possible above all else. A visualization of the

interaction can be seen in Figure 4.1.

Figure 4.1: UML Class Diagram depicting the high-level architecture.

This process results in two clear software components - the Agent and the Environment. It

is important to note that both components must be completely decoupled in implementation. The

agent and environment are seen as black-boxes by each other, and therefore, the only assumption

and guarantee is that the actions selected by the agent are valid for the environment and that the

agent’s decision-making process can be based on the state it observes.

59

60 System Architecture

A typical interaction can be described in the Algorithm 8.

Algorithm 8 Simplified Agent-Environment Interaction
1: s← env.reset() ▷ Sample first environment state
2: while True do
3: a← agent.select_action(s) ▷ Agent chooses next action
4: s′,r← env.step(a) ▷ Environment returns observation and reward
5: s← s′ ▷ Update the state for the next iteration
6: if s is Terminal then ▷ Episode Termination
7: s← env.reset() ▷ Sample next episode first state
8: end if
9: end while

Making a comparison between Figure 4.1 and Algorithm 8, the decision-making process is

depicted by the agent method "select_action" and the process of taking an action, the evolution

of the state, and its observation is encapsulated by the environment method "step." The "reset"
method serves only as a way to deal with episode termination.

This interaction sets the tone for the remainder of the chapter, where the software structures

for both the Environment and Agent will be described and explained. The most important thing

to keep in mind is that the framework will be developed to be as generic and reusable as possible.

This enables the use of the same architecture for all problems described in the dissertation and

other future works.

4.2 Environment

The Environment is a fundamental piece of every Reinforcement Learning algorithm. For learning

to occur, relevant data must be generated through interactions. Most of the time, using real-

world data is not feasible, either due to the huge amounts of necessary data or due to the cost of

operation. This makes simulated environments a common feature of most works, and this one is

not an exception.

The developed environment will follow the design patterns of the OpenAI Gym environments

[89], which focus on creating the environment as a purely black-box interface for the agent, only

requiring two functions for any learning algorithm: step and reset. The first is used to receive the

agent’s action and update its state, and the latter serves to deal with episode termination.

4.2.1 Architecture

The environment was designed using Object-Oriented Programming (OOP) principles. This ap-

proach was chosen to streamline the development of new features and to separate the environ-

ment’s components distinctly. A UML Class Diagram illustrating the architecture is provided in

Figure 4.2.

The UML class diagram displays a high-level description of the developed software and does

not have every detail. Nonetheless, the document will go into further detail in each component.

4.2 Environment 61

Figure 4.2: UML Class Diagram depicting the high-level architecture.

Considering the proposed architecture, the Environment class serves as an interface for the

agent to interact with, and most of the functions and features are in the other classes that the

agent does not have direct access to. A typical sequence of interactions between an agent and the

environment is depicted in Figure 4.3 through a UML Sequence diagram.

Figure 4.3: UML Sequence Diagram of the proposed architecture.

4.2.1.1 Configuring The Environment

The primary motivation behind developing the environment from the ground up was to maintain

complete control over its features, essentially transforming it into an adaptable sandbox. Com-

pared to many well-established Gym environments, this custom environment offers a higher level

of customization and can be dynamically adjusted during runtime.

Configuration for the environment can be loaded from a YAML file. The values stored in the

file are then assigned to variables within the Environment and State Parameters variables. The

structure of the configuration file is detailed in Table 4.1.

It is possible to have multiple environments in the same configuration file by repeating the

same structure. This allows the implementation of techniques such as curriculum learning and

transfer learning without interrupting the learning algorithm.

62 System Architecture

Table 4.1: Environment Configuration.

Variable Name Possible Values Description
name Any Environment Name
base_steps Any N+ Number of Steps for training.
number_agents [1,size2[Number of Agents.
number_agent_random True/False If true, then the number of agents in each episode

will be a random number in [1,number_agents].
sensor Sensor Type Type of sensor of the agent.
sensor_range Any N+ Range in map cells of the sensor.
size [2,+∞[Size of an edge of the map.
min_size [2,size[Minimum size of an edge of the map.
random_size True/False If True, the map size will be a random number in

[min_size, size], else will be size.
number_obstacles [0,size2−1[The number of obstacles cells in the map.
obstacles_random True/False If True, the number of obstacles will be a random

number in [0,number_obstacles], else will be num-
ber_obstacles.

starting_position Any Valid Position Starting Position of the agent. Only functional in
single-agent.

starting_position_random True/False If True, the agent starts in a random position. Over-
writes starting_position.

random_coverage True/False If True, up to 70% of the map will be already cov-
ered in the first step of the episode.

map_configuration Empty or YAML file Load a Single Map.
dataset_path Empty or path to a file Load a dataset of maps.
load_state True/False If True, the whole State class is loaded, else only the

Grid Map is loaded.
load_random True/False If True, the maps in the dataset will be loaded in

random order.

These configurations also ensure that the generated environments can vary in every episode,

for example, by setting any random variable flag to True. Furthermore, by altering the values in the

parameter objects, the environment’s configuration can be dynamically modified during runtime

since these parameters are accessed each time the reset method is used.

4.2.2 State

While the Environment class is an interface class that holds all the components, the State class

is responsible for the actual simulation and holding all the relevant state information. It has two

main methods, the init_episode and move_agent. These two methods are fundamental for the

inner workings of the environment and will be explained in the following subsections.

4.2 Environment 63

4.2.2.1 Initializing An Episode From Scratch

The init_episode, as the name suggests, is the one responsible for initializing every episode. It is

called whenever the agent uses the environment reset method. In this method, the parameters of

the environment are read, and a suitable scenario is created. A pseudo-code of this method will be

provided in Algorithm 9.

Algorithm 9 Initialization of Episode

1: procedure INIT_EPISODE

2: width,height← The defined map size ▷ Randomly sample size if necessary
3: Randomly assign each agent a valid unique position
4: if parameters.map_data is provided then
5: global_map← GridMap initialized with parameters.map_data
6: else
7: Determine the number of obstacles
8: Randomly assign each obstacle a unique position
9: global_map← GridMap initialized with the data the map size and obstacles

10: fix global_map if necessary
11: end if
12: if params.sensor = "full information" then
13: local_map← global_map
14: else
15: local_map← GridMap initialized with agent positions
16: end if
17: Mark each agent’s position as visited on the local map
18: Cover up to 70% random tiles if params.random_coverage is True
19: Initialize all state variables ▷ Truncated, Terminated etc.
20: end procedure

4.2.2.2 Fixing Randomly Generated Maps

As the initialization algorithm relies upon randomly sampling obstacles, there are situations where

the generated map can not be fully covered by the agent, creating impossible scenarios. An exam-

ple of such a scenario can be seen in Figure 4.4. Consider that the black cells are obstacles, and

the blue circle is the agent position.

A custom algorithm is deployed to fix scenarios like this, ensuring that every scenario can

be solved. As the Grid Map is represented as a bidirectional graph, the algorithm is based on

deploying depth-first search (DFS) from the agent position and verifying that every non-obstacle

cell in the graph is reachable. If a node in the graph can not be visited, remove it and its edges.

This algorithm pseudo-code can be visualized in Algorithm 10.

4.2.2.3 Loading Maps From Dataset

One potential drawback of using the described algorithm to generate the map pertains to the time

complexity of the map correction algorithm. This algorithm operates at O(V +E) time complexity,

64 System Architecture

Figure 4.4: On the left is a scenario that is impossible to finish, and on the right is the same
scenario after applying the fixing algorithm.

where V represents the number of vertices and E denotes the number of edges. Consequently, it

scales poorly with map size.

In practical terms, in maps bigger than 20×20, the learning algorithm spent one-third of the

runtime generating and fixing maps, being a significant slowdown to the learning process.

To address this issue, a functionality was added to load a file containing multiple instances of

the State class. Such a file can easily be generated by repeatedly calling the init_episode method

and appending the resulting object to a list. After reaching the desired number of iterations, the

list can be saved as a file.

There are two ways to utilize a dataset in this context. The first method simply involves

randomly sampling a state from the loaded list and using it as is. However, this method necessi-

tates that all aspects of the state be reused, including the number of agents and sensor type. For

greater flexibility, an alternate method was implemented that only uses the map from the loaded

state and then initializes the episode as done in the init_episode method. This alternate method,

init_from_map, skips all parts related to map generation. Given that the most time-consuming

parts of the method involve generating and correcting the map, reusing the map offers almost all

the benefits of a newly generated state without the associated time expenditure.

This approach has enabled a speed increase of approximately 33% in training on larger maps.

Algorithm 10 Map Correction

1: procedure FIX_MAP(start)
2: visited← Apply depth-first search (DFS) starting from start
3: non_obs← Tiles that are not considered obstacles
4: should_be_obs← Tiles that are in the set (non_obs\ visited)
5: for each tile t in should_be_obs do
6: for each neighbor of t do
7: Remove t from the neighbor’s adjacency list
8: end for
9: Remove all elements from t’s adjacency list

10: Add t to the obstacle list
11: end for
12: end procedure

4.2 Environment 65

Furthermore, this method enhances the evaluation and validation of algorithms, providing a robust

and replicable setting for their performance testing.

One significant advantage of this feature is that users can share datasets, enabling them to test

their own approaches. This is particularly useful given the CPP literature’s lack of standardized

evaluation datasets.

4.2.2.4 Implementing Partial Observability

One of the objectives of the algorithms that will be tested in the environment is to have agents

that can do active exploration or online coverage path planning, completely relying on sensor

information. To implement this, the State class has two Grid Map objects. One is the global_map,

which has all information, and the other is the local_map, which is initialized and built using the

agent information.

Two types of sensors are implemented: a camera and a laser scanner. A third situation where

the agent has full information and does not rely on sensors is also considered. The main difference

between the laser and the camera is that it is considered that the camera has a field-of-view that

enables it to view beyond obstacles, for example, mounted on a UAV, whereas the laser does not

see beyond any obstacle.

When the agent has access to full information, the local map can be a duplicate of the global

map. When an agent calls the step method from the Environment object to perform an action, this

information must be transmitted to the State object for updating the state, as illustrated in Figure

4.3.

4.2.2.5 Updating The State

Whenever the agent takes an action, this action must be used to update the environment state.

While agent calls the step method from the Environment object to take the action, then the envi-

ronment object must send this information to the State object in order to update the state, as seen

in Figure 4.3. The State object has a method named move_agent, that receives the action, and its

logic can be visualized in Figure 4.5.

This method has a built-in safety controller that does not let the agent take dangerous actions.

Every time the action results in a crash with the environment or other agents, the safety controller

does not let the agent move.

The method operates synchronously. Thus, when multiple agents are present, priority is

granted to whichever action was first added to the action list. In a synchronous operation, if

two agents move to the same cell, the agent given priority occupies the tile while the other agent

remains in place.

If an agent does not select an action, either due to communication failure or to simulate an

asynchronous system where each agent acts individually, the controller ensures that the agent

remains stationary.

66 System Architecture

Figure 4.5: Flowchart of the move_agent method.

The move_agent method also returns a list of events that occurred during the transition. These

events, such as visiting a new tile or a collision, are used to implement the reward function. How-

ever, as these events are problem-dependent and this section aims to provide only a high-level

overview, they will not be explored in depth.

4.2.3 Reward Function

The Reward Function is the environment component responsible for computing the reward for

the agents. In this environment, the compute implements the function R(s,a,s′), by receiving the

current state s, action a, and next state s′ and the list of events that occurred in the transition.

The utilization of a list of events in the reward function is motivated by the need for adaptability

and generalization. Despite the function being problem-specific, a set of events is commonly

encountered across various navigation tasks. Incorporating these events as the basis for the reward

function makes generalization and adjustments easier. The basic implemented events can be seen

in Table 4.2.

Table 4.2: Available Events

Event Explanation
Blocked The agent had a collision.

New The agent visited a new tile.
Repeated The agent repeated the same action as in the last timestep.
Finished The agent has visited all cells.
Timeout The episode was truncated due to time constraints.
Waited The agent did not move.

Time Step Constant Reward in every transition.

Each event occurrence is linked with a specific reward value, which can be adjusted to adapt

the function to different problems. These values are stored in a class named Reward Parameters.

4.3 Agent 67

Given that these values are often specific to the algorithm and the problem at hand, a more in-depth

discussion of the reward function be provided in the next chapters.

4.2.4 Visualization

To enable the visual representation of the environment, a Graphical User Interface (GUI) was

developed leveraging the PyGame framework1.

The Visualization class contains a render method that takes the current state as an input and

visually renders the map in a new window. The rendering process involves transforming the con-

structed graph into a 2D RGB array, where each element of the array corresponds to a cell on the

map and its color denotes the type of cell it represents.

The color scheme used is as follows: black cells represent obstacles, white cells indicate points

of interest, red cells are those that have already been visited, and blue cells are the ones that the

agent has not yet visualized in scenarios of partial observability. The agents are represented by

blue circles. An example of this color-coded visualization can be seen in Figure 4.6.

Figure 4.6: An example of environment rendering with the associated color code.

4.3 Agent

In the context of Reinforcement Learning, the definition and boundaries of an agent are not as

distinct as those of the environment. The agent is essentially an entity that is capable of interacting

with the environment. From a theoretical standpoint, this could be something as simple as a

random number generator. This section provides an overview of two types of agents that have

been developed for this project: Tabular Agents and Deep Reinforcement Learning Agents.

1https://www.pygame.org/

https://www.pygame.org/

68 System Architecture

4.3.1 Tabular Reinforcement Learning Agent

In Tabular algorithms, due to the simplicity of the techniques, the agent can be reduced to a look-

up table. The implementation is based on the Python collections defaultdict 2, a dictionary that can

be configured with a default number of entries for any key. By defining the entries as the number

of actions in the action space and the key as the state, one can implement a tabular state-action

value function Q(s,a).

For example, if the agent follows the greedy policy, it merely needs to query the dictionary

with the current state as the key and then apply the argmax function to the entries. This allows the

agent to select the action corresponding to the highest value.

4.3.2 Deep Reinforcement Learning Agent

The implementation of Deep Reinforcement Learning Agents is inherently more complex com-

pared to Tabular Agents. To manage this complexity, an OOP approach is utilized in implement-

ing the agent, mirroring the structure used for the environment. This is a widely adopted strategy

because it facilitates components’ modularization, isolation, and reusability across different algo-

rithms. However, some authors argue for a single-file functional approach, suggesting it provides

a clearer overall picture and leads to faster development times 3.

Regardless, the architecture for the agent used in this context can be visualized through a UML

Class Diagram, as shown in Figure 4.7.

Figure 4.7: UML Class Diagram of the Deep Reinforcement Learning Agent.

As with the environment, the Agent class encapsulates all components and serves as the pri-

mary interface.

4.3.2.1 Implementation

The selected Deep Learning framework for implementing the model and learning algorithm is

PyTorch4. This comprehensive framework facilitates the construction of various Neural Network

configurations with its extensive feature set and well-documented resources, alongside implement-

ing the training algorithm. In this study, ADAM was the optimizer of choice.

2https://docs.python.org/3/library/collections.html#defaultdict-objects
3https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
4https://pytorch.org/

https://docs.python.org/3/library/collections.html#defaultdict-objects
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://pytorch.org/

4.3 Agent 69

The development of the algorithm was substantially inspired by, and based on, the OpenAI

baselines repository5. Notably, the implementation of the Memory class, which employs Priori-

tized Experience Replay, was heavily informed by this repository. Consistent with the recommen-

dations in the original paper [57], the Memory class utilizes the min sum-tree and max sum-tree

for effective priority management.

The developed code can be accessed in the authors GitLab repository 6.

4.3.2.2 Configuration Hyperparameters

The agent and the learning algorithm can be configured using a range of hyperparameters. These

hyperparameters are passed through an argument parser in the main launching script. Table 4.3

provides a summary of these hyperparameters.

Table 4.3: Hyperparameters for Configuring an Agent

Hyperparameter Description
history-length Number of consecutive frames stacked
noisy-std Initial standard deviation of noisy layers
memory-capacity Experience replay memory size
replay-frequency Frequency of sampling from memory
priority-exponent Prioritized experience replay exponent
priority-weight Initial prioritized experience replay importance sampling weight
multi-step Number of steps for multi-step return
discount Discount factor
learning-rate Adam Optimizer Learning rate
adam-eps Adam Optimizer epsilon
batch-size Mini-Batch size for learning
norm-clip Max L2 norm for gradient clipping
learn-start Number of steps before starting training
tau Factor for soft update of target parameters

The used hyperparameters and choices will be expanded in the following chapters, as these

choices are very much problem-dependent.

5https://github.com/openai/baselines
6https://gitlab.com/jpfpc/drl_cpp/-/tree/main/src/Rainbow

https://github.com/openai/baselines
https://gitlab.com/jpfpc/drl_cpp/-/tree/main/src/Rainbow

70 System Architecture

Chapter 5

Online Coverage Path Planning with no
Explicit Map Representation

This chapter will delve into a case study focusing on the application of classical Tabular Rein-

forcement Learning Methods for Online Coverage Path Planning. It will begin in Section 5.1 with

a presentation of challenges and objectives for the work in this Chapter. This is followed by a for-

mulation of the problem in Section 5.2. After defining the problem, the solution will be developed

and discussed in Section 5.3. In Section 5.4 the developed algorithm is tested, and the results are

analyzed and discussed. Finally, some brief conclusions on this work are outlined in Section 5.5.

5.1 Objectives and Challenges

The work developed in this chapter is a stepping-stone for more complex methods and algorithms

that will be analyzed in the next chapters. It serves as an introduction to the usage of Reinforce-

ment Learning, grounding the complexity of the topic by using only classical Tabular methods and

analyzing how adequate these methods can be for a coverage path planning problem. By develop-

ing simpler solutions, this chapter sets the tone for how the problems will be tackled in the rest of

the document.

The main point of contention is how to model this problem to be solved by Reinforcement

Learning methods. The state space in a coverage path planning setting can be very large. When

considering the state as the direct map representation, with the presence of obstacles, varying start-

ing positions, and differing map sizes. This can render the problem non-trivial to solve within a

tabular setting. As an illustration, for a 10× 10 map with no obstacles, there are approximately

(102)3 = 1×106 potential states1. Considering four possible actions, the Q-Table would contain

4× 106 entries. Assuming each entry is a 64-bit floating point number, the Q-Table size is ap-

proximately 32 Megabytes, and that is for environments of this specific size alone and with no

obstacles. By adding just one obstacle, there are 100 more possible maps, and each would require

1There are 100 cells, and they can either be a point of interest or not, leading to 1002 combinations. Considering
that the agent can take any position, there are a total of 1003 possible states.

71

72 Online Coverage Path Planning with no Explicit Map Representation

approximately the same memory size. Considering that this analysis is just done for this map size

and the objective is to be able to deal with any map size and number of obstacles, it is evident

that the state cannot merely be the map representation and that the problem must be modeled

appropriately.

With these constraints in mind, the final contribution of this chapter will be a Tabular Temporal

Reinforcement Learning Method that can be used by a generic agent in a general Coverage Path

Planning setting. The novelty comes from the techniques that are used by the algorithm to adapt

to the challenges of the problem and deliver a general and dependable solution.

The objectives of this chapter are as follows:

• Model the Online Coverage Path Planning problem as a Partially Observed Markov Decision

Process.

• Develop Tabular Temporal Reinforcement Learning Methods to solve the POMDP.

• Study the performance of different classical RL Methods on this setting.

• Address the challenges of using unaltered RL methods for the CPP problem.

• Deliver an algorithm that is capable of performing the task in various different configura-

tions at a near-optimal level of performance.

5.2 Problem Statement

The goal is to perform a general online coverage path planning task that minimizes coverage

path overlap, or in simpler terms, minimizes the number of unnecessary steps. As depicted in

Figure 5.1, the environment undergoes a process of approximate cell decomposition, leading to a

N×N square grid map where the cell size equates to the robot’s dimensions - a common practice

in most CPP approaches. The grid’s referential is based on cardinal directions, with the map’s

northernmost points located at the top of the grid.

The agent is conceptualized as a generic robot capable of moving in four directions (North,

East, South, West) at any given timestep, irrespective of the previously taken direction. The robot

is equipped with a range sensor that can detect any obstacle in the eight intercardinal directions,

meaning it can also detect obstacles that are diagonal to the agent. The range of the sensor is

limited with the value of r grid cells in the directions of possible movement and a value of r√
2

in

the diagonals.

For visualization purposes, the environment is depicted as a N×N grid map where each cell

encodes specific information (as seen in Figure 5.1 and Figure 5.2). Red cells correspond to

covered areas, white cells represent non-covered, black cells designate obstacles, blue cells are

unseen areas, and the blue circle symbolizes the agent.

Despite the environment being discretized into a 2D grid, the algorithm should solely rely on

the sensor data to accomplish the task. This implies that even though this form of representation is

5.3 Methodology 73

Figure 5.1: Example of a 10×10 environment featuring three obstacles.

used in the environment, the Reinforcement Learning algorithm itself remains agnostic to the map,

requiring only sensor readings to function. Because of this reason, this method will be considered

as a Coverage Path Planning approach with no explicit map representation.

This sensor-dependent design means that the state-space size is limited only by the sensor’s

range and resolution, effectively addressing the problem of map representation scalability with

size. Moreover, this approach synergizes well with novel localization methods such as PASTA

[90], which rely solely on LiDAR information for environment localization.

5.3 Methodology

This section will expand on the concepts and ideas from the problem statement and provide a

solution to the Online CPP Problem using Reinforcement Learning. With this in mind, the problem

will be formulated as a POMDP and the design choices for the Observation Space, Action Space,

Reward Function, and Policy will be described and explained.

5.3.1 Observation Space

An intuitive approach to represent the environmental state might be to utilize an N ×M array

that entirely represents the discretized map, encoding information about coverage, obstacles, and

the agent’s position. However, this representation’s scalability is inadequate [6], especially for a

Tabular RL approach. For a basic 6×6 grid map with no obstacles, there are 363 = 46656 potential

states, corresponding to each cell’s state (visited or not) and the agent’s position. Furthermore, this

representation is solely applicable to this specific environment, implying that if a single obstacle

appears, or if there is a size change or a dynamic environment, a completely new algorithm would

need to be trained.

With this in mind, for an online coverage task, the observation space Ω is represented as the

last K processed readings of a range sensor in every direction and the last K actions. This sensor

74 Online Coverage Path Planning with no Explicit Map Representation

will also detect the distance to walls or obstacles, and a map will be built and stored in memory as

in Simultaneous Localization and Mapping (SLAM) techniques.

For this purpose, at each time step t, the ranging sensor will give the agent an array of distances

rt = [dN ,dS,dE ,dW ,dNE ,dNw,dSE ,dSW], where the dx values are between 0 and the maximum range

r. The observation function O , will receive this array and the constructed map as inputs, and

modify the values of rt resulting in the array r′t . This way, a value will be changed to -1 when the

adjacent cell is a wall/obstacle, kept at 0 when the adjacent cell was already covered, and any value

bigger than 0 is the distance to the closest covered cell or obstacle in the direction. A visualization

of this transformation is shown in Figure 5.2

Figure 5.2: Example of the transformation form rt → r′t . Sensor range r = 2.

After modifying the values, the observation function will create a tuple with (r′t ,at), add it to

the newest observation, and remove the oldest tuple in o.

As such, an observation o∈Ω is a tuple composed as follows: o= [(r′t ,at),(r′t−1,at−1), ...,(r′t−K ,at−K)].

The number of sensor readings K can be tuned depending on the environment size and the avail-

able memory. It is important to note, however, that the nature of the algorithm inherently limits it,

as the number of possible observations will increase exponentially, making it unfeasible to train.

5.3.2 Action Space

The formulated agent has five actions. Four of these are directly related to the motion of the agent,

corresponding to the directions it can take at each time step: North, East, South, and West as seen

in Figure 5.1. The agent can only move one cell at each timestep.

The fifth action is not exactly an action in the sense of classical RL concepts, but in this

proposed framework can be viewed as one. More precisely, it is a heuristic that moves the agent

in the direction of the closest non-visited cell, where the closest cell is determined by euclidean

distance and the path towards it is calculated by the Dijkstra Algorithm, considering that the map

is represented by an adjacency graph. This heuristic is not always available and is a way to mix

concepts of classical algorithms with RL. The usage of this heuristic speeds the training process

by minimizing the time in non-interesting parts of the state space, i.e., surrounded by already

5.3 Methodology 75

visited cells. Furthermore, it gives complete coverage guarantees in any non-dynamic environment

considering there are no sensor faults.

Therefore, the action space can be defined as A : [North, South, West, East, Heuristic].

5.3.3 Policy

Temporal Differences Reinforcement Learning Algorithms require a policy that provides continu-

ous exploration for the learning process. For the proposed problem, there are a lot of states s ∈ S
that are inherently uninteresting, such as going against a wall or revisiting an already-covered

cell. A solution is proposed based on a heuristic, however, this should only be used when deemed

necessary.

For this purpose, the chosen policy was a modified decaying ε-greedy. The policy can be

described by the expression:

at =

argmaxa Q(s,a) w.p 1− εt(s)

Random action in A′ w.p εt(s),
(5.1)

where choosing the optimal action is referred to as exploiting and choosing a random action as

exploring. The trade-off between exploration-exploitation is controlled by the hyperparameter εt .

This parameter is time-varying and its value decays following the expression εt(s) = 1√
nt(s)

, where

nt(s) is the number of times that the state s∈ S was visited at time-step t. This function was chosen

based on [53].

Regarding the available actions, we introduce the following modifications at each time step:

1. The only available actions of the action space A are the ones that move towards an adjacent

non-covered cell, forming the action space A′.

2. The chosen action will be the heuristic if and only if all adjacent cells are already visited or

obstacles.

3. In the case that the state was never explored, the chosen action will be the heuristic.

A visualization of an example of rule number two can be seen in Figure 5.3.

5.3.4 Reward Function

The reward function is one of the most important components of any RL algorithm, being abso-

lutely necessary for good convergence and performance. For this problem, it was designed by

rules based on the intended behavior of the agent, and on a set of events. More precisely, the

76 Online Coverage Path Planning with no Explicit Map Representation

Figure 5.3: An example of the heuristic-based modified Policy.

reward function is formulated as follows:

R(s,a,s′) =

Size−1 if a new cell is covered

Size−1 if the at is equal to at−1

Size−1 if the agent finishes a row/column

Size−1 if the agent is adjacent to a wall

−10 ·Size−1 if there is a collision

−5 ·Size−1 if an already covered cell is visited.

All rewards have a scaling factor of Size−1 = 1
N×N , making it suitable for training in environments

with different sizes. It is important to note that multiple events can happen in one time step,

and all possible combinations should be considered. Furthermore, a positive reward can only be

given if a new cell is covered. The rationale of the proposed reward function is to capture some

characteristics of classical algorithms, such as Back-and-Forth and Wall-Following, by rewarding

consecutive moves in the same direction, prioritizing finishing rows or columns, and staying close

to walls. It discourages collisions and unnecessary moves.

5.4 Results

With the methodologies set and the environment implemented, the algorithm was trained and

tested in a simulation environment. To make the simulation and training as general and realistic

as possible, the conditions of the environment change every episode. The user can specify the

maximum and minimum size of the environment and the same for the number of obstacles. These

parameters are randomly generated at each episode respecting the user specifications. Further-

more, the agent starting position is also randomly generated.

5.4 Results 77

5.4.1 Comparison Between Algorithms

To find the best TD Learning algorithm for this problem, four different algorithms were bench-

marked in a simpler version of the task. These algorithms are: Q-Learning, SARSA, Double

Q-Learning (DQL) [53], Watkins Q [42].

In the first phase, the task was to do CPP in a 6× 6 environment, where the agent starting

position would be limited to only the corners of the map and with zero obstacles. In the second

phase, the environment had a single random obstacle in it. For both these tasks, the range of the

agent sensor is r = 3 and the number of samples in memory is K = 3. The algorithms were trained

for 100000 episodes in both cases, and the main metric of performance is the ratio between the

number of used steps nu and the number of free cells of the environment n f (ρ = nu
n f

), where the

lower the value of the ratio, the better performance. This ratio has a lower bound equal to 1, which

corresponds to an optimal solution in a convex environment. Notice, however, that this analysis

does not apply in non-convex settings, which is the case when one or more obstacles are present.

In this case, the optimal solution depends on the configuration of obstacles and starting position,

and therefore may not be necessarily ρ = 1.

The results from both situations can be seen in Figure 5.4. In a simpler environment with no

obstacles, near-optimal performance is achieved by all the algorithms besides SARSA, and the

best-performing algorithm is Q-Learning, followed by Double-Q Learning. On the other hand, in

the more complex environment, after 100000 episodes, the results are very similar to the previous

situation, however, the performance is slightly worse, suggesting that more training is required.

These results make it clear that the off-policy methods perform better in this specific task.

Figure 5.4: Average episode ratio in the first 100000 episodes of training in a 6× 6 with the
heuristic action

Table 5.1 displays the time that each algorithm took to complete the training phase. The sim-

ulations were done in a computer equipped with an AMD Ryzen™ 7 5800H processor, NVIDIA

78 Online Coverage Path Planning with no Explicit Map Representation

Table 5.1: Training Times (s) for all used methods in both situations, with and without the usage
of the heuristic action.

Method Heuristic,
No Obstacles

Heuristic,
One Obstacle

No Heuristic,
No Obstacles

No Heuristic,
One Obstacle

Q-Learning 491.1 492.2 571.5 698.9
SARSA 615.8 529.7 688.9 791.7

DQL 477.8 498.4 1521.5 1993.6
Watkins Q 985.1 1448.0 2285.9 6934.1

GeForce RTX 3060 (Laptop, 120W), and DDR4 16GB RAM. By analyzing the results, it is no-

ticeable the positive influence of using the heuristic action during training, which speeds up the

training process, and in turn, will yield better results when considering the same number of train-

ing episodes. Focusing on the results of algorithms that use the heuristic action, it is possible to

see that the training time is affected by two factors: the performance of the algorithm and the

computational complexity.

The first becomes evident in the case of SARSA with no obstacles. Since it has by far the worst

results, it took more time to complete each episode, as it took more steps to reach the terminal

state. Furthermore, this issue will also make slower training in bigger maps, as even in optimal

conditions, a bigger number of steps is necessary. As most algorithms use TD(0) for the value

function estimation, the complexity is practically the same, leading to a similar time to execute

each iteration. However, that is not the case with Watkins-Q, which uses eligibility traces. This

mechanism is slower the more state-action exists in the environment and the number of different

state-action pairs seen in the episode, making it scale poorly with obstacles and bigger map sizes.

These issues would make prioritize both Q-Learning and Double Q-Learning since they have the

best performance and time efficiency. However, in our experience with this problem, Double-Q

Learning was more sensitive to changes in hyperparameters and would frequently not converge,

making Q-Learning the method of choice for the following section.

5.4.2 Q-Learning for Coverage Path Planning

For evaluating the efficacy of the proposed algorithm in a broader range of scenarios, the Q-

Learning-based algorithm was trained for 17.5 million episodes in randomly generated environ-

ments, with different starting positions, sizes between 4×4 and 10×10, and a number of obstacles

in [0,3]. The agent hyperparameters are the sensor range of r = 3 and K = 3 samples in memory.

The trained algorithm was used to perform the task in environments with different settings.

Each setting consists on the number of obstacles and the size of the environment, being that for

each specification, there will be multiple environments. The algorithm was used to complete a set

of 1000 coverage tasks in each setting, and it was evaluated by the average ratio of each set. The

results can be observed in Figure 5.5.

These results clearly show the ability of the agent to generalize even in environments that have

more than twice the size and obstacles of the ones in which it was trained. It obtained near-optimal

5.5 Final Considerations 79

performance in environments with fewer obstacles, and achieved low ratios even in bigger map

sizes, validating the design choices of the algorithm.

Figure 5.5: Obtained results for the evaluation of the Q-Learning CPP algorithm.

5.5 Final Considerations

In this chapter, a RL algorithm for Online Coverage Path Planning was formulated, designed, and

evaluated. To address the large state space of this problem, an efficient and compact formulation

of the problem as a Partially Observed Markov Decision Process was made, together with the

development of a modified policy with a heuristic method and a limited action space, which accel-

erated the training process by optimizing and reducing the policy-space. The results validate the

effectiveness of this approach, as the proposed algorithm demonstrates near-optimal performance

in certain scenarios and exhibits generalizability to various map configurations, relying solely on

sensor measurements. Notably, it stands out as one of the few methods that do not require an

explicit map representation.

These encouraging results showcase the potential of value-based techniques and heuristics in

solving navigation tasks like Coverage Path Planning. However, it is important to acknowledge

that the tabular methods employed here have reached their performance limits, and further im-

provements would be unfeasible with this approach.

This work provides a solid foundation for the subsequent chapters, which will delve into Deep

Reinforcement Learning approaches. A consistent theme will be the careful consideration of prob-

lem modeling and the utilization of heuristics and simplifications to manage the inherent complex-

ity of robotic navigation. By building upon the insights gained here, the forthcoming chapters will

explore more sophisticated techniques to tackle CPP and related challenges.

80 Online Coverage Path Planning with no Explicit Map Representation

Chapter 6

Deep Reinforcement Learning for
Single Agent Navigation

This chapter serves as the final stepping-stone before delving into the study of multi-agent meth-

ods. It presents a comprehensive case study on the utilization of Deep Reinforcement Learning

(DRL) methods for various robotic navigation tasks. These tasks encompass point-to-point path

planning, partial and complete coverage path planning, as well as active exploration.

The chapter will commence by introducing the problem and presenting the objectives 6.1.

Subsequently, the problem is formulated in Section 6.2 and translated into a generic Partial Ob-

served Markov Decision Process in Section 6.3, particularly emphasizing the problem’s modeling.

In Section 6.4 all the techniques employed in the learning algorithm’s design will be thoroughly

explained. Section 6.5 will present the obtained results, highlighting the algorithm’s versatility,

adaptability, and performance compared to other state-of-the-art algorithms. Finally, conclusions

are drawn in Section 6.6.

6.1 Objectives and Challenges

This chapter will focus on the design of Deep Reinforcement Learning methods for robotic naviga-

tion. Contextualizing this work on the overall document, it is perhaps the most fundamental piece

for the multi-agent approach in the next chapter and is, therefore, the foundation for everything

related to Deep Reinforcement Learning.

Unlike the previous work and most of the literature, this chapter will take a different approach

to coverage path planning and robotic navigation in general. Traditional path-planning solutions

for autonomous robotic systems are often burdened by extensive, specialized software stacks de-

signed for specific robots, configurations, and tasks. When a robot wants to perform different

tasks, such as point-to-point path planning or coverage path planning, it will have to use different

algorithms and develop complex interfaces between tasks. Moreover, the algorithm might only

work on a specific robot and must be rewritten in a different use case.

81

82 Deep Reinforcement Learning for Single Agent Navigation

Instead, this chapter will approach the robotic navigation tasks as a spectrum, illustrated in

Figure 6.1. The intuition is that an intelligent robotic agent capable of doing a coverage path plan-

ning task should also be able to complete point-to-point path planning tasks. In a way, complete

coverage path planning is a n-point coverage path planning task where n is the number of cells

in the map. By analyzing the problem from this perspective, creating an agent that can extract

semantic information from a map and perform any of the tasks should be possible. Furthermore,

if it can extract this information from the map, it would also be trivial to do sensor-based coverage

path planning as long as the information is consistently encoded.

Figure 6.1: The Navigation Spectrum Framework.

The contribution of this chapter will be a generic single-agent Reinforcement Learning algo-

rithm that can be used in various navigation tasks, adapt to any 2D Grid Map, and be able to deal

with different agent payload configurations. The main objectives of this chapter are as follows:

• Model Robotic Navigation as a generic Partial Observed Markov Decision Process with a

similar structure for every task.

• Develop a method that can cope with different map sizes.

• Employ the state-of-the-art Deep Reinforcement Learning method, Rainbow DQN, to tackle

Robotic Navigation.

• Train the algorithm in a manner that allows it to perform various tasks without the need for

retraining.

• Investigate the versatility and generalizability of the developed algorithm, assessing its ca-

pacity to handle diverse scenarios and challenges in robotic navigation.

• Compare the results with other state-of-the-art algorithms.

6.2 Problem Statement

For a generic robotic navigation task, without loss of generality, consider a generic 2D square-

shaped map M of maximum size M×M. This map is obtained via approximate cellular decom-

position where the cell size is equal to the robot size, as in most CPP approaches. The obstacles

in the map are also cell-sized, and the number and position can be randomly generated. All the

elements that are out-of-bounds are considered obstacles, and therefore, obstacles might be used

to change the shape of the map without changing the general square shape.

6.3 Partially Observed Markov Decision Process 83

The map has four types of cells: Non-Covered Cells (Point of Interest), Covered Cells, Obsta-

cles, and Cells that were not yet observed. The never-seen cells are only relevant when the agent

performs a sensor-based coverage path planning task or active exploration, and the agent must

use its sensor to extract the cell information. This configuration enables the modeling of most

navigation tasks. For instance, if all Non-Covered Cells, except for one, are changed to Covered

Cells, a point-to-point problem can be produced where the only non-covered cell is the destina-

tion. This enables the agent to obtain the necessary information from the map representation. This

basic configuration does not directly handle cases where the agent is expected to return to a home

cell when the mission ends. Despite not being addressed in this document, a way to model this

behavior can be to define the home cell as one that is simultaneously encoded as a Non-Covered

Cell and a Covered Cell.

The agent is omnidirectional and can choose at each discretized time-step t. This action can

move in any cardinal direction A = [North,South,East,West]. The agent does not need to be

adapted for a robot with other kinematics as long as a lower-level algorithm deals with the motion-

planning problem, and the rewards can be tailored for this case, i.e. by penalizing turns. The agent

has energy constraints represented by a battery level equal to the number of remaining actions an

agent can take. The agent can have varied sensor payloads ranging from Camera, with a FOV of

r× r cells, and can view over obstacles; 360 degrees LiDAR that functions similarly to the camera

but can not view over obstacles.

The agent can start at any non-obstacle cell and does not have to finish the mission in a specific

position. Therefore, the navigation problem can be seen as an optimization problem, where the

objective is to minimize the number of discrete timesteps to finish covering all points of interest.

6.3 Partially Observed Markov Decision Process

The problem will be modeled as a Partially Observed Markov Decision Process (POMDP) for two

main reasons. Firstly, the agent does not always have full information, for example, in scenarios

where it performs sensor-based coverage path planning. Secondly, information compression or

loss needs to occur when the map representation exceeds the maximum size acceptable by the

network architecture.

The primary motivation behind this modeling choice is to ensure that the same POMDP frame-

work can represent every navigation task. By adopting a unified POMDP formulation, a flexible

and consistent representation is created, capable of effectively handling various scenarios and

tasks, despite potential variations in the availability of information, map sizes, and objectives.

6.3.1 Action Space

The chosen action space for the agent can be described as:

A= [North,South,West,East], (6.1)

84 Deep Reinforcement Learning for Single Agent Navigation

where at each timestep, the agent can choose a direction to move. It is assumed that the agent

is omnidirectional, meaning that it can choose to move in any direction independently of the last

action. While this assumption does not hold for every robot, more complex kinematics can be

dealt with lower-level algorithms and will not be approached in this work, as it mainly focuses on

the path-planning aspect of robotic navigation. The action space and the output layer of the neural

network can be visualized in Figure 6.2.

Figure 6.2: Example of the Action Space and Neural Network Output Layer.

On top of this action space, the agent is also equipped with a heuristic action. This heuristic

action is the equivalent of moving toward the closest point of interest. If two points are equidis-

tant from the agent, a cell is randomly chosen, effectively making this heuristic action a form of

reinforced random walk.

Unlike the approach discussed in Chapter 5, the heuristic action is not explicitly integrated

into the action space. The design choice in that work was rooted in the observation space lacking

sufficient information to determine a non-heuristic action effectively, meaning that the agent could

not learn a policy if the heuristic action was not part of the action space. In this chapter, the

heuristic action selects one of the possible actions, and the agent and learning algorithm deal with

it in the same manner as if it were chosen through the Neural Network output.

This design choice enables the agent to learn by imitating the reinforced random walk, which

despite not being optimal, can be a better exploration policy than a purely random walk if used

correctly. Moreover, including the heuristic ensures complete coverage guarantees for the agent,

leading to a more understandable and reliable policy. Additionally, the heuristic action is used to

address certain issues that arise from employing function approximation through Neural Networks

in POMDPs. The nature of these issues and the incorporation of the heuristic in training and

deployment policies will be discussed in subsequent sections

6.3.2 State and Observation Space

The State and Observation Space representation is one of the most fundamental pieces of the work.

This section will describe the design choices from the ground up.

Considering most RL CPP approaches, the state representation is usually an N-channel M×M

matrix where M is the map size. The number of channels is problem dependent. However, the

6.3 Partially Observed Markov Decision Process 85

most common is three channels corresponding to the points of interest obstacles and agent position.

This makes it so that the state representation can be seen as any vector S = B3×M×M, where B is

the Boolean domain {0,1}. In practice, the representation will be implemented as a tensor, which

will be floating-point numbers instead of booleans.

Nonetheless, this approach is very simplistic and can be improved. The subsequent sections

delve into a comprehensive analysis and description of the enhancements introduced within this

work.

6.3.2.1 Channel Enconding

Since the objective of this work is to have the most generic algorithm possible, the basic state

representation of the map was changed. This created a 4-channel 2D Matrix S = B4×M×M with

the following channels encoding:

• Channel 1: Points of Interest.

• Channel 2: Points of Non-Interest.

• Channel 3: Obstacles.

• Channel 4: Agent Position.

Values within these channels are binary, either 0 or 1, corresponding to the information in a

particular cell.

Considering the two first channels, while it is true that they could be compressed into just one

channel, this approach is more flexible as it enables to implement more features by combining the

values of the channels, for example, the cell where the agent needs to return in the end can be

valued as a point of interest and point of non-interest at the same time. Furthermore, separating

the two channels showed better performance when compared to the compressed version.

As for the agent position, it could also be removed. As seen in the next section, the map will be

centered on the agent position, meaning there is no need for explicit position representation on the

global frame. However, this channel was kept for two reasons: When this algorithm is expanded

to a multi-agent setting, this channel must exist; The algorithm still showed better performance in

a single-agent setting with the explicit position.

Finally, one can notice that there is no channel for non-seen cells in sensor-based CPP. Since

this channel would only be used for this specific problem and obsolete for every other, it would be

overhead in most situations. Consequently, non-seen cells are depicted by assigning zero values

across all channels, signifying the absence of information within the corresponding cell. This

design choice also synergizes with the separation of the first two channels. In the case of a singular

channel where the value 1 signified points of interest and 0 if the cell was already visited, the

representation where all channels are zero-valued would not represent non-seen cells.

Using the color scheme presented in Section 4.2.4, a visualization of the encoding of the

channels can be seen in Figure 6.3. Once again, points of interest are marked as white cells, points

86 Deep Reinforcement Learning for Single Agent Navigation

of non-interest as red, obstacles as black, the cells with no information are blue, and the agent is

denoted with a blue circle.

Figure 6.3: Visualization of all types of cells.

6.3.2.2 Map Centering

In work by Theile and Bayerlein [28, 83, 84], the authors introduce the concept of centering the

map representation on the agent position. Intuitively, this representation can be seen as visualizing

the map in the agent reference frame instead of the global or map reference frame. The authors

showed that using this scheme significantly improves the performance of reinforcement learning

algorithms because the neural network does not have to learn spatial relations in the global refer-

ence frame.

In practice, if a centered map is fed into a fully connected linear neural network, the neuron

responsible for the cell where the agent is will always be the same, the same for the cell on its

right or left, and so on. This enables a better function approximation generalization and is shown

empirically to achieve better results.

Considering the map tensor A ∈ R4×M×M, one can apply a centering function to obtain the

centered map tensor B∈R4×Mc×Mc , where Mc = 2M−1. Meaning that the tensor B can be defined

by:

B = fcenter(A), (6.2)

where the function fcenter can be seen as mapping from:

fcenter : R4×M×M → R4×Mc×Mc (6.3)

Considering the position of the agent p = [px, py]
T , which is obtained from the fourth channel

of the tensor A and the padding vector x = [0,0,1,0]T , wherein all padded cells are encoded as

obstacles, the elements of B can be determined through:

6.3 Partially Observed Markov Decision Process 87

bi, j =

ai+px−M+1, j+py−M+1, if M ≤ i+ px +1 < 2M

∧M ≤ j+ py +1 < 2M

x, otherwise.

(6.4)

This formulation implies that the representation size is limited by Mc. In this work, the edge size

Mc of the centered map equals 41, meaning that the max map size would theoretically be M = 21.

Nonetheless, to maintain a consistent representation across all maps, the edges are consistently

treated as obstacles, thus establishing an effective usable size of Mc = 39 and a corresponding

maximum usable map size of M = 20. Figure 6.4 visually depicts the process of centering a

16×16 map.

Figure 6.4: Example of the map centering function on a 16×16 Map.

6.3.2.3 Compressing Maps

One objective of this algorithm is to be able to generalize to any map. While 20× 20 grid maps

are larger than most cases studied in the existing literature, the algorithm’s adaptability remains

constrained by this limit. To address this limitation, the observation space must be expanded to

enable the agent to recognize maps exceeding its visual scope. This enhancement has been realized

through two different approaches.

The initial approach involves compressing all edges that would extend beyond bounds in the

original 39×39 centered map, consolidating them into the last visible row or column. This com-

pression process is executed by computing the average of all edge values. A pseudocode repre-

sentation of this algorithmic enhancement can be found in Algorithm 11.

This approach ensures the algorithm can effectively adapt to varying map sizes beyond the

original constraints. By dynamically compressing and extending edges in the tensor Mp ∈R4×41×41,

the agent gains the ability to comprehend maps larger than its immediate visual frame.

However, this method does have its limitations. Notably, when two connecting edges extend

beyond bounds, the corresponding connecting cell becomes the average of both edges, resulting

in an uneven information distribution compared to other cells. Moreover, the agent is not aware

88 Deep Reinforcement Learning for Single Agent Navigation

Algorithm 11 Expansion of Outer Edges
Require: Map C of size Mc×Mc, where Mc > 39

1: function COMPRESSDGES(C)
2: D← Extract the inner 39×39 array from C. ▷ Centered on the Same Cell
3: NorthEdges,SouthEdges,WestEdges,EastEdges← Sets of edges extending beyond bounds.
4: Average each set of edges to compute the compressed boundary values.
5: Replace outside edges in D with the averaged boundary values.
6: return D
7: end function

of how many edges were compressed, and the averaging means that the boolean representation is

no longer viable, causing outside edges cells to have different encodings than inner cells. Further-

more, there is no comparable method in the literature, so further tuning might be necessary, for

example, using more than one outside edge per direction.

To further enhance this representation, the observation space incorporates an additional tensor

denoted as oob ∈ R4×2. In this tensor, each of the four cardinal directions is associated with

two values: the count of compressed edges ne and the number of points of interest np in the

corresponding direction, resulting in the tensor

oob =

neN npN

neS npS

neW npW

neE npE

 (6.5)

The idea behind using this tensor and the compressed map together is that the agent can try to

"reconstruct" the map using the additional information to grasp the current state better.

6.3.2.4 Deterministic Loops

One common problem in POMDPs and this formulation of the CPP problem is the existence of

policies that lead to deterministic loops in the observation space [35]. This is usually caused by

uncertainties and errors in the function approximation, and due to its nature, it is impossible to

guarantee that there is no single scenario where a loop might happen.

An example of a deterministic loop can be seen in Figure 6.5. In this scenario, the agent

first decides that the best action is to move South, and in the next time step, the best action is to

move North. While this back-and-forth, most of the time, is undesirable at best, in this situation is

catastrophic. Since the agent uses a deterministic policy during deployment, it will get stuck in this

state forever. In this formulation, these observations will not change, as the map representations

are the same, and therefore from the agent’s perspective will be impossible to choose other actions.

While it might seem very unlikely to get stuck in scenarios like this, it is essential to note that

these tasks can have time horizons of hundred or even thousand-time steps, and the difference in

value between two actions can be very small, especially when the reward is far-away in the time

horizon, like the situation in Figure 6.5. Furthermore, the neural network model used in this work

6.3 Partially Observed Markov Decision Process 89

Figure 6.5: Example of a deterministic loop. The agent is stuck moving North and South with its
policy.

has noisy layers. Consequently, the noise used for exploration can be harmful by creating more

opportunities for this type of loop.

In the following Sections, additions to the observation space will be made specifically to reduce

the likelihood of the existence of deterministic loops. Nonetheless, it is impossible to guarantee

that the situation will ever occur, as it would be unfeasible to check every possible observation,

and the neural network does not have any formal guarantee.

6.3.2.5 Episode Truncation and Battery Level

Another problem that goes hand-in-hand with the deterministic loop problem is the episode trun-

cation problem. This POMDP formulation is a finite process, as there is always a terminal state.

Nonetheless, during training, especially in the beginning and with deterministic loops, the agent

might take too long to reach the final step. Especially in the case of deterministic looping, the

episode may be infinite.

A natural solution to lengthy episodes is to truncate episodes, but if the agent does not have

information to know when the episode will be truncated, then instabilities in training will appear

due to this early truncation [91].

One way to mitigate the episode truncation problem is to make the agent time aware [91].

In this problem, the agent will have this capability by introducing a battery level b ∈ Z to the

observation space Ω. This tensor represents the number of remaining time steps until episode

truncation.

This variable has three different purposes for the overall problem. Foremost, it mitigates the

effects of episode truncation, contributing to training stability. Moreover, by introducing a variable

that changes with each time step, it partially mitigates the deterministic looping issue, where the

observations are exactly the same. While it does not necessarily solve the problem in every situ-

ation, the presence of varying variable values does help prevent certain scenarios. Finally, while

the problem is not formulated in the way that the agents should be concerned about their battery

90 Deep Reinforcement Learning for Single Agent Navigation

status, this variable facilitates the formulation of energy-aware navigation problems without ne-

cessitating alterations to the observation and action space structure. A simple modification to the

reward function is enough to formulate diverse energy-aware navigation scenarios using the same

proposed framework. Hence, despite not directly contributing to the problem, this tensor b is a

valuable tool for the generalization and robustness of the developed framework.

6.3.2.6 Incorporating the Last Action

One fundamental characteristic of POMDPs is the Markovian property. This property is revealed

to be very useful for solving these processes, as it states that all the necessary information to solve

the process is contained within the last state, i.e., all an algorithm needs to keep track of is the

most recent state.

While this property is usually a blessing, it can be a curse in the context of robotic navigation.

A trajectory encompasses the state’s evolution throughout the state space and, in the context of

path planning, signifies the route the agent will undertake. For effective path planning, maintain-

ing a smooth trajectory is paramount, as abrupt changes in direction are expensive energy-wise.

Moreover, from a rational perspective, excessive alterations yield an erratic and unpredictable

course of action, which an intelligent agent should avoid.

For path planning, the Markovian property means that the agent can ignore all the trajectories

that have been done before and focus on the current position and objective. This, once again,

can be linked to the deterministic looping problem. When the agent repeatedly oscillates between

moving upwards and downwards, it merely decides its next position based on its current location.

Nevertheless, an intelligent agent that takes past movements into account can discern that its ac-

tions are contributing to loops within the observation space and, as a result, break free from such

patterns. Naturally, if the agent is aware that its last action was a downward movement, it would

typically refrain from moving upwards in the subsequent time step. This awareness of the preced-

ing action can be seen as a form of odometry, a prevalent component in many robotic navigation

frameworks.

This is the rationale behind the addition of the last action la ∈ B5 to the observation space

Ω. This boolean vector is a one-hot encoding 1 of the action space A, with an additional action

included: "Wait." While not explicitly present in the action space, the "Wait" action is utilized

when the environment does not receive a valid action in time or when initializing the la vector.

This additional action also paves the way for future algorithm expansions that include this action

in the action space, which can be useful in multi-agent scenarios.

This new addition to the observation space allows the agent to better understand its trajectory

until that point, empowering the agent with more relevant information. This feature helps to

mitigate the deterministic looping issue, and it was also observed that the agent naturally produced

smoother paths by keeping its momentum. Furthermore, changing the reward function makes it

1One-hot encoding: https://pytorch.org/docs/stable/generated/torch.nn.functional.one_
hot.html

https://pytorch.org/docs/stable/generated/torch.nn.functional.one_hot.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.one_hot.html

6.3 Partially Observed Markov Decision Process 91

possible to penalize direction changes, enabling more complex formulations of robotic navigation

problems.

6.3.2.7 Frame Stacking

Two common approaches exist to deal with the increased complexity of POMDPs in Deep Rein-

forcement: Recurrent Neural Networks and Frame Stacking [92, 93]. The first is less explored

and more computationally expensive, requiring a more complex network architecture, and there-

fore will not be used, despite being a possible future improvement. The latter is a common method,

even part of the original DQN algorithm [51] to deal with the dynamics of the Atari Games envi-

ronment.

As the name suggests, frame stacking consists of using the last K frames or states to constitute

the state or observation fed to the neural network. In practice, considering the observation ot

generated at time step t, the full observation that is used in the algorithm is Ot = [ot ,ot−1, ...,ot−K].

In this work, the frame stacking is extended to more than the frames, which in this case would

be the map representation Mp is also done into the last action tensor la and to the out-of-bounds

information tensor oob. This extension is rooted in the necessity of incorporating out-of-bounds

details for full comprehension of the map, and including more than one of the last actions also

enables the analysis of larger trajectories. However, the battery level b is not stacked, as sequential

battery levels do not offer additional informative value.

The chosen K value for the number of stacked observations equals 3. While Deep RL can

deal with bigger observation spaces when compared to tabular algorithms, by increasing K, the

algorithm has to process more information, making for slower training with diminishing returns

regarding the amount of available information. An example of the frame stacking on the map

representation Mp is illustrated in Figure 6.6.

Figure 6.6: An example of Frame Stacking applied to the Map Representation Mp with K=3
Frames.

92 Deep Reinforcement Learning for Single Agent Navigation

With all these design choices, the observation space can be defined as:

Ω = R3×4×41×41︸ ︷︷ ︸
Map Representation Mp

× Z3×4×2︸ ︷︷ ︸
Out of Bounds Information oob

× B3×5︸︷︷︸
Last Actions la

× Z︸︷︷︸
Battery Level b

(6.6)

In the implementation, all the elements of the observation space are treated as floating-number

points, as it is needed to interface with the neural network. Furthermore, the dimensions are

adjusted when interfacing with the network. The map representation’s first two dimensions are

flattened into a R12×41×41 tensor, so it is possible to use a 2D Convolutional layer, and the 2D

tensors are flattened into a 1D tensor so it can be used in linear layers. With this, the observation

space is fully defined and described.

6.3.3 Reward Function

The Reward Function is the last piece missing in the formulation of the POMDP. This function

dictates the optimization problem that the agent will try to solve. This section will describe and

build the reward function from the ground up, analyzing the problem and the objectives, formulat-

ing it as an optimization problem, constructing the most simple reward version possible, and then

building the final solution.

6.3.3.1 Optimization Problem

Considering the problem formulation, the objective is to have the most general possible robotic

navigation algorithm, which in this case will be modeled as a minimum time problem. Indepen-

dently of the task at hand, the agent’s goal will be to visit all the points of interest in the minimal

time possible. Formulating the optimization problem, the objective function J(T) can be defined

as:

J(T) = minT, (6.7)

where T is the terminal time step. Given that Reinforcement Learning typically involves max-

imizing the expected reward, it becomes necessary to reformulate the optimization problem as

follows:

J(T) = max(−T). (6.8)

A logical strategy for translating this optimization problem into the RL framework involves

assigning a negative scalar reward at each time step, thereby defining the Reward Function as:

R(s,a,s′) = rts =−1. (6.9)

6.3 Partially Observed Markov Decision Process 93

In this definition, rts denotes the reward assigned at each time step. The selection of −1 as the

reward value aligns with the widely recognized practice within Reinforcement Learning (RL) to

maintain rewards within the [−1,1] range.

6.3.3.2 Reward Shaping

While the presented reward function is appropriate and given sufficient training time, it is likely

that the algorithm would eventually converge to a feasible solution, it still has a significant short-

coming. Due to the uniform reward across the entire episode, the agent encounters challenges

in appropriately assigning credit. As all actions yield identical short-term expected rewards, the

distinguishing factor becomes the moment of episode termination, marked by a non-explicit sub-

stantial reward. One thing that is important to note is that the episodes can be very lengthy, espe-

cially in the case of coverage path planning, potentially leading to unfinished tasks due to episode

truncation. Consequently, the agent might struggle to grasp how to conclude episodes, and in the

worst scenario, the algorithm might converge to a random walk. Even in cases where convergence

to a reasonable solution occurs, it is likely to be relatively slow.

This issue is common in the Reinforcement Learning domain and is associated with problems

in credit assignments and sparse rewards. One common way to mitigate the issue is to use Reward

Shaping [94]. Considering an MDP (or POMDP) M with the reward function R, then there exists

an identical MDP M′ with a modified reward function R′ = R + F , where despite the reward

function change, both MDPs share the optimal policy. This property is called policy invariance,

and it can be used to solve an identical MDP M′ that will converge faster and use its policy in the

original formulated MDP M.

In this work, the family of potential-based reward shaping (PBRS) functions will be used. To

further define this family, refer to Theorem 6.3.1 [94].

Theorem 6.3.1 Consider a general MDP M = ⟨S,A,T,γ,R⟩ and a shaping reward function F :

S×A×S→ R. The function F is said to be a potential-based shaping function if there exists a

real-value function φ : S→ R such that for all s ∈ S,A ∈ A,s′ ∈ S

F(s,a,s′) = γφ(s′)−φ(s) (6.10)

In the context of potential-based shaping function F, a necessary and sufficient condition

is identified for ensuring consistency between the optimal policy learned in the modified MDP

M′ = ⟨S,A,T,γ,R+F⟩ and the original MDP M, as follows:

• Sufficiency: If F is a potential-based shaping function, then every optimal policy in M′ will

also be an optimal policy in M, and vice-versa,

• Necessity: If F is not a potential-based shaping function, meaning that there exists no φ

that satisfies equation (6.10), then there exists a transition function T and a reward function

R such that no optimal policy in M′ is optimal in M.

94 Deep Reinforcement Learning for Single Agent Navigation

A very natural candidate for potential reward shaping is to use the number of points of interest

npoi(s) of the current state as a potential function. In this context, one can define:

φ(s) =−Knpoi(s). (6.11)

Here, K ∈ R+ symbolizes a generic positive scalar gain. Within this formulation, the shaping

function F(s,a,s′) provides a positive reward each time the count of points of interest decreases.

Considering that the agent’s visits to points of interest lead to a decrease in this count, the function

qualifies as potential-based, effectively guiding the agent toward the overall goal.

Given that the problem is framed around a single agent, and an agent can at most visit one cell

per time-step, with γ = 1 one can rewrite the potential-based shaping function as:

F(s,a,s′) = φ(s′)−φ(s)

=−Knpoi(s′)+Knpoi(s)

= K[npoi(s)−npoi(s′)]

=

K, if a new cell was visited

0, otherwise.

(6.12)

In other words, the potential function equates to giving a scalar reward rnew = K whenever a

point of interest is visited, or zero if not.

One can also shape the reward by giving a penalty rcrash = −1 every time the agent crashes

into an obstacle. Despite it not being a potential-based reward function, it does not change the

optimal policy, as hitting an obstacle is doubly penalized: It does not move the agent to a better

cell, effectively wasting a move and giving a negative reward. Consequently, it is evident that the

optimal policy would inherently avoid collisions, even if the penalty to discourage collisions were

absent.

Therefore, one can finally define the final Reward function R′(s,a,s′) as:

R′(s,a,s′) = R+F + rcrash = rts + rnew + rcrash (6.13)

where rts is the penalty that is given after every timestep, rnew is the scalar reward given every

time the agent visits a new point of interest, and rcrash is the penalty given when a collision hap-

pens. It is important to note that since the reward is implemented based on events, whenever the

event does not happen, the respective portion of the reward is zero-valued.

6.3.3.3 Size Invariant Value Function

After setting the core structure of the reward function in equation (6.13), it is important to analyze

how its values impact the overall value function. Consider again the value function vπ(s):

vπ∗(s) = Rt+1 + γvπ∗(s′) = Eπ∗

T

∑
t=0

[Rt+1] (6.14)

6.3 Partially Observed Markov Decision Process 95

where π∗ is an optimal policy. Going back to the reward function, the only value left without

explicit value was rnew. Considering rts = −1, assuming that the policy is optimal, the discount

factor is γ = 1, and that at every new step, the agent visits a new point of interest 2, it is possible

to deduce the following simplified expression for the value function:

vπ∗(s) = Eπ∗

T

∑
t=0

[Rt+1]≈
npoi(s)

∑
k=0

(rnew + rts) = npoi(s)(−1+ rnew) (6.15)

After analyzing this expression, one might be inclined to assign the value rnew = 2. This choice

effectively constrains all non-collision transition rewards within the range of [−1,1], presenting

a binary assessment of the immediate action’s outcome. Furthermore, it makes for an easy way

to evaluate every scenario, assuming that the mentioned assumptions hold, the value would be

vπ(s) = npoi(s).

However, this formulation has two shortcomings: It is not size invariant, and evaluations can

suffer in long time horizons. While the value function not being size invariant might seem irrel-

evant for most scenarios, it is critical in the case of sensor-based coverage path planning. If the

agent does not know the size of the map, how can it accurately estimate the value of the given state?

Whenever the agent explores new cells, the evaluation can oscillate significantly, and instead of

being, in general, a negative monotonic function converging to zero, it can now increase in value.

Usually, RL methods can deal with this uncertainty of the value function estimates. After all, it

estimates the expected return. However, since this algorithm is aimed to be as general as possible,

having different behavior for different scenarios is not desirable as it hinders generalization.

As for the second issue, consider that instead of a discount value γ = 1, it now equals γ =

0.99. Consider a situation where there are more than 100 points of interest. By incorporating the

discount factor in equation (6.15) and solving:

vπ(s)≈
∞

∑
k=0

γ
k(rnew + rts) =

∞

∑
k=0

γ
k =

1
1−0.99

= 100 (6.16)

This deduction reveals that, independently of the number of points of interest, the value func-

tion would be capped at 100. This issue ties back to the deterministic looping problem. In very

large time horizons, the evaluation will tend to be similar, creating scenarios where small uncer-

tainties will lead to loops. While this problem can be solved by using a discount factor γ = 1,

using this value usually causes instability in training, being desirable to use a smaller one.

However, these issues can be solved by setting rnew to a specific value. Consider rnew = 1, then

by plugging it in equation (6.15), the value of every state would be 0. Furthermore, by analyzing

equation (6.14) one can infer that if the reward is always 0 and the value of the next state is also

0, then the discount factor is ignored. This new reward function makes the value function size

invariant, independent of the map size and number of points of interest. As long as an optimal

2When the environment has obstacles, there are scenarios where this assumption does not hold, even with the
optimal policy. Therefore, the presented expression is just an approximation that holds when these assumptions are
true. Nonetheless, if the algorithm is working, the agent will be functioning in these scenarios most of the time for
coverage-type tasks, the most complex tasks approached in this document.

96 Deep Reinforcement Learning for Single Agent Navigation

solution is possible, the value will be zero. Even more importantly, this also applies in scenarios

where the agent does not have full information.

While the assumption that the agent will be operating in situations where an optimal solution

with no overlap is possible might seem too strong, it is essential to note that the algorithm will

converge in such a way that at some point in the trajectory, every move forward can be optimal

with no overlap.

Another important thing to consider is that this value function formulation transforms the

evaluation challenge into a task bearing a strong resemblance to classification, an area where

neural networks excel. In Figure 6.7, it is possible to see three different states. The first two

are the first and penultimate steps of two different 5× 5 maps, being that in both scenarios, the

evaluation given by the value function is zero. In the third example, it is also possible to see a

zero-valued state, but in this situation, it is in a much larger 13×13 map with a shape that is more

complex.

This is an interesting perspective on using neural networks for value function estimation. With

this formulation, the neural network essentially operates like a classifier, generating a zero output

when an action keeps the agent in a possible optimal trajectory. Furthermore, this formulation

presents an enhanced generalization capacity. It not only adapts more effectively to scenarios

involving partial information but also maintains consistent values across a multitude of scenarios.

As a result, the network can learn to identify the common features in optimal scenarios and how

to achieve such circumstances through the action space.

Figure 6.7: An example of three different states with the same evaluation. Since it is possible to
complete all the scenarios with a path that does not overlap, then the value of the state will be zero.

6.4 Learning Algorithm

With the problem defined, the task now revolves around designing a solver for the Partial Observed

Markov Decision Process. Due to the objectives and constraints caused by the POMDP, the chosen

learning framework is Value-Based Deep Reinforcement Learning, and the method will be based

on the Rainbow Deep Q Network [49]. This state-of-the-art algorithm is an improved version of

the DQN, which is used in most RL approaches in the literature [28, 21]. It also gives all the

necessary tools to deal with the large observation space and the discrete action space.

6.4 Learning Algorithm 97

This section will begin by analyzing the Neural Network Architecture and the differences to

the original Rainbow DQN and then will look into specific training algorithm adaptations tailored

specifically for the robotic navigation problem.

6.4.1 Neural Network Architecture

To solve the formulated POMDP, the chosen RL method was based on the Rainbow DQN [49].

The neural network that was designed is similar to the one used in the canonical Rainbow DQN

from the work of Hessel et al. For more details on the Rainbow DQN, see Section 2.3.5.

The neural network has two main components. The first consists in three 2D convolutional

layers that are used to process the map representation Mp ∈ R3×4×41×41, which must be reshaped

to a tensor M′p ∈R12×41×41, and extract the relevant features. The second part receives the features

from the convolutional layers and the hand-crafted features la,oob,b as scalars. This part consists

in two streams of noisy linear layers [59], which outputs the value function v(s) and the advantage

function A(s,a).

Regarding the configuration of the convolutional layers, the first convolution has 32 filters, a

kernel size of 3, a stride of 1, and zero padding of 1. The choice of these parameters for the first

layer is to transform the original input to a higher dimensional space without losing as much detail

as possible. This reasoning justifies the choice of a small kernel, stride, and zero padding to keep

the information on the edges. The next two convolutional layers are equal to each other, having a

kernel size of 3, a stride of 2, and no zero padding. In these layers, the kernel size is still small,

as there is a lot of information at the pixel level, unlike an Atari Game, for example. The stride of

2 in these layers facilitates downsampling, which, in turn, is essential for reducing the number of

inputs downstream.

On the linear layer side, the output from the convolution is flattened, yielding a tensor a ∈
R5184. This tensor is concatenated with the hand-crafted feature tensor c = [la,oob,b] comprising

40 elements. Among these, 1 corresponds to the battery b ∈ R, 15 are from the last actions

Figure 6.8: The designed Neural Network Architecture.

98 Deep Reinforcement Learning for Single Agent Navigation

la ∈ R3×5 and finally 24 steam from the out of bounds information oob ∈ R3×4×2. It is important

to note that these tensors must also be flattened into 1D tensors before being concatenated. Unlike

the canonical Rainbow, this architecture has two hidden layers of size 512, which was shown to

perform better than a single hidden layer. To implement the dueling architecture, all the linear

layers described are duplicated into two streams, one with a single neuron in the output layer

corresponding to the value stream v(s) and the other with the number of output neurons equal to

the action space size |A|= 4 which outputs the advantage function A(s,a).

The full architecture can be visualized in Figure 6.8.

6.4.1.1 Extracting a Policy

When utilizing the dueling architecture for value function approximation, it is important to re-

member that one can derive a policy π that always chooses the optimal action a⋆ through the

expression:

a⋆ = argmax
a

Q(s,a) = argmax
a

[
V (s)+A(s,a)− 1

|A|∑a′
A(s,a′)

]
. (6.17)

However, due to the introduction of noisy layers, the exploration mechanism is fully integrated

into the parameter space, therefore not requiring a modified policy such as ε-greedy. In practice,

the expression in equation (6.17) represents the policy both in training and deployment. How-

ever, this policy would be stochastic, which might be undesirable when deploying the algorithm.

Therefore, consider the expression that defines the noisy layer:

y = (b+Wx)+(bnoisy⊙ ε
b +(Wnoisy⊙ ε

w)x), (6.18)

where b and W are the weights of the original network, ⊙ denotes the element-wise product,

bnoisy and Wnoisy are the learned noise parameters, and εb and εw are independent random variables

sampled from a factorized normal distribution.

Then, one can ignore the stochastic part of the equation by sampling zero-valued noise 3 εb and

εW , effectively creating a deterministic policy for deployment. However, it is important to note

that there might be a trade-off in using this technique. Since the policy is deterministic, the agent

will be more susceptible to the deterministic looping phenomenon, and therefore, the prospect of

better performance in some scenarios comes with this risk. Nonetheless, this technique will be

used whenever the algorithm is deployed.

6.4.1.2 Soft Updating

The original Rainbow DQN has two networks: the value and the target network. In the original

formulation, the value network parameters θ are updated regularly via gradient descent steps, and

then at larger fixed intervals, the target network parameters θ− are updated by entirely copying

3Or by sampling the noise once at the beginning of the episode. This would make the policy consistent throughout
it but make it so that the results are not easily replicable.

6.4 Learning Algorithm 99

all the parameters of the value network θ− = θ . This hard update was developed to deal with

the challenges of the deadly triad, especially the question pertaining to the value network trying

to chase a moving target. Nevertheless, this update method also comes with the issue that the

changes in the value function can be drastic, and the target network also has problems following

the sudden change.

Another option named soft updating was proposed in other algorithms such as DDPG [43].

However, despite being more recent, the original Rainbow DQN [49] does not use this update

scheme. Despite that fact, this work will use soft updating as it was shown to improve training

stability.

The soft update is done by copying only part of the target network parameters. This process

can be parameterized by the hyperparameter τ ∈ [0,1] resulting in the expression:

θ
− = (1− τ)θ−+ τθ , (6.19)

where a value of 1 for τ would mean that the update would be the same as doing a hard update,

and a value of 0 implies no update at all. This scheme is usually used with values of τ lower than

0.05, and the update frequency can be synchronized with each gradient step or alternately every

few gradient steps.

6.4.1.3 Simplifying the Rainbow

This study introduces additional modifications to the conventional Rainbow DQN (see Section

2.3.5) to adapt it more effectively to the demands of robotic navigation tasks.

First, one might notice that the value and action streams in Figure 6.8 do not have adequate

dimensions for the categorical reinforcement learning framework. In the original work [60], the

authors present a version for a categorical distribution with 51 atoms, being that the algorithm is

normally referenced as C51 for this reason. In this work, the categorical framework will not be

used, and this design choice is sustained with the following reasoning:

1. Increased Computational Complexity: The categorical distribution is significantly more

computationally intensive, leading to a training speed that is approximately 75% of the

original DQN [60].

2. Lack of Non-Atari examples: The Categorical DQN has three fundamental hyperparame-

ters vmin, vmax and Natoms. The first two are related to the possible range of values the eval-

uation will take, usually between -10 and 10 for the Atari Learning Environment (ALE).

However, this would not translate well as the maximum value in the developed environment

would be 0 at best, and the minimum value is not defined and is problem and map-specific.

Furthermore, if the values in this problem are mostly around 0 then the distribution proba-

bility space is poorly distributed and utilized. As for the atoms, as far as the author knows,

most of the studies are done for the ALE, and therefore, 51 atoms might just not be suited

for the robotic navigation task.

100 Deep Reinforcement Learning for Single Agent Navigation

3. Ablation Test Results The results from the original study of the Rainbow DQN [49] show

that there are no significant improvements from using the categorical distribution until

around 30 Million training steps. This is once again only applicable to the ALE, and in

this study, the used training steps will be less than in the Rainbow DQN paper. Further-

more, it does not present results on how the categorical distribution deals with transfer and

curriculum learning since the estimated distribution can change drastically depending on the

task.

4. Empirical Results on Robotic Navigation Task: In this work, the starting point was using

the full rainbow architecture. Using the categorical distribution without significant changes

did not prove to be of any benefit, yielding, at best, similar results, while increasing training

times and complexity in fine-tuning the algorithm.

This choice of not using the categorical distribution is not the only one in the literature. In

[95], the authors study an optimized and data-efficient rainbow DQN, where similar arguments

also support this design choice.

The last modification is not to use the n−step returns. This augmentation to the DQN has the

advantage of faster convergence and possible mitigation of the deadly triad. However, using n > 1

increases the variance in returns at the cost of reducing the bias.

In the context of robotic navigation, it is undesirable to have a higher variance. Trajectories

can be very sensitive to the choice of movements, and a single "bad" move can disrupt a trajectory.

Incorporating more than one move in the return complicates credit assignment and makes learning

a generalizable value function harder. Moreover, introducing bias into the process is not inherently

undesirable. In fact, it can reflect a rational choice when strategizing a path. When testing, using

n = 1 yielded better results and stability during training. Therefore, the design choice of not

considering multi-step returns came naturally. Nonetheless, n−step returns are implemented and

can be used and experimented with by simply choosing a different value for the hyperparameter n.

6.4.1.4 Hyperparameters

To finish the analysis and description of the Neural Network and general learning framework, it

is necessary to present the algorithm’s hyperparameters. These hyperparameters and their values

can be seen in Table 6.1

The hyperparameters were manually tuned starting from the canonical Rainbow parameters.

It is important to note that the replay period K has multiple roles in the algorithm. In the most

generic form, it is the number of time steps between every time the experience replay buffer is

sampled and gradient descent steps are performed. This algorithm synchronizes the replay period

with two other operations: the soft update and re-sampling noise in the noisy layers. While this

5Pytorch’s ADAM implementation: https://pytorch.org/docs/stable/generated/torch.optim.
Adam.html

5Pytorch’s SmoothL1Loss implementation:https://pytorch.org/docs/stable/generated/torch.
nn.SmoothL1Loss.html#torch.nn.SmoothL1Loss

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html#torch.nn.SmoothL1Loss
https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html#torch.nn.SmoothL1Loss

6.4 Learning Algorithm 101

Table 6.1: Deep Reinforcement Learning Single-Agent Algorithm Hyperparameters.

Parameter Value
Minimum Steps Before Learning Tstart 5000 Frames
Soft Update Factor τ 0.04
Discount Factor γ 0.999
Batch size B 32
Optimizer ADAM 4

Loss Function Smooth L1 Loss5

ADAM Learning Rate 0.00005
ADAM ε 0.000156
Maximum Gradient L2 Norm 2.5
Priority exponent α 0.5
Priority correction β 0.4→ 1
Noisy Net Initial std deviation σ 0.5
Memory size 1 Million Transitions
Learning Period K 4
Number of Stacked Frames 3
Multi-step return length n 1

could be done at every step, it does not necessarily provide better outcomes and comes with a

significant training slowdown.

Furthermore, the priority correction β is annealed from 0.4→ 1. This is done linearly with

an increase inversely proportional to the number of training steps in such a way that the last step

has a β value equal to 1, following the original PER implementation [57]. Most other parameters

were manually tuned at the expectation of the ADAM ε , which follows the recommendation of

ε = 0.005/B presented in [96]. Another thing to note is that a memory size of 1 million transitions

requires at least 16GB of RAM. While, in general, bigger buffers showed better performance, any

size between 500 thousand and 2 million transitions had identical results. For more details on the

hyperparameters of the Rainbow DQN, see Section 2.3.4.

6.4.2 Training Algorithm

With the problem formulated and the network architecture set, the last step is to define the training

algorithm and some modifications to the "vanilla" approach. This subsection will analyze all

the modifications to the general model-free experience replay-based learning approach. Its main

objectives are to achieve faster training and convergence, more stability, and overall better results.

6.4.2.1 Partial Episode Bootstrapping

One problem that was already analyzed in this chapter was episode truncation. On top of the

modification to the observation space to make the agent time-aware, there are also refinements

that can be done to the training algorithm itself, with the objective of having tools for both dealing

102 Deep Reinforcement Learning for Single Agent Navigation

with and preventing episode truncation. Consider the expression for the TD error:

δ (θ) = Rt +(1−η)γ max
a′

Qθ−(s
′,a′)−Qθ (s,a), (6.20)

where η ∈ B is a boolean variable that takes the value 1 if the next state s′ is terminal and 0 if

not. The usage of this flag is essential to implement Temporal Difference Learning algorithms, as

in situations where the next state is terminal, its value should not be considered (is zero).

One thing that can get lost is that truncated episodes get treated the same way as terminated

episodes when they are considerably different. If an episode is terminated, it means that the agent

can no longer receive more reward, either positive or negative, and therefore will adapt to that

fact. While in truncated episodes, what happens in practice is the same, the agent can create "bad

habits," as the episode should not actually end in that timestep, and therefore, future rewards must

be considered.

The simplest way to deal with this problem is by using Partial Episode Bootstrapping (PEB)

[91]. Basically, the η will be zero-valued if the episode is truncated instead of terminated. This

enables the agent to know that the episode would still continue to that point, and remove a source

of instability from the training algorithm.

6.4.2.2 Partial Resetting

Staying on the topic of truncated episodes, one might question why these episodes happen, and

what their importance in the scheme of the learning algorithm is.

One rather easy thing to infer from a truncated episode is that the agent was not able to com-

plete the task successfully, therefore, the difficulty level of the episode was too high for the agent.

Even if the task is one that the agent should be able to complete, the episode might contain small

details that the agent has not learned or is struggling to grasp.

If not all episodes are equal, then it is fair to interpret that the agent will not gain the same

amount of "knowledge" from every scenario, and in fact, might even learn different aspects from

different scenarios. This is somewhat already implied in mechanisms such as Prioritized Experi-

ence Replay, which feed the learning algorithm samples that are deemed to have more information.

Consider Figure 6.9 in which it is possible to see the beginning of two very different episodes.

It is important to remember that the agent should be able to perform both, and therefore some skills

and competencies can be learned from both scenarios. The one on the left, while clearly easier, can

be used to learn optimal coverage patterns such as back-and-forth or spiral and is without doubt

useful to begin training with. In the other example, there can be a lot more emphasis on obstacle

avoidance and making compromises in the chosen path, as one free of overlap is impossible. While

undoubtedly more difficult to perform on due to the size and number of obstacles, one agent that

trains exclusively on this map would most likely struggle to complete the left scenario optimally.

Therefore, if an agent did not finish a task, it could be of interest to give it a second opportunity

to do it, as there is some detail in the map that the agent still is yet to learn. With this rationale,

whenever an episode is truncated, the subsequent episode commences from where the previous

6.4 Learning Algorithm 103

Figure 6.9: Example of two scenarios with different difficulty levels.

one left off. The episode is completed by always selecting the action that moves to the closest

point of interest by using Dijkstra’s algorithm heuristic. This enables the agent to see a possible

solution to the problem it is facing and learn through imitation. It also guarantees that the episode

will be finished.

6.4.2.3 Saving Challenging Tasks

Expanding upon the notion of episodes presenting distinct challenges, the partial resetting mech-

anism can be augmented and made powerful. The reason why this is desirable is due to the

stochastic nature of randomly generated scenarios, where intricate obstacle configurations, such

as narrow alleyways, rarely appear naturally. Consequently, it becomes advantageous to conserve

scenarios for reuse beyond their initial occurrence.

Given the scenario’s intricacy and the agent’s inability to resolve it, the training algorithm

should guarantee that there is at least a point during training in which the agent can completely

solve it without external help. Failure to achieve this outcome would compromise the fundamental

premise of a generalizable algorithm, even within the training phase.

To address this, an adaptive episode generation algorithm was developed. Every time a new

episode commences, it is archived in a buffer as a potential "interesting" episode. Should the

agent successfully complete the episode, the algorithm deduces the task can be solvable and sub-

sequently discards the episode. If the episode is not discarded, then it stays in the buffer. Whenever

the environment receives a request to generate a new episode, the buffer will have a 50% chance

of being randomly sampled. This algorithmic scheme is graphically represented in Figure 6.10.

The buffer is deliberately only sampled 50% of the time to strike a balance between exposing

the agent to newly generated episodes and the episodes that were deemed challenging to the agent.

This design choice was made to prevent situations where overfitting and bad solutions keep the

agent stuck in a limited set of episodes, being especially critical at the beginning of training.

104 Deep Reinforcement Learning for Single Agent Navigation

Figure 6.10: Flowchart of the adaptive episode generation algorithm.

6.4.2.4 Imitation Learning

The DQN family of algorithms uses the experience replay mechanism to store transitions, which

are subsequently utilized to update parameters via gradient descent. The usage of experience

replay buffers enables an interesting perspective on off-policy learning that online learning al-

gorithms such as PPO do not enable. By sampling a replay buffer, the agent selects transitions

taken by very different policies. For example, a transition made in time step t = 0 will have a

widely different policy compared to one taken in time step t = 1000000. Furthermore, the agent

can not distinguish between a transition generated by itself or another agent or pseudo-agent and,

therefore, can learn by "imitation."

With this in mind, if the experience replay is filled by transitions made by another agent or al-

gorithm with expert information, the convergence can be much faster, even if the policy it imitates

is not optimal. In this work, a reinforced random walk policy was introduced by using Dijkstra’s

algorithm to select an action that moves toward the closest point of interest. While not optimal, it

will significantly outperform a purely random walk policy when "teaching" the agent what a point

of interest is and its shortest path. Of course, the agent can not solely learn by using this policy.

Otherwise, it would completely copy it without improving. Nonetheless, augmenting the learning

algorithm with this policy will significantly improve its performance.

6.4 Learning Algorithm 105

So, considering this imitation learning paradigm, the heuristic can be used in the following

scenarios:

1. Whenever an episode is generated in the first 5000 steps, where the agent is not sampling

the buffer.

2. To complete an episode that was partially reset. This enables showing the agent a possible

solution.

3. Whenever the agent has not visited a point of interest in more than M timesteps, where M is

the map edge size.

4. Whenever the agent has not visited a point of interest and not moved more than two cells in

the last five timesteps.

Whenever a condition to take a heuristic action is met, there is a 90% chance that it will

be taken. Once again, this stochastic approach is to prevent overfitting to the heuristic policy.

Whenever conditions 1 or 2 are met, the whole episode can be completed using the heuristic

policy. The other conditions are reset whenever the agent visits a point of interest. Conditions 3

and 4 are mostly done to prevent the deterministic looping problem and mitigate its effects.

6.4.2.5 Generating Uncommon Patters

Overfitting is a very common problem in Machine Learning. When applied to RL can be seen as

an agent that overspecializes on a specific task, losing the ability to complete other similar tasks.

Considering the robotic navigation problem, more precisely in Coverage Path Planning the agent

is notably prone to overfitting.

Consider a hypothetical scenario where an agent consistently produces optimal solutions for

complete coverage path planning. This agent is the desirable result of the training process. How-

ever, it might have some concealed issues. If an agent is consistently doing optimal solutions, then

usually, the map representations create consistent identical patterns where there are solid areas of

connected points of interest and solid areas of already visited cells. It is natural, as optimal solu-

tions look similar, even if the map configuration is not necessarily the same. However, consider

a scenario where the agent fails to achieve an optimal solution and arrives in a situation where

the map is in a non-common pattern. In this case, as the agent was trained consistently in reg-

ular patterns, it might fail to achieve the task, even if it is trivial, resulting in poor solutions or

deterministic loops.

Furthermore, from the perspective of having the most general robotic navigation algorithm,

complete coverage path planning can be seen as the most complex task. Nonetheless, the agent

should also be able to complete N-point coverage path planning or point-to-point. So, the agent

should not overfit any specific task, and the training scenarios should be as general as possible.

After all, the competencies learned in different tasks are generally transferable.

106 Deep Reinforcement Learning for Single Agent Navigation

Figure 6.11: On the left, an example of a commonly agent-generated pattern, and on the right, an
example of a randomly generated pattern.

For a more comprehensive understanding, refer to Figure 6.11, which presents two scenarios

that exemplify the concept of patterns in this context. The scenario on the left corresponds to the

algorithm solving a complete coverage path planning task on a straightforward map. It is clear

that the agent performed some back-and-forth movement to create a solid area of visited points

that are situated in the northern part of the map. This pattern is rather obvious and straightforward,

and if the agent keeps it, then the yield solution will be optimal. The issue arises when, due to

the proficiency of the algorithm, most of the encountered patterns are similar to this case, and the

agent overfits.

To solve this issue, the implemented solution is that every time a training episode is generated,

there is a 50% chance that the map will be generated with up to two-thirds of already visited cells,

effectively creating a n-point coverage path planning problem. This also creates patterns that are

impossible to be generated by the agent motion, as depicted in the scenario on the right in Figure

6.11.

In practice, empirical results showed that agents trained on maps with uncommon patterns

were more capable of generalizing and less susceptible to deterministic loops and poor solutions

in cluttered environments without losing general performance in most situations.

6.4.2.6 Curriculum and Transfer Learning

To finish the description of the training algorithm, the final set of tools will be presented. This

algorithm will leverage the power of curriculum and transfer learning to improve the efficiency

and speed of training.

As discussed previously, scenarios have different difficulties depending on the map’s param-

eters. Due to the environment’s sandbox nature, it is possible to tailor the environment to the

needs of the training algorithm. Therefore, a curriculum training approach to robotic navigation

should start with the simplest tasks and build up to the most challenging ones. In this process, it is

important not to discard simpler tasks to avoid overfitting and aim for a generic algorithm.

6.4 Learning Algorithm 107

With these considerations, training the initial model involves navigating six distinct environ-

ment configurations within the coverage path planning framework, utilizing full information. De-

tailed environment configurations are provided in Table 6.2.

Table 6.2: Environment Configurations for Curriculum Training on the Single-Agent Full Infor-
mation Setting.

Parameter env1 env2 env3 env4 env5 env6
Training Steps 1×106 2×106 3×106 5×106 1×107 1×107

Max Size 5 10 15 20 25 30
Min Size 4 5 10 10 15 5

Number Obstacles 5 10 20 30 40 50
Starting Position Random Random Random Random Random Random

Random Coverage True True True True True True
Sensor FI 6 FI FI FI FI FI

Sensor Range N/A N/A N/A N/A N/A N/A

And a generic training algorithm can be analyzed in algorithm 12.

Algorithm 12 Curriculum Learning CPP Training

Require: Environment configurations E, replay period K, memory size N, PER exponents β ,
Learning Start Step Tstart

1: Initialize replay memory D , PER exponent β and its increment ∆β ,online network θ and
target network θ−

2: for environment e in E do
3: Initialize environment e, training budget T
4: Observe O0 and choose A0
5: for t = 1 to T do
6: Use online network θ to choose next action At

7: Take Action At , observe Ot+1,Rt+1 and store the transition
8: if t > Tstart and t%K == 0 then
9: Reset Noisy Linear Weights

10: Sample k transitions from the replay buffer
11: Compute loss
12: Perform Gradient Descent to update online network weights θ

13: Soft Update the target network weights θ−

14: end if
15: β ← β +∆β

16: if St is Terminal then
17: Reset the environment
18: end if
19: end for
20: end for

After using algorithm 12 to train on the set of environments presented in Table 6.2, the final

result will be an agent model for a generic robotic navigation agent with full information. In order

6FI stands for Full Information.

108 Deep Reinforcement Learning for Single Agent Navigation

to improve the versatility of the agent, it is still necessary to train the agent in scenarios with partial

information. For that purpose, the configurations of the original training are adapted and can be

seen in Table 6.3.

Table 6.3: Environment Configurations for Curriculum Training on the Single-Agent Camera Set-
tings.

Parameter env1 env2 env3 env4 env5 env6
Training Steps 1×106 2×106 3×106 5×106 1×107 1×107

Max Size 5 10 15 20 25 30
Min Size 4 5 10 10 15 5

Number Obstacles 5 10 20 30 40 50
Starting Position Random Random Random Random Random Random

Random Coverage False False False False False False
Sensor Camera Camera Camera Camera Camera Camera

Sensor Range 3 3 3 4 4 3

The initially trained model is used as a starting point when training in the environment scenar-

ios from Table 6.3, in a technique usually referred to as transfer learning. When this second stage

of training is finished, the agent is fully trained and ready to be deployed in any of the proposed

robotic navigation tasks.

6.5 Results

Following the delineation of the problem, the modeling of the Partially Observable Markov Deci-

sion Process, and the specification of the learning algorithm, a comprehensive assessment of the

solution’s performance is now possible. The performance will be assessed by testing the algorithm

on the different sets of tasks with different variations on the algorithmic approach. The following

subsection outlines the methodology employed for analyzing the results. Subsequently, the subse-

quent subsection explores the analysis of Coverage Path Planning under full information. This is

followed by an examination of sensor-based coverage and point-to-point tasks. Lastly, a compari-

son is drawn between the algorithm’s results and those achieved by state-of-the-art approaches.

6.5.1 Methodology

Before delving into the results, it is crucial to establish concrete evaluation guidelines for the

algorithm in the contexts of Coverage Path Planning, sensor-based or not, as well as point-to-point

path planning.

6.5.1.1 Coverage Path Planning

In the evaluations of Coverage Path Planning, the algorithm’s performance will be examined

within scenarios of full coverage path planning across a range of maps. This set consists of 25

subsets organized by map size. Each subset contains 100 randomly generated scenarios featuring

6.5 Results 109

map sizes ranging from 5 to 30. In each map, the agent’s starting position is randomized, and

the number of obstacles ranges between 0% and 10% of the total cell count. The main metric for

measuring the performance of the algorithm in these scenarios is the path overlap Ov, which can

be defined as:

Ov =
nr

nt −nr
, (6.21)

where the value nr corresponds to the number of repeated steps, or in other words, steps resulting

in visiting cells that were already covered, and nt is the total step count. This metric is useful

for complete coverage path planning, where for an optimal path in a convex environment, the

overlap value would be Ov = 0, which means that every single step resulted in visiting a point of

interest. However, when dealing with non-convex environments due to the presence of obstacles,

the optimal Ov value can be different from zero. Nevertheless, a useful rule of thumb is that values

close to zero can be considered optimal or, at the very least, near-optimal.

If there were a perfect metric that could guarantee that a solution was optimal, then it would

render this algorithm pointless, given that a means to determine the optimal path for every scenario

would be available. Therefore, despite flawed, this metric is one of the best available and will be

specifically because it is also used in other relevant works in the literature, more specifically the

ones done by LG Electronics Advanced AI Team [21, 81, 82].

6.5.1.2 Point-to-Point Path Planning

In the context of point-to-point path planning, the algorithm is subjected to scenarios involving a

solitary point of interest. The map size will be randomly determined within the range of [5,30],

the number of obstacles will again range up to 10% of the total map size, and both the agent and

point of interest positions will be randomized. An example of a point-to-point planning scenario

can be visualized in Figure 6.12.

Figure 6.12: Example of a point-to-point path planning scenario.

With these considerations in mind, the performance will be gauged using the metric:

∆s = nD−nRL (6.22)

110 Deep Reinforcement Learning for Single Agent Navigation

where nD signifies the number of steps in the optimal solution provided by Dijkstra’s algorithm,

and nRL signifies the steps in the solution generated by the RL algorithm. While the solution given

by Dijkstra’s algorithm will always be optimal, therefore making the RL algorithm not inherently

necessary, the purpose of the analysis is to show the ability of the RL algorithm in general robotic

navigation situations and its capacity to extract the necessary information from the observation

representation in any generic situation.

6.5.2 Full Information Coverage Path Planning

This subsection will present the results obtained by the algorithm in a generic coverage path plan-

ning setting. The agent model was trained as described in Section 6.4.2.6, and the evaluation will

be done in the rules defined by the previous Section 6.5.1.1. Firstly, the objective is to analyze how

the algorithm generalizes to specific different map sizes, followed by a general evaluation over the

whole size spectrum. The final results will be a comprehensive analysis of the outliers.

6.5.2.1 Distribution of Results and Heuristic Usage

In this section, the algorithm performance will be analyzed within specific subsets. These subsets

correspond to maps with sizes {5,10,15,20,25,30}. The objective of this study is to isolate these

cases, enabling a more detailed analysis of how the solution’s behavior evolves with varying map

sizes. Particularly, the distribution of results in each scenario will receive special attention, which

will be visualized using Box Plots.

Another thing that will be analyzed and introduced in this section is the reasoning behind

utilizing Dijkstra’s heuristic with the rules that were defined for training in Section 6.4.2.4.

Refer to Figure 6.13, where the results for the RL algorithm with the heuristic can be visual-

ized. In all the sets of maps, the mean results are near-optimal, always achieving overlap values

inferior to 0.05 or 5%. These results are consistent with the evolution of size and, in general,

have a slight downward trend as the map gets larger. Moreover, the Inter-Quartile Range (IQR)

generally maintains an upper bound below 0.1. Within 600 episodes, there are only 14 maps that

yield results exceeding 1.5 times the IQR, warranting their classification as outliers. This implies

that roughly 98.7% of the results do not fall into the outlier category. Even in instances where

outliers do arise, the results remain satisfactory. For maps larger than 10× 10, the outliers are

rarer and are located barely outside the upper limit, being not larger than 0.125 overlap, which is

still a reasonable result, especially considering that there are difficult maps in the dataset. Smaller

maps have larger outliers. However, it is important to consider that smaller maps are susceptible

to having higher overlap values. In a 5×5 map, a solution with only five extra steps already scores

an overlap of 0.25, which in this case was the maximum value of overlap observed.

Now consider Figure 6.14 that displays the results for the case that the agent never uses the

heuristic. It is important to note in Figure 6.14a that there are clearly more outliers, and their

values are much larger when compared to the previous case. It is also worth highlighting that 6

maps were not completed before episode truncation and, therefore, are not included in the graph.

6.5 Results 111

Figure 6.13: Box plot with the overlap distribution for six sets of maps.

For reference, truncation occurs when the episode overlap is larger than 5. However, upon ex-

cluding the more extreme outliers, the plot depicted in Figure 6.14b bears a resemblance to the

results associated with the heuristic, showcased in Figure 6.13. Intriguingly, both the mean and

Inter-Quartile Range (IQR) maintain identical values across these two scenarios. This observation

suggests that, in the worst case, employing the heuristic yields results equivalent to not using it,

while in the best case, it mitigates the influence of the most severe outliers. For this reason, there

is no justification not to use the heuristic, as it guarantees that a map is always finished and makes

the algorithm more reliable and explainable.

(a) Non-Filtered Outliers for Overlap Distribution (b) Post-Filtering Outliers for Overlap Distribution

Figure 6.14: Box plot with the overlap distribution for six sets of maps, in the case of not using
the heuristic.

6.5.2.2 Overlap Evolution on the Size Spectrum

After analyzing the performance of specific scenarios, it is now time to analyze the whole spec-

trum. For this purpose, consider Figure 6.15, where the results for the whole set of maps are

112 Deep Reinforcement Learning for Single Agent Navigation

presented.

Figure 6.15: Overlap Statistics Across the Size Spectrum for Full Information Agent.

The results are very promising, validating the algorithm’s design choices. The performance

remains consistent across the entire range of map sizes, with a mean overlap value consistently

below 0.05 in all scenarios. Furthermore, a downward trend in overlap values can be observed,

reaching around 0.02 mean overlap in the best-case scenario. The maximum overlap values are, in

general, inferior to 0.15, which, although not optimal, remains satisfactory. This is especially true

when considering the presence of challenging maps within the dataset.

Importantly, it is worth noting that an overlap value of 0 was achieved in almost all map sizes.

Additionally, the observation that the 0 overlap solution lies within the±2σ range across all cases

implies a certain degree of consistency in achieving such results.

6.5.2.3 Outlier Analysis

Directing attention to the outliers, Figure 6.16 depicts a bar graph with the number of outliers

when the algorithm does not use the heuristic. An episode is classified as an outlier if the overlap

surpasses 0.5 or if episode truncation occurs. It is essential to clarify that this classification is

intended to identify subpar outcomes rather than ensure statistical precision.

When tested with the heuristic, there was no single occurrence of an outlier. More importantly,

it means that the agent had a completion rate of 100% across 2500 different episodes, and the

rate of favorable outcomes is also at 100%. However, when not using the heuristic, the results

get significantly worse. Consider Figure 6.16, the completion rate decreases to 99.3%, and the

desirable outcome rate is around 97.4%. While these values are generally acceptable, especially

in the context of Machine Learning algorithms, it is important to consider that robotics is a safety-

critical oriented field, and therefore, the heuristic proves very desirable in this regard.

6.5 Results 113

Figure 6.16: Occurrences of Outliers Episodes for Different Map Sizes, Not Using the Heuristic.

6.5.3 Sensor-Based Coverage Path Planning

One of the objectives of the algorithm is to have a model that can be used in different tasks without

any change. For this, it is now turn to analyze the model and algorithm performance on the sensor-

based coverage path planning problem or active exploration. Similarly to the previous case, the

study will begin by analyzing the distribution of results on a generic sensor, and parallels will be

drawn to the full information scenario. Subsequently, attention is directed toward comprehending

the impact of sensor range and type on performance.

6.5.3.1 Results For Generic Sensor

The attention is now directed toward evaluating an agent equipped with a generic sensor to perform

sensor-based coverage path planning. The choice of sensor is a camera with a range of K = 3. First,

consider Figure 6.17.

Figure 6.17: Box Plot with the Overlap Distribution for Six Sets of Maps in the Partial Observed
Scenario.

114 Deep Reinforcement Learning for Single Agent Navigation

The results exhibit remarkable similarity to the full information scenario. It is also worth

highlighting that there is not a single result with overlap larger than 0.50, indicating a 100% rate

for both completion and successful outcomes. In comparison to the full information agent, it is

apparent that there are more data points outside the Inter-Quartile Range (IQR), and overall, the

performance is slightly inferior. There is also more variance, which is reflected in larger IQRs,

and the downward trend not being as noticeable for the mean overlap value, which is higher and

more consistent. However, the fact that the agent fully adapted to a different task while still using

the same model is remarkable.

Let us now shift the focus to the whole dataset. Figure 6.18 depicts the results for overlap on

the whole set of test maps.

Figure 6.18: Overlap Statistics Across the Size Spectrum for Camera-Based Agent.

Once again, the outcomes are truly promising. Most notably, they closely resemble those at-

tained by the full information agent. This alignment implies that the agent effectively fulfilled

the requirement of successfully completing both robotic navigation tasks. While the maximum

overlap value is slightly higher compared to the previous case, it still resides within a reason-

able range, generally remaining below 0.2. The consistency of the mean overlap value across the

dataset suggests that the agent genuinely acquired the skill of active exploration, avoiding the pit-

fall of overfitting specific scenarios. Once again, even with partial information, the agent achieved

optimal solutions. However, such solutions became rarer when the map size surpassed the repre-

sentation received by the agent in its observations. This phenomenon could stem from the loss of

information from multiple sources, resulting in the absence of critical data required for achieving

optimal solutions.

Nonetheless, the results are truly remarkable and show that the objectives of the algorithm were

met. The one model agent can successfully complete distinct tasks and achieve generalization and

near-optimal solutions in both. For an in-depth comparison, refer to Figure 6.19.

Directly comparing the full information agent and the camera-equipped agent, it is evident that

their performance is notably similar, as highlighted by the identical shape of the curves in Figure

6.5 Results 115

Figure 6.19: Comparison of Mean Overlap Between Camera and Full Information Agent.

6.19. The outcomes are also very similar until the map gets bigger than 15×15, in which a slight

degradation of the camera agent performance is visible. It is important to note that this direct

comparison is only possible because the agents are tested in the exact same dataset with the same

seed. Nonetheless, the model’s ability to proficiently handle both tasks remains an impressive feat.

The fact that the curves are identical suggests that sets that are difficult for the full information

agent are also more difficult for the camera agent. This is visible by the fact that most local

maxima and minima occur for the same set in both situations. All in all, these results highlight the

generalization ability of the agent.

6.5.3.2 Different Sensor Payload Analysis

The results on the sensor-based agent show that for a camera with a range of K = 3 the agent is

capable of generalizing and performing the proposed tasks with proficiency. Nonetheless, it is im-

portant to remember that the agent spent most of the time training with that specific configuration,

and a truly intelligent agent should be able to adapt to different sensors and ranges.

First, we start by comprehending how dependent the performance is of the sensor range pa-

rameter. For this evaluation, the parameter was set to values in the range of K ∈ [1,5], and the

agent was submitted to test in the same dataset. The results can be visualized in Figure 6.20.

As seen in the results, the agent can cope with different values for the sensor range. It is

noticeable that the performance improves with increasing the sensor range, where K = 1 yielded

the worst results and K = 5 the best. One can also notice that the agent’s performance with K = 1

had a big spike in overlap values on the set of scenarios with the largest maps, suggesting that there

is a breaking point where the sensor range starts not being adequate to the map size. Nonetheless,

these results show that the agent mastered using the camera sensor to perform coverage path

planning, as it can not only deal with differences in parameter values but as the value is increased,

the more similar the solution gets to the full information agent.

116 Deep Reinforcement Learning for Single Agent Navigation

Figure 6.20: Comparison Between Different Sensor Range K for the Camera-Based Agent.

However, the camera sensor is not the only sensor that can be equipped in the agent. The

LiDAR sensor is also part of the possible payload, functioning in a similar capacity to the camera,

but can not see cells beyond obstacles. For studying the agent’s capabilities with the LiDAR

sensor, the same study was repeated, with the results depicted in Figure 6.21.

Figure 6.21: Comparison Between Different Sensor Range K for the LiDAR-Based Agent.

In this case, the results are as expected, similar to the camera-based agent. The relation be-

tween the camera range and performance remains practically similar. One thing to note, however,

is that the LiDAR sensor performs worse than the Camera counterpart. This is evident by the fact

that the Camera with K = 3 performs at an identical level to the best LiDAR K = 5. This result

is somewhat expected, as the LiDAR extracts less information from the map when compared with

the Camera, and therefore the agent can plan its path better. One curious fact is that by analyzing

6.5 Results 117

the variants of the sensors with K = 1 the curve is the exact same. This happens because with this

specific range value, the sensors are equivalent, and the algorithm is deterministic.

Nonetheless, it is remarkable that the agent can adapt and perform with a type of sensor it was

never trained with, suggesting the generalization capabilities of the learning algorithm approach.

6.5.3.3 Sensor Noise and Failure

In all the given simulations, it was assumed that the sensors were not noisy and would never give

false information. To better study the robustness of the model, a study was conducted on how

injecting sensor failures affect the agent performance. For this purpose, two scenarios were tested

where the values given by sensor readings were only usable 50% and 25% of time steps. The

sensor range was set to K = 3, and the results can be visualized in Figure 6.22.

Figure 6.22: Sensor Failure Analysis.

The results show that the model is robust to non-ideal sensor behavior, being able to cope with

a non-functioning sensor 50% of time. When the sensor failure rate is below 25%, there is not a

noticeable degradation of performance. Even with higher values, although it is clearly visible that

the agent struggles more with the task, the performance is still near-optimal.

This analysis suggests the model is robust and does not overfit to specific scenarios. These

results give confidence that the model can be adapted to real-world applications where there is a

lot of uncertainty and non-ideal behaviors that are not captured through simulation.

6.5.4 Point-To-Point Coverage

The robotic navigation spectrum was introduced as a concept at the beginning of this chapter. This

subsection of results will serve to demonstrate that despite the agent being trained for coverage

path planning, complete or not, the agent was truly able to learn how to navigate relying only on

semantic map information.

118 Deep Reinforcement Learning for Single Agent Navigation

For this, following the metric ∆s defined in Section 6.5.1.2 will be used to measure how well

the agent can move from point A to point B. The constructed dataset has 10000 different scenarios

in which an agent has to perform point-to-point path planning. The performance metric signifies

how lengthier the RL algorithm path is when compared to the Dijkstra’s algorithm path.

The results are summarized in a bar plot depicted in Figure 6.23.

Figure 6.23: Overlap Statistics Across the Size Spectrum for Camera-Based Agent.

Out of the total of 10000 scenarios, 528 did not yield optimal results, leading to the RL algo-

rithm being on par with Djikstra’s algorithm in around 95% of instances. If all the solutions that

yielded a path that is at maximum two cells longer are considered sub-optimal, then it is expected

that the RL algorithm yields near-optimal solutions in around 98% of cases. Furthermore, the

agent was able to complete the task in every scenario.

While the RL algorithm might not match the performance of Djikstra’s algorithm, it is essen-

tial to acknowledge that the agent was never trained in this specific situation, and therefore, the

obtained results still show proficiency on the task, even if not at an optimal level. Furthermore,

in practical applications, the agent need not excel in this specific scenario since it has access to

Djikstra’s algorithm as a fallback.

Nonetheless, it is important not to overlook the importance of these achievements. With this

algorithm, the agent was able to perform any of the tasks that were proposed, paving the way for

more complex algorithms. For instance, Djikstra’s algorithm alone cannot effectively minimize

energy consumption when accounting for the robot’s kinetic and dynamic model. In contrast, this

solution can be adapted to consider such factors, contributing to a more adaptable framework. This

adaptability stands as one of the primary objectives of this dissertation.

6.5 Results 119

6.5.5 Comparison With State-Of-The-Art Algorithms

Until this point in the section, there was no basis for comparison between the algorithm and other

approaches. In fact, this is a very common issue in this type of work, as there does not exist much

standardization when it comes to performance assessment. Some approaches [97] even compare

the algorithm’s performance with a human controlling the agent due to this problem.

To correctly assess the performance of the algorithm, the agent will be directly compared with

the benchmark done by the LG Electronics Advanced AI Team [21].

6.5.5.1 The Benchmark

In the work developed by the LG Team [21], the authors compare their RL and Hybrid RL algo-

rithms with state-of-the-art classical algorithms. The used algorithms include: Full Spiral-STC

[98], Smooth Spiral-STC [99], BA* [100], BSA [101], Epsilon* [102], and AD Path [103].

The algorithms are compared by doing 90% coverage in six different maps. These maps were

implemented in this dissertation environment and can be visualized in Figure 6.24.

(a) Map 1 (b) Map 2 (c) Map 3

(d) Map 4 (e) Map 5 (f) Map 6

Figure 6.24: The Six Maps That Are Used In The Benchmark.

All the algorithms in the benchmark are set to stop coverage at 90%. In practice, this means

that agents can optimize their routes not to cover cells that would inevitably lead to overlapping

paths.

120 Deep Reinforcement Learning for Single Agent Navigation

On the other hand, the agents developed in this work will always fully cover the whole map.

Therefore, the results are not completely directly comparable. While it would be possible to

terminate the episode whenever an agent has covered more than the threshold value, this approach

might bring more harm than benefits. The agents in this work were trained to minimize the overlap

in the complete coverage scenario and, therefore, will make compromises in the short term, which

can result in worse outcomes in 90% coverage.

Nonetheless, it is the best comparison available, and since the developed agents are performing

a more difficult task, the comparison is by nature unfavorable to them, and the results can still be

interpreted.

6.5.5.2 Results

With the benchmark conditions established, the developed agents are ready for testing within this

framework. Given the deterministic nature of the agent, a single episode is sufficient to determine

its overlap. The results are presented in Table 6.4.

Table 6.4: Comparing overlap (%) of state-of-the-art CPP algorithms.

Method Map 1 Map 2 Map 3 Map 4 Map 5 Map 6
Full Information Agent 0.0 8.0 0.54 4.9 1.4 8.8
Camera Agent K = 3 0.0 13.2 0.54 6.1 3.2 8.0
LG RL 9.1 9.6 9.7 10.1 10.0 10.8
LG Hybrid RL 7.1 7.5 7.6 8.0 8.1 8.8
BA* 18.3 22.1 21.8 28.9 26.3 34.8
ADP 17.4 20.0 23.0 25.5 26.3 36.8
BSA 16.4 23.3 22.2 27.1 27.4 37.1
Epsilon* 23.3 29.3 32.1 35.2 34.6 41.6
Spiral STC 19.7 24.2 22.8 29.4 29.2 37.4

Before analyzing the results, it is important to remember that all the algorithms that were not

developed in this document were set only to complete 90% coverage of the map.

From Table 6.4, it can be inferred that any RL-based solution clearly outperforms all the clas-

sical CPP algorithms over these six maps. On the RL side, it is clear that the algorithm developed

in this work outperforms the LG agents, both Hybrid and Regular RL.

There is a clear bias in both the Full Information Agent and the Camera Agent toward less

cluttered maps, as seen by the optimal performances in Map 1 and near-optimal performances in

Map 3 and 5. All these odd-numbered maps share a more structured environment with free space

and more regularly shaped obstacles. In all these maps, the developed agents significantly outper-

form the LG agents, showcasing the power of the algorithm to achieve near-optimal solutions in

what can be considered normal room layouts.

On the other hand, this might show a weakness of the algorithm. In the even-numbered maps,

while still showing near-optimal performance, the results are slightly worse. This is due to their

cluttered nature and unusual patterns, which require more robust decision-making. Nonetheless,

6.6 Final Considerations 121

the developed algorithm still outperforms the LG approach in all maps besides Map 2, in which

the Hybrid RL approach performs slightly better, resulting in less 0.5% overlap. This map, in

particular, is the most cluttered one due to being the smallest of the three.

One curious aspect of the results is that, in general, the camera agent seems to perform at a

similar and sometimes better level than the full information agent, especially in cluttered maps.

This might be due to the fact that the limited information that is at the agent disposal leads to

better overall solutions. While this might seem counter-intuitive, considering that the agents are

not perfect, the more information available, the more decisions they can take, leading to more

possible paths that can end up being worse. Nonetheless, the performance in both situations shows

that any agent is capable of completing the task at a near-optimal level.

These issues show that further adaptations to the training algorithm can be made, focusing

on making maps more cluttered and with more difficult decision-making. It is clear that most

randomly generated patterns lead to maps more similar to the odd-numbered ones, and therefore,

an extra effort to avoid overfitting should be considered. Another thing to consider is that the agent

finished the training process with the camera sensor, which might also introduce bias toward the

sensor. By finishing the training session with a set of episodes with varying types of sensors, this

discrepancy might be mitigated.

Overall, in this specific dataset, it is fair to deduce that the algorithms developed in this work

are the best performers, especially considering that the agents are actually doing full coverage.

Furthermore, the algorithms developed by LG do not present results in other grid maps, and as far

as the author’s knowledge, there is no significant study on their generalization and adaptability to

other scenarios, unlike in this dissertation.

A video of the algorithm performing on the benchmark’s Map 1 can be visualized on the

following link.

6.6 Final Considerations

In this chapter, a Deep Reinforcement Learning algorithm for robotic navigation was proposed

and developed. The proposal is based on a transformative view of robotic navigation, which tries

to view the task of navigation as a spectrum, where on one end, a robot must only go from A to

B, and on the other, the robot must visit every point of interest. The idea is that by leveraging the

generalization power of Reinforcement Learning, one robot should be able to "look" at a map and

extract enough semantic information to perform any navigation task. A video of the algorithm in

action can be found in the following link.

First, the problem was formulated as a Partial Observed Markov Decision Process, focusing

on having the most generic and adaptable agent possible. The objective was not only to have a

coverage path planning agent but also to make an agent capable of sensor-based coverage, active

exploration, point-to-point planning, and other generic navigation tasks. The observation and

action space was adequately modeled to enable this agent concept, and a heuristic component was

added to guarantee coverage and reliability to the algorithm. Finally, an innovative and clever

https://youtu.be/cwc_aFDmIhE
https://youtu.be/mQ5xA4ZBKl0

122 Deep Reinforcement Learning for Single Agent Navigation

reward function was designed to guarantee size invariance and to better adapt to the problems

imposed by the generalization effort.

The algorithm is based on Deep Reinforcement Learning methodologies, and a value-based

framework was chosen. Within this framework, the state-of-the-art method Rainbow Deep Q

Network was selected as the base for the algorithm, and necessary adjustments were made. The

training algorithm was also adapted on the base of transfer learning, curriculum learning, and

the concepts of varying difficulties, competencies, and skills that an agent must have to perform

navigation tasks.

The results validate the design choices for this Deep RL solution for robotic navigation. The

proposed agents achieved near-optimal coverage path planning for scenarios of a dataset with

over 2500 maps, even in the sensor-based case. The agent was also proven to be resilient to

sensor failures and varying sensor payload setups, suggesting that the algorithm is robust enough to

overcome the Sim-To-Real gap when deploying it on a physical robot. The agent also kept up with

optimal solutions in the case of point-to-point planning, even though it was never trained for that

specific purpose. Finally, the algorithm is compared in a benchmark with other approaches in the

literature, where its capabilities shine by clearly outperforming both classical and RL approaches

while doing an even more complex task.

This work provides a solid framework for any robotic navigation task through its developed

concepts. It paves the way for robots that can understand what to do just by interpreting a map

representation, and the results show that this approach can be viable despite the difficulties in

scaling with larger map sizes. The work can still be improved by adding support to multiple agents

and enhancing some training procedures, like the agent curriculum or the scenario generation

algorithm.

Chapter 7

Multi-Agent Reinforcement Learning
for Coverage Path Planning

Having established a robust foundation in the application of Deep Reinforcement Learning for

single-agent robotic navigation in the previous chapter, this chapter now directs its attention toward

the domain of cooperative multi-agent systems. The focus here revolves around delving into the

landscape of cooperative strategies within robotic navigation, thereby exploring methods that can

cope with multiple agents, harmonizing their efforts to achieve shared objectives.

The chapter will begin by introducing the problem and presenting the objectives in Section

7.1. Section 7.2, then delves into formulating the problem, highlighting challenges specific to the

multi-agent domain. After formulating the problem, the proposed solution is translated to a Dec-

POMDP framework in Section 7.3, and the implementation is detailed in Section 7.4. In Section

7.5 the algorithm will be tested and the obtained results will be showcased with a comprehensive

evaluation of both the accomplishments and limitations of the proposed solution. Lastly, some

final considerations are given in Section 7.6.

7.1 Challenges and Objectives

The main objective of this chapter is to develop Multi-Agent Reinforcement Learning methods for

robotic navigation. Unlike the previous chapter, this one will focus more on the complete coverage

path planning framework, as it is the one task that benefits the most from multi-agent cooperation.

Nonetheless, the algorithm must still be able to generalize and adapt to different situations and

tasks.

Within the broader context of this document, this chapter represents the culmination of the

groundwork laid thus far. Serving as an incremental advancement, especially in comparison to

the Deep Reinforcement Learning presented in Chapter 6, certain concepts and features will not

be re-explained. Consequently, unlike the previous chapter, this section cannot stand alone as an

independent reading.

123

124 Multi-Agent Reinforcement Learning for Coverage Path Planning

The multi-agent setting is significantly more demanding than single-agent. While a lone agent

only had to understand and interact with the environment, in the multi-agent context, each agent

must possess awareness of its counterparts. In addition to this awareness, agents must comprehend

one another’s objectives and policies to execute tasks effectively. This requirement places strain on

the learning process, particularly as agents attempt to grasp the dynamic policies of other agents,

which are subject to constant change. Besides the learning component, the multi-agent setting

also necessitates a robust framework for synchronization and information sharing, which are not

trivial, especially in real-world scenarios.

The contribution of this chapter will be a generic multi-agent Reinforcement Learning algo-

rithm that can be used in cooperative coverage path planning on any 2D Grid without explicit

constraints on the number of agents. The main objectives of this chapter are as follows:

• Model the Cooperative Coverage Path planning problem as a generic Decentralized Partial

Observed Markov Decision Process.

• Develop a learning framework that can cope with any number of agents.

• Employ the state-of-the-art Multi-Agent Reinforcement Learning technique Parameter Shar-

ing to extend the Rainbow DQN to the Multi-Agent Setting.

• Use Transfer Learning to adapt the Single-Agent framework to Multi-Agent.

• Study the differences between cooperative and competitive reward structure paradigms for

the Cooperative Coverage Path Planning Task.

• Investigate the algorithm’s performance and robustness through experimentation with a

dataset of maps.

7.2 Problem Formulation

Once again, consider a generic 2D square-shaped map M with maximum dimensions M×M.

The map is obtained via approximate cellular decomposition, and the cell size equals the robot

size. The obstacle number and positions are randomly generated, and all out-of-bound cells are

considered obstacles.

In this problem, the information is encoded at the cell level, where there exist Non-Covered

Cells (Points of Interest), Covered Cells, Obstacles, and Cells with no current information. The

last type of cell will not be used in this chapter, as they are used only in sensor-based coverage path

planning. However, they are kept consistent with previous models and to ease future expansion.

At the beginning of every episode, the map will be composed of Non-Covered Cells (Points of

Interest) and Obstacles, and the episode terminates when all non-obstacle cells are visited. The

cells only need to be visited once to be considered covered, and can be done by any agent. A

typical multi-agent coverage scenario can be observed in Figure 7.1.

7.2 Problem Formulation 125

With respect to the agents, consider a group of N homogenous agents Ag = [1, ...,N] with

a minimum of one element and a maximum that is only theoretically limited by the number of

available free cells. The agents are synchronized and select an action at every discretized time step

t. The action can move them in any cardinal direction A= [North,South,East,West]. If an agent

is out of sync, an individual action can be skipped. This can be used to implement an asynchronous

framework or to simulate failures in communication. Nonetheless, the only framework that will

be considered is the synchronous one.

The agents have an implicit priority given by their id, their position in the vector Ag. An

agent is not aware of its own position in the array, so it should not assume priority over any other.

The priority is only relevant to prevent situations where agents move to the same cell, and in

this implementation, the safety controller that implements the priority acts as a central omniscient

controller that blocks the action of the agent with less priority.

The agents will use the centralized training decentralized execution framework. During train-

ing, all the agents use the same network and have access to each other observations, being that all

observations are stored in the same replay buffer, and there is no explicit information regarding

which agent generated it. During execution, each agent has its own network and cannot access the

other agent’s observations, policies, or actions.

Independently of how the agent’s reward structure is modeled, the goal will always be to

completely cover the map in the minimum of time steps t possible. This implicitly means that the

agents will have to cooperate to reach this goal, as self-focused agents can be harmful to the group.

Nonetheless, flexibility regarding the collaborative or competitive reward structures will be given

to the agents.

Figure 7.1: A typical multi-agent coverage path planning scenario on a 20×20 map with a group
of 5 agents.

126 Multi-Agent Reinforcement Learning for Coverage Path Planning

7.3 Decentralized Partial Observable Markov Decision Process

To address the cooperative coverage path planning problem, it will be translated to a Decentral-

ized Partially Observable Markov Decision Process (Dec-POMDP), which is defined by the tuple:

⟨N,S,AAA,P,RRR,ΩΩΩ,O,γ⟩.
This choice is an extension of the POMDP designed in the previous chapter. Since the design

choice was proven to be successful, this framework for the decision-making problem is the most

adequate choice, as this new problem is an increment to the single-agent problem where the agents

will be homogenous, have similar reward structures, and in general, cooperate towards a common

goal.

The formulation of the Dec-POMDP will take into account the global objective of having

a general framework for robotic navigation tasks and, ideally, being able to complete the same

tasks in the single-agent setting. The resulting agents must be able to do coverage path planning

cooperative or not, in any given map, with any number of agents and starting positions.

7.3.1 Action Space

The joint action space AAA := A1× ...×AN is defined by the possible combination of actions taken

by the group of agents. In this problem, the agents are homogeneous, meaning that A1 = A2 =

...= AN and therefore, at the singular level the action space can be defined as:

A= [North,South,East,West] (7.1)

In the multi-agent setting, an extra action where the agent chooses not to move could be inter-

esting. The wait action would be useful to prevent collisions and save energy whenever the agent

deems it cannot contribute more to the overall goal. Nonetheless, it was a deliberate choice not to

include it in the action space.

Including this action would remove the compatibility with the single-agent algorithm devel-

oped in Chapter 6, meaning it would not be possible to use transfer learning in this new setting.

Furthermore, the environment already has a built-in mechanism that prevents collisions, and there-

fore, it is acceptable that the agent take more risks when choosing their actions regarding inter-

agent collisions. The question of saving energy is not relevant to the problem formulation, which is

of minimizing the time to cover a map fully. With the waiting action, at best, the time taken would

be the same as if it were not present, and therefore it is not included. Furthermore, if the agent

does not select an action, it will perform the equivalent to the wait action, which is an implicit

method to implement this action without being directly in the action space. The waiting action can

easily run into deterministic loops and was also shown to degrade performance in conducted tests

on single-agent and multi-agent settings.

The heuristic action of moving towards the closest non-covered cell is still present and not

directly part of the action space. The policy chooses the heuristic action in the same way as

presented in Section 6.4.2.4. It serves as a way to prevent deterministic loops in the observation

7.3 Decentralized Partial Observable Markov Decision Process 127

space and to speed up the training process. As the objective is to minimize time, choosing this

action when an agent is stuck and not visiting new tiles will not result in worse outcomes but in a

more active and aggressive policy.

7.3.2 Observation Space

In this problem, the agents will be considered homogenous, sharing the same action space and

having a similar structure in the observation space. Consider the joint observation space ΩΩΩ :=

Ω1× ...×ΩN being all the possible combinations of observations between the N agents. In these

observation spaces, the observation function O is shared between all agents. However, it is impos-

sible to have different agents with equal observations o1 ̸= o2 ̸= . . . ̸= oN .

The observation space Ωi can be defined as:

Ω
i = R3×4×41×41︸ ︷︷ ︸

Map Representation Mi
p

× Z3×4×2︸ ︷︷ ︸
Out of Bounds Information oobi

× B3×5︸︷︷︸
Last Actions li

a

× Z︸︷︷︸
Battery Level bi

(7.2)

The components observation space is the same as in the previous chapter in order to enable

reutilizing the trained model for the multi-agent task. A brief description of the observation space

components is as follows:

• Map Representation Mi
p: A R3×4×41×41 tensor containing all the last three stacked frames

of the map. The map is centered on the agent i and has four channels: Points of Interest,

Points of Non Interest, Obstacles, and Agents Position. Once again, the nearest 20× 20

cells are unmodified, and all cells beyond that limit will be average pooled as described in

Section 6.3.2.3.

• Out of bounds information oobi: A Z3×4×2 tensor with the additional information that

was lost in compression from the point-of-view of agent i in the last 3 frames. Contains the

number of points of interest and compressed layers in all cardinal directions.

• Last Actions li
a: A B3×5 tensor that contains all the last 3 actions of agent i in one-hot

enconding.

• Battery Level bi: A scalar tensor that represents the battery level of agent i.

It is important to note that every element is specific to the agent and will most likely not be

shared between agents. Besides the Map Representation, all the other components are only relative

to a singular agent. The reason behind this limitation is that in order to consider other agents, it

would be necessary to add a dimension to the tensor. This dimension would have to have a fixed

size, implicitly capping the number of possible agents. The Map Representation Mp contains the

most relevant information regarding the other agents, so there should not be much difference in

omitting the additional information. Furthermore, sharing the extra information would require

more strain on the communication and synchronization protocol.

128 Multi-Agent Reinforcement Learning for Coverage Path Planning

An example of how the observation changes depending on the respective agent can be seen in

Figure 7.2. It is clear how using a map on the agent referential frame is advantageous. In most

MARL solutions, all agents must have some kind of implicit identifier in the observation space in

order to identify themselves. In this situation, since the map is centered on the respective agent,

this problem does not exist.

Figure 7.2: An illustrative example of how the Map Representation Mp changes depending on the
agent that is visualizing. To ease visualization, Agent 1 is the one on the top right of the map, and
the black background is part of the centered map representation.

7.3.3 Reward Function

The missing piece of the Dec-POMDP is the Reward Function R : S×AAA× S. Unlike previous

approaches to describing the formulation of problems as Markov Decision Processes, in this sec-

tion, the problem will be left open to various options. The reasoning behind this choice is that the

Reward Function structure dictates how the agents will tackle the optimization problem, and in

Multi-Agent scenarios, there can exist competitive, cooperative, and Mixed formulations of this

function. In further sections, studying and understanding how these changes affect behavior and

performance will be of great interest, and therefore, multiple Reward Function structures will be

presented.

Before delving into new Reward Functions, consider the starting point as the function pre-

sented in Section 6.3.3:

Ri = ri
ts + ri

crash + ri
new, (7.3)

7.3 Decentralized Partial Observable Markov Decision Process 129

where ri
ts = −1 is a penalty that is given every timestep, ri

crash = −1 is a penalty given whenever

the agent has a collision, and ri
new = 1 is given every time an agent visits a point of interest. It

is important to remember that these values were chosen in such a way that the value of any state

would most likely be zero-valued if following an optimal policy. This gave considerable benefits

in performance due to this power of generalization and size-invariant value function.

For the multi-agent scenario, three different possible prototype functions will be considered

and later empirically analyzed.

7.3.3.1 Competitive Setting - Maintaining the Reward Function

One tempting approach might be to keep the reward function untouched since the performance in

the previous chapter was very impressive. While very simplistic at first glance, this perspective

might have more merit than it seems.

Using the reward function in equation (7.3) implies that the agents will tend to be competitive

by nature. There is no common shared objective imbued in the function, as the reward is only

dependent on the agent’s action and outcomes. Nonetheless, the interesting part of this reward

function is that there is no finite amount of achievable reward, and therefore, the agents are not

inherently incentivized to outperform the other, simply to minimize their losses.

To better understand the intricacies, consider now a case where ri
new = 2. In this situation, there

would be a finite reward available equal to the number of points of interest np. In the situation

where there are two agents, the solution where both agents cover exactly half of the map is a

Nash Equilibrium (NE) point. Nonetheless, the algorithm is not guaranteed to converge to this

equilibrium point, especially because the average reward is not considered, and therefore, the

agents will look into maximizing their own reward. In this situation, having a reward larger than

the one obtained in the NE situation will inevitably harm the other agent, as this game can be

modeled as a two-player zero-sum game. Therefore, in this competitive setting, the most likely

outcome would be the agents trying to maximize their reward by harming others, as effectively,

every time an adversary visits a point of interest, it reduces the possible cumulative reward of the

agent.

However, in the initial case, the maximum cumulative reward equals zero for all agents, creat-

ing a more interesting dynamic. The Nash Equilibrium is still the exact same, where both agents

cover exactly half of the map. However, in this case, during the optimization process, an agent

does not get more cumulative reward by "stealing" points of interest from the other. In fact, one

benefits from the other doing as best as possible due to the episode ending faster, and therefore,

there are fewer opportunities to receive penalties. This leads to encouraging behaviors that are

more likely to converge into the Nash Equilibria than the other completely competitive scenario.

While the reward function structure is still competitive by the fact that there is no implicit

shared goal or component, the fact that agents benefit from cooperating with each other in order to

minimize their losses makes for an interesting mixed reward structure that is worth considering.

130 Multi-Agent Reinforcement Learning for Coverage Path Planning

7.3.3.2 Cooperative Setting - Introducing a Shared Reward

One of the most common ways to change the reward structure is to introduce a shared or common

reward into the reward function. By doing this technique, the setting is changed to a cooperative

setting. In the literature, to be considered a fully cooperative setting, all agents must share the

same Reward Function. However, that can be impractical, and the structure that will be presented

almost qualifies in that classification and, therefore, will be referred to as the cooperative setting.

With this in mind, consider the following Reward Function:

Ri = ri
new + ri

ts + ri
crash +

K
N−1

N

∑
j=0, j ̸=i

(r j
new). (7.4)

In this function, the scalar gain K serves as a tunable parameter for the importance of the other

agents’ reward importance. If K=N-1, every visited tile is valued the same, independently if it was

the agent i or any other. However, the higher this gain, the more difficult the credit assignment

problem gets, as other agents can contribute disproportionally to the overall success. Another

thing to note is that the previous function in equation (7.3) is equivalent to this one when the gain

is set to K = 0, where there is no contribution from the other agents to the reward function.

This prototype function will be tested with multiple values of K in order to understand better

how the algorithm performs and how the agents interact with each other.

7.3.3.3 Cooperative Setting - Keeping Size and Value Invariance

The newer cooperative reward function presented in equation (7.4) loses some of the proprieties

of the original reward function represented in equation (7.3). The fact that there is an additional

positive term to the initial reward function means that the maximum cumulative reward is no longer

zero and is now a map size-dependent positive scalar. In practice, this removes most of the useful

properties that were studied and presented in the previous chapter and might have undesirable

results.

Due to the success of this function type in the single-agent setting, it is desirable to investigate

the applicability of those techniques in the multi-agent setting. Therefore, one can change the

reward function to:

Ri = (1−K)ri
new + ri

ts + ri
crash +

K
N−1

N

∑
j=0, j ̸=i

(r j
new). (7.5)

This yields a function that maintains the size invariance condition as long as K is bounded

in [0,1]. In the case where K = 0, the function is once again equivalent to the original equation

(7.3), being that only the singular agent i is considered. On the other hand, if K = 1, then only the

contribution of the other agents is taken into account. Finally, a middle ground where K = 1/N

gives the same contribution for every agent, resulting in what would be closest to a fully shared

reward. It is important to note that a fully shared reward is not achieved because the crashes are

7.4 Learning Algorithm 131

penalized individually. Nonetheless, due to the rarity of crashes during most parts of training, it

would still be fair to say that the reward structure is fully cooperative.

7.4 Learning Algorithm

With the problem formulated as Dec-POMDP, it is now time to shift focus on how to solve it. This

work will use a Multi-Agent Reinforcement Learning framework that builds upon the DRL frame-

work built in Chapter 6. The modified Rainbow DQN is reutilized, and the model is trained via the

state-of-the-art technique Parameter Sharing [66]. This paradigm adapts well to the proposed task,

as there already exists a model that is very competent in coverage path planning and, therefore,

could be used as a starting point to train multiple agents with similar competencies. This section

will start by briefly revisiting the network architecture and introducing some details of parameter

sharing, and finish by giving an overview of the learning algorithm and used parameters.

7.4.1 Network Architecture and Parameter Sharing

In Chapter 6, the chosen framework for learning was the State-of-The-Art learning algorithm

Rainbow DQN. Due to its success and the use of transfer learning to reduce computation, the

same framework will be kept.

For these reasons, the network must be kept unaltered, and its architecture can be revisited in

Figure 7.3.

Figure 7.3: The Neural Network Architecture.

It could be argued that the architecture of the network could get larger to accommodate the in-

creasing complexity of the multi-agent setting. Nonetheless, the same architecture proved enough

to handle the task and, therefore, did not suffer any further alterations. Furthermore, there is an

incentive to maintain the same architecture in both settings to ensure compatibility between the

different paradigms.

One important detail of managing parameter sharing is that, as the name suggests, all agents

will share the same network during training. The formulated Dec-POMDP excels at abstracting

132 Multi-Agent Reinforcement Learning for Coverage Path Planning

the agent identity by centering the map on the respective agent, and therefore, from the perspective

of the model, there is no difference between any of the agents, and there is no risk of overfitting to

a specific agent as can occur when explicit agent id’s or marks are used.

The parameter-sharing scheme also introduces benefits regarding computational efficiency, as

if observations are fed in batches, the action for every agent can be selected in a single network

feedforward operation. To add to this advantage, it only requires one experience replay buffer

where all transitions are treated the same, and updating the parameters will also update all agent’s

policies.

On the learning side, having a singular centralized network can also help with credit assign-

ment and coordination of agents. Technically, all policies and transitions are derived from the

same model, resulting in the learning algorithm having less difficulty adapting to dynamic poli-

cies. Furthermore, having multiple agents leads to a richer and varied replay buffer, where the

same state is observed from different perspectives, once again helping with convergence and re-

cursive thinking. If all agents are controlled by the same model, then in the limit, the model can

learn to predict itself on the other instances.

The parameter sharing utilizes a Centralized Learning Distributed Execution (CTDE) frame-

work, where all the agents use the same model for training but can have independent models

during execution. This brings flexibility to the solution, as completely unrelated models can be

used during execution, and the agents can be more decoupled from each other. This paradigm can

be visualized in Figure 7.4, where on the left, a centralized scheme is presented, and on the right,

the decentralized operation is demonstrated. In this work, the execution is indeed decentralized,

but the model will be the same for every agent.

7.4.1.1 Hyperparameters

To finalize the analysis of the network architecture, Table 7.1 contains the network’s and learning

algorithm’s most relevant hyperparameters.

Comparing these hyperparameters to those of the single-agent algorithm, only two changes

are noted in the Learning Rate α and the Soft Update Factor τ . The former has been reduced by a

factor of five, and the latter is four times smaller in the multi-agent algorithm. These modifications

are driven by two primary considerations:

Firstly, the model is pre-trained, so initial updates should not be so large that the competencies

of the agent are lost.

Secondly, Multi-Agent Reinforcement Learning often contends with noisier reward signals

and generally exhibits lower robustness, making it more sensitive to larger parameter adjustments.

The reduction in these two parameters controls the magnitude of parameter updates, and their

reduction is aimed at stabilizing the learning process.

7.4 Learning Algorithm 133

Figure 7.4: An illustration of centralized and decentralized schemes for learning and execution.
On the left is the centralized paradigm, and on the right, is the decentralized version.

7.4.2 Training Algorithm

With the network architecture laid out, the missing piece for the solution is the learning algorithm.

Once again, the typical Rainbow DQN training scheme is changed to better suit the task at hand.

Building from the single-agent algorithm, the multi-agent version utilizes the following features:

• Partial Episode Bootstrapping: Changing the algorithm to not deal with truncated episodes

as if they were terminated ones.

• Partial Resetting: If an episode is truncated, the next episode will start where the last

ended.

• Saving Challenging Tasks: If an episode is truncated, it should be replayed from the be-

ginning in future iterations

• Imitation Learning: Use non-RL policies with expert information to speed up the learning

process.

• Curriculum and Transfer Learning: Train the agents in multiple scenarios of increasing

difficulties. Also, use previously trained agents to bootstrap the process.

From all the features used in the single-agent Section 6.4.2, the only one that is not present

is the generation of uncommon patterns. The reasoning behind this choice is that using multiple

134 Multi-Agent Reinforcement Learning for Coverage Path Planning

Table 7.1: Multi-Agent Algorithm Hyperparameters

Parameter Value
Minimum Steps Before Learning Tstart 5000 Frames
Soft Update Factor τ 0.01
Discount Factor γ 0.999
Batch size B 32
Optimizer ADAM
Loss Function Smooth L1 Loss
ADAM Learning Rate 0.00001
ADAM ε 0.000156
Maximum Gradient L2 Norm 2.5
Priority exponent α 0.5
Priority correction β 0.4→ 1
Noisy Net Initial std deviation σ 0.5
Memory size 1 Million Transitions
Learning Period K 4
Number of Stacked Frames 3
Multi-step return length n 1

agents already has this effect. Furthermore, the primary competency to learn is to divide areas and

cooperate with each other, and starting with already covered random patterns can be harmful to

this goal.

7.4.2.1 Random Number of Agents

On top of the mentioned features, there is a new addition to the algorithm. Whenever a new

training episode is initialized, the number of agents is randomly sampled in the interval [1,N].

This is particularly relevant when the learning algorithm is making the jump from one agent

to two. It was noted that if the number of agents was not randomly sampled, the agents would

learn to cooperate and separate their coverage areas, but the generated paths were far from optimal

with lots of unnecessary overlap. The reason behind this phenomenon is that by training only in

a multi-agent setting, the learning prioritized learning to cooperate instead of generating patterns

with low overlap.

An easy solution to this issue is to have some episodes where there is a singular agent, this

way the algorithm can focus solely on learning how to path optimally. While still learning the

competencies for the multi-agent scenario, significantly improving performance.

In the results section, the results of two models trained in the exact same conditions except for

the random number of agents will compared against each other.

7.4.2.2 Curriculum Learning

In order to finish the description of the learning algorithm, the focus will shift to the curriculum

portion of learning. The agent’s training will be divided into two stages. The first consists of

7.4 Learning Algorithm 135

adapting the single-agent model to a multi-agent model in scenarios with only two agents. This

stage serves as a smaller step into the multi-agent setting where the main objective is for the

agents to learn to be aware that they should cooperate in the task. The curriculum of the training

is presented in Table 7.2.

Table 7.2: Environment Configurations for Curriculum Training

Parameter env1 env2 env3 env4 env5 env6
Training Steps 1×106 2×106 3×106 5×106 1×107 2×107

Number of Agents 2 2 2 2 2 2
Max Size 5 10 15 20 25 30
Min Size 4 5 10 10 10 5

Number Obstacles 5 10 20 30 40 50
Random Coverage False False False False False False

After completing this training set, the model enters the second stage where the objective is

to increase the number of agents and perfect the multi-agent cooperation. With this in mind, the

training set is repeated twice with 5 and 10 agents. Each training set can be completed in less than

24 hours on a regular desktop with a GeForce RTX 3060.

The training algorithm pseudo-code can be visualized in algorithm 13

Algorithm 13 Curriculum Learning multi-agent CPP Training

Require: Environment configurations E, replay period K, memory size M, PER exponents β ,
Learning Start Step Tstart

1: Initialize replay memory D , PER exponent β and its increment ∆β , online network θ and
target network θ−

2: for environment e in E do
3: Initialize environment e, training budget T
4: Observe O0O0O0 and choose A0A0A0
5: for t = 1 to T do
6: Use online network θ to choose the batch of actions AtAtAt

7: Take Action AtAtAt , observe Ot+1,Rt+1Ot+1,Rt+1Ot+1,Rt+1 and store all transitions
8: if t > Tstart and t%K == 0 then
9: Reset Noisy Linear Weights

10: Sample k transitions from the replay buffer
11: Compute loss
12: Perform Gradient Descent to update online network weights θ

13: Soft Update the target network weights θ−

14: end if
15: β ← β +∆β

16: if St is Terminal then
17: Reset the environment
18: Randomly sample the number of agents
19: end if
20: end for
21: end for

136 Multi-Agent Reinforcement Learning for Coverage Path Planning

The multi-agent version is very similar to the original algorithm. The main difference is in lines

4, 6, and 7, where instead of having a single scalar for observations O, actions A, and rewards R, all

these variables are vectors of size N, distinguished by the usage of the bold font. The advantage of

doing it in batches instead of doing a for-loop that goes through every agent is that it is much less

computationally expensive, as it only requires one feedforward operation on the neural network

instead of N. It also simplifies the synchronization process, as all agents take their action at the

same instant. On the other hand, taking action sequentially would ease agent cooperation, as there

should not be any collisions because of miscommunication. Nonetheless, in this work, it was

opted to use the worst-case scenario. This approach can be more robust in real-world applications

where communications are limited.

7.5 Results

With the solution fully developed, this section will focus on analyzing the algorithm’s performance

and robustness. It will begin by describing the methodology used in the study and the objectives of

the experiments. After, the experiments will be conducted, and the results will be presented. Along

with the results, an analysis will always be provided, aiming to compare differences between

hyperparameters, reward structures, and the overall algorithm performance and advantages.

7.5.1 Methodology

In the evaluation of the multi-agent scenario, a similar approach to the single-agent will be taken.

The models will be tested in scenarios ranging from sizes [5,30]. Each set has 100 maps of the

same size, with up to 15% obstacles. The dataset will be the same as in Chapter 6 with added

agents. To make comparisons as fair as possible, the version of the map with N + 1 will be the

map with N agents where the only change is the new agent. This process can be visualized in

Figure 7.5.

Figure 7.5: The process of adapting maps to different numbers of agents.

One thing important to note in the evaluation is that performance can be very dependent on

the initial agent positions, as cooperation is easier when agents are far away from each other. This

is the reason behind keeping the scenarios as similar as possible between datasets.

7.5 Results 137

The performance metric Overlap, described in Section 6.5.1 does not translate well to multi-

agent settings. While it can definitely still be used, as the lower the overlap, the better the agents

performed, its analysis is not as trivial as for the single agent setting. A performance metric that

better suits the problem is the Time Saved Factor ts f , which can be described as:

ts f =
T

npoi(s0)
(7.6)

where T is the terminal timestep and npoi(s0) is the number of points of interest at the initial

state s0. Considering that in a single-agent scenario, the best case is when T = npoi(s0), implying

that the episode was optimal and that at every timestep, the agent visited a new point of interest.

So, this metric introduces an easy reference point for good solutions where the optimal value of

t⋆s f = 1/N, where N is the number of agents. Like in the Overlap case, the optimal value might

not be possible to achieve due to map configuration. Nonetheless, it serves as a valuable metric to

assert algorithm performance.

7.5.2 Comparison Between Different Reward Structures

In this section, the main goal will be to analyze the differences in performance and robustness of

the different prototype reward functions presented in Section 7.3.3. First, each prototype will be

analyzed individually for different gains K, and in the end, the best-performing prototypes will be

compared with each other. The analysis will be based on a smaller yet still representative set of

maps with two agents.

7.5.2.1 Randomly Sampling Number of Agents During Training

One of the features of the training algorithm presented in Section 7.4.2.1 is to sample the number of

agents in every new episode randomly. Figure 7.6, shows a comparison between the performance

of two models with the exact same hyperparameters, one trained with a random number of agents

and the other with that value fixed at two. Both agents were trained with a maximum of two agents,

and the evaluation was done in the same scenario.

These results are very interesting, as the model that was trained in a scenario that was not

evaluated performed around 5% better than the model that was trained exclusively in that scenario.

It shows that the competencies between tasks can be transferred, and in this case, learning optimal

pathing in single-agent scenarios also translates to better results in multi-agent scenarios. These

results validate the philosophy of the algorithm, training in scenarios as generic as possible and

using different tasks to learn specific skills. From this point onwards, all algorithms will be trained

on this framework.

7.5.2.2 Competitive and Cooperative Non-Size Invariant Structure

Now that all agents will be trained with a randomly sampled number of agents in each episode, the

next analysis will be on the cooperative Non-Size Invariant (NSI) reward structure, presented in

138 Multi-Agent Reinforcement Learning for Coverage Path Planning

Figure 7.6: Mean Time Save Factor comparison Between Models Trained With Different Strate-
gies.

Section 7.3.3.2. Additionally, the competitive reward structure, presented in Section 7.3.3.1, will

also be studied as it is the case where K = 0. The agents are all trained following the environments

presented in Section 7.4.2.2 except the last environment of Table 7.2. The dataset will consist of

maps from size [10,24] and will all be completed with two agents. The gain of the function will

take the values K = {0,0.25,0.5,0.75,1}, and the results are presented in Figure 7.8.

Figure 7.7: Comparison Between Different Gain Values K for the Non-Size Invariant Reward
Structure.

One aspect that is immediately clear is that the algorithm is very sensible to changes in values

of K. Interestingly, this sensibility is only noticeable in smaller map sizes, suggesting that losing

the size invariant property makes the agent lose generalization capabilities. At K values smaller

than 0.5, the performance is near-optimal and similar across values, achieving Time-Save Values

as close to 0.54, meaning that the map was completed almost twice as fast as the single-agent

7.5 Results 139

scenario. This can be associated with the fact that it is closer to the original function, which is

better at generalizing and not overfitting. One interesting result is that the initial reward function

K = 0 also holds up in the multi-agent scenario.

7.5.2.3 Cooperative Size Invariant Structure

After analyzing the most generic non-size invariant reward structure, the attention is now directed

to the cooperative Size Invariant (SI) structure. With this objective, the hyperparameter values

K = {0.25,0.5,0.75} were tested in the same conditions. The K = 0.5 serves as the K = 1/N

solution as these values are for two agents. Furthermore, K = 0 results are the same as in the

previous section, being kept only for comparison. The value K = 1 would mean that the agent’s

action would not be considered, and therefore, the results were very poor. It also does not fit in any

reward structure, therefore not being analyzed. The obtained results can be visualized in Figure

7.8.

Figure 7.8: Comparison Between Different Gain Values K for the Cooperative Size Invariant
Reward Structure.

The size-invariant property of this cooperative reward structure is clearly noticeable. The

performance is more uniform across the spectrum, and the overfitting phenomenon is less evident.

Furthermore, unlike the previous structure, the algorithm is not nearly as sensible to the gain value

K, being that all values generate very similar outcomes. The best results are achieved by the model

trained with K = 0.25, achieving Time Save Factors as low as 0.53, which is better than any of

the Non-Size Invariant scenarios. This choice for the value gives the most importance to the agent

itself without completely discarding the other agent. This makes the size invariant property hold

better and eases the credit assignment process. The K = 1/N also yields very interesting results,

so for better comprehension, it is important to study a case with more agents.

140 Multi-Agent Reinforcement Learning for Coverage Path Planning

7.5.2.4 Results with N > 2

While the analysis gave a good insight into how the models behave when there are two agents,

the objective of the algorithm is to deal with any number of agents. This section will analyze how

the best reward functions from the previous analysis behave in scenarios with five agents. For this

purpose, the model was trained in scenarios with up to five agents, and the results can be observed

in Figure 7.9.

From the results, the best models were with the cooperative size invariant reward function

with either K = 0.5 or K = 0.25, although the latter is slightly better. These results show that

the model can adapt to scenarios with more agents, yielding mean Time Save factors consistently

inferior to 0.30. While the optimal value for these scenarios would still be around 0.20 Time Save

Factor, the results still show a speed up of 233% compared to a single agent solution, which is a

considerable improvement and is a fair assessment that the architecture can scale up to a larger

number of agents.

Figure 7.9: Comparison Between Reward Functions For Scenarios With 5 Agents.

7.5.3 Comprehensive Analysis of The Best Model

After choosing the cooperative SI reward structure with K = 0.25, the model was again submitted

to training with a maximum number of agents N = 10. This subsection will be dedicated to fully

analyzing the capabilities of this new model.

7.5.3.1 Direct Comparison With Previous Models

One question that needs to be answered with regard to the model is how well it performs with

different values of N. For example, by having a training session with a high number of agents,

i.e. N=10, the results with fewer agents might suffer decreases in performance. For this purpose,

7.5 Results 141

Figure 7.10 compares the newly trained model with the previous models trained with N = 2 and

N = 5.

Figure 7.10: Comparision Between Old Models and Newly Trained Model.

From the results, there is a clear degradation in the performance of the newly trained model

in the scenario with two agents when compared to the model that was trained specifically for that

scenario. On the other hand, in the scenario with five agents, the models are very similar and

almost equivalent. This might suggest that by training with higher values of N, the algorithm is

more optimized for those types of situations. Nonetheless, the new model is still capable in the

scenario with N = 2 and is much more versatile since it can deal with other situations. However,

if the objective is to have a very optimized and tailored algorithm, it might be worth training it in

a less generic manner.

7.5.3.2 Results With Different Number of Agents

Now that a comparison with more tailored models has been made, the focus will shift to a more

generic assessment of the performance of the model. To evaluate this performance, the model will

be tested on the full dataset with map sizes from [10,30] and for all possible numbers of agents

from [2,15]. The results can be visualized in Figure 7.11.

The presented results are very impressive. First of all, the model exhibits a consistent time

save factor that is, in general, independent of the size of the map, showcasing the generalization

capabilities of the algorithm and its consistency. Another consistent result is the evolution of the

performance with respect to the increase in the number of agents. In all tested scenarios, the

performance does not degrade with the increase in the number of agents, even in situations that

were never trained, like N = 15. This shows that the model learned not only to generalize to

different map sizes but also to the number of agents, implying that this architecture is scalable

to any feasible configuration. Furthermore, the performance is very respectable. While not at an

142 Multi-Agent Reinforcement Learning for Coverage Path Planning

Figure 7.11: Comparision Between Different Number of Agents.

optimal level, the algorithm achieved a mean time-save factor as low as ts f = 0.15 in the scenario

with ten agents, which would have an optimal solution of only ts f = 0.10.

A video showing the algorithm’s performance in a 23× 23 Map with 5 to 15 agents can be

seen in this link.

7.5.3.3 Algorithm Robustness

To evaluate how the algorithm can deal with non-ideal behavior, an additional test was conducted.

This test focuses on how the algorithm reacts to a faulty agent. In this scenario, halfway through

completing the coverage, one of the agents stops functioning, remaining immobilized until the

episode is finished.

The results of the experiment can be visualized in Figure 7.12.

Figure 7.12: Analysis of the robustness of the algorithm when subjected to agent failure.

https://youtu.be/q1rQxT--T_Q

7.6 Final Considerations 143

The figure shows some very interesting results. Firstly, it is notable how the algorithm can deal

with one faulty agent, which, despite having a clear downgrade in performance, the results are still

satisfactory. One interesting detail is that experiments with N−1 fully functioning agents achieve

very similar results to the N agents with a faulty one. This shows that the model can adapt and

deal with the situation successfully and that the degradation in performance is not much bigger

than having one less agent.

7.6 Final Considerations

In this chapter, the Deep Reinforcement Learning algorithm presented in the previous chapter

was augmented for Multi-Agent scenarios. The proposal is based on using a state-of-the-art

Multi-Agent Reinforcement Learning technique named Parameter Sharing, which enables utiliz-

ing the developed modified Rainbow DQN in a multi-agent scenario via a Centralized Training

Distributed Execution framework. Once again, the focus of the algorithm was to be as generic and

adaptable as possible to multiple scenarios.

First, the problem was formulated as a Decentralized, Partially Observable Markov Decision

Process, focusing on adapting the successful POMDP from the previous chapter. The problem was

formulated in a generic fashion, giving room for enhancements in the future. Multiple Reward

function structures were proposed for the problem, borrowing from cooperative, competitive, and

mixed-setting scenarios, and an explanation of the rationale behind each structure is given. One

of the objectives of the reward structures is to keep the size invariant propriety, as this gave the

single-agent algorithm good generalization capabilities.

The custom-made training algorithm is also used with the same elements as before, with a

new addition of randomly sampling the number of agents at the beginning of each episode. This

stochastic component proved to be very useful, as it improved performance over multiple scenarios

by preventing overfitting and gave the model opportunities to learn optimal pathing in single-agent

scenarios, where cooperation is not a concern. This enhancement was made based on the philos-

ophy of curriculum and transfer learning, where the algorithm can learn different competencies

from different scenarios and tasks.

The results validate the design choices for this Multi-Agent Reinforcement Learning for Cov-

erage Path Planning. To assert the performance of the agents, the dataset for single-agent evalua-

tion was augmented by only adding N−1 agents and keeping the rest of the scenario untouched.

The results show that the model can achieve very good performance for any number of agents,

even if the algorithm did not train in that specific range. Over the 2500 evaluation maps, the best

model obtained consistent results for all numbers of agents and map sizes, reinforcing the idea that

the model was able to truly learn how to generalize both covering the map and cooperating with

other agents independently of configuration variation. The algorithm was also shown to be robust

to adverse situations where agents stopped working.

This chapter is the culmination of all the work developed in this dissertation and delivers all

the proposed objectives. It is a contribution to the current state-of-the-art on robotic navigation,

144 Multi-Agent Reinforcement Learning for Coverage Path Planning

multi-agent reinforcement learning, and the intersection of both domains. Through the results,

this chapter showed the viability of using parameter sharing and value-based deep reinforcement

learning to deliver solutions to cooperative coverage path planning.

Chapter 8

Conclusions

The primary objective of this dissertation was to develop Reinforcement Learning algorithms for

cooperative robotic navigation. The document is structured into incremental steps that lead to the

final goal. The initial focus was on presenting the theoretical background necessary to understand

Reinforcement Learning solutions for decision-making problems. After exposing the theoretical

foundations of Reinforcement Learning, all the algorithms that were used during the dissertation

were described

Subsequently, the coverage path planning problem, which is the main robotic navigation task

addressed in this work, was studied in detail. Classical solutions to the problem were presented,

followed by an analysis of existing reinforcement learning-based approaches. Through this in-

depth examination, key features of existing solutions were identified and served as inspiration for

the subsequent sections of the document.

One of the most important parts of the dissertation was to develop the software that enabled

the development of the algorithms. The first part is developing the environment using the OpenAI

Gym guidelines. This environment was made to be as sandbox-like as possible to facilitate the

implementation of different features and to be as generic and reusable as possible. Furthermore,

generic Tabular and Deep Reinforcement Learning agents were developed with an environment-

agnostic philosophy, being able to adapt to any environment as long as the state space and action

space are consistent. The developed environment also has default datasets and results to facilitate

comparisons and benchmarks of other approaches and to encourage further research on this topic

and environment.

After defining the software architecture, the focus is shifted to algorithm development. This

effort starts with a Tabular Temporal Differences Reinforcement Learning case study conducted

on the online coverage path planning task. In this study, all classical tabular algorithms were

benchmarked for this task, and conclusions were drawn regarding time efficiency and perfor-

mance. Moreover, the final algorithm, which employs both Q-Learning and a crafted heuristic,

demonstrated the ability to perform the task solely based on sensor information. This character-

istic distinguishes this approach from many other coverage path planning algorithms that heavily

rely on explicit map representations and allow it to function as long as the sensor readings are

145

146 Conclusions

given. The results also indicated that the agent could generalize to previously unseen maps, even

when they are larger and contain more obstacles.

The next step taken in this dissertation was to scale the solution to more recent Deep Rein-

forcement Learning methodologies. These techniques enable algorithms to work with larger state

and action spaces and give an overall much larger generalization capability. With this framework

in mind, a Deep Reinforcement Learning-based algorithm was developed to tackle generic robotic

navigation tasks.

The robotic navigation problem was formulated as a spectrum instead of singular and indepen-

dent tasks. The rationale behind most of the developed work is that an intelligent agent that can do

a complex task such as coverage path planning should also be able to complete a simpler task like

point-to-point path planning. With this formulation, the algorithm was designed to tackle complete

coverage path planning, n-point coverage path planning, point-to-point path planning, and active

exploration. This is achieved by an adequate formulation of the problem as a Partial Observable

Markov Decision Process, with a tailored Observation Space and a hand-crafted reward function

that results in a value function that is map size invariant. On top of the attention to formulation,

the state-of-the-art value-based reinforcement learning method Rainbow DQN was implemented

and adapted to fit the problem. Furthermore, besides this sophisticated approach, a custom-made

training algorithm was designed based on curriculum and transfer learning, coupled with other in-

novative features such as Partial Episode Bootstrapping, environment partial resetting, and saving

challenging episodes.

The results from the single-agent algorithm were very exciting. The developed models showed

capabilities to perform at a near-optimal level in any map configuration. Furthermore, the agent

was successful in learning all the proposed tasks, showing robustness when faced with non-ideal

sensor behavior and situations that were never seen during training. When compared with other

state-of-the-art approaches, this algorithm clearly outperformed all the other options that were

compared, giving confidence that this approach is a viable increment to the current state-of-the-art

in coverage path planning. A video of the single-agent algorithm in action can be found in the

following link.

After fully studying the single-agent setting, this work made the jump to multi-agent scenarios.

The single-agent framework was augmented to deal with the increased complexity. The Partially

Observed Markov Decision Process is adapted to its Decentralized version, and the Rainbow DQN

algorithm is extended to the multi-agent setting by using the state-of-the-art technique of Param-

eter Sharing, which introduces a Centralized Training Decentralized Execution framework to the

problem.

With the algorithm designed, it was tested on the datasets provided by this dissertation. In this

analysis, multiple reward structures and functions were considered and compared until a satisfying

configuration for the model was achieved. With the defined model, a series of tests were conducted

to assess its performance. The results show that the model was able to learn to cooperate with

multiple agents, even in scenarios with up to fifteen independent robots. The performance was

promising, showing significant improvements over the single-agent approach, paving the way for

https://youtu.be/mQ5xA4ZBKl0

8.1 Future Work 147

further work in this domain. A video of the multi-agent algorithm can visualized in the following

link.

In conclusion, this dissertation makes several contributions to learning-based robotic navi-

gation by developing various state-of-the-art algorithms and presenting a novel perspective on

robotic navigation as a whole. Additionally, it contributes to the scientific community through

an open-source reinforcement learning environment and multiple benchmark datasets for diverse

robotic navigation tasks.

8.1 Future Work

Reflecting on the developed work and the conclusions that were drawn, the author identifies the

following areas that can be developed or improved in future work:

• Expand the Reinforcement Learning Environment: While the developed environment is

generic and can be used to implement any robotic navigation task in a 2D Grid World, it still

lacks variety. The implemented tasks are limited to the ones on the proposed coverage path

planning spectrum. This leaves opportunities to implement other tasks, such as long-term

coverage planning or taking into account different coverage priorities. Another thing that

can be improved is adding more sensors and agent kinematics.

• More Realistic Sensor Model: The sensor model should be improved to include a better

noise model. For example, instead of being a binary of the sensor working or not, the sensor

could give false or noisy readings.

• Dynamic Obstacles: The implementation of the Rainbow DQN with frame stacking is a

great opportunity to add dynamic obstacles to the environment. The dynamics will not be

much different from other agents, and the algorithm has already proven to be capable of

avoiding collisions.

• Improve Observation Space: While the designed observation spaces were proven to be

successful, all the mentioned improvements would require a better observation space. In

this case, it is important to keep the philosophy of maintaining the most generic formulation

possible.

• Policy-Based Reinforcement Learning Methods: In general, the literature lacks policy-

based approaches to coverage path planning. Implementing such a method could be inter-

esting to compare different RL approaches to the same problem.

• Use Specific Multi-Agent-Reinforcement Learning Methods: This work uses a Rainbow

DQN with Parameter Sharing for its multi-agent solution. While it proved successful, a

more tailored and specific multi-agent method might achieve better results.

https://youtu.be/q1rQxT--T_Q

148 Conclusions

• Improve Agent Communication and Synchronization : The implemented synchroniza-

tion mechanism on the multi-agent problem is simple. All agents take actions simulta-

neously and independently of each other. In order to make a more realistic approach, a

communication and synchronization system could be developed.

References

[1] Fatemeh Afghah, Abolfazl Razi, Jacob Chakareski, and Jonathan Ashdown. Wildfire mon-
itoring in remote areas using autonomous unmanned aerial vehicles. INFOCOM 2019 -
IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2019,
pages 835–840, 4 2019. doi:10.1109/INFCOMW.2019.8845309.

[2] Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from
game theoretical perspective. ArXiv, abs/2011.00583, 2020.

[3] David Silver. Lectures on reinforcement learning. URL: https://www.davidsilver.
uk/teaching/, 2015.

[4] Francisco Soares Pinto da Silva Neves. Reinforcement learning for robotic navigation in
obstacle scattered environments, 2021.

[5] Ngan Le, Vidhiwar Rathour, Kashu Yamazaki, Khoa Luu, and Marios Savvides. Deep
reinforcement learning in computer vision: a comprehensive survey. Artificial Intelligence
Review, 55, 09 2021. doi:10.1007/s10462-021-10061-9.

[6] Enric Galceran and Marc Carreras. A survey on coverage path planning for robotics.
Robotics and Autonomous Systems, 61:1258–1276, 12 2013. doi:10.1016/J.ROBOT.
2013.09.004.

[7] Tauã M. Cabreira, Lisane B. Brisolara, and R. Ferreira Paulo. Survey on coverage path
planning with unmanned aerial vehicles. Drones, 3:1–38, 3 2019. doi:10.3390/
DRONES3010004.

[8] Chee Sheng Tan, Rosmiwati Mohd-Mokhtar, and Mohd Rizal Arshad. A comprehensive
review of coverage path planning in robotics using classical and heuristic algorithms. IEEE
Access, 9:119310–119342, 2021. doi:10.1109/ACCESS.2021.3108177.

[9] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A
survey. International Journal of Robotics Research, 32:1238–1274, 9 2013. doi:10.
1177/0278364913495721.

[10] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature 2015 521:7553,
521:436–444, 5 2015. URL: https://www.nature.com/articles/nature14539,
doi:10.1038/nature14539.

[11] Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of
the ACM, 38(3):58–68, 1995.

149

http://dx.doi.org/10.1109/INFCOMW.2019.8845309
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/
http://dx.doi.org/10.1007/s10462-021-10061-9
http://dx.doi.org/10.1016/J.ROBOT.2013.09.004
http://dx.doi.org/10.1016/J.ROBOT.2013.09.004
http://dx.doi.org/10.3390/DRONES3010004
http://dx.doi.org/10.3390/DRONES3010004
http://dx.doi.org/10.1109/ACCESS.2021.3108177
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1177/0278364913495721
https://www.nature.com/articles/nature14539
http://dx.doi.org/10.1038/nature14539

150 REFERENCES

[12] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game of go with deep
neural networks and tree search. Nature 2016 529:7587, 529:484–489, 1
2016. URL: https://www.nature.com/articles/nature16961https://www.
nature.com/articles/nature16961%7D, doi:10.1038/nature16961.

[13] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, and Demis Hassabis. A general reinforcement learning al-
gorithm that masters chess, shogi, and go through self-play. Science, 362:1140–1144,
12 2018. URL: https://www.science.org/doi/10.1126/science.aar6404,
doi:10.1126/SCIENCE.AAR6404/SUPPL_FILE/AAR6404_DATAS1.ZIP.

[14] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev,
Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor
Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias
Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine,
Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama,
Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray
Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in star-
craft ii using multi-agent reinforcement learning. Nature 2019 575:7782, 575:350–354, 10
2019. URL: https://www.nature.com/articles/s41586-019-1724-z, doi:
10.1038/s41586-019-1724-z.

[15] OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław
Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal
Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P.
d. O. Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon
Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep
reinforcement learning. 12 2019. URL: https://arxiv.org/abs/1912.06680v1,
doi:10.48550/arxiv.1912.06680.

[16] Anirudh Krishna Lakshmanan, Rajesh Elara Mohan, Balakrishnan Ramalingam, Anh Vu
Le, Prabahar Veerajagadeshwar, Kamlesh Tiwari, and Muhammad Ilyas. Complete cov-
erage path planning using reinforcement learning for tetromino based cleaning and main-
tenance robot. Automation in Construction, 112, 4 2020. doi:10.1016/j.autcon.
2020.103078.

[17] J. Jin and Lie Tang. Optimal coverage path planning for arable farming on 2d surfaces.
Transactions of the ASABE, 53:283–295, 2010.

[18] Manickam Ramasamy and Debasish Ghose. Learning-based preferential surveillance al-
gorithm for persistent surveillance by unmanned aerial vehicles. 2016 International Con-
ference on Unmanned Aircraft Systems, ICUAS 2016, pages 1032–1040, 6 2016. doi:
10.1109/ICUAS.2016.7502678.

https://www.nature.com/articles/nature16961 https://www.nature.com/articles/nature16961%7D
https://www.nature.com/articles/nature16961 https://www.nature.com/articles/nature16961%7D
http://dx.doi.org/10.1038/nature16961
https://www.science.org/doi/10.1126/science.aar6404
http://dx.doi.org/10.1126/SCIENCE.AAR6404/SUPPL_FILE/AAR6404_DATAS1.ZIP
https://www.nature.com/articles/s41586-019-1724-z
http://dx.doi.org/10.1038/s41586-019-1724-z
http://dx.doi.org/10.1038/s41586-019-1724-z
https://arxiv.org/abs/1912.06680v1
http://dx.doi.org/10.48550/arxiv.1912.06680
http://dx.doi.org/10.1016/j.autcon.2020.103078
http://dx.doi.org/10.1016/j.autcon.2020.103078
http://dx.doi.org/10.1109/ICUAS.2016.7502678
http://dx.doi.org/10.1109/ICUAS.2016.7502678

REFERENCES 151

[19] Carmelo Di Franco and Giorgio Buttazzo. Coverage path planning for uavs photogram-
metry with energy and resolution constraints. Journal of Intelligent and Robotic Systems:
Theory and Applications, 83:445–462, 9 2016. doi:10.1007/S10846-016-0348-X.

[20] Y. Gao, G. Jin, Y. Guo, G. Zhu, Q. Yang, and K. Yang. Weighted area coverage of maritime
joint search and rescue based on multi-agent reinforcement learning. pages 593–597, 2019.
doi:10.1109/IMCEC46724.2019.8984116.

[21] Javad Heydari, Olimpiya Saha, and Viswanath Ganapathy. Reinforcement learning-based
coverage path planning with implicit cellular decomposition. 10 2021. URL: https:
//arxiv.org/abs/2110.09018v1, doi:10.48550/arxiv.2110.09018.

[22] Sina Sharif Mansouri, Christoforos Kanellakis, Emil Fresk, Dariusz Kominiak, and George
Nikolakopoulos. Cooperative coverage path planning for visual inspection. Control Engi-
neering Practice, 74:118–131, 5 2018. doi:10.1016/J.CONENGPRAC.2018.03.002.

[23] Tua A. Tamba. Optimizing the area coverage of networked uavs using multi-agent rein-
forcement learning. pages 197–201. Institute of Electrical and Electronics Engineers Inc.,
2021. doi:10.1109/ICA52848.2021.9625676.

[24] San-Miguel-Ayanz J, Durrant T, Boca R, Maianti P, Liberta’ G, Artes Vivancos T, Jacome
Felix Oom D, Branco A, De Rigo D, Ferrari D, Pfeiffer H, Grecchi R, Onida M, and Lof-
fler P. Forest fires in europe, middle east and north africa 2021. (KJ-NA-31-269-EN-
N (online),KJ-NA-31-269-EN-C (print)), 2022. doi:10.2760/34094(online),10.
2760/058256(print).

[25] Esmaeil Seraj and Matthew Gombolay. Coordinated control of uavs for human-centered
active sensing of wildfires. Proceedings of the American Control Conference, 2020-
July:1845–1852, 6 2020. URL: https://arxiv.org/abs/2006.07969v1, doi:
10.48550/arxiv.2006.07969.

[26] Kyle D. Julian and Mykel J. Kochenderfer. Distributed wildfire surveillance with au-
tonomous aircraft using deep reinforcement learning. Journal of Guidance, Control,
and Dynamics, 42:1768–1778, 10 2018. URL: https://arxiv.org/abs/1810.
04244v1, doi:10.48550/arxiv.1810.04244.

[27] Claudio Piciarelli and Gian Luca Foresti. Drone patrolling with reinforcement learning.
ACM International Conference Proceeding Series, 9 2019. doi:10.1145/3349801.
3349805.

[28] Mirco Theile, Harald Bayerlein, Richard Nai, David Gesbert, and Marco Caccamo. Uav
path planning using global and local map information with deep reinforcement learning.
2021 20th International Conference on Advanced Robotics, ICAR 2021, pages 539–546,
2021. doi:10.1109/ICAR53236.2021.9659413.

[29] José Pedro Carvalho and A. Pedro Aguiar. A reinforcement learning based online
coverage path planning algorithm. In 2023 IEEE International Conference on Au-
tonomous Robot Systems and Competitions (ICARSC), pages 81–86, 2023. doi:10.
1109/ICARSC58346.2023.10129591.

[30] R.E. Uhrig. Introduction to artificial neural networks. In Proceedings of IECON ’95 - 21st
Annual Conference on IEEE Industrial Electronics, volume 1, pages 33–37 vol.1, 1995.
doi:10.1109/IECON.1995.483329.

http://dx.doi.org/10.1007/S10846-016-0348-X
http://dx.doi.org/10.1109/IMCEC46724.2019.8984116
https://arxiv.org/abs/2110.09018v1
https://arxiv.org/abs/2110.09018v1
http://dx.doi.org/10.48550/arxiv.2110.09018
http://dx.doi.org/10.1016/J.CONENGPRAC.2018.03.002
http://dx.doi.org/10.1109/ICA52848.2021.9625676
http://dx.doi.org/10.2760/34094 (online),10.2760/058256 (print)
http://dx.doi.org/10.2760/34094 (online),10.2760/058256 (print)
https://arxiv.org/abs/2006.07969v1
http://dx.doi.org/10.48550/arxiv.2006.07969
http://dx.doi.org/10.48550/arxiv.2006.07969
https://arxiv.org/abs/1810.04244v1
https://arxiv.org/abs/1810.04244v1
http://dx.doi.org/10.48550/arxiv.1810.04244
http://dx.doi.org/10.1145/3349801.3349805
http://dx.doi.org/10.1145/3349801.3349805
http://dx.doi.org/10.1109/ICAR53236.2021.9659413
http://dx.doi.org/10.1109/ICARSC58346.2023.10129591
http://dx.doi.org/10.1109/ICARSC58346.2023.10129591
http://dx.doi.org/10.1109/IECON.1995.483329

152 REFERENCES

[31] F. Rosenblatt. The perceptron: A probabilistic model for information storage and or-
ganization in the brain. Psychological Review, 65(6):386–408, 1958. doi:10.1037/
h0042519.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012.

[33] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015. URL: http://arxiv.
org/abs/1504.08083, arXiv:1504.08083.

[34] Sergios Theodoridis. Machine Learning: A Bayesian and Optimization Perspective. Aca-
demic Press, Inc., USA, 1st edition, 2015.

[35] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101:99–134, 1998. doi:
10.1016/S0004-3702(98)00023-X.

[36] Christos G Cassandras and Stephane Lafortune. Introduction to Discrete Event Systems.
Springer, 2 edition, 2008. doi:10.1007/978-0-387-68612-7.

[37] Richard Bellman. The theory of dynamic programming. Bulletin of the American Mathe-
matical Society, 60:503–515, 1954. doi:10.1090/S0002-9904-1954-09848-8.

[38] P J H Schoemaker. Experiments on Decisions under Risk: The Expected Utility Hypoth-
esis. Springer Netherlands, 2013. URL: https://books.google.com.ni/books?
id=fuPuCAAAQBAJ.

[39] Hado van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models
in reinforcement learning? CoRR, abs/1906.05243, 2019. URL: http://arxiv.org/
abs/1906.05243, arXiv:1906.05243.

[40] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[41] Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning 1988 3:1, 3:9–44, 8 1988. URL: https://link.springer.com/article/
10.1007/BF00115009, doi:10.1007/BF00115009.

[42] Christopher J.C.H. Watkins and Peter Dayan. Technical note: Q-learning. Machine Learn-
ing, 8:279–292, 1992. doi:10.1023/A:1022676722315.

[43] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. 4th International Conference on Learning Representations, ICLR 2016 - Confer-
ence Track Proceedings, 9 2015. URL: https://arxiv.org/abs/1509.02971v6,
doi:10.48550/arxiv.1509.02971.

[44] Ronald J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning 1992 8:3, 8:229–256, 5
1992. URL: https://link.springer.com/article/10.1007/BF00992696,
doi:10.1007/BF00992696.

http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1007/978-0-387-68612-7
http://dx.doi.org/10.1090/S0002-9904-1954-09848-8
https://books.google.com.ni/books?id=fuPuCAAAQBAJ
https://books.google.com.ni/books?id=fuPuCAAAQBAJ
http://arxiv.org/abs/1906.05243
http://arxiv.org/abs/1906.05243
http://arxiv.org/abs/1906.05243
https://link.springer.com/article/10.1007/BF00115009
https://link.springer.com/article/10.1007/BF00115009
http://dx.doi.org/10.1007/BF00115009
http://dx.doi.org/10.1023/A:1022676722315
https://arxiv.org/abs/1509.02971v6
http://dx.doi.org/10.48550/arxiv.1509.02971
https://link.springer.com/article/10.1007/BF00992696
http://dx.doi.org/10.1007/BF00992696

REFERENCES 153

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov Openai.
Proximal policy optimization algorithms. 7 2017. URL: https://arxiv.org/abs/
1707.06347v2, doi:10.48550/arxiv.1707.06347.

[46] Volodymyr Mnih, Adria Puigdomenech Badia, Lehdi Mirza, Alex Graves, Tim Harley,
Timothy P. Lillicrap, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. 33rd International Conference on Machine Learning, ICML
2016, 4:2850–2869, 2 2016. URL: https://arxiv.org/abs/1602.01783v2, doi:
10.48550/arxiv.1602.01783.

[47] Ziyu Wang, Volodymyr Mnih, Victor Bapst, Remi Munos, Nicolas Heess, Koray
Kavukcuoglu, and Nando De Freitas. Sample efficient actor-critic with experience re-
play. 5th International Conference on Learning Representations, ICLR 2017 - Confer-
ence Track Proceedings, 11 2016. URL: https://arxiv.org/abs/1611.01224v2,
doi:10.48550/arxiv.1611.01224.

[48] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature 2015 518:7540, 518:529–533, 2 2015. URL: https:
//www.nature.com/articles/nature14236, doi:10.1038/nature14236.

[49] Hessel et al. Rainbow: Combining improvements in deep reinforcement learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 32(1), Apr. 2018. doi:
10.1609/aaai.v32i1.11796.

[50] John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with
function approximation. Advances in neural information processing systems, 9, 1996.

[51] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
12 2013. URL: https://arxiv.org/abs/1312.5602v1, doi:10.48550/arxiv.
1312.5602.

[52] Peter R. Wurman et al. Outracing champion gran turismo drivers with deep rein-
forcement learning. Nature 2022 602:7896, 602:223–228, 2 2022. doi:10.1038/
s41586-021-04357-7.

[53] Hado Hasselt. Double q-learning. volume 23. Curran Associates, Inc.,
2010. URL: https://proceedings.neurips.cc/paper/2010/file/
091d584fced301b442654dd8c23b3fc9-Paper.pdf.

[54] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Re-
search, 47:253–279, jun 2013. URL: https://doi.org/10.1613%2Fjair.3912,
doi:10.1613/jair.3912.

[55] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Mach. Learn., 8(3–4):293–321, may 1992. doi:10.1007/BF00992699.

https://arxiv.org/abs/1707.06347v2
https://arxiv.org/abs/1707.06347v2
http://dx.doi.org/10.48550/arxiv.1707.06347
https://arxiv.org/abs/1602.01783v2
http://dx.doi.org/10.48550/arxiv.1602.01783
http://dx.doi.org/10.48550/arxiv.1602.01783
https://arxiv.org/abs/1611.01224v2
http://dx.doi.org/10.48550/arxiv.1611.01224
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1609/aaai.v32i1.11796
http://dx.doi.org/10.1609/aaai.v32i1.11796
https://arxiv.org/abs/1312.5602v1
http://dx.doi.org/10.48550/arxiv.1312.5602
http://dx.doi.org/10.48550/arxiv.1312.5602
http://dx.doi.org/10.1038/s41586-021-04357-7
http://dx.doi.org/10.1038/s41586-021-04357-7
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://doi.org/10.1613%2Fjair.3912
http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1007/BF00992699

154 REFERENCES

[56] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. 30th AAAI Conference on Artificial Intelligence, AAAI 2016, pages 2094–2100,
2016. doi:10.1609/aaai.v30i1.10295.

[57] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay. 11 2015. URL: https://arxiv.org/abs/1511.05952, doi:10.48550/
arxiv.1511.05952.

[58] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De
Freitas. Dueling network architectures for deep reinforcement learning. pages 1995–2003.
JMLR.org, 2016.

[59] Meire Fortunato et al. Noisy networks for exploration. 2017. URL: https://arxiv.
org/abs/1706.10295.

[60] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on re-
inforcement learning. CoRR, abs/1707.06887, 2017. URL: http://arxiv.org/abs/
1707.06887, arXiv:1707.06887.

[61] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A
selective overview of theories and algorithms, 2021. arXiv:1911.10635.

[62] Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V. Albrecht.
Dealing with non-stationarity in multi-agent deep reinforcement learning. ArXiv,
abs/1906.04737, 2019.

[63] Robin Soetens, René Van De Molengraft, and Bernardo Cunha. Robocup msl - his-
tory, accomplishments, current status and challenges ahead. Lecture Notes in Artifi-
cial Intelligence (Subseries of Lecture Notes in Computer Science), 8992:624–635, 2015.
doi:10.1007/978-3-319-18615-3_51/TABLES/1.

[64] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning, 2018. arXiv:1803.11485.

[65] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments, 2020. arXiv:1706.02275.

[66] Jayesh K. Gupta, Maxim Egorov, and Mykel J. Kochenderfer. Cooperative multi-agent
control using deep reinforcement learning. In AAMAS Workshops, 2017.

[67] J. K. Terry, Nathaniel Grammel, Sanghyun Son, and Benjamin Black. Parameter sharing for
heterogeneous agents in multi-agent reinforcement learning, 2022. arXiv:2005.13625.

[68] Zuo Llang Cao, Yuyu Huang, and Ernest L. Hall. Region filling operations with random
obstacle avoidance for mobile robots. Journal of Robotic Systems, 5:87–102, 1988.
URL: https://www.researchgate.net/publication/229613862_Region_
filling_operations_with_random_obstacle_avoidance_for_mobile_
robots, doi:10.1002/ROB.4620050202.

[69] Howie Choset. Coverage for robotics - a survey of recent results. An-
nals of Mathematics and Artificial Intelligence, 31:113–126, 2001. URL:
https://link.springer.com/article/10.1023/A:1016639210559,
doi:10.1023/A:1016639210559/METRICS.

http://dx.doi.org/10.1609/aaai.v30i1.10295
https://arxiv.org/abs/1511.05952
http://dx.doi.org/10.48550/arxiv.1511.05952
http://dx.doi.org/10.48550/arxiv.1511.05952
https://arxiv.org/abs/1706.10295
https://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1911.10635
http://dx.doi.org/10.1007/978-3-319-18615-3_51/TABLES/1
http://arxiv.org/abs/1803.11485
http://arxiv.org/abs/1706.02275
http://arxiv.org/abs/2005.13625
https://www.researchgate.net/publication/229613862_Region_filling_operations_with_random_obstacle_avoidance_for_mobile_robots
https://www.researchgate.net/publication/229613862_Region_filling_operations_with_random_obstacle_avoidance_for_mobile_robots
https://www.researchgate.net/publication/229613862_Region_filling_operations_with_random_obstacle_avoidance_for_mobile_robots
http://dx.doi.org/10.1002/ROB.4620050202
https://link.springer.com/article/10.1023/A:1016639210559
http://dx.doi.org/10.1023/A:1016639210559/METRICS

REFERENCES 155

[70] Sedat Dogru and Lino Marques. Eco-cpp: Energy constrained online coverage path plan-
ning. Robotics and Autonomous Systems, 157:104242, 2022. doi:https://doi.org/
10.1016/j.robot.2022.104242.

[71] B. Nasirian, M. Mehrandezh, and F. Janabi-Sharifi. Efficient coverage path planning for
mobile disinfecting robots using graph-based representation of environment. Frontiers in
Robotics and AI, 8, 3 2021. doi:10.3389/FROBT.2021.624333.

[72] Luis Piardi, José Lima, Ana I. Pereira, and Paulo Costa. Coverage path planning optimiza-
tion based on q-learning algorithm. volume 2116. American Institute of Physics Inc., 7
2019. doi:10.1063/1.5114220.

[73] Jian Xiao, Gang Wang, Ying Zhang, and Lei Cheng. A distributed multi-agent dynamic
area coverage algorithm based on reinforcement learning. IEEE Access, 8:33511–33521,
2020. doi:10.1109/ACCESS.2020.2967225.

[74] Dong Ki Noh, Woo Ju Lee, Hyoung Rock Kim, Il Soo Cho, In Bo Shim, and Seung Min
Baek. Adaptive coverage path planning policy for a cleaning robot with deep reinforce-
ment learning. Digest of Technical Papers - IEEE International Conference on Consumer
Electronics, 2022-January, 2022. doi:10.1109/ICCE53296.2022.9730307.

[75] Taua M. Cabreira, Carmelo Di Franco, Paulo R. Ferreira, and Giorgio C. Buttazzo. Energy-
aware spiral coverage path planning for uav photogrammetric applications. IEEE Robotics
and Automation Letters, 3:3662–3668, 10 2018. doi:10.1109/LRA.2018.2854967.

[76] Howie Choset and Philippe Pignon. Coverage path planning: The boustrophedon
cellular decomposition. Field and Service Robotics, pages 203–209, 1998. URL:
https://link.springer.com/chapter/10.1007/978-1-4471-1273-0_32,
doi:10.1007/978-1-4471-1273-0_32.

[77] Ercan U. Acar, Howie Choset, Alfred A. Rizzi, Prasad N. Atkar, and Douglas Hull.
Morse decompositions for coverage tasks. The International Journal of Robotics Research,
21:331–344, 4 2002. doi:10.1177/027836402320556359.

[78] Ercan U. Acar and Howie Choset. Sensor-based coverage of unknown environments: In-
cremental construction of morse decompositions. The International Journal of Robotics
Research, 21:345–366, 4 2002. doi:10.1177/027836402320556368.

[79] Ercan U. Acar and Howie Choset. Robust sensor-based coverage of unstructured environ-
ments. IEEE International Conference on Intelligent Robots and Systems, 1:61–68, 2001.
doi:10.1109/IROS.2001.973337.

[80] Alexander Zelinsky, Ray A Jarvis, JC Byrne, Shinichi Yuta, et al. Planning paths of com-
plete coverage of an unstructured environment by a mobile robot. In Proceedings of inter-
national conference on advanced robotics, volume 13, pages 533–538, 1993.

[81] Olimpiya Saha, Guohua Ren, Javad Heydari, Viswanath Ganapathy, and Mohak Shah.
Online area covering robot in unknown dynamic environments. In 2021 7th Interna-
tional Conference on Automation, Robotics and Applications (ICARA), pages 38–42, 2021.
doi:10.1109/ICARA51699.2021.9376498.

http://dx.doi.org/https://doi.org/10.1016/j.robot.2022.104242
http://dx.doi.org/https://doi.org/10.1016/j.robot.2022.104242
http://dx.doi.org/10.3389/FROBT.2021.624333
http://dx.doi.org/10.1063/1.5114220
http://dx.doi.org/10.1109/ACCESS.2020.2967225
http://dx.doi.org/10.1109/ICCE53296.2022.9730307
http://dx.doi.org/10.1109/LRA.2018.2854967
https://link.springer.com/chapter/10.1007/978-1-4471-1273-0_32
http://dx.doi.org/10.1007/978-1-4471-1273-0_32
http://dx.doi.org/10.1177/027836402320556359
http://dx.doi.org/10.1177/027836402320556368
http://dx.doi.org/10.1109/IROS.2001.973337
http://dx.doi.org/10.1109/ICARA51699.2021.9376498

156 REFERENCES

[82] Olimpiya Saha, Guohua Ren, Javad Heydari, Viswanath Ganapathy, and Mohak Shah. Deep
reinforcement learning based online area covering autonomous robot. In 2021 7th Interna-
tional Conference on Automation, Robotics and Applications (ICARA), pages 21–25, 2021.
doi:10.1109/ICARA51699.2021.9376477.

[83] Harald Bayerlein, Mirco Theile, Marco Caccamo, and David Gesbert. Uav path planning
for wireless data harvesting: A deep reinforcement learning approach. In GLOBECOM
2020 - 2020 IEEE Global Communications Conference, pages 1–6, 2020. doi:10.1109/
GLOBECOM42002.2020.9322234.

[84] Harald Bayerlein, Mirco Theile, Marco Caccamo, and David Gesbert. Multi-uav path plan-
ning for wireless data harvesting with deep reinforcement learning. IEEE Open Journal
of the Communications Society, 2:1171–1187, 2021. doi:10.1109/OJCOMS.2021.
3081996.

[85] Mirco Theile, Harald Bayerlein, Richard Nai, David Gesbert, and Marco Caccamo. Uav
coverage path planning under varying power constraints using deep reinforcement learn-
ing. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1444–1449, 2020. doi:10.1109/IROS45743.2020.9340934.

[86] Samuel Yanes Luis, Daniel Gutiérrez Reina, and Sergio L. Toral Marín. A deep rein-
forcement learning approach for the patrolling problem of water resources through au-
tonomous surface vehicles: The ypacarai lake case. IEEE Access, 8:204076–204093, 2020.
doi:10.1109/ACCESS.2020.3036938.

[87] Samuel Yanes Luis, Daniel Gutiérrez Reina, and Sergio L. Toral Marín. A multiagent
deep reinforcement learning approach for path planning in autonomous surface vehicles:
The ypacaraí lake patrolling case. IEEE Access, 9:17084–17099, 2021. doi:10.1109/
ACCESS.2021.3053348.

[88] Aleksandr Ianenko, Alexander Artamonov, Georgii Sarapulov, Alexey Safaraleev, Sergey
Bogomolov, and Dong Ki Noh. Coverage path planning with proximal policy optimization
in a grid-based environment. Proceedings of the IEEE Conference on Decision and Control,
2020-December:4099–4104, 12 2020. doi:10.1109/CDC42340.2020.9304030.

[89] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016. arXiv:1606.01540.

[90] Matteo Marchi, Jonathan Bunton, Yskandar Gas, Bahman Gharesifard, and Paulo Tabuada.
Sharp performance bounds for pasta. IEEE Control Systems Letters, 7:2401–2406, 2023.
doi:10.1109/LCSYS.2023.3285514.

[91] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time limits in reinforce-
ment learning. CoRR, abs/1712.00378, 2017. URL: http://arxiv.org/abs/1712.
00378, arXiv:1712.00378.

[92] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable
mdps, 2017. arXiv:1507.06527.

[93] Maxim Egorov. Deep reinforcement learning with pomdps. Tech. Rep.(Technical Report,
Stanford University, 2015), Tech. Rep., 2015.

http://dx.doi.org/10.1109/ICARA51699.2021.9376477
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322234
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322234
http://dx.doi.org/10.1109/OJCOMS.2021.3081996
http://dx.doi.org/10.1109/OJCOMS.2021.3081996
http://dx.doi.org/10.1109/IROS45743.2020.9340934
http://dx.doi.org/10.1109/ACCESS.2020.3036938
http://dx.doi.org/10.1109/ACCESS.2021.3053348
http://dx.doi.org/10.1109/ACCESS.2021.3053348
http://dx.doi.org/10.1109/CDC42340.2020.9304030
http://arxiv.org/abs/1606.01540
http://dx.doi.org/10.1109/LCSYS.2023.3285514
http://arxiv.org/abs/1712.00378
http://arxiv.org/abs/1712.00378
http://arxiv.org/abs/1712.00378
http://arxiv.org/abs/1507.06527

REFERENCES 157

[94] A. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In International Conference on Ma-
chine Learning, 1999. URL: https://api.semanticscholar.org/CorpusID:
5730166.

[95] Dominik Schmidt and Thomas Schmied. Fast and data-efficient training of rainbow: an
experimental study on atari, 2021. arXiv:2111.10247.

[96] Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning,
2019. arXiv:1803.02811.

[97] Omar Boufous. Deep reinforcement learning for complete coverage path planning in un-
known environments. Master’s thesis, KTH, School of Electrical Engineering and Com-
puter Science (EECS), 2020.

[98] Young-Ho Choi, Tae-Kyeong Lee, Sanghoon Baek, and Se-Young Oh. Online complete
coverage path planning for mobile robots based on linked spiral paths using constrained
inverse distance transform. 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5788–5793, 2009. URL: https://api.semanticscholar.org/
CorpusID:10681677.

[99] Tae-Kyeong Lee, Sanghoon Baek, Se-Young Oh, and Young-Ho Choi. Complete cover-
age algorithm based on linked smooth spiral paths for mobile robots. 2010 11th Interna-
tional Conference on Control Automation Robotics & Vision, pages 609–614, 2010. URL:
https://api.semanticscholar.org/CorpusID:17670933.

[100] Hoang Huu Viet, Viet-Hung Dang, Md Nasir Uddin Laskar, and TaeChoong Chung. Ba*:
an online complete coverage algorithm for cleaning robots. Applied Intelligence, 39:217–
235, 2013. URL: https://api.semanticscholar.org/CorpusID:14928030.

[101] Enrique González, Maricio Alarcon, Paula Aristizabal, and Carlos Parra. Bsa: a coverage
algorithm. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003) (Cat. No.03CH37453), 2:1679–1684 vol.2, 2003. URL: https:
//api.semanticscholar.org/CorpusID:45665154.

[102] Junnan Song and Shalabh Gupta. Epsilon*: An online coverage path planning algo-
rithm. IEEE Transactions on Robotics, 34:526–533, 2018. URL: https://api.
semanticscholar.org/CorpusID:4953256.

[103] Xin Chen, Thomas M. Tucker, Thomas R. Kurfess, and Richard W. Vuduc. Adaptive
deep path: Efficient coverage of a known environment under various configurations. 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3549–
3556, 2019. URL: https://api.semanticscholar.org/CorpusID:210972306.

https://api.semanticscholar.org/CorpusID:5730166
https://api.semanticscholar.org/CorpusID:5730166
http://arxiv.org/abs/2111.10247
http://arxiv.org/abs/1803.02811
https://api.semanticscholar.org/CorpusID:10681677
https://api.semanticscholar.org/CorpusID:10681677
https://api.semanticscholar.org/CorpusID:17670933
https://api.semanticscholar.org/CorpusID:14928030
https://api.semanticscholar.org/CorpusID:45665154
https://api.semanticscholar.org/CorpusID:45665154
https://api.semanticscholar.org/CorpusID:4953256
https://api.semanticscholar.org/CorpusID:4953256
https://api.semanticscholar.org/CorpusID:210972306

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.2.1 Applications

	1.3 Objectives
	1.4 Contributions
	1.5 Dissertation Outline

	2 Background
	2.1 Machine Learning
	2.1.1 Artificial Neural Networks
	2.1.2 Convolutional Neural Networks
	2.1.3 Learning Process

	2.2 Reinforcement Learning
	2.2.1 Markov Decision Processes
	2.2.2 Reinforcement Learning Methods
	2.2.3 Model-Based Reinforcement Learning
	2.2.4 Model-Free Reinforcement Learning
	2.2.5 Temporal Differences Learning
	2.2.6 Function Representation

	2.3 Value-Based Reinforcement Learning Methods
	2.3.1 Tabular Temporal Differences Learning - Q-Learning and SARSA
	2.3.2 The Overestimation Problem - Double Q-Learning
	2.3.3 TD() methods - Q() and SARSA()
	2.3.4 Deep Q Networks
	2.3.5 Extensions to the DQN - The Rainbow DQN

	2.4 Multi-Agent Reinforcement Learning
	2.4.1 MARL Taxonomy
	2.4.2 Challenges of Multi-Agent Reinforcement Learning
	2.4.3 Multi-Agent Reinforcement Learning Methods

	3 State of the Art
	3.1 Coverage Path Planning
	3.1.1 Performance Metrics
	3.1.2 Area of Interest

	3.2 Exact Cellular Decomposition
	3.2.1 Trapezoidal Decomposition
	3.2.2 Boustrophedon Decomposition
	3.2.3 Morse-Based Exact Cellular Decomposition
	3.2.4 Online Morse-Based Decomposition

	3.3 No Decomposition
	3.3.1 Energy-Aware Back-and-Forth
	3.3.2 Energy-Aware Spiral

	3.4 Approximate Cellular Decomposition
	3.4.1 Wavefront Propagation Algorithm

	3.5 Reinforcement Learning Approaches
	3.5.1 Offline Q-Learning
	3.5.2 Distributed Multi-Agent Online Q-Learning
	3.5.3 Work Developed by LG Electronics Advanced AI Team
	3.5.4 DQN Methods for CPP and Data Harvesting
	3.5.5 Patrolling the Lake Ypacarai
	3.5.6 PPO For Cleaning Robots

	3.6 Final Considerations

	4 System Architecture
	4.1 Architecture
	4.2 Environment
	4.2.1 Architecture
	4.2.2 State
	4.2.3 Reward Function
	4.2.4 Visualization

	4.3 Agent
	4.3.1 Tabular Reinforcement Learning Agent
	4.3.2 Deep Reinforcement Learning Agent

	5 Online Coverage Path Planning with no Explicit Map Representation
	5.1 Objectives and Challenges
	5.2 Problem Statement
	5.3 Methodology
	5.3.1 Observation Space
	5.3.2 Action Space
	5.3.3 Policy
	5.3.4 Reward Function

	5.4 Results
	5.4.1 Comparison Between Algorithms
	5.4.2 Q-Learning for Coverage Path Planning

	5.5 Final Considerations

	6 Deep Reinforcement Learning for Single Agent Navigation
	6.1 Objectives and Challenges
	6.2 Problem Statement
	6.3 Partially Observed Markov Decision Process
	6.3.1 Action Space
	6.3.2 State and Observation Space
	6.3.3 Reward Function

	6.4 Learning Algorithm
	6.4.1 Neural Network Architecture
	6.4.2 Training Algorithm

	6.5 Results
	6.5.1 Methodology
	6.5.2 Full Information Coverage Path Planning
	6.5.3 Sensor-Based Coverage Path Planning
	6.5.4 Point-To-Point Coverage
	6.5.5 Comparison With State-Of-The-Art Algorithms

	6.6 Final Considerations

	7 Multi-Agent Reinforcement Learning for Coverage Path Planning
	7.1 Challenges and Objectives
	7.2 Problem Formulation
	7.3 Decentralized Partial Observable Markov Decision Process
	7.3.1 Action Space
	7.3.2 Observation Space
	7.3.3 Reward Function

	7.4 Learning Algorithm
	7.4.1 Network Architecture and Parameter Sharing
	7.4.2 Training Algorithm

	7.5 Results
	7.5.1 Methodology
	7.5.2 Comparison Between Different Reward Structures
	7.5.3 Comprehensive Analysis of The Best Model

	7.6 Final Considerations

	8 Conclusions
	8.1 Future Work

	References

