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Glossary

• Active vs Passive Collection - Active collection is where the data

collection process involves the active participation from the study

subjects. In passive data collection, no such participation is required.

For example, a web form based survey is an active data collection

process while a script collecting data on user’s data on a website is

passive. This shall not be confused with primary and secondary data

where the difference is mainly due to who collects the data from the

source.

• Anonymisation and Pseudonymisation - The act of removing per-

sonal or identifiable information from the data. For example, removing

the names and date of birth of people in a dataset. Anonymisation

could be carried out in various ways two most popular approaches

are generalisation and perturbation. Pseudonymisation is similar but

the personally identifiable data is substituted with artificial identifier.

The difference between them is that in anonymisation the personal

information is permanently purged and there is no way of getting the

information back. De-anonymisation is the reverse process of getting

personal identifiable data from anonymised data.

• Big Data - Generally defined as data which could not be handled

with regularly used tools and techniques. There are more nuanced

definitions of big data depending on the dimension, context and

industry. These concepts are discussed in detail in Section 4.1.

• Bluetooth - Short wavelength, low energy, short range wireless tech-

nology used for transferring data between electronic devices. They

are generally used by mobile devices to connect to peripherals.

• CDRC - The Consumer Data Research Center is an investment from

Economic Social Research Center, UK for working with consumer-

related organisations to open up their data resources to trusted re-

searchers thus enabling them to carry out important social and eco-
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nomic research.

• Cellular/Mobile Network - Terrestrial, long range and wireless net-

work which provides connectivity to mobile devices embedded in

them. Most commonly used to denote the networks that provides

telephony and internet services to mobile devices using radio waves.

• Cryptographic Hashing - This is the process of transforming a vari-

able set of characters or contents of a file into a fixed length string

(checksum). The process is usually one way and is not reversible with-

out a rainbow attack using a database of checksums of all possible

values. This is generally used for storing user passwords and to verify

the integrity/ authenticity of data. In this thesis hashing functions are

used for the purpose of anonymisaiton

• Data Partner - Local Data Company - the organisation which de-

veloped the Smart Street Sensor project in conjunction with CDRC.

The organisation is solely responsible for the design, manufacture,

installation and maintenance of the Smart Street Sensors.

• Device Fingerprinting - This is the process of identifying devices

through forensic analysis. This commonly used to identify users from

data collected by operational websites. This commonly done through

identifying unique configurations of the devices such as screen sizes,

versions of software installed, etc. In this thesis fingerprinting is used

to denote such processes where unique devices are identified from

randomised data.

• Encryption - This is the process of converting a information into unin-

telligible format using an algorithm (cipher) to prevent unauthorised

access. The process is two way since the resulting cipher-text can be

decrypted to restore information. The most common methods used is

a public-key based encryption scheme known as ’Diffie Hellman key

exchange’.

• Footfall - Number of people at a given location at a give time. In

this thesis the term is used synonymous to footfall at a high street -

which is only the pedestrians walking along the particular sidewalk

of the high street and does not include people on the carriage way in

vehicles.

• High Street - The primary business street in a town or a local area

where most shops and commercial activity are located. This term is
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often used to contrast and distinguish from ’Shopping centers’ which

are large designated areas earmarked for retail activity exclusively.

• Localisation - Though localisation could mean both GSM localisation

and indoor positioning where the location of a device is indirectly

derived from other information, in this thesis localisation is used

mainly in the context of indoor positioning of mobile devices using

techniques other than GPS. The localisation of objects is often relative

to each other or to an object with an established position.

• Location, Sensor and Install - In this thesis and the Smart Street

Sensor project, ’location’ refers to a physical or geographic location

in United Kingdom, ’sensor’ denotes the electronic equipment used

to collect data and ’install’ refers to the time when a particular sensor

was operating from a particular location.

• Mobile Device - A portable computing device such as a smartphone

or tablet computer. This also includes wearables and other devices

which have computing hardware and can operate independently of

another device.

• Personally Identifiable Information - Any data that could potentially

identify a specific individual. Any information that can be used to dis-

tinguish one person from another and can be used for de-anonymizing

anonymous data can be considered personally identifiable informa-

tion. In this thesis, the Media Access Control address is considered as

sensitive personally identifiable information.

• Positioning - Positioning is the measurement of the absolute position

(coordinates) of an object with reference to the earth. This is usually

achieved through the use of Global Positioning System or similar

systems.

• Probe Request - This is a special signal broadcast by Wi-Fi enabled

mobile devices to elicit a response (probe response) from Wi-Fi access

points which can receive them. The primary purpose of the probe

request is to enumerate the available Wi-Fi networks and there can

also be secondary purposes such as indoor positioning.

• Real-time - This is highly subjective concept which could be defined

as the phenomena which occurs sufficiently immediately. In this thesis

real-time is used to describe data which is collected within an hour

after the event has occurred.
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• Sensor Configuration - The way the sensor is installed at a particular

location. This includes the this includes the position of the sensor in

terms of height and depth, the material of shopfront etc.

• Signal, Noise - ’Signal’ is used to denote the data received from

devices which are within study area and ’Noise’ to denote the data

from devices outside the study area.

• Smart Street Sensor Project - This project is a comprehensive study

of live footfall patterns across Great Britain using 1,000 Wi-Fi based

sensors located in high streets across 81 towns and cities across the

country. Smart Street Sensor is a Raspberry Pi based sensor designed

and manufactured by the Data partner which collects data for the

project.

• Wi-Fi - A family of medium range radio technologies based on the

IEEE 802.11 family of standards which are generally used for wireless

local area networking between devices.
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Prologue

Abstract

Measuring the distribution and dynamics of the population at granular

level both spatially and temporally is crucial for understanding the

structure and function of the built environment. In this era of big

data, there have been numerous attempts to undertake this using the

preponderance of unstructured, passive and incidental digital data which

are generated from day-to-day human activities. In attempts to collect,

analyse and link these widely available datasets at a massive scale, it is

easy to put the privacy of the study subjects at risk.

This research looks at one such data source - Wi-Fi probe requests

generated by mobile devices - in detail, and processes it into granular,

long-term information on number of people on the retail high streets of

the United Kingdom (UK). Though this is not the first study to use this

data source, the thesis specifically targets and tackles the uncertainties

introduced in recent years by the implementation of features designed

to protect the privacy of the users of Wi-Fi enabled mobile devices. This

research starts with the design and implementation of multiple experi-

ments to examine Wi-Fi probe requests in detail, then later describes the

development of a data collection methodology to collect multiple sets

of probe requests at locations across London. The thesis also details the

uses of these datasets, along with the massive dataset generated by the

‘Smart Street Sensor’ project, to devise novel data cleaning and processing

methodologies which result in the generation of a high quality dataset

which describes the volume of people on UK retail high streets with a

granularity of 5 minute intervals since August 2015 across 1000 locations

(approx.) in 115 towns.

This thesis also describes the compilation of a bespoke ‘Medium data

toolkit’ for processing Wi-Fi probe requests (or indeed any other data

with a similar size and complexity). Finally, the thesis demonstrates the

value and possible applications of such footfall information through a
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series of case studies. By successfully avoiding the use of any personally

identifiable information, the research undertaken for this thesis also

demonstrates that it is feasible to prioritise the privacy of users while

still deriving detailed and meaningful insights from the data generated

by the users.

Impact Statement

We live in the age of data deluge where data are generated at a pace

that far exceeds our capacity to digest and analyse them. Putting these

amounts of data to use within the constraints of available resources and

time, is one of the biggest challenges faced by researchers today. The

primary impact of this research is in solving this issue. This research

utilised one such dataset - Wi-Fi signals generated by millions of mobile

phones all around the year and available to anyone with a Wi-Fi receiver

- then cleaned and processed them into highly granular and longitudinal

information on the volume of footfall at retail high streets across the UK.

In converting the unstructured data into useful information, the re-

search undertaken for this thesis developed two novel methods - one for

filtering Wi-Fi signals based on their strength, and the other for grouping

them based on their source mobile device. Moreover, this was achieved

without revealing the identity of the users. These techniques enable

researchers to deal with datasets exhibiting similar challenges such as

Bluetooth signals, or records of people’s clicking as they navigate through

websites, etc. These methodologies and their results have been published

in a peer reviewed journal International Journal for Geographic Information

Science for the benefit of the wider community. They were also presented

to the data partner who collaborated with the research unit - Consumer

Data Research Centre (CDRC) - for the Smart Street Sensor project, and

were considered for inclusion in the data partner’s commercial project.

When dealing with the large and complex Wi-Fi dataset, the research

designed and implemented a bespoke toolkit and a data processing

pipeline comprising of open-source and free software which could be

used by other researchers for use with similar datasets. The work on

this ‘Medium-data toolkit’ was presented at the conference Geographic

Information Science Research UK. Moreover the research directly led to

the creation and maintenance of the aggregated footfall data product

disseminated by CDRC2, and has served as the data source for multiple

2 Local Data Company & UCL
Smart Street Sensor Footfall

Data: Research Aggregated data
- https://bit.ly/2FNGmo0

research projects within and outside CDRC and UCL.

https://bit.ly/2FNGmo0


23

Apart from the technical impact, the primary output of the research -

footfall volumes on retail locations - has commercial and policy impact

for all the stakeholders involved with the retail industry in the UK. From

this information comes a variety of insights: retailers can derive insights

on the patterns of customer movement around their shops; landlords

can find a reliable way to value their properties; local authorities gain a

way to quantify and track the vibrancy of their retail centres over long

periods of time; and consumers get information on which areas might

be crowded at any given time. Finally, in the past 3 years, the outputs

from this research have been disseminated to the broader academic

community and industry through a series of paper presentations at

conferences such as GIS Research UK and Conference of Complex Systems,

talks at Data natives, Geo+Data London, and Smart Urban Policy Futures

Workshop, industry events such as Oxford Retail Futures Conference, and

public engagement events such as the big data Here exhibition.
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Introduction

Our understanding of the form and function of cities and the built en-

vironment has evolved significantly since the early twentieth century.

What started as a field of research focused on the physical form of spaces

and places, later moved towards modelling them as a function of the

population that lives in them. Rather than viewing the built environment

as infrastructure which need to be built, maintained and managed inde-

pendently, cities have increasingly been viewed as the manifestation of

the distribution and dynamics of the population embedded within them.

The field was further broadened in the later part of the twentieth century

to include the economic and social activity which happens within the fab-

ric of the built environment. Moreover, with the dawn of the information

age around the turn of the millennium, the built environment can now be

viewed as the tangible result of information exchange; where cities can be

seen as high density clusters of information exchange, in addition to as

places with a concentration of physical infrastructure such as buildings

and roads. This information revolution has not only changed researchers’

understanding of the underlying forces of the built environment, but

has also changed how they approach the task of measuring, analysing,

modelling and managing it. The information revolution has provided

researchers with numerous new technologies, methodologies, and tools.

Perhaps most importantly however, is the unprecedented availability of

comprehensive, granular data generated from fundamental functions

of the built environment, such as human mobility, social interaction

and economic activity. Availability of these data and tools has turned

numerous disciplines upside down resulting in research which tackles

problems using a bottom-up, ‘data first’ approach, rather than a more

traditional top-down ‘systems’ approach.

We are currently in an age of ‘data deluge’ where the amount of

data generated in the world far exceeds our capacity to analyse and
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derive insights from them. This deluge of data has accelerated to such

an extent that 90% of all the data ever generated in the world has

been created in the last 2 years 1. With the popularisation of wearable1 Ralph Jacobson. 2.5 quin-
tillion bytes of data created
every day. how does cpg &
retail manage it?, Oct 2016.

URL https://www.ibm.com/
blogs/insights-on-business/

consumer-products/
2-5-quintillion

technologies and the ‘internet of things’, this trend is not expected to

change any time soon. Moreover, many day-to-day activities of people

such as banking, bill payments, public transport ticketing, taxi hire,

social communications, and fitness tracking have been digitised and are

generating large amounts of unstructured data as a consequence. As such,

collecting data for some types of quantitative research has changed from

a highly structured, designed endeavour to a low cost, scraping activity

from data repositories heretofore relatively unused in terms of research

beyond the purpose for which the data were initially collected. Most

of the data collection activity has also become ‘passive’, i.e. collected

without any effort from the participants. This has vastly increased the

capacity of the data collection process, which has led to the emergence of

‘big data’ and consequentially, to the need for advanced and automated

data-mining techniques to extract value from these vast datasets. The

above two phenomena – the attempt to model the physical environment

as a function of information exchange, and the unprecedented availability

of data - has led to a significant volume of research wherein various data

sources have been utilised to understand a variety of aspects of the built

environment. For example, functional regions of a country has been

derived from call detail record data 2, and population and demography2 Carlo Ratti, Stanislav Sobolevsky,
Francesco Calabrese, Clio Andris,

Jonathan Reades, Mauro Mar-
tino, Rob Claxton, and Steven H.

Strogatz. Redrawing the map
of great britain from a network

of human interactions. PLOS
ONE, 5(12):1–6, 12 2010. doi:
10.1371/journal.pone.0014248.

URL https://doi.org/10.
1371/journal.pone.0014248

have been studied through social media data such as that derived from

Twitter.

1.1 Challenges

This frenzy of data generation and use is not without pitfalls. One of the

major disadvantages in the attempts to repurpose the data is the risk to

the privacy of the users whose data is being collected and analysed. With

personal mobile devices becoming mainstream, almost every data point

generated has a person behind it. The rush into the information age and

the use of social media platforms has happened at a much faster rate

than understandings of the ramifications to privacy of the participants

could be properly understood. Even when the data collected does not

contain personal information, most datasets can reveal personal and

potentially sensitive information when linked with other sources of data.

For example, anonymised cycle ride trajectories might not be interesting

https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion
https://doi.org/10.1371/journal.pone.0014248
https://doi.org/10.1371/journal.pone.0014248
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information on their own, but when combined with other datasets such

as taxi trips and payment information, the data can disclose the identity

and residences of the people the data is about. This has prompted major

concerns and backlashes from users and regulators in the past decade.

These concerns are addressed in industry as well as research using both

technology and regulation. From the technology perspective, all the

stakeholders who generate, collect, or use the data try to use cryptogra-

phy to anonymise, obscure, or encrypt any personal information as much

as possible. In terms of regulation, legislation efforts such as the General

Data Protection Regulation (GDPR) have been introduced to influence the

behaviour of these stakeholders by introducing comprehensive rules and

punitive measures for non-compliance. Though both these approaches

ultimately try to protect user’s privacy and personal information, they

also pose one of the greatest challenges to research which uses passively

collected user data. In the next 5 years, it can be expected that every

freely available data source will be protected from the unfettered use

which we see today. Wherever this protection is not possible, it can be

expected that the data would be obscured or anonymised in order to

remove any risk to the privacy of users, thus making it imperative that

researchers adapt to these changes by looking for ways to overcome the

challenges posed by them.

In addition to privacy concerns, this deluge of data introduces signifi-

cant technological challenges as well. Both academia and industry have

produced extensive ‘big data’ research which develops the theory, meth-

ods and tools to tackle the challenges posed by such large assemblages

of data, in order to derive meaningful insights from them. This ‘big

data’ research promises to solve a lot of the technological and logistical

challenges incurred in many disciplines, but not without significant ad-

ditional overheads in terms of cost and resources. In the case of research

projects, blindly adopting the ‘big data’ methods without consideration,

has the potential to cause more problems than advantages. The discipline

of Geography, especially geographic information systems and science,

has a long tradition of dealing with large datasets from the inception

of the field, and the recent deluge of data has caused issues due to the

complexity, latency and lack of structure of these new datasets, rather

than their sheer volume. Hence, it is extremely important to be mindful

while adopting the contributions from ‘big data’ discourse for research so

that the solutions are implemented where the actual problems are located.

There needs to be careful consideration when choosing or designing the
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methods, tools and frameworks which are used to address the unique

requirements of the new data sources. Moreover, there needs to be an

inquiry into a framework for how these considerations are identified and

addressed.

1.2 Research Question & Methodology

The motivation for the research began with the collection of the Wi-Fi

probe requests at a national level within the ’Smart Street Sensors’ (SSS)

project. The primary objective of the project was to develop a business

venture providing quantitative data on footfall to retailers across the

country. This research was initially designed to supplement the above

project by exploring the possibility of validating the data collection

methodology and understanding the uncertainties and biases present

in them. It was also designed to explore methods and analyses which

provide insights and value to the retailers from the base footfall volumes.

As discussed in the previous section, the preliminary analysis of the

data collected revealed two major problems areas. First is the need to

improve the accuracy of the footfall estimation by circumventing the

MAC randomisation process and the second is the need to protect the

privacy of user by developing methods that neither reverse engineer

nor collect any personal data. With these two challenges in mind, the

primary question posed for the research is as follows,

"Can dynamics of footfall inferred from passively collected big dataset

without putting the privacy of users at risk?"

In this context, this thesis works on answering the question while

exploiting the opportunities presented above in the following ways: by

first describing the collection of large volumes of passively generated

data, then by solving the uncertainties in the data which arises due

to their high variability and the mechanisms designed to protect the

privacy of the users, and finally, by analysing the data to produce useful

information regarding the distribution and dynamics of footfall in the

country.

Contrary to regular methodology, where the research starts from the

question, moves to a literature search, data collection, analysis and finally

discussion and conclusions, this research starts from the availability of

large comprehensive national level dataset. This research starts from

this dataset, studies both the data and literature surrounding it in detail,

finds gaps, problems and unanswered questions in the field, the tries
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to solve or answer them. In this pursuit of understanding the nature

of the data that were available without using personal data of users,

the research also devises and conducts series of controlled experiments

which provides valuable insight into improving the method that could

be used for improving the estimation of people or footfall around the

sensors. The effectiveness of the methodology was also tested using

various sets of manually collected data on footfall information at sample

locations.

1.3 Outline

The thesis starts with a broad and systematic literature survey on the

topic of ‘distribution and dynamics of human activity’ in Chapter 2. In

this chapter, major themes of research and their evolution in the past 30

years are identified along with the development of technologies which

were employed. The literature review resulted in the identification of the

best possible data source for further research, along with opportunities

available for further research.

Having identified Wi-Fi as one of the most promising technologies for

research, Chapter 3 explores Wi-Fi specification in detail, especially the

‘probe request’ mechanism. In addition to studying the standards and

specification used to identify relevant data, the chapter also discusses the

design and implementation of a series of small experiments to capture

and analyse data in the real-world. Three sets of initial experiments

were conducted and results from the experiments were used to conduct

a longer and broader ‘pilot study’ which collected data from locations

across London. The chapter also introduces the ‘Smart Street Sensors’

project - a national project which collects Wi-Fi data at a large number

of retail locations. The chapter concludes with a detailed evaluation of

all the data collected from the experiments and the Smart Street Sensor

project, in terms of the bias, noise and uncertainties present in them.

Chapter 4 deals with processing the Wi-Fi data to remove the identified

uncertainties in order to produce ‘clean’ and continuous information

on the volume of footfall at the corresponding locations. The emphasis

on not using personal data, or methods which can potentially reveal

personal information, is firmly held throughout the chapter. In section

4.1, a framework for evaluating the ‘bigness’ of the data is discussed,

and a ‘data toolkit’ for processing them is subsequently devised. In

section 4.2, methods to clean the data into a realistic estimate of footfall
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are discussed. In section 4.3, both the ‘data toolkit’ and methods are

combined to architect a ‘data pipeline’ which digests the continuous

stream of data from the SSS project into meaningful footfall numbers

efficiently.

Chapter 5 details a variety of applications of the research across four

major themes: an index for footfall across United Kingdom, the detection

of events using changes in the volume of footfall, an estimation of the

flow of pedestrians between locations derived from the changes in footfall

volumes, and the identification of the nature and relationship between

places along with possibilities for further research.

1.4 Impacts & Applications

The potential of creating such detailed, long-term, national-level footfall

data as produced by this research is immense. Such information can

be one of the major components in building a ‘smart city’, where the

availability of detailed, real-time data on the built environment and its

use is vital. It can also help us in our pursuit to accomplish a real-time

census of people and their movement in the city. It can not only provide

us with snapshots of the state of retail areas, but also help in measuring,

modelling and manipulating them in real-time as a dynamic system

which respond to interventions. We can even link these footfall data to

other sources of data such as commercial consumer datasets and public

transport statistics, in order to build a comprehensive picture on the

health and efficiency of city-wide systems. Availability of such datasets

can revolutionise academic research in fields such as urban planning,

public policy and urban management, whereby the effect of interventions

could be objectively measured and analysed.

Although this research did not try to explore the applications of this

footfall data in detail, it hopes to serve as a solid basis for further studies

in a various academic disciplines such as geography, business manage-

ment, risk management, spatial analysis and computer science, which

can employ the data to either derive insights about locations and context,

or use the data as a reference/training source for validating methods

and tools. Availability of such national level data on footfall volumes

spanning continuously over years can also have a substantial impact on

industries such as retail, transportation, real estate and information tech-

nology. As this research has a significant bias towards retail locations, the

outputs can especially be of immense value for various stakeholders in
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the retail industry such as Retailers who can get detailed information on

when and where their customers shop which can lead to more efficient

business operations, Customers who can be informed on the popularity

of places and when to visit them, Landlords who can achieve a way to ob-

jectively evaluate their properties’ values based on their location and also

time, and Local Authorities who can be enabled to monitor and manage

the health of their retail areas over longer periods of time.





2

Review of Literature

Understanding the scale, nature and dynamics of distribution of the pop-

ulation across space and time has been the central premise of academic

research in various fields of study such as human geography, sociol-

ogy, transportation, urban planning and managements. This granular

knowledge of where people are and how they move is also critical in

practical decision making in various industries such as real estate for

valuing places, retail for business planning and risk management during

emergencies for evacuation. A key challenge faced by these areas of re-

search concerning the population at this scale is the collection of precise

and accurate data in a timely manner. Though large structured datasets

such as national census provides comprehensive coverage they are sparse

temporally and understanding dynamics of population withing shorter

periods is not possible. Alternatively, smaller datasets such as sample

surveys and traffic counts are collected more frequently they are not

comprehensive enough. This pursuit for identifying a data source which

has the best features of both type of datasets started as an inquiry into

methods to estimate and interpolate finer data from existing regional

level aggregate data. As technology improved through the later half of

twentieth century, research methodologies adopted the new tools and

technologies to not only improve the quality of estimations but also to

collect data with high granularity. Though new technologies provided

immense opportunity in collecting large amounts of data which were pre-

viously impossible, they also introduced their own share of uncertainties.

Hence it becomes imperative that the evolution of these techniques and

methodologies are understood along with the research that employed

them so that a rationale is built behind any further research. Moreover

with the proliferation of mobile devices and wireless internet connectiv-

ity, every day to day activity is being digitised leading to the creation

of large volumes of easily accessible data which are generated passively
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in an unstructured manner. The users’ acceptance to the collection and

analysis of such data has also been improving until recently 1, but there1 Alfred Kobsa. User acceptance of
footfall analytics with aggregated

and anonymized mobile phone
data. In Lecture Notes in Computer
Science (including subseries Lecture

Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics),

volume 8647 LNCS, pages 168–
179, 2014. ISBN 9783319097695.

doi: 10.1007/978-3-319-09770-1_15

has also been rising concerns regarding user privacy along with the de-

velopment of more accurate methods to track behaviour. In this context,

it is critical for research to balance these two: collecting relevant data and

protecting user privacy, by choosing the right technologies and devising

the appropriate methods.

In this chapter a systematic survey of literature in the broad and

growing area of research concerned with quantifying the ‘distribution

and dynamics of human activity’ has been carried out. The aim of this

survey was to evaluate the stage at which the research is currently at,

understand its evolution and progress through time and identify the

possibilities that exists for future research. A comprehensive survey of

over 300 publications which discuss this area of research was undertaken

covering the major themes and trends in the last 40 years. These themes

were discussed in detail to outline their contributions in the correspond-

ing fields of study highlighting the opportunities and gaps in research

that still exist. The timeline of publication of these research has also been

studied to discuss the evolution of the research along with the changes

in the technology landscape. These studies were then classified in terms

of the major technologies employed by them to uncover the trends in

how various technologies have been adopted and phasing out during

this period. The primary objective was to understand the advantages and

disadvantages of these techniques and to develop a theoretical frame-

work for understanding when and how to use them effectively to answer

research questions. Finally the literature survey was summarised focus-

ing on the major research gaps that still exist and interesting new areas

of research that has emerged recently where more research is warranted.

These areas of research were also critically evaluated in terms of priority

and feasibility leading to the development of questions and plan for this

research thesis.

Figure 2.1: Growth of research
in the area of ’Understand-

ing distribution and dynamics
of human activity’ since 1980

Measured in the num-

ber of papers published

The set of works which discuss the use of mobile devices based

technologies for studying topics in disciplines such as geography Li et al.

[2016], urban analysis [Ratti et al., 2006], urban computing [Jiang et al.,

2013] and other general applications and opportunities [Steenbruggen

et al., 2013, Arribas-Bel, 2014], serve as our starting point for this literature

survey. The search was then expanded from these reviews by navigating

through their citation networks and identifying further research that are

relevant. Though this did not provide a perfectly comprehensive set
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of literature, it did provide a representative sample of all the different

disciplines and directions of the research conducted in the area. Through

this process, around 325 relevant research publications were identified

which dealt with the collection, measurement, analysis, visualisation

and discussion of population and their movement at a granular level.

Research in this area started around 1950s where possibility of estimating

day-time urban population at a granular level using existing broader

data employing various estimation methods were discussed 2. Though 2 Donald L Foley. Urban day-
time population: a field for
demographic-ecological analysis.
Social Forces, pages 323–330, 1954.
ISSN 0037-7732; and Robert C
Schmitt. Estimating daytime pop-
ulations. Journal of the American
Institute of Planners, 22(2):83–85,
1956. ISSN 0002-8991

this served as a starting point, the pursuit of such granular data and their

applications in corresponding fields didn’t pick up until the start of the

21st century during the ‘digital revolution’ when personal computing

become mainstream which was followed by the growth of internet. Figure

2.4 shows the yearly volume of research published since 1980 from which

it can be observes that though there were some research conducted

through 80s and 90s the real push forward came around beginning of the

millennium when mobile phones adoption skyrocketed. In addition to

the early 2000s, a substantial increase in interest can also be seen in the

beginning of the next decade fuelled by the smartphone revolution which

completely changed the research avenues in-terms of volume and types

of data available and methodologies available to tackle them. While the

mobile phone era put a device in every ones pockets, the smart phone

era has armed them with immense data collection capabilities. The area

of research is multidisciplinary encompassing academic interest and

commercial applications in various disciplines and industries spanning

across wide range of themes as discussed in section 2.1.

2.1 Research Themes

In this section we look at the major themes and questions tackled by

this knowledge base. We start by classifying the research into the major

and minor themes explored in them as shown in Figure 2.2. The tree-

map shows the volume of research in corresponding themes measured

in terms of number of publications. We can observe that the research

is conducted in five major areas - population studies focussing on the

creating and utilising data on distribution and nature of human activity,

mobility and interaction focussing on the changes in these distributions,

understanding the nature and function of space from these distribution

and change, methods and techniques which can be used to conduct the

research and finally issues and solutions related to the privacy of the
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users while conducting these research. We can also observe that most

of the research apart from developing methods were conducted in the

domain of human mobility and social interaction closely followed by the

population distribution. In the following sections we discuss these in

detail along with their sub themes with the following framework,

1. What are the major lines of questioning?

2. What has been done previously?

3. Where are the opportunities for further research?

Figure 2.2: Tree-map show-
ing the volume of research

conducted under each major
themes and their sub-themes.

Measured by the num-
ber of publications.

2.1.1 Population Studies

Though Foley [1954] and Schmitt [1956] started this line of research

in 1950’s with the discussion on estimating daytime population using

broader datasets it was not until the 80s significant volume of research

kicked off in this area of study. From 80s until mid 2000’s numerous

studies were conducted on measuring and studying the population at a

granular level both spatially and temporally. The focus of the research

around this time was primarily on interpolation from the larger datasets

created using censuses, regional or national level sample surveys and

other centrally collected sources of data. There have been numerous fairly

successful attempts with methodologies where a broad dataset such as

regional level population summaries and modelling or interpolating finer

data from them by augmenting with other sources of data such as street

networks [Reibel and Bufalino, 2005], remote sensing [Sutton, 1997, Yuan
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et al., 1997, Chen, 2002] etc. Dobson et al. [2000, 2003], Bhaduri et al.

[2002, 2007] and [Mennis, 2003, Mennis and Hultgren, 2006] are examples

of such research methodology. These studies were almost done on a city

scale or above with mostly modelling or interpolation methods since the

data sources were few and were centrally collected.

Around 2005, there was a sharp shift in research where the interpola-

tion methods were replaced by highly available granular data collected

over cellular network. Studies were conducted on estimating population

densities, presence of tourists, general activity pattens using data from

cellular networks. Most of these research were conducted at a far larger

geographic scale looking at things at an area level [Pulselli et al., 2008,

Girardin et al., 2009, Phithakkitnukoon et al., 2010, Yuan and Raubal,

2016]. There were efforts in using device level sensors such as global

positioning system(GPS), Wi-Fi and Bluetooth to detect population dis-

tribution and socio-geographic routines [Calabrese et al., 2010, Rose and

Welsh, 2010, Farrahi and Gatica-Perez, 2010]. In terms of scale, there have

been studies on looking at distribution of people at a highly granular

level such as queue lengths 3 as well as broader level such as cities 4.

3 Yan Wang, Jie Yang, Hongbo
Liu, and Yingying Chen. Mea-
suring human queues using
wifi signals. In Proceedings
of the 19th annual international
conference on Mobile computing
& networking, pages 235–237,
2013. ISBN 9781450319997.
doi: 10.1145/2500423.2504584.
URL http://dl.acm.org/
citation.cfm?doid=2500423.
2504584{%}5Cnhttp://dl.acm.
org/citation.cfm?id=2504584

4 Pierre Deville, Catherine Linard,
Samuel Martin, Marius Gilbert,
Forrest R Stevens, Andrea E
Gaughan, Vincent D Blondel,
and Andrew J Tatem. Dynamic
population mapping using mobile
phone data. Proceedings of the Na-
tional Academy of Sciences, 111(45):
15888–15893, 2014. ISSN 0027-8424.
doi: 10.1073/pnas.1408439111

Around the 2015, along with the data collected directly from the

mobile devices,the data that are generated by the users activity on these

devices are became more important. Social media data such as twitter

[Lansley and Longley, 2016b] and other consumer data such as loyalty

cards [Lloyd and Cheshire, 2018], smart cards [Ordonez and Erath, 2012]

etc. have also become a significant sources of data for such research.

Recently, with increased concerns and legislation on privacy, there have

been studies which go back to the effort of interpolating finer data

from broader datasets but using more data and processor intensive

technologies such as agent based modelling, deep learning, small area

estimation [Crols and Malleson, 2019, Shibata and Yamamoto, 2019, Rao

and Molina, 2015] etc.. Though there have been a lot of work done in

most of the directions in this research area, the clear gap arises due to the

absence of a continuous, granular and sufficiently longitudinal data-sets

to complement the methodologies that have been developed.

2.1.2 Human Mobility and Interaction

Study of movement of people is one of the major areas of research which

have significantly benefited from the decentralised collection of data

at a granular level 5. In addition to being useful in their own right,

5 M Castells. Grassrooting the
space of flows. i wheeler, aoyama
and warf [eds.] cities in the
telecommunications age, 2000

these data were in turn used to augment traditional models of travel

http://dl.acm.org/citation.cfm?doid=2500423.2504584%7B%25%7D5Cnhttp://dl.acm.org/citation.cfm?id=2504584
http://dl.acm.org/citation.cfm?doid=2500423.2504584%7B%25%7D5Cnhttp://dl.acm.org/citation.cfm?id=2504584
http://dl.acm.org/citation.cfm?doid=2500423.2504584%7B%25%7D5Cnhttp://dl.acm.org/citation.cfm?id=2504584
http://dl.acm.org/citation.cfm?doid=2500423.2504584%7B%25%7D5Cnhttp://dl.acm.org/citation.cfm?id=2504584
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behaviour, traffic and transport to provide a better understanding of

human movement over time and space [Janssens, 2013]. The major

themes of research within this area are, Movement of people in space

and time with emphasis on understanding the built environment, social

interaction between these people with a sociology perspective and traffic

and transportation studies with a infrastructure perspective. There is

significant volume of research which dealt with recording and analysing

the trajectories of the users to understand their movement patterns

enabled by the unprecedented availability of detailed data from mobile

devices and this is discussed in detail along with the discussion of the

technologies used in Section 2.3.

2.1.3 Methodology and Techniques

Research in this are focused around 5 major topics,

1. Localisation - Research into using the mobile devices and data

generated from them as a cheaper alternative to Global Posi-

tioning Systems and remote sensing.

2. Data Sources - Identifying and formalising new data-sources as

the technology develops

3. Application - Applying these identified data sources to answer

questions and solve problems in different disciplines.

4. Visualisation - simplifying, visualising and interpreting these

high volume of unstructured, noisy datasets.

5. Device fingerprinting - overcoming the difficulties posed by the

anonymisation process and extract useful information.

Localisation of mobile devices without the use of expensive additional

infrastructure such as GPS is one of the earliest ideas pursued in this

aspect [Bulusu et al., 2000, He et al., 2003, Moore et al., 2004, LaMarca

et al., 2005]. This research, when reversed, could also lead to the tracking

of these devices in space without the aforementioned infrastructure thus

providing a inexpensive, easy way to collect mobility data. The sensors

which are already present in the phones such as Bluetooth [Bandara

et al., 2004], Wi-Fi [Zarimpas et al., 2006], cellular radio [Dil and Havinga,

2011, Ahas and Mark, 2005] etc. have been considered to be used for

localisation of the devices. This has been particularly important in the

field of indoor localisation where GPS doesn’t usually work 6. When

6 Nobuo Kawaguchi. Wifi lo-
cation information system for

both indoors and outdoors. In
International Work-Conference
on Artificial Neural Networks,

pages 638–645. Springer, 2009

seen from the other perspective the same technologies and methods can

enable us to collect presence and movement data on people indoors [Roy
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and Chowdhury, 2018a,b, Jia et al., 2019, Nikitin et al., 2019, Kulshrestha

et al., 2019, Deng et al., 2018].

The identification of data sources started with looking at the ’real

time’ city examining the digital landscape created by the citizens their

electronic devices [Townsend, 2000]. This was furthered by the notion of

‘instrumenting’ the city and developing methods and techniques under

the umbrella of smart cities and internet of things [O’Neill et al., 2006,

Sruthi, 2019]. Since there have been research looking at the wireless

data collected from positioning technologies [Bensky, 2007] and cellular

network [Kiukkonen et al., 2010, Steenbruggen et al., 2015] and even

crowdsourcing as method of collection [Shin et al., 2013] leading towards

a framework for computational urban planning [Kontokosta, 2015]. With

the effort to formalise them as valid sources of data, there have also been

research looking at the biases in them such as mobile phone ownership

[Wesolowski et al., 2013, Kobus et al., 2013].

Identifying and fingerprinting unique devices and users from noisy,

unstructured data is another area of active research under methodolo-

gies and techniques 7. The majority of the work has been done as an 7 Bin Jiang and Xiaobai Yao.
Location-based services and
gis in perspective. Computers,
Environment and Urban Systems, 30
(6):712–725, 2006. ISSN 0198-9715;
and Lin Liao. Location-based
activity recognition. PhD thesis,
University of Washington, 2006

extension of localisation where the GPS-less positioning leading to finger

printing people and their movement out of the data [Pang et al., 2007a,

Pappalardo et al., 2015]. Additionally there are work looking at the tracks

collected from Wi-Fi or mobile data and extract unique users out of them

[Girardin et al., 2008, Eagle and Pentland, 2009, Jiang et al., 2012]. It is

also demonstrated that it is possible to wireless technologies can be used

to detect even device free entities [Elgohary, 2013]. These localisation and

clustering techniques can also be used for socio-geographical analysis

and to understand the patterns of activity of people [Licoppe et al., 2008].

There has been a good deal of security research on the robustness of

the anonymisation techniques while revealing methodologies to over-

come limitations imposed by them [Mathieu Cunche, 2016, Chothia and

Smirnov, 2010, Krumm, 2007]. Cheng and Wang [2016] was one of the

first to look into devising a method to do this in a non-intrusive way

which are further extended by Di Luzio et al. [2016], Adamsky et al.

[2018] and Dai et al. [2019]. This is currently an active field of research

and there is immense opportunity for further research.

Visualising the temporal dynamics of data collected on human activi-

ties through decentralised processes poses significant challenges when

approached with traditional cartographic concepts 8. Digital media espe-

8 Alan M MacEachren and Menno-
Jan Kraak. Research challenges in
geovisualization. Cartography and
Geographic Information Science, 28
(1):3–12, 2001. ISSN 1523-0406; and
Elaine J Hallisey. Cartographic
visualization: an assessment and
epistemological review*. The
Professional Geographer, 57(3):
350–364, 2005. ISSN 0033-0124

cially animation has been explored as an option to solve for the temporal
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dimension [Morrison et al., 2000, Lobben, 2003] but is bound by the

cognitive limits of the viewer [Harrower, 2007]. There have been ap-

proaches proposed around animations of generated surfaces [Kobayashi

et al., 2011] and network-based visualizations [Ferrara et al., 2014] leaving

gaps in research for new methods in dynamic geographic visualisation

[Fabrikant, 2005] and visualising path and flow of phenomena [Thomas,

2005], particularly of the mobility data collected from cellphones [Sbodio

et al., 2014]. This provides us with a promising opportunity for research

in methods for visualising high frequency, hyper-local pedestrian data

within the limits of cognition of the viewer.

2.1.4 Spatial Analysis - Theory and Modelling

Traditional and modern geography was dominated by the study of

centrally collected data acquired through extensive field surveys and

remote sensing. In the last two decades, a significant paradigm change

has been introduced by the availability of unprecedented amount of

data generated by unconventional sources such as mobile phones, social

media posts etc. This move to the postmodern geography has been

accompanied by a change in our understanding of the built environment

and human geography from a static point of view to a more dynamic

definition 9. This definition is based on the bottom-up mechanisms9 Edward Soja. Postmod-
ern geographies, 1989. URL
http://books.google.com/

books?id=sNcRAQAAIAAJ

which make human activity such as information exchange and economy

to manifest in the physical built environments as argued by [Batty, 1990,

1997, Batty et al., 2012] and [Batty, 2013a,b].

This transition into the digital age [Graham and Healey, 1999, Tranos

and Nijkamp, 2012, Tranos, 2013] has changed the politics of space and

time [Massey, 1992] and been more pronounced in the study of urban

built environment where technology has redefined the concepts of place

and space [Graham and Marvin, 2001, 2002, Sassen, 2001]. With the

ability to collect and analyse of data on large complex systems in real-

time [Graham, 1997], we are exploring the possibilities of understanding

their structure and organisation using concepts of complexity theory

[Bettencourt, 2013, Portugali et al., 2012] with more emphasis on their

temporal patterns such as the argument towards finding the pulse of

the city [Batty, 2010]. With the population getting more and more

connected [Castells, 2010], the nature of space/place is being dynamically

defined by the population themselves [Giuliano and Small, 1991] and

vice versa [Zandvliet and Dijst, 2006]. This flood of hard data 10 was

10 Nature Editorial. A
flood of hard data. Nature,

435:698, 2008. ISSN 0028-
0836. doi: 10.1038/453698a

accompanied not only by optimism in its potential [Thomas, 2001] but

http://books.google.com/books?id=sNcRAQAAIAAJ
http://books.google.com/books?id=sNcRAQAAIAAJ
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also by the questions raised on the challenges in handling the diverse,

large scale, non standardised data it produces and the usefulness or

representativeness of the resulting analysis [Miller, 2010, Arribas-Bel and

Sanz-Gracia, 2014]. However, availability of such data has impressive uses

in urban studies [Bettencourt, 2014] especially with advancement of new

technologies [Steenbruggen et al., 2013] and possibility of distributed,

crowdsourced data collection [Lokanathan and Gunaratne, 2015].

2.1.5 Privacy

The ubiquity of personal devices and digitisation of day to day activi-

ties through these mobile devices [McMeel, 2018] has provided many

opportunities for researchers and industry for collecting, analysing and

deriving inputs from them. However at the same this also increased

the risk of infringement on privacy of the users whose data is being

collected 11. There is immense value in uniquely identifying and pro-

11 T Scott Saponas, Jonathan
Lester, Carl Hartung, Sameer
Agarwal, and Tadayoshi Kohno.
Devices that tell on you: Privacy
trends in consumer ubiquitous
computing. In Usenix Security,
volume 3, page 3, 2007; and
John Krumm. A survey of
computational location privacy.
Personal and Ubiquitous Computing,
13(6):391–399, 2009

filing information on people for specialised purposes such as security

[Cutter et al., 2006] and law enforcement [Dobson and Fisher, 2003] but

also has extreme risks associated when not handled with care [VanWey

et al., 2005]. Strictly protecting personal information while ensuring the

information is usable for research by maintaining the uniqueness in the

data is the major concern which was addressed by devising frameworks

for secure practices in confidentially collecting and using the location

data [Duckham and Kulik, 2006, Tang et al., 2006, Lane et al., 2014]. Some

efforts sought to accomplish this task through cryptographic hashing

algorithms [Pang et al., 2007b] while others aimed to thwart identification

and tracking at the device level by techniques such as MAC randomi-

sation [Gruteser and Grunwald, 2005, Greenstein et al., 2008]. Finally

though getting consent of users for the collection and use of such infor-

mation from their mobile devices is challenging, there is a significantly

improved acceptance when the process offers value in return such as

discounts and monetary benefits [Kobsa, 2014].

There is opportunity in this area for research in applying the crypto-

graphic solutions along with the privacy preserving frameworks to arrive

at methods which can extract useful information out of large personal

data while obscuring or anonymising them.
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Figure 2.3: The evolution of re-
search since 1980 categorised

based on their major theme. 2.2 Research Trends

Figure 2.3 shows the volume of research done in this topic since 1980

categorised based on their major themes discussed earlier. We can

observe that following distinct trends exist in the research, which evolved

around the development of technology in the last two decades. Until

90s the research was mostly centered around population studies on

estimating and interpolating granular spatial and temporal information

from larger and cross sectional datasets such as census and sample

surveys. The period between 2000-2010 there was interest in potential of

the new data generated by the digital revolution. We can categorise this

as the ‘mobile era’ where carrying mobile devices become mainstream.

This explosion of research coincided with mobile phones becoming more

popular and ubiquitous with population in urban areas and was around

development of methods and techniques to utilise the data generated

from them. There were also extensive studies in using the datasets to

understand human mobility along with a rising concern in the privacy

of the users who’s data which are being used for these studies.

The release of iPhone in 2008 and the increase in the share of ’smart-

phones’ in the next 10 years sparked the ‘smartphone’ era. The change

made sure that all the mobile devices gaining numerous capabilities

such as internet connectivity over Wi-Fi and mobile network, location

awareness with global positioning system, movement recognition with

accelerometers and connectivity other ‘wearable’ devices through Blue-

tooth. This also lead to the digitisation of lifestyle where every aspect of

the life being done through these devices over internet while generating

huge amount of data on these activities. This sparked the large volume
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of research on the form and function of space by studying this data and

on the dynamics of human population in space and time in the next 5

years.

These research were particularly centered around tracking the trajec-

tory of people using the mobile devices they carry with them as the

smartphones made it easier to collect the necessary data directly from

them rather than depending on a centrally collected datasets from mobile

carriers. With the theoretical limit to predictability in human mobility

quantified by Song et al. [2010b], the focus on urban mobility has been

declining in the past few years which has led to a renewed interest in

population studies at a local-local level in real-time. In addition to using

the data from the mobile devices, these studies have also been exploring

the use of large assemblages of consumer data that are being generated in

this connected mobile environment and linking them together to create a

fuller picture 12 12 Paul Longley, James Cheshire,
and Alex Singleton. Consumer
Data Research. UCL Press, 2018Finally, with the increase in use of personal data, there has also been

an increase in research regarding the privacy of the users. Along with

this, the mobile devices and subsequently the data generated by them

are more and more anonymised so that the users cannot be tracked or

identified at a personal level. This has given rise to the new trend in

research to devise methods to overcome this anonymisation and at the

same time research which considers these methods as vulnerabilities and

find solutions to make the anonymisation process more robust. There is

clear need for methods which anonymise the data sufficiently to protect

the identity of the users and at the same time enable us to conduct

research in measuring studying population distribution and movement

at a granular level.

2.3 Techniques and technology

Figure 2.4: Distribution of re-
search across various techniques
and technologies
Measured in the number of papers

published

When we look at the literature from the technology perspective, we ob-

serve that over the years, the research continuously picks up and applies

recent technological developments in the pursuit of understanding the

distribution of human activity and population. Figure 2.4 shows the

distribution of the research in terms of the main technique/ technology

used over the past 40 years. We observe that the earliest attempts started

from the exploration of using interpolation and modelling techniques on

a broader dataset. As the need for more granular datasets increased there

were attempts to devise and utilize bespoke solutions to generate them.
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When mobile devices became mainstream, the focus shifted to utilize the

relevant components of the mobile infrastructure. A significant number

of studies were done in utilising data collected from the mobile network,

sensors in the mobile devices, especially GPS and Wi-Fi, in addition

to the social media content generated from these devices. A detailed

account of these studies is given below,

Figure 2.5: The evolution
of research since 1980 in
terms of the the technol-
ogy used in the research. 2.3.1 Interpolation and Modelling

Attempts in using the existing data collected through traditional methods

such as census and large scale sample surveys to create spatially and

temporally granular and detailed estimates were carried out by applying

various interpolation methods such as pycnophylactic, dasymetric inter-

polation [Tobler, 1979, Mennis, 2003, Mennis and Hultgren, 2006, Hawley

and Moellering, 2005, Tapp, 2010, Wismans et al., 2017] along with spatial

[Lam, 1983, Martin, 1989, Martin et al., 2015] and temporal interpolation

techniques [Glickman, 1986]. These methods along with supplementary

data such as remote sensing imagery [Sutton et al., 2001, Chen, 2002]

and street networks [Reibel and Bufalino, 2005] were shown to be use-

ful in producing detailed granular population maps at various scales

with varying degree of success [Dobson et al., 2000, Bhaduri et al., 2002,

Dobson and Fisher, 2003, Bhaduri et al., 2005, 2007]. These approaches

have been employed in various applications such as econometric studies

[McDonald, 1989], studies on public health [Hay et al., 2005], emergency

management [Kwan and Lee, 2005] and flood risk estimations [Smith

et al., 2016].

In addition to these interpolation techniques classic modelling tech-
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niques can also be used to estimate daytime populations and demo-

graphic structure at hyper-local scales [Jochem et al., 2013, Jia et al., 2014],

urban scales [Alahmadi et al., 2013, Abowd et al., 2004] and regional

scales [Foley, 1954, Schmitt, 1956, Singleton and Longley, 2015, McCor-

mack, 2017]. The granular data created with such modelling techniques

are shown to be useful in urban planning and management [Parrott

and Stutz, 1999], emergency management [Alexander, 2002, Cutter et al.,

2006] and in modelling traffic and transportation [Lefebvre et al., 2013].

These interpolation and modelling techniques along with granular data

produced are also used in classifying spatial areas and hence understand-

ing the structure of cities in general [McMillen, 2001, 2004, Lee, 2007,

Arribas-Bel, 2014]. Though being useful, these techniques are still shown

to have limitations and uncertainties [Nagle et al., 2014], which mostly

arise from the nature of the input data employed. This leads us to the

need for more detailed and frequent collection of data.

2.3.2 Bespoke technologies

Following this need, there has been efforts to use bespoke or specialised

technologies such as cameras [Cai and Aggarwal, 1996, Heikkilä and

Silvén, 2004, Kröckel and Bodendorf, 2012], Lasers [Zhao and Shibasaki,

2005, Arras et al., 2008] and radio frequency receivers [Bahl and Padman-

abhan, 2000, Yang et al., 2013, Chothia and Smirnov, 2010, Bulusu et al.,

2000, Dil and Havinga, 2011] to measure human activity. But the major

problem with such solutions is the cost and effort involved in designing

and implementing them at urban and regional scales comprehensively.

Moreover, being specialised and centralised they tend to be challenging

to maintain and update as the technological landscape change. This gives

us the need to identify and use techniques which are more general in

nature and can be used for longer periods of time which are cheap to

install to achieve a more comprehensive coverage.

2.3.3 Cellular Network

The rise of mobile phones as ubiquitous personal devices for the broader

population has provided us with a viable alternative for collecting data

with finer granularity at large scales. Mobile infrastructure consists of

both the ‘network part’, built and managed by the service providers, and

the ‘user part’, which is the phones owned by the users’ themselves. The

network part, in addition to providing connectivity to the users, also

collects information on these devices actively such as communication
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between the users and passively such as when the phones themselves

move from tower to tower. The mobile devices themselves have a variety

of sensors such as accelerometer to identify movement, compass to

identify orientation, GPS receiver to deduct geographic position, etc.

They also have various communication capabilities such as cellular, Wi-

Fi, Bluetooth and Near field communications (NFC) etc. Both of these

sensors and communication capabilities can be used as sources of data

themselves. With the growth of mobile devices and the infrastructure

surrounding it, there has been significant effort in utilising data generated

by every component of this complex infrastructure.

The first set of research started to use the cellular network data for ur-

ban studies [Jiang et al., 2013, Steenbruggen et al., 2015, Lokanathan and

Gunaratne, 2015, Calabrese et al., 2015, Reades et al., 2007]. Even though

this approach has been acknowledged to have inherent biases such as

ownership bias across particular demographic groups [Wesolowski et al.,

2013] the relative advantages such as coverage made them excellent

sources of data. Visual exploration of use of such data using interactive

interfaces to evaluate quality of service and scenario testing has been

tested for the optimisation of public transport 13. Such network data

13 Marco Luca Sbodio, Francesco
Calabrese, Michele Berlingerio,

Rahul Nair, and Fabio Pinelli.
All aboard: visual exploration
of cellphone mobility data to
optimise public transport. In
Proceedings of the 19th interna-
tional conference on Intelligent

User Interfaces, pages 335–340.
ACM, 2014. ISBN 1450321844

with the active and passive information collected from them can be used

to create trajectories of people 14, detect their daily routine 15 and classify14 Johannes Schlaich, Thomas
Otterstätter, and Markus

Friedrich. Generating trajec-
tories from mobile phone data.

In Proceedings of the 89th an-
nual meeting compendium of pa-

pers, transportation research board
of the national academies, 2010

15 Andres Sevtsuk and Carlo Ratti.
Does urban mobility have a daily

routine? learning from the ag-
gregate data of mobile networks.

Journal of Urban Technology, 17
(1):41–60, 2010. ISSN 1063-0732.

doi: 10.1080/10630731003597322.
URL http://www.tandfonline.

com/doi/abs/10.1080/
10630731003597322

those routes in terms of function [Becker et al., 2011a]. It was also demon-

strated to be useful in understanding overall mobility and flow of people

and information [Candia et al., 2008, Krings et al., 2009, Simini et al., 2012,

Zhang et al., 2019]. These data can be used to identify asymmetry in flow

of people spatially [Phithakkitnukoon and Ratti, 2011], estimate volume

and pattern of road usage [Bolla et al., 2000, Wang et al., 2012] and by

augmenting the topology to optimise operations [Puzis et al., 2013]. Such

datasets have been extensively used in traffic and transportation research

to derive origin-destination matrices [Caceres et al., 2007, Mellegard et al.,

2011, Iqbal et al., 2014], travel time estimation [Janecek et al., 2012] and

traffic status estimation [Demissie et al., 2013, Grauwin et al., 2015].

It has been shown that mobile network data can be used to uncover

nature of the population such as tourists in specific areas [Girardin

et al., 2008] and the interaction between the people in the study area

[Campbell et al., 2008]. The structure [Onnela et al., 2007a,b], geography

[Lambiotte et al., 2008] and dynamics [Hidalgo and Rodriguez-Sickert,

2008] of such networks have been studied and demonstrated to be useful

in predicting their change [Wang et al., 2011, Vajakas et al., 2018] over

http://www.tandfonline.com/doi/abs/10.1080/10630731003597322
http://www.tandfonline.com/doi/abs/10.1080/10630731003597322
http://www.tandfonline.com/doi/abs/10.1080/10630731003597322
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time. This social networks and their spatio-temporal structure can also

be used for classification of land use [Pei et al., 2014, Jia et al., 2018],

assessment of spatial patterns [Reades et al., 2009, Steenbruggen et al.,

2013] and understanding the broader spatial structure of cities [Louail

et al., 2014, Arribas-Bel and Tranos, 2015] and regions [Arhipova et al.,

2018]. The data collected from the cellular network when examined

at granular levels such as inter-personal communication and economic

activity can be used to create estimations of micro area-level population

density 16 and also the characteristics 17 and the nature of the activity

16 R Pulselli, P Ramono, Carlo
Ratti, and E Tiezzi. Computing
urban mobile landscapes through
monitoring population density
based on cellphone chatting.
Int. J. of Design and Nature and
Ecodynamics, 3(2):121–134, 2008;
and Yibin Ng, Yingchi Pei,
and Yunye Jin. Footfall count
estimation techniques using
mobile data. In 2017 18th IEEE
International Conference on Mobile
Data Management (MDM), pages
307–314. IEEE, 2017

17 Fabien Girardin, Andrea
Vaccari, Alexandre Gerber, Assaf
Biderman, and Carlo Ratti.
Towards estimating the presence
of visitors from the aggregate
mobile phone network activity
they generate. In Intl. Conference
on Computers in Urban Planning
and Urban Management, 2009

[Phithakkitnukoon et al., 2010]. Aggregated human activity measured

from such research in turn can be used to measure and model population

dynamics and land use density and mix at broader level [Jacobs-Crisioni

et al., 2014, Tranos and Nijkamp, 2015, Tranos et al., 2018]. The spatial

patterns thus uncovered can then be applied to urban planning [Becker

et al., 2011b] whilst the temporal patterns uncovered have immense

utility for the disciplines such as epidemiology. For example, population

influxes measured from changes in mobile network usage can be used to

model spread of diseases 18. 18 Caroline O Buckee, Andrew J
Tatem, Justin Lessler, Ottar N
Bjornstad, Bryan T Grenfell,
Janeth Kombich, Nathan Ea-
gle, C J E Metcalf, and Amy
Wesolowski. Quantifying seasonal
population fluxes driving rubella
transmission dynamics using mo-
bile phone data. Proceedings of the
National Academy of Sciences, 112
(35):11114–9, 2015. ISSN 0027-8424.
doi: 10.1073/pnas.1423542112.
URL http://doi.org/10.1073/
pnas.1423542112

Though the mobile network provides much more granular and accu-

rate data than interpolation techniques, it is not without its limitations

[Yucel, 2017]. The distribution of network infrastructure usually follows

the purposes of service coverage and follows commercial decisions. This

introduces systematic biases in the data passively collected through them.

Moreover, the data actively collected through them has bias based on

the volume of usage of services by the customers which can vary widely

spatially, temporally and also based on demography. In addition to this

because of the coverage, the data collected from mobile service providers

pose immense privacy risk when linked to other sources of consumer

data. This makes collection of data directly from the devices using the

sensors on the device much more robust in certain cases.

2.3.4 Mobile Sensors

The most prominent sensors and capabilities present in mobile devices

that can be used for distributed urban sensing are Cellular radio, Blue-

tooth, Wi-Fi, GPS, accelerometer and compass 19. Since cellular radio is

19 Nicholas D Lane, Emiliano
Miluzzo, Hong Lu, Daniel Pee-
bles, Tanzeem Choudhury, and
Andrew T Campbell. A survey of
mobile phone sensing. IEEE Com-
munications magazine, 48(9), 2010;
and Enwei Zhu, Maham Khan,
Philipp Kats, Shreya Santosh
Bamne, and Stanislav Sobolevsky.
Digital urban sensing: A multi-
layered approach. arXiv preprint
arXiv:1809.01280, 2018

managed by the cellular network and covered in mobile network data,

we explore the research done with other sensors. In contrast to planned

actively collected data, data passively collected via a distributed network

of general purpose devices tends to be larger and more temporally dy-

http://doi.org/10.1073/pnas.1423542112
http://doi.org/10.1073/pnas.1423542112
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namic. For example, an organised survey conducted every month to

understand interpersonal communications between people in a team of

50 will result in a 2500 records a month. The same task is done through

collecting data on email communication sent by them will result in a

same volume records in a day. The challenges and solutions on collecting

and analysing such large-scale longitudinal data are discussed by [Lau-

rila et al., 2012, Antonic et al., 2013]. The real time nature of such data

also gives us the opportunity to monitor and understand the city in much

smaller temporal scales [Townsend, 2000, O’Neill et al., 2006] and the rep-

resentativeness of such datasets have also been explored [Shin et al., 2013,

Kobus et al., 2013]. Data generated from communication networks can be

used to understand the structure of urban systems which are becoming

increasingly border-less 20. Similar to the network based data, it can20 Luca Bertolini and Martin
Dijst. Mobility environments
and network cities. Journal of
urban design, 8(1):27–43, 2003

help in understanding human mobility [Asgari et al., 2013, Amini et al.,

2014, Zhang et al., 2014] through mining trajectory patterns [Giannotti

et al., 2007] and socio geographic routines [Farrahi and Gatica-Perez,

2010]. It is also useful in various traffic and transportation applications

for monitoring roads [Mohan et al., 2008] and estimating traffic [Cheng

et al., 2006], uncovering regional characteristics [Chi et al., 2014] and

extracting land use patterns [Shimosaka et al., 2014]. Apart from GPS

and Wi-Fi, there have been efforts in exploring other possibilities such

as Bluetooth for location [Bandara et al., 2004, Becker et al., 2019] and

aggregate detected Bluetooth activity to monitor freeway status [Haghani

et al., 2010]. There have also been successful implementations of frame-

works to predict movement of people by combining Wi-Fi and Bluetooth
21. But owing to shorter range and requirement of active engagement21 Long Vu, Quang Do, and Klara

Nahrstedt. Jyotish: A novel
framework for constructing pre-

dictive model of people move-
ment from joint wifi/bluetooth

trace. In Pervasive Computing
and Communications (PerCom),
2011 IEEE International Confer-

ence on, pages 54–62. IEEE, 2011

from the user where they have to actively start the device pairing process,

Bluetooth is much less preferable for large-scale data collection than GPS

or Wi-Fi. The research on GPS and Wi-Fi based studies are discussed in

more detail below.

2.3.5 Global Positioning System

In addition to providing a user’s location to applications such as maps

and navigation, the GPS capability in mobile devices in tandem with

Wi-Fi can also maintain a continuous list of locations visited by the

device over long periods of time. It works mostly in the background

and requires almost no active input from the user to operate. Though

very convenient for collecting data, due to the privacy risks associated

with it, GPS is often one of the resources in a device that requires explicit
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user permission to be accessed. The concepts and methodologies for

collecting such data were set out by [Asakura and Hato, 2004] and there

have been attempts to collect this rich data from volunteers at a large

scale along with ancillary data [Kiukkonen et al., 2010] and provide a

location based service application for the collection of data [Ratti et al.,

2006, Jiang and Yao, 2006, Ahas and Mark, 2005].

The accuracy, convenience and being designed for navigation makes

GPS one of the most used technologies for mobility studies 22. It has been 22 Marta C. González, César A.
Hidalgo, and Albert-László
Barabási. Understanding in-
dividual human mobility pat-
terns. Nature, 453(7196):779–782,
2008. ISSN 0028-0836. doi:
10.1038/nature06958. URL
http://www.nature.com/nature/
journal/v453/n7196/full/
nature06958.html{%}5Cnhttp:
//www.nature.com/nature/
journal/v453/n7196/pdf/
nature06958.pdf

used to analyse and understand individual mobility patterns [Neuhaus,

2010, Shin et al., 2010], which have been shown to have a high order of

regularity in spite of the complexity [Brockmann et al., 2006, Song et al.,

2010a]. There have been efforts to use this regularity to predict the future

location of people [Monreale et al., 2009, Calabrese et al., 2010]. The

limitations of predictions have also been quantified [Song et al., 2010b].

There have been successful efforts in extracting behaviours and patterns

from such trajectory data [Liu et al., 2010, Cho et al., 2011, Hoteit et al.,

2013, Pappalardo et al., 2013] along to understand individual patterns

from large assemblages [Giannotti et al., 2011, Calabrese et al., 2013] and

vice versa [Wirz et al., 2012]. In traffic and transportation, GPS trajectory

from mobile devices is used to estimate [Calabrese et al., 2011] and ex-

pand [Jing et al., 2011] origin-destination matrices, detect the mode of

travel [Gong et al., 2012, Rossi et al., 2015] and calibrate existing spatial

interaction models [Yue et al., 2012] . Since the data is collected at the

device level and depends on the activity of the individual, it can be

de-anonymised to reveal the nature of the owner of the devices. The

possibilities of detecting the activity of the individual from trajectory in-

formation is demonstrated by [Liao, 2006, Krumm, 2007]. Patterns [Jiang

et al., 2012] and structures in routines [Eagle and Pentland, 2009] can be

extracted from these trajectories and can be used for socio geographic

analysis of the population [Licoppe et al., 2008, Chen et al., 2018]. It can

also utilised in classification of the population at a particular location

at a given time 23. Being inherently spatial and activity driven, GPS

23 Luca Pappalardo, Filippo Si-
mini, Salvatore Rinzivillo, Dino
Pedreschi, Fosca Giannotti, and
Albert-László Barabási. Returners
and explorers dichotomy in hu-
man mobility. Nature Communica-
tions, 6:8166, 2015. ISSN 2041-1723.
doi: 10.1038/ncomms9166. URL
http://www.nature.com/ncomms/
2015/150908/ncomms9166/full/
ncomms9166.html{%}5Cnhttp:
//www.nature.com/doifinder/10.
1038/ncomms9166

trajectories have been shown to be useful to identify [Bao et al., 2012],

characterise [Wan and Lin, 2013] and automatically label [Do and Gatica-

Perez, 2014] significant places of interest. It can also be used for land

use detection [Toole et al., 2012, Zhang et al., 2018], classification [Jiang

et al., 2015] and the study of urban morphology [Kang et al., 2012]. These

GPS trajectories have been shown to be useful in estimating population

dynamics at local level and within short durations during social events

http://www.nature.com/nature/journal/v453/n7196/full/nature06958.html%7B%25%7D5Cnhttp://www.nature.com/nature/journal/v453/n7196/pdf/nature06958.pdf
http://www.nature.com/nature/journal/v453/n7196/full/nature06958.html%7B%25%7D5Cnhttp://www.nature.com/nature/journal/v453/n7196/pdf/nature06958.pdf
http://www.nature.com/nature/journal/v453/n7196/full/nature06958.html%7B%25%7D5Cnhttp://www.nature.com/nature/journal/v453/n7196/pdf/nature06958.pdf
http://www.nature.com/nature/journal/v453/n7196/full/nature06958.html%7B%25%7D5Cnhttp://www.nature.com/nature/journal/v453/n7196/pdf/nature06958.pdf
http://www.nature.com/nature/journal/v453/n7196/full/nature06958.html%7B%25%7D5Cnhttp://www.nature.com/nature/journal/v453/n7196/pdf/nature06958.pdf
http://www.nature.com/nature/journal/v453/n7196/full/nature06958.html%7B%25%7D5Cnhttp://www.nature.com/nature/journal/v453/n7196/pdf/nature06958.pdf
http://www.nature.com/ncomms/2015/150908/ncomms9166/full/ncomms9166.html%7B%25%7D5Cnhttp://www.nature.com/doifinder/10.1038/ncomms9166
http://www.nature.com/ncomms/2015/150908/ncomms9166/full/ncomms9166.html%7B%25%7D5Cnhttp://www.nature.com/doifinder/10.1038/ncomms9166
http://www.nature.com/ncomms/2015/150908/ncomms9166/full/ncomms9166.html%7B%25%7D5Cnhttp://www.nature.com/doifinder/10.1038/ncomms9166
http://www.nature.com/ncomms/2015/150908/ncomms9166/full/ncomms9166.html%7B%25%7D5Cnhttp://www.nature.com/doifinder/10.1038/ncomms9166
http://www.nature.com/ncomms/2015/150908/ncomms9166/full/ncomms9166.html%7B%25%7D5Cnhttp://www.nature.com/doifinder/10.1038/ncomms9166
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[Calabrese et al., 2010, Kim and MacEachren, 2014, Deville et al., 2014].

When combined with other data sources can be useful to understand

relationship between spatial areas [Long and Thill, 2015].

From the literature we see that GPS is one of the most precise and

accurate user side methods of collecting location of mobile devices. In

addition, the data collected is well understood and collection methodolo-

gies can be scaled up with minimum resources. That being said, it is also

well established that urban sensing methods using GPS of mobile de-

vices has problems of enhanced risk of breach of privacy when executed

passively and need explicit user engagement when executed actively.

2.3.6 Wi-Fi

Wi-Fi is a wireless network connection protocol standardised by IEEE

[2016]. It is a distributed server-client based system where the client

connects to access points (AP). Every mobile device in the network has a

unique hardware specific MAC address, which is transmitted between

the device and AP before the connection is made. The key feature of

Wi-Fi infrastructure is that the network is distributed and the APs can

be set up and operated by anyone locally unlike mobile networks. Since

they are primarily used for Internet service provision, the protocol has

priority for continuity of connectivity so the devices constantly scan

for new and better connections. This is done through a probe request,

which is detailed in later sections. With this background we can see

that Wi-Fi provides a fair middle ground between an entirely network

driven approach such as cellular network to an entirely user driven

approach such as GPS. Since the network infrastructure is distributed

and deployed for Internet it offers more coverage than most of the

technologies discussed except or cellular network. It is also very resilient

and can encapsulate and reinforce civic space in cities 24.

24 Paul M. Torrens. Wi-fi ge-
ographies. Annals of the As-
sociation of American Geogra-

phers, 98(1):59–84, 2008. doi:
10.1080/00045600701734133

Though Wi-Fi is a location less technology, there are reliable methods

to trilaterate the location of the device by the signal strength and the

locations of APs known through either targeted surveys or crowdsourced

volunteer effort [He et al., 2003, Moore et al., 2004, LaMarca et al., 2005,

Dinesh et al., 2017, Lin and Huang, 2018]. This can overcome the usual

shortcoming of GPS, which struggles for precision and accuracy in

indoor and densely built environments [Zarimpas et al., 2006, Kawaguchi,

2009, Xi et al., 2010]. Utilising this, we can easily and quickly estimate

trajectories of the mobile devices just using the Wi-Fi communication the

device has with multiple known APs 25. This can be used similar to the

25 Zhuliang Xu, Kumbesan San-
drasegaran, Xiaoying Kong, Xin-

ning Zhu, Jingbin Zhao, Bin
Hu, and Cheng-Chung Lin.

Pedestrain monitoring system
using Wi-Fi technology and

rssi based localization. Inter-
national Journal of Wireless &

Mobile Networks, 5(4):17, 2013
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GPS trajectories to understand individual travel patterns [Kim et al., 2006,

Rekimoto et al., 2007, Sapiezynski et al., 2015], crowd behaviour [Abedi

et al., 2013, Mowafi et al., 2013, Shu et al., 2017], vehicular [Lu et al.,

2010] and pedestrian movement [Xu et al., 2013, Fukuzaki et al., 2014,

Wang et al., 2016, Taylor et al., 2019]. It can also be used in transportation

planning and management to estimate travel time [Musa and Eriksson,

2011, Håkegård et al., 2018] and real time traffic monitoring [Abbott-Jard

et al., 2013].

Being a general network protocol designed to be used by mobile

devices, Wi-Fi devices relay a range of public signals known as probe

request frames on regular intervals throughout its operation, for the

purpose of connecting and maintaining a reliable and secure connection

for the mobile device 26. These signals can be captured using inexpen- 26 Julien Freudiger. How talkative
is your mobile device?: An
experimental study of Wi-Fi
probe requests. In Proceedings of
the 8th ACM Conference on Security
& Privacy in Wireless and Mobile
Networks, WiSec ’15, pages 8:1–8:6,
New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3623-9. doi:
10.1145/2766498.2766517. URL
http://doi.acm.org/10.1145/
2766498.2766517

sive customised hardware, non-intrusively and in turn to be used for

numerous applications. In addition to a uniquely identifiable MAC ad-

dress, these signals include a range of other information which when

combined with the temporal signatures of the signals received can help

us understand the nature and identify the devices which are generating

these signals. These device/user fingerprinting techniques are demon-

strated by [Franklin et al., 2006] and [Pang et al., 2007b] and the unique

MAC addresses and associated information can successfully track peo-

ple across access points 27, their trajectories [Musa and Eriksson, 2012], 27 Mathieu Cunche. I know your
mac address: targeted tracking of
individual using wi-fi, 2014. ISSN
22638733

the relationship between them [Cheng et al., 2012, Barbera et al., 2013,

Cunche et al., 2014] and predict which of them will be most likely to

meet again [Cunche et al., 2012]. Using the semantic information present

in these probe requests, such as names of previously connected APs, it

is possible to understand the nature of these users at a large scale [Di

Luzio et al., 2016]. Using the received signal strengths from pre placed

devices we can monitor the presence and movement of entities that are

not even carrying a Wi-Fi enabled device 28. 28 A Elgohary. On detecting
device-free entities using wifi
signals. ece.uwaterloo.ca, 2013.
URL https://ece.uwaterloo.ca/
{~}aelgohar/stat841-report.
pdf{%}5Cnpapers3:
//publication/uuid/
D6821814-0041-47E6-9A26-96A32F41B07F

Because of the security and privacy risks posed by the Wi-Fi protocol’s

use of hardware based MAC address, various methods to strengthen the

security have been proposed [Pang et al., 2007b, Greenstein et al., 2008].

The randomisation of MAC addresses has become more mainstream in

mobile devices with the introduction of it as a default operating system

behaviour in iOS 8 by Apple Inc. Since MAC randomisation is not

a perfect solution [Mathieu Cunche, 2016] there have been numerous

attempts to fingerprint unique devices from the randomised anonymous

information present in the probe request frames for the purposes of

http://doi.acm.org/10.1145/2766498.2766517
http://doi.acm.org/10.1145/2766498.2766517
https://ece.uwaterloo.ca/%7B~%7Daelgohar/stat841-report.pdf%7B%25%7D5Cnpapers3://publication/uuid/D6821814-0041-47E6-9A26-96A32F41B07F
https://ece.uwaterloo.ca/%7B~%7Daelgohar/stat841-report.pdf%7B%25%7D5Cnpapers3://publication/uuid/D6821814-0041-47E6-9A26-96A32F41B07F
https://ece.uwaterloo.ca/%7B~%7Daelgohar/stat841-report.pdf%7B%25%7D5Cnpapers3://publication/uuid/D6821814-0041-47E6-9A26-96A32F41B07F
https://ece.uwaterloo.ca/%7B~%7Daelgohar/stat841-report.pdf%7B%25%7D5Cnpapers3://publication/uuid/D6821814-0041-47E6-9A26-96A32F41B07F
https://ece.uwaterloo.ca/%7B~%7Daelgohar/stat841-report.pdf%7B%25%7D5Cnpapers3://publication/uuid/D6821814-0041-47E6-9A26-96A32F41B07F
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trajectory tracking and access point security. The methods used are

decomposition of OUIs where detailed device model information is

estimated by analysing an already known dataset of OUIs 29; Scrambler29 Jeremy Martin, Erik Rye, and
Robert Beverly. Decomposition of

mac address structure for granu-
lar device inference. In Proceedings

of the 32nd Annual Conference
on Computer Security Applica-

tions, pages 78–88. ACM, 2016

attack where a small part of the physical layer specification for Wi-Fi

is used [Bloessl et al., 2015]; and finally, the timing attack where the

packet sequence information present in the probe request frame is used

[Matte et al., 2016, Cheng and Wang, 2016]. A combination of these

methodologies has been proven to de-anonymise randomised MAC

addresses [Vanhoef et al., 2016]. In addition to tracking, Wi-Fi probe

requests can be aggregated to uncover the urban wireless landscape

[Rose and Welsh, 2010] and used to reveal human activity at large scales

[Qin et al., 2013], pedestrian numbers in crowds [Schauer et al., 2014,

Fukuzaki et al., 2015] and also counting people in hyper local scales

such as queues [Wang et al., 2013]. With enough infrastructure we can

aim to generate a real-time census of the city [Kontokosta and Johnson,

2016] and also predict the amount of time a device will spend around

the sensor as well [Manweiler et al., 2013]. Similar to GPS data this can

be used as an additional control layer for interpolation techniques such

as map merging [Erinc et al., 2013].

2.3.7 Consumer data

In addition to the direct data from the sensors themselves the con-

tent generated from the mobile devices such as social media data or

smart-cards 30 can provide a viable proxy for estimating the level and30 Chen Zhong, Michael Batty,
Ed Manley, Jiaqiu Wang, Zijia

Wang, Feng Chen, and Gerhard
Schmitt. Variability in regu-

larity: Mining temporal mobil-
ity patterns in london, singa-
pore and beijing using smart-
card data. PLoS ONE, 11(2),
2016. ISSN 19326203. doi:

10.1371/journal.pone.0149222

nature of human activity. The use of geo-located tweets on the study

of small-area dynamic population estimation [Ordonez and Erath, 2012,

Marchetti et al., 2015, McKenzie et al., 2015, Lansley and Longley, 2016b],

geo-demographics [Bawa-Cavia, 2011, Longley et al., 2015, Lansley and

Longley, 2016a] and global mobility [Hawelka et al., 2014] has been

thoroughly explored. These data sources are shown to be useful in social

sciences [Crane and Sornette, 2008], abnormal event detection [Chae

et al., 2012] and analysing urban environments [Sagl et al., 2012]. It can

also be used as a control layer for interpolation techniques we discussed

earlier [Lin and Cromley, 2015].
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2.4 Research Gaps and Opportunities

In this section we summarise the previous sections to find out the best

possible technology for further research and discuss the research gaps

and opportunities available to us. Table 2.1 summarises the above dis-

cussion to evaluate all the relevant technologies that can be used for the

data collection and analysis for the study of human activity at a granular

level.

Technology Interpolation Bespoke Cellular GPS Wi-Fi

Coverage* Local City All Local All

Certainty* Very Low High Medium High Medium

Independence* Low Very High Low Medium High

Intrusiveness* Low Medium High High Medium

Granularity* Very Low Very High Medium High High

Ease of Collec-
tion*

Medium Low Medium Low High

Scalability* Medium Low High Medium High

Table 2.1: Evaluation of different
technologies or approaches that
can be used for data collection.

* coverage - the density and extent of
the current infrastructure. Certainty
- the lack of uncertainty in the
data. Independence -How much the
technique depends on secondary
data. Intrusiveness - the potential
for infringement of users’ privacy.
Granularity - the smallest spatial
and temporal at which data could be
collected. Ease of Collection - how
efficient it is collect data in terms
of time and resources. Scalability -
the potential for the technology to
improve coverage.

We can observer that Wi-Fi offers the best possible technology in terms

of flexibility and scalability for data collection through mobile devices at

an individual level while posing some risk to privacy of participants and

involves uncertainty regarding the field of measurement.

[Pinelli et al., 2015] looks at a comparison of various approaches of col-

lecting and analysing mobile phone location data. The research identifies

two major approaches in collecting device location data - Event-driven

and Network-driven. The event-driven approach is centered around the

mobile devices generating data through their day to day activities. The

major sources of event-driven data are Call Detail Records(CDR) and

internet use. Network-driven approach is centered around the service

provision infrastructure such as cellphone towers, Wi-Fi base stations etc.

The methods used to collect network-driven data are periodic update -

where the device sends an update stating the base station it is connected

to, handover - where the device information is recorded as they are

moving between base stations and location update - where the location

of the device is recorded based on the base stations it is connected to.

The research used a set of anonymised mobile phone location data from

a Belgian telecom operator for the city of Mons from which various

event-driven and network driven scenarios were simulated. The authors

compared these simulated scenarios for application-independent and
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application-dependent cases such as spatial dispersal, classes of users,

count estimation and flow estimation to understand their relative advan-

tages and disadvantages. Through these comparisons it was shown that

using network-driven mobile phone location data is more advantageous

compared to the widely used event-driven ones.

From the literature search we can summarise that there is a consider-

able opportunity in the collection and analysis of mobile phone based

data for measuring hyper-local, spatio-temporal dynamics of human

activity. The potential for research gaps are discussed in detail in the

following sections.

2.4.1 Ambient population analysis
Opportunity 1: Design and col-
lection of national/regional, lon-
gitudinal, grass root level data

set which enables study of popula-
tion both spatially and temporally.

Previous research in this area of study has been limited to either national/

regional level studies using centrally collected residential population data

such as censuses or to area level studies conducted with mobile devices

based technologies. Though there were some efforts in collecting and

using mobile phone data at national/ regional level we have never been

presented with such unprecedented level of data available now.

For example, [Qin et al., 2013] demonstrate that it is possible to

detect and quantify human presence at locations using probe requests

with a detection rate of 86%. Along with the evaluation of the various

algorithms for channel switching the research also successfully classifies

these detected human presence into distinct activities in a non-intrusive

way. Though this work predates both the MAC address randomisation

and wide spread use of mobile experienced these days, the explosion

of consumer data both publicly available and privately held presents

previously unseen opportunity and also limited by the privacy concerns

that arise with them. There is an immense opportunity to collect and

standardise a large national level dataset which closely linked to the

population distribution and movement in an anonymised way which

then can be used to understand the distribution of population and its

change. There is a need to extend such effort longitudinally which can

give us insights in to the change of such phenomenon in time. This has

the potential to enable us to ask broad questions such as,

• What are the trends in the footfall in UK?

• What are the daily rhythm of different cites?

• How much a weather event affect economy of a region?

Such dataset, in conjunction with other consumer data sources, in
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addition to augmenting each other to improve their quality, can vastly

improve our understanding of the structure and dynamics of population.

2.4.2 Device fingerprinting
Opportunity 2: Developing models
and methods to identify anomalies
in the data and underlying events
causing them

The privacy concerns about the data collected from personal mobile

devices has pushed the industry and users to find ways to anonymise

the data generate over the last decade. All the mobility studies recording

user trajectories across space and time are rendered infeasible with

the cryptographic hashing and randomisation techniques employed by

the devices. This along with progressive legislation such as General

Data Protection Regulation have severely constrained the data available

for mobility research. As we see later, even the estimation of ambient

population is limited by these developments.

[Vanhoef et al., 2016] presents several novel methods of abusing the

features of the Wi-Fi standards to track mobile devices even when the

MAC addresses were randomised. This research shows the possibility

of using the information elements present in the probe requests along

with the sequence numbers to fingerprint the mobile device which sent

the request with an accuracy of the 50% within a 20 minute interval

with a possibility of improvement with known scrambler ’seeds’ - the

randomisation factor used by popular commercial devices. Though this

sounds promising for short intervals, since this research, manufacturers

have stopped including non-mandatory information elements which

can affect the accuracy significantly. The research also features two

other methods to reverse engineer the original MAC addresses from the

randomised ones - first where known hotspots were spoofed to trick the

mobile devices in revealing their real addresses and the second where

a different protocol requests were used. Both these methods cannot be

used extensively since the former is not ethically sound and the latter is

not widely used by all mobile devices.

Since the above study and the following ones were conducted from

security perspective - evaluating the robustness of the randomisation/

obfuscation procedure, they focus on de-anonymising the obfuscated

data to recreate the personal information from them while demonstrating

vulnerabilities in the standard and associated risks for the users. In this

context, there is a clear gap for research in to methods to rather carry

out fingerprinting of these devices using patterns in the data to create

useful information from them without actually de-anonymise the data.

This can lead to production of data-sets and methodologies which will
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enable us to,

• Get accurate estimation of ambient populations.

• Understand the movement of the population in space and time.

2.4.3 Event Detection

Having granular spatio-temporal data on population at an area level also

enables us to look at the activity of people at this scale. For example, the

spike in Wi-Fi activity at a certain area at a certain time can illuminate

us with a specific event that is happening in that area. Thought research

have been done on this area using social media data, a longitudinal

data-set collected using mobile technology can enable us to formalise

the models needed to identify anomalies, quantify the causation of such

anomalies to real world event. [Kontokosta and Johnson, 2016] discuss

the use of Wi-Fi data for a ’real-time’ census of the city with a case

study of New York City’s Lower Manhattan neighborhood. The research

collects around 20 million Wi-Fi data points during 2015 and presents

a model to create real-time, on-the-fly population estimates with fine

granularity. The research demonstrates the feasibility of the pursuit along

with the potential significance of such localised population estimates for

use within the domains of city operations and policy, strategic long-term

planning processes, emergency response etc. There are opportunities to

ask questions such as,Opportunity 3: Developing
models and methods to identify

anomalies in the data and un-
derlying events causing them

• How did the tube strike affected London?

• What were the hot spots for New years celebration?

• What was effect of a road closure in specific part of the city?

2.4.4 Pedestrian Flow

Similar to the device fingerprinting, estimating and understanding pedes-

trian flow in the street network has immense opportunities since the

anonymisation of mobile devices has taken off. Even when the problem

of the identifying unique fingerprints of users in the data has not been

solved, there is a need to understand the overall performance of the

street network in terms of pedestrian flow just from the precise, granular

data available, especially when the data source is as unstructured and

noisy as the Wi-Fi sensors.

[Musa and Eriksson, 2011] use the Wi-Fi probe requests collected in

a 12-hour trial on a busy road to describe a passive tracking system for
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mobile devices. The research proposes a trajectory estimation method

based on Viterbi’s algorithm which estimates the most-likely spatial path

taken from the information on when and where they have been detected.

Although the research extends this trial into a 9-month deployment and

demonstrates trajectory estimates with high accuracy, the problem still

remains where we need to extract trajectories of users without actually

being able to identify them.

This problem can he approached in two ways, Opportunity 4: Estimating flow
of pedestrians in the street network
from Wi-Fi data1. Probabilistic approach - Where the relationship between the temporal

change in volumes at locations are modelled. For e.g. how much and

how often the footfall counts at one location mirrors/ follows other

location gives us an idea of how many pedestrians move from one

location to the other.

2. Interpolation - Where the relationship between the locations are de-

fined in terms of multiple variables such as how similar they are, how

close they are etc. These relationships can in turn used to build a

graph of locations and use this graph as a source to interpolate other

locations.

2.4.5 Nature and Change of Places

Though there are extensive research in using ambient population and

people’s movement to understand the form and function of the space,

the mobile technologies have introduced the opportunity to remove the

subjectivity from them. With access to highly granular and long-term

data sets, we can hope to look into the how the places have changed

over time and how the external factors such as policy and economy has

affected them. There are opportunities to ask questions such as,

• How does UK’s exit from EU affect its high streets?

• Has a specific area has become more or less vibrant?

Opportunity 5: Using long term
data to detect the nature and change
of form and function of a place.
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Collecting Wi-Fi Data

From the literature review in Chapter 2, we observed that of all the

technologies discussed, Wi-Fi seems to be the most promising one for

our purposes. We observed the advantages of Wi-Fi based data collection

as,

• Universality as a standard technology globally,

• Independence from other types of data sources or infrastructure,

• High level of granularity both spatially and temporally,

• Possibility of passive data collection,

• Extreme ease of collection in terms of cost and effort and

• Scalability to cover study large areas.

Though it has its pitfalls in terms of intrusiveness resulting in risk to

the privacy of the users, as well as bias and uncertainty, Wi-Fi provides

us with a strong base framework for fulfilling the opportunity to design

and collect a large, long-term and granular dataset which can be used

for studying human activity.

In this chapter, we continue our research by looking at Wi-Fi technol-

ogy closely to understand how it can be used to achieve the aforemen-

tioned goal. We start by looking at the Wi-Fi specification 1 and focus 1 IEEE. IEEE standard for
information technology-
telecommunications and in-
formation exchange between
systems local and metropolitan
area networks-specific require-
ments - part 11: Wireless LAN
medium access control (MAC)
and physical layer (PHY) speci-
fications. IEEE Std 802.11-2016
(Revision of IEEE Std 802.11-2012),
Dec 2016

on the information available within the Wi-Fi probe requests. We then

design and implement a series of data collection exercises which collect

probe requests in various location with increasing level of complexity for

analysis. We explore these datasets briefly to understand the usefulness

of each set of information present in the probe requests along with the

uncertainties in them. We also introduce the ‘Smart Street Sensor’ project

- a national scale effort for collecting Wi-Fi data at high streets across the

United Kingdom. Finally we summarise the data collection procedure

with a detailed look at the uncertainties in these datasets and draw con-

clusions for further lines of research into alleviating the uncertainty and
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noise so that the datasets can be used to estimate human activity with

confidence.

3.1 Wi-Fi as a Source of Data

Since the formation of ‘Wi-Fi alliance’ in 1999 to hold the trademark,

Wi-Fi (Wireless Fidelity) has become synonymous with the IEEE 802.11

standard based internet connectivity. Today almost almost all devices use

this standard to create and connect to local area networks wirelessly. Due

to its high fidelity and immense throughput up to 1 Gigabits per second,

Wi-Fi has become the choice of technology for wirelessly transferring

large amount data through networks. The adoption of ‘smart’ mobile

devices Smartphones across the world has further cemented Wi-Fi’s

position as one of the most ubiquitous technologies which many people

use every day. In developed economies such as the UK, this has never

been more true and having an infrastructure to serve and receive Wi-Fi

signals greatly affects the ability to connect to the internet in many areas.

With close to 87%2 of the population carrying one or more of these smart2 Deloitte. Mobile consumer
survey - united kingdom,
2018. URL https://www.

deloitte.co.uk/mobileuk/

devices with Wi-Fi capability, provision of Wi-Fi as a service has become

essential for any place, thus making Wi-Fi (alongside mobile networks)

one of the most used technologies to access the internet.

Though the end goal of internet connectivity is the same, Wi-Fi greatly

differs from internet connectivity through mobile networks such 3G/4G.

The first difference is the range of the network: unlike mobile infras-

tructure where a single tower can serve mobile phones for miles, Wi-Fi

is designed to be an extension of the wired networking, thus creating

short range network with a range of 20 meters. Due to this low-range

and high throughput property, Wi-Fi is used primarily as a distributed

infrastructure operated by owners of premises as a means to provide high

speed connectivity to the users of these buildings as opposed to the large,

national level, monolithic infrastructure that runs the mobile network.

This creates a situation where urban areas are populated by hundreds

and thousands of these small area networks to which any mobile device

can connect to. Unlike the mobile service providers and their customers,

these Wi-Fi networks and mobile devices don’t trust each other with

specialised hardware. This creates a need for an introduction procedure -

a sort of handshake between them - whereby they exchange information

about themselves. Moreover since these mobile devices constantly move

across these Wi-Fi networks, it becomes necessary for them to carry out

https://www.deloitte.co.uk/mobileuk/
https://www.deloitte.co.uk/mobileuk/
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these ‘handshake’ processes regularly and frequently so that they can

traverse between the networks without loss of connectivity. This need

for constant lookouts for new networks is solved by the ‘Probe requests’.

3.1.1 Probe requests

There have been numerous iterations and versions of the IEEE 802.11

standards but essentially all of them operate by exchanging packets of

information called ‘datagrams’ or ‘frames’. These frames have the infor-

mation that is being exchanged along with the meta data and information

on the device that is sending them. Some of these frames have special

purposes: one such purpose is the ‘network discovery’. The frames used

for this purpose by the mobile device and the Access Point (AP) are

called the ’probe request’ and ‘probe response’ respectively. Though

the actual information exchanged between these devices are usually

encrypted, these probe requests are unencrypted and are accessible to

any device which is listening. The structure of a probe request is shown

in Figure 3.1.

Figure 3.1: Structure of a probe
request frame.

Source: IEEE 802.11 specification.
DA - Destination Address.
SA - Sender Address. BSSID -
Broadcast or multicast address.
FH - Frequency hopping. OS -
Optional. CF - Contention free.
DS - Direct Sequnce.

We can observe that the fixed part of the mandatory frames are in

the front; these show the identity of the mobile device generating the

frame along with the identity of the AP that is receiving the frame. There

are additional meta data such as the sequence number of the frame,

and controls denoting where the frame starts and ends. There are also

a number of variable information which can be used to transfer data.

For probe requests, the destination device is set as ‘broadcast’ and the

variable part usually contains the payload. For probe request frames, this

payload consists of ‘information elements’ which has data regarding the

capabilities of the device organised in units known as ’tags’ or ’parameter

sets’. The significant information present in a probe request is detailed

in Table 3.1 and a full list of information available from a probe request

is shown in the form of a sample probe request in appendix 7.5
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Essentially the above information is sent over and over by the mobile

device which expects a reply from nearby APs so that it can keep a

list of networks it can connect to. This process is usually carried out

even when the Wi-Fi is switched off in the operating system so that the

connection times are faster once it is switched on. Moreover operating

systems use the replies they get for these probe requests and triangulate

the device location with respect to the APs with location information on

AP’s collected through surveys or crowdsourcing, thus acting as a quick

and easy localisation solution which along with the above makes this

probing process almost non-stop.

Table 3.1: Significant informa-
tion included in a probe request Field Notes

Source Address Media Access Control (MAC) address
Time stamp Precise time at which the frame is received
Received Signal Strength (dBm) The strength of the received signal
Length of the frame Total length of the frame in bytes
Duration of transmission Time it took to transmit the frame in milliseconds
Information Elements List of various information about the device
Known Networks Name of networks that are already known to the

device

3.1.2 MAC address

Media Access Control (MAC) address is a 6 byte unique identifier as-

signed to a device on a network. It is similar to the Internet Protocol (IP)

address but assigned at the interface controller level by the manufacturer

of the device. Although the IP address of a mobile device might change

regularly, the MAC address usually remains the same for the lifetime of

the device making it akin to a unique identifier of a device and therefore

highly significant. The MAC address has two parts: the first 2 bytes

are known as the Organisationally Unique Identifier (OUI) and gives us

information about the manufacturer of the network card. Organisations

need to register with IEEE to be assigned an OUI which they can use to

generate a full MAC address; the second 2 bytes are unique to device

itself. Together both form the full MAC address which is unique to every

device globally. The biggest draw for using Wi-Fi for mobility analysis

comes from the fact that this globally unique identification is sent out

regularly by mobile devices and can be collected passively through probe

requests.

As we saw in our literature review, this also creates an immense risk

in terms of infringement of privacy both for the manufacturer and the

user. Manufacturers of critical hardware components who do not want



collecting wi-fi data 63

their unique MAC address to be publicised usually opt for registering

a ‘private’ OUI which will be neither given out to other manufacturers

nor published publicly. Users (their mobile devices) who don’t want to

be tracked using their MAC addresses use a temporary MAC address

which is unique only to the local network - a ‘local’ OUI rather than

using a ‘global’ OUI for unencrypted communications and switch to

their original MAC address when a trusted encrypted connect has been

established. This lack of uniqueness can be inferred from the second

character of the MAC address being E, A, 2 or 6. Though this provides

reasonably better privacy to the mobile users it also limits our ability

to use the MAC address from the probe requests as in previous studies

conducted with Wi-Fi. It is important to note that this is not a security

measure, but rather an exception made available by IEEE 802.11 for

assigning temporary addresses in ad-hoc networks which has been used

by most modern operating systems.

Essentially, there are two types of MAC addresses based on whether

they have a public OUI or a private OUI. This distinction does not affect

their uniqueness or usefulness in mobility research but hinders us from

knowing about the device from the MAC address. There are also two

types of MAC addresses based on them being unique globally or just

in the local network. This distinction affects the feasibility of using the

MAC addresses for device tracking or for studying movement of the

users.

To summarise the above, we looked at the IEEE 802.11 standard

to examine the significance and nature of the ‘probe requests’ which

are constantly broadcast by mobile devices. We identified information

present in these probe requests which is relevant to our study and

examined the uniquely identifiable MAC address field in detail. We

found that though a MAC address provides a way to globally identify a

mobile device from the probe requests it generates, this field can often

be masked by using locally assigned addresses. We also observe that

there is other relevant information which, when combined, can provide

us with an alternative to solely using MAC addresses.

3.2 Initial Experiments

With our theoretical understanding of the Wi-Fi standard and its capa-

bilities, we move on to looking at the Wi-Fi landscape in the real-world.

We achieve this by designing small independent experiments where we
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record the Wi-Fi probe requests within controlled conditions along with

the knowledge of the ambient population of the field of measurement.

We then look at the collected probe requests, examine them in detail to

look at their properties, aggregate them to footfall counts and compare

them with the real-world counts to get an overall idea of how well they

translate into real counts. The aim of these experiments is to know

more about the probe requests data and pick out the uncertainties and

opportunities present in them. The objectives here are,

1. Design a simple method to collect probe requests.

2. Select locations with different levels of complexity.

3. Collect real-world data through manual counting.

4. Analyse the probe requests to extract useful information.

3.2.1 Experiment Design

The first step was to design a simple method to collect Wi-Fi probe

requests. We accomplished this by using the open source, free software

tshark 3 on a regular laptop. First, we put the Wi-Fi module of the laptop3 Gerald Combs and Contribu-
tors. Wireshark - network pro-

tocol analyzer. https://www.
wireshark.org/about.html, 2018

in ‘Monitor mode’ where it behaves as a wireless access point rather than

a receiver. Then we invoke the command line interface of the Wireshark

programme tshark to collect the Wi-Fi probe requests received by the

laptop in Character Separated File (CSV) format in the file system. The

full shell script which collects the data is given below,

1 #! /bin/bash

2 tshark \

3 -I -i en0 \

4 -T fields \

5 -E separator=, \

6 -E quote=d \

7 -e frame.time \

8 -e frame.len \

9 -e wlan_radio.signal_dbm \

10 -e wlan_radio.duration \

11 -e wlan.sa_resolved \

12 -e wlan.seq \

13 -e wlan.tag.length \

14 -e wlan.ssid \

15 type mgt subtype probe-req and broadcast

https://www.wireshark.org/about.html
https://www.wireshark.org/about.html
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It is important to note that this script only collects the particular data

from the probe requests which we found to be relevant to our needs.

The fields marked with -e are the ones which were collected and they

correspond to the information in the probe requests as follows,

1. frame.time - Time stamp when the packet was received in microseconds.

2. frame.len - Total length of the packet in bytes.

3. wlan_radio.signal_dbm - Strength of the signal which delivered the probe

request in dBm.

4. wlan_radio.duration - The duration for which the signal has been trans-

mitted.

5. wlan.sa_resolved - The MAC address of the source device where the first

part is resolved into a vendor name concatenated with 6 characters of

the device part.

6. wlan.seq - Sequence number of the packet assigned by the source

device.

7. wlan.tag.length - A list of lengths of the tags attached to the packet this

acts a signature of the information contained within those tags and

8. wlan.ssid - The network for which the probe request is being sent for.

This information is optional.

The name of the manufacturer/ vendor of the Wi-Fi module is ex-

tracted from the wlan.sa_resolved field into a separate column and the

original field is hashed using the SHA256 algorithm 4 implemented in 4 Shay Gueron, Simon Johnson,
and Jesse Walker. Sha-512/256. In
Proceedings of the 2011 Eighth Inter-
national Conference on Information
Technology: New Generations, ITNG
’11, pages 354–358, Washington,
DC, USA, 2011. IEEE Computer
Society. ISBN 978-0-7695-4367-3.
doi: 10.1109/ITNG.2011.69. URL
http://dx.doi.org/10.1109/
ITNG.2011.69

R. In addition to this, the pedestrians next to the sensor were counted

manually by the surveyor.

3.2.2 Living room

The first set of experiment was conducted with the laptop in the re-

searcher’s living room. The primary aim of this experiment to collect an

initial set of probe requests is to understand the information present in

them in detail. The living room had 2 Wi-Fi enabled devices - an Android

phone manufactured by Motorola and an Android TV box manufactured

by Remix. The other rooms in the house had an iPhone from Apple

running iOS9 and an Android phone from Samsung in the rooms next

door. The script was left running on the laptop on 15 Nov 2015 from

19:44 to 21:15 with an unexpected failure of approximately 15 minutes in

between from 19:55 to 20:10 approximately. In this duration, we collected

around 3000 probe requests at the rate of 38 requests per minute.

Figure 3.2: Number of probe
requests collected every

minute on 15 October 2017

http://dx.doi.org/10.1109/ITNG.2011.69
http://dx.doi.org/10.1109/ITNG.2011.69
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The first thing we tried with the probe requests was to aggregate

them based on their MAC addresses. Before mobile devices started

randomising their MAC addresses, this should have accurately reflected

the number of devices around the laptop. The data when aggregated

showed that there were around 211 unique MAC addresses recorded.

Being a residential area far away from traffic, these MACs are most

likely not from unique devices. The high number must be the result of

randomisation. Moreover, since we know that there are only 2 - 4 devices

in the house, there must be noise from significant distances beyond the

house. The number of unique MACs recorded every minute are shown

in Figure 3.2. We observe that on average we captured around 7 unique

MAC addresses every minute which is quite far from the 2-4 range we

were looking for.

Having established that just the MAC addresses are not enough to

accurately translate the probe requests into the number of devices around

the sensor, we started to look at the other information we collected from

the probe requests alongside the MAC addresses. First, we tried to isolate

all the randomised, local MAC addresses by looking at the resolved

vendor part. We aggregated the probe requests based on the vendor

name present in the MAC addresses against all the other information

present in them. The results are shown in Table 3.2 We looked at how

many unique values were present in these fields compared to the total

number of probe requests. Initially we assumed that the randomised

probe requests won’t have public OUIs which and hence the probe

requests which can be resolved should be the real addresses. But when

we looked at the probes to MAC ratio of Google and Compex we realised

that even the local MAC addresses could be registered public. This

showed even when the OUI has been resolved into a vendor name, the

original needs to be preserved for analysis. Samsung is a special case

since we know from the specification that whilst their devices do not

randomise the addresses, they also have many unique addresses which

need to be taken into account.

We observe 24 different vendors in the data. Even if we assume one

device per vendor, it is impossible for the sensor to pick up 24 different

devices without a significantly larger area of measurement than we

expected. We need a way to filter out this noise which is generated from

the edge of the field of measurement. This is where the signal strength

shows good promise. Looking at the Table 3.2 we can see that two of

these vendors show significantly high average signal strength - Google
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and Fn-LinkT, which can easily correspond to the two devices present in

the room. This can be explained by the decay of the signal as it passes

through the walls. In our simple example, we can filter out almost all

the noise just by using the signal strength of the probe requests.

Vendor No. of MAC Signal Frame Dura- Tags SSID Seq.
probes addr. (avg.) length tion no.

AmazonTe 101 1 -80.53 4 4 5 3 101
Apple 77 7 -86.29 4 4 9 4 77
ArrisGro 7 1 -91.71 1 1 1 1 7
Azurewav 215 4 -87.82 3 3 12 10 213
CompexPt 75 28 -88.17 3 3 5 29 74
CompexUs 4 1 -87.25 3 3 3 4 4
Dedicate 2 1 -92.50 1 1 1 1 2
Fn-LinkT 64 1 -60.58 2 2 6 1 64
Google 1347 76 -69.14 4 5 41 6 1157
HuaweiTe 11 3 -87.91 3 3 3 1 11
IntelCor 25 2 -84.04 3 3 4 3 25
LenovoMo 1 1 -93.00 1 1 1 1 1
LgElectr 1 1 -90.00 1 1 1 1 1
Microsof 3 1 -90.00 1 1 1 2 3
Nvidia 65 1 -82.91 2 2 4 2 65
OneplusT 3 1 -86.67 2 2 2 2 3
Pepwave 4 4 -90.00 1 1 1 1 4
Sagemcom 3 1 -88.67 1 1 1 1 3
SamsungE 655 27 -83.81 26 26 54 23 621
SonyMobi 56 2 -78.66 2 2 2 1 56
TctMobil 1 1 -90.00 1 1 1 1 1
Tp-LinkT 31 1 -86.16 1 1 3 1 31
Wisol 143 3 -71.91 4 5 6 3 142
XiaomiCo 3 2 -88.67 2 2 3 2 3
Unknown 110 40 -88.86 19 18 21 5 90

Table 3.2: Number of unique
values present in each field
captured from the probe requests
aggregated by the vendor names

We then look at all the other information we collected from the probe

requests and see how they compare to the MAC address for aggregating.

We observe that frame length and duration provides better aggregation

into unique values than MAC address when they are randomised, as seen

with Compex and Google. Since the devices were essentially sending

the same information repeatedly with just changed fixed-length MAC

addresses, we expect that the same devices should be sending packets of

the same length. We also observe that the duration of the transfer, being

a function of the length of the signal, has almost the same amount of

information in it as the frame length. We can confidently pick one of

these fields and discard the other for further analysis. Though the tag

lengths and SSID looked to be a promising way to uniquely fingerprint

the devices they don’t have enough volume in them to offer substantial

advantage. The set of tag lengths are not as unique as the lengths or

duration while the SSID information is sparse for most of the vendors.

For example, 66% of probes with local OUIs, 50% of the ones with Google

and 38% with Samsung don’t have any SSID information in them. This

makes them very poor candidates for useful information in aiding us in
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finger printing unique devices.

Figure 3.3: Sequence numbers
plotted against timestamps

showing clear patterns corre-
sponding to unique devices.

Grey dots are probe requests with
signal strengths lower than -70dBm.

Finally, we found that the sequence numbers are the most interesting

part of the data collected. Although they don’t uniquely identify the

devices directly through aggregation, along with timestamps they do

form visually discernible, interesting patterns that correspond to the

mobile devices that generated them. In Figure 3.3 we have isolated

the two vendors identified earlier (Fn_LinkT and Google) and filtered

only the probes requests with signal strength of more than -70dBm. We

then plotted their sequence numbers against the precise time stamps

when they were received. We can clearly see two devices which were

present in the room, which demonstrates the usefulness of the sequence

number in estimating the actual devices around the sensors. We need

to devise a method for isolating the ‘tracks’ left by the devices in terms

of their sequence numbers over time. We can also observe the rotation

of sequence numbers at 4096 for the Fn_LinkT device which needs to

be considered while devising such method. Figure 3.4 shows a similar

exploration of Samsung devices. Though from the table 3.1 it looks as if

Samsung devices are randomising their MAC addresses, we can clearly

see in the figure that there are only two devices which were present for

a long time around the sensor and neither randomised their addresses.

The diversity of MAC addresses were indeed unique devices which must

have been located far away from the sensor.

Figure 3.4: Sequence number
patters in Samsung devices
showing the diversity of MAC
addresses showing that they are
not randomised.

The colours show
unique MAC addresses.

To summarise, we found that even when an unique non randomised

MAC address is present when collecting Wi-Fi probe requests, we get

significant noise from outside the perceived field of measurement. We

also found that signal strength is a really good clue to filter out this

noise. The frame length and duration looks promising for the same

purposes, but they ultimately have the same information and can be
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used interchangeably with similar results. Finally, we found that tag

lengths and SSID are not useful information since they are either too

varied or too sparse. Although the results of this exploratory analysis

have been positive, the main challenge is to make sure these methods

are feasible when dealing with more real-time, real world data. We need

to devise a more real world experiment to see frame lengths and signal

strength work in a bigger dataset for filtering out the noise.

3.2.3 UCL South Cloisters

Figure 3.5: Illustration showing
the configuration of the sensor at
UCL south cloisters
* Not to scale.

This experiment was conducted collect a broader dataset from a real

world setting so that we can examine the results from the previous

experiments with further confidence. The specific goals were to validate

the findings on signal strengths in respect to the distance from the

sensor in the previous data, and to further examine the usefulness of the

frame length parameter. We also wanted this to be a standard dataset

on which we can test our methodologies before they are applied to a

broader project such as Smart Street Sensors. The data collection was

conducted in one of the corridors in UCL - Southern Cloisters - which

attracts a lot of pedestrian traffic during term time. This corridor also

has substantial seating areas along the side where students often sit

down for long periods of time to work. This provides us with a source

of devices which dwell near the sensors as they constantly sending

out probe requests. This area is also used heavily for lunch and for

exhibitions/ events attracting a large amount of visitors, thus making

it ideal for ‘stress testing’ our methods for cleaning and aggregation.

The position of the sensor with respect to building is shown in 3.5. The

data were collected from 15:37 to 16:20 on 04 December 2017, a period

during which we collected around 14,750 probe requests using the scripts

mentioned earlier. We also manually counted 652 pedestrians walking

directly in front of the sensors.

Unlike the previously collected data in this experiment, we made sure

that the OUI information is preserved even after resolving them to vendor

names. With this information we looked at the second character of the

OUI and categorised the probe requests as either ’local’ - randomised, or

’global’ - non randomised. We then compared them to the vendor names

to find out if any manufacturers other than Google have registered OUIs

in the local range. Figure 3.6 shows the distribution of vendors within

both the local and global range of OUIs in terms of the number of probe

requests collected.
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We observed that ‘Google’ is the only registered public OUI found

in the public range. We also noticed that the percentage of global MAC

addresses collected was unusually large - 82%. This can be explained

by the behaviour of the Apple devices while randomising the MAC

addresses. Apple phones are known to randomise their addresses while

probing for access points only when they are not connected to a Wi-Fi

network already as documented by Vanhoef et al. [2016].

Figure 3.6: Composition of
probe requests in terms of the
vendor names and their type

Based on the num-
ber of probe requests

Since most of the members of UCL have access to the ‘eduroam’

network and are connected to it whilst on the campus, most of the Apple

devices we captured haven’t randomised their addresses. This made this

dataset heavily biased and not suitable for testing device finger-printing

methods, but it does give us an opportunity to examine the nature of

probe requests generated by Apple devices in particular.

Figure 3.7: Comparison
between the manual foot-
fall count and aggregated

counts from sensor collected
data at UCL South Cloisters.

The second step was to see how much the sensor collected counts

differ from the manual counts. We aggregated the sensor counts for every

minute in terms of the number of probe requests, unique MAC addresses,

and the unique frame lengths, and compared them to the manual counts

done for each minute. The results are shown in Figure 3.7. We can
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observe that the original Mean Average Percentage Error (MAPE) when

aggregated with MAC addresses is around 736% showing the immense

amount of noise we can experience in a real world environment. This

was reduced to 643% and 300% when aggregated by tag lengths and

frame lengths but it is still far from being anywhere near accurate for

being able to be used for estimating footfall. When we filter the probe

requests for just the ones which have signal strengths more than -70dBm

- the threshold which we got from the previous experiment - the MAPE

for aggregating by MAC addressed, tag lengths and frame lengths is

reduced to 80%, 87% and 67% respectively. The results after filtering

with signal strength are shown in Figure 3.8

Figure 3.8: Comparison between
the manual footfall count and
aggregated counts from sensor
collected data at UCL South
Cloisters after filtering probes
with low signal strength

Although the signal strength filtering works to remove noise, we are

still not clear about how this works or what is the most optimum cut

off for filtering. We looked at the distribution of the signal strengths

to find that they do exhibit patterns in terms of concentration around

certain cut-offs, as shown in Figure 3.9. These cut-offs can be detected

dynamically from the data using one dimensional clustering methods

such as k-means which are usually used to find the class intervals in one

dimensional data. Figure 3.9 also shows the results of k-means clustering

on the data to divide the data into 4 clusters.

Figure 3.9: Density distribution
of the signal strengths of the
probe requests collected at UCL
South Cloisters along with class
intervals.

x-axis is measure in dBm as a proxy
for distance. The class intervals
calculated using k-means clustering
with the number of clusters defined
as 4.

To summarise, in this experiment conducted at UCL South Cloisters

we collected a bigger set of data over a longer period of time to validate



72 estimating footfall from passive wi-fi signals

the previous findings and to serve as test dataset for further research.

We found that signal strength is one of the key pieces of information

with which we can remove the external noise from the dataset. We also

found that although the tag lengths and frame lengths look promising as

a filter, they do not gives us any significant advantages. Unfortunately,

the data were also found to have major bias towards non-randomised

probe requests because of the availability of the campus Wi-Fi. This

requires us to collect a more representative dataset for further research

into using sequence numbers to finger print devices. Finally, we also

found that accurate manual measurement of real footfall is challenging,

and we need a better method to collect data for the surveyors in order to

maintain accuracy and precision.

3.2.4 Oxford Street

Figure 3.10: Location and configu-
ration of Wi-Fi data collection car-
ried out in Oxford Street, London.

From the results of the previous two experiments we arrived at the task

of devising a final ‘real world’ experiment collecting probe requests

at a high street with high volume of footfall. Similar to the previous

data, the aim here was to generate a dataset which can be used to test

and validate signal strength based filtering and sequence number based

clustering methodology against the scale and complexity of a busy, open

public area such as a retail high street. The location chosen was Oxford

street, London - one of the busiest retail streets in the world. The data

was collected from 12:30 - 13:04 hrs on 20 December 2017 using the

same methodology as above from a laptop in a backpack. The surveyor

positioned himself at the front of a store while carrying the backpack

and counted the people walking by the store on the pavement (3m wide

approximately) using a mobile phone. The sensor was kept as close

to the store window as possible, and the manual count was done as

a cordon count in front of the store. The location where the data was

collected and the configuration of the sensor with respect to the street is

shown in Figure 3.10.

The manual counting was done using a node-js base command line

app running under Termux on an Android phone. The application is

detailed in section 7.1.1 which counts the number of times a key has

been pressed on the phone. This has an additional advantage as the

phone used is kept unconnected to any Wi-Fi and with the screen on

for counting, emits probe requests at regular intervals. Moreover, we

know the phone to be of the vendor ’Google’ which randomises the MAC

address, giving us a good base line to compare our results to.
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The Wi-Fi sensor captured approximately 60,000 probe requests during

the half hour period; 3,722 people were manually recorded walking on

the pavement during that time. Initial exploration of the data is shown

in Figure 3.11, where we compared the sensor aggregated counts to the

manual counts of footfall. It shows that the data has a large amount

of noise making it a suitable candidate for testing. Moreover, with 55%

of local MAC addresses, it is free from a high concentration of global

MAC addresses as we saw in the data from UCL corridors. This dataset

is extensively used in the development of the filtering and cleaning

methods and which are discussed in detail in Section 4.2.

Figure 3.11: Comparison of the
counts from aggregated probe
requests and MAC addresses
with manual counts at Oxford
street, London.

In this section, we saw the design, implementation and initial results

of small experiments we conducted to understand the nature of the probe

requests and the opportunities they provide us with. We identified useful

information in the probe requests and discarded the ones which were

not useful The major conclusions arising from these experiments are,

1. The MAC address on its own is not enough to aggregate probe

requests into devices or footfall.

2. The signal strength is crucial to removing noise from outside

the field of measurement

3. The sequence number is promising in isolating devices when

their MAC addresses are randomised.

4. Frame lengths, duration, tag lengths and SSID information do

not add additional value in cleaning the data.

We finally collected a fairly representative Wi-Fi dataset from a high

volume retail location for use in further research on methods to clean the

data.



74 estimating footfall from passive wi-fi signals

3.3 Pilot Study

As we see later in Section 4.2 the efficiency of the methods to clean and

aggregate data not only depend on the noise and bias in the data itself

but also on external factors such as, the configuration of the sensor in

relation to the environment, the day of the week etc. Although the dataset

captured in our initial experiments acts as a good starting point, it cannot

enable us to generalise our findings to all possible configurations. This

necessitates an even larger dataset to be collected over longer durations

in the kinds of challenging situations that we would usually find in real

world conditions. This was our primary motivation in conducting a

pilot study collecting data at 5 locations across London. The aim was to

collect probe requests with information we found relevant in the initial

experiments for every location surveyed for at least a full week so that

we can understand any patterns caused by the periodicity of the data.

We also wanted to collect data at all of these locations in parallel for at

least a week so that they can be compared to one another.

3.3.1 Methodology

Figure 3.12: Hardware setup used
to collect data in the pilot studies.

The hardware setup for the sensors is illustrated in Figure 3.12. The

design of the hardware is not original as it is heavily influenced by the

proprietary technology of the data partner for the Smart Street Sensor

project, albeit in a much simpler form. The core of the hardware is the

general purpose single board computer Raspberry Pi Model B running

Linux operating system. Two communication modules - 3G and Wi-Fi

were connected to this machine via Universal Serial Bus interface. The

3G modem was equipped with a SIM card which it uses to connect to

the internet, while the Wi-Fi modem is set to ’Monitor’ mode. The board

takes power from an outlet and the software is pre-installed with the

operating system which resides in a Memory card.

The software used for the sensors consists of two parts - sensor soft-

ware and server software. The sensor software was written as a mix

of Bash script and NodeJS. Essentially these scripts use the Wireshark

program to capture packets, parse them, anonymises the MAC address

fields, add the location information, encodes them into JavaScript Object

Notation format and finally sends it to a server through Web-Socket pro-

tocol. The code used at the sensor side is detailed in Appendix 7.2.1. At

the server side we have a similar NodeJS application which listens to the

data sent over web sockets, parse them and saves them to a PostgreSQL
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database. The server side code is detailed in Appendix 7.2.2 and the

schematic diagram for the whole process is shown in Figure 3.13. The

information collected from each probe request at these locations are,

1. Time stamp at which it was received

2. MAC address of the source device.

3. Signal Strength of the packet.

4. Total length of the packet.

5. Sequence number of the packet.

6. OUI part of MAC address.

7. Location at which it is collected.

Figure 3.13: Schematic diagram
showing the data collection
process in the pilot study.The manual counting at these locations were done using a custom

application Soundararaj [2018]. The application was built for recording

pedestrian footfall with precision and accuracy which was not possible

when counted without the application. The app records the precise time

stamp of every footfall with the precision of micro seconds which can

be aggregated later at different time intervals. The code for the app is

detailed in Section 7.1.2.

3.3.2 Locations

Five retail locations were chosen in consultation with the data partner for

the pilot study, keeping in mind their complexity and volume of footfall.

The sensors were installed at the locations in a phased manner and

multiple manual counts were conducted at each location for 30 minute

intervals. The locations and their descriptions are summarised in Table

3.3.

• Location 1 is on the Camden high street in front of a mobile phone

shop behind a bus stop. This location was chosen specifically because

of the large amount of dwelling population at the bus stop and the

stationary mobile devices inside the shop, both of which are expected

to create a large amount of noise alongside the high footfall in the

high street. The challenge here is to isolate the footfall from the two

sources of noises which are at equal distance from the sensor.
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• Location 2 is on a square with a very low footfall but has a large

amount of seating in the restaurants all around it. The challenge here

is similar to that of the previous location in terms of noise, but just

that the volume of actual footfall is low which makes it one of the

hardest locations for accurately estimating footfall.

• Location 3 is in front of Holborn station entrance in an information

kiosk. This location was chosen for the really high volume of footfall

from the station which is expected to cause noise. The challenge here

is to be able to isolate the crowd inside the station from the footfall on

the pavement.

• Location 4 is in a fast-food restaurant in a shopping centre. The sensor

has restaurant seating on one side and a pedestrian footfall on the

other. The challenge here is that the stationary noise and the footfall

are equidistant from the sensor.

• Location 5 is at the frontage of a shop on the Strand with a mobile

shop next door. This is the ‘cleanest’ location of all with only one clear

source of noise which is at different distance from the footfall.

Figure 3.14: Pilot study loca-
tions in London along with
their corresponding sensor
installation configurations.

The sensors were operational through out February and March 2018,

while the manual counts were conducted at these locations in half-hour

sessions on at least two different days. The schedule of the data collection

and the days at which the manual counting was done is shown in Figure

3.15. The survey was conducted for almost 2.5 months and about 33.5
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million records were recorded which takes up to 1.8 GB of space on disk

when encoded as text. During the manual counts around 10,000 people

were counted walking past these sensors.

Figure 3.15: Outline of the
‘Medium data toolkit’ devised
to collect, process, visualise and
manage the Wi-Fi probe requests
data.

A detailed account of the volume and velocity of data collected at

these locations was given in Table 3.3. The dataset collected was used

extensively to develop and test the signal strength based filtering and

sequence number based clustering methodology which are detailed in

the Section 4.2.

Id Location Type Installation notes Probes* Footfall**

1 Camden St. Phone Shop Bus stop in front 9.9 (297) 3683 (33)
2 St.Giles Restaurant Seating on both sides 3.9 (169) 0346 (05)
3 Holborn Stn. Info. Kiosk Front of station entrance 4.3 (303) 2956 (46)
4 Brunswick Fast Food Seating on one side 3.4 (210) 0960 (12)
5 The Strand Tea Shop Phone shop next door 8.4 (382) 1969 (21)

Table 3.3: Locations of data
collection in the pilot study and
the amount of data collected at
each location.

* Total probe requests in ⇥106(per
minute) ** Total footfall counted
manually (per minute)

3.4 Smart Street Sensor Project

The Smart Street Sensor project is one of the most comprehensive studies

carried out on consumer volume and characteristics in retail areas across

the UK. The project has been organised as a collaboration between the

Consumer Data Research Centre, University College London (CDRC,

UCL) and the Local Data Company (LDC). The project was designed to

serve as the first and unique comprehensive research into the patterns

of retail activity in high streets of United Kingdom by measuring their

real-time footfall from collecting Wi-Fi probe requests. The data for

the project was collected through sensors installed at around 1000 retail

locations across UK.

The primary aim of the project is to improve our understanding of

the dynamics of the high street retail climate in UK. As we saw in our

literature review, unlike online retail, this involves the quantification

and measurement of human activity at small scales, such as high streets,

which is already the subject of active research. The key challenge in
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this area is the collection of data at the smallest scales possible with

minimal resources while not infringing on people’s privacy. This chal-

lenge when solved can provide immense value to the occupiers of the

retail premises who want to improve revenues, to landlords who want

to increase the value of the property, to local authorities who want to

improve the vibrancy of the retail economy, and finally to investors and

consumers within the retail industry. The project also aims to facilitate

decision making by these stakeholders, in addition to the tremendous

opportunities for academic research.

Figure 3.16: Hardware setup used
to collect data in the pilot studies. 3.4.1 Methodology

As a first step, various locations for the study were identified by the

CDRC to include a wide geographical spread, different demographic

characteristics, and range of retail centre profiles. Figure 3.17 shows all

the locations in the United Kingdom city-wise and Table 3.4 shows the

regional distribution of the locations.

Table 3.4: Regional distri-
bution of Smart Street Sen-

sor locations across UK

Region Locations

Greater London 479
Scotland 118
Yorkshire and the Humber 114
South East 103
North West 98
South West 87
East Midlands 68
East Of England 49
West Midlands 39
North East 26
Wales 17
Northern Ireland 2

Figure 3.17: Distribution
of locations with Smart
Street Sensors installed.

We can see that the project has a strong London bias which along with

other retail centres in the Greater London area, accounts for almost half

of the locations. We must also note that the locations are retail and any

insight from the data needs to be looked at with a retail point of view.

A custom footfall counting technology using Wi-Fi sensors (Figure

3.16) was also designed and developed by LDC, and the sensors were

installed at the identified locations. The sensor employs proprietary

hardware and software, and monitors and records the probe requests

sent by Wi-Fi enabled mobile devices present in its range. In addition to

this, the number of people walking by the sensor were counted manu-

ally for short time periods during the installation of the sensors at the

corresponding locations. The project aimed to combine these two sets

of data to use as a proxy for estimating footfall at these locations. The
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potentially personally identifiable information collected on the mobile

devices are converted into a unique cryptographic hash at the sensor

level and the data is sent to central server via encrypted channel for

storage. This data is then retrieved securely for the preparation of the

commercial dashboards by LDC and for research purposes by CDRC.

The sensors are usually installed on a partnering retailer’s shop win-

dow so that its range covers the pavement in front of the shops. A typical

configuration of a sensor in a location with respect to the premises and

the pavement in front of it is illustrated in Figure 3.18. There are also

a small percentage (3%) of the devices which are installed within large

shops to monitor internal footfall. Each device collects data indepen-

dently and uploads the collected data to a central microsoft cloud facility

(Azure) container at regular intervals of 5 minutes through a dedicated

3G mobile data connection. The sensor hardware has been improved over

the course of the project, and currently has built in failure prevention

mechanisms such as, backup battery for power failures, automatic reboot

capabilities, and in-device memory for holding data when the internet

is not available. The project began with the first sensor installation in

July 2015, and has grown to an average of 650 daily active sensors as of

January 2019, with a total of 1200 locations been involved in the project

since its inception. We have collected around 2TB of data comprising of

around 73 billion probe requests.

Figure 3.18: Cross section show-
ing a typical installation of Smart
Street Sensor in a retail frontage.Due to the scale and the commercial nature of the project, the sensors

collect fewer data per probe than the previous experiments. The infor-

mation collected by the Smart Street Sensors are the 5 minute interval

when the probe request was collected, hashed MAC addresses and signal
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strength. The probe requests within the same five minute intervals are

aggregated by the MAC address, hence the signal strengths are aggre-

gated to the minimum signal strength reported. Due to the longitudinal

nature of the project, the data collection methods have changed over time

as well. The hardware was upgraded with more capabilities in early 2016,

the interval they reboot at was adjusted several times in 2017, and finally,

due to the MAC randomisation problem accentuated in the later part

of 2017, the signal strength aggregation was changed from minimum to

maximum in March 2018. Essentially, the data have changed over time

and we need to consider the changes while devising the methodologies

for cleaning the data.

3.5 Discussion

In the previous sections we designed and implemented data collection

processes to arrive at 3 different datasets: Small Experiments, Pilot Study,

and Smart Street Sensor project. The small experiments were designed

as way to collect as much data as possible from the probe requests for

short periods of time in order to collect small sets of comprehensive data

under controlled conditions for exploratory purposes. The pilot study

extended this further by collecting data for a longer time in real world

conditions, aiming to validate the insights achieved with the experiments

and the methodologies we devise for the research. The Smart Street

Sensor project is the most comprehensive study which collects very small

focussed set of data in a probe requestat a national level for very long

periods of time. These datasets give us a well-rounded set of data to

set up our toolkit and devise our methodologies. The summary of the

datasets in terms of their characteristics is shown in Table 3.5.

Before we move on to develop methods to process the data into

information on footfall in these locations, the crucial action is to look at

the possible biases and uncertainties in these datasets arising due to the

data collection methodology and from the broader context. These form

the framework on which we built our data processing pipeline where we

propose to solve each of these uncertainties in each step.

From our understanding of the data, we observe that the major sources

of uncertainties are regarding the range of the sensor, the frequency at

which mobile devices generate probe requests, the way and rate at

which the mobile devices randomise their MAC addresses, the collisions

caused due to the hashing of the MAC addresses, and finally the gaps
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introduced by the failure of the sensors. There is an inherent bias to

these data caused by mobile phone ownership in the population which

varies across time, location and demography. We discuss each of these

uncertainties and biases in detail below.

Dataset Locations Time Detail Purpose

Small Experiments 3 30 - 60 mins High Exploratory analysis

Pilot Study 5 6 weeks* Medium Devising and calibrating
methodologies

Smart Street Sensor 1000* 4 years* Low Real world insights

Table 3.5: Summary of the
collected datasets.

*approximate

3.5.1 Range of the sensor

The first and foremost uncertainty we face with wireless sensors such

as Wi-Fi and Bluetooth is the delineation of the field of view of the

sensor. Although the Wi-Fi signals can be partly managed or restricted

by manipulating their strength, there is no reliable way to precisely

delineate a survey area for these sensors. The manipulation of signal

strength can be done by installing metal shields around the sensors to

block certain directions and prioritise others but the method cannot block

out all the signals and will leave some uncertainty about where the probe

requests are coming from. Moreover, strength of the signal received from

a mobile device by the Wi-Fi access point depends on numerous factors

such as,

1. Distance between the mobile device and the Access Point.

2. Thickness of the objects present in-between them.

3. Nature of obstructions, e.g. metal vs glass

4. Interference from other wireless devices.

5. Power level of the transponder of the Access Point.

6. Power level of the transponder of the mobile device.

7. Atmospheric conditions such as humidity, temperature, etc.

The signal strength drops non-linearly when moving away from the

Access Point as shown in Figure 3.19 and there is a close-range non-

monotonicity as well - where within 10 feet, a closer device can report

lower signal strength than one further away [Cisco, 2008]. The relation-

ship between the two is given by the equation 5 3.1, 5 Zengrzengr, Andy, and Cabral.
Calculate distance from rssi, 2017.
URL https://bit.ly/2Ohskf9

log10 d =
(Po � Fm � Pr � (10 ⇥ n ⇥ log10 f ) + (30 ⇥ n � 32.44))

10 ⇥ n
(3.1)

https://bit.ly/2Ohskf9
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Where,

d = distance - Sensitivity of the receiver

Fm = Fade Margin - Sensitivity of the receiver

n = Path-Loss Exponent, ranges from 2.7 to 4.3

Po = Signal power (dBm) at zero distance - Measured by testing

Pr = Signal power (dBm) at distance - Measured by testing

f = signal frequency in MHz - Specific to the hardware

Figure 3.19: The decay of signal
strength (RSSI) with respect to
distance.

Source: Wi-Fi Location-

Based Services, Cisco

All these factors vary widely in real world conditions at each location

depending on where and how the sensors are installed. They also vary

widely over time due to changes in the context, and vary across different

directions at each location as well. This makes it extremely difficult

to model the distance between mobile device and the Access Point as

a function of the received signal strength. The Equation 3.1 can be

approximated and simplified as,

R = (�10 ⇥ log10 d) + A (3.2)

Where R is the reported signal strength and A is the signal strength at

1 metre. Although Equation 3.2 can help us to roughly infer the distance

of the mobile device, the uncertainty of this method in respect of location

makes it lose the meaning when compared across locations.

From the above we can conclude that it is almost impossible to de-

lineate the field of measurement precisely and accurately by simple

methods using the information present in the probe requests. This leads

to uncertainty in the data collected which needs to be resolved with

explicit assumptions or specific methods to reduce the resulting noise.

We require a method to isolate this noise from data generated by devices

within the field of measurement. This method needs to be independent

of the micro site configuration and temporal changes in the context.

3.5.2 Probe request frequency

The second uncertainty we face is that the frequency at which mobile

devices generate the probe requests which varies wildly. The number of

probe requests generated from a mobile device depends on,

1. Manufacturer of the device. E.g. Samsung vs Apple

2. Version of the software running on the device. E.g iOS 7 vs iOS 8

3. State of the device. E.g. Is it already connected to internet? Has

location services been switched off?
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4. The number of Access Points already known to the device.

Studies done by Freudiger [2015]6 have shown that the number of 6 Julien Freudiger. How talkative
is your mobile device?: An
experimental study of Wi-Fi
probe requests. In Proceedings of
the 8th ACM Conference on Security
& Privacy in Wireless and Mobile
Networks, WiSec ’15, pages 8:1–8:6,
New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3623-9. doi:
10.1145/2766498.2766517. URL
http://doi.acm.org/10.1145/
2766498.2766517

probe requests generated by a mobile device vary widely across man-

ufacturers such as Samsung, Apple and LG, across different states the

devices are in (such as charging, screen being on, Airplane mode being

on, etc.), and depends heavily on the number of Access Points known to

the device. It is also seen from our initial experiments that these probe

requests are generated in short bursts rather than being generated at

regular intervals. This makes predicting a base factor for calculating

the number of mobile devices based on the number of probe requests

received much more complex. The variety of device models available,

and the pace of change in software that run these models, further com-

plicates this. Though we can simply aggregate these probe requests

based on the unique information in them, in absence of such information

understanding frequency of probe requests becomes extremely critical.

We need to consider this uncertainty in detail while making any simple

assumptions on the relationship between number of probe requests and

the number of mobile devices that generated them.

3.5.3 MAC address randomisation

Figure 3.20: Increase in the share
of randomised MAC addresses
compared to non-randomised
original ones over the years.
From data collected at Regent Street,

Cambridge.

Randomisation of MAC address is one of the recent uncertainties intro-

duced in the data. As we saw in Section 3.1, the MAC address is the

unique identifier for each mobile device and we aggregate the footfall

numbers based on this. Since the probe requests are transmitted unen-

crypted and can be received by any Access Point, this is one of the biggest

leaks of personal data which occurs in the Wi-Fi based communications.

Modern mobile devices solve this problem by using a randomised MAC

address for the probe requests which can result in large over-estimations

of the number of mobile devices in the vicinity.

The method of randomisation and the frequency of randomisation

varies widely between device manufacturers and also changes as new

versions of the software are released. This seriously affects the useful-

ness of the data long-term, where methods designed to overcome this

randomisation can be rendered inefficient in the future. Figure 3.20

shows the increase in the share of randomised MAC addresses since

2015. We can observe that in addition to the overall upward trend there

are bursts of increase around late 2016 and 2017, which coincides with

the release of new mobile operating systems. This makes it necessary

for devising a method to overcome MAC randomisation to be able to

http://doi.acm.org/10.1145/2766498.2766517
http://doi.acm.org/10.1145/2766498.2766517
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uniquely fingerprint devices so that they can be aggregated together. As

we saw in our literature review, this is also one of the major opportunities

in research on human mobility using Wi-Fi data.

3.5.4 Mobile Device Ownership

One of the major external biases in all the datasets collected from mo-

bile devices is the overall volume and nature of the ownership of these

devices. The ownership of mobile devices, specifically Wi-Fi enabled

ones, have been on the rise since 2005. Although mobile ownership has

reached unprecedented levels in recent years, there is still an underly-

ing increasing trend present in the ownership of these devices which

manifests itself in the collected data. Moreover, mobile ownership varies

widely between demographies of age and geography as well. Figure 3.21

shows the mobile ownership across age groups in the UK from 2012 to

2018. We can observe that the older age groups are under-represented in

our data. This needs to be taken into consideration while using this data

to extrapolate any demographic conclusions from it. In addition to this,

the overall upward trend needs to be adjusted assuming a 1% increase

monthly and 0.2% weekly when using this data across long periods of

time.

Figure 3.21: Smartphone
penetration by age group

in United Kingdom.
Source: UK edition, Deloitte

Global Mobile Consumer Survey,

3.5.5 Missing Data

Being collected by a distributed set of sensors located in busy real-world

scenarios, the data have a large number of gaps as well. These gaps

are caused by various reasons such as: failure of the sensor hardware

and software, and failure in internet connectivity to send the data back.

External factors such as store closures which can cause power loss,

regular disruptions such as software updates and maintenance, and

finally other factors such as unauthorised tampering and unplugging of

the sensor can also cause gaps in the data. This is leads to a dataset which

contains several small and medium sized gaps as shown in Figure 4.2.

Moreover, the Smart Street Sensor project is implemented and managed

with commercial motives: the sensors are installed and uninstalled at

locations as retail partners join and leave the project. This leads to an

uneven availability of data across locations over longer time periods

which creates challenges while aggregating the data across locations. We

need to implement a methodology to fill in these gaps which considers

the periodic patterns in the data. We also need to devise a measure

for aggregating the counts across locations which removes the bias
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introduced by long-term gaps in data.

3.5.6 MAC address collisions

Finally, from the initial analysis we have observed that there are few

instances of collisions occurring in the hashed MAC addresses. This

has been observed as unique hashed MAC addresses appear at different

locations within a short period of time which cannot be explained by

the physical travel by the user between these locations. These collisions

are caused by the limitation of the hashing algorithm used and exist

only in very large amounts of data. It is important to note that this

collisions are specific to non-randomised MAC addresses as we don’t

expect any consistency within the randomised ones. Even though this is

an inevitable side effect of the hashing process, the probability of such

occurrence is very low and is calculated as 2�n, where n is the number

of bits in the output of the hashing algorithm. The total number of

estimated collisions between m unique values is given by, 2�n ⇥ (m
2 )

7. 7 Mikeazo and Poncho. Formula
for the number of expected
collisions, 2015. URL https:
//bit.ly/2YS6zYl

This translates to around 100 collisions across a million unique devices

with a 32 bit algorithm and 2 collisions across 10 Billion devices when

using a 64 bit algorithm. Though these collisions might cause issues in

granular mobility models, for long-term and broad studies where we

don’t track individual devices, they can be safely ignored.

https://bit.ly/2YS6zYl
https://bit.ly/2YS6zYl
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Processing the Data into Footfall

Chapter 3 detailed the procedure through which three distinct Wi-Fi

probes based datasets were collected ranging from small controlled

experiments to comprehensive national level project. It also detailed

the various uncertainties, biases and challenges that are present in these

datasets and possible approaches to solve them. Having established

these, this chapter aims to devise the toolkits and methods to deal with

the datasets and combine them into a data processing pipeline which

can to go through the data and convert them to estimation of ambient

population or footfall at the locations they were collected.

As the amount of data collected with Smart street sensor project is

large from a conventional computing point of view, Section 4.1 starts

with a review of ‘big data’ and tries to set up a framework of evaluating

the datasets from a ‘big data’ perspective. A brief review was conducted

on the topic of ’big data and big data tools’ which established a frame-

work for investigating datasets and measuring the extent of ‘bigness’ in

them. Using this framework, the datasets were evaluated in each of their

dimensions to understand their nature and the challenges posed in these

dimensions. We find that the Wi-Fi based datasets are ’medium data’

(as opposed to ’big data’) which can benefit from customised toolkits

which increases the efficiency. After evaluating the datasets, a detailed

review of tools and methods to deal with big data was conducted and

the ones which are relevant and feasible for further research were picked

out. Finally a complete bespoke ‘toolkit’ was created by pulling together

and connecting all the individual tools so the data can be processed in

the most efficient way.

Having designed a toolkit, Section 4.2 explores the methods that

can be used by this toolkit to clean and process the data. The major

uncertainties in these datasets which were identified in the last chapter

were looked in to further with the specific focus on how much they



88 estimating footfall from passive wi-fi signals

affect the datasets. We identify - the uncertain field of measurement and

MAC randomisation as the biggest sources of data. We discussed the

ways in which these problems could be solved and design methods to

solved them. We propose signal strength and its analysis as solution

for enforcing the field of measurement and sequence numbers and their

analysis as solution for figuring out unique devices even when they were

randomised. We formalise these ideas into algorithms and use these on

the datasets one by one to find which ones are feasible and eliminating

the ones that cannot help. Both the methods are tested extensively on

the data collected from the initial survey and the pilot studies and the

corresponding effectiveness in reducing errors were measured. Finally,

an alternative method to adjust long term errors quickly and efficiently

in large projects such as Smart street sensors was devised and tested to

provide us with footfall estimations of sufficient quality.

Finally in section 4.3 we combine these tools and method together to

make a data pipeline which takes in the large amount of the continuous

inflow of data from the smart street sensor. This pipeline downloads,

cleans, processes and stores the data. It also post-processes the data into

footfall for further analysis. The performance and the efficiency of the

pipeline is briefly discussed and compared with traditional methods.

Thus completing our journey from raw Wi-Fi probe requests data to an

informed estimate of footfall at retail location all around UK.
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4.1 Data Toolkit

Big data and its analytics promises huge benefits in terms of value

realisation, cost reduction and insights but it also introduces a numerous

pitfalls 1. With developments in information technology, mobile commu- 1 Amir Gandomi and Murtaza
Haider. Beyond the hype: Big data
concepts, methods, and analytics.
International Journal of Information
Management, 35(2):137–144, 2015

nications and the internet of things, large assemblages of data are readily

available leading to immense possibilities in research. But when we anal-

yse these data at such scale, we also encounter a large amount of added

complexity and cost. Hence it is important to be careful in choosing

the methods and tools in dealing with big data where we should look

to devise right methods and tools for the right problems. Moreover in

several disciplines, such as statistics and geography, the existing methods

and tools are already developed for dealing with large scale data. These

methods along with improvements in hardware has made the processing

big data in these disciplines possible without major changes in workflow.

In the current environment of constant change and growth of sources of

data, we cannot afford to lose the opportunity to extract information from

them while trying to create a perfect, future proof approach in dealing

with them. We need to move fast with a pragmatic approach where we

look at other disciplines and adopt best practices and solutions in them

and develop consistent approach for our needs rather than reinventing

the wheel.

In the previous chapters various methods we devised to collect and

process data from Wi-Fi probe requests emitted by phones have been

discussed in detail. Though we discussed the methods conceptually, we

left out the rationale behind choosing the toolkit employed to implement

those methods. We start by discussing the concept of ‘big data’ in general

and look at previous literature to understand its definition, nature and the

challenges they pose. Then we look at the data-sets we collected through

the pilot studies and the ‘Smart Street Sensor’ project and evaluate them

in terms of the dimensions of the big data. We also discuss the challenges

faced in dealing with our dataset in detail and try to understand the

requirements for devising a toolkit for it. Finally we put together a toolkit

to suit our datasets built from simple small UNIX tools. 2 2 "Write programs that do one
thing and do it well. Write
programs to work together. Write
programs to handle text streams,
because that is a universal
interface.", Doug McIlroy on
UNIX philosophy.

4.1.1 What is ‘big data’?

With the proliferation of internet enabled personal devices, we have

quickly moved from data sparse environment to a data rich one. We

can even confidently say that we are in an age of data deluge where
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the amount of data which are collected and stored are increasing expo-

nentially in a very short period of time 3. As we saw in the previous3 Rob Kitchin. Big data, new
epistemologies and paradigm

shifts. Big Data & Society, 1
(1):2053951714528481, 2014

chapters collecting large amount of data is quick and easy. Technological

advancements have enabled us to be able to think about utilising such

large assemblages of data which would have been impossible even in

the recent past. By providing unprecedented coverage, these large as-

semblages of data - ‘Big data’, provide us with insights which were not

possible before. They often change our approach and methods employed

in entire disciplines. For example, in computer science, fuelled by the

explosion of collected user data, there is a paradigm shift in Artificial

Intelligence with the use of data mining, machine learning and deep

learning. It is only a matter of time before this approach pervades social

sciences research as well. In addition to the above advantages, ’Big

data’ because of their nature also introduce numerous challenges in their

collection, storage, analysis and visualisation. This is not including the

enormous additional overhead and complexity introduced when we try

to employ big data methods and tools. If we are not careful, using big

data tools and methods for solving problems that do not require them

can be counterproductive where the advantages realised do not justify

the overheads introduced. Hence it is important to understand the ‘Big

data’ nature of the datasets we are dealing with at a granular level and

choose the tools and methods without any presumptions.

The first and foremost challenge we face while discussing big data

is its definition. It is hard to clearly and objectively define ‘Big data’ as

it can vary widely based on the discipline and perspective. What may

be ‘big’ in one discipline may not be in another. The nature of data

can also be evaluated in various dimensions and can exhibit different

properties in those dimensions. ‘Big data’ is generally defined within the

context of disciplines, as data which cannot be managed with traditional

methods and tools in those disciplines and requires substantial change in

the approach of the practitioners. This approach of looking at ’Big data’

is too subjective and falls short of giving us more understanding of ‘Big

data’. One of the most quoted definitions pertains to the scale of the data

in the dimension of volume - size of the data, velocity - speed of the data

and variety - the complexity of the data 4. This has also been extended to

4 Doug Laney. 3d data man-
agement: Controlling data vol-

ume, velocity and variety. META
group research note, 6(70):1, 2001

include more dimensions such as, veracity - the reliability or truthfulness

of the data, visualisation 5- the complexity in visual interpretation and

5 Songnian Li, Suzana Dragicevic,
Francesc Antón Castro, Monika

Sester, Stephan Winter, Arzu
Coltekin, Christopher Pettit, Bin

Jiang, James Haworth, Alfred
Stein, et al. Geospatial big data

handling theory and methods: A
review and research challenges. IS-
PRS journal of Photogrammetry and
Remote Sensing, 115:119–133, 2016 presentation of the data, and others such as visibility validity, variability,

volatility and value. There have also been other alternative dimensions
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proposed such as cardinality, continuity and complexity 6. However 6 Shan Suthaharan. Big data
classification: Problems and
challenges in network intrusion
prediction with machine learning.
ACM SIGMETRICS Performance
Evaluation Review, 41(4):70–73,
2014

we can consider the core dimensions of data - volume, velocity, variety,

veracity and visualisation for evaluating our datasets. Since not all data is

’Big’ in all these dimensions, we need to evaluate the ‘bigness’ of the data

in each dimension and consider the associated challenges and solutions.

The second set of challenges arise while we process the big data, its

acquisition, storage, extraction, cleaning, annotation, integration, aggre-

gation, modelling, analysis, visualisation and interpretation. Challenges

in each one of these processing activity arises due to the data being

big in one or more dimensions. The data being big in volume, velocity

and variety poses challenges in data acquisition, aggregation, cleaning

and analysis. These challenges make traditional methods impractical

and introduce the need for distributed, crowdsourced collection of data,

heavily parallelised computing and application of functional program-

ming concepts. The unstructured nature of the big data also introduces

notable biases which mandate careful consideration, proper calibration

and weighting during analysis so that we can understand and remove

any uncertainties arising from them. The data being big in veracity

dimension poses significant challenges in its analysis and modelling.

Since simple methods such as linear regression fails in such scenarios,

we require complex methods such as support vector machines, neural

networks and hidden Markov models which compensate the lack of

structure with the volume of data. With such computationally intensive

methods, heavily parallelised high performance computing techniques

such as GPU processing become indispensable. We also face significant

challenge in visualising such complex features and methods which not

only supports critical decision making but also is indispensable in ex-

ploratory analysis. The volume and velocity of big data makes them

hard to visually simplify and digest. They are especially complex to

interpret in the time dimension unless presented in small parts. Ge-

ographic information systems do a good job in visualising complex

geographic data but struggle to maintain legibility and meaning when

dealing with the temporal dimension. The visualisations of big data need

to be highly processed, simplified and interactive to present meaning to

the viewer. They have to balance between functionality, aesthetics and

performance. Finally, because of the variety, big data creates need for

consistent, well engineered standards so that multiple approaches and

tools can be employed in tandem.

Apart from these processing challenges, we also have management
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challenges associated with big data such as privacy and security, data

governance and ownership, data and information sharing, and cost7.7 HV Jagadish, Johannes Gehrke,
Alexandros Labrinidis, Yannis Pa-
pakonstantinou, Jignesh M Patel,

Raghu Ramakrishnan, and Cyrus
Shahabi. Big data and its techni-

cal challenges. Communications
of the ACM, 57(7):86–94, 2014

Since these big datasets are usually comprehensive, securing them and

protecting the privacy of the users becomes a central consideration in any

project dealing with them. In many cases, though the data collected itself

may not contain personal information but at these scales, in conjunction

with other datasets, it can be used to infer them. The overall approach,

methods, tools should comply with relevant legislation such as GDPR

as well as the research ethics of all the stakeholders. This is especially

challenging since these large unstructured datasets exhibit ambiguity of

their ownership as well which calls for a clear, transparent and secure

way to share them with other stakeholders along with publications of

results in a timely, accessible manner. The associated project management

and tracking tools need to be capable of handling these data ownership

and sharing concerns as well.

Finally, the biggest challenge we face with big data is the cost in terms

of money, resources and time. Though most of the big data tools are

developed openly and distributed freely there can be lot of incidental,

non-direct costs associated with collecting, processing and managing

data with them. For example, there are the operational costs collecting

data at such scale, network costs moving them, server costs storing and

processing them, cost of procuring and supporting specialised tools and

the human resource cost in hiring and training people who are capable

for dealing with them. Though there are economies of scale at larger

scales, the overall resources required to manage big data effectively can

be several folds of what is needed for a traditional dataset. This makes

it important to look at the data in our hands closely and carefully so

that we can make informed decisions on how ’big’ it is and choose the

methods which are the most suited for such dataset.

4.1.2 How big are the Wi-Fi probe request datasets?

In this section we take a detailed look at the three sets of Wi-Fi probe

requests collected as described in chapter on data collection using the

5Vs big data framework. Our aim is to understand the nature of the

data in each dimension and thus evaluate the challenges we face in that

specific dimension leading to a bespoke solution. We look at each set of

data in each dimension and try to answer the following questions,

1. How can this dimension be measure objectively?

2. How big is the data in terms of the defined measurement?
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3. How does it data compare with datasets in other disciplines?

4. How can we describe the size of the data?

We then combine these isolated evaluations to form a combined de-

scription of the datasets. This is then used as the basis for developing a

list of requirements for designing the data processing and management

toolkit.

Volume

Probe requests data, being dynamic and continuous, cannot be quantified

as an absolute static number in terms of volume. Hence we use a long

term measurement - yearly rate, for each location instead. On shorter

datasets such as the pilot study, we estimate the yearly volume linearly

from the available data. We standardise this measure as the amount of

disk space needed to store the collected data when encoded in text form.

It is important to note that this can be reduced many folds by using

compression or binary formats but we chose text since it the de-facto

standard for exchanging data.

Study Maximum Minimum Average Total*
(GB per year) (GB per year) (GB per year) (TB per year)

Pilot Study 134 3 54 48.3
Main Study 6.1 2.4 4.42 4.1
Smart Street Sensor 5.4 0.001 0.8 0.8

Table 4.1: Comparison of volume
or size of the datasets of Wi-Fi
probe requests.

* Estimated for 920 locations

We can see that there is a lot of variability in the volume of probe

requests generated at a given location. This mostly depends on how

many mobile devices are present around the location. We observe that

when we collect most of the information present in the probe requests

in a busy area such as Oxford street in the Pilot studies, we generate

around 50 terabytes of data in a year. As explained in Chapter 3, in a real

world setting such as the Smart Street Sensor project where the sensors

fail at times and the amount of data collected is optimised, the volume is

around a 1 gigabyte. The total volume of data we deal with in the case

of a national scale project with around 920 sensors running for around

4 years is around 2 terabytes. A comparison of this to datasets from

other disciplines is shown in Figure 4.1. It is key to note that the y-axis

is scaled exponentially.

We can see that the probe requests data is not truly ’Big data’ as

experienced in other fields. It is only when we reach a complete coverage,

i.e, putting a sensor at each retail establishment in UK, our estimated
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data volume reaches around 250 petabytes which is comparable to scales

experienced in other fields such as particle physics and world wide social

networks. At the same time, the scale of probe request data is not small

either. The volume of 2 terabytes is more than the memory available

in any desktop systems and is more than any of them can process in a

timely manner. Summarising from the above, we can confidently say that

the probe request datasets are ‘Medium Data’ - especially the dataset

collected by the smart street sensor project. Though it has potential to

scale into a truly big dataset, for the purposes of this research we can

classify it as ‘Medium data’ in the volume dimension.

Figure 4.1: Comparison of
volumes of data across various
disciplines.

NSA - National Security Agency, LHC

- Large Hadron Collider, GE - Google

Earth, EV - Event Horizon project, SP -

Spotify music, BL - British Library data

store, LoC - Library of Congress, SSS -

Smart Street Sensor, NYU - New york city

Uber trips 2009-15, OSM - Open Street

Map and HG - Human Genome Project

Velocity

Velocity is the rate at which the data is collected over time. It is sig-

nificant when evaluating big data since some data which may not scale

in terms of absolute volume but the speed at which they are received

makes them challenging to deal with. A perfect example is the compar-

ison between data generated by the Large Hadron Collider project by

European Council for Nuclear Research and a world wide social network

such as Facebook. Though their total volumes are comparable at 200

petabytes, the data from LHC is generated in concentrated experiments

at a rate of 3 petabytes in 5 seconds while Facebook generates the same

about in about a day or two. Since the size of an individual Wi-Fi probe

request doesn’t vary widely, we define the velocity of this dataset as the

number of requests received at a given location at a given location within

a given time interval. Though the precision of the time measured during

data collection is in microseconds, the practical data transfer resolution

in all the datasets is around 5 minutes. Hence we measure velocity of

out datasets in terms of number of requests every 5 minutes. Table 4.2

compares the datasets we collected on Wi-Fi probe requests in terms of

their volume.

Table 4.2: Comparison of ve-
locity or speed of the datasets

of Wi-Fi probe requests.

Study Maximum Minimum Average Total*
(per 5min) (per 5min) (per 5min) (Mn per 5min)

Pilot Study 8577 188 3469 3.20
Main Study 1362 534 782 0.72
Smart Street Sensor 5024 6 408 0.27

* Estimated for 920 locations

We observe that locations can receive up to 8500 requests in 5 minutes

or can get no request at all depending on the time and how busy it

is. But we can see that on average a national scale project with around

900 locations generates around a million requests every 15 mins. Com-
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pared to the LHC’s 180 billion records or Google’s 190 million searches

per 5 minutes this seems to be not high speed data. However, this is

much faster compared to traditional data sources such as census or geo-

graphical surveys which are updated anywhere between 6 months to 10

years.

To summarise, in terms of velocity, the Wi-Fi probes data can be

described as ’Medium’ at best. The methods dealing with the data should

be time sensitive and be able to deal with a continuous stream of data

but at the same time need not be real time or need sub-second latency.

Since the Wi-Fi probe requests don’t have actual location information the

mobile devices, it does not have the similar value in real-time analytics

as shown in comparable location or movement based datasets.

Variety

Variety is defined by the amount of variance in the type and char-

acteristics of the data. Since variety is hard to quantify and compare

across disciplines we evaluate the dataset subjectively for the variety

present in it. The data transmitted in a Wi-Fi probe request is defined

by the 802.11 Wi-Fi specification 8 and every probe request has to have 8 IEEE. IEEE standard for
information technology-
telecommunications and in-
formation exchange between
systems local and metropolitan
area networks-specific require-
ments - part 11: Wireless LAN
medium access control (MAC)
and physical layer (PHY) speci-
fications. IEEE Std 802.11-2016
(Revision of IEEE Std 802.11-2012),
Dec 2016

a set of mandatory fields for Wi-Fi to work. This set of fields is the

same everywhere across the world and the specification, especially the

probe request part, has remained stable over years. Though there is

some variability allowed within the specification, being part of a global

standard, the data collected is heavily structured in general.

The first set of variety present in the Wi-Fi probes data set arises

from the ’information elements’ part of the probe request. The structure

of a probe request is discussed in detail in the data collection chapter

and is summarised in Figure 3.1. Essentially the information about the

capabilities and type of the mobile device is encoded in the information

elements part of the probe request and this information is optional and is

implemented at the discretion of the manufacturers. As this information

elements are demonstrated to be useful in successfully fingerprinting

the mobile devices 9, mobile devices increasingly don’t include any 9 Mathy Vanhoef, Célestin Matte,
Mathieu Cunche, Leonardo S
Cardoso, Frank Piessens, and
Piessens Frank. Why mac address
randomization is not enough: An
analysis of wi-fi network discov-
ery mechanisms. In Proceedings of
the 11th ACM on Asia Conference
on Computer and Communications
Security, pages 413–424. ACM,
2016. ISBN 1450342337. doi:
10.1145/2897845.2897883

information in them. Emergence of manufacturers with large market

share and narrow set of device models such as Apple and Samsung also

reduce further variability in them. The second set of variety in the dataset

arises from the rate at which these probe requests are generated by the

mobile devices. Unlike devices which generate data on events or at

regular intervals, mobile phones generate probe requests at a rate based
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on various factors. Though this leads to some challenges in counting

footfall from these probe requests the variability exhibited here is neither

so large nor so complex that traditional methods could not deal with

them.

Comparing with some of the big data encountered in unstructured

data collected over web such as social networks or other sensor based

methods, the variability here can be considered trivial. Further when

we convert these probe requests in to footfall counts, the variety in

the dataset drops almost to zero as it becomes just an ordinal data

point varying in geography and time. Summarising the above, we can

confidently say that the Wi-Fi probe request data does not exhibit any

‘big data’ properties in the variety dimension.

Veracity

Veracity is defined as the amount of abnormality present in the data

in the form of inaccuracies, biases and noise. Similar to variety, veracity

is hard to quantify hence required a subjective evaluation. Being sensor

collected data, veracity is the dimension where the data exhibits most

‘big data’ properties.

Figure 4.2: Missing data from
five locations at Tottenham
Court Road, London on 15

January 2018 demonstrat-
ing the veracity of the data.

First set of veracity in the dataset arise from the fact that it is collected

through sensors located in multiple locations which communicate to

the central server using 3G mobile data connectivity. We know from

experience that the sensors are unreliable and fail to send back data

regularly due to various reasons. More over the sensors are installed and

uninstalled regularly as partners join and leave the project. This results

in a data stream which is often erratic and incomplete with large gaps in

them. In addition to this the sensors need to be rebooted regularly due

to issues or updates leading to small gaps as well. Since the sensors are

part of retail establishments they can be switched on and off regularly in

some of them as well. Figure 4.2 demonstrates the veracity of the data

in terms of missing data for a sample of 5 locations in London. All the

above pose immense challenges when we attempt to aggregate the data

where we have to estimate and fill these gaps.

There is also a lot of variability in the physical location of the sensors

and the area of measurement. The sensors may report higher or lower

count due to their configuration and the context of their location as

discussed in chapters pertaining to data cleaning. This leads to a situation

where the accuracy of the data collection varying quite widely across

location and times 10. It is often not clear if the change in the data is due

10 Karlo Lugomer, Balamurugan
Soundararaj, Roberto Murcio,

James Cheshire, and Paul Long-
ley. Understanding sources of
measurement error in the wi-fi

sensor data in the smart city. In
Proceedings of GISRUK 2017. GIS

Research UK (GISRUK), 2017
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to actual changes at the location or just the change in the configuration

of the device. For example, opening of a mobile shop next door to the

sensor can increase the estimated footfall without any change in actual

footfall at the location.

Finally we also have to work within the changing mobile landscape.

Though the Wi-Fi probe requests are standardised by IEEE, the mobile

manufacturers have started adopting obfuscation techniques to protect

the privacy of the users. This started with randomisation of MAC

addresses, removal of information elements and generally getting more

sophisticated with new versions of operating system. There is also bias in

terms of operating system adoption and change in market share between

manufacturers. There is no inherent structure or information on what is

changed and how often these changes occur which leads to questions on

the continuity of the data over long periods of time.

Summarising from the above, we can confidently conclude that Wi-Fi

probe requests dataset shows ‘Big data’ characteristics in terms of its

veracity and requires appropriate tools and methods when aggregating,

analysing and modelling it.

Visualisation

Figure 4.3: Number of probe
requests collected for every five
minute interval at Tottenham
Court Road, London on the
year 2018 showing the visual
complexity of data in the time
dimension.

Visualisation is closely related to volume, velocity and variety of the

data. The Wi-Fi data due to its non-trivial volume and velocity, exhibits

similar characteristics and challenges in terms of visualisation. Since

there is not much variety in the dataset, when we process the raw data

into footfall counts we are left with just the time, location and footfall

count for each data point. Out of these, location and footfall counts are

easy to visualise but time exhibits big data properties. This is primarily

due to its granularity at 5 minute intervals and longitudinal nature of

the data collection. The major challenge with Wi-Fi data is to simplify

and visualise them in a legible way while showing change in term of

time. The veracity of the data presents challenges in simplifying them

and the volume poses challenges in maintaining legibility. We also have
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to take the ‘near real time’ aspect of the data into consideration while

visualising them. There is a clear need for always on, interactive, real time

dashboards with geographic capabilities in addition to the capabilities of

traditional desktop GIS. There is also need for multiple linked dynamic

visualisation platform for separating the scope of the visualisation into

manageable units. Figure 4.3 demonstrates the illegibility of simple

visualisations of the data due to granularity, variability and veracity. We

can safely say that the Wi-Fi probe requests dataset is at best ‘Medium’

in the visualisation dimension.

Summarising the above discussion, we can conclude that the datasets

collected from Wi-Fi probe requests are at best of ’medium’. They show

the most big data characteristics in terms of their veracity. In rest of the

dimensions the datasets are not truly big data and we need to look at

tools and methods appropriate to their size. The toolkit we devise need

to be able to deal with their mid-size volume, velocity and visualisation

dimensions and at the same time need to able to deal with the large

amount of veracity of in them. Figure 4.4 illustrates the summary our

discussion. This leads us to devise a ‘medium data toolkit’ which can be

used without incurring the extra cost and complexity introduced by big

data tools while be able to handle the data at hand.

Figure 4.4: Big data characteristics
of the Wi-Fi probe request
datasets in their corresponding
dimensions

4.1.3 A Survey of Methods and Tools

Having classified the Wi-Fi probes dataset as a ‘Medium’ sized data, in

this section, we survey the tools and methods available at various stages

of the data processing and management process - data collection, storage

and retrieval, processing and analysis, visualisation. We first survey the

tools available in each stage and specifically look at their suitability for

Wi-Fi probe request datasets in terms of the following characteristics,

• Performance - How much data can be processed in a given time?

• Flexibility - How easy it is to change the scale and scope?

• Complexity - How many components or parts are involved?

• Cost - How much money or infrastructure do they require?

We then discuss the principles of UNIX philosophy and how it helps

in solving similar sized problems in computer science. Finally we pick

and connect the tools to devise our toolkit which is best suited for out

Wi-Fi probe request dataset.

Collection
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We discussed various technologies used in collecting passive data on

ambient population and pedestrian movement in the literature search.

In this section we look at tools and methods used to collect Wi-Fi based

data passively. The primary considerations for evaluating data collection

strategy are the scale of the infrastructure, expertise and effort required

to implement it and cost involved.

There have been numerous sensors, tools and associated software plat-

forms made available for data collection under the umbrella of ‘internet

of things’. We start by looking at different approaches in the Wi-Fi data

collection tools and try to reason the most appropriate solution for our

research. On one end there are low level and low cost bespoke solutions

which require lot of effort to implement and maintain. On the other end

there are turn key solutions which doesn’t require lesser effort but costs

considerably more. The key is finding a balance between both while

satisfying the requirements of the project. Since the Wi-Fi data is medium

sized in terms of volume and velocity, we can deal with solutions with

less than optimal scalability but since the data is ’big’ in terms of veracity

the toolkit has to give us most flexibility. Essentially, we are looking

for a data collection methodology which prioritises flexibility and cost

while performing moderately in terms of scalability and complexity as

illustrated in Figure 4.5.

Type of solution Examples

Bespoke Micro-controllers with Wi-Fi modules
e.g. Audrino + ESP8266

Turn-key End to end commercial services e.g. Blix,
Euclid, Pygmalios etc.

Ideal General purpose hardware e.g. Rasp-
berry Pi, Repurposed mobile devices -
Tablets, Phones etc.

Table 4.3: Examples of differ-
ent types of Wi-Fi based data
collection solutions.

In terms of hardware, an example of a highly customised solution

would be a micro-controller, such as Arduino, coupled with dedicated

Wi-Fi module and programmed with custom software to collect the

exact data needed. Designing and implementing of such system is

time consuming, cumbersome and usually involves significant cost but

it can also be highly flexible, efficient and cheap to deploy. On the

other end of this spectrum, we have end-to-end solutions such as Blix,

Walkbase, Euclid, Retail Next, Pygmalios, etc. where the data is collected

through multiple sensors and sources and syndicated into a clean footfall

information by a third party service provider. These platforms for footfall

data collection and analysis have the advantage of being quick and easy
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to develop and deploy while they can also be highly inflexible for changes

and turn out to be costly when scaled up. A middle ground here is to

use a general purpose hardware such as single board computers or

repurposed mobile devices, augment them with additional hardware

modules and use general purpose scripting languages to write software

for them. This way we avoid low level hardware or software design

and implementation while maintaining good amount of flexibility. Table

4.3 shows some examples of such systems while highlighting an ideal

system.

Figure 4.5: Characteristics of
types of Wi-Fi data collection
tools at each end of the spectrum
compared to an ideal candidate

(Darker colors show higher score)

The Smart Street Sensor project uses its own proprietary sensor sys-

tem designed and instrumented by the data partner. The design and

implementation decisions were made with the commercial application

in mind and is not entirely relevant to our discussion in the context of

our research. For the research conducted with the data, it is necessary

to understand the data collection process and make sure it aligns and

integrates with the rest of the toolkit. As discussed in the data collection

chapter, the methodology used in the smart street sensor project satisfies

our requirements. The toolkit we designed to collect other datasets are

in-part inspired by this methodology or a modified version to include

more flexibility. The toolkit consists of Raspberry Pi, Linux, tcpdump

or tshark 11 and nodejs. Raspberry Pi and the Linux OS provides a11 Gerald Combs and Contribu-
tors. Wireshark - network pro-

tocol analyzer. https://www.
wireshark.org/about.html, 2018

general purpose base system and hence the flexibility. On top of this

we built our data collection system by assembling open source and free

network analysis tools such as tcpdump and tshark along with other

tools providing functions such as scheduling, personal data obfuscation

and data transmission with scripting languages like nodejs and bash.

Storage

Data storage technology is one of the most diverse landscape in terms

of both methods and tools available. It has been constantly in research

and development since the beginning of computing and is one of the

fastest changing landscapes with the advent of big data paradigm. A

comprehensive review of storage solution warrants a chapter in itself so

we restrict our survey to an outline of most significant approaches and

corresponding systems and tools.

At one end of the spectrum is one of the most underappreciated for

data storage - File systems. Though they seem like a low level interface

for storing data, file systems have their advantages as well. When the

data is not complex or inter-related, flat text files in file systems could

https://www.wireshark.org/about.html
https://www.wireshark.org/about.html
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be the fastest way to store, search and retrieve data. Since operating

systems are usually optimised to manage storage media through file

systems, they involve no additional overhead and are extremely reliable.

The hierarchical file systems use in most of the operating systems act

as an index with hierarchical data. The major disadvantage of file

systems is that they are not useful for managing data with any kind

of complexity. This is the primary reason why database management

systems are developed on top of file systems.

Database systems can be broadly divided into relational and document

based. The relational databases are optimised to deal with relational

data and usually enforce strict structure for the data In general they can

handle large number of rows and are designed to scale vertically through

addition of more resources to the DBMS such as CPU and Memory.

Most relational database systems try to guarantee ACID 12 compliance

12 Atomicity, Consistency, Isola-
tion and Durability are properties
which make sure that the data in
the database is valid even during
failures.and hence used in critical systems such as financial operations, sales

etc [Haerder and Reuter, 1983]. The document based databases are

optimised to deal with unstructured data and can doesn’t need a strictly

defined scheme. In general they can handle large number of columns

and are designed to be distributed and scaled horizontally by adding

more instances of the databases which balance the load and redundancy

between them. Being distributed, most document based databases try

to pick a focus and compromise on others as specified in CAP theorem
13. There a numerous databases systems which prioritise different things

13 Brewer’s theorem or CAP the-
orem states that it is impossible
to simultaneously guarantee con-
sistency, availability and partition
tolerance in a distributed data
store.

and the right solution depends on the properties of the data and the

requirements of the project.

Since the publication of the paper on ‘Google file system’ by Google
14. There have been significant effort in designing and building ’big

14 Sanjay Ghemawat, Howard
Gobioff, and Shun-Tak Leung. The
google file system. In Proceedings
of the 19th ACM Symposium on
Operating Systems Principles, pages
20–43, Bolton Landing, NY, 2003

data’ file storage systems which can large data in the range of petabytes.

These systems are designed to be distributed and optimised for high

throughput for queries on them. Hadoop Distributed File System (HDFS)

is one such file system which is also the most widely adopted. There are

numerous cloud based, third-party solutions built with these file systems

making them easy to use. There are also numerous tools, libraries and

frameworks which emulate the features of database systems on these

distributed file systems making them easier to use further. The primary

advantage of these systems is the sheer scalability they provide when

it comes to data volume. The primary disadvantage is the associated

overheads in terms of cost and time incurred in learning, designing

and implementing them. Unless the project is sufficiently large, the
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advantages gained usually do not justify the overheads introduced. Table

4.4 summarises the above discussion along with relevant examples.

Table 4.4: Various data storage ap-
proaches and their characteristics. Approach Data size Examples Comments

File system < 10 TB ext, ntfs, zfs,
btrfs

Simple and efficient. Best for hierar-
chical data. Cannot handle complex
connected data.

Relational DB < 5 TB MySQL, Post-
greSQL

Handles structured and relational
data. Optimised for large amount
of rows and tries to guarantee valid-
ity.

Document DB <10 TB MongoDB, Cas-
sandra

Handles unstructured data. Opti-
mised for large number of fields
and distribution to multiple clusters.
Tries to focus on any two guarantees
of the Brewer’s theorem.

Distributed FS > 10 TB HDFS, Ceph,
GFS

Optimised for really large datasets
which need to be distributed over
multiple nodes.

Cloud Storage > 10 TB AWS, Azure,
SWIFT

Implements distributed file systems
on the cloud. Has more reliability
and scalability than local implemen-
tations.

Data Warehouse > 10 TB Hive, Hbase,
Impala, Presto

Interfaces built on top of distributed
file systems to emulate capabilities
of relational databases on them.

We saw that the Wi-Fi probe request datasets are ‘Medium’ sized hence

we can safely eliminate distributed file systems for storing them. Though

the smart street Sensor project uses Azure Blob Storage, when the data is

downloaded to the local servers at the university, we can just store them

in the file system because of their size (2TB approx.) and the hierarchical

nature. The folder structure of - year/month/day/location/interval/

with individual text file, enable us to query the data for any given location

at any interval nearly instantaneously without any further database

operations. When this raw data is processed into 5 minute counts, we

require more relational queries. For this purpose a relational database is

sufficient as volume is quite small (25GB approx.). We chose PostgreSQL

because of the PostGIS extension which gives us flexibility in handling

geographic data.

ProcessingFigure 4.6: Exponential increase
in the processing time when

using traditional methods.

The processing involves parsing

JSON data received for a single day

at each location and aggregating

them as number of probes requests re-

ceived in every five minute intervals.

We saw that the data is medium in terms of volume and velocity and

shows big data properties in terms of veracity. Hence we require tools

which are capable of dealing with the veracity of the data while being

able to manage the volume and velocity. The traditional approach to

deal with such dataset is to load it into a general purpose analysis tool
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such as R or a GIS package and process it. The size of the dataset and

the lack of meaningful complexity of geography element in the data

eliminates the use of GIS packages. Scripting languages such as R and

Python can deal with the dataset and its requirements but the time taken

to do so increases exponentially with the size of the data as the size

of objects in memory increases. Figure 4.6 illustrates the increase in

processing time with respect to number of location for a simple exercise

where a day’s worth of raw data is parsed and aggregated into number

of probe requests per 5 minute intervals (The code used to produce

these benchmarks are detailed at Section 7.4). This becomes prohibitively

expensive as the number of locations and complexity of the processing

increases. Though this can be improved with more efficient coding

practices, the margin of improvement is quite limited hence creating the

need for better techniques. It is important to note that data processing is

done in two stages - the first stage where the raw Wi-Fi probe requests

are filtered, cleaned and aggregated into footfall counts and second stage

where the footfall counts are in turn analysed to produce reports and

visualisations. The traditional methods are sufficient for the second stage

of the processing and the first stage is the one which requires a better

solution.

On the other end we have big data analysis tools which are built for

dealing with extremely large amount of data. Since the publication of

the paper on MapReduce 15, there have been immense developments in 15 Jeffrey Dean and Sanjay Ghe-
mawat. Mapreduce: simplified
data processing on large clusters.
Communications of the ACM, 51(1):
107–113, 2008

the Big data analysis landscape. There numerous distributed program-

ming tools to use the data stored within a distributed storage system

each focussing on specific type of data and analysis. A concise, non-

comprehensive list of types of data or specialities and corresponding big

data tools is shown in Table 4.5.

Tools Speciality

General purpose MapReduce, Spark
Real-time streams Flink, Pulsar
Events or messages data Storm, Kafka, Flume
Networked or graph data Tinkerpop, Corona
Scheduling Oozie, Falcon, Azkaban
Turn-key platforms SpringXD, Cask Data

Table 4.5: Various types of
big data processing tools and
corresponding examples.

We can rule out the necessity of the above big data tools since our

dataset is neither big enough nor fast enough. The dataset does not

have any specialised structure such as graph or network but just a very

minimal component of geography to it. Using any of specialised big data

tools is just going to introduce immense overheads without any added
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benefits. We need something in-between the above two approaches where

we is sufficiently fast and flexible for our datasets.

This is where we come across the possibility of using standard Unix

tools along with connecting them to create a processing pipeline. In

some cases, a data processing pipeline made using command line Unix

tools have been demonstrated to be 230 times faster than using big data

toolkits 16. The command line tools were developed as parts of Unix

16 Adam Drake. Command-line
tools can be 235x faster than

your hadoop cluster, Jan 2014.
URL https://bit.ly/2s2XZYI

operating system for processing text. They are developed in line with the

Unix philosophy which focuses on modular and minimal software devel-

opment. The core tenants of the Unix philosophy has been summarised

by Doug McIlroy as below,17,

17 Malcolm D McIlroy, Elliot N
Pinson, and Berkley A Tague.

Unix time-sharing system: Fore-
word. Bell System Technical

Journal, 57(6):1899–1904, 1978

Table 4.6: Tasks in the processing
pipeline, corresponding R li-

braries and equivalent Unix tools
Tools R Library Unix tool(s)

Move data to and from Azure
blog storage, SQL server and
Postgres

AzureR, odbc , RPost-
greSQL

azcopy, mssql, psql

Convert data from JSON format
to CSV

jsonlite jq

Encrypt raw data for secure stor-
age

Rcrypt gnupg

Anonymise personal data into
cryptographic hash

digest openssl

Transform and manipulate tabu-
lar data

dplyr find, cat, cut, grep, sed,
awk, sort, uniq, column,
paste, join

Impute missing value using time
series analysis

imputeTS Rscript

Visualise the results into maps
and charts

ggplot2 Rscript

Create and manipulate geo-
graphic data

sf, rgdal postgis, gdal

1. Make each program do one thing well. To do a new job,

build afresh rather than complicate old programs by adding

new "features".

2. Expect the output of every program to become the input to

another, as yet unknown, program. Don’t clutter output with

extraneous information. Avoid stringently columnar or binary

input formats. Don’t insist on interactive input.

3. Design and build software, even operating systems, to be

tried early, ideally within weeks. Don’t hesitate to throw away

the clumsy parts and rebuild them.

4. Use tools in preference to unskilled help to lighten a pro-

gramming task, even if you have to detour to build the tools

https://bit.ly/2s2XZYI
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and expect to throw some of them out after you’ve finished

using them.

These principles along with the ‘pipe’ operator gives us necessary

tools to build more complex tools. We can replace most of the libraries

we used in the R implementation of our processing with a corresponding

command line tools and connect them together with a text interface to

achieve similar pipeline. The first advantage of such design is that it is

much more efficient than a monolith design. These tools being actively

developed for since their invention are compiled as native binaries and

are usually extremely optimised resulting in a much faster pipeline.

Because of the design of the pipe operator, the individual parts of the

pipeline are executed in parallel as chunks of data are passed through

them thus avoiding the need to load entire datasets into memory which

results in an exponential increase processing time with the size of the

data. Being modular, we can even introduce process level parallelism

to parts of the pipeline without any major change in the overall design.

Finally the modular structure also gives us the advantage of using the

best tool for any part of the pipeline.

Figure 4.7: The increase in
processing time with the Unix
pipeline is linear thus improves
the scalability compared to R
based processing

Figure 4.8: The scalability of the
processing pipeline could be fur-
ther improved with parallelising
it.

All of this gives us an extremely minimal and efficient toolkit to

process the raw Wi-Fi probes data into counts in a scalable way. Figure 4.7

compares the processing times of such Unix toolkit with the traditional

R based toolkit as the data size increases. We can see that Unix toolkit

performs extremely well and the performance gains are significant as the

size of the data increases. For example, to process data for 25 locations,

R based toolkit takes around 20 minutes while the Unix toolkit gets it

done in 20 seconds (The code used to produce these benchmarks are

detailed at Section 7.4). Table 4.6 shows the activities in our pipeline

and corresponding libraries in the traditional R workflow along with

the equivalent Unix tools. It is important to note that tools for doing

specialised actions such as statistical analysis, machine learning and

time-series analysis are built on top of scripting languages such as R and

Python.

These can be embedded into our Unix pipeline as scripts running

in corresponding front-ends such as Rscript or python. This toolkit

can be further accelerated by parallelising parts of the pipeline using

gnu-parallel 18. For example, the previous example pipeline can be 18 Ole Tange. GNU Parallel
2018. Ole Tange, March 2018.
ISBN 9781387509881. doi:
10.5281/zenodo.1146014. URL
https://doi.org/10.5281/
zenodo.1146014

parallelised by spawning a pipeline for each location this reduces the

processing time for a set of 25 locations from 18 seconds to 3 seconds.

This done by utilising every processor cores available in the CPU. Figure

https://doi.org/10.5281/zenodo.1146014
https://doi.org/10.5281/zenodo.1146014
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4.8 compares the processing times of the Unix toolkit with a parallelised

implementation (The code used to produce these benchmarks are detailed

at Section 7.4). Finally all the Unix tools discussed in this toolkit are open

source and free software which has almost no cost in terms of resources.

Since these tools are part of the POSIX specification 19 for operating

19 Stephen R. Walli. The posix
family of standards. StandardView,
3(1):11–17, March 1995. ISSN 1067-
9936. doi: 10.1145/210308.210315.

URL http://doi.acm.org/
10.1145/210308.210315

systems, the expertise in their design and use are transferable to and

from other disciplines thus reducing researcher time learning and using

these tools.

Visualisation

In the last section we saw that the visualisation dimension of the data

shows some level of complexity. The primary source of this complexity

arises from the longitudinal nature of the data and the noise due to gran-

ularity of the data. For the processed dataset, traditional visualisation

and mapping libraries with R is sufficient while the visualisation of raw

data across long time periods for either for exploratory analysis or for

communication needs some form of interactivity or simplification to be

able to legible. Data driven documents (D3) 20 and Dimensional charting20 Michael Bostock, Vadim
Ogievetsky, and Jeffrey Heer.

D3: Data-driven documents. IEEE
Trans. Visualization & Comp. Graph-
ics (Proc. InfoVis), 2011. URL http:
//vis.stanford.edu/papers/d3

(DC) provides us with both of these requirements. Both of these tools

can accept text based input and can fit with other Unix tools discussed

earlier. In case of binary file output such as images or documents, they

could be directed to the file system and then read into other programs.

4.1.4 The Bespoke ‘Medium data toolkit’

In this chapter we saw how the advent of internet and internet enabled

devices has lead to significant increase in the amount of data generated

and collected across disciplines. This data deluge and improvements

in the capabilities of computing hardware has fuelled an explosion of

research and development in tools and methods to deal with these

‘Big data’. Though these big data tools promise huge improvements

in processing capabilities, when used under wrong circumstances they

can lead to unwanted overheads and costs. Thus we need a framework

to examine and understand the scale of the data that is being used so

that we use the right tools for the right purposes and the 5Vs of ‘Big

data’ - Volume, Velocity, Veracity, Variety and Visualisation provides us

with such frame work. Every dimension of big data poses unique set

of challenges and we need make right decisions in choosing specialised

tools and methods to overcome them.

We then closely examined the Wi-Fi probes data we collected with this

http://doi.acm.org/10.1145/210308.210315
http://doi.acm.org/10.1145/210308.210315
http://vis.stanford.edu/papers/d3
http://vis.stanford.edu/papers/d3
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framework and found that the data, though posed significant challenges

with traditional data processing techniques, do not exhibit ‘big data’

properties in all its dimensions. Only veracity of the data was found

to have any meaningful big data properties, while volume and velocity

was found to be ’medium’ at best. The datasets lacked any variety and

posed minimal challenge in the visualisation dimension because of it

high temporal granularity. Thus we arrived at the requirements for a

bespoke ‘medium data toolkit’ which is able to deal with these challenges.

Figure 4.9: Outline of the
‘Medium data toolkit’ devised
to collect, process, visualise and
manage the Wi-Fi probe requests
data

We undertook a brief survey of tools available for collecting, storing,

processing and visualising the Wi-Fi probe request data and with the

understanding of the data from the previous analysis chose the ones

which are perfect for the datasets. For collecting Wi-Fi probes data in a

scalable way, we chose a general purpose single board computers such as

Raspberry-Pi along with open source tools such as tcpdump and tshark in

a Linux environment. For data storage we narrowed in on using just the

file system for the raw data and relational database management system

for the processed counts. To process the raw data we chose to devise a

processing pipeline using an assortment of standard Unix command line

tools linked together using a shell scripting language and parallelised

at the process level with gnu-parallel. We also demonstrated that this

processing pipeline can be 400 times faster (20 minutes to 3seconds) than

the using a monolithic pipeline even with a small sample of locations.

For visualisation we chose D3 and DC as the solution for communicating

time information legibly. Finally we arrive a ‘medium data toolkit’,

illustrated in Figure 4.9, which is best suited for the Wi-Fi probes dataset

which we employ to process and examine the data further.
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4.2 Data processing

The sources of uncertainties in the Wi-Fi probe request data were dis-

cussed in detail in section 3.5. The major uncertainties that were identi-

fied were: range of the sensor, probing frequency of the mobile devices,

randomisation and hashing of MAC addresses, changing mobile own-

ership, and missing data. It was determined that the MAC address

collision occurring due to the hashing process was insignificant and

could be ignored safely. The missing data problem was found to be an

issue of ‘post processing’, whereby the values need to estimated based

on the previously occurring values after the rest of the uncertainties were

solved. This left MAC randomisation and the uncertainty regarding the

range of the sensors as the major sources of noise in the data. The next

step was to explore the extent of the noise generated by looking at both

the sample data collected and the real world data from Smart Street

Sensor project.

In 2015, during the early stages of the Smart Street Sensor project,

a data quality audit was conducted to estimate the amount of noise

in the data before proceeding to analyse them 21. A field survey was 21 Karlo Lugomer, Balamurugan
Soundararaj, Roberto Murcio,
James Cheshire, and Paul Lon-
gley. Understanding sources of
measurement error in the wi-fi
sensor data in the smart city. In
Proceedings of GISRUK 2017. GIS
Research UK (GISRUK), 2017

conducted at locations in Sheffield and London over 5 days in September

and December 2016 and manual pedestrian counts were collected for

these locations to be compared to the counts reported by the sensors.

It was intuitively expected that there would be errors in the sensor

collected data, arising from various internal and external factors which

may lead to the under- and over-counting at the chosen locations. The

MAC randomisation introduced in iOS devices was also expected to be

manageable with a standard adjustment factor: a combined measure

of ratios of the Apple devices which we observed in sensors prior to

the randomisations. Surprisingly, the study found that even with fairly

complicated adjustment factors the errors were large and unpredictable

and emphasised our lack of detailed understanding of the probe request

process. The results showed that the errors varied between 16% to -41%

within the same day and although an adjustment factor based on manual

data collection reduced the errors to less than 5% there was still a risk

of substantially under- or over-counting depending on the quality of

the field survey. The study also called for a more closer look at the

randomisation process, as well as the development of more advanced

data mining methods so as to reduce the reliance on manual counting

on the field leading.
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From the initial experiment, the noise due to the uncertain range of

sensors was found to be much larger than expected. It was observed

that about 53% of the total probe requests collected were from outside

the desired field of study. As such the errors could be enormously

reduced by simply filtering out the noise It was observed that the signal

strength of the probe requests imparts valuable information on whether

the probe request is generated by a device within the field of study or not.

Moreover, the amount of noise generated was found to be much greater

in the data collected in a real world setting at UCL. The experiment

showed that the Mean Average Percentage Error when comparing the

sensor counts to manual counts of pedestrians, was reduced from 736%

to 80% just by removing signal strengths which were lower than -70dBm.

However, the problem with that methodology is the arbitrary nature of

the threshold -70dBm which can vary widely based on the site conditions

and over time. A robust method was needed to calculate this threshold

dynamically for each location at a particular time, and which was derived

from the data itself rather than requiring external sources of information

such as regular field surveys.

Figure 4.10: The long term ef-
fect of MAC randomisation

on average weekly footfall es-
timated at sensors in Cardiff.

As discussed in Chapters 2 and 3 MAC randomisation is a major issue

in the data. It has arisen as a result of efforts to protect the privacy

of the users of mobile devices, and it cannot be eliminated by simply

collecting more data. The belief that we should protect the privacy of

mobile device users, also eliminates most of the intrusive techniques

for collecting and processing data. The technique of randomising MAC

addresses has been used by the Windows Operating System on laptop

computers for a long time, but it was brought mainstream when Apple

Inc. introduced iOS 8 for their mobile devices in the fall of the 2015. It

was observed that there was a massive wave of adoption shortly after the

release, but the trend stabilised as more and more of the market share
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was captured by Android devices, which were not randomising MAC

addresses at the time. The trend remained stable until the autumn of

2017, after which Android devices switched to randomisation techniques.

It is important to note that the randomisation methods were neither fool

proof nor standardised, as showed by [Vanhoef et al., 2016]. The problem

of randomisation continued to intensify in 2017, and was attributed to

the change in frequency that MAC addresses were randomised in a given

time interval, thus increasing the proportion of local addresses in the

dataset along with the total number of unique addresses.

Figure 4.10 shows the resulting ‘explosion’ in the average number of

unique MAC addresses that occurred in September 2017 from a subset

of data comprising of sensors in Cardiff. It should be noted that the

overall increase in the unique MAC addresses is not due to an increase

of footfall at these locations.

In addition to causing problems generally in the data for longitudinal

analysis, randomisation also causes issues at specific locations which

have the potential for large amount of devices to dwell around them.

For example, seating areas in cafes / restaurants, bus stops, and phone

shops around the sensors all cause huge overestimations of footfall when

aggregated by unique MAC addresses. It was therefore imperative that

the method we devised should take both of these cases into consideration.

4.2.1 Methodology

Keeping the above considerations in mind, two methods to clean the

Wi-Fi data and process them into footfall data were devised. The first

method uses signal strengths to filter out the noise originating from

outside the field of view, and the second uses sequence numbers to

group probe requests together instead of MAC addresses.

Filtering with Signal Strength

Figure 4.11: Thematic diagram
showing the idea behind filtering
using signal strength distribution.

One of the clues that we used to estimate the distance between the

mobile device and the sensor was the strength of the signal received by

the sensor. The first and obvious way to approach this problem was to

try and establish a relationship between signal strength and distance.

Once established, the relationship was used to convert the measurement

to distance, to set a distance threshold for every location, and finally to

filter out the probe requests which were outside the distance threshold.

However as explained in section 3.5, this approach was found to be

unfeasible. The decay of signal strength with respect to distance is not
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always constant or linear and is fairly complex to model. Moreover,

the parameters with which these two were modelled together such as

atmospheric conditions, the presence of obstructions between the source

and the target, the material of these obstructions, and the strength of

the signal (power level) of the source, vary widely across locations and

across time as well. This severely limits the ability to establish a simple

conversion factor between reported signal strength and distance. As

such, a method which takes in to account all of these variables across the

various locations needed to be devised.

Assuming that there are specific patterns in the way a sensor is in-

stalled at a location, it was expected that the data from around the sensor

should reflect those patterns. That is, in configurations where a specific

source of background noise was at a constant distance, there should be a

distinct pattern in the number of probe requests reporting signal strength

corresponding to that distance. For example, imagine a sensor in the

middle of a room such as in the initial experiment in this thesis, with

devices in and outside the room. In this case, assuming all the devices

have roughly similar power levels, there should be a sudden drop in the

signal strengths reported by the probe requests generated from outside

the room when we look at their frequency distribution. Alternatively, if

there was a stationary source of noise such as a phone shop next to our

sensor where hundreds of phones regularly send probe requests, there

should be a sharp rise in the of number of probe requests with reported

signal strength corresponding to the distance between the sensor and the

phone shop. Both of these changes can be identified by the ‘breaks’ in the

distribution of the signal strength data, as demonstrated schematically

in Figure 4.11. Identification of these breaks in the data should be car-

ried out using traditional one-dimensional clustering algorithms such as

‘jenks natural breaks’, ‘k-means’, ‘quantile’ and ‘hierarchical clustering’,

etc. which are usually used to find the class intervals in data. In simpler

cases, the signal strength could be clustered into just ‘high’ and ‘low’

and the probes with low signal strengths could be ignored.

This approach has two primary advantages. Firstly, it does not rely on

a predetermined threshold that has to be calculated with a representative

sample, which is not usually possible in time-series data with such

variability. Secondly, the methodology should apply for all the variations

in micro-site conditions, since we are only looking for the relative breaks

in the data and not for absolute values. For example, if the sensor is

located inside an enclosure and all the signals are of generally lower
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strength than usual, this method should still be able to find the distinction

between the noise and the data from relatively near the sensors. The

disadvantages of this method is that it might not work in situations

where there are multiple sources of noise around the sensor, as they do

not create a distinct pattern in their distribution.

Clustering with sequence numbers

There has been extensive research on extracting information about

people from Wi-Fi probe requests in the past decade with feasible and

favourable results. However, all of the methods used in the research

depends on the Wi-Fi data having a primary unique identifier: a MAC

address. When the MAC address is removed, or at least rendered non-

unique, the established methods fail and cause significant risk to the

infrastructure and commercial applications built around Wi-Fi data. As

was shown in Chapter 2, various methods have been devised to overcome

this anonymisation process including, but not limited to,

• Profiling Manufacturers: estimating the device model information

from a known dataset of manufacturers and device behaviours

[Martin et al., 2016]
• Scrambler attack: using another small part of the physical layer

specification for Wi-Fi [Vo-Huu et al., 2016, Bloessl et al., 2015]
• Timing attack: where the packet sequence information along

with information elements present in the probe request frame

is used [Matte et al., 2016, Cheng and Wang, 2016].

A combination of these methodologies has been proven to produce

de-anonymised globally unique device information22. Although these

22 Mathy Vanhoef, Célestin Matte,
Mathieu Cunche, Leonardo S
Cardoso, Frank Piessens, and
Piessens Frank. Why mac address
randomization is not enough: An
analysis of wi-fi network discov-
ery mechanisms. In Proceedings of
the 11th ACM on Asia Conference
on Computer and Communications
Security, pages 413–424. ACM,
2016. ISBN 1450342337. doi:
10.1145/2897845.2897883; and
Jeremy Martin, Travis Mayberry,
Collin Donahue, Lucas Foppe, La-
mont Brown, Chadwick Riggins,
Erik C Rye, and Dane Brown.
A study of mac address ran-
domization in mobile devices
and when it fails. arXiv preprint
arXiv:1703.02874, 2017

approaches are effective, sometimes even up to 90%, they usually result

in a serious risk of breach of privacy of the users of the mobile devices

by revealing their MAC addresses or by crossing ethical lines by tricking

the devices into sending more information than they would ordinarily

include in a probe request. Moreover, these risks are considered vul-

nerabilities by the computer security industry and are usually ‘patched’

in a reasonable amount of time, hence reducing their effectiveness in

long term. As a consequence, it was necessary to explore methodolo-

gies for estimating the number of unique mobile devices from a set of

anonymised probe requests, without the need to reveal their original

device information.

Although the sequence number of the packet is not strictly unique to

a particular mobile device, it was hypothesised that they can be used
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to estimate the number of unique devices. Vanhoef et al. [2016] used

optional information present in the probe requests - Information Ele-

ments (IE) - along with the sequence numbers to successfully fingerprint

the devices. This approach has become increasingly difficult as mobile

phone manufacturers, especially Apple, have severely limited the num-

ber of information elements in the probe requests to curb such finger

printing process. This problem affects established commercial solutions

using Wi-Fi probe requests such as Blix, Walkbase, Euclid Analytics, and

RetailNext etc. These companies solve the randomisation by combining

Wi-Fi data with other sources of data such as cameras, lasers or infrared

counters, but this is not possible for our research. More recently, another

solution to the problem was proposed by Hong et al. [2018]23 whereby a23 Hande Hong, Girisha Durrel
De Silva, and Mun Choon Chan.

Crowdprobe: Non-invasive crowd
monitoring with Wi-Fi probe.

Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiq-

uitous Technologies, 2(3):115, 2018

Hidden Markov Models based trajectory inference algorithm was deployed.

Unfortunately the research was limited to enclosed, exit-controlled public

spaces such as shopping malls and railway stations, and therefore does

not translate well to the open retail high streets studied in this thesis. As

such, a novel method to suit the context of this research was devised.

The first approach taken was to establish a ‘factor of randomisation’:

the ratio of the total number of randomised probe requests emitted to the

number of unique MAC addresses in them. This factor was then used to

adjust the counts when aggregating the randomised probe requests. As

explained in section 3.5, the rate of probe request generation is highly

variable and an approach which assumed a constant and stable rate of

probe requests, was therefore not feasible. Moreover, since software and

specification change frequently, it was surmised that this method was

not feasible in the long-term. It was necessary to create a more general

approach independent of the device model or manufacturer.

Figure 4.12: Thematic dia-
gram showing the idea be-
hind grouping sensors us-

ing their sequence numbers.

Resulting from the initial experiments explained in section 3.2, it was

found that OUI and the sequence number of the probe request were

the most promising information to achieve this. It was also observed

that, when plotted against time stamps, sequence numbers show distinct

streak patterns which could be isolated as single unique devices. Since

only one probe request can be received at a time, it was possible to link

them using a graph-based algorithm as illustrated in Figure 4.12. Such

an algorithm would create a graph with the randomised probe requests

whereby the nodes were the probe requests themselves. The edges were

created between the nodes based on the following rules:

1. A link could go only forward in time.

2. A link could go from low to high sequence numbers.
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3. A link could exist between nodes with a maximum time

difference of a - time threshold.

4. A link could exist between nodes with a maximum se-

quence number difference of b - sequence threshold.

5. A node could have only one incoming link and one outgo-

ing link, which is the shortest of all such possible links.

The first two rules arise from how the Wi-Fi data collection process

works. The third and fourth rules create a kind of 2 dimensional moving

window within which all the links are connected. The final rule simplifies

the graph into strands of unique devices based on the assumption that

the closest points within a window belong together. This, of course,

will not work accurately when there are intersections between these

strands. This solution could be made more accurate by calculating

angular changes similar to techniques used in creating ‘dual networks’ in

roads24, but could disproportionately increase the amount of processing 24 A Paolo Masucci, Kiril Stanilov,
and Michael Batty. Exploring
the evolution of london’s street
network in the information space:
A dual approach. Physical Review
E, 89(1):012805, 2014

needed. Hence for this research, the former method which uses the

shortest link was used.

After simplifying the graph conceptually, each connected component

corresponds to a device generating probe requests periodically with

increasing sequence numbers. A unique identification number was then

assigned to the nodes based on the connected component of the graph

they belonged to. This unique identifier was then used in place of MAC

addresses for the aggregation of the anonymised probe requests. As

discussed in section 3.1, the sequence numbers do not always increase as

they get reset after 4096; thus, this method can lead to multiple unique

identifiers being reported for a single device. This can be potentially

solved by treating sequence numbers as a ‘ratio’ scale, while calculat-

ing distances between probe requests. Since a sample consisting of

randomised probe requests sent by "Google" devices in the data col-

lected from the initial experiments showed that only 0.5% of the sample

had their sequence number reset in a given period, this effect has been

deemed inconsequential and ignored in this research.

Calibrating with Ground Truth

Since proportion of mobile device ownership was an external uncer-

tainty to this study and could arise from variety of spatio-temporal and

demographic factors, the study aimed to solve the uncertainty by using a

manual sample count at each location. An adjustment factor or an ‘offset’

was calculated for each location by comparing the sensor-based counts
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and ground truth, similar to what was undertaken in the beginning of

the project. This adjustment factor was then used to adjust the rest of

the data reliably to reflect the ground truth in absolute numbers. On

a project with a large scope, such as the Smart Street Sensor project,

since this calibration applies in addition to the other methodologies, in

addition to increasing accuracy of measurement in the short time, they

can be carried out periodically at chosen locations to improve the quality

of estimation over a long time.

The three methods – signal strength filtering, sequence number cluster-

ing, and manual calibration - together provide a complete methodology

for converting the Wi-Fi probe requests into footfall. But the methods

need empirical experiments for a successful implementation with real-

world data. For example, the signal strength methodology we need to

find the most suitable one dimensional clustering algorithm and for the

sequencing method the values of threshold need to be calculated. These

questions were answered by applying the methods on the data collected

in the experiments and pilot study as detailed in the upcoming sections.

4.2.2 Oxford Street Experiment

The primary aim of the initial experiment conducted on Oxford Street,

London was to collect data to validate the filtering and clustering meth-

ods against the scale and complexity of an open public area. It was

also aimed at finding the algorithm which was best suited for the one

dimensional classification of signal strengths as either ‘low’ or ’high’, in

order to filter out the background noise.

The first step was to create a base line count or ‘raw count’ without

any cleaning procedures, whereby the probe requests were aggregated

by their MAC addresses for every minute. This generated a continuous,

minute-by-minute count of the number of people estimated to be near the

sensor. It was assumed that each MAC address corresponded to a mobile

device and hence a pedestrian. This preliminary ‘footfall’ count was

then compared to the actual number of pedestrians recorded manually

to check for robustness. The statistic - Mean Absolute Percentage Error

(MAPE) – was used as a measure of robustness of the count, since it

provided a simple and quick idea of how much the pair of time series

data differed from each other. MAPE generally does not work with

datasets with a significant number of data points which are not known,

or those which contain zero values; however, because of the busy nature

of the survey location, there were no such intervals without any footfall.
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It was observed that the MAPE in these raw counts, when compared to

the actual ground truth, was around 425%. This confirmed the presence

of a large amount of noise in the data which may have been generated by

the sources of uncertainties discussed in section 3.5. It also demonstrated

the need for filtering the data before aggregating them into footfall.

Algorithm Time (s) MAPE

Quantile 0.002 27 %
K-Means 0.007 23 %
Hierarchical Clustering 172.520 9 %
Bagged Clustering 0.135 30 %
Fisher 3.034 30 %
Jenks Natural Break 556.279 30 %

Table 4.7: Comparison of cluster-
ing algorithms with a sample of
40000 probe requests

The probe requests were then classified as ‘high signal strength’ or

‘low signal strength’ using various one dimensional clustering algorithms.

The algorithms used were as k-means, quantile, hierarchical clustering,

bagged clustering, fisher and jenks natural breaks with the number of

clusters set as 2. Due to the processor-intensive nature of some of these

algorithms, only a sample of 40,000 probe requests were selected for this

benchmarking exercise. For each exercise, the resulting probe requests

were filtered only for those with high signal strength, and rest were

discarded. As before, the filtered probe requests were then converted

into footfall counts by aggregating them based on their MAC addresses,

and subsequently compared to the manual footfall counts.

Two metrics were collected for each clustering algorithm: the time

it took to classify all the data points in the sample, and the amount

of MAPE in the resulting footfall estimates. The results are shown in

Table 4.7. It was found that out of all algorithms, hierarchical clustering

provided the least amount of errors. However, this and jenks natural

break were designed to identify class intervals in much smaller datasets

and were extremely resource intensive for practical use with a larger

dataset. It was also found that the k-means algorithm gave the quickest

result with the lowest MAPE, closely followed by the quantile algorithm.

The cut-off point, or threshold, for the collected data with which we

could classify the probe requests as high and low was found to be -71

dBm, using the k-means algorithm. When the data were aggregated after

this filtration process to remove all the probes with a ‘low’ signal strength,

it resulted in a footfall count with a MAPE of 30%. This was extremely

encouraging considering the magnitude of improvement. However, it

was not certain if this filtering process was removing noise only from

outside, or if it had any kind of independence from the configuration of

the sensor at the location. These concerns needed to be addressed with a
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larger survey with multiple locations, as discussed in the pilot study.

Figure 4.13: Finding the op-
timum time threshold (s)

a and sequence threshold
b through trial and error.

With the filtering method validated, the next step was to identify the

probe requests which were generated by the same device irrespective

of the MAC randomisation using their sequence numbers. The graph

theory based algorithm defined earlier was employed and each local

probe request was assigned an alternative unique identifier or signature

independent of their the MAC addresses. Since a baseline for the nature

or frequency of the MAC address randomisation process could not be

established, the surveyor’s mobile device was used as a reference. As

the surveyor’s device was being actively used to count pedestrians with

its Wi-Fi module kept active without establishing connection to any

network, it was known that the device was continuously probing for new

networks. Moreover, since the screen of the device was switched on with

constant taps the frequency of these probe requests were higher than

normal. It was also known that the OUI of the device corresponded to

the vendor - ’Google’ – and that the device was regularly randomising

its MAC address. All in, it served as an excellent reference point with

which it was possible to determine if the clustering method has worked.

The algorithm required two parameters which needed to be deter-

mined empirically - sequence threshold and time threshold - which was
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done using trial and error as described below. The clustering process was

done repeatedly with increasing values for both thresholds in increments

of 1, and for each increment, the resulting clusters were examined to see

if the data from the reference device were clustered into one device. The

minimum possible time and sequence thresholds at which the algorithm

clustered the reference device properly without over clustering the other

probe requests, or under clustering as multiple devices, is illustrated in

Figure 4.13. It can be observed that the threshold for time a and the

threshold for sequence numbers b, are 16 seconds and 60 respectively.

Figure 4.14: Sample showing
the result of sequence numbers
based clustering algorithm on
data collected at Oxford Circus,
London.

Figure 4.14 shows the results of this clustering process on a small set

of randomised probe requests collected in this experiment. The probe

requests with different randomised MAC address are shown by the

coloured dots and the lines joining them show that those probe requests

were clustered together by the algorithm and are most likely generated

by the same device. The data were finally aggregated as before, but

with this device’s signature rather than the local MAC addresses. This

resulted in a footfall count with a MAPE of -18% compared to the manual

count. It is important to notice that this clustering was undertaken on

top of the signal strength filtering, and only for the probe requests with

randomised MAC addresses. A comparison of minute by minute counts

resulting from different filtering processes along with the ground truth

is shown in Figure 4.15, and illustrates the promising effectiveness of the

methods.
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To summarise, the data from the initial experiments suggest that both

filtering using signal strength and the clustering using sequence numbers

worked well on complex, real world data and resulted in fairly accurate

pedestrian counts with a MAPE of 20%. It was also found that ‘k-means’

and ‘quantile’ are the best algorithms for clustering signal strengths,

and the optimum thresholds for time and sequence numbers for the

clustering algorithm were around 16 and 60 respectively.

Figure 4.15: A comparison of es-
timated footfall at Oxford Circus
during various stages of filtering

with the actual manual counts.

4.2.3 Pilot Study

With encouraging results from the initial experiment, the next step was to

check if the methods worked on the various locations where sensors were

installed in different configurations using the data from the pilot study.

The distribution of the signal strengths of all the probe requests collected

at each location were created and were compared to the corresponding

sensor configurations at these locations. When visualised as density

plots as shown in Figure 4.16, they show a clear relationship between the

distribution of the signal strength and the distance and complexity of

the source of noise at each location. It was observed that when there is

clear distinction between the source of noise where stationary devices

were generating randomised local probe requests, the signal strength

distribution shows a clear distinction between high and low values. For

example, at location 5 where the noise is generated by a phone shop

next door, a significant spike in the number of probe requests generated
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with similar low signal strength was also reported. Whereas, location 2 -

a restaurant located next to a public square with seating on both sides

of the sensor - shows no such discernible distinction of any sort. This

demonstrates that filtering using signal strength works, but at the same

time depends heavily on the assumption that the sensor is installed in

such a way that the field of measurement is clearly ‘visible’ in terms of

distance from it. Figure 4.16 confirmed the intuition that data collected

at location 2 and 4 would be harder to clean than the ones collected

at locations 1, 3 and 5. The signal strength threshold, calculated using

k-means algorithm, for all the locations except for 2 were between -72

dBm and -70 dBm - very much in line with the findings of the initial

experiment. This also introduced the possibility that -70dBm could be

used as a rule of thumb for filtering noise at a general location unless

it faced specific challenges like location 2. It is important to note that

as the aim was to compare the counts with manual counts, the data

used to calculate the threshold pertains only to the time when manual

counting was undertaken at these locations. Like before, the data were

aggregated using MAC addresses after removing points with low signal

strength and compared with manual counts. The results are shown in

Table 4.8. In this exercise probe requests with MAC addresses which

repeated within a 15 minute window were also removed.

We observed that the MAPE at locations 1,4 and 5 was reduced to -19%

to 150% from the original 250% to 500%, making this an ideal candidate

for a quick and easy cleaning procedure for most practical applications.

Locations 2 and 3 were found to be particularly tricky: the former had

the propensity to overestimate the footfall, and the latter underestimated

it. This could also be attributed to the configuration of the sensor at the

particular location. Location 3 was particularly interesting as it is the

only location with no source of stationary noise and almost all the probe

requests collected at this location should be coming from genuine footfall.

It was observed that the filtering needs to be less aggressive in locations

without any obvious source of noise to prevent underestimating footfall

at these locations.

The next step was to test the sequence number based clustering al-

gorithm on these locations. The sequence number clustering algorithm

was run on the local MAC addresses to cluster the probe requests; the

resulting device signatures were used to aggregate them into footfall

counts. The results showed that this process further reduced the MAPE to

almost 13% - 300% on all the sensors with a clean configuration. Locations
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3 and 2 were still outliers due to their complex configurations. The final

step was to test the simple manual calibration process: an adjustment

factor was calculated for each location as the ratio between footfall

estimated from the sensor after processing and the actual pedestrian

counts. This adjustment factor was used to adjust the counts. It is

important to note that the adjustment factor and MAPE were calculated

using an interval from a different location than the manual counts. This

process further reduces the MAPE to 10% - 50% while taking care of the

over-counting problem in Location 3. Location 2 is still not as accurate

as the MAPE after all the processing that was done, which highlights the

limitations of the methods discussed. Figure 4.17 shows the effectiveness

of these cleaning procedures at each location.

Figure 4.16: Distribution of sig-
nal strengths at locations cov-

ered under the pilot studies
along with the corresponding
configurations of the sensors.

To summarise, the pilot study confirmed the findings from the initial

experiment by showing that the signal strength based filtering is effective

and provides a quick and easy way to clean out the noise, when used

along with the sequence numbers based finger-printing technique. It

also demonstrated that the sensors with no discernible stationary source

of noise tend to under-count pedestrians, and therefore require that

calibration is done using manually collected data. In contrast, sensors

with seating next to them significantly over-count footfall. However, the

study also proved that through the process of cleaning, the counting

errors can be reduced substantially resulting in the sensor based counts
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being accurate within 10% of the ground truth.

Signal Adjustment MAPE MAPE MAPE MAPE final
Sensor threshold factor before after after adjusted

(-dBm) filtering filtering clustering count
(%) (%) (%) (%)

1 -70 1.25 259 22 -13 9
2 -74 0.51 928 396 206 55
3 -72 1.60 87 -19 -31 10
4 -70 0.88 498 142 52 33
5 -72 0.80 473 84 38 11

Table 4.8: Results of footfall
estimation at each location as
Mean Absolute Percentage Error
(MAPE) after each step of the
filtering process.

4.2.4 Smart Street Sensor Project

In addition to solving problems arising due to privacy oriented decisions

and figuring out methods to enhance Wi-Fi based analysis, one of the

primary objectives of the research was to solve the problem faced by

the Smart Street Sensor (SSS) project in respect of the explosion of

MAC randomisation. The number of probe requests and unique MAC

addresses nearly tripled in one week in the autumn of 2017, which

essentially made the data unusable and resulted in an extreme risk

to the project’s feasibility. The methodologies discussed above were

perfect for the SSS project, and when implemented it would improve

the project’s long term feasibility immensely. However, being designed

from a commercial point of view by the data partner, the SSS project’s

implementation posed significant challenges in adapting to the methods

as well.

• Lack of data - The data collected by the SSS project is optimised for

transferring large amounts of data with the least possible cost. Hence,

the project collects only the most important fields. For example,

sequence number, information elements, SSID, etc. are not available

in the dataset.

• Aggregation - To further optimise the size of the data transfer, the data

points are aggregated at the device level every five minutes. Hence the

time information has a resolution of 5 minutes and the signal strength

of packets with same MAC addresses were summarised to either the

maximum or minimum values observed in that interval.

• Cost - When changing the design of the project, the major challenge

faced was the cost associated with every change. For example, due

to the size of the project, changing the amount of data transferred

even marginally translated into a significant increase in cost in terms

of internet bandwidth, or the introduction of a large change in the
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Figure 4.17: A comparison of
estimated footfall at pilot study
locations during various stages of
filtering with the actual manual
counts.
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project also involves a cost increase in terms of development, testing,

deployment and testing.

The above challenges made the sequence number based clustering

impossible to use with the data available through SSS sensors; as such,

only the signal strength based filtering could be applied. The signal

strengths did not have the same granular information in them as the

pilot study which may have greatly affected the output of the k-means

algorithm. Nevertheless, an attempt was made to use the signal strength

based filtering on the data generated from the SSS sensors. The data

collected at the location where the pilot studies were conducted, along

with manual counting, were extracted out of the SSS project and the

filtering methodology was applied to the data. Since we only have the

minimum signal strength for all the probe requests that were compressed,

the data were weighted using the total number of probes that constituted

the aggregated packet. Figure 4.18 shows that the difference between

the signal strength distribution measured by the sensors used in the

pilot study and the corresponding sensors from Smart Street Sensor

project. It can be observed that the pilot study sensors collected data

which shows a sharp change in the number of signal strengths after -

70dBm comprising mostly of local MAC addresses, while the smart street

sensors show a much more even distribution in both local and global

MAC addresses. Locations 4 and 3 are excellent examples indicating

this difference in distribution, where the signal strengths of randomised

probes were more normally distributed in the Smart Street Sensors than

in their counterparts. This was expected to pose a significant challenge

to our filtering methodology, especially in locations with configurations

similar to 4 and 3.

There was an expectation that the change in the distribution might

cause vast differences in the results from these two exercises. However,

when the probe requests collected by Smart Street Sensors were subject to

filtering using the k-means algorithm and aggregated based on the MAC

addresses after first removing the requests with low signal strength, the

results were surprisingly close to what was reported by the pilot studies.

Figure 4.19 shows the results of the attempt to clean the smart street

sensor data using the signal strength filtering technique, and compares

them with the results of the pilot study. It is important to note that the

sequence number based clustering has not been carried out in either

of the datasets as the sequence number is not available in the Smart

Street Sensor data. In general, it was observed that the results from the
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pilot study and the Smart Street Sensor project were close compared to

the manual counts after the signal strength based filtering. At Location

1, the pilot study sensor was massively over-counting on February 12

which could be attributed to a bug in the hardware: the additional Wi-Fi

module which was installed for troubleshooting was generating probe

requests in large amounts in response to very strong signal strengths.

This was fixed later and the next manual count performed on February 21

confirmed that the sensor was fixed. At Location 2, the pilot study sensor

resembled reality much more than the Smart Street Sensors, but footfall

at this location was very low to begin with and both series showed

similar trends and could be adjusted with a simple factor. It was also

observed that, similar to the results of the pilot study, Location 3 led to

under-counting, Location 4 led to over-counting, but Location 5 showed

the best results owing to the clean configuration of the sensor in relation

to its surroundings. Although the results are similar, they are still far

from ground truth counts due to the MAC randomisation process and

are also vulnerable to long-term changes, as shown in Figure 4.10. This

necessitates an alternative to the sequence number clustering for Smart

Street Sensor data.

Figure 4.18: Comparison between
distribution of signal strengths
in probe requests collected by

Device to Probes Ratio

While searching for an alternative to the sequence number algorithm
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with the limited data offered by the Smart street sensor, a much simpler

approach was discovered. This approach entailed found that the number

of probe requests generated by devices which do not randomise their

MAC address can be used to estimate the devices which do randomise

them for a specific interval. Assuming that, on average, all devices emit

a certain number of probe requests in a given time interval, we can

estimate the number of devices that are randomising as below,

Randomising devices =
Non randomising devices
Non randomised probes

⇥ Randomised probes

Figure 4.19: Comparison between
the footfall estimates from Smart
street sensor and pilot study
after filtering probe requests of
low signal strength along with
manual footfall counts.

Although previous work on the probe request frequencies of different

mobile devices demands scepticism over how well this method may

work, the results were found to be encouraging. In real world data, the

rate of generation of probe requests between various mobile devices was

not constant. By encapsulating the problem in a small time interval -

5 minutes - and observing the corresponding non-randomising mobile

phones, the behaviour of the randomising phones could be confidently
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estimated. Moreover, if the randomisation techniques change in the

future, the non-randomising phones should also alter, thus making such

an approach robust against any future changes. Figure 4.20 shows the

methodology applied for data from locations across Cardiff. The chart

shows average weekly footfall estimated at each location before and

after adjusting the number of randomised MAC addresses using the

‘compression’ ratio described above.

It was observed that, when adjusted, the resulting long term trend not

only avoided the huge inflation experienced by the unadjusted estimate,

but preserved the relative changes and trends and even showed seasonal

variations. The only expected disadvantage of this method is the adoption

of randomisation techniques by manufacturers over the time. Since the

method depends on the number of devices that do not randomise their

MAC address, when they decrease significantly in number, the method

will fail. But for the time being and for the data which have been

collected over the past 3.5 years, when combined with filtering using

signal strength and other adjustment methods described in section 4.3,

this method solves the uncertainties sufficiently. Moreover, the method

also potentially provides researchers with a reliable and sufficiently

accurate estimation of footfall from the data collected by the Smart Street

Sensors.

Figure 4.20: The result of the
adjustment using device to

probes ratio in non-randomising
devices shown through av-

erage weekly footfall esti-
mates for locations in Cardiff.

4.2.5 Conclusions

In this section, the uncertainties in the data collected through Wi-Fi -

the ambiguity of the field of measurement and anonymisation of de-

vices using MAC address randomisation - were discussed, alongside the

extent to which these uncertainties affect the datasets. Two techniques

were proposed to tackle these sources of uncertainty. The first technique

involved using the strength of the signal reported in the probe requests



processing the data into footfall 129

to cluster the requests into ‘high’ and ‘low’ with the help of one dimen-

sional clustering algorithms. The second technique used the sequence

numbers of the probe requests to group together probes generated by

the same mobile devices using a graph based clustering algorithm. The

effectiveness of both of these techniques were tested against the data

which were gathered in Chapter 3.

The data collected from the initial experiment on Oxford Street, Lon-

don showed that filtering the probe requests using the signal strengths

works very well. In this case it reduced the MAPE from 435% to 20%.

This case study showed that k-means is the most suitable method of

doing the clustering, while the threshold for this specific dataset is -

70dBm similar to the others collected through initial experiments. The

case study also showed that fingerprinting unique mobile devices using

sequence numbers is possible even in real world scenarios. Through trial

and error and a reference device, the ideal values for the parameters for

the algorithm - time threshold(a) and sequence threshold(b) are 60 and

16 respectively.

With the help of the pilot studies, it was also shown that signal strength

based filtering does not always work efficiently everywhere. The distri-

bution of signal strengths were found to vary widely when the sensors

where installed in different configurations. The counts were found to

suffer from a lot of over-counting when there are multiple sources of

noise located close to the sensors, and they also under-count considerably

when used in a location where there are no significant sources of noise.

This emphasised the need for evaluating the site conditions and deploy-

ing manual calibration when utilising these techniques in real data. The

sequence number based fingerprinting was also demonstrated to work in

all these locations. This, along with signal strength and manual counts,

reduced the error in the estimation from 470% to 10% in a ‘clean’ location

with proper sensor configuration.

Unfortunately, the data from the Smart Street Sensor project was found

to be insufficient to be able to effectively utilise these techniques, as the

data were focused, aggregated, and prohibitively expensive to change.

Surprisingly, the signal strength data which were aggregated for five

minutes for each MAC address by the minimum value, worked as well

the detailed per packet data collected in the pilot study. Although this,

along with manual counting, can help in reducing the error, it does not

solve the problems introduced by MAC randomisation, especially the

long-term changes. An alternate method using the ratio of probes to
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non-randomising devices was proposed and was found to be extremely

efficient in eliminating the noise created by the randomisation. The

sample data from Cardiff showed that this method not only removes the

massive increase in footfall estimates experienced since September 2017,

but it also preserves the seasonal variations in the data thus enabling the

data to be used for research into long-term phenomena.

Figure 4.21: The complete data
processing pipeline which takes

in raw probe requests from
Smart Street Sensor project and

outputs footfall estimations. 4.3 Data pipeline

After the discussion of the toolkit and the methods, the final step of

this research was to convert the Wi-Fi probe requests to footfall. This

meant devising a processing pipeline which combines the ‘data toolkit’

and the methods together, takes the probe requests generated by the

Smart Street Sensor as input and generates a best possible estimation of

footfall estimations as output. Figure 4.21 illustrates the pipeline that

was devised as part of this research. The code which implements this

pipeline is detailed in Appendix 7.3. The pipeline comprises of three

parts,

• Pre-processing - where the data gets transformed and modified for

security and convenience.

• Processing - where the data gets converted to estimated ambient popu-

lation.

• Post-processing where the general population estimate gets adjusted to

better reflect information that was sought - footfall in this case.

4.3.1 Pre-processing

The aim of pre-processing was primarily to convert the dataset comprising

of probe requests into a form which can be processed quickly and
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conveniently. In the case of the Smart Street Sensor project, the data is

retrieved from the Azure store and converted from JSON format into CSV

file for each location on a given day. These files were stored in directories

within a file system hierarchy of year, month and date providing us an

efficient storage system as discussed in Section 4.1.

The secondary aim of pre-processing was to anonymise the data

using cryptographic hashing and encryption to protect the privacy of

the users. The MAC address field in the dataset was converted into

an unique hash value using SHA256 algorithm to avoid linking this

dataset with other sources of MAC address data and a random salt value

was introduced every week to avoid timing attacks where sufficiently

long term information on hashes could be de-anonymised by correlating

the precise time they occur in other datasets. Although this is not

theoretically fool-proof, this made sure that dataset could not used to

personally identify the users within practical means. Finally, the non-

hashed raw data were encrypted using RSA algorithm and physically

transferred to an isolated secure facility for storage. Thus preserving the

unmodified information for further investigation, if required.

4.3.2 Processing

The processing of the data involved the implementation of the methods

discussed in Section 4.2. First the probe requests were separated into

global and local based on the OUI present in them. The non-randomised,

global probe requests were then aggregated into ambient population

estimation employing the following steps,

1. Signal strength filtering - as discussed in section 4.2 the probe requests

with signal strengths less than the threshold (Calculated dynamically

from the previous 24 hour period) were filtered out.t

2. Removal of dwellers - The probes with MAC addresses which are

repeated within the past 30 minutes were removed to eliminate noise

caused by devices which are dwelling around the sensor for a long

time.

3. Aggregation - The remaining probe requests were aggregated by their

MAC addresses to arrive at the count of unique MAC addresses at

every five minute interval.

The above process results in the number of devices that were present

around the sensor which did not randomise their MAC addresses. The
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ratio between this ‘count’ and the original number of probes requests

with global MAC addresses gives us the compression factor as discussed

in Section 4.2. This factor was calculated for every interval and in turn

used to calculate the number of devices which randomise their MAC

addresses. The sum of the both counts gives us the estimate of ambient

population at the locations for five minute intervals. As the final step,

the gaps in the data which are shorter than fifteen minutes are filled in

by imputation based on Kalman smoothing resulting a more continuous

dataset.

4.3.3 Post-processing

The post-processing involved adjusting the estimated ambient population

further to match it to the real footfall counts as closely as possible. The

primary steps involved were, adjusting using manual counts, imputing

missing data and adjusting for increase in mobile device ownership.

The manual adjustment was done through a global adjustment factor

which is calculated for each location by comparing the footfall measured

with the sensor to the footfall counted at the corresponding locations

manually. The manual counting were done for short intervals ranging

from 15-30 minutes immediately after the installation of the sensors and

are refreshed for selected locations yearly. This adjustment factor, which

could be greater or less than 1, was then applied on sensor counts to

account for over- and under-counting at these locations. This adjustment

removes the noise caused by the location specific configuration. In

addition to this the counts since the beginning of the project were offset

by 0.2% per week to account for the increasing mobile phone ownership

over the years in the United Kingdom25. Finally, long term gaps in term25 Deloitte. Mobile consumer
survey - united kingdom,
2018. URL https://www.

deloitte.co.uk/mobileuk/

of hours, days and weeks were filled using a seasonally decomposed

method hierarchically where the daily and weekly periodicity of the

counts were taken into account during the imputation process. This

ensured the final counts produced from the processing are continuous

and standard enough for carrying out further research using them.

https://www.deloitte.co.uk/mobileuk/
https://www.deloitte.co.uk/mobileuk/
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Applications and Visualisations

This chapter serves as a gallery of possible applications that can arise

from the data generated from the Smart Street Sensor project. As was

seen in Chapter 2, availability of granular, longitudinal data on the

movement and distribution of people at such spatial extent has numerous

uses in various fields of study. This chapter first starts by looking at

the use of the data in understanding the broad footfall landscape of the

United Kingdom (UK), deriving sample insights on how retail footfall

in the UK has been performing for the past couple of years along with

some sample analysis from the national level to individual locations

to understand the nature and change of footfall. It then demonstrates

couple of ways of detecting events and their effect on places from the

change in the footfall volumes. Finally the chapter briefly describes a

way to calculate the flow of pedestrians between the locations just from

the highly granular footfall volume using a probabilistic approach.

5.1 Footfall Indices

5.1.1 UK Footfall Index

One of the broad questions that arises when such footfall data is available

is about the general national trend of footfall on retail high streets. This

national ’footfall index’ is not only important for the retail industry

but also for various other purposes such as policy making, economic

forecasting, etc. Since the footfall has a weekly periodicity, a standardised

index could be arrived from sensor based data by aggregate them at a

national level and find the average footfall at every location at every week.

Although this is a simplistic measure, it does a good job in describing

the changes in the retail footfall in the UK as a whole. From the last two

years, it can be observed that retail footfall in UK started at its lowest in

the beginning of the year and increased steadily until spring. The high
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footfall lasted through the summer months before going down steadily

towards the end of the year.. This trend changed around the fall months

and the footfall reached the highest in the first two weeks of December

and fell back to the lowest in the last two weeks. This form the yearly

pattern of retail footfall in UK is illustrated in Figure 5.1 which shows

the weekly footfall index of the UK from 2017 to 2018.

Figure 5.1: A weekly foot-
fall index for United King-
dom showing the change

in footfall from 2017 to 18

In addition to showing larger trends, this footfall index also showed

sudden short term changes. One such as example was the storm in

February 2018 named - "Beast from the East", which resulted in a week

of unusually low footfall experience across the UK. This ‘footfall index’

can serve as a measure to give the overall outlook for the retail activity

in the country at any given week.

5.1.2 City-wise footfall index

Being derived from location-wise data, the index could be calculated for

geographic extents as well. For example, Figure 5.3 shows the spatial

distribution of footfall change in the UK towns between 2017 and 2018.

On a glance, it can be observed that the small southern towns such

Ipswich, Staines, Southend by Sea and Plymouth had a good amount of

growth in footfall while the towns such as West Bromwich, Derby and

Warrington have a decline in footfall. In addition to long term changes,

from the footfall data, even insights on short term changes could be

derived. For example, Figure 5.4 shows the change in footfall from the

previous year for towns across UK for just the months of April and May

2019. It can be observed that April 2019 has been slower than last year

in most towns across UK while May 2019 has been actually better than

last year. This kind of granular insights into trends in footfall could be

valuable for local authorities who can measure and monitor the health of

their retail areas closely. The difference in even smaller intra-day patterns

in cities could be derived from footfall data which could show the nature

of their economies Figure 5.5 shows an average daily footfall pattern for
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9 cities in the UK.

5.1.3 Location profiles

One of the most interesting insights that can be derived from the dataset

is the detailed knowledge of the locations themselves. The data can not

only reveal how popular a location is but also the exact times when the

location is popular. The patterns in the usage of the locations could also

reveal the function of the place giving us the opportunity to measure

their change through time as well. For example, Figure 5.2 shows the

daily footfall profile of three locations in London for two weeks in 2019. It

can be observed that all three locations have completely different patterns

of usage. Leicester Square was mostly a evening destination where the

footfall peaks around evening while Regent street is a mostly office

location with three distinct peaks corresponding to morning commute,

evening commute and lunch. These insights can be crucial for retailers

operating in these places for optimising their business operation in terms

of store opening times, scheduling shifts etc.

Figure 5.2: The profiles can be
tracked longitudinally to reveal
nature and change.Another way to understand the evolution of a place over time is to

look at the patterns of its usage over the corresponding period. For

example, Figure 5.6 shows a ’footfall calendar’ for Old street, London

which traces and visualises the evolution of the place for the first half of

2018.
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Figure 5.3: The change (%)
in average weekly foot-

fall of towns across the UK
in 2018 compared to 2017.
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Figure 5.4: The change (%) in
monthly average footfall in towns
across the UK in April and May
2009.

Figure 5.5: Intra-day footfall
profile of major cities in United
Kingdom
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Figure 5.6: Footfall calen-
dar showing the profiles
of daily volumes of foot-

fall at Old Street, London.
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5.2 Event Detection

When footfall is looked at longitudinally across locations, a wide range

of information can be uncovered about the context which resulted in

the patterns in the footfall. Figure 5.7 shows the normalised weekly

footfall of 10 different locations across Cardiff for two years: 2017 and

2018. The patterns in the footfall clearly show numerous events that

were happening in Cardiff as unusually high or low footfall in the

corresponding week. The most significant event was in February 2018,

when all sensors reported the lowest numbers they have ever recorded.

This coincided with the cold wave in UK named ‘Beast from the East’,

which brought adverse weather conditions all over the UK and led to a

significant reduction in footfall. The other identifiable events are bank

holiday weekends which result in higher than normal footfall, and the

Christmas shopping season when footfall is at its highest. Finally, it is

interesting to see the difference in summertime footfall between 2017

and 2018, which could be explained by the FIFA World Cup which took

place in the summer of 2018. This example shows the usefulness of the

footfall data to detect real life events from the data in near real time. It

can also be used to measure the effect of events on footfall, and hence

understand the impact of these events for retail and the economy more

generally.

Figure 5.7: Normalised weekly
footfall index at locations across

Cardiff from 2017 to 2018
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5.2.1 Football world cup

In addition to long-term changes and events, the footfall data can be

used to identify the smaller effects of these events at an area scale. Figure

5.8 shows footfall from two days in Leicester square, London when the

quarterfinal and semifinal matches of the 2018 FIFA World Cup took

place. Both matches happened in the evening and led to an increase in

footfall around match time. The most interesting observation is the effect

the outcome of the game had on footfall. On the day of the quarterfinal,

the winning result of the English team led to a post-match celebration

which pushed the Leicester Square footfall to its day-time highest, unlike

the day of the semifinal when the English team lost. This not only shows

the usefulness of the data in understanding the effect events have on

local footfall, but it also shows how the data can be used by retailers to

predict the effect the results of sports events might have on them.

Figure 5.8: The difference in
footfall distribution at Leicester
square, London after the FIFA
World Cup quarterfinal and
semifinal matches. Source: Oliver
Uberti and James Cheshire

These examples show the importance of footfall data in detecting

events. Even a simple visual analytics of the dataset reveal interesting

information on events. This would be much more useful when used in

tandem with advanced machine learning/data mining techniques, and

will predict much better results as more data is collected.

5.3 Pedestrian Flows

Detecting general trends in the flow of people between spatial locations

is neither obvious nor a trivial task. This is due the high cost of cap-



142 estimating footfall from passive wi-fi signals

turing these movements without compromising people’s privacy, since

the primary way to collect such detailed data involves handling people’s

precise location data. This research specifically removes any personally

identifiable information because of MAC randomisation and hashing,

and therefore seems like it might not be suitable for studies on human

mobility. However, this problem can be solved by examining the move-

ment of people in the Smart Street Sensors network at a fine spatial

and temporal resolution using a novel methodology in the field of big

data which uses mathematical models from information theory: Transfer

Entropy (TE). Using an area in central London, this section serves as a

case study to demonstrate the usefulness of TE as a measure of the flow

of pedestrians1.

1 Work undertaken was in col-
laboration with Roberto Mur-
cio and Karlo Lugomer. The

methodology was formulated
by Murcio; this author worked

on the implementation of
the method in the case study.

Figure 5.9: Illustration of transfer
entropies between set of locations

along Edgware Road, London. Consider the array of sensors shown in Figure 5.9 and assume that

there is a flow of people walking past Location 116 and then diffusing

towards the remaining sensors. Counts generated by the sensor are ag-

gregated per five minute intervals, so if, for example, it takes one minute

to walk from Location 116 to Location 117, the number of people de-

tected at 117 from minutes 2 to 5, would correspond to the percentage of

people detected at 116 from minutes 1 to 4. In other words, the similarity

between the time series of counts at the locations under consideration are

correlated. Hence the aim here is to provide a measure for the size of the

flow between each pair of sensors without actually tracking individual

people. One way to accomplish this, is to think of this motion of people

as flows of information among distinctive sources, so we can relate the

number of people reaching one sensor from another by measuring the

uncertainty between two interacting random variables. For this, we used
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an information theory concept known as Transfer Entropy (TE) defined

by:

TE(X, Y) = Â
t=1

p(yt+1, yt, xt)⇥ log
p(yt+1 | yt, xt)

p(yt+1 | yt)
(5.1)

Where t indicates a given point in time. Equation 5.1 measures the

reduction in uncertainty at yt, given xt and yt�1. In comparison with the

case when only yt�1 is known. This measure is applied directly to our

people’s movement problem and X = location i, Y = location j and t runs

for a whole day, the TE would represent an indicator for the direction of

the flow, as the counts at yt+1 are more accurately estimated using the

information of xt.

Taking again Figure 5.9 as a reference, we measured the TE between

sensor 116 and the rest of the sensors. The walking time is not constant

and each sensor has counts at all times i, j. There are people passing

by these sensors that came from locations outside the network. The

numbers at each line represent the TE measured between each pair of

sensor locations. The largest TE values found were from 114,115 and

117 to 116. The asymmetry of the TE is clear here, as the values in

the opposite direction ( from 116 to 114,115 and 117) are considerably

lower. Another interesting value is the pair 116-117, where TE(116,117)

« TE(117,116). This demonstrates that in this four-way crossing, the

predominant direction of flow is from Location 117 to Location 116 (from

the bottom of the figure upwards, or from west to east in reality). These

results suggest that, in general, there is a larger flow of people from the

west side to the east side of Edgware Road, and a larger flow of people

from south to north of it. The results are consistent with our intuition

that there is a larger flow of people from south to north along this road

towards Edgware Road underground station.

There is still a series of uncertainties yet to be addressed by this

model, such as the decay of probabilities with distance and the number

of interventions of opportunity encountered by people while walking

from one sensor to another. However, this first initial set of results is

encouraging in measuring flow between spatial points without actually

tracking these users.
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Discussion and Conclusions

In the past 30 years there have been an immense change in the way data

concerting distribution and dynamics of human population are gener-

ated, collected and consumed. Rather than being a top-down, structured

designed endeavour, data generation and collection has become a bottom-

up procedure where data were created as a result of day to day activities

of people and are collected, cleaned, and aggregated into information.

There have been a significant volume of research on identifying such

data sources and use them for various purposes in both academia and

industry. As these data sources got more distributed and comprehensive,

the concern to protect user privacy increased as well. This thesis aims to

work in between these two the areas of research and the corresponding

opportunities present in them. This thesis identifies Wi-Fi probe requests

as a source of data from which information on ambient population and

behaviour - especially footfall - could be extracted, and solves the prob-

lem of inferring accurate footfall information without using personally

identifiable information of the users.

6.1 Summary of Findings

From the systematic literature review of around 350 academic publi-

cations, it was concluded that Wi-Fi is the most suitable candidate for

the technology that can be used to collect data on human presence and

movement at a national level. It was found to be the scalable, cheap,

universal, and easy way to collect large amounts of granular such data

without depending on any other infrastructure. The only shortcomings

of projects using Wi-Fi technology are their inherent uncertainties and

the leakage of MAC addresses - a globally unique, personally identifiable

information which could be related back to the users relatively easily.

Finally, two potential areas of research with opportunities for further
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study were identified: Creating a standardised, cleaned, accurate and

reliable footfall or ambient population from the Wi-Fi probe requests, and

solving the specific issue of MAC address randomisation while cleaning

and filtering Wi-Fi probe requests. After studying the Wi-Fi specification

to get a overall outline of the structure of Wi-Fi probe request, a set of

small initial experiments were designed and executed to know more

about them. It was found that the number of probe requests and the

unique MAC addresses collected by a Wi-Fi sensor is far greater than the

number of mobile devices in the immediate vicinity. The signal strength

and sequence numbers are some of the important information that are

present in the probe requests. Alongside these experiments a longer pilot

study was also conducted to result in three distinct datasets. The small

experiments collected in-depth data on probe requests at small areas for

short intervals. The pilot study covered 5 locations across central London

collected data for over two and a half months. Finally the Smart Street

Sensor project which collected small set of data from probe requests at

1000 locations continuously for over 3.5 years.

Before moving to cleaning and processing the data, this research

undertook a comprehensive look at the nature of these datasets within

the context of ’Big data and Big data tools’ so that a framework for

evaluating the ’bigness’ of the datasets can be devised. With such a

framework the Wi-Fi datasets were examined in all of their dimensions

and found to be ’Medium data’ at best. A review of big data tools was

also carried out and the tools suitable for the Wi-Fi dataset were picked

out and combined together to form a bespoke ’Medium data toolkit’ for

processing the Wi-Fi data as efficiently as possible.

From the initial exploration, the major uncertainties identified in the

data which needs to be solved by the cleaning and processing procedures

are, range of the Wi-Fi sensor, differing frequency at which mobile

devices emit probe requests, MAC address randomisation which masks

the devices unique identification, increasing mobile devices ownership

in the population over long-term, missing data from the failures in the

sensors and collisions of MAC addresses when they are anonymised

using cryptographic hashing. The collisions in hashed MAC addresses

were found to be rare and inconsequential.The uncertainty regarding

the range of the Wi-Fi sensor was found to cause noise in the data from

outside the field of measurement and was solved by filtering out probe

requests with low signal strength. This definition of ’Low’ signal strength

could be deduced dynamically for each location at each time interval



discussion and conclusions 147

using one dimensional clustering algorithms. The ’k-means’ algorithm

was found to be best suited for this purpose. The randomisation of

MAC addresses lead to over-estimation of number of devices from set

of probe requests while the uneven frequency of probe requests emitted

by the mobile devices prohibit a simple universal factor for converting

number of probe requests to number of devices. It was found that this

uncertainty can be solved using a novel graph based methodology which

uses the sequence numbers in the packets rather than the MAC address

to uniquely identify the devices. When the sequence number is not

available the uncertainty can be reduced for an interval by looking at the

ratio of number of probe requests to the number of mobile devices in

the probe requests without randomised addresses in that interval. These

methods along with manual calibration were found to reduce the error

in the estimation of footfall from Wi-Fi probe requests to almost 10% at

locations with ideal conditions.

In addition to the above data cleaning techniques other processing

were done to the probe requests dataset to remove further uncertainties.

The missing data in the dataset could be interpolated using a Kalman

smoothing based method for short term or a seasonally decomposed

method for long term. Finally, the increasing mobile ownership was

adjusted using manual counts for short term intervals and using a weekly

adjustment factor 0.2% for long term. Using all these methods for

filtering, cleaning and adjusting Wi-Fi data, this thesis finalises a overall

data processing pipeline for producing a clean, precise, accurate and

continuous data on footfall across retail locations across the UK. Finally

this research also provides a gallery of examples showing the possible

use of such granular and continuous data on footfall on a national level.

6.2 Research Question

Looking back at our research question - "Can dynamics of footfall inferred

from passively collected big dataset without putting the privacy of users

at risk?", we have demonstrated that the task is indeed feasible, using

Wi-Fi probe requests. Even when the identity of the devices were masked

using randomisation techniques we have demonstrated that aggregation

and estimation could be done without compromising the privacy of the

users. In addition to this, we have also demonstrated the usefulness and

application of such footfall estimate with various examples. The footfall

estimates derived from the method were used to devise a ’footfall index’
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at various levels - national, city, area and micro site locations showing

how the retail related footfall have been distributed in the UK and how

this distribution has been changing over time in high granularity both

spatially and temporally. It has been demonstrated that this information

on footfall can be used as a clue for knowing the form and function

of a place and trace the changes it has undergone over time as well.

It was also demonstrated two sets of examples, that real-world events

could be detected from looking at the anomalies in the footfall volumes

at locations. Finally, it was also demonstrated that such detailed and

continuous footfall volume information at locations could be used to

predict or estimate flow of pedestrians between them by just looking at

the changes in these volumes thus providing a way to understand the

pedestrian flow in cities without actually tracking individuals.

6.3 Further Work

As we discussed in the literature review, the research on collecting and

using data on population distribution and dynamics have closely fol-

lowed the advances and changes in the consumer technology. Every new

technology adopted for mainstream use spurred new wave of research

in using those technology. It is also noted that every new technology

not only brought many advantages over the previous ones but also in-

troduced unique challenges. In this context, the larges opportunity in

furthering the research exists in identifying, evaluating and adopting new

technologies. There is a significant opportunities in applying these new

technologies for old challenges and device methods to make them suit-

able to answer the questions raised by research. Few such technologies

are detailed below,

• 5G is the new generation of technology which aims to bring even

higher speeds of data transfer to mobile devices through cellular

networks. This may lead to the gradual decline and phasing out

of Wi-Fi technology. Though this cellular based technology doesn’t

provide the similar detail and flexibility offered by Wi-Fi it has the

potential to offer much more comprehensive picture of the world if it

gets widely adopted.

• Bluetooth Low energy (BLE) is the upcoming short-range, wireless

personal area network technology. With emphasis on being the tech-

nology used by the Internet of Things (IOT) devices, this technology

has the potential to displace Wi-Fi as the choice of short-range com-
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munications. The explosion of wearables and smart devices at home,

the amount of data that could be available form this technology could

be staggering in the next decade.

• Ultra wide band radar is another short-range technology which has

been developed for motion and object detection. Being primarily

used to design sensors for proximity and motion detection, this has

the potential to become a standard for vehicles. Moreover, with the

recent uptick in self driving car research and development, the cost

of these devices has gone significantly down thus providing amazing

opportunities in creating comprehensive sensor networks similar to

Smart Street Sensor project.

In spite of being developed since 1980s, machine learning techniques

have received extraordinary interest in the last decade. This interest,

along with advancements in the Big data tools and technologies has

set up the stage for research by applying supervised and unsupervised

machine learning techniques on large scale datasets collected through

the above mentioned technologies. There is a significant opportunity for

applying unsupervised learning techniques such as anomaly detection

and neural networks in passively collected digital data to improve data

cleaning, interpolation, population estimations and time series based

predictions etc.

Research ethics, safety and privacy are going to be the next big areas

of concern for advanced machine learning based techniques and big

data analysis in the next decade. The era of uninhibited large scale

production, collection and consumption of personal data through con-

nected devices over internet without oversight is almost over. People are

increasingly concerned with protecting their privacy and are opposed to

the exploitation of their personal data. This concern has been addressed

by legislation such as GDPR and technologies such as cryptography

and randomisation. All these developments provide us with various

opportunities in further research.

Firstly there is opportunity study the above mentioned technologies

form a privacy point of view to evaluate the advantages and risks pre-

sented by them and advance the research in terms of both mitigation the

risks while maintaining some kind of usefulness. These inquiries can

not only be done in terms of techniques but also on the lines of legal

compliance of such techniques. There is also opportunity for research-

ing on the uncertainties and limits of datasets when subject to robust

privacy control methods. Secondly the immense research, innovation
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and advancements made in peer to peer technologies in solving the

various trust problems could be applied in the field of sensor based

population estimation or pedestrian flow detection. There is an opportu-

nity for research into building a peer to peer network of sensors where

the data collected by the sensors never leave the device themselves but

the analyses are taken to the source of data. This act of "moving the

analysis to data" can solve numerous problems of safety of the personal

data since there is not central point of failure and it can also scale up

indefinitely without overwhelming a central repository of data. Through

these further research, we could take the field forward by not only fol-

lowing the improvements in the technology of data collection but also

push the envelope in terms of developing more ethical and sage research

environment while handling large amounts of data.
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Appendix

Note : All code used in this thesis has been made available online via github -

https://github.com/sbmkvp/phd-thesis.

https://github.com/sbmkvp/phd-thesis
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7.1 Manual Counting

7.1.1 Node.js App

1 {

2 "name": "manualcount",

3 "version": "1.0.0",

4 "description": "Manual counting software",

5 "main": "manualcount.js",

6 "dependencies": {

7 "keypress": "^0.2.1",

8 "moment": "^2.20.0"

9 },

10 "devDependencies": {},

11 "scripts": {

12 "test": "echo \"Error: no test specified\" && exit 1"

13 },

14 "author": "",

15 "license": "ISC"

16 }

1 var keypress = require('keypress');

2 var moment = require('moment');

3 keypress(process.stdin);

4

5 // listen for the "keypress" event

6 process.stdin.on('keypress', function (ch, key) {

7 console.log('"'+moment().format('YYYY-MM-DD H:mm:s.SSS')+'","'+"1"+'"');

8 if (key && key.ctrl && key.name == 'c') { process.stdin.pause(); }

9 });

10

11 process.stdin.setRawMode(true);

12 process.stdin.resume();

7.1.2 Android App

The Android manifest which defines the whole application along with

the permissions it needs to function.

1 <?xml version="1.0" encoding="utf-8"?>

2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
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3 package="com.bala.manualcount"

4 android:versionCode="3"

5 android:versionName="3">

6 <uses-sdk android:minSdkVersion="21"/>

7 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

8 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

9 <application android:label="Clicker"

10 android:icon="@mipmap/counter">

11 <activity android:name=".MainActivity">

12 <intent-filter>

13 <action android:name="android.intent.action.MAIN"/>

14 <category android:name="android.intent.category.LAUNCHER"/>

15 </intent-filter>

16 </activity>

17 </application>

18 </manifest>

The layout of the app.

1 <?xml version="1.0" encoding="utf-8"?>

2 <LinearLayout

3 xmlns:android="http://schemas.android.com/apk/res/android"

4 android:layout_width="match_parent"

5 android:layout_height="match_parent"

6 android:gravity="center"

7 android:orientation="vertical"

8 android:clickable="true"

9 android:focusable="true"

10 android:focusableInTouchMode="true"

11 android:weightSum="3"

12 android:id="@+id/lay">

13 <TextView

14 android:layout_width="fill_parent"

15 android:layout_height="fill_parent"

16 android:id="@+id/my_text"

17 android:textSize="65dp"

18 android:layout_weight="1"

19 android:gravity="center"/>

20 <LinearLayout

21 android:id="@+id/bottom_layout"
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22 android:layout_width="fill_parent"

23 android:layout_height="fill_parent"

24 android:layout_weight="2"

25 android:weightSum="2"

26 android:gravity="left|center"

27 android:orientation="horizontal" >

28 <Button

29 android:id="@+id/b_left"

30 android:layout_width="fill_parent"

31 android:layout_height="fill_parent"

32 android:layout_weight="1"

33 android:text="0"

34 style="?android:attr/borderlessButtonStyle"

35 android:textSize="20sp" />

36 <Button

37 android:id="@+id/b_right"

38 android:layout_width="fill_parent"

39 android:layout_height="fill_parent"

40 android:layout_weight="1"

41 android:text="0"

42 style="?android:attr/borderlessButtonStyle"

43 android:textSize="20sp" />

44 </LinearLayout>

45 </LinearLayout>

The main logic of the app.

1 package com.bala.manualcount;

2

3 import android.app.Activity;

4 import android.app.ActionBar;

5 import android.content.Context;

6 import android.content.Intent;

7 import android.view.View;

8 import android.os.Bundle;

9 import android.os.Environment;

10 import android.widget.TextView;

11 import android.widget.LinearLayout;

12 import android.widget.Toast;

13 import android.widget.Button;
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14 import android.net.Uri;

15 import java.util.Random;

16 import java.util.Calendar;

17 import java.text.DateFormat;

18 import java.text.SimpleDateFormat;

19 import java.util.Date;

20 import java.io.File;

21 import java.io.IOException;

22 import java.io.FileOutputStream;

23 import java.io.FileWriter;

24 import java.io.BufferedWriter;

25 import java.io.OutputStreamWriter;

26

27 public class MainActivity extends Activity {

28 @Override

29 protected void onCreate(Bundle savedInstanceState) {

30 ActionBar actionBar = getActionBar();

31 actionBar.hide();

32 super.onCreate(savedInstanceState);

33 setContentView(R.layout.activity_main);

34 TextView text = (TextView)findViewById(R.id.my_text);

35 text.setText("0");

36 File root = new File(Environment.getExternalStorageDirectory(),

37 "ManualCounts");

38 if (!root.exists()) { root.mkdirs(); }

39 Button left = (Button)findViewById(R.id.b_left);

40 left.setOnClickListener(new View.OnClickListener(){

41 @Override

42 public void onClick(View view) { try {

43 Date date = Calendar.getInstance().getTime();

44 DateFormat preciseTime =

45 new SimpleDateFormat("yyyy-MM-dd hh:mm:ss.SSS");

46 DateFormat justDate = new SimpleDateFormat("yyyy-MM-dd");

47 File root = new File(Environment.getExternalStorageDirectory(),

48 "ManualCounts");

49 File csvfile = new File(root,justDate.format(date)+".csv");

50 FileWriter fwriter = new FileWriter(csvfile,true);

51 BufferedWriter writer = new BufferedWriter(fwriter);

52 String strDate = preciseTime.format(date);
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53 writer.append("\""+strDate+"\",\"left\"");

54 writer.newLine();

55 writer.close();

56 TextView text = (TextView)findViewById(R.id.my_text);

57 int count = Integer.parseInt(text.getText().toString());

58 text.setText(Integer.toString(count+1));

59 Button left = (Button)findViewById(R.id.b_left);

60 int countleft = Integer.parseInt(left.getText().toString());

61 left.setText(Integer.toString(countleft+1));

62 } catch (IOException e) {

63 e.printStackTrace();

64 Context context = getApplicationContext();

65 Toast.makeText(context, "error", Toast.LENGTH_SHORT).show();

66 } } });

67 Button right = (Button)findViewById(R.id.b_right);

68 right.setOnClickListener(new View.OnClickListener(){

69 @Override

70 public void onClick(View view) { try {

71 Date date = Calendar.getInstance().getTime();

72 DateFormat preciseTime =

73 new SimpleDateFormat("yyyy-MM-dd hh:mm:ss.SSS");

74 DateFormat justDate = new SimpleDateFormat("yyyy-MM-dd");

75 File root = new File(Environment.getExternalStorageDirectory(),

76 "ManualCounts");

77 File csvfile = new File(root,justDate.format(date)+".csv");

78 FileWriter fwriter = new FileWriter(csvfile,true);

79 BufferedWriter writer = new BufferedWriter(fwriter);

80 String strDate = preciseTime.format(date);

81 writer.append("\""+strDate+"\",\"right\"");

82 writer.newLine();

83 writer.close();

84 TextView text = (TextView)findViewById(R.id.my_text);

85 int count = Integer.parseInt(text.getText().toString());

86 text.setText(Integer.toString(count+1));

87 Button right = (Button)findViewById(R.id.b_right);

88 int countright = Integer.parseInt(right.getText().toString());

89 right.setText(Integer.toString(countright+1));

90 } catch (IOException e) {

91 e.printStackTrace();
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92 Context context = getApplicationContext();

93 Toast.makeText(context, "error", Toast.LENGTH_SHORT).show();

94 } } });

95 LinearLayout layOut = (LinearLayout)findViewById(R.id.lay);

96 layOut.setOnClickListener(new View.OnClickListener(){

97 @Override

98 public void onClick(View view) { try {

99 Date date = Calendar.getInstance().getTime();

100 DateFormat preciseTime =

101 new SimpleDateFormat("yyyy-MM-dd hh:mm:ss.SSS");

102 DateFormat justDate = new SimpleDateFormat("yyyy-MM-dd");

103 File root = new File(Environment.getExternalStorageDirectory(),

104 "ManualCounts");

105 File csvfile = new File(root,justDate.format(date)+".csv");

106 FileWriter fwriter = new FileWriter(csvfile,true);

107 BufferedWriter writer = new BufferedWriter(fwriter);

108 String strDate = preciseTime.format(date);

109 writer.append("\""+strDate+"\",\"other\"");

110 writer.newLine();

111 writer.close();

112 TextView text = (TextView)findViewById(R.id.my_text);

113 int count = Integer.parseInt(text.getText().toString());

114 text.setText(Integer.toString(count+1));

115 } catch (IOException e) {

116 e.printStackTrace();

117 Context context = getApplicationContext();

118 Toast.makeText(context, "error", Toast.LENGTH_SHORT).show();

119 } } });

120 layOut.setOnLongClickListener(new View.OnLongClickListener(){

121 @Override

122 public boolean onLongClick(View view) {

123 Context context = getApplicationContext();

124 Toast.makeText(context,"Sending data",Toast.LENGTH_SHORT).show();

125 Intent intentShareFile = new Intent(Intent.ACTION_SEND);

126 Date date = Calendar.getInstance().getTime();

127 DateFormat justDate = new SimpleDateFormat("yyyy-MM-dd");

128 File root = new File(Environment.getExternalStorageDirectory(),

129 "ManualCounts");

130 File csvfile = new File(root,justDate.format(date)+".csv");
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131 intentShareFile.setType("text/*");

132 intentShareFile.putExtra(Intent.EXTRA_STREAM,

133 Uri.parse("file://"+csvfile.toString()));

134 startActivity(Intent.createChooser(intentShareFile,

135 "Share File"));

136 return true;

137 }

138 }); } }
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7.2 Pilot Study

7.2.1 Sensor

1 {

2 "name": "smart_street_sensor",

3 "version": "1.0.0",

4 "description": "Tools for collecting data",

5 "main": "server.js",

6 "scripts": {

7 "start": "node server.js"

8 },

9 "keywords": [

10 "footfall",

11 "data",

12 "collection",

13 "wifi",

14 "probe",

15 "requests"

16 ],

17 "author": "Balamurugan Soundararaj",

18 "license": "GNU-GPL",

19 "dependencies": {

20 "adler32": "^0.1.7",

21 "csv": "^2.0.0",

22 "md5": "^2.2.1",

23 "moment": "^2.20.1",

24 "node-schedule": "^1.3.0",

25 "socket.io": "^2.0.4",

26 "socket.io-client": "^2.0.4",

27 "stream": "0.0.2",

28 "util": "^0.10.3",

29 "zlib": "^1.0.5"

30 }

31 }

1 // ===============================================

2 // Import the required modules

3 // ===============================================

4 const csv = require('csv');
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5 const crypto = require('crypto');

6 const adler32 = require('adler32');

7 const Writable = require("stream").Writable;

8 const moment = require('moment');

9 const schedule = require('node-schedule');

10 const zlib = require('zlib');

11 const io = require('socket.io-client')

12

13 // -----------------------------------------------

14 // Global variables to buffer the output for every

15 // 5 minutes, server ip address

16 // and port where the data needs to be pushed and

17 // the sensor id which is sending

18 // the data.

19 // -----------------------------------------------

20 var timestamp = '';

21 var buffer = [];

22 var server_address = process.argv[2];

23 var sensor_id = process.argv[3];

24

25 // ===============================================

26 // Create a new websocket connection and on

27 // connection to the server.

28 // ===============================================

29 var socket = new io('http://'+server_address);

30

31 // ===============================================

32 // Scheduler which is invoked every 5 minutes

33 // which sends the buffered data in

34 // the global variable to the server by emitting

35 // event in the socket

36 // ===============================================

37 schedule.scheduleJob('00 */5 * * * * *', function(){

38 if(timestamp!='') {

39 var data = {

40 sensor : sensor_id,

41 timestamp : timestamp,

42 data : buffer

43 }
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44 timestamp = '';

45 buffer = [];

46 data = zlib.gzipSync(JSON.stringify(data));

47 socket.emit('data',data);

48 }

49 });

50

51 // ===============================================

52 // create a writable steam which buffers the probe

53 // requests collected into the

54 // global data variable. Which is flushed and sent

55 // to the server at regular schedules.

56 // ===============================================

57 var buffer_data = Writable({objectMode:true});

58 buffer_data._write = function (chunk, encoding, next) {

59 timestamp = chunk.splice(6,1);

60 buffer.push(chunk);

61 next();

62 }

63

64 // ===============================================

65 // Modify the read data - Split the MAC address

66 // into two parts, hash the user

67 // part using MD5 algorithm and format the date

68 // field better.

69 // ===============================================

70 function clean_record(record){

71 d_form = 'MMM DD, YYYY HH:mm:ss.SSSSSSS';

72 var mac_split = record[1].split(":");

73 var oui = mac_split[0]+

74 mac_split[1]+

75 mac_split[2];

76 record[1] = crypto.createHash('md5')

77 .update(record[1])

78 .digest('hex')

79 .toString();

80 record[1] = adler32.Hash().

81 update(record[1]).digest('hex')

82 record.push(oui);
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83 record.splice(1,0,moment(record[0], d_form)

84 .format('mm:ss.SSS'));

85 record.push(moment(record[0], d_form)

86 .format('YYYY-MM-DD HH:'));

87 record.splice(0,1);

88 return(record)

89 }

90

91 // ===============================================

92 // Take the input from stdin and pipe it through

93 // the series of functions we setup earlier to

94 // emit a stream of http post requests.

95 // ===============================================

96 process

97 .stdin

98 .pipe(csv.parse())

99 .pipe(csv.transform((record) =>

100 {return(clean_record(record));}))

101 .pipe(buffer_data)

1 #!/bin/sh

2 sudo tshark -Iql \

3 -i $1 \

4 -T fields \

5 -E separator=, \

6 -E quote=d \

7 -e frame.time \

8 -e wlan.sa \

9 -e wlan_radio.signal_dbm \

10 -e frame.len \

11 -e wlan.seq \

12 type mgt subtype probe-req and broadcast

7.2.2 Server

1 {

2 "name": "server",

3 "version": "1.0.0",

4 "description": "Recieving and storing the data",

5 "main": "server.js",
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6 "author": "Balamurugan Soundararaj",

7 "license": "ISC",

8 "dependencies": {

9 "csv": "^2.0.0",

10 "moment": "^2.20.1",

11 "object-sizeof": "^1.2.0",

12 "socket.io": "^2.0.4",

13 "zlib": "^1.0.5"

14 }

15 }

1 // ===============================================

2 // Import the required modules

3 // ===============================================

4 const http = require('http').Server();

5 const { exec } = require('child_process');

6 const io = require('socket.io')(http);

7 const zlib = require('zlib');

8 const sizeof = require('object-sizeof');

9 const moment = require('moment');

10

11 // ===============================================

12 // The function which takes the data received and

13 // pushes it to the database.

14 // ===============================================

15

16 function store_data(data) {

17 var cmd = 'echo "'+data+

18 '" | psql sss -U '+process.argv[3]+

19 ' -c "copy probes from stdin with delimiter \',\';"';

20 exec(cmd,(err,stdout,stderr)=>{});

21 }

22

23 // ===============================================

24 // Function to convert the JSON data received into

25 // csv string.

26 // ===============================================

27

28 function format_data(data){

29 data = zlib.gunzipSync(data).toString();
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30 data = JSON.parse(data);

31 var csv_string =''

32 for(var i=0; i < data.data.length; i++) {

33 var line = ''

34 data.data[i][0]=data.timestamp+data.data[i][0];

35 data.data[i][6]=data.sensor;

36 for(j in data.data[i]) {

37 line = line+'"'+data.data[i][j]+'"';

38 if(j < data.data[i].length-1){ line = line+','; }

39 }

40 csv_string = csv_string+'\n'+line

41 if(i%1000 == 0 || i >= data.data.length-1){

42 store_data(csv_string.trim());

43 csv_string = '';

44 }

45 }

46 console.log(moment().

47 format("YYYY-MM-YY HH:mm")+" - "+data.sensor);

48 }

49

50 // ===============================================

51 // Setting up the server to use a text parser and

52 // configure the route to execute the store_data

53 // function when it receives the data from the sensor

54 // ===============================================

55 io.on('connection',function(socket){

56 socket.on('data', function(data){

57 process.stdout.write((sizeof(data)/1024)

58 .toFixed(2)+" - ");

59 format_data(data);

60 });

61 });

62

63 // ===============================================

64 // The app listens at the port specified as first

65 // commanline argument

66 // ===============================================

67 http.listen(process.argv[2]);
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7.3 Data Pipeline

7.3.1 Sample configuration file

1 {

2 "sas_api": "url_string",

3 "sas_token": "token_string",

4 "ldc_server": "url_to_the_ldc_database",

5 "ldc_user": "username_for_ldc_database",

6 "ldc_pass": "password_for_ldc_database",

7 "pg_user": "user_name_for_database",

8 "pg_pass": "user_password_for_database",

9 "vendors": "https://code.wireshark.org/...",

10 "raw": "../path/to/raw_data/folder",

11 "hashed": "../path/to/probe_requests/folder",

12 "encrypted": "../path/to/encrypted/folder",

13 "salt": "random_string_here"

14 }

7.3.2 Data Pipeline

1 #! /bin/bash

2

3 #------------------------------------------------

4 # Print usage information to stdout for help

5 #------------------------------------------------

6 function usage() {

7 echo "Usage: pipeline [options]";

8 echo "Options:";

9 echo -e " --help Display this message.";

10 echo -e " --date Date in the format \

11 yyyy/mm/dd. Defaults to today's date";

12 echo -e " --config The config file to be \

13 used. Defaults to ./config.json";

14 echo -e " --meta Set this to 'false' to \

15 not update meta-data";

16 }

17

18 #------------------------------------------------
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19 # Set default variables for the parameters

20 #------------------------------------------------

21 DATE=`date +'%Y/%m/%d'`

22 CONFIG="config.json"

23 META="true"

24 DOWN="true"

25 PROCESS="true"

26

27 #------------------------------------------------

28 # Read in the named parameters from the commandline

29 #------------------------------------------------

30 while [ "$1" != "" ]; do

31 PARAM=`echo $1 | awk -F= '{print $1}'`

32 VALUE=`echo $1 | awk -F= '{print $2}'`

33 case $PARAM in

34 --help) usage; exit ;;

35 --date) DATE=$VALUE ;;

36 --config) CONFIG=$VALUE ;;

37 --meta) META=$VALUE ;;

38 --down) DOWN=$VALUE ;;

39 --process) PROCESS=$VALUE ;;

40 *) echo "[$(date +'%Y/%m/%d %H:%M:%S')]: \

41 Option \"$PARAM\" is unknown"; exit 1 ;;

42 esac

43 shift

44 done

45

46 #------------------------------------------------

47 # Check the validity of all parameters

48 #------------------------------------------------

49 if [ "$(date +'%Y/%m/%d' -d $DATE 2>/dev/null)"\

50 != $DATE ]; then

51 echo "[$(date +'%Y/%m/%d %H:%M:%S')]:\

52 Date $DATE is invalid"; exit; fi

53 if [ ! -f $CONFIG ]; then

54 echo "[$(date +'%Y/%m/%d %H:%M:%S')]:\

55 Cannot find the file $CONFIG"; exit; fi

56

57 #------------------------------------------------
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58 # Setting the values of all the required variable

59 # and creating the folders if they don't exist

60 #------------------------------------------------

61 SASAPI=`cat $CONFIG \

62 | jq -r '.sas_api'`

63 SASTOKEN=`cat $CONFIG \

64 | jq -r '.sas_token'`

65 RAWLOC=`cat $CONFIG \

66 | jq -r 'if (.raw==null or .raw=="") \

67 then "raw" else .raw end'`

68 HASHLOC=`cat $CONFIG \

69 | jq -r 'if (.hashed==null or .hashed=="") \

70 then "probes" else .hashed end'`

71 CRYPTLOC=`cat $CONFIG \

72 | jq -r 'if (.encrypted==null or .encrypted=="") \

73 then "encrypted" else .encrypted end'`

74 LDCUSER=`cat $CONFIG \

75 | jq -r '.ldc_user'`

76 LDCPASS=`cat $CONFIG \

77 | jq -r '.ldc_pass'`

78 LDCSERVER=`cat $CONFIG \

79 | jq -r '.ldc_server'`

80 VENDORS=`cat $CONFIG \

81 | jq -r '.vendors'`

82 PGUSER=`cat $CONFIG \

83 | jq -r '.pg_user'`

84 PGPASS=`cat $CONFIG \

85 | jq -r '.pg_pass'`

86 SALT=`cat $CONFIG \

87 | jq -r '.salt'`

88

89 #------------------------------------------------

90 # Setting up the environment variables

91 #------------------------------------------------

92 export PGPASSWORD=$PGPASS

93 RAWLOC=$RAWLOC/$DATE

94 HASHLOC=$HASHLOC/$DATE

95 CRYPTDIR="$CRYPTLOC/$(echo $DATE | awk -F'/' \

96 '{print $1"/"$2}')"



appendix 169

97 CRYPTFILE="$CRYPTDIR/$(echo $DATE | awk -F'/' \

98 '{print $3}').zip"

99 if [ ! -d $RAWLOC ]; then mkdir -p $RAWLOC; fi

100 if [ ! -d $HASHLOC ]; then mkdir -p $HASHLOC; fi

101 if [ ! -d $CRYPTDIR ]; then mkdir -p $CRYPTDIR; fi

102

103 #------------------------------------------------

104 # Setting up the commands to execute

105 #------------------------------------------------

106 LOG="date +%Y/%m/%d-%H:%M:%S"

107 HASH="./scripts/flatten $RAWLOC/{} \

108 | ./scripts/hash $SALT > $HASHLOC/{}.csv"

109 LOCATE="./scripts/locate \"\$(echo {} \

110 | awk -F'.' '{print \$1}')\" $DATE $PGUSER \

111 | awk '{print \$0} END{if(NR==0) print \"0\"}'"

112 COUNT="cat $HASHLOC/{} \

113 | ./scripts/count \`$LOCATE\` \

114 | ./scripts/adjust 2> /dev/null \

115 | ./scripts/impute 2> /dev/null \

116 | psql -q footfall -U $PGUSER \

117 -c \"copy counts from stdin with csv\""

118

119 #------------------------------------------------

120 # Data pipeline.

121 # Download > Anonymise > Encrpt > Meta > Count

122 #------------------------------------------------

123 echo "[`$LOG`]: Pipeline started for $DATE." &&

124

125 if [ $DOWN != "false" ]; then

126 # Script to download the data--------------------

127 {

128 {

129 ./scripts/download \

130 $DATE $RAWLOC $SASAPI $SASTOKEN;

131 } || {

132 echo "[`$LOG`]: \

133 Download failed {$DATE:::$SALT}"; exit;

134 }

135 } &&
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136 if [ "$(ls $RAWLOC | wc -l)" = "0" ]; then

137 echo "[`$LOG`]: \

138 No files downloaded!! {$DATE:::$SALT}"; exit;

139 fi

140 echo "[`$LOG`]: Download completed for $DATE." &&

141

142 # Hash the MAC addresses-------------------------

143 ls "$RAWLOC" | parallel $HASH &&

144 echo "[`$LOG`]: Hashing completed for $DATE." &&

145

146 # Encrypt the data for transfer------------------

147 if [ -f $CRYPTFILE ]; then rm $CRYPTFILE; fi &&

148 gpg-zip -e -r ucl-team@cdrc.ac.uk\

149 -o $CRYPTFILE $RAWLOC 2> /dev/null &&

150 echo "[`$LOG`]: \

151 Encryption completed for $DATE." &&

152 rm -rf $RAWLOC &&

153 echo "[`$LOG`]: Raw files deleted for $DATE.";

154 fi &&

155

156 # Download the meta data-------------------------

157 if [ $META != "false" ]; then

158 ./scripts/meta_data $LDCSERVER $LDCUSER \

159 $LDCPASS $VENDORS $PGUSER &&

160 echo "[`$LOG`]: Meta-data downloaded for $DATE.";

161 fi &&

162

163 #Count the probe requests------------------------

164 if [ $PROCESS != "false" ]; then

165 ls $HASHLOC | parallel "$COUNT" &&

166 echo "[`$LOG`]: Processing completed for $DATE.";

167 fi

168 unset PGPASSWORD

7.3.3 Daily Download

1 #! /bin/bash

2

3 #-------------------------------------------------
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4 # Assigning variables from positional arguments

5 #-------------------------------------------------

6 cd /store2/tools

7 DATE=`date +'%Y/%m/%d' -d"-1day"`

8

9 #-------------------------------------------------

10 # Execute the pipeline and log outputs

11 #-------------------------------------------------

12

13 ./pipeline --date=$DATE \

14 --config=./config_daily.json \

15 1>> ../logs/daily.log \

16 2>> ../logs/daily.error

7.3.4 Batch Download

1 #! /bin/bash

2

3 #-------------------------------------------------

4 # Assigning variables from positional arguments

5 #-------------------------------------------------

6 FROM=$1

7 TO=`date +'%Y/%m/%d' -d"$2+1day"`

8 CONFIG=$3

9 META=$4

10

11 #-------------------------------------------------

12 # Iterate through the date range sequentially and

13 # apply data processing pipeline. parallel is not

14 # used since each individual pipeline is

15 # parallelised

16 #------------------------------------------------

17 while [[ $FROM < $TO ]] ; do

18 if [ `date +'%u' -d"$FROM"` == 1 ];

19 then ./scripts/rotate_salt $CONFIG; fi

20 ./pipeline --date=$FROM --config=$CONFIG

21 FROM=`date +'%Y/%m/%d' -d"$FROM+1day"`;

22 done
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7.3.5 Component Scripts

Download the data from Azure data store.

1 #! /bin/bash

2

3 #------------------------------------------------

4 # Assigning variables from positional arguments

5 #------------------------------------------------

6 DATE=$1

7 LOCATION=$2

8 SASAPI=$3

9 SASTOKEN=$4

10

11 #------------------------------------------------

12 # Getting the SAS URI for the azure blob container

13 #------------------------------------------------

14 HEADER="Authorization: accessToken $SASTOKEN"

15 ACCESSURI=`curl -s --header "$HEADER" $SASAPI \

16 | jq -r '.Data'`

17 SOURCE="$(echo $ACCESSURI \

18 | awk -F'?' '{print $1}')"

19 SOURCESAS="?$(echo $ACCESSURI \

20 | awk -F'?' '{print $2}')"

21

22 #------------------------------------------------

23 # Download the container contents for the

24 # specified date

25 #------------------------------------------------

26 azcopy \

27 --source "$SOURCE/$DATE" \

28 --destination "$LOCATION" \

29 --source-sas "$SOURCESAS" \

30 --recursive \

31 --quiet

Transform the JSON files to CSV.

1 #! /bin/sh

2

3 # -----------------------------------------------
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4 # Setup the variables from input

5 # -----------------------------------------------

6 directory=$1

7 device=$(echo $1 | awk -F'/' '{print $NF}')

8 date=$(echo $1 | awk -F'/' \

9 '{print $(NF-3)"-"$(NF-2)"-"$(NF-1)}')

10

11 # -----------------------------------------------

12 # Set up jq filter string.

13 # Convert the individual json to csv

14 # -----------------------------------------------

15 jq_string=".[] \

16 | [.VendorMacPart+.MacAddress, \

17 .Signal, .PacketCount,

18 ( (input_filename/\"/\" \

19 | .[ .|length-1 ] )/\".\" | .[0]),

20 .VendorMacPart] | @csv"

21

22 # -----------------------------------------------

23 # Set up the awk print string.

24 # Add device and timestamp

25 # -----------------------------------------------

26 awk_string="{print \"$date \"substr(\$4,2,2)\":\

27 \"substr(\$4,4,2)\":00\",

28 \"$device\",\$1,\$5,\$2,\$3}"

29

30 # -----------------------------------------------

31 # Set up the shell command.

32 # Find all .pd files, run jq on them and run awk

33 # on the output

34 # -----------------------------------------------

35 cmd="jq -r '$jq_string' $directory/*.pd \

36 | awk -F, -v OFS=, '$awk_string'";

37

38 # -----------------------------------------------

39 # Execute and echo the command.

40 # -----------------------------------------------

41 echo "$(eval $cmd)";

Hash the MAC address field.
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1 #! /usr/bin/Rscript

2

3 #------------------------------------------------

4 # Load required libraries

5 #------------------------------------------------

6 suppressMessages(library('openssl'))

7 suppressMessages(library('tidyverse'))

8

9 #------------------------------------------------

10 # Get the salt from config file

11 #------------------------------------------------

12 salt <- commandArgs(trailingOnly = TRUE)[1]

13

14 #------------------------------------------------

15 # Read from stdin, hash the MAC address using

16 # SHA256 and write to stdout

17 #------------------------------------------------

18 read.table(file('stdin'),

19 header = FALSE,

20 sep = ",",

21 quote = "\"",

22 stringsAsFactors = FALSE) %>%

23 mutate(V3 = sha256(paste0(V3,salt))) %>%

24 format_csv(col_names = FALSE) %>%

25 cat

26

27 #------------------------------------------------

Find the locations of the sensors.

1 #! /bin/bash

2

3 #------------------------------------------------

4 # Assigning variables from positional arguments

5 #------------------------------------------------

6 DEVICE=$1

7 DATE="$(date +'%Y-%m-%d' -d$2)"

8 PGUSER=$3

9

10 #------------------------------------------------

11 # Setting up arguments for later use
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12 #------------------------------------------------

13 CONNECT_UCL="psql -q footfall -U $PGUSER"

14 QUERY="copy (select location from installs where\

15 device = $DEVICE and start_date <='$DATE' and\

16 (end_date >= '$DATE' or end_date is null))\

17 to stdout with csv"

18

19 #------------------------------------------------

20 # Update all the tables

21 #------------------------------------------------

22 $CONNECT_UCL -c "$QUERY"

Aggregate the counts based on MAC addresses.

1 #! /usr/bin/Rscript

2

3 # -----------------------------------------------

4 # Load necessary packages

5 # -----------------------------------------------

6 suppressMessages(library('tidyverse'))

7 suppressMessages(library('lubridate'))

8

9 # -----------------------------------------------

10 # Common functions

11 # -----------------------------------------------

12 is_moving <- function(x) {

13 return( !(((x - (5 * 60)) %in% x) |

14 ((x - (10 * 60)) %in% x) |

15 ((x - (15 * 60)) %in% x) |

16 ((x - (20 * 60)) %in% x) |

17 ((x - (25 * 60)) %in% x) |

18 ((x - (30 * 60)) %in% x) ) ) }

19

20 filter_moving <- function(x) {

21 data_vector <- unlist(x[[1]])

22 logical_vector <- unlist(x[[2]])

23 return( list(data_vector[logical_vector] )) }

24

25 flatten_list <- function(x) {

26 return( data.frame(mac = x[[1]],

27 timestamp = x[[2]],
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28 vendor = x[[3]],

29 stringsAsFactors = FALSE) ) }

30

31 # -----------------------------------------------

32 # Read data from standard input

33 # -----------------------------------------------

34 data_in <- read.table(file("stdin"),

35 header = FALSE, sep = ",",

36 quote = "\"",

37 stringsAsFactors = FALSE)

38 names(data_in) <- c("timestamp", "device", "mac",

39 "vendor", "signal", "packets")

40 data_in <- data_in %>%

41 mutate(timestamp = round_date(

42 as.POSIXct(timestamp,tz="UTC"),"5 min"),)

43 this_date <- substr(

44 as.character(data_in$timestamp[1]),1,10)

45 location <- commandArgs(trailingOnly = TRUE)[1]

46 device <- data_in$device[1]

47 # -----------------------------------------------

48 # Generate overall counts

49 # -----------------------------------------------

50 counts_overall <- data_in %>%

51 mutate(

52 timestamp = as.character(timestamp),

53 vendor = (vendor %>%

54 substr(2,2) %>%

55 tolower()) %in%

56 c("e","a","2","6")) %>%

57 group_by(timestamp) %>% summarize(

58 probes_global = packets[!vendor] %>% sum,

59 probes_local = packets[vendor] %>% sum,

60 macs_global = mac[!vendor] %>%

61 unique %>% length,

62 macs_local = mac[vendor] %>%

63 unique %>% length) %>%

64 data.frame(stringsAsFactors=FALSE)

65

66 # -----------------------------------------------
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67 # Filter the dataset and generate filtered counts

68 # -----------------------------------------------

69 one_time <- data_in %>%

70 group_by(mac) %>%

71 filter(n()<2) %>%

72 select(mac,timestamp,vendor) %>%

73 mutate( timestamp = as.character(timestamp))%>%

74 data.frame

75

76 if( (data_in %>%

77 group_by(mac) %>%

78 filter(n()>1) %>% nrow) > 0 ) {

79 repeated <- data_in %>%

80 group_by(mac) %>%

81 filter(n()>1) %>% ungroup() %>%

82 select(mac,timestamp,vendor) %>%

83 group_by(mac) %>%

84 summarize(

85 timestamps = timestamp %>% list,

86 vendors = vendor %>% list) %>%

87 mutate(is_moving =

88 lapply(timestamps, is_moving)) %>%

89 mutate(

90 timestamps = apply(.[ ,c(2, 4)],

91 1, filter_moving),

92 vendors = apply(.[ , c(3, 4)],

93 1, filter_moving)) %>%

94 mutate(

95 timestamps = lapply(timestamps,

96 function(x){return(x[[1]])}),

97 vendors = lapply(vendors,

98 function(x){return(x[[1]])})) %>%

99 select(-is_moving) %>%

100 apply(1, flatten_list) %>%

101 do.call("rbind", .) %>%

102 mutate( timestamp = as.character(timestamp))

103 } else {

104 repeated <- data_in %>%

105 group_by(mac) %>%
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106 filter(n()>1) %>%

107 mutate(timestamp =

108 as.character(timestamp)) %>%

109 data.frame

110 }

111 counts_filtered <- rbind(one_time,repeated) %>%

112 mutate(

113 vendor = (vendor %>% substr(2,2) %>%

114 tolower()) %in%

115 c("e","a","2","6")) %>%

116 group_by(timestamp) %>% summarize(

117 count_global = mac[!vendor] %>%

118 unique %>% length,

119 count_local = mac[vendor] %>%

120 unique %>% length ) %>%

121 data.frame

122

123 # -----------------------------------------------

124 # Write data to standout output

125 # -----------------------------------------------

126 final_counts <- list(counts_overall,

127 counts_filtered) %>%

128 reduce(left_join, by = "timestamp")

129 start_timestamp <- as.POSIXct(

130 paste(this_date,"00:00:00"),tz="UTC")

131 end_timestamp <- as.POSIXct(

132 paste(this_date,"23:55:00"),tz="UTC")

133 final_counts <- left_join(

134 data.frame(

135 timestamp = seq(start_timestamp,

136 end_timestamp,

137 by = "5 min") %>%

138 format("%Y-%m-%d %H:%M:%S"),

139 stringsAsFactors=FALSE),

140 final_counts,

141 by="timestamp")

142 final_counts[is.na(final_counts)] <- 0

143 final_counts$location <- location

144 final_counts$device <- device
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145 final_counts %>%

146 select(timestamp, location, device,

147 probes_global, probes_local,

148 macs_global, macs_local,

149 count_global, count_local) %>%

150 mutate_if(is.numeric,as.integer) %>%

151 mutate_if(is.integer,as.character) %>%

152 format_csv(col_names = FALSE) %>% cat

Adjust the local counts based on probes to MAC ratio.

1 #! /usr/bin/Rscript

2

3 # -----------------------------------------------

4 # Load tidyverse for pipes

5 # -----------------------------------------------

6 suppressMessages(library('tidyverse'))

7

8 # -----------------------------------------------

9 # Read data from the standard input

10 # -----------------------------------------------

11 data <- read.table(file("stdin"),

12 header = FALSE,

13 sep = ",",

14 quote = "\"",

15 stringsAsFactors = FALSE)

16 names(data) <- c("ts","loc","dev","pg",

17 "pl","mg","ml","cg","cl")

18

19 # -----------------------------------------------

20 # adjusted value based on the "dwellingness" at

21 # the location at that interval which is inferred

22 # from the global counts

23 # -----------------------------------------------

24 data %>%

25 mutate(adj = as.integer(ifelse(pl==0|ml==0|cl==0,

26 0,ceiling(ifelse(pg>0,cg/pg*pl,cl))))) %>%

27 mutate_if(is.numeric,as.integer) %>%

28 mutate_if(is.integer,as.character) %>%

29 format_csv(col_names=FALSE) %>% cat
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Impute missing values using Kalman filter.

1 #! /usr/bin/Rscript

2

3 # -----------------------------------------------

4 # Load tidyverse for pipes and imputeTS for

5 # imputing methods

6 # -----------------------------------------------

7 suppressMessages(library('tidyverse'))

8 suppressMessages(library('imputeTS'))

9

10 # -----------------------------------------------

11 # Read data from the standard input

12 # -----------------------------------------------

13 data <- read.table(file("stdin"), header = FALSE,

14 sep = ",", quote = "\"",

15 stringsAsFactors = FALSE)

16 names(data) <- c("ts","loc","dev","M1","M2",

17 "M3","M4","M5","M6","M7")

18

19 # -----------------------------------------------

20 # Find just the gaps shorter than 30 mins

21 # -----------------------------------------------

22 find_short <- function(d,n) {

23 d <- data.frame(x = d$M1+d$M2,

24 g=cumsum(c(1,

25 diff(d$M1+d$M2) != 0)))

26 d <- d %>% group_by(g) %>%

27 summarise(c = length(x)) %>%

28 left_join(d,.,by="g")

29 return(d$x==0 & d$c<=n)}

30 model <- find_short(data,6)

31 if(nrow(data[model,])>0) {

32 data[model,][,c(4:10)] <- NA }

33

34 # -----------------------------------------------

35 # Impute the NA values in each column using

36 # kalman method. Hyndman RJ and Khandakar Y

37 # (2008). "Automatic time series forecasting: the

38 # forecast package for R".
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39 # Journal of Statistical Software, 26(3).

40 # -----------------------------------------------

41 data <- data %>%

42 mutate_at(vars(starts_with("M")),

43 funs(as.integer(na.kalman(.))))

44 data[data<0] <- 0

45 data$model <- model

46 data %>%

47 mutate_if(is.numeric,as.integer) %>%

48 mutate_if(is.integer,as.character) %>%

49 format_csv(col_names=FALSE) %>% cat

Download and update meta data.

1 #! /bin/bash

2

3 #------------------------------------------------

4 # Assigning variables from positional arguments

5 #------------------------------------------------

6 LDCSERVER=$1

7 LDCUSER=$2

8 LDCPASS=$3

9 VENDORS=$4

10 PGUSER=$5

11

12 #------------------------------------------------

13 CONNECT_LDC="mssql -s $LDCSERVER -u $LDCUSER \

14 -p $LDCPASS -d Footfall -e -f csv"

15 CONNECT_UCL="psql -q footfall -U $PGUSER"

16 VENDOR_AWK='{if(length($1)==8)

17 {gsub(/:/,"",$1);

18 print "\""$1"\",\""$2"\",\""$3"\""}}'

19 VENDOR_SQL='truncate vendors; \

20 copy vendors from stdin with csv'

21 LOCATION_AWK='{addr=$2}

22 {if(FNR>1){

23 gsub(/"/,"",addr);

24 split(addr,a," *, *");

25 l=length(a);

26 print $1","$2",\""a[l-2]"\",\""a[l]"\","$3",\

27 "$4","$5","$6}}'
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28

29 LOCATION_SQL='truncate locations; \

30 copy locations from stdin with csv'

31 INSTALL_SQL='truncate installs; \

32 copy installs from stdin with csv header'

33 DEVICE_SQL='truncate devices; \

34 copy devices from stdin with csv header'

35 CALIB_SQL='truncate calibrations; \

36 copy calibrations from stdin with csv header'

37

38 #------------------------------------------------

39 # Update all the tables

40 #------------------------------------------------

41 curl -s "$VENDORS" \

42 | sed 's/"//g' \

43 | awk -F $'\t' "$VENDOR_AWK" \

44 | $CONNECT_UCL -c "$VENDOR_SQL"

45

46 $CONNECT_LDC -q "$(cat ./queries/locations)" \

47 | awk -vFPAT='[^,]*|\"[^\"]*\"' \

48 "$LOCATION_AWK" \

49 | sed 's/""//g' \

50 | $CONNECT_UCL -c "$LOCATION_SQL"

51

52 $CONNECT_LDC -q "$(cat ./queries/installs)" \

53 | sed 's/""//g' \

54 | $CONNECT_UCL -c "$INSTALL_SQL"

55

56 $CONNECT_LDC -q "$(cat ./queries/devices)" \

57 | sed 's/""//g' \

58 | $CONNECT_UCL -c "$DEVICE_SQL"

59

60 $CONNECT_LDC \

61 -q "$(cat ./queries/calibrations)" \

62 | sed 's/""//g' \

63 | $CONNECT_UCL -c "$CALIB_SQL"

Rotate the salt value in the configuration file.

1 #! /bin/bash

2
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3 #------------------------------------------------

4 # Get the variable for the config file and

5 # generate a random string

6 #------------------------------------------------

7 FILE=$1

8 SALT="\"$(cat /dev/urandom | tr -dc 'a-zA-Z0-9'\

9 | fold -w 32 | head -n 1)\""

10 #------------------------------------------------

11 # Change salt in the configuration file with the

12 # random string

13 #------------------------------------------------

14 CONTENT=`jq ". + {salt:$SALT}" $FILE`

15 echo $CONTENT | jq '.' > $FILE

7.3.6 SQL queries

Manual counts.

1 select

2 DeviceId as device,

3 StartTime as start_time,

4 EndTime as end_time,

5 Count as count,

6 Note as note

7 from calibrations;

Device information.

1 select

2 Devices.Id as id,

3 NfcLink as nfc,

4 HardwareVersions.Name as hardware,

5 SoftwareVersions.Version as software

6 from Devices

7 left join HardwareVersions on

8 Devices.HardwareVersionId=HardwareVersions.Id

9 left join SoftwareVersions on

10 Devices.SoftwareVersionId=SoftwareVersions.Id;

Location information.

1 select

2 DeviceLocations.Id as id,
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3 Address as address,

4 Lat as lat ,

5 Lon as lon,

6 DevicePositions.Name as position,

7 DeviceLocationTypes.Name as type

8 from DeviceLocations

9 left join LdoPremises

10 on DeviceLocations.PremiseId = LdoPremises.Id

11 left join DevicePositions

12 on DeviceLocations.DevicePositionId = DevicePositions.Id

13 left join DeviceLocationTypes

14 on DeviceLocations.DeviceLocationTypeId = DeviceLocationTypes.Id;

Installation notes.

1 select

2 DeviceId as device,

3 DeviceLocationId as location,

4 FromDate as start_date,

5 ToDate as end_date,

6 Height as height,

7 Depth as depth,

8 Note as note

9 from DeviceHistories

10 left join DeviceInstallDetails on

11 DeviceHistories.Id = DeviceInstallDetails.DeviceHistoryId

12 left join InstallSignatures on

13 DeviceHistories.InstallSignatureId = InstallSignatures.Id

14 left join InstallNotes on

15 InstallSignatures.Id = InstallNotes.Id;

7.4 Benchmarking Data Tookit

This section documents all the code that has been used in the research.

The programming languages used are including but not limited to R,

Bash, JavaScript and SQL.

7.4.1 Simple implementation in R

This R script lists all files in a given folder, parses them as JSON data

serially, aggregates the records for each time interval and finally writes it

to disk as a CSV file.
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1 #! /usr/bin/Rscript

2 suppressMessages(library(tidyverse))

3 suppressMessages(library(RJSONIO))

4

5 day <- "~/unorganised-files/ff_sample/2018/01/01"

6 sensors <- paste(day, dir(day), sep = "/")[1:25]

7 probes <- NULL

8

9 for(sensor in sensors) {

10 files <- paste(sensor, dir(sensor), sep = "/");

11 for( file in files ) {

12 records <- fromJSON(file);

13 location <- vector(); signal <- vector();

14 mac <- vector(); packets <- vector();

15 vendor <- vector(); type <- vector(); time <- vector();

16 for(record in records) {

17 t <- strsplit(strsplit(file, '\\.')[[1]][1], '/')[[1]][8]

18 l <- strsplit(strsplit(file, '\\.')[[1]][1], '/')[[1]][7]

19 signal <- append(signal, record$Signal);

20 mac <- append(mac, record$MacAddress);

21 packets <- append(packets, record$PacketCount);

22 type <- append(type, record$PacketType);

23 vendor <- append(vendor, record$VendorMacPart);

24 time <- append(time, t);

25 location <- append(location, l);

26 }

27 recordsdf <- data.frame(location, time, signal,

28 mac, packets, type, vendor);

29 if(is.null(probes)) { probes <- recordsdf; }

30 else { probes <- rbind(probes, recordsdf); }

31 }

32 }

33

34 probes %>%

35 group_by(location, time) %>%

36 summarise(count = length(unique(paste0(vendor, mac)))) %>%

37 write.csv("output-old.csv", row.names = FALSE);
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7.4.2 Serial implementation in bash

This bash script lists all the files in a given folder, parses them into JSON

data serially, aggregates the resulting records for each time interval and

finally writes it to disk as a CSV file.

1 #! /bin/bash

2 awkc="awk -vFPAT='[^,]*|\"[^\"]*\"' -v OFS=','"

3 FOLDER="/home/ucfnbso/unorganised-files/ff_sample/2018/01/01/"

4 SENSORS=`ls $FOLDER | head -n $1`

5

6 for SENSOR in $SENSORS;

7 do

8 jq_string=".[] | \

9 [\"$SENSOR\",\

10 ( (input_filename/\"/\" | .[ .|length-1 ] )/\".\" | .[0]),\

11 .VendorMacPart+.MacAddress] \

12 | @csv";

13 cmd="jq -r '$jq_string' $FOLDER$SENSOR/*.pd \

14 | sort | uniq \

15 | $awkc '{print \$1,\$2}' \

16 | sort | uniq -c";

17 echo "$(eval $cmd)" > output-new.csv;

18 done

7.4.3 Parallel implementation in bash

This bash script lists all the files in a given folder, parses them into JSON

data in parallel, aggregates the resulting records for each time interval

and finally writes it to disk as a CSV file.

1 #! /bin/bash

2 awkc="awk -vFPAT='[^,]*|\"[^\"]*\"' -v OFS=','"

3 folder="/home/ucfnbso/unorganised-files/ff_sample/2018/01/01/"

4 sensors=`ls $folder | head -n $1`

5

6 jq_string=".[] | \

7 [\"{}\",\

8 ( (input_filename/\"/\" | .[ .|length-1 ] )/\".\" | .[0]),\

9 .VendorMacPart+.MacAddress] \

10 | @csv";
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11 cmd="jq -r '$jq_string' $folder{}/*.pd \

12 | sort | uniq \

13 | $awkc '{print \$1,\$2}' \

14 | sort | uniq -c";

15

16 echo "$sensors" \

17 | parallel "$cmd" \

18 > output-new-parallel.csv
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7.5 Sample Probe Request

This is a sample probe request captured using tshark and saved in the

JSON format.

1 {

2 "_index": "packets-2017-11-15",

3 "_type": "pcap_file",

4 "_score": null,

5 "_source": {

6 "layers": {

7 "frame": {

8 "frame.interface_id": "0",

9 "frame.interface_id_tree": {

10 "frame.interface_name": "en0"

11 },

12 "frame.encap_type": "23",

13 "frame.time": "Nov 15, 2017 18:46:56.155602000 GMT",

14 "frame.offset_shift": "0.000000000",

15 "frame.time_epoch": "1510771616.155602000",

16 "frame.time_delta": "0.019159000",

17 "frame.time_delta_displayed": "0.019159000",

18 "frame.time_relative": "0.343422000",

19 "frame.number": "6",

20 "frame.len": "142",

21 "frame.cap_len": "142",

22 "frame.marked": "0",

23 "frame.ignored": "0",

24 "frame.protocols": "radiotap:wlan_radio:wlan"

25 },

26 "radiotap": {

27 "radiotap.version": "0",

28 "radiotap.pad": "0",

29 "radiotap.length": "25",

30 "radiotap.present": {

31 "radiotap.present.word": "0x0000086f",

32 "radiotap.present.word_tree": {

33 "radiotap.present.tsft": "1",

34 "radiotap.present.flags": "1",
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35 "radiotap.present.rate": "1",

36 "radiotap.present.channel": "1",

37 "radiotap.present.fhss": "0",

38 "radiotap.present.dbm_antsignal": "1",

39 "radiotap.present.dbm_antnoise": "1",

40 "radiotap.present.lock_quality": "0",

41 "radiotap.present.tx_attenuation": "0",

42 "radiotap.present.db_tx_attenuation": "0",

43 "radiotap.present.dbm_tx_power": "0",

44 "radiotap.present.antenna": "1",

45 "radiotap.present.db_antsignal": "0",

46 "radiotap.present.db_antnoise": "0",

47 "radiotap.present.rxflags": "0",

48 "radiotap.present.xchannel": "0",

49 "radiotap.present.mcs": "0",

50 "radiotap.present.ampdu": "0",

51 "radiotap.present.vht": "0",

52 "radiotap.present.timestamp": "0",

53 "radiotap.present.reserved": "0x00000000",

54 "radiotap.present.rtap_ns": "0",

55 "radiotap.present.vendor_ns": "0",

56 "radiotap.present.ext": "0"

57 }

58 },

59 "radiotap.mactime": "836459236",

60 "radiotap.flags": "0x00000012",

61 "radiotap.flags_tree": {

62 "radiotap.flags.cfp": "0",

63 "radiotap.flags.preamble": "1",

64 "radiotap.flags.wep": "0",

65 "radiotap.flags.frag": "0",

66 "radiotap.flags.fcs": "1",

67 "radiotap.flags.datapad": "0",

68 "radiotap.flags.badfcs": "0",

69 "radiotap.flags.shortgi": "0"

70 },

71 "radiotap.datarate": "6",

72 "radiotap.channel.freq": "5180",

73 "radiotap.channel.flags": "0x00000140",
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74 "radiotap.channel.flags_tree": {

75 "radiotap.channel.flags.turbo": "0",

76 "radiotap.channel.flags.cck": "0",

77 "radiotap.channel.flags.ofdm": "1",

78 "radiotap.channel.flags.2ghz": "0",

79 "radiotap.channel.flags.5ghz": "1",

80 "radiotap.channel.flags.passive": "0",

81 "radiotap.channel.flags.dynamic": "0",

82 "radiotap.channel.flags.gfsk": "0",

83 "radiotap.channel.flags.gsm": "0",

84 "radiotap.channel.flags.sturbo": "0",

85 "radiotap.channel.flags.half": "0",

86 "radiotap.channel.flags.quarter": "0"

87 },

88 "radiotap.dbm_antsignal": "-76",

89 "radiotap.dbm_antnoise": "-96",

90 "radiotap.antenna": "1"

91 },

92 "wlan_radio": {

93 "wlan_radio.phy": "5",

94 "wlan_radio.11a.turbo_type": "0",

95 "wlan_radio.data_rate": "6",

96 "wlan_radio.channel": "36",

97 "wlan_radio.frequency": "5180",

98 "wlan_radio.signal_dbm": "-76",

99 "wlan_radio.noise_dbm": "-96",

100 "wlan_radio.timestamp": "836459236",

101 "wlan_radio.duration": "180",

102 "wlan_radio.duration_tree": {

103 "wlan_radio.preamble": "20",

104 "wlan_radio.ifs": "19096",

105 "wlan_radio.start_tsf": "836459056",

106 "wlan_radio.end_tsf": "836459236"

107 }

108 },

109 "wlan": {

110 "wlan.fc.type_subtype": "4",

111 "wlan.fc": "0x00004000",

112 "wlan.fc_tree": {
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113 "wlan.fc.version": "0",

114 "wlan.fc.type": "0",

115 "wlan.fc.subtype": "4",

116 "wlan.flags": "0x00000000",

117 "wlan.flags_tree": {

118 "wlan.fc.ds": "0x00000000",

119 "wlan.fc.tods": "0",

120 "wlan.fc.fromds": "0",

121 "wlan.fc.frag": "0",

122 "wlan.fc.retry": "0",

123 "wlan.fc.pwrmgt": "0",

124 "wlan.fc.moredata": "0",

125 "wlan.fc.protected": "0",

126 "wlan.fc.order": "0"

127 }

128 },

129 "wlan.duration": "0",

130 "wlan.ra": "ff:ff:ff:ff:ff:ff",

131 "wlan.ra_resolved": "Broadcast",

132 "wlan.da": "ff:ff:ff:ff:ff:ff",

133 "wlan.da_resolved": "Broadcast",

134 "wlan.ta": "94:b1:0a:79:15:9b",

135 "wlan.ta_resolved": "SamsungE_79:15:9b",

136 "wlan.sa": "94:b1:0a:79:15:9b",

137 "wlan.sa_resolved": "SamsungE_79:15:9b",

138 "wlan.bssid": "ff:ff:ff:ff:ff:ff",

139 "wlan.bssid_resolved": "Broadcast",

140 "wlan.addr": "ff:ff:ff:ff:ff:ff",

141 "wlan.addr_resolved": "Broadcast",

142 "wlan.addr": "94:b1:0a:79:15:9b",

143 "wlan.addr_resolved": "SamsungE_79:15:9b",

144 "wlan.addr": "ff:ff:ff:ff:ff:ff",

145 "wlan.addr_resolved": "Broadcast",

146 "wlan.frag": "0",

147 "wlan.seq": "2533",

148 "wlan.fcs": "0x5a6629b7",

149 "wlan.fcs.status": "1"

150 },

151 "wlan": {
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152 "wlan.tagged.all": {

153 "wlan.tag": {

154 "wlan.tag.number": "0",

155 "wlan.tag.length": "9",

156 "wlan.ssid": "VM3280449"

157 },

158 "wlan.tag": {

159 "wlan.tag.number": "1",

160 "wlan.tag.length": "8",

161 "wlan.supported_rates": "12",

162 "wlan.supported_rates": "18",

163 "wlan.supported_rates": "24",

164 "wlan.supported_rates": "36",

165 "wlan.supported_rates": "48",

166 "wlan.supported_rates": "72",

167 "wlan.supported_rates": "96",

168 "wlan.supported_rates": "108"

169 },

170 "wlan.tag": {

171 "wlan.tag.number": "45",

172 "wlan.tag.length": "26",

173 "wlan.ht.capabilities": "0x00000062",

174 "wlan.ht.capabilities_tree": {

175 "wlan.ht.capabilities.ldpccoding": "0",

176 "wlan.ht.capabilities.width": "1",

177 "wlan.ht.capabilities.sm": "0x00000000",

178 "wlan.ht.capabilities.green": "0",

179 "wlan.ht.capabilities.short20": "1",

180 "wlan.ht.capabilities.short40": "1",

181 "wlan.ht.capabilities.txstbc": "0",

182 "wlan.ht.capabilities.rxstbc": "0x00000000",

183 "wlan.ht.capabilities.delayedblockack": "0",

184 "wlan.ht.capabilities.amsdu": "0",

185 "wlan.ht.capabilities.dsscck": "0",

186 "wlan.ht.capabilities.psmp": "0",

187 "wlan.ht.capabilities.40mhzintolerant": "0",

188 "wlan.ht.capabilities.lsig": "0"

189 },

190 "wlan.ht.ampduparam": "0x00000017",
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191 "wlan.ht.ampduparam_tree": {

192 "wlan.ht.ampduparam.maxlength": "0x00000003",

193 "wlan.ht.ampduparam.mpdudensity": "0x00000005",

194 "wlan.ht.ampduparam.reserved": "0x00000000"

195 },

196 "wlan.ht.mcsset": "MCS Set",

197 "wlan.ht.mcsset_tree": {

198 "wlan.ht.mcsset.rxbitmask": {

199 "wlan.ht.mcsset.rxbitmask.0to7": "0x000000ff",

200 "wlan.ht.mcsset.rxbitmask.8to15": "0x00000000",

201 "wlan.ht.mcsset.rxbitmask.16to23": "0x00000000",

202 "wlan.ht.mcsset.rxbitmask.24to31": "0x00000000",

203 "wlan.ht.mcsset.rxbitmask.32": "0x00000001",

204 "wlan.ht.mcsset.rxbitmask.33to38": "0x00000000",

205 "wlan.ht.mcsset.rxbitmask.39to52": "0x00000000",

206 "wlan.ht.mcsset.rxbitmask.53to76": "0x00000000"

207 },

208 "wlan.ht.mcsset.highestdatarate": "0x00000000",

209 "wlan.ht.mcsset.txsetdefined": "0",

210 "wlan.ht.mcsset.txrxmcsnotequal": "0",

211 "wlan.ht.mcsset.txmaxss": "0x00000000",

212 "wlan.ht.mcsset.txunequalmod": "0"

213 },

214 "wlan.htex.capabilities": "0x00000000",

215 "wlan.htex.capabilities_tree": {

216 "wlan.htex.capabilities.pco": "0",

217 "wlan.htex.capabilities.transtime": "0x00000000",

218 "wlan.htex.capabilities.mcs": "0x00000000",

219 "wlan.htex.capabilities.htc": "0",

220 "wlan.htex.capabilities.rdresponder": "0"

221 },

222 "wlan.txbf": "0x00000000",

223 "wlan.txbf_tree": {

224 "wlan.txbf.txbf": "0",

225 "wlan.txbf.rxss": "0",

226 "wlan.txbf.txss": "0",

227 "wlan.txbf.rxndp": "0",

228 "wlan.txbf.txndp": "0",

229 "wlan.txbf.impltxbf": "0",
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230 "wlan.txbf.calibration": "0x00000000",

231 "wlan.txbf.csi": "0",

232 "wlan.txbf.fm.uncompressed.tbf": "0",

233 "wlan.txbf.fm.compressed.tbf": "0",

234 "wlan.txbf.rcsi": "0x00000000",

235 "wlan.txbf.fm.uncompressed.rbf": "0x00000000",

236 "wlan.txbf.fm.compressed.bf": "0x00000000",

237 "wlan.txbf.mingroup": "0x00000000",

238 "wlan.txbf.csinumant": "0x00000000",

239 "wlan.txbf.fm.uncompressed.maxant": "0x00000000",

240 "wlan.txbf.fm.compressed.maxant": "0x00000000",

241 "wlan.txbf.csi.maxrows": "0x00000000",

242 "wlan.txbf.channelest": "0x00000000",

243 "wlan.txbf.reserved": "0x00000000"

244 },

245 "wlan.asel": "0x00000000",

246 "wlan.asel_tree": {

247 "wlan.asel.capable": "0",

248 "wlan.asel.txcsi": "0",

249 "wlan.asel.txif": "0",

250 "wlan.asel.csi": "0",

251 "wlan.asel.if": "0",

252 "wlan.asel.rx": "0",

253 "wlan.asel.sppdu": "0",

254 "wlan.asel.reserved": "0x00000000"

255 }

256 },

257 "wlan.tag": {

258 "wlan.tag.number": "107",

259 "wlan.tag.length": "1",

260 "wlan.interworking.access_network_type": "15",

261 "wlan.interworking.internet": "0",

262 "wlan.interworking.asra": "0",

263 "wlan.interworking.esr": "0",

264 "wlan.interworking.uesa": "0"

265 },

266 "wlan.tag": {

267 "wlan.tag.number": "221",

268 "wlan.tag.length": "5",



appendix 195

269 "wlan.tag.oui": "5271450",

270 "wlan.tag.vendor.oui.type": "16",

271 "wlan.hs20.indication.dgaf_disabled": "0",

272 "wlan.hs20.indication.pps_mo_id_present": "0",

273 "wlan.hs20.indication.anqp_domain_id_present": "0",

274 "wlan.hs20.indication.release_number": "1"

275 },

276 "wlan.tag": {

277 "wlan.tag.number": "221",

278 "wlan.tag.length": "7",

279 "wlan.tag.oui": "20722",

280 "wlan.tag.vendor.oui.type": "8",

281 "wlan.wfa.ie.type": "0x00000008"

282 },

283 "wlan.tag": {

284 "wlan.tag.number": "221",

285 "wlan.tag.length": "9",

286 "wlan.tag.oui": "4120",

287 "wlan.tag.vendor.oui.type": "2",

288 "wlan.tag.vendor.data": "02:00:00:10:00:00"

289 }

290 } } } } }
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7.6 Open-source Software Used

This section provides a non-exhaustive list of the key open-source/free

software that have been used in this research.

• R - programming language for statistical computing

– tidyverse - An opinionated collection of R packages designed for

data science.

– imputeTS - Package for imputation missing values in univariate

time series.

– tmap - A flexible, layer-based, and easy to use package to create

thematic maps.

– lubridate - Package for working with date-times and time-spans

– ggplot2 - A system for declaratively creating graphics, based on

The Grammar of Graphics.

– classInt - Package for choosing univariate class intervals for map-

ping or other graphics purposes.

– Cairo - 2D graphics library with support for multiple output de-

vices.

– fmsb - Package with methods and functions for demographic anal-

ysis.

– digest - Package for the creation of hash digests of arbitrary R

objects.

– ggrepel - Package that provides geoms for ggplot2 to repel overlap-

ping text labels.

– ggridges - Package for creating ridge plots.

– maptools - Package for manipulating geographic data.

– tidyquant - Package that brings financial analysis and charting to

tidyverse.

– treemapify - Package for creating tree-maps.

– spatial features - Package for manipulating geographic data within

tidyverse.

– RJSONIO - Package for manipulating JSON objects.

– rgdal - Wrapper for the Geospatial Data Abstraction Library.

– rgeos - Wrapper for the Geometry Engine - Open Source.

– viridis - Package providing pretty color scales for visualisations.



appendix 197

– xtable - Package for coercing data to LaTeX and HTML tables.

– scales - Package for providing graphical scales mapping data to

aesthetics.

– showtext - Package for managing fonts.

– reshape2 - Package for transforming data between long and wide

format.

– rmarkdown - Package for integrating markdown with R assisting

reproducible research.

• Python - An interpreted, high-level, general-purpose programming

language.

• PHP - A general-purpose programming language originally designed

for server-side web development.

• JavaScript - A high-level, interpreted scripting language for client-side

web development.

– node.js - JavaScript based runtime built on chrome’s V8 engine.

– socket.io - web sockets implementation for real-time, bidirectional

and event-based communication.

– moment.js - JavaScript library for dealing with date-time and time-

spans.

– pm2 - Process management library for working with node.js appli-

cations.

– express - A fast, unopinionated, minimalist web framework for

Node.js

– Data Driven Documents - A JavaScript library for visualizing data

with HTML, SVG, and CSS.

– jQuery - A JavaScript library designed to simplify HTML DOM

manipulation.

– Bootstrap - A framework for building responsive, mobile first web-

sites.

– highcharts - A JavaScript library for drawing interactive charts

from data.

• GNU/Linux - An operating system and an extensive collection of open

source and free computer software.

– Arch Linux - A lightweight and flexible Linux distribution.
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– CentOS - A community supported computing platform compatible

with Red Hat Enterprise Linux.

– Debian - A Linux distribution focussing on stability.

– Ubuntu - A Debian based Linux distribution focussing on ease of

use.

– Alpine Linux - Ultra minimalistic Linux distribution focussing on

resource efficiency.

• git - A simple distributed version control system.

• imagemagik - Suite for displaying, converting and editing images.

• ffmpeg - Suite for converting and editing video files.

• fzf - A general-purpose command-line fuzzy finder.

• ripgrep - Rust based grep implementation for searching the content

of files.

• MySQL - A relational database management system focussing on

speed and ease of use.

• Postgres - A relational database management system emphasizing

extensibility and technical standards compliance.

• PostGIS - Extension providing spatial objects for the PostgreSQL

database.

• QGIS - Geographic Information System for creating, editing, visualis-

ing, analysing and publishing geospatial information.

• gdal - Geographic Data abstraction library.

• geos - Geometry Engine Open Source.

• igraph - R and Python library for dealing with networks / Graphs.

• OpenStreetMap - A collaborative project to create a free editable map

of the world.

• Leaflet - A JavaScript library for mobile-friendly interactive maps.

• Android - Open source mobile operating system based on Linux.

• vim - Vim is a highly configurable, modal text editor built with focus

on efficient.

• Latex - A high quality professional typesetting system.



appendix 199

• jq - A command line based JSON processor.

• Apache - A feature rich web server.

• nginx - A asynchronous, event-driven web server focussing on re-

source efficiency.

• OpenJDK - An open source implementation of the Java Platform.

• Wireshark - A free and open-source packet analyzer

• OpenSSH - A connectivity tool for remote login with the SSH proto-

col.

• OpenSSL - A full-featured toolkit for the Transport Layer Security

and Secure Sockets Layer protocols.

• GNUPG - A complete and free implementation of the OpenPGP

standard.

• gnu-parallel - A shell tool for executing jobs in parallel using one or

more computers.

• Libreoffice - A free and open-source office suite built by The Docu-

ment Foundation.

• RaspberryPi - A series of low-cost, flexible single-board computers.

• Docker - A platform for doing OS level virtualisation for delivering

software.

• termux - A terminal emulator and Linux environment for Android.
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