15,999 research outputs found

    Event-related brain potentials during the monitoring of speech errors

    Get PDF
    Interdisciplinary domains LUC

    The influence of semantic and phonological factors on syntactic decisions: An event-related brain potential study

    Get PDF
    During language production and comprehension, information about a word's syntactic properties is sometimes needed. While the decision about the grammatical gender of a word requires access to syntactic knowledge, it has also been hypothesized that semantic (i.e., biological gender) or phonological information (i.e., sound regularities) may influence this decision. Event-related potentials (ERPs) were measured while native speakers of German processed written words that were or were not semantically and/or phonologically marked for gender. Behavioral and ERP results showed that participants were faster in making a gender decision when words were semantically and/or phonologically gender marked than when this was not the case, although the phonological effects were less clear. In conclusion, our data provide evidence that even though participants performed a grammatical gender decision, this task can be influenced by semantic and phonological factors

    Role of N-methyl-D-aspartate receptors in action-based predictive coding deficits in schizophrenia

    Full text link
    Published in final edited form as:Biol Psychiatry. 2017 March 15; 81(6): 514–524. doi:10.1016/j.biopsych.2016.06.019.BACKGROUND: Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posited to result from N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction. Previously, by examining auditory cortical responses to self-generated speech sounds, we demonstrated that predictive coding during vocalization is disrupted in schizophrenia. To test the hypothesized contribution of NMDAR hypofunction to this disruption, we examined the effects of the NMDAR antagonist, ketamine, on predictive coding during vocalization in healthy volunteers and compared them with the effects of schizophrenia. METHODS: In two separate studies, the N1 component of the event-related potential elicited by speech sounds during vocalization (talk) and passive playback (listen) were compared to assess the degree of N1 suppression during vocalization, a putative measure of auditory predictive coding. In the crossover study, 31 healthy volunteers completed two randomly ordered test days, a saline day and a ketamine day. Event-related potentials during the talk/listen task were obtained before infusion and during infusion on both days, and N1 amplitudes were compared across days. In the case-control study, N1 amplitudes from 34 schizophrenia patients and 33 healthy control volunteers were compared. RESULTS: N1 suppression to self-produced vocalizations was significantly and similarly diminished by ketamine (Cohen’s d = 1.14) and schizophrenia (Cohen’s d = .85). CONCLUSIONS: Disruption of NMDARs causes dysfunction in predictive coding during vocalization in a manner similar to the dysfunction observed in schizophrenia patients, consistent with the theorized contribution of NMDAR hypofunction to predictive coding deficits in schizophrenia.This work was supported by AstraZeneca for an investigator-initiated study (DHM) and the National Institute of Mental Health Grant Nos. R01 MH-58262 (to JMF) and T32 MH089920 (to NSK). JHK was supported by the Yale Center for Clinical Investigation Grant No. UL1RR024139 and the US National Institute on Alcohol Abuse and Alcoholism Grant No. P50AA012879. (AstraZeneca for an investigator-initiated study (DHM); R01 MH-58262 - National Institute of Mental Health; T32 MH089920 - National Institute of Mental Health; UL1RR024139 - Yale Center for Clinical Investigation; P50AA012879 - US National Institute on Alcohol Abuse and Alcoholism)Accepted manuscrip

    Using transcranial direct-current stimulation (tDCS) to understand cognitive processing

    Full text link
    Noninvasive brain stimulation methods are becoming increasingly common tools in the kit of the cognitive scientist. In particular, transcranial direct-current stimulation (tDCS) is showing great promise as a tool to causally manipulate the brain and understand how information is processed. The popularity of this method of brain stimulation is based on the fact that it is safe, inexpensive, its effects are long lasting, and you can increase the likelihood that neurons will fire near one electrode and decrease the likelihood that neurons will fire near another. However, this method of manipulating the brain to draw causal inferences is not without complication. Because tDCS methods continue to be refined and are not yet standardized, there are reports in the literature that show some striking inconsistencies. Primary among the complications of the technique is that the tDCS method uses two or more electrodes to pass current and all of these electrodes will have effects on the tissue underneath them. In this tutorial, we will share what we have learned about using tDCS to manipulate how the brain perceives, attends, remembers, and responds to information from our environment. Our goal is to provide a starting point for new users of tDCS and spur discussion of the standardization of methods to enhance replicability.The authors declare that they had no conflicts of interest with respect to their authorship or the publication of this article. This work was supported by grants from the National Institutes of Health (R01-EY019882, R01-EY025272, P30-EY08126, F31-MH102042, and T32-EY007135). (R01-EY019882 - National Institutes of Health; R01-EY025272 - National Institutes of Health; P30-EY08126 - National Institutes of Health; F31-MH102042 - National Institutes of Health; T32-EY007135 - National Institutes of Health)Accepted manuscrip

    Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control

    Get PDF
    Temporal lobe epilepsy (TLE) is the most common drug-refractory focal epilepsy in adults. Previous research has shown that patients with TLE exhibit decreased performance in listening to speech sounds and deficits in the cortical processing of auditory information. Whether TLE compromises auditory-motor integration for voice control, however, remains largely unknown. To address this question, event-related potentials (ERPs) and vocal responses to vocal pitch errors (1/2 or 2 semitones upward) heard in auditory feedback were compared across 28 patients with TLE and 28 healthy controls. Patients with TLE produced significantly larger vocal responses but smaller P2 responses than healthy controls. Moreover, patients with TLE exhibited a positive correlation between vocal response magnitude and baseline voice variability and a negative correlation between P2 amplitude and disease duration. Graphical network analyses revealed a disrupted neuronal network for patients with TLE with a significant increase of clustering coefficients and path lengths as compared to healthy controls. These findings provide strong evidence that TLE is associated with an atypical integration of the auditory and motor systems for vocal pitch regulation, and that the functional networks that support the auditory-motor processing of pitch feedback errors differ between patients with TLE and healthy controls

    Inconsistent use of gesture space during abstract pointing impairs language comprehension

    Get PDF
    Pointing toward concrete objects is a well-known and efficient communicative strategy. Much less is known about the communicative effectiveness of abstract pointing where the pointing gestures are directed to “empty space.” McNeill's (2003) observations suggest that abstract pointing can be used to establish referents in gesture space, without the referents being physically present. Recently, however, it has been shown that abstract pointing typically provides redundant information to the uttered speech thereby suggesting a very limited communicative value (So et al., 2009). In a first approach to tackle this issue we were interested to know whether perceivers are sensitive at all to this gesture cue or whether it is completely discarded as irrelevant add-on information. Sensitivity to for instance a gesture-speech mismatch would suggest a potential communicative function of abstract pointing. Therefore, we devised a mismatch paradigm in which participants watched a video where a female was interviewed on various topics. During her responses, she established two concepts in space using abstract pointing (e.g., pointing to the left when saying Donald, and pointing to the right when saying Mickey). In the last response to each topic, the pointing gesture accompanying a target word (e.g., Donald) was either consistent or inconsistent with the previously established location. Event related brain potentials showed an increased N400 and P600 when gesture and speech referred to different referents, indicating that inconsistent use of gesture space impairs language comprehension. Abstract pointing was found to influence comprehension even though gesture was not crucial to understanding the sentences or conducting the experimental task. These data suggest that a referent was retrieved via abstract pointing and that abstract pointing can potentially be used for referent indication in a discourse. We conclude that abstract pointing has a potential communicative function

    Conflict monitoring in speech processing: an fMRI study of error detection in speech production and perception

    Get PDF
    To minimize the number of errors in speech, and thereby facilitate communication, speech is monitored before articulation. It is, however, unclear at which level during speech production monitoring takes place, and what mechanisms are used to detect and correct errors. The present study investigated whether internal verbal monitoring takes place through the speech perception system, as proposed by perception-based theories of speech monitoring, or whether mechanisms independent of perception are applied, as proposed by production-based theories of speech monitoring. With the use of fMRI during a tongue twister task we observed that error detection in internal speech during noise-masked overt speech production and error detection in speech perception both recruit the same neural network, which includes pre-supplementary motor area (pre-SMA), dorsal anterior cingulate cortex (dACC), anterior insula (AI), and inferior frontal gyrus (IFG). Although production and perception recruit similar areas, as proposed by perception-based accounts, we did not find activation in superior temporal areas (which are typically associated with speech perception) during internal speech monitoring in speech production as hypothesized by these accounts. On the contrary, results are highly compatible with a domain general approach to speech monitoring, by which internal speech monitoring takes place through detection of conflict between response options, which is subsequently resolved by a domain general executive center (e.g., the ACC)
    corecore