1,480 research outputs found

    Estimating Footfall From Passive Wi-Fi Signals: Case Study with Smart Street Sensor Project

    Get PDF
    Measuring the distribution and dynamics of the population at granular level both spatially and temporally is crucial for understanding the structure and function of the built environment. In this era of big data, there have been numerous attempts to undertake this using the preponderance of unstructured, passive and incidental digital data which are generated from day-to-day human activities. In attempts to collect, analyse and link these widely available datasets at a massive scale, it is easy to put the privacy of the study subjects at risk. This research looks at one such data source - Wi-Fi probe requests generated by mobile devices - in detail, and processes it into granular, long-term information on number of people on the retail high streets of the United Kingdom (UK). Though this is not the first study to use this data source, the thesis specifically targets and tackles the uncertainties introduced in recent years by the implementation of features designed to protect the privacy of the users of Wi-Fi enabled mobile devices. This research starts with the design and implementation of multiple experiments to examine Wi-Fi probe requests in detail, then later describes the development of a data collection methodology to collect multiple sets of probe requests at locations across London. The thesis also details the uses of these datasets, along with the massive dataset generated by the ‘Smart Street Sensor’ project, to devise novel data cleaning and processing methodologies which result in the generation of a high quality dataset which describes the volume of people on UK retail high streets with a granularity of 5 minute intervals since August 2015 across 1000 locations (approx.) in 115 towns. This thesis also describes the compilation of a bespoke ‘Medium data toolkit’ for processing Wi-Fi probe requests (or indeed any other data with a similar size and complexity). Finally, the thesis demonstrates the value and possible applications of such footfall information through a series of case studies. By successfully avoiding the use of any personally identifiable information, the research undertaken for this thesis also demonstrates that it is feasible to prioritise the privacy of users while still deriving detailed and meaningful insights from the data generated by the users

    Non-linear echo cancellation - a Bayesian approach

    Get PDF
    Echo cancellation literature is reviewed, then a Bayesian model is introduced and it is shown how how it can be used to model and fit nonlinear channels. An algorithm for cancellation of echo over a nonlinear channel is developed and tested. It is shown that this nonlinear algorithm converges for both linear and nonlinear channels and is superior to linear echo cancellation for canceling an echo through a nonlinear echo-path channel

    Pedestrian Mobility Mining with Movement Patterns

    Get PDF
    In street-based mobility mining, pedestrian volume estimation receives increasing attention, as it provides important applications such as billboard evaluation, attraction ranking and emergency support systems. In practice, empirical measurements are sparse due to budget limitations and constrained mounting options. Therefore, estimation of pedestrian quantity is required to perform pedestrian mobility analysis at unobserved locations. Accurate pedestrian mobility analysis is difficult to achieve due to the non-random path selection of individual pedestrians (resulting from motivated movement behaviour), causing the pedestrian volumes to distribute non-uniformly among the traffic network. Existing approaches (pedestrian simulations and data mining methods) are hard to adjust to sensor measurements or require more expensive input data (e.g. high fidelity floor plans or total number of pedestrians in the site) and are thus unfeasible. In order to achieve a mobility model that encodes pedestrian volumes accurately, we propose two methods under the regression framework which overcome the limitations of existing methods. Namely, these two methods incorporate not just topological information and episodic sensor readings, but also prior knowledge on movement preferences and movement patterns. The first one is based on Least Squares Regression (LSR). The advantage of this method is the easy inclusion of route choice heuristics and robustness towards contradicting measurements. The second method is Gaussian Process Regression (GPR). The advantages of this method are the possibilities to include expert knowledge on pedestrian movement and to estimate the uncertainty in predicting the unknown frequencies. Furthermore the kernel matrix of the pedestrian frequencies returned by the method supports sensor placement decisions. Major benefits of the regression approach are (1) seamless integration of expert data and (2) simple reproduction of sensor measurements. Further advantages are (3) invariance of the results against traffic network homeomorphism and (4) the computational complexity depends not on the number of modeled pedestrians but on the traffic network complexity. We compare our novel approaches to state-of-the-art pedestrian simulation (Generalized Centrifugal Force Model) as well as existing Data Mining methods for traffic volume estimation (Spatial k-Nearest Neighbour) and commonly used graph kernels for the Gaussian Process Regression (Squared Exponential, Regularized Laplacian and Diffusion Kernel) in terms of prediction performance (measured with mean absolute error). Our methods showed significantly lower error rates. Since pattern knowledge is not easy to obtain, we present algorithms for pattern acquisition and analysis from Episodic Movement Data. The proposed analysis of Episodic Movement Data involve spatio-temporal aggregation of visits and flows, cluster analyses and dependency models. For pedestrian mobility data collection we further developed and successfully applied the recently evolved Bluetooth tracking technology. The introduced methods are combined to a system for pedestrian mobility analysis which comprises three layers. The Sensor Layer (1) monitors geo-coded sensor recordings on people’s presence and hands this episodic movement data in as input to the next layer. By use of standardized Open Geographic Consortium (OGC) compliant interfaces for data collection, we support seamless integration of various sensor technologies depending on the application requirements. The Query Layer (2) interacts with the user, who could ask for analyses within a given region and a certain time interval. Results are returned to the user in OGC conform Geography Markup Language (GML) format. The user query triggers the (3) Analysis Layer which utilizes the mobility model for pedestrian volume estimation. The proposed approach is promising for location performance evaluation and attractor identification. Thus, it was successfully applied to numerous industrial applications: Zurich central train station, the zoo of Duisburg (Germany) and a football stadium (Stade des Costières Nîmes, France)

    Proceedings of the 2nd IUI Workshop on Interacting with Smart Objects

    Get PDF
    These are the Proceedings of the 2nd IUI Workshop on Interacting with Smart Objects. Objects that we use in our everyday life are expanding their restricted interaction capabilities and provide functionalities that go far beyond their original functionality. They feature computing capabilities and are thus able to capture information, process and store it and interact with their environments, turning them into smart objects

    Visual Privacy Mitigation Strategies in Social Media Networks and Smart Environments

    Get PDF
    The contemporary use of technologies and environments has led to a vast collection and sharing of visual data, such as images and videos. However, the increasing popularity and advancements in social media platforms and smart environments have posed a significant challenge in protecting the privacy of individuals’ visual data, necessitating a better understanding of the visual privacy implications in these environments. These concerns can arise intentionally or unintentionally from the individual, other entities in the environment, or a company. To address these challenges, it is necessary to inform the design of the data collection process and deployment of the system by understanding the visual privacy implications of these environments. However, ensuring visual privacy in social media networks and smart environments presents significant research challenges. These challenges include accounting for an individual’s subjectivity towards visual privacy, the influence of visual privacy leakage in the environment, and the environment’s infrastructure design and ownership. This dissertation employs a range of methodologies, including user studies, machine learning, and statistics to explore social media networks and smart environments and their visual privacy risks. Qualitative and quantitative studies were conducted to understand privacy perspectives in social media networks and smart city environments. The findings reveal that individuals and stakeholders possess inherited bias and subjectivity when considering privacy in these environments, leading to a need for visual privacy mitigation and risk analysis. Furthermore, a new visual privacy risk score using visual features and computer vision is developed to investigate and discover visual privacy leakage. However, using computer vision methods for visual privacy mitigation introduces additional privacy and fairness risks while developing and deploying visual privacy systems and machine learning algorithms. This necessitates the creation of interactive audit strategies to consider the broader impacts of research on the community. Overall, this dissertation contributes to advancing visual privacy solutions in social media networks and smart environments by investigating xiii and quantifying the visual privacy concerns and perspectives of individuals and stakeholders, advocating for the need for responsible visual privacy mitigation methods in these environments. It also strengthens the ability of researchers, stakeholders, and companies to protect individuals from visual privacy risks throughout the machine learning pipeline

    Development of a Cost-Efficient Multi-Target Classification System Based on FMCW Radar for Security Gate Monitoring

    Get PDF
    Radar systems have a long history. Like many other great inventions, the origin of radar systems lies in warfare. Only in the last decade, radar systems have found widespread civil use in industrial measurement scenarios and automotive safety applications. Due to their resilience against harsh environments, they are used instead of or in addition to optical or ultrasonic systems. Radar sensors hold excellent capabilities to estimate distance and motion accurately, penetrate non-metallic objects, and remain unaffected by weather conditions. These capabilities make these devices extremely flexible in their applications. Electromagnetic waves centered at frequencies around 24 GHz offer high precision target measurements, compact antenna, and circuitry design, and lower atmospheric absorption than higher frequency-based systems. This thesis studies non-cooperative automatic radar multi-target detection and classification. A prototype of a radar system with a new microwave-radar-based technique for short-range detection and classification of multiple human and vehicle targets passing through a road gate is presented. It allows identifying different types of targets, i.e., pedestrians, motorcycles, cars, and trucks. The developed system is based on a low-cost 24 GHz off-the-shelf FMCW radar, combined with an embedded Raspberry Pi PC for data acquisition and transmission to a remote processing PC, which takes care of detection and classification. This approach, which can find applications in both security and infrastructure surveillance, relies upon the processing of the scattered-field data acquired by the radar. The developed method is based on an ad-hoc processing chain to accomplish the automatic target recognition task, which consists of blocks performing clutter and leakage removal with a frame subtraction technique, clustering with a DBSCAN approach, tracking algorithm based on the \u3b1-\u3b2 filter to follow the targets during traversal, features extraction, and finally classification of targets with a classification scheme based on support vector machines. The approach is validated in real experimental scenarios, showing its capabilities incorrectly detecting multiple targets belonging to different classes (i.e., pedestrians, cars, motorcycles, and trucks). The approach has been validated with experimental data acquired in different scenarios, showing good identification capabilities

    Detection and Localisation Using Light

    Get PDF
    Visible light communication (VLC) systems have become promising candidates to complement conventional radio frequency (RF) systems due to the increasingly saturated RF spectrum and the potentially high data rates that can be achieved by VLC systems. Furthermore, people detection and counting in an indoor environment has become an emerging and attractive area in the past decade. Many techniques and systems have been developed for counting in public places such as subways, bus stations and supermarkets. The outcome of these techniques can be used for public security, resource allocation and marketing decisions. This thesis presents the first indoor light-based detection and localisation system that builds on concepts from radio detection and ranging (radar) making use of the expected growth in the use and adoption of visible light communication (VLC), which can provide the infrastructure for our light detection and localisation (LiDAL) system. Our system enables active detection, counting and localisation of people, in addition to being fully compatible with existing VLC systems. In order to detect human (targets), LiDAL uses the visible light spectrum. It sends pulses using a VLC transmitter and analyses the reflected signal collected by an optical receiver. Although we examine the use of the visible spectrum here, LiDAL can be used in the infrared spectrum and other parts of the light spectrum. We introduce LiDAL with different transmitter-receiver configurations and optimum detectors considering the fluctuation of the received reflected signal from the target in the presence of Gaussian noise. We design an efficient multiple input multiple output (MIMO) LiDAL system with wide field of view (FOV) single photodetector receiver, and also design a multiple input single output (MISO) LiDAL system with an imaging receiver to eliminate ambiguity in target detection and localisation. We develop models for the human body and its reflections and consider the impact of the colour and texture of the cloth used as well as the impact of target mobility. A number of detection and localisation methods are developed iii for our LiDAL system including cross correlation, a background subtraction method and a background estimation method. These methods are considered to distinguish a mobile target from the ambient reflections due to background obstacles (furniture) in a realistic indoor environment
    • …
    corecore