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Abstract

The contemporary use of technologies and environments has led to a vast collection and

sharing of visual data, such as images and videos. However, the increasing popularity and

advancements in social media platforms and smart environments have posed a significant

challenge in protecting the privacy of individuals’ visual data, necessitating a better under-

standing of the visual privacy implications in these environments. These concerns can arise

intentionally or unintentionally from the individual, other entities in the environment, or a

company.

To address these challenges, it is necessary to inform the design of the data collection pro-

cess and deployment of the system by understanding the visual privacy implications of these

environments. However, ensuring visual privacy in social media networks and smart environ-

ments presents significant research challenges. These challenges include accounting for an

individual’s subjectivity towards visual privacy, the influence of visual privacy leakage in the

environment, and the environment’s infrastructure design and ownership. This dissertation

employs a range of methodologies, including user studies, machine learning, and statistics

to explore social media networks and smart environments and their visual privacy risks.

Qualitative and quantitative studies were conducted to understand privacy perspectives in

social media networks and smart city environments. The findings reveal that individuals

and stakeholders possess inherited bias and subjectivity when considering privacy in these

environments, leading to a need for visual privacy mitigation and risk analysis.

Furthermore, a new visual privacy risk score using visual features and computer vision

is developed to investigate and discover visual privacy leakage. However, using computer

vision methods for visual privacy mitigation introduces additional privacy and fairness risks

while developing and deploying visual privacy systems and machine learning algorithms.

This necessitates the creation of interactive audit strategies to consider the broader impacts

of research on the community. Overall, this dissertation contributes to the advancement of

visual privacy solutions in social media networks and smart environments by investigating

xiii



and quantifying the visual privacy concerns and perspectives of individuals and stakeholders,

advocating for the need for responsible visual privacy mitigation methods in these environ-

ments. It also strengthens the ability of researchers, stakeholders, and companies to protect

individuals from visual privacy risks throughout the machine learning pipeline.

xiv



Chapter 1

Introduction

Visual privacy has risen to the forefront of individual and stakeholder concerns with the

growth of technology in Social Media Networks (SMN) and smart environments. The con-

cept of privacy can be user-subjective and task-oriented, but in this dissertation, privacy is

defined as the ability of an individual to withhold information that is considered private,

personal, and includes any content that an individual does not want to be shared. This

definition allows for flexibility across environments and technologies and is inclusive of pos-

sible individual subjectivity. Personally identifiable information for individuals can include

images, documents, and geographic location, among others. The visual content, image and

video data, captured in these environments can contain privacy leaks regarding the indi-

vidual or someone else. Privacy leaks include any instance in which a transfer of personal

identifying visual content is captured in SMNs and smart environments. Private visual con-

tent exposes intimate information that can be detrimental to finances, personal life, and

reputation. Private visual content includes baby faces, credit cards, phone numbers, social

security cards, house keys, etc. The consequences of privacy leaks can include identity theft,

burglary, and kidnapping.

With the use of SMNs and smart environments, there is an increased risk of an indi-

vidual’s private information being leaked, an infrastructure or system being breached by an

1



attacker, and an increased risk of physical threats because of these platforms. The tech-

nology developed to serve others may pose a grave risk to individuals, stakeholders, and

researchers engaging with those platforms. The ongoing collection, connection, and storage

in these environments serve as a catalyst for the rise in asset, location, and personal attacks.

With these vulnerabilities continually being exploited, there is a need for visual mitigation

strategies in these platforms to secure the privacy of individuals.

1.1 Research Questions and Objectives

In this dissertation, I address visual privacy leakage within the realm of SMNs and smart

city environments. This research aims to assess the effects of visual privacy leakage in SMNs

and smart cities and its’ potential impact on individuals and stakeholders. The following

research objectives facilitate the achievement of this aim:

1. Understanding and identifying individual and stakeholder perspectives and concerns

of visual privacy in SMNs and smart cities (Chapter 3, Chapter 4)

2. Exploring and developing visual privacy risk scoring algorithms (Chapter 5)

3. Proposing interactive auditing strategies for Visual Privacy research (Chapter 6)

These objectives are addressed with these methodologies: machine learning, statistics, and

user studies. This dissertation shows that there is a need for visual privacy mitigation and

improvement in individual, stakeholder, and researcher understanding of visual privacy in

smart cities and SMNs. The development of visual privacy research has brought rise to

proposing an analysis of the visual privacy machine learning pipeline, which allows further

mitigation of potential biases and privacy concerns from the model and modeler. Table 1.1

outlines the research questions that this dissertation seeks to answer.
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Table 1.1: Research Questions and Summary of Contributions.

Research Question Contributions Chapter

What are the privacy-

related experiences and

concerns of social media

users regarding visual con-

tent and threats on these

platforms?

• Subjectivity of users’ privacy atti-

tude and perspective investigated

with age and gender demographics.

• Explores potential visual content

privacy leaks on Twitter via key-

word search.

• Users’ privacy attitude and per-

spective provide insight into the

dangers concerning users and influ-

enced a hierarchy of dangers in cor-

relation to visual privacy on SMNs.

3

* Table 1.1 – Continued on the next page *
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Research Question Contributions Chapter

What considerations do

smart city stakeholders give

for privacy and cost in tech-

nology and infrastructure?

• Survey smart city stakeholders on

technology, cost, and privacy

• Explores Smart City Challenge

Finalist to understand common

themes, technology requests, and

privacy considerations in environ-

ment development

• Proposes the use of visual privacy

mitigation and Delay Tolerant Net-

works in smart city environments

• Provides a case study of a low-cost

and privacy-enabled smart technol-

ogy deployed

4

How can object importance,

prominence, and identifi-

ability contribute to vi-

sual privacy risk scoring

methodologies?

• Adaption of existing privacy scor-

ing methodology to utilize com-

puter vision

• Proposes the Vango privacy risk

scoring framework that includes

features of importance, promi-

nence, and identifiability

5

* Table 1.1 – Continued on the next page *
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Research Question Contributions Chapter

How can privacy and fair-

ness risks created by the de-

velopment and deployment

of visual privacy systems be

mitigated to protect indi-

viduals and stakeholders?

• Proposes interactive audit strate-

gies for privacy and fairness in vi-

sual privacy research

6

1.2 Contributions

To provide a comprehensive analysis of the research questions outlined in Table 1.1, this dis-

sertation begins with participant surveys and quantitative analysis, which aims to identify

the visual privacy risks associated with social media networks and smart environments. Ad-

ditionally, this research endeavors to examine the unforeseen implications of the technology

developed, including the potential risks posed by data collection, connection, and storage

within these environments. By utilizing a comprehensive approach, this dissertation aims to

provide a thorough understanding of visual privacy risks and offer viable mitigation strate-

gies. The findings of this research have the potential to inform researchers, stakeholders,

and individuals about methods for safeguarding visual privacy in social media networks and

smart city environments.

1.2.1 User and Stakeholder Perspectives of Visual Privacy

Chapters 3 and 4 of this dissertation comprise qualitative and quantitative studies that

investigate the privacy-related experiences and concerns of social media users regarding visual

content, as well as the privacy considerations of smart city stakeholders for technology and
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infrastructure. These chapters form the foundation of the dissertation by shedding light on

issues faced by individuals in these environments. Through a combination of surveys and

analysis, the studies demonstrate that the lack of visual privacy mitigation and the rapid

advancement of technology can impact an individual’s behavior, risk perception, and privacy

concerns.

Chapter 3 focuses on exploring the visual privacy concerns of social media network users

with regard to engagement, ownership, and the risks associated with sharing visual data.

Based on the surveys conducted, several common themes emerged. Firstly, users’ privacy

attitudes are subjective and can supersede potential privacy concerns of others or the plat-

form itself. Secondly, users’ opinions about visual private data are contingent upon whether

they anticipate any harm to themselves or their families. Finally, many users express high

levels of concern about the physical dangers of kidnapping, burglary, and stalking due to the

private data exposed on social media networks.

These findings have implications for social media network creators and personnel, as well

as for future research directions. The subjectivity of users’ privacy concerns means that

privacy mitigation strategies should be customizable, which poses a challenge for many plat-

forms and interfaces. Furthermore, continued research in visual privacy mitigation systems

that reduce visual privacy risks and its’ associated dangers are important to support visual

privacy management for individuals.

Chapter 3 underscores the significance of prioritizing users in social media networks. This

emphasis on users serves as a catalyst for Chapter 4, which delves into the influence of stake-

holders’ decisions regarding technology and infrastructure on privacy and cost for citizens

in smart city environments. Departing from an individual-focused approach, this chapter

examines the perspectives of stakeholders and policymakers on privacy and its implications,

which may be beyond the control of citizens. Smart city technologies can potentially compro-

mise citizens’ visual privacy and rights. As such, stakeholders’ decisions on infrastructure,

technology, and data collection practices must factor in visual privacy risks and cost concerns
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that arise from these developments, alongside considerations regarding how to incorporate

visual privacy mitigation.

The findings in Chapter 4 reveal that privacy, simplicity, and convenience are frequently

described as top priorities by stakeholders. Stakeholders have expressed concerns about

privacy in smart cities but often neglect the integration of privacy protocols in technologies.

Additionally, beyond the survey, this chapter explores the Smart City Challenge Finalist

(DOT 2015) to identify shared themes, technology requests, and privacy considerations in

developing smart city environments. These results corroborate the necessity of addressing

visual privacy risks to guarantee that citizens are protected while benefiting from these

technologies.

Chapters 3 and 4 establish the groundwork of this dissertation by means of qualitative

and quantitative studies that highlight visual privacy challenges for social media networks

and smart city environments. This research informs recommendations for researchers and

infrastructure to develop visual privacy mitigation that accounts for the diversity of expec-

tations, preferences, and circumstances.

1.2.2 Exploring Visual Features and Measuring Visual Privacy

Risk

Chapter 5 addresses the research question, “How can importance, prominence, and identi-

fiability contribute to visual privacy risk scoring methodologies?” This chapter introduces a

visual privacy scoring method that is designed and applied, followed by a comparison with

an adapted privacy scoring method. The proposed method is grounded in computer vision,

with applications to the theories of the golden spiral and term frequency-inverse document

frequency (TF-IDF). The severity of privacy leakage is derived from the hierarchy of visual

privacy dangers outlined in Chapter 3. The hierarchical danger framework provides a theo-

retical foundation for understanding the intensity of visual privacy risk in terms of detecting

private items and the potential user subjectivity toward visual content.
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Additionally, this chapter explores several visual datasets to examine the efficacy of

Object Importance Weights (OIW), Golden Spiral Distance (GSD), and Object Area Ra-

tio (OAR) approaches in measuring visual privacy risk. The findings in Chapter 5 reveal

that importance, prominence, and identifiability show promise as components of a visual

privacy risk score. The results show an opening in necessity to exploiting visual features to

understand and score visual content.

1.2.3 Issues with Visual Privacy Mitigation: Vulnerabilities and

Regulation

This dissertation asserts the significance of exploring an interactive auditing pipeline for vi-

sual privacy research, as proposed in Chapter 6. The development and deployment of visual

privacy systems necessitate a fundamental shift in research procedures, developer practices,

and policies to prioritize strong visual privacy mitigation that account for fairness issues

throughout the machine learning pipeline. The surveys conducted in Chapters 3 and 4

demonstrate that individuals are apprehensive about visual privacy leakage and data collec-

tion procedures. These chapters also reveal that many individuals say that they are unable

or unwilling to engage with social media networks and smart city environments if privacy

measures are not established. Furthermore, the protection methods employed in these en-

vironments intensify visual privacy and fairness implications during collection, processing,

and storage. The development and deployment of visual privacy systems can potentially

give rise to technologies that violate privacy and fairness. Therefore, researchers must con-

sciously strive to implement best practices to safeguard all users from additional fairness and

privacy risks by reconsidering data collection processes, machine learning algorithms, and

the supervision of the machine learning pipeline.
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1.3 Dissertation Outline

The chapters of this dissertation can be read independently. Table 1.1 provides the order of

the chapters organized by the research questions and provides the progression of qualitative

user studies to visual privacy risk scoring strategies to auditing visual privacy pipelines. In

Chapter 2, I present the related work for this dissertation by relevant themes and concepts.

Chapter 3 and Chapter 4 explore individual and stakeholder perspectives and concerns of

visual privacy in SMNs and smart city environments and investigates the relationship be-

tween danger, cost, and leakage. Building on the exploration of visual privacy in various

domains, Chapter 5 explores visual datasets to demonstrate a visual privacy risk scoring

methodology, Vango, which implements computer vision techniques to detect objects in im-

ages and calculate the visual privacy score of visual data by exploiting visual features. This

dissertation also presents a visual privacy auditing pipeline to mitigate unexpected risks due

to visual privacy algorithms and systems in Chapter 6. Lastly in Chapter 7, this dissertation

concludes by reflecting on the need and risks of visual privacy research applied in SMNs and

smart city environments in order to provide inclusive individual and stakeholder protection.
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Chapter 2

Related Work

Visual content (images and videos) that contain privacy leaks may expose intimate infor-

mation harmful to your finances, personal life, and reputation (Gross and Acquisti 2005).

Visual privacy leaks include any instance in which a transfer of personal identifying content

is shared via visual content. Anything posted to Social Media Networks (SMNs) or captured

in smart city environments can be exposed even after the removal of the content. From vi-

sual content, attackers can also extract textual information, including credit card numbers,

social security numbers, place of residence, phone numbers, and other information (Gross

and Acquisti 2005; Li et al. 2017c). This chapter lays the foundation across several areas of

computer science and provides the framework for the studies and discussions in the following

chapters.

2.1 Social Media’s role in exposing Visual Privacy

According to Pew Research Center, 81 percent of online Americans use YouTube, 69 percent

of online Americans use Facebook, and 40 percent of online Americans use Instagram (Auxier

and Anderson 2021). Among adults under 30, the most commonly used platforms are Insta-

gram, Snapchat, and Tiktok (Auxier and Anderson 2021). The users share images and videos

daily. Understanding and protecting visual privacy is important in the growth of technology
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and online social engagement. As SMNs continue to grow in popularity, they become a pow-

erhouse for privacy leakage whether intentional or unintentional. To many, privacy on social

media networks is user-dependent. People tend to share different content, have different

privacy settings, and have subjective perspectives on privacy. Several papers have examined

the privacy settings of users’ accounts in correlation to their privacy leakage (Madejski et al.

2011; Gross and Acquisti 2005; Krishnamurthy and Wills 2008); however, there are privacy

concerns that go beyond privacy settings (Gross and Acquisti 2005). By exploring users’

attitudes and intentions on social media platforms, upcoming developments consider that

the privacy settings of social networks are failing the users (Madejski et al. 2011). With

efforts to understand users’ attitudes and behaviors, authors (Knijnenburg 2017) suggest six

privacy profiles that categorized social media users by their privacy settings and attitudes.

Investigating users’ privacy settings on social media is important, but it is also important to

explore the disclosed information from or about users (Gross and Acquisti 2005; Veiga and

Eickhoff 2016).

Ninety percent of Facebook profiles contain at least one image, 87.8% of users share

their birth date, 39.9% of users list phone numbers (including 28.8% that contain cell phone

numbers), and 50.8% of users share their current residency (Gross and Acquisti 2005). Ad-

ditionally, revealing information such as birthdate, hometown, current residence, and phone

number can be used to estimate the user’s social security number and exposes them to po-

tential financial and identity threats (Gross and Acquisti 2005). The textual content can also

be extracted from posts that contain visual content. On SMNs, a user’s profile information

and visual content can intentionally or unintentionally be shared even though a privacy risk

may arise (Gross and Acquisti 2005).

Previous work studying user privacy on SMNs has focused on multiparty privacy con-

flicts (Such et al. 2017b; Zhong et al. 2018), images or text content from users (Abdulhamid

et al. 2014; Gross and Acquisti 2005; Squicciarini et al. 2014; Srivastava and Geethakumari

2013; Zerr et al. 2012c; Buschek et al. 2015; Tierney et al. 2013; Gurari et al. 2019; Kuang
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et al. 2017), third-party applications that supervise privacy (Buschek et al. 2015; Zerr et al.

2012b; Gurari et al. 2019; Kuang et al. 2017), the influence of culture in settings and com-

munities (Gross and Acquisti 2005), a user’s privacy setting on SMNs (Krishnamurthy and

Wills 2008; Gross and Acquisti 2005; Rosenblum 2007; Madejski et al. 2011), users’ attitudes,

intention, or behaviors on these platforms (Abdulhamid et al. 2014; Madejski et al. 2011),

and understanding children and teenagers’ interactions with SMNs (Boyd 2014; Boyd and

Marwick 2011). Studies exploring teenager attitudes towards privacy note that teenagers

tend to be more open about their lives on social media when compared to older users (Boyd

2014; Boyd and Marwick 2011) and emphasize the importance of stranger danger and insider

threat for minors on SMNs (Johnson et al. 2012).

These studies focus on social media attitudes and privacy settings, but unlike Chapter 3,

they do not evaluate users’ attitudes about visual privacy in relation to user behavior and

keywords that correlate to visual privacy leakage on social media. Chapter 3 builds on

this research by utilizing users’ visual privacy attitude and perspective to create a hierar-

chy of dangers from SMNs users. Furthermore, Chapter 3 re-emphasizes privacy concerns

demonstrated by recent research across a broader range of social media platforms.

2.2 Addressing Visual Privacy Concerns in Smart City

Environments

The concept of a smart city has recently led people, cities, and governments to pursue auto-

mated improvements to municipal infrastructure. Stakeholders may have different expecta-

tions for how their city should invest in improvements. Currently, no standard definition for

a smart city exists, causing variable expectations of residents, city governments, and other

community stakeholders. Smart city environments can heavily depend on wireless connec-

tions, servers, and storage which can be an attack vector for threats. Researchers have sug-

gested using ontological security frameworks (Malkawi et al. 2022), smart contracts (Siddiqui
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et al. 2023; Uchani Gutierrez and Xu 2023), block-chain (Uchani Gutierrez and Xu 2023),

heterogeneous networks (Al-Turjman et al. 2019), and machine-learning architectures (Kun-

chala et al. 2023; Malkawi et al. 2022) to protect smart city technology, infrastructure, and

services.

Studies have focused on security and privacy concerns of organizations (Aslam et al.

2022), and in the deployed technologies (Azhar 2020), however, the citizens’ concerns are

equally important to keep the smart city environment thriving (Martinez-Balleste et al.

2013). Citizens expect privacy, affordability (DeHart et al. 2020b), and timely and inter-

active information from a smart city (Cortez and Larios 2015). Recent studies have shown

that popular smart technologies may not provide the stated benefits that consumers ex-

pect (Brandon et al. 2021). While technological innovations continue, citizens are critical

about how unvetted smart cities can violate intrinsic rights (Smith 2019). However, laws

are being proposed and passed to ensure the responsibility of the city or company to pro-

tect the privacy of the citizens (Doctorow 2020; Devlin 2020). Researchers have conducted

surveys to understand citizens’ feelings and attitudes about privacy toward the technology

deployed in smart city environments (Wahyudi et al. 2022). To actively protect privacy in

smart environments, citizens can depend on other products to curtain themselves from smart

devices (Morse; Chen et al. 2020).

In an effort to protect visual privacy from cameras, researchers have invented methods to

disguise themselves from surveillance systems using fashionable masks (Harvey 2012). The

concept of visual privacy protection can further be extended to citizens’ privacy protection in

smart city environments. Recent works have shown an interest in developing visual privacy-

preserving methods with the use of encryption schemes for surveillance cameras (Al-Husainy

and Al-Shargabi 2020; Li et al. 2021a), and privacy-preserving video mitigation for visual

pedestrian data (Kunchala et al. 2023). High costs can be incurred when equipping and

maintaining privacy-preserving mechanisms in smart cities due to the cost of deploying tech-

nology, employing experts, continuous personnel security training, and frequent environment
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assessments (Aslam et al. 2022). The transformation into a smart city is expensive (e.g.,

between $30 Million and $40 Billion), and only a few cities can obtain the resources required

for upgrades (DeHart et al. 2020b).

Chapter 4 seeks to contribute to this field by understanding stakeholder considerations

and perspectives for technology, privacy, and cost for smart city development. Additionally,

Chapter 4 defines some common themes of smart cities, describes examples of technology

deployed in smart cities, and investigates privacy considerations of smart cities by analyzing

the 2015 Smart City Challenge. Related works focus on protecting organizations and infras-

tructure but lack the emphasis on citizens’ protection beyond textual personally identifying

information collected in smart city environments. Chapter 4 emphasizes the importance of

visual privacy and cost in smart city environments with proposed solutions and showcases

an example of low-cost and privacy-enabled smart technology.

2.3 Methods of Detecting, Protecting, and Scoring Vi-

sual Privacy Leakage

The perception of privacy is highly subjective and user-dependent (Zerr et al. 2012c; Martinez-

Balleste et al. 2013), which is shown by literature focusing on users’ attitudes towards pri-

vacy (Madejski et al. 2011; Wahyudi et al. 2022). As people engage in SMNs and smart

cities, the visual content shared and collected in these environments can contain potential

privacy leaks (Zerr et al. 2012c; Hoyle et al. 2015). SMNs and smart city personnel need to

take meaningful action to decrease the exposure of personal information via visual content.

The privacy risks of engaging on SMNs and in smart cities could outweigh the benefits.

Several studies have found that visual content posted on SMNs (Squicciarini et al. 2014;

Such et al. 2017b; Gross and Acquisti 2005; Rosenblum 2007) and captured in smart city

environments (Kunchala et al. 2023; Martinez-Balleste et al. 2013) can pose a danger to the

consumers. With the visual content exposed in these environments, attackers can uncover
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personal identifying information that can be collected (Squicciarini et al. 2014; Al-Turjman

et al. 2019). Visual content can also become a gateway for multiparty conflicts among

consumers (Such et al. 2017b; Martinez-Balleste et al. 2013; Thomas et al. 2010). These

conflicts can arise due to feelings of ownership, privacy boundaries, and privacy perspectives

of the individuals in the visual content. Looking further into self-censoring and reduction of

multiparty conflict, users can implement privacy-preserving procedures to reduce identity,

association, and content disclosure (Loukides and Gkoulalas-Divanis 2009).

The identification of leaked content requires researchers to understand private items or

objects that can be found in visual content (Zheng et al. 2022; Krishnamurthy and Wills 2008;

Vishwamitra et al. 2022). Once potential visual private categories are identified, researchers

can implement techniques to identify sensitive objects in the visual content. To detect visual

privacy leakage in visual content, researchers have suggested the use of several machine learn-

ing algorithms (De Luca 2019): Recurrent Neural Networks (Neerbek 2020), Deep Neural

Networks (Tonge and Caragea 2020, 2016), and Convolution Neural Networks (Vishwamitra

et al. 2022; Gurari et al. 2019; Orekondy et al. 2018).

To protect the visual privacy of individuals, researchers have suggested the use of concepts

like obfuscation (Li et al. 2017b; Padilla-López et al. 2015) for mitigating objects and faces.

When a visual content privacy leak is detected, researchers have emphasized the use of

mitigating visual privacy leaks in the visual content with blocking (DeHart and Grant 2018),

blurring (Li et al. 2017b,c), censoring (DeHart and Grant 2018), wireframing (Kunchala

et al. 2023), pixelate (von Zezschwitz et al. 2016; Orekondy et al. 2018), crystallize (von

Zezschwitz et al. 2016), oil paint (von Zezschwitz et al. 2016), and adversarial noise (DeHart

and Grant 2018; Goodfellow et al. 2014). Researchers have developed mitigation techniques

for visual privacy that range between intervention methods and data hiding (Padilla-López

et al. 2015). These methods can be implemented to protect visual privacy before posting the

content or after identifying private objects. The visual content mitigation techniques can

be incorporated into deployable systems for use in SMNs and smart environments. Studies
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have provided privacy-aware systems that seek to reduce the number of visual privacy leaks

in infrastructure and technology (Buschek et al. 2015; von Zezschwitz et al. 2016; Mazzia

et al. 2012; Li et al. 2017c; Tierney et al. 2013; Zerr et al. 2012b; Tierney et al. 2013; Li et al.

2017a; Orekondy et al. 2018; Li et al. 2017b; Zhao and Stasko 1998; Boult 2005). Visual

privacy mitigation should be centered around adaptability and cater to the individualistic

concepts of privacy (DeHart and Grant 2018; DeHart et al. 2020c).

The assessment of privacy leakage for visual content allows the quantification of risk with

a privacy score. A privacy score computes probable exposure (Becker 2009; Grandison et al.

2017) of data leaks (Liu and Terzi 2010) in that environment. Privacy scoring methods can

include item-based (Wang et al. 2019; Chen et al. 2021; Aghasian et al. 2020), individual-

based (Aghasian et al. 2017; Srivastava and Geethakumari 2013; Liu and Terzi 2010; Halimi

and Ayday 2022; Pensa and Blasi 2016), and network-based (Pensa et al. 2019; Liu and Terzi

2010) techniques. Each privacy scoring method incorporates unique metrics and features to

quantify the risk. Item-based privacy scoring metrics focus on an object or textual leakage

from the content. Individual privacy scoring methods can include behavior (Ali et al. 2013;

Caliskan Islam et al. 2014; Li et al. 2020), privacy settings (Liu and Terzi 2010; Coban et al.

2022), network structure (Pensa and Di Blasi 2016; Alemany et al. 2018; Li et al. 2021b; Kilic

and Inan 2019), friends (Coban et al. 2022; Akcora et al. 2012), and accounts that can exist

in several platforms (Aghasian et al. 2017; Li et al. 2018; Aghasian 2019). The assessment

of network-based privacy scoring can be assessed with centrality measurements (Pensa et al.

2019) or by aggregation of user risk in the network (Liu and Terzi 2010). Privacy scores can

be used as a method to reduce visual privacy risk.

In Chapter 5, I return to the visual privacy mitigation and protection concepts; propos-

ing visual privacy risk scoring methodologies in SMNs and smart city infrastructure. The

research presented in Chapter 5 extends privacy scoring methodologies, adapting existing

privacy scoring methodologies to include visual privacy features and creating visual privacy

risk scores to include visual features, computer vision, and privacy severity weighing. Fur-
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thermore, Chapter 5 explores the efficacy of the visual features and privacy risk scoring

across three visual datasets.

2.4 Ethics, Fairness, and Privacy

Visual privacy research creates and develops technologies and algorithms that can be inte-

grated into various environments. Machine learning (ML) algorithms used for visual privacy

and end to end privacy-aware systems are developed and deployed with the hopes of miti-

gating individual, stakeholder, and platform risks. Researchers have explored visual content

to understand how attackers can extract textual information, including credit card numbers,

social security numbers, residence, phone numbers, and other information (Li et al. 2017c).

Visual privacy algorithms and systems have been implemented for individuals in their daily

lives (von Zezschwitz et al. 2016; Dimiccoli et al. 2017; Gurari et al. 2019; Korayem et al.

2016), on social media networks (Zerr et al. 2012a; Tierney et al. 2013; Kuang et al. 2017),

and in smart cities (Kunchala et al. 2023; Li et al. 2021a). Studies have also built visual

privacy-aware systems to aid blind people who use social media networks (Gurari et al. 2019).

In this study, researchers have collected a dataset of visual data with the use of a mobile

application that allows the participants to consent to their photos being used in this study.

Before making the visual dataset public, the authors removed private objects to protect each

participant. However, it is not always the case that researchers obtain consent or clean raw

data of private and sensitive information.

From these works, there is a range of applications and the broad impact that they can

have on society. When building these algorithms and systems, issues with fairness and pri-

vacy can seep into the pipeline. One of the most widely used models for computer vision is

the Convolutional Neural Network (CNN) (Hendricks et al. 2018; Simonyan and Zisserman

2014; Ranjan et al. 2017). To understand bias in visual recognition tasks, CNN models have

been explored and strategies have been development to mitigate bias (Wang et al. 2020).
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Measuring social biases in vision and language models leads to a direction of studying biases

from a mixture of language and vision (Ross et al. 2020). A comparison study using multiple

visual datasets was performed to help to understand how biases could be in datasets and

affect object recognition task (Torralba and Efros 2011). Ethical concerns arise in facial pro-

cessing technology. are described in (Raji et al. 2020). Specifically, auditing products need

to be cautious about the ethical tension between privacy and representation. A framework

for protecting users’ privacy and fairness has been proposed by Soklic et al. (2017). The

framework blocks harmful tasks, such as gender classification, which can generate sensitive

information to certify privacy and fairness in the face verification tasks.

The accuracy and precision of these systems can depend on (1) the data collection pro-

cess, (2) fairness forensics performed on the data, (3) human-over -the-loop techniques during

model training, and (4) post-training evaluation. Chapter 6 approaches this problem by ad-

dressing these existing limitations on traditional visual privacy systems and suggests auditing

strategies for the ML pipeline. The proposed solution considers privacy and fairness issues at

each phase of the pipeline. In Chapter 6, I explore the application of human-over -the-loop

and extend that technique to incorporate fairness and visual privacy auditing systems to

allow researchers to create safe and fair systems to mitigate further risks for individuals,

stakeholders, and developers.

2.5 Summary

The scope of visual privacy research seeks to understand, investigate, and explain visual pri-

vacy leakage in several environments and technologies. Advancements in this field happen in

several areas of research including qualitative research studies, the development of privacy

mitigation techniques, increasing privacy awareness through privacy risk quantification, and

system evaluation using interactive auditing strategies. With the advancement of technology

and vast quantities of visual data being uploaded or captured in technology and environ-
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ments, this field has continued to grow. These factors also contribute to the importance of

visual privacy research for increased consumer and stakeholder privacy awareness, scalable

privacy-preserving techniques, and technological adaption as the world advances.

Typically, privacy on social media allows users to control privacy settings and permissions.

Previous research focusing on SMNs explores user attitudes, user-centric privacy settings,

and interpersonal conflicts, but does not consider cultural trends and keywords that correlate

to visual privacy leakage. Unfortunately, there is little to no protection for the privacy of the

bystanders in visual content for smart city environments. Additionally, there lacks a concise

and universal definition of a smart city; which results in varied expectations, concerns about

individual visual privacy, and a lack of legal and technical regulations for visual privacy.

The development of detection, mitigation, and scoring methodologies will not be enough to

adequately reduce privacy leakage without the consideration of the subjectivity of privacy,

increased privacy awareness, and direct applications of auditing evaluations in each phase of

the research process.
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Chapter 3

Discovering User Attitudes and

Beliefs about Visual Privacy on Social

Media

Online privacy has become immensely important with the growth of technology and the

expansion of communication. Social media networks have risen to the forefront of current

communication trends. Users of social media networks share billions of images and videos

daily. Users share private information within visual content, intentionally or unintentionally.

This chapter explores (1) the users’ perspective of privacy, (2) the pervasiveness of privacy

leaks on Twitter, and (3) the threats and dangers of these platforms.

Through this investigation, the state of privacy on social media networks is explored,

focusing on the occurrence of visual privacy leaks and the future of privacy for its users. This

investigation creates a foundation to understand the users’ concerns about the possibility of

not having secrets in the future and the threats that emerging technologies will expose them

to. In summary, the purpose of this chapter is to understand:

• The privacy perspective of a user can be subjective (Section 3.1). With this investi-

gation, I uncover users’ privacy subjectivity within age and sex demographics. This
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section also demonstrates the differences in user perspectives between privacy and vi-

sual privacy.

• This study shows visual content privacy leaks that are common among users on Twitter

(Section 3.2). With this investigation, I explore severe and moderate visual privacy

leaks on Twitter.

• Several threats and dangers are heightened due to the visibility, accessibility, and

sensitivity of visual content posted on social media (Section 3.1.4). This work provides

an understanding of the most threatening dangers to SMN users and a hierarchy of

dangers in correlation to the survey participants’ rankings.

In this investigation, I uncover the importance of privacy and the growing need for evolv-

ing technologies to combat online threats. Previous works have discussed concerns with

visual content, focusing on multiparty conflicts, third-party applications, privacy settings,

and the danger of this content. The current state of this field shows the importance of con-

tinuing investigation and development of visual privacy and mitigation techniques to protect

SMN users. The future of this field is in developing visual privacy mitigation techniques

and helping users understand the correlation of privacy to threats and dangers on these net-

works. With this foundation, I explore visual privacy on SMNs through participant surveys,

data collection, and analysis from Twitter. This work details the attitudes and perspectives

toward visual privacy and the data collection results from Twitter.

3.1 Attitudes and Perspectives towards Visual Private

Information

The user’s perspective of freedoms, beliefs, ownership, and vulnerabilities aids in guiding

their decision-making process when engaging on social media. On these platforms, users de-

termine what information to share based on their perceived freedoms and feelings of security.
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Each user’s perspective of privacy will vary based on their subjectivity.

3.1.1 Survey Overview

The online surveys were conducted among users of social media. Respondent recruitment

and data collection were conducted between January 2019 to November 2019. The surveys

asked participants about their knowledge, experiences, and perspectives on social media net-

works. It further investigated participants’ social engagement behaviors and visual privacy

leaks. Questions in these surveys were influenced by related works (Abdulhamid et al. 2014;

Madejski et al. 2011; Srivastava and Geethakumari 2013).

Participants were recruited through an invitation email with the survey link to various

groups and organizations requesting their voluntary participation in an online survey. A total

of N = 268 respondents took the survey and those responses were used for data analysis pur-

poses. The participants were not required to answer every question. The order of the survey

questions were randomized and the survey concluded with demographic questions (Schaeffer

and Presser 2003; Kalton and Kasprzyk 1986). The first survey (IRB #10299) is used to

gauge participants engagement across various platforms. The second survey (IRB #11349)

focused on participants use of Twitter and their engagement with visual privacy. No finan-

cial incentive was provided to participants for these surveys. With exploring engagement on

Twitter I can further understand what type of information disseminates, a user’s network or

community privacy leakage, and explore trends.

Participants and procedure

Of the N = 268 respondents, n = 199 (74%) respondents identified their sex. From the N =

199 respondents, n = 96 (48%) identified as male, n = 102 (51%) identified as female, and

n = 1 (0.5%) identified as other. The average age of respondents was between 18–25. In

terms of race and ethnicity, N = 199 (74%) identified their race. From the N = 199 (74%)

responses, n = 98 (49%) were White, n = 80 (40%) were Black or African American, n = 6
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(3%) were American Indian or Alaskan Native, n = 12 (6%) were Asian, n = 2 (1%) were

Indian, n = 15 (7.5%) identified as other, and n = 4 (2%) preferred not to answer.

Social Media Engagement Measurements

From the surveys, I look at the participant’s use of social media networks, definitions of

privacy, and observations of privacy leaks on social media networks. Of the N = 268 respon-

dents, n = 111 responded to how many hours a week spent on social media. In terms of the

frequency of hours per week, n = 39.6% (42/111) participants use social media for 10–20

hours per week, n = 44% (49/111) participants use social media for 11–20 hours per week,

and n = 18% (20/111) participants use social media for more than 21 hours per week. On

average, participants engage in SMNs for 11–20 hours per week (Table 3.1B).

Most participants have multiple SMN profiles from different platforms (e.g., Facebook,

Twitter, Reddit, Snapcat, Instagram, Pinterest, Tumblr, Flickr, LinkedIn, Twitch, and

YouTube). When exploring which social media platforms participants use, N = 120 re-

sponded. Of the N = 120, n = 96% (116/120) identified that they have multiple social

media accounts, and n = 4% (4/120) identified that they have one social media account.

In this survey, the leading platforms are YouTube (n = 98 participants), Instagram (n =

80 participants), and Snapchat (n = 65 participants), which are all image and video-based

platforms (Table 3.1A). From this survey, respondents (N = 161) seem to post images and

videos the most across SMNs. Forty-seven percent of participants post images (n = 75),

and 6% of participants post videos (n = 11); only 42% of participants post textual content

(Table 3.1C).

Table 3.1 recaps the questions asked of the participants in the first survey. Each response

that contains a text entry from participants was analyzed using text analysis methods, which

are discussed in later sections of this chapter. The responses were segmented into categories:

age and sex classification; then analyzed using Elbow–Knee plots, clustering, and feature

weights.
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Table 3.1: This table displays the outline of the IRB #10299 survey that was completed by
participants. The survey was compromised of multiple-choice questions and short answers.

Item Question

A Of what Social Media Networks (SMNs) do you consider yourself a
frequent user? (Multiple Choice)

B How many hours per week do you spend on social media networks?
(Multiple Choice)

C What type of content do you usually post on social media? (Mul-
tiple Choice)

D Do you post any of these types of images or videos on your SMNs?
(Multiple Choice)

E How would you define privacy? (Text Entry)

F Would you define privacy the same for social media networks?
(Multiple Choice)

G Personally identifying information is information that can be used
to uniquely identify, contact, or locate a person. Agree or Disagree?
(Multiple Choice)

H Privacy leaks include any instance in which a transfer of personal
identifying visual content is shared on Social Media Networks. Pri-
vate visual content exposes intimate information that can be detri-
mental to your finances, personal life, and reputation. Agree or
Disagree? (Multiple Choice)

I Would you consider any of these images to have identifying infor-
mation? (Multiple Choice)

J As a typical user of Social Media Networks (SMNs), if you were
to post these items would you consider these items to be private?
(Multiple Choice)

K Drag and drop the following dangers in order of most threatening.
(Multiple Choice)

L Do you believe there are other dangers on Social Media Networks?
(Text Entry)

M What type of threat would these items fall under? (Multiple
Choice)

N Do you believe that conflict (e.g., bullying, domestic disputes) can
increase the occurrence of privacy leaks? (Multiple Choice)

24



3.1.2 Pre-Processing Raw Survey Responses

Once the data collection process was complete, the raw data was preprocessed using text

analysis (Pedregosa et al. 2011b), natural language processing (Loper and Bird 2002), and

regular expressions (Sarkar 2019). The preprocessing phase of the data was conducted using

word tokenization, lemmatization, stopword removal, and by combining words/acronyms with

the same meaning. These methods are further discussed and defined in Appendix B. During

preprocessing, each text entry was split into sentences and tokenized to return several word

tokens. The tokens were split on the whitespace between words. After getting tokens, there

were words with the same meaning but spelled differently. In these cases, I manually create a

bag of similar words to make explicit substitutions (i.e., birthdate, birthday, bday). Finally,

lemmatization was performed using the WordNet dictionary (Miller 1998).

The application of these techniques serves to decrease the margin of error and enhance

the outcomes of the ML pipeline in the context of training and analysis. Preprocessing the

raw data converts the data into a digestible form due to the machine learning algorithms’

inability to grasp unstructured text completely. These preprocessing steps aid the algorithm

in better understanding the underlying concepts. As text data may contain noise, such as

emojis and punctuation, appropriate cleaning measures become imperative.

3.1.3 Surveyed Definitions of Privacy

To begin the analysis of these survey results, I analyzed the common themes from their def-

initions of privacy. Among the 250 participants that completed the survey, 154 participants

responded to Question E in Table 3.1. To obtain the most meaningful terms from the par-

ticipants’ answers, I compute the Term Frequency-Inverse Document Frequency (TF-IDF)

scores for each term and then take the average score across all documents where the terms

appear. This process is further described in Appendix B.1.

In participants’ responses, the words information, personal, private, and share are

25



the most relevant words used to detail how the participants’ envision privacy on social media

and in the real world (Table 3.2). Privacy can be defined as the ability to preserve or withhold

information that is considered private, personal, and includes any content that an individual

does not want to be shared. Of the N = 154, n = 144 participants were adamant that their

definition of privacy would not change regarding their physical life or a digital one.

Table 3.2: The weight for each term is computed by averaging the Term Frequency and the
Inverse Document Frequency (TF-IDF) weights over all the responses.

Term Avg. (TF-IDF)

information 0.1418

personal 0.1254

private 0.0785

share 0.0655

Is Visual Privacy Defined Differently?

From the N = 154, n = 10 (6.5%) participants state that their definitions of privacy and

visual privacy would not be the same. This definition change could be attributed to the

participant’s feelings about the levels of privacy, the unknown factors that exist on a digital

network, or fears of exploitation by companies or scammers on these platforms. The keywords

listed in Table 3.3 are similar to the words referenced by other groups however, these terms

were combined to form a different definition that represents their concerns. They focus on

the information gain of companies, lack of control over your privacy, and the risks on those

platforms. This group emphasized how social media and visual privacy creates more risks for

users. From this insight, visual privacy can be defined as a breach of sensitive information

being accessed through visual data that leads to heightened privacy risk for individuals due

to revealed information and the inability to exert control over data. The prevalence of visual

content and the growth of social media are perceived to open more doors for attacks and
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dangers.

Table 3.3: Top words used to define visual privacy using TF-IDF weights for each document.

Term Avg. (TF-IDF)

private 0.1513

information 0.1280

media 0.1083

social 0.1083

share 0.0952

Privacy Definitions by Cluster

The definitions were further clustered into two groups using the K-means clustering algorithm

and yellowbrick clustering via KElbowVisualizer (Bengfort et al. 2018). I deployed a K-

means clustering model and found the elbow of the data using the yellowbrick clustering

package. For evaluation, I used the Calinski Harabasz method to find the optimal cluster

size (Caliński and Harabasz 1974). This method computes the ratio of distribution between

clusters and the distribution of points within the clusters. The other scoring metrics provided

by yellowbrick include distortion and silhouette. I chose the Calinski Harabasz method

because it gave separation focusing on intracluster similarity and intercluster differences —

rewarding the best clustering based on the total size and number of clusters. This method

uses Equation 3.1.

SSB

SSW

∗ N − k
k − 1

(3.1)

In this equation, SSB is the overall intercluster distance, SSW is the overall intracluster

distances, N is the total number of data points, and k is the number of clusters. Using

this scoring method, I ran the KElbowVisualizer to find cluster values ranging from 2 to

16. In this process, I noticed that the elbow occurred at different k values across the runs.
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To alleviate this issue, I averaged 100 runs from the model to find the optimal elbow point.

Based on the lowest error and consistency of performance, the average elbow was at k=

6 (Figure 3.1a). The intercluster distance shows how strong the correlation is between

the clusters and keywords. The embeddings of the cluster centers in 2D are shown in the

intercluster distance maps, where the proximity between centers is maintained, representing

their original feature space closeness. The cluster sizes are determined based on a scoring

metric, membership, which reflects the number of instances assigned to each cluster’s center.

From Figure 3.1b, Cluster 1 completely differs from the remaining 5 clusters. However,

cluster 0 and clusters 2–5 have a strong overlap of feature space.

(a) (b)

Figure 3.1: Diagrams of the Elbow–Knee scores and errors using Calinski Harabasz method.
(a) Diagram of the Error Ribbon for the Elbow–Knee Plots using Calinski Harabasz method
with cluster size (k) ranging from 2 to 16. (b) Diagram of Intercluster Distance Map using
YellowBricks Calinski Harabasz method with cluster size (k) = 6.

In those clusters, the zeroth cluster included 36 definitions and the words: information,

share, private, and want (Table 3.4). In Cluster 0, privacy revolves around the users’

authorization, freedoms, and rights on these social media platforms. Cluster 1 included 33

definitions and included the words: social, address, security, and information. In this

cluster, I derived the theme of protecting personal information regarding physical bound-

aries, digital security, and personal identifying information. Cluster 2 included 27 definitions

and included the words: know, want, people, and information. In Cluster 2, I hypothe-
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size the definition of privacy emphasized security in the connections/relationships on social

media and their ability to share information at the owner’s discretion. Cluster 3 included

30 definitions and included the words: information, right, ability, and control. The

definition for Cluster 3 focuses on accessibility and knowledge of others. The participants in

this cluster want to protect themselves from their information being shared in the public do-

main and keep the information disseminated in a controlled environment. Cluster 4 included

16 definitions and included the words: personal, information, passwords, and control.

The participants in group four defined privacy as the access and use of information. It is

the user’s right to control access to data to keep their information safe. Cluster 5 included

13 definitions and included the words: personal, private, identify, and share. The last

group of participants focus on individual subjectivity about privacy with a focus on per-

sonally identifiable information (e.g., social security number, address). Table 3.4 provides a

synopsis of each of the cluster keywords and scores to show their level of importance to each

respective cluster.

Privacy Definitions by Sex

These definitions were further broken down into sex classifications. Of the N = 154 responses,

n = 82 identified as male, and n = 71 identified as female. Of the female participants (n =

71), the most important words were information, personal, private, share, and social.

Of the male participants (n = 82), the most important words were information, personal,

want, control, and private. It is further noted that the female participants are more

concerned with personally identifying information regarding harm and hacking, while the

male participants are concerned with financial attacks and exposed information.

In Table 3.5, the top five keywords are identified for each sex classification. For fur-

ther investigation, I began to look at the statistical analysis to find the significance of the

words for each sex classification subgroup. In this process, I used the analysis of variance

(ANOVA) method to analyze the differences between the groups of my participants. In this

29



Table 3.4: Cluster breakdown of the top terms and definitions of privacy using the average
TF-IDF weights.

Cluster (Total Size) Keyword Weight Interpretation

0 (36)

information 0.1651
share 0.1086
private 0.0870
want 0.0770

User authorization, free-
doms, and rights on
SMNs

1 (33)

social 0.0984
address 0.0938
security 0.0883
information 0.8171

Protecting personal
information regarding
physical boundaries,
digital security, and
personal identifying
information

2 (27)

know 0.1420
want 0.1315
people 0.1201
information 0.1075

Security in the connec-
tions or relationships on
social media and their
ability to share informa-
tion at the owner’s dis-
cretion

3 (30)

information 0.1813
right 0.1442
ability 0.0898
control 0.0874

Protection of self from
information being shared
in the public domain and
keep the information dis-
seminated in a controlled
environment

4 (16)

personal 0.3792
information 0.3785
passwords 0.1119
control 0.09364

User’s right to control ac-
cess to data to keep their
information safe

5 (13)

personal 0.2380
private 0.1271
identify 0.0769
share 0.0769

Individual subjectivity
about privacy with a
focus on personally
identifiable information
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work, ANOVA is used to observe the statistical variance for several data groups by different

components. This methodology helps uncover information about the relationships between

the dependent and independent variables. Table 3.6 explores the statistical values produced

from this analysis.

To understand the significance of each category, I look at the null hypotheses and p-values

associated with the independent and dependent variables. The null hypothesis states that

there are no significant differences in sex demographics and the associated keywords. The

p-value threshold is set at 0.05. In the sex comparisons of Female vs. Male; I reject the null

hypothesis because differences exist in the keywords for sex demographics.

Table 3.5: Top five terms used to define privacy using average TF-IDF weights for each by
sex demographic.

Sex Classification (Total Size) Keyword Score

Female (71)

information 0.1361
personal 0.0985
private 0.0751
share 0.0705
social 0.0400

Male (82)

information 0.1346
personal 0.1038
want 0.0631
control 0.0545
private 0.0542

Table 3.6: Calculated ANOVA score for top words used among sex classification to define
visual privacy.

Sex Classification Comparison f -Value p-Value

Female vs. Male 5.9749 0.0061

Privacy Definitions by Age Group

The clusters in this section were determined by how many individuals were in each group.

As the age increased, the population of the participants decreased significantly. Because of
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this, the definitions of privacy were clustered into two age groups: 18–25 and 26 & up. Of

the N = 154 responses, n = 111 were between the age of 18–25 and n = 43 were at least 26

years of age and up. In participants whose ages ranged between 18–25, the most important

words were information, personal, right, control, and private. The definitions of

this group revolve around the preservation of information from hackers and government

surveillance. Of the participants that are age 26 and over, the most important words were

information, personal, anything, private, and share. The second group’s definitions

seem to center around a common theme of personal information in relation to external

sources while considering alternative factors that could play a role in the dissemination of

information. The word anything asserted that the control or dissemination of any content

is defined by the owner.

In Table 3.7, the top five keywords are identified for each age group. For further inves-

tigation, I began to look at the statistical analysis to find the significance of the words for

each age subgroup. In this process, I used the ANOVA method to analyze the differences

between the groups of my participants. Table 3.8 explores the statistical values produced

from this analysis. The null hypothesis states that there are no significant differences in age

groups with respect to the keywords. In the age comparison of 18–25 v. 26 & over; I retain

the null hypothesis because differences do not exist in the keywords for age.

3.1.4 Attack Vectors and Existing Dangers

From this survey, I investigated what users perceived to be privacy leaks and the dangers of

exposed leaks on social media networks. I asked participants if they would consider certain

items to be privacy leaks. From this question (Table 3.1J), I see that 97% of participants

identify credit or debit cards, driver’s licenses, social security numbers, and passports as

the highest-ranked privacy leaks. Following close behind are birth certificates (96%), phone

numbers (90%), personal letters (85%), and keys (83%). Participants did not consider im-

ages of babies and children to be a privacy leak if posted on social media by their guardians.
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Table 3.7: Top words used to define privacy using TF-IDF weights for each age demographic.
This table includes the cluster label and the top five words by the highest TF-IDF weight.

Age (Total Size) Keyword Score

18–25 (111)

information 0.1167
personal 0.0777
right 0.0523
control 0.0512
private 0.0492

26 & over (43)

information 0.1395
personal 0.1212
anything 0.0869
private 0.0805
share 0.0585

Table 3.8: Calculated ANOVA score for top words used among age groups to define visual
privacy.

Age Group Comparison f -Value p-Value

18–25 v. 26+ 0.3275 0.5776

Sixty-five percent of participants state that they have seen these types of privacy leaks on

social media networks. From this, participants identify keywords or phrases that correlate to

those privacy leaks. With this investigation, I uncovered hashtags and words such as #stay-

offthesidewalk, #licensedtodrive, and #racisttwitter. The majority of participants stated

that they do not recall the phrase that was used in correlation to the images but did notice

privacy leaks on their news feeds. The words collected from this survey were used for the

data collection process in Section 3.2.

Next, I ask participants to rank dangers (e.g., burglary, kidnapping, stalking) in reference

to what seems to be most threatening (Table 3.1K). The dangers listed in the survey were

defined by the author. The top dangers are kidnapping, burglary, and stalking. Table 3.9

displays the percentage of votes for the threat in each position. Along with these dangers,

participants also mentioned cyberbullying, echo chambers, and social isolation (Table 3.1L).

For further investigation, I began to look at the statistical analysis to find the significance
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Table 3.9: Dangers are listed in their respective order based on survey results. The column
shows a rank between 1 – 5, and the rows indicate the dangers. The associated vote percent-
age for each threat is shown; the highest vote for each rank is highlighted. The underscored
values denote the highest vote value for each threat.

Threat Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

Kidnapping 52.38% 15.48% 10.71% 3.57% 9.52% 8.33%
Burglary 20.24% 35.71% 17.86% 10.71% 7.14% 8.33%
Stalking 5.95% 14.29% 25.00% 16.67% 23.81% 14.29%
Financial 4.76% 14.29% 23.81% 30.95% 17.86% 8.33%
Identity 14.29% 17.86% 14.29% 25.00% 23.81% 4.76%
Explicit Sites 2.38% 2.38% 8.33% 13.10% 17.86% 55.95%

of the dangers for each subgroup. In this process, I used the ANOVA to gain insight into

the perspective between the sex classification and dangers from the participants. Tables 3.10

and 3.11 explore the statistical values produced from this analysis.

To understand the significance of each category, I look at the null hypotheses and p-

values associated with the independent and dependent variables. For each category, my null

hypothesis states that there are no significant differences by sex in the respective category.

The p-value threshold is set at 0.05. In the categories of burglary, explicit websites, and

identity theft; I reject the null hypothesis because differences exist by sex. For the categories

of kidnapping, financial theft, and stalking; I retain the null hypothesis because no significant

differences exist for sex identities. Within the male and female clusters, the female group

displayed a higher concern for the threat of being posted on an explicit website unlike their

male counterparts.
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For each category, my null hypothesis states that there are no significant differences in

age for the respective category. In the categories of explicit websites, financial theft, identity

theft, and stalking; I reject the null hypothesis because differences exist in age. For the

categories of burglary and kidnapping; I retain the null hypothesis because no significant

differences exist for the age demographic. With this investigation, I found that the age

group 26 & over has a higher concern for identity theft. While their younger counterparts

tend to have a higher concern for financial theft, explicit websites, and stalking.

The participants allocated privacy leaks into three possible attack vectors (Table 3.1,

M). The location attack vector is used to find out where an individual lives and/or current

location. The participants classified keys, passports, driver’s licenses, social security cards,

and personal letters as an item in location threat. The identity attack vector is used to

exploit an individual’s identity, even to the intimate details. The participants classified

credit/debit cards, children’s images, driver’s licenses, social security cards, passwords, and

personal letters as an item in identity threat. The asset attack vector is used to gain access

to an individual’s possessions and valuables. The participants classified credit/debit cards,

keys, passports, driver’s licenses, social security cards, passwords, and personal letters as an

item in asset threat.

3.2 Data Collection via web Crawling

To understand the pervasiveness of privacy leaks on SMNs, I ingested tweets from the Twitter

API using the participants’ described keywords. Each key term was given by a survey

participant. In the initial survey, I asked users to define categories of privacy leaks based on

keywords. Next, I examined the keywords that are related to those categories. I collected

tweets and images from Twitter, resulting in approximately 1.4 million tweets collected and

18,751 images. I collected data using notable keywords derived from the survey participants’

responses. This data was collected over a two-month time period.
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3.2.1 Tweet Collection

The initial dataset was a collection of 1.4 million tweets that were analyzed by the associated

hashtags (Table 3.12). Twitter was searched with keywords derived from the privacy leak

categories and the words given by participants. From the survey, the participants gave

keywords, hashtags, or phrases that they have seen used on Twitter that were related to a

perceived visual privacy leakage (e.g., #stayoffthesidewalk includes images of license plates).

To find a correlation between related images and hashtags, I searched these phrases using

the Twitter API. The top hashtags from this search were #racisttwitter and #wikileaks. Of

the tweets collected (N = 1,465,091), n = 18,751 contained images.

From the tweets collected, the most relevant results are from the college search, which in-

cludes the keywords college acceptance, college bound, and college letter. In this search, I col-

lected trending hashtags in reference to college searches: #neumannscholarship, #nmsubound,

and #hu24. These hashtags are associated with college acceptances, scholarship acceptances,

and college letters.

3.2.2 Image Collection

Beyond collecting basic tweets, I searched for images associated with keywords and hashtags

in the collected tweets. With this search, I collected 18,751 images. The images collected

were classified into three categories based on risk: severe, moderate, and no risk. (1) Severe

risk content contains images that have more than one attack vector (Section 3.1.4). These

images include items that show government-issued identification (i.e., social security num-

bers, driver’s license, etc.), items that can be used to identify a person and/or used for facial

recognition (driver’s license, identification cards), or items that contain information aobut

a person’s location and/or place of residence. (2) Moderate risk content refers to images

from the asset or identity attack vectors. This content includes images that feature items

that can be used to identify a person and/or can be used for facial recognition. However,
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Table 3.12: Results of keyword crawling on Twitter. The keywords searched are under
Keywords/Phrases, and the total amount of collected images from all the searched keywords
is on the right side of the table.

Keywords/Phrases # of Tweets Collected

credit card 364,825
debit card

job offer
job acceptance 107,470
job letter

key
house key 174,348
car key

license
licensed to drive 109,520
driver’s licenses

passport 183,048

password 166,835
passwords

#racisttwitter 121,638

college acceptance
college bound 100,199
college letter

#wikileaks 137,208

Total 1,465,091
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this content will not provide the user’s location, or place of residence, nor feature any of

their government-issued identification. (3) No risk content encompasses images that do not

include any of the above items. The images were classified by three individuals and placed

into categories based on the average agreement. Table 3.13 shows the total number of images

in each category and its respective category after agreement and assignment.

Table 3.13: Risk Classification from keyword search with Twitter.

Category # of Images Collected

Severe 160
Moderate 327
No risk 18,264

In each category, I examine the privacy risk for each image by keyword. In Severe,

car keys, license plates, and job offers are the most prevalent images. In Moderate, the

most prevalent images are work identification, school information, and job promotion letter

images. In the No risk category, I observed that the search contained advertisements and

spam content. Table 3.14 shows the keyword distribution of privacy leakage among the

Severe and Moderate privacy risk categories.

The prevalence of images has a higher frequency for the terms baby, hospital, medication,

and medical records. Severe risk includes images containing finances and keys, unlike

Moderate risk, which contained more college and work-related images. When asking users

to define privacy and identify threats, the participants did not identify hospitals, medical

records, or medications as significant concerns. I find that these images trending on Twitter

about medical information and hospitals have a higher chance of occurring than the other

keywords.

3.3 Conclusion

This chapter addresses the first research question of this dissertation, “What are the privacy-

related experiences and concerns of Social Media users regarding visual content and threats
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Table 3.14: Distribution of content for privacy risk categories. This table includes the
keyword and the content frequency.

Category Keyword (Count)

Severe (160)

Baby 71
Driver’s License 12
Financial Document 2
Hospital 54
Job 4
Keys 1
License Plate 4
Medication 10
Medical Records 6

Moderate
(327)

Baby 45
College Letter 6
Driver’s License 24
Hospital 123
Job Promotion 7
Medical Information 52
Medication 43
Work Identification 12
Workplace 15
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on these platforms?” (Table 1.1). The analysis confirms that age groups have different

levels of concern regarding explicit websites, financial theft, identity theft, and stalking.

It also confirms that female and male participants have differences in the level of concern

regarding burglary, explicit websites, and identity theft. The threats on these platforms

are heightened because of the accessibility of social media. From this analysis, I find that

cyberbullying and explicit content can be seen as low threats to participants. The results

do not fit the hypothesis that visual privacy leaks are common on Twitter; however, rare

breaches in privacy may still be devastating. The reliability of the data from Twitter is

limited by the keyword search terms used.

As new trends arise and challenges appear, the keyword associations for the appropriate

images change. From the survey, 65% of participants stated that they had seen visual

privacy leaks on social media networks; however, I could not collect a corresponding amount

of visual privacy leaks. In this study, I collected words regarding trends and challenges

associated with visual content. From this data, I see that the most accurate keyword search

was regarding college bound and college acceptance. I also find that images trending

on Twitter about medical information and hospitals have a higher chance of occurring than

the other keywords.

These results build on existing evidence of previous work regarding the dangers of social

media (Rosenblum 2007; Gross and Acquisti 2005; Veiga and Eickhoff 2016) and the subjec-

tivity of privacy (Rosenblum 2007; Such et al. 2017b). In this chapter, I explored the user’s

thoughts on social media privacy, particularly visual privacy. As new technologies arise,

developers must implement mitigation techniques that allow users to explore the trade-offs

between privacy and freedom. This will be increasingly important for non-text and visual

sharing methods across SMNs.
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Chapter 4

Understanding Stakeholder

Perspectives of Smart City

Environments

Citizens hope that a smart city can improve their quality of life, provide transparency about

the city’s data, consider the cost to citizens, and implement strategies that protect their

privacy. The city governments emphasize concerns of the expenses to implement a smart

city, the engagement of citizens in the city, the amount of data collected in the city, and

the physical safety of citizens in a smart city. The term “smart city” is widely used, but no

comprehensive definition exists. This can leave citizens and stakeholders are unsure what a

smart city means for their community and how it affects cost and privacy.

In this chapter, I conduct a study to understand the stakeholder perspectives on privacy

and cost in deploying smart cities. Additionally, I investigate the finalists’ applications from

the 2015 Smart City Challenge (DOT 2015) to understand the similarity about the concepts

of a smart city, the common technologies that were requested, and the privacy considerations

of each of the finalists’ proposes. This analysis emphasizes understanding potential visual

privacy leakage and cost considerations that can arise in smart cities through their technology
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and infrastructure. I use text analysis techniques to investigate themes using document

similarity, and topic modeling. Furthermore, I discuss proposed solutions to cost and visual

privacy for smart city environments.

In Section 4.1, I conduct a survey to understand the perspectives of smart city stake-

holders in relation to privacy and cost. In Section 4.2, I perform a detailed textual analysis

of the finalists’ smart city applications. Proposed solutions to the cost and visual privacy

issues can be found in Section 4.3.1 and Section 4.3.2, respectively. Furthermore, I describe

a case study of a privacy-enabled low-cost smart city technology implemented in a U.S. city

in Section 4.3.3. Finally, this chapter is summarized in Section 4.4.

4.1 Surveying Stakeholder perspectives of Smart Cities

Smart city officials and stakeholders were surveyed through an online survey (IRB #13565) to

gain insights into their perceptions of smart city technologies and infrastructure. Respondent

recruitment and data collection were conducted in July 2021 and August 2021. Despite the

global development of smart cities, the technological advancements associated with them can

create difficulties for citizens, stakeholders, and governments. The stakeholders in this study

refer to individuals who are tangentially involved with smart city implementation or gov-

ernance in developing smart cities across the country. The survey focused on stakeholders’

knowledge of privacy, their respective government or company involvement with develop-

ing smart cities, and the current cost of data collection with pedestrian counting devices.

Participants were asked about projected costs spent on pedestrian counting technologies,

their knowledge of smart city efforts, and their understanding of privacy expectations (see

Table 4.1).

The survey was comprised of 26 questions and the average time to complete the survey

was 27 minutes. Stakeholders were recruited through email invites. An invitation email

with the survey link was sent to the stakeholders in local government, utility companies,
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and industry companies of developing smart cities requesting their voluntary participation

in the online survey. A total of N = 100 email invites were sent out via email and a total

of 9 responded. Of the N = 9 respondents, N = 5 completed the survey and were therefore

used for data analysis purposes.

4.1.1 Participants and procedure

Of the N = 5 completed surveys, n = 2 identified as female and n = 3 identified as male.

The average age range of 45–54. In terms of race, n = 5 where White and n =1 identify

Hispanic ethnicity. Of the respondents, n = 4 work for local government, n = 1 work for a

utility company, and n = 1 works for a non-profit. The positions of the respondents in their

organization were Transportation Engineers (n = 1), Information Technology staff (n = 3),

and Operations (n = 1). Looking at the geographic information provided by the respondents,

n = 2 work in Louisville, KY, n = 1 work in Greensboro, NC, n = 1 work in Aurora, IL,

and n = 1 work in Cornelius, NC. Of the N = 5 respondents, n = 3 participants work in a

city (Louisville, KY and Greensboro, NC) that applied to the Smart City Challenge (DOT

2015).

4.1.2 Analysis

Respondents had insightful answers when asked to define smart cities (Table 4.1, Q1). One

participant highlighted “pressing issues for its residents and businesses” in their response

and defined a smart city as:

“One that employs technologies to improve services to the community and/or

make government operations more efficient and effective. A truly smart city/community

should also be targeting the most important and pressing issues for its residents

and businesses not just applying technology for technology’s sake.” – Survey

Respondent A
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Another respondent stated that a smart city is:

“A city whose residents are connected by technology, high-speed broadband,

providing services online and interactively, telehealth services, using IoT and

AI in traffic management, air quality management, parking, waste management,

public safety, utilities, autonomous vehicles, etc.” – Survey Respondent B

Beyond understanding what people define as a smart city, I wanted to gain insight into

the privacy concerns in potential and deployed smart cities (Table 4.1, Q2). When asked to

define privacy, participants highlighted the need to be able to revoke access to their data.

“. . . I would include the ability to control or at least delete personal data

as well that has been collected especially if the data has become obsolete or

inaccurate.” — Survey Respondent C

When asked about what data privacy protection methods would help improve their will-

ingness to participate in city data sharing (Table 4.1, Q3), several participants stated they

would like the “ability to review” any data collected by the city concerning them. If data

is collected anonymously, there is an inherent difficulty when designing systems to review

personalized data requests. To solve this, respondents suggest using blockchain or smart

contract techniques to provide anonymous keys that support audit requests.

Analyzing the current results, I found common concerns around privacy. The words

personal, private, uninvited surveillance and protect are frequently used to describe and

articulate how privacy is visualized for pedestrians and companies in smart cities. The

survey further asks about data sharing (Table 4.1, Q4). Participants were asked if they

were comfortable sharing their data for developing and enhancing smart cities. However,

the results show participants are skeptical about sharing their data with smart cities. The

reasons provided by the participants included possible increased policing in under-served

communities, vulnerability to data leakage, and not being aware of the purpose of data

collection (Table 4.1, Q5).
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Table 4.1: The survey was compromised of multiple-choice questions and short answers. This
table shows selected questions from the survey related to defining a smart city, perspectives
of privacy, technology, and spending.

Number Question

1 How would you define a smart
city/community?

2 How would you define privacy?

3 What data privacy protection methods
would increase your willingness to share
data with the city?

4 Would you be comfortable sharing per-
sonal data within these smart commu-
nities?

5 What makes you feel uncomfortable
with sharing your personal data within
smart communities?

6 How do you use the pedestrian count-
ing data – for what purpose(s)?

7 How much do you spend annually on
pedestrian counting data?

8 Where are the locations you need to
have pedestrian counting data?

Although companies use pedestrian counting for marketing, economic development, safety,

and infrastructure development (Table 4.1, Q6), I also found that some of the challenges con-

cerning pedestrian counting are the cost and frequency of pedestrian counting. The most

common places for pedestrian counting include intersections, downtown, or shopping areas

(Table 4.1, Q8). Participants also believe that pedestrian counting devices will be useful at

streetlights. Within the scope of smart city infrastructure, the survey respondents stated

that privacy is the most valued feature, with simplicity as the second most valued. Pri-

vacy focuses on protecting data and individuals, while simplicity focuses on the technology’s

ease of use in the smart city. According to the survey responses, companies spend between

$11,000 - $20,000 annually on counting pedestrians (Table 4.1, Q7).
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4.2 Analyzing Smart City Finalist Applications

In 2015, the United States Department of Transportation announced the Smart City Chal-

lenge, which asked cities in the U.S. to create an integrated, smart, and efficient transporta-

tion system built on data, applications, and technology in an effort to improve the lives

of their citizens (DOT 2015). The Smart City Challenge received 78 applicants describing

what a smart city looked like for their community. From this challenge, the seven cities cho-

sen as finalists include Columbus (Ohio), Austin (Texas), Denver (Colorado), Kansas City

(Missouri), Pittsburgh (Pennsylvania), Portland (Oregon), and San Francisco (California).

Figure 4.1 displays U.S. cities that were applicants for the 2015 Smart City Challenge, of

these, the red circles denote the seven finalists (the circle area denotes the population size).

✦ Portland

✦ San Francisco

✦ Kansas City✦ Denver

✦ Austin

✦ PittsburghColumbus  ✦

Figure 4.1: Smart City Challenge Applicant locations in the United States; red circles de-
noted the seven finalists.

To understand the potential technology, infrastructure, and policy designs for rising smart

cities, I evaluate the proposals of the finalists from the Smart City Challenge. I perform text

analysis for each of the finalist applications. I first describe the document preprocessing
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methods used to transform the PDFs into a usable format (Section 4.2.1). I then perform

cluster analysis to group the finalist applications, and I analyze overlap in the application

requests (Section 4.2.2). Additionally, I performed topic modeling to derive the dominant

themes present across the documents and provide insights on what a “smart” city is com-

promised of (Section 4.2.3). Furthermore, I provide details on the requested technology

(Section 4.2.4) and a discussion of privacy mechanisms (Section 4.2.5) that the Smart City

Challenge finalists considered for implementation.

4.2.1 Preprocessing Smart City Finalist Applications

Each of the finalists’ applications was downloaded from the Smart City Challenge website,

where their vision statements were made publicly accessible as a PDF file (of Transporta-

tion 2016). The textual content was extracted from the files with Python code using the

PyPDF2 PDF manipulation library (Fenniak 2013). Figure 4.2 shows the distribution of

Figure 4.2: Token Frequency Distribution across the Smart City Finalist Corpus. The higher
frequency tokens are conjunctions and common words.
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word tokens across all documents with a truncated tail. The documents were cleaned by

removing stopwords, alphanumeric text, unstemmed words, and words with high TF-IDF

weights. Stopwords are removed using a list of typically infrequent words, misspellings (e.g.

“asd”, “buisness”), common words (e.g., “the”, “a”, “is”), and specific city names. The

process of removing alphanumeric terms can alleviate typos as well as unsupportive words.

Another pre-processing method I used was stemming. I used the Porter Stemmer to remove

the endings of words to set them to the root (Porter 1980). When using this Stemmer,

you will notice endings such as “ing”, “ed”, and “es” being removed. TF-IDF weights are

calculated (Jones 1972) using the equation in Appendix B.1. The methods mentioned in

this section are further described in Appendix B.1. With these preprocessing techniques, I

remove terms that add little to no meaning to the content of the topics and themes. The rep-

etition and frequency of irrelevant text can influence the text analysis results if not handled.

With this collection of cleaned documents, I created a corpus used in the analysis steps. In

this study, I will continually refer to a corpus as the collection of the preprocessed Smart

City finalists’ applications. Using text analysis, I can extract the text from the applications

to create machine-readable information to perform machine learning.

4.2.2 Analyzing the Clusters of the Smart City Finalists

Cluster analysis was performed to group similar documents together. The documents found

in the same cluster are more similar than those in other clusters. The cluster analysis was

completed using K-Means clustering (MacQueen 1967). K-Means is an iterative centroid-

based clustering method that creates groups based on closeness or similarity. It uses expec-

tation maximization to place the centroids at an optimal location in the data space such

that similar documents are in a cluster and dissimilar documents are not clustered. For the

K-Means algorithm, I must define a k value, which is the number of clusters the K-Means

model should produce. To obtain the k value, I evaluated the elbow of the corpus by fitting

the model to various values of k between two and six. This elbow analysis of a corpus helped
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to determine the optimal number of clusters for the respective corpus (Satopaa et al. 2011).

The optimal k value was found when the cluster size is set at 4. The documents were then

passed into the K-Means model to cluster the documents.

To visualize the clusters, I used Principal Component Analysis (PCA). PCA is tradition-

ally used as a dimension reductionality method. I employ PCA to create a visualization that

helps understand the clusters – I choose the first two principal components as the axes of

a two-dimensional plane. The axes show how far the intercluster and intracluster distances

for each cluster. This cluster visualization is shown in Figure 4.3.

Denver

Kansas City

Portland

Pittsburgh
San Francisco 
Columbus
Austin

Principal Component 1
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Figure 4.3: Two Component PCA for visualizing K-Means Clustering for Smart City Chal-
lenge Finalists.

The cities of Denver, Portland, and Kansas City are individual clusters which imply

that they differ significantly from one another as well as from the large cluster. The larger

cluster is comprised of the cities: Pittsburgh, San Francisco, Columbus, and Austin.

The content in these documents is closer in similarity to each other and further from the

other clusters. The centroid of this cluster is Columbus, with that applicant having the

average document similarity in the cluster. It is also noted that there is heavy overlap in
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San Francisco’s and Austin’s applications.

4.2.3 Deriving Common Themes with Topic Modeling

To start the topic modeling process, I define phrases and vocabulary from the corpus. When

building the word dictionary for this model, I choose the words that appear in more than

two documents but less than 90% of all documents. After this process is complete, I create

a Latent Dirichlet Allocation (LDA) Topic Model (Blei et al. 2003). LDA can produce

weighted topics based on the analysis of the corpus. The corpus consists of seven documents

and has a vocabulary size of 2,282 words. With this model, I can derive themes and topics

representative of the corpus. Topics are a list of weighted terms; I utilize the top-k. The

LDA model creates three topics that are used to discover themes for the corpus. When

the number of topics was larger than three, there were several duplicates which yielded less

unique or distinct themes and meanings. In Table 4.2, the three topics are displayed with

their respective words and themes.

Table 4.2: Topics and themes of the smart city finalist derived from the LDA model. The
groups are listed with associated cities, topics, and themes. The topics listed contain the
top ten words.

Group Cities Topics Theme
1 Columbus,

Kansas City,
San Fran-
cisco, Austin

grant, proposal, event, dig-
ital, automated, university,
demonstration, automated
vehicle, deploy, tool

Autonomous
Technology and
Tools

2 Denver,
Pittsburgh

component, grant, depart-
ment transportation, uni-
versity, benefit, consortium,
efficiency, foundation, per-
cent, avenue

Building Part-
nerships and
Infrastructure

3 Portland device, efficiency, equity,
percent, market place, uni-
versity, cloud, engineering,
payment, benefit

Connecting the
Collegiate Ex-
perience to the
City

The terms denoted in gray have little to no contribution to the theme of the cluster. These
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terms are used based on their assigned weight from the output values of the LDA model and

the assigned topics. From Table 4.2, Topic #1 includes four cities (Columbus, Kansas

City, San Francisco, Austin), Topic #2 includes two cities (Denver and Pittsburgh),

and Topic #3 includes one city (Portland). These applications focus on several topics, but

the overall similarity of the document content allowed the model to group the documents

in the corpus and create themes to represent the groups. The documents were assigned to

these groups by their dominant topic. The themes derived from these groups encompass

the goals that these smart cities have. From these themes, it is implied that cities can

become “smarter” with the use of autonomous technology (Topic 1), building partnerships

and infrastructure (Topic 2), and connecting to the local universities in the city (Topic 3).

4.2.4 Understanding a Smart City through Technology

To define the essence of a smart city, I investigate the universal technologies requested by

smart cities. I introduce definitions needed to build a basis for understanding the foundation

of the technologies requested by these Smart City finalists. These definitions provide a

foundation to understand the type of connectivity and technology smart cities require to be

operational. There are additional technologies, networks, and sensor infrastructures that are

not mentioned in these findings that cities can implement in their community.

Many cities are interested in Dedicated Short-Range Communications (DSRC), which

allows vehicles to communicate with each other and other road users directly (Wu et al.

2013; Tokuda 2004). It is a wireless communication technology that can function properly

without involving cellular or other infrastructures. It can save lives by cautioning drivers

of a looming, threatening situation or occurrence in time to take necessary actions to help

evade the situation.

Cities are also interested in technologies that improve efficiency for travelers. Traffic

Signal Priority (TSP) can be defined as a technological set of operational improvements

to shorten the wait time at traffic signals for vehicles and prolong the time for green light
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signals (Smith et al. 2005; Hounsell and Wu 1995; Garrow and Machemehl 1999). This

can be done by using the existence of vehicular locations and wireless communication to

extend the time of the green light at a traffic signal. TSP can be implemented at street

intersections. Additionally, pedestrian counters can be implemented in these intersections

as well. Pedestrian counters can be defined as an electronic device used to classify, count,

and measure pedestrian traffic along roads (Yuan et al. 1993; Alahi et al. 2022). These

counters can also be used to measure the direction of the traffic by time and location. With

this technology, corporations can find peak traffic times, identify entry and exit points of

travelers, and set travel management protocols. Smart kiosks can serve as a gateway for

pedestrian counting as well. A smart kiosk is an information kiosk that can detect and track

pedestrians; it can also send and store information about pedestrians and engagements as

data for usage (Sánchez-Corcuera et al. 2019). These kiosks can serve as a connectivity

vector between the citizens, the city, and surrounding technologies like looking for available

parking. Smart parking technologies can be defined as a strategy that infuses technology to

inform citizens about free and occupied parking spaces over the web or applications (Fahim

et al. 2021). These technologies can be a quick resource for travelers and reduce the time

and consumption of fuel.

Cities are also considering transportation methods to reduce vehicle emissions and air

pollution in the community. Electric transportation is any vehicle whose propulsion and

accessory systems are powered exclusively by a zero-emissions electricity source. Electric

transportation vehicles have rechargeable batteries. One electronic transportation method

is E-bikes, which use rechargeable batteries battery mounted on the bike frame for power.

and the Another transportation method is electric buses that have a battery located under

the hood or in a protective barrier. Cities are interested in planning personal and public

charging stations to support electric vehicles. Similarly, cities are interested in promoting

autonomous transportation, or vehicles that drive with minimal human intervention. Also

called driverless or self-driving vehicles, autonomous transportation requires detailed real-
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time environmental sensing to detect surrounding objects along navigation pathways. Cities

should also understand the evolving transportation regulations around the public deployment

of automated vehicles. These electric and autonomous vehicles can include cars, scooters,

bikes, and buses (Azad et al. 2019; Campbell et al. 2010).

Table 4.3: Requested Technologies from Smart City Challenge Finalist. The technologies
are listed in descending order. Technologies can be requested by all cities.

Technology request Number
of Cities

Smart Traffic Signals 7
Web Applications 7
Electric Vehicle Charging Station 7
Use of Sensors 7
Use of WiFi/Communications 7
Use of Cameras 7
Autonomous Vehicles 6
Connected Vehicles: DSRC technology 5
Smart grid 3
Use of GPS 3
Kiosks 3
Use of Cellphone signals 3
Autonomous home delivery 3
Smart Parking 3
Bike and/or pedestrian Counters 2
Electric Bus 2
Information screens for bus stops 2
Road condition monitors 2
SMART roadside lights 2
Traffic Management Centers 1
Universal smart access card 1
Bike sharing 1
Transportation Hubs 1
Interactive Voice Response 1
Smart Pedestrian Guides 1

In Table 4.3, I display the requested technology from the Smart City Challenge final-

ist applications. Among the seven finalists, 25 unique technologies were requested in their

proposals. The average city requested 12 technologies to be used in their smart city. The

amount of technology requested by a city could depend on the population, as seen in Fig-
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ure 4.4. The city requesting the least amount of technology is San Francisco, CA, with
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Figure 4.4: Comparing the city’s population size with the amount of technology requested.
A linear regression line shows the projected fit for the cities.

nine potential technology integrations into their smart city. Following close behind are the

cities of Portland, OR and Pittsburgh, PA with 11 technology requests. The remaining

cities had 12 technology requests (Kansas City, MO), 13 technology requests (Denver, CO),

15 technology requests (Austin, TX), and 16 technology requests (Columbus, OH). To in-

tegrate these technologies, the cities use sensors, video, Global Positioning Systems (GPS),

and radio signals from pedestrians, vehicles, and equipment. These cities also use these video

and GPS feeds for license plate recognition and to track crime-related incidents. The tech-

nology requested by the cities supports the goal of becoming a smarter city revolves around

connecting communities to opportunities, decreasing health disparities, reducing air pollu-

tion, and increasing the mobility of citizens by relieving congestion of roadways. Assisting
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low socioeconomic and disabled citizens have risen to the forefront of smart city develop-

ment strategies, as mentioned in the finalists’ applications To make these advancements

more inclusive of those communities, the finalists have proposed the use of the following

technology:

• Smart kiosks enable advanced payment options by incorporating additional features,

such as braille and voice feedback

• Electronic signs can provide visual and audio cues to pedestrians crossing intersections

• Autonomous car sharing allows commuters first and last-mile transportation with a

reduction in costs

• Information screens provide real-time transportation updates through audio and video

With the incorporation of these additional technologies, these cities hope to become more

inclusive and smarter for all. On top of an already costly smart city, these specialized

technologies introduce additional expenses tied to continuous maintenance and privacy in-

tegrations for supporting the aforementioned technologies.

4.2.5 Privacy Considerations in Smart Cities

A major concern for citizens in literature is understanding how increased city technologies will

affect their privacy (Smith 2019; Harvey 2012; Doctorow 2020; Devlin 2020). Furthermore,

cities will become a 24-hour hub for collecting information about the mobility and efficiency of

transportation, but also personally identifying information of its’ travelers (Sánchez-Corcuera

et al. 2019). In the Smart City Challenge (DOT 2015), I examine how the finalists describe

privacy risk and mitigation strategies for deploying technologies to their cities. The main

privacy concerns listed by the cities include data sharing, individual privacy, system security,

data privacy, and data management.
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In Table 4.4, the Smart City Finalist proposals were reviewed and assessed a score based

on a Likert Scale (Excellent, Average, Poor) from the five central privacy concerns found in

the documents: Data Sharing, Individual Privacy, System Security, Data Privacy, & Data

Management. From the proposals, I rated each city’s proposal for the five privacy categories:

• Excellent: The proposal thoroughly discusses the privacy risks, mitigation strategies

related to the topic, and a thorough plan of action for incidents that can arise.

• Average: The proposal has moderate to little discussion about the privacy risks, mit-

igation strategies related to the topic, and a general plan of action for incidents that

can arise.

• Poor: The proposal has little to no discussion about the privacy risks, mitigation

strategies related to the topic, and no plan of action for incidents that can arise.

I provide a definition for each of the five categories to describe the clarity of the topic

in the documents. Data management outlines access control procedures, storage schema,

and storage policies for smart city data and databases. Data privacy entails the encryption

of items in the data and what information is stored from the citizens and anonymization

schemes. Data sharing includes the procedures and policies by which the smart city data

will be shared with organizations, entities, or the public. Individual privacy focuses on

protecting citizens in the city. This protection could include but is not limited to, encryption

schemes, consent documents, and privacy mitigation techniques. System security details

the overall protection mechanisms for the smart city infrastructure.

Data sharing and data privacy concerns are addressed by the majority (4 of 7) of the

cities. Strategies for addressing data sharing included access management, encryption, and

anonymization. Individual privacy, system security, and data management categories are

each addressed by three of the cities. The winning city, Columbus, is the only city with

no discussion about these privacy concerns in its proposal. Of the finalists, none of these

cities provide a detailed discussion of the privacy protection they will provide their citizens
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Table 4.4: Rating of Privacy discussion by City. Each city receives a rating (poor, average,
or excellent) based on five categories.

City Data Shar-
ing

Individual
Privacy

System Se-
curity

Data Pri-
vacy

Data Man-
agement

Columbus,
OH

Poor Poor Poor Poor Poor

Austin,
TX

Poor Poor Excellent Excellent Excellent

Denver,
CO

Poor Poor Poor Average Poor

Kansas
City, MO

Poor Average Excellent Poor Poor

Pittsburgh,
PA

Poor Poor Poor Average Poor

Portland,
OR

Average Poor Poor Average Average

San Fran-
cisco, CA

Poor Poor Poor Poor Poor

in their proposals. These proposals focused on infrastructure protection and security. The

discussion of citizens’ privacy protections focused on (1) implementing standards from the

government and industry, (2) anonymizing or masking sensitive textual personal data, and

(3) partnering with cyber-security experts and the government to support protection efforts.

4.3 Discussion: Proposed Solutions and Privacy-Enabled

Technology Case Study

In this section, I provide additional interpretations and considerations for smart city infras-

tructure. Based on the insights from the analysis in Sections 4.1 and 4.2, I propose methods

to create a low-cost and privacy-enabled smart city. Sections 4.3.1 and 4.3.2 describes po-

tential solutions to accomplish these features. Furthermore, in Section 4.3.3, I describe the

possibility of incorporating these features with an existing smart city technology and discuss

its’ privacy-enabled and low-cost features.

58



4.3.1 Proposed Solution: Low-Cost Smart Cities

The Smart City Challenge finalists’ provided no insight or discussion on the projected cost

of development or maintenance of the environments; however, smart city projects can be

expensive to deploy and manage. The technology in the survey (Section 4.1) focused on

the cost of pedestrian counting technology, but that is not the only technology that can be

implemented in a smart city. Cities around the world, such as San Diego, New Orleans,

London, and Songdo, have either proposed or invested in smart city projects that cost

between $30 Million and $40 Billion (DeHart et al. 2020a). With the smart city requesting,

on average, 12 technologies to be implemented, stakeholders and citizens could expect the

cost of smart city implementation and maintenance to soar. In addition to the cost of

deploying and maintaining the IoT devices, a significant portion of the expense is due to

providing Internet connectivity via 5G or WiFi to those devices. These costs are a major

barrier to the widespread deployment of smart city technology and the social benefits that

may ensue from that technology (Madamori et al. 2019).

To alleviate the costs, opportunistic communication, such as Delay Tolerant Networks

(DTNs), can be used as a backbone for smart city communication to facilitate data that does

not have real-time Quality of Service constraints. DTNs traditionally provide opportunistic

networking connections in areas with little to no infrastructure. Messages are delivered

with some delay directly correlated with the layout, density, and mobility of nodes in the

network (Keränen et al. 2009; Hui et al. 2011). Recognizing that some data are needed in

real-time, edge computing can be utilized as long as the placement of internet-connected

nodes is optimized in the network. For data that can tolerate delays, the natural movement

of people and vehicles through a city transfers data between nodes. In this way, the citizens

become an integral part of the smart city network itself.

For low-cost smart cities to flourish with the use of DTNs as the backbone to be practical,

the technical questions regarding the devices and network, as well as the social aspects of how
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people and vehicles move through a city must be addressed. For almost 20 years, there has

been a substantial amount of research in opportunistic communications and delay-tolerant

networks; unfortunately, real-world deployments traditionally fall short of their simulated

counterparts (Baker et al. 2017). Related efforts (Cabaniss et al. 2013; Costa et al. 2008;

Daly and Haahr 2009; Gang et al. 2012; Hsu et al. 2012; Hui et al. 2011; Lindgren et al. 2004;

Musolesi and Mascolo 2009; Gupta et al. 2019) have proven the ability to deliver messages

when connections are intermittent but generally are limited to performing within simulation

environments (Picu and Spyropoulos 2014).

4.3.2 Proposed Solution: Visual Privacy Enabled Smart Cities

From Section 4.1, survey respondents highlighted concerns for data privacy, data sharing,

and surveillance, emphasizing a need for visual privacy considerations. Privacy concerns

of stakeholders have been further explored by analyzing the finalist from the 2015 Smart

City Challenge. The results from Section 4.2.5 show that stakeholders are not carefully

considering privacy in their proposals and show no concern for visual privacy mitigation in

their infrastructure and their citizens. From this investigation, smart cities have requested

approximately 12 technologies and emphasized the integration of cameras throughout the

infrastructure (see table 4.3). Cameras can be integrated into several technologies throughout

a smart city, which can make them widely used in that environment. A city where facial

recognition systems are used can lead to visual privacy leaks due to consent and individual

privacy rights. While existing in a smart city environment, pedestrians carry identification,

purchase items with credit or debit cards, use physical keys to enter restricted areas, and

use virtual passcodes to access sensitive information. These types of private content will

be captured in videos and image feeds (Hoyle et al. 2015; Korayem et al. 2016) in the

environment. I have investigated the concerns of privacy leaks and the types of privacy leaks

on social media (DeHart et al. 2020c). These privacy leak concerns can be expected in a

smart city where citizens are continually being monitored. Previous works have provided a
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foundation for visual privacy mitigation techniques used for social media networks; however,

these same technologies can be implemented to protect citizens from surveillance concerns

and privacy issues in smart cities.

Beyond the citizen’s concern for anonymity or protection of minors, there is a concern for

the type of information that is revealed in a public setting. I propose using visual privacy

mitigation strategies for videos and images in smart cities based on existing literature (De-

Hart and Grant 2018). With the use of visual privacy mitigation techniques, there can be

additional measures to ensure privacy and security for data sharing, individual privacy, sys-

tem security, and data privacy. Studies have shown that obfuscation methods (Orekondy

et al. 2018; Li et al. 2017b; Boult 2005), such as blocking and blurring objects, can protect

individual privacy. These obfuscation methods can include blurring, blocking, adversarial

noise, or replacing items in visual content. Methods such as blurring and blocking alter

the pixelation of the visual content to provide distortion to the human eye. These methods

can be added to objects, faces, and text in visual content. The technique of adversarial

noise (Kurakin et al. 2016) adds a few pixels that can (1) impede a computer’s ability to

learn anything from the visual content even if it is in their possession, and (2) still allow the

images to be visible to humans. To protect individuals’ identities, studies have suggested

face swapping (Korshunova et al. 2017; Zhu et al. 2020; Mahajan et al. 2017), which can

switch detected faces of citizens with a collection of replacement faces.

To implement this solution, I suggest the deployment of visual privacy mitigation strate-

gies to allow smart cities to implement mitigation techniques that are integrated into their

technologies and systems. I propose mitigation techniques can be integrated into mobile

applications, servers, IOT devices, and comprehensive systems (DeHart and Grant 2018).

Visual privacy mitigation techniques can facilitate active privacy risk strategies for autho-

rized personnel for analyzing pertinent privacy occurrences. This can provide additional

security and privacy to the data and storage methods in smart city environments. Visual

privacy mitigation can provide safety, security, and peace of mind to the citizens that reside
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in those areas.

4.3.3 Case Study: Deployed Low-cost and Privacy-enabled Tech-

nology in a U.S. City

Smart city technology must be reliable, low-cost, and consider privacy to attract citizens to

engage with those platforms. The Smart City Applications Platform (SCAP) is an example

of a privacy-aware system coupled with reliable and effective management (DeHart et al.

2021a). It serves as a strong example for organizations to model pedestrian counting and

computer vision technologies in smart cities. In this case study, SCAP is deployed in city C.

SCAP was created by a major utility company. This platform consists of a complete hard-

ware and software solution that identifies various moving objects common to an outdoor

urban environment, such as bicycles, pedestrians, and scooters. At its core, SCAP is a Field

Node with computer vision software that analyzes data from a high-definition camera on an

edge compute device and transforms it into object count data (Figure 4.5A). The Field Node

is available in a stand-alone enclosure or as an integrated subsystem of a digital information

kiosk, as seen in Figure 4.6. The Field Node kiosk is integrated into city C ’s downtown in-

frastructure. This data can be uploaded to the Cloud (Figure 4.5B) as anonymized statistics

after data analysis is complete (Figure 4.5C). The data can then be viewed in a portal or

accessed via an Application Programming Interface (Figure 4.5D).

To provide real-time data, the video analytics data is sent from the local device to the

Cloud. Should the network connection be lost, data is queued in the Field Node compute

device and transmitted once the network returns. This connection uses Message Queuing

Telemetry Transport (MQTT) between the edge and cloud for communication. MQTT is

a standard publish and subscribe technology that uses machine-to-machine communication

with low bandwidth requirements. The cloud database is set up in a cluster for backup

and redundancy purposes. SCAP utilizes a cloud-based user management system to control

Portal and the Cloud API access. A username and password must be created to access
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Figure 4.5: High-level overview of the deployed Smart City Applications Platform (SCAP).

any system information or data. The Platform is designed for utility-grade cybersecurity

and network security standards. It is important to note that the SCAP software does not

collect or record personally identifiable information, such as facial images, phone numbers,

or mobile phone MAC addresses. Rather anonymized target object count data is collected

and provided to the user. Furthermore, all video is processed on a local computer, and no

images are recorded or stored, ensuring peace of mind for citizens and visitors.

Considering robust physical security, the SCAP Field Node or digital kiosk features an

enclosure with a specially keyed locking system. Both the incoming and outgoing data to

the Field Node are encrypted. Through the monitoring and control software, licenses for

the Field Nodes can be remotely enabled or disabled. Each Field Node utilizes a computing
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(a) Sidewalk view
(b) Opened view

= (c) Field Node

Figure 4.6: Field Node Designs provided by Smart City Applications Platform. (a) Field
Node Integrated in a Kiosk, (b) Opened Field Node Kiosk deployed in the city, (c) Render-
ing of Field Node Integrated with a Light Pole (refer to Pole-Mountable Camera Support
Structure, US Design Patent D902,985 S) (Cleveland et al. 2020)

device with storage capability. As a result, the larger system is unaffected if the Field Node

becomes compromised.

While the SCAP Field Nodes can work with a variety of wired and wireless data back-haul

networks, the most common type is anticipated to be cellular. One of the major advantages

of the SCAP is that it has low bandwidth requirements. This allows the use of the lower

bandwidth CAT-M1 network when cellular communications are required. As the Smart City

Applications Platform is still in its infancy and undergoing field trials, there will be ample

opportunity to reduce the cost of both system deployment and operations. For example,

the complexity of mounting the Field Node equipment to appropriate street furniture or

buildings will be simplified. As system requirements are better understood, optimization of

the Field Node components will allow for a reduction in the Bill of Material costs as well as

annual operating costs.
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4.4 Summary

This chapter addresses the second research question of this dissertation, “What considera-

tions do smart city stakeholders give for visual privacy protection and cost in technology and

infrastructure?”. The insights from this chapter were drawn from deploying surveys and an-

alyzing the Smart City Challenge applicants using text analysis methods. From the survey

and Smart City Challenge analysis, I find that privacy and cost can continue to concern

citizens and stakeholders in these environments. The Smart City Challenge analysis also

alluded that the typical smart city will require 12 new technologies on average to become

a smart city, which is more than a city with smart technology. With the creativity and

development of smart city infrastructure, it is increasingly important to consider cost and

privacy. In the Smart City Challenge finalist’s proposals analysis, I found that their discus-

sion of privacy and cost is not at the forefront of developer concerns; but rather technological

innovation. The analysis and evaluation of smart cities using the 2015 Smart City Challenge

and surveys are important to understand smart cities’ infrastructure and the perspectives of

individuals and stakeholders in those cities. It further demonstrates the disconnect between

citizens and organizations who develop these smart cities in regard to privacy and cost. With

citizens’ input for smart cities, the organizations will be able to create inclusive, adaptable,

and trusted relationships to aid in the acceptance and assimilation of the futuristic growth

of the city.

In summary, this chapter argued that smart cities could be private and inexpensive in

deployment and long-term sustainability. During the planning and implementation of these

cities, officials and citizens should further consider the cost and privacy concerns associated

with their development choices. The need for visual privacy mitigation in smart cities extends

from the protection of personally identifying information to the choice of anonymity and

protection of minors. Beyond the integration of visual privacy mitigation into infrastructure,

I propose using DTNs to lower the cost of smart cities and allow citizens to assist in the
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transmission of data across the city. Deploying traditional IOT infrastructure is prohibitively

expensive for most cities, and expanded development introduces more privacy risks. However,

low-cost smart cities and privacy-enabled technologies can achieve the goals of smart cities

while allowing citizens to feel secure and protected.
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Chapter 5

Proposing a Visual Privacy Risk

Scoring Framework with Visual

Feature Measurements

The growth and development of mobile devices, networks, and connected environments, ex-

ponentially increase the ease of capturing and sharing private visual content. Understanding

privacy risk in visual content can be difficult and requires methods to describe and evaluate

domain-specific intricacies. The definition of privacy risk can apply differently to people,

to stakeholders, and within environments. The reduction of privacy risks calls for a need

for mitigation strategies to support leakage across several domains. Researchers have begun

quantifying individual, content, and network privacy risk scores using models and measure-

ments. A privacy risk score is a common measurement used by researchers (Section 2.3).

This score is a quantitative estimate of the privacy risk associated with the given information

for content, a user, or a network. By evaluating the visual privacy risk, quantitative and

qualitative techniques can derive meanings and show trends about content, individuals, and

the network.

There have been efforts to gauge privacy risk in unstructured data, such as textual posts in
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social media networks, user profiles, and networks (reviewed in Section 2.3). However, there

exists a gap in quantifying the privacy risks of visual content. I explore three features of visual

content in an effort to understand the correlation between visibility, appeal, and sensitivity

in privacy risk scoring for images. These features were explored across various datasets to

understand how the combination of these features can be applied to the quantification of

visual privacy risk scoring methodologies.

This chapter seeks to improve the understanding of privacy risk in visual content, and

explore the impact of quantifying visual features in privacy risk scoring. For the scope of this

chapter, I narrow the discussion of privacy to existing dataset labels. The proposed concepts

and algorithms in this chapter have the potential to benefit individuals by providing an idea

of their current visual privacy risk score and what features contribute to the impact of their

visual privacy risk score. It can also benefit stakeholders by providing privacy risk scores

of visual content allowing time for adaptation and network management consolidation of

privacy risk scores across the visual content. The visual privacy risk score proposed may be

incorporated by social media networks and smart city environments infrastructure and can

also be manually calculated by stakeholders engaging in these environments. Visual privacy

risk scores with explainable feature components will enable individuals and stakeholders to

regain control of their privacy leakage quicker and to mitigate risks sooner.

First, this chapter adapts an existing privacy risk scoring methodology to score visual

content and incorporates object detection techniques to create a dichotomous application for

scoring, VPScorer. This chapter considers visual content features as an important component

of individual and stakeholder visual privacy risk. Second, I propose a visual privacy risk

scoring framework, Visual Area, eNcoding, and Golden spiral Object distance (Vango),

that focuses on the privacy risk scoring of visual content using its features. Thus, providing

a privacy risk scoring algorithm that uses a pre-trained object detection model and potential

mitigation strategies. The chapter is organized as follows: Section 5.1 describes the visual

content datasets, object detection model, and object labels. The privacy scoring algorithms
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and visual feature metrics are discussed in Sections 5.2 and 5.3. Figure 5.1 depicts how

each of the components interacts. Experiments and results are described and presented

in Section 5.4. Furthermore, I discuss the main takeaways in Section 5.5. Throughout this

chapter, I use the words privacy risk score and privacy score interchangeably.

Visual
Dataset

Object
Detection

Object
Labels

TF-IDF

OAR

GSD

Vango
VPScorer

Figure 5.1: High-level overview of the Privacy Risk Scoring Pipeline.

5.1 Methodology

In this section, I describe the visual datasets used for the experiments, define private object

labels using pre-existing datasets, outline the background and use of the object detection

model, and expound on the types and applications of visual features for visual privacy.

5.1.1 Visual Content Datasets

I define a visual content dataset as a dataset that contains images and/or videos. For the

scope of this chapter, I will focus on visual datasets that only contain images. The selected

visual datasets are shown in Table 5.1. These datasets are used later to extract visual

features and used in experiments for the visual privacy risk scoring algorithms. The datasets

can be divided into two types: private image datasets and common image datasets. Private
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Dayquan is a frequent user of a social media network called Snapcat. Dayquan has been
on the social media site for years and has many family and friends on the site. Due to the
economy, Dayquan lost his job and has been hunting for another gig. On Snapcat, Dayquan
shares his daily job search attempts and outcomes to garner support and encouragement
from his closest connections. One bright sunny day, Dayquan goes out to his mailbox to
check the mail. To his surprise, he had received a job acceptance letter! With eagerness and
pride, Dayquan quickly takes a picture of this letter and posts it to his social media. The
caption reads, “Never Quit! All praises be to God. #workingman #manofprayer #newmoney
#igotajob”. Inadvertently, Dayquan has leaked his privacy. This job acceptance letter
included his full name, home address, work address, start date, and employer. Once this
letter was shared on Snapcat, his connections began to show their support for Dayquan
by liking, commenting, and reposting. From these interactions, a friend of a friend sees
Dayquan’s post and decides to collect Dayquan’s personal information. In this scenario, I
shall call this friend of a friend, OPP. The privacy leak in the image allows OPP to choose a
location-based attack vector, posing a threat to Dayquan’s physical safety (burglary, kidnap,
and stalking, among others). In retrospect, Dayquan did not recall posting an image with a
privacy leak, so he was unaware of the risk and dangers that could potentially arise. Using
visual privacy risk scoring methods can allow for quantifying privacy risk in images for a
user and allow for more extensive privacy protection methods using visual privacy mitigation
such as blurring, blocking, and censoring.

Figure 5.2: Scenario 1 – Social Media Privacy Risk Scoring

image datasets are collected focusing on images containing privacy leakage intended for visual

privacy research. Computer vision image datasets are collected to be practical and contain

common images with labels that focus on real-life entities intended for the machine learning

community. The selected image datasets are used for object detection tasks to extract visual

features from each object in the image. Across these datasets, the exploration of visual

features can quantify potential privacy risks and leakage that exist within them.
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A lawsuit is filed in a city, C. This city recently transitioned into a smart city and uses
technology as a part of its community improvement initiatives. This year, a citizen was
misidentified and wrongfully imprisoned as a criminal due to the video footage from the com-
munity improvement initiative, Crime Stopper. The lawsuit litigation process was started
by filing a complaint about using smart city technology and data to accuse citizens of crimes
in city C. The plaintiff believed that visual data about them was private information and
had not agreed to disseminate the data. The settlement required city C to hire a Chief
Privacy Investigator, create a system that included considerations of citizens’ privacy, and
make settlement payments to the plaintiff. City C brings in Dayquan as the Chief Pri-
vacy Investigator to create a privacy-centric system that can be integrated into the current
smart city infrastructure. Dayquan implements a visual privacy risk scoring methodology
that helped analyze the visual feeds from all over the city. By understanding the intensity
and prevalence of leaked private content across the city, Dayquan implemented secure data
management and storage mechanisms to keep the citizens’ data safe.

Figure 5.3: Scenario 2 – Smart City Privacy Risk Scoring

Table 5.1: This table provides an overview of the visual content datasets and contains the
year, number of images used from the dataset, the initial research domain of the dataset,
and the machine learning task designed for the dataset.

Dataset Year Used Images Domain Tasks

Open Images v7 (Ferrari et al. 2022) 2022 77,891 Vision Object detection

PrivacyAlert (Zhao et al. 2022) 2022 5,017 Privacy Prediction

VISPR (Orekondy et al. 2017) 2017 10,221 Privacy Prediction

Open Images v7 Dataset

The Open Images v7 dataset is the most recent update to the Open Images datasets (Kuznetsova

et al. 2020; Ferrari et al. 2022). The Open Images datasets are used for computer vision

tasks and contain over 9 million images. Open Images v7 dataset contains bounding box

annotations for all images. The images were labeled and annotated using crowdsourcing.

The images in this dataset contain (on average) 8.3 objects in each image and have diverse

image scenes across the dataset. Some of the images include class labels like footwear, per-

son, clothing, hair, and flower. The images contained in Open Images are collected from
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Flickr and also overlap with other existing image datasets such as Flickr30k (Young et al.

2014) and Microsoft Common Objects in Context (MS COCO) (Lin et al. 2014).

PrivacyAlert Image Dataset

PrivacyAlert is one of the most recent image datasets for visual privacy research (Zhao et al.

2022). This dataset contains 6,400 images. The data is annotated into four categories:

clearly public, public, private, and clearly private. In this study, private images should be

kept confidential to the owner only and/or for selected people (e.g., nudity/sexual, other

people, medical, drinking/partying). Public images were defined as any image that their

entire social network could see (e.g., food, kitchen table, eat, dishes). Each image’s privacy

category was annotated using crowd-sourcing and inter-annotator agreement to select the

final category. This dataset was originally collected from Flickr and used for image privacy

prediction tasks.

Visual Privacy (VISPR) Image Dataset

The VISPR Image Dataset was created in 2017 (Orekondy et al. 2017). The dataset has 22k

images with annotations. In this study, the researchers gathered a sample of images from

Open Images v4 (Young et al. 2014) and manually gathered images from Flickr and Twitter.

Privacy prediction is based on the list of privacy attributes that an image can disclose.

The private attributes were identified into 68 categories which include physical disability,

receipts, sports, date of birth, license plate, occupation, and religion. The multi-label task

used crowd-sourcing with a small group of annotators that each annotated unique sets of

images.

5.1.2 Defining and Identifying Private Objects in Visual Content

In this section, I discuss the YOLOv5 object detection model used to identify potential

private objects in visual content. This object detection model has been pre-trained with
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the MS COCO dataset (Lin et al. 2014). Since the model has been pre-trained with the

MS COCO dataset, I define and discuss private labels of objects in visual content using

labels from the MS COCO classes. The private class labels are chosen from MS COCO since

currently there is no privacy or social media dataset that includes known private images

and classes with bounding box annotations for training. Some objects in the images might

not have a label detected since YOLOv5 was trained on 80 of the MS COCO labels. This

framework is used to show the application and scope of using object detection models and

bounding box annotation for creating visual features and incorporation into visual privacy

risk scoring algorithms.

Identifying Objects in Visual Content

Each object in an image can influence the overall visual privacy risk score. The privacy

image datasets above focus on a single classification for an image and do not include ob-

ject detection models. This approach has drawbacks when trying to create an explainable

and intuitive visual privacy risk scoring metric since quantitative visual features from the

images may be ignored. To achieve this, I propose the use of the YOLOv5 object detec-

tion model (Redmon et al. 2016; Jocher et al. 2022) to identify privacy risks and enable the

discovery of quantitative visual feature measures in images.

YOLO is a state-of-the-art object detection algorithm developed in 2015. The YOLO al-

gorithm makes one pass across an image to predict object labels and to bound the objects in

an image. With this process, objects in an image are separated into bounding boxes; each ob-

ject that is bounded is associated with probabilities of its respective classifications. Since the

initial release of YOLO, there have been several updates and improvements such as YOLOv5.

The YOLOv5 model was evaluated and trained with the MS COCO dataset (Jocher et al.

2022). With the YOLOv5 model, I can detect objects in images across a wide range of

objects, including labels such as people, traffic signs, and cars. In the experiments, I use the

YOLOv5s pre-trained model (Jocher et al. 2022).
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Labeling Private Object in Visual Datasets

The labeling of private classes in images can be difficult to do based on user subjectivity

and relevance to the data collected. Due to limited visual datasets with private labels and

bounding boxes, I generalize private content from the MS COCO labels. Since the YOLOv5

object detection algorithm is trained with MS COCO, I can directly apply the conceptual

framework of extracting visual features and calculating visual privacy risk scoring across

several datasets.

MS COCO focuses on object recognition tasks based on the context of an image’s scene.

These object recognition tasks can include object detection, segmentation, and captioning.

For the scope of the chapter, I focus on bounding box applications to show the application

of visual features. The YOLOv5 algorithm is pre-trained with photos of 80 class types from

MS COCO. The MS COCO data contains a considerable amount of object instances per

image, approximately 7.7 objects per image. From the object labels used to train YOLOv5,

I create a simple hierarchy of privacy risk labels. For the scope of this chapter, the privacy

risk classification can be sectioned into three levels: No risk (public), moderate privacy

risk, and severe privacy risk. The schema of this hierarchy is influenced by the taxonomy

in Section 3.2.2. The private label hierarchy created from the MS COCO dataset is outlined

in Table 5.2.

The privacy risk classification scope is re-defined in this chapter as: (1) Severe privacy

risk contains items that can contain or carry personally identifying information (backpack,

handbag), personal devices or vehicles, or items that contain insight into a person’s location

and place of residence. (2) Moderate risk objects include public transportation, household

items, or item. This content might not provide an individual’s exact location, or place

of residence, or contain any of their government-issued identification. (3) No risk content

encompasses objects that do not include any of the above items. The labels were classified

and placed into categories based on these definitions. Appendix B contains the list of private

classes and a short description of privacy risks.
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Table 5.2: Outline of private object class labels used for the visual features and visual
privacy risk scoring methods. In this table, the object labels are separated based on severity
categories. Only the moderate and severe privacy risk labels are shown.

Severe Privacy Risk Label Moderate Privacy Risk Label

car airplane
motorcycle bus
traffic light train
stop sign truck

parking meter boat
handbag backpack
suitcase wine glass
laptop toilet

cell phone tv
mouse
remote

keyboard
clock

The MS COCO labels are used to create a privacy classification to categorize objects in

visual content. The object detection model is used to identify objects in the images and the

output creates a one-hot encoding or data feature file. The object detection results for each

visual content dataset and the defined privacy risk classification and labels are used in both

of the privacy risk scoring methodologies.

5.2 Dichotomous Privacy Risk Score

The Dichotomous Privacy Risk Score (DPScorer) algorithm is a fundamental algorithm in

the field of privacy scoring methodologies (Liu and Terzi 2010). The algorithm is used

to compute the privacy score of a user, which indicates the potential risk caused by their

shared information in the network. The algorithm focuses on the sensitivity and visibility

of the information shared by a user, where sensitivity refers to the degree of sensitivity of

the information and visibility refers to the extent to which the information spreads. This

privacy risk scoring methodology converts unstructured data (textual information) in social
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media profiles to binary values (shared, not shared).

In the context of online social networks, each user is associated with a profile consisting

of n profile items. For each item, the user sets a privacy level that reflects their willingness

to disclose the associated information. The privacy levels of all N users for all n profile items

are stored in a response matrix R, which has dimensions n × N . Specifically, the element

R(i, j) represents the privacy setting of user j for profile item i. If the entries in R take

values in the set 0, 1, then R is said to be dichotomous. In such a matrix, a value of 0 in

R(i, j) indicates that the user has chosen to keep the information associated with profile item

i private, while a value of 1 indicates that the user has made the item publicly available.

The calculation for the privacy score of User j due to Profile Item i is as follows:

PR(i, j) = βi · V (i, j) (5.1)

In equation 5.1, PR(i, j) represents the privacy score of a user j due to profile item i, while

βi represents the sensitivity of profile item i and V (i, j) represents the visibility of profile

item i. The dot symbol (·) denotes multiplication. The overall privacy score of User j can

be calculated with a summation:

PR(j) =
n∑

i=1

PR(i, j) =
n∑

i=1

βi · V (i, j) (5.2)

In equation 5.2,
∑

represents the summation symbol, n is the total number of items being

considered, PR(i, j) represents the predicted privacy score of an item i for a user j, while

βi and V (i, j) denote the sensitivity of item i and the visibility of item i that belongs to a

user j respectively. The dot symbol (·) denotes multiplication. The equation computes the

sum of privacy scores for all items i to User j. A disadvantage of this approach is that the

sensitivity values obtained are significantly biased by the user population contained in the

response matrix, R.
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5.2.1 Adaptation of Dichotomous Privacy Scoring for Visual Pri-

vacy Risk Scoring

The DPScore algorithm has been modified to calculate the privacy score for Image I based

on Object O. This adaptation utilizes the YOLOv5 object detection algorithm to identify

object o in an image i. The privacy hierarchy is used to define public and private objects in

images across the datasets and set the sensitivity values for each object independently. By

defining the sensitivity based on privacy hierarchy, the values will not have a bias based on

the response matrix, R.

In the context of the visual content datasets, each image is associated with objects con-

sisting of n object labels. For each object label, an image sets a binary object feature flag

that reflects if that object exists within the image. The object feature flag of all N images

for all n object labels are stored in a response matrix R, which has dimensions n×N Specif-

ically, the element R(o, i) represents the feature flag of image i for object label o. In such

a matrix, a value of 0 in R(o, i) indicates that the image does not contain object o, while a

value of 1 indicates that the image i does contains object o. Similar to the Equation (5.1),

the calculation for the privacy score of image i due to object label o is as follows:

PR(o, i) = βo · V (o, i) (5.3)

In equation 5.3, PR(o, i) represents the privacy score of an image i due to an object label o,

while βo represents the sensitivity of object label o from the privacy hierarchy and V (o, i)

represents the visibility of object label o. The dot symbol (·) denotes multiplication. Fol-

lowing a similar framework as Equation (5.4), the privacy score of Image i can be calculated

with this summation:

PR(i) =
n∑

i=1

PR(o, i) =
n∑

i=1

βo · V (o, i) (5.4)
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In equation 5.4,
∑

represents the summation symbol, n is the total number of object labels

being considered, PR(o, i) represents the predicted privacy score of an object o for an image

i, while βo and V (o, i) denote the sensitivity of object label o and the visibility of a object

label o that belongs to image i respectively. The dot symbol (·) denotes multiplication. The

equation computes the sum of privacy scores for all Object O to Image I. For the remainder

of this chapter, I will refer to this scoring method as the VPScorer.

5.3 Visual Privacy Risk Scoring Methodology using

Visual Features

The analysis of visual data has become important due to its diverse range of applica-

tions (Prevedello et al. 2019; Taverner et al. 2020; Zatelli et al. 2019). Visual privacy can

be interpreted from visual data analysis focusing on quantifying visual feature attributes

that are present in an image. The proposed visual privacy risk scoring methodology in this

chapter focuses on the visual features using a combination of techniques, including Object

Importance Weight (OIW), Object Area Ratio (OAR), and Golden Spiral Distance (GSD).

These techniques are used to introduce the Vango framework, which calculates an image’s

visual privacy risk score based on three components. These visual feature attributes are

further described below.

5.3.1 Object Importance Weight

The ability to quantify the frequency of objects that occur in images from a dataset can

be an important visual feature to analyze. A method commonly used for unstructured

data (e.g., text) is feature vectorization, which involves the extraction of features from text

and representing them as a vector. However, a common issue with feature vectorization

is that frequently occurring objects tend to dominate these vectors, resulting in a biased

data representation. TF-IDF vectorization has been proposed to address this issue as a
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solution (Banweer et al. 2018; Pedregosa et al. 2011a).

The inverse document frequency (IDF) weighting reduces the weight of commonly occur-

ring objects by assigning a higher weight to rare terms. The TF-IDF methodology is further

described in Appendix B. The concept of OIW can be applied to weighting objects in images

across a dataset. I assume private objects are less common in images and the dataset in this

approach. Applying inverse document frequency will reduce the weight of public objects and

increase the weight of rare objects (i.e., private objects).

In order to process the objects obtained from images, I convert the objects from that

image into a sentence string. Once each image in the dataset has a sentence string, these

sentences are passed into a TF-IDF pipeline to calculate the OIW across the entire dataset.

In this algorithm, the object’s frequency (i.e., term frequency) is quantified by the sensitivity

of the object label from the privacy risk classification. Further, the objects are analyzed as

unique sets with an n-grams approach. An n-gram is a sequence of words that occur in a

given window. The n-gram object frequency is quantified by the sum of the sensitivity of

each object label from the privacy risk classification. It is assumed that n-grams can be

used to quantify the privacy risk of an image due to multiple private objects appearing. The

study of ngrams can show trends, frequency, and weighting across images and datasets.

The formula for calculating OIW is given by Equation 5.5, where each object o is extracted

from image i in a visual dataset I. Specifically, the element OIW(o, I) is the product of the

privacy risk of the object ρo, the frequency of the object appearing in the image tf(o, i), and

the inverse of the frequency that the object appears across the image dataset idf(o, I).

OIW(o, i) = ρo · tf(o, i) · idf(o, i). (5.5)

This approach can potentially improve the accuracy of object quantification in image

datasets. By finding the importance of the objects in visual data, this visual feature can

achieve an accurate and comprehensive weighing of objects to gauge privacy risk. I discuss

the results of OIW as a component of the Vango privacy risk score in Experiment 5.4.1.
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5.3.2 Object Area Ratio

Object Area Ratio (OAR) calculates the size of objects in relation to the entire image.

Calculating the size of objects can provide valuable information about the overall composition

of the image and help to identify key features and attributes that may be important for

visibility. Assuming that the size of private objects influences visibility, it is important to

consider the relative size of objects in the image when calculating visual privacy risk scores.

For example, smaller objects may be less visible and have a lower impact on the score than

larger objects due to their size relative to the overall image. Similarly, larger objects may

be more visible and have a high impact on the score due to their dominant size and visual

prominence.

To calculate the size of objects in relation to the entire image, various techniques can be

used, such as object recognition and segmentation. Once the objects have been identified,

their size can be calculated using an object’s area or perimeter. The formula for calculating

OAR is given by Equation 5.6, where each object o is extracted from an image i. Specifically,

the element OAR(o, i) represents the ratio between the computed area of an object, A(o),

and is divided by the total image size, Area(i).

OAR(o, i) =
Area(o)

Area(i)
(5.6)

This technique is particularly useful when dealing with images that contain complex

objects or scenes with multiple objects. By using techniques such as object recognition,

this method can calculate the size of objects and use this information to gain a deeper

understanding of object visibility in visual privacy scoring. I discuss the results of OAR as

a component of the Vango privacy risk score in Experiment 5.4.1.
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5.3.3 Golden Spiral Distance

The golden spiral, a logarithmic spiral derived from the Fibonacci sequence, is a visual feature

that can be applied to visual privacy risk. The golden spiral is commonly found in nature and

art, and it has been studied for its visual appeal and mathematical applications (Neperud

and Freedman 1988; Green 1995; Saraswathi 2007). During visual data analysis, the golden

spiral can be used to highlight important objects within an image (Katukuri 2019). Objects

towards the center of the spiral can be considered more visually appealing (Neperud and

Freedman 1988); in this work, I extend this notion to include all objects along the curve of

the golden spiral.

When analyzing images for potential privacy risks, the golden spiral can be a valuable

tool for identifying and mitigating private objects close to the spiral. Figure 5.4 shows a

photo of a lively and vibrant day in a town. In this example, the people and boats are

immediately visible due to their proximity to the curve. In Figure 5.4c, the clock is the

(a) Original Image (b) YOLOv5 Detection (c) GSD Annotation

Figure 5.4: This figure shows an image from the PrivacyAlert Dataset and how the im-
age’s visual features for GSD are transformed through the pipeline: (a) The original image
from the PrivacyAlert dataset, (b) The image is annotated with bounding boxes for the
objects detected by YOLOv5, (c) The image is annotated, showing the Golden Spiral and
the calculated distance (in pixels) for each object from the curve.

farthest distance away from the curve. Since the GSD of the clock is high, the object’s

impact on the Vango privacy score will be low. The algorithm for calculating the GSD is

shown in Listing 1. The function golden spiral takes an image dataset object. It iterates

over each image and computes the golden spiral using the function compute spiral. After
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each spiral is computed, the distance between each object in the image and the golden spiral

is calculated. This function returns the image, the closest coordinate pair in the golden

spiral, and the GSD from the object’s center to the closest coordinate.

The formula for calculating GSD is given by Equation 5.7, where each image i is associated

with an object o. Specifically, the element GSD(o, i) represents the distance between the

computed golden spiral of an image, G(i), to the center coordinate of an object, center(o).

GSD(o, i) = ||G(i)− center(o)|| (5.7)

The GSD could be an important visual feature when analyzing images for privacy risk.

By understanding and utilizing visual features such as the golden spiral, researchers can

better quantify privacy and understand the visual features of images. I discuss the results

of GSD as a component of the Vango privacy risk score in Experiment 5.4.1.

5.3.4 Combining Visual Features into the Vango privacy risk score

The visual privacy risk scoring framework does a weighted combination of the OIW (Equation

5.5), OAR (Equation 5.6), and GSD (Equation 5.7) visual feature measurements. The

formula for calculating the Vango privacy risk score is given by Equation 5.8, where each

object o is extracted from image i in a visual dataset I. Specifically, the element Vango(I) is

the weighted product of the object importance in the image dataset I, OIW(I), the average

visibility of the object i in an image i, GSD(o, i), and the average prominence an object i in

an image i, OAR(o, i). Inside of the weights (γ1−3), there is a term to average the component

across all the objects. Each score component is also normalized using max scaling to ensure

the range is between 0 and 1. The total Vango score of images i in a visual dataset I can

be calculated as:

Vango(I) = γ1 ·
∑

i∈I,o∈Yolo(i)

OIW(i)+γ2 ·
∑

i∈I,o∈Yolo(i)

OAR(o, i)+γ3 ·
∑

i∈I,o∈Yolo(i)

GSD(o, i). (5.8)

82



Listing 1 Calculating Golden Spiral distance for objects in an image
import numpy as np

def compute_spiral(topleft, topright, bottomright, pic, resolution=1000):

line1 = find_slope_intercept(topleft, bottomright)

line2 = find_slope_intercept((bottomright[0] / 1.6, bottomright[1]), topright)

x0, y0 = find_intersection(line1, line2)

phi = (1 + 5**0.5) / 2

theta0 = np.arctan2(-y0, -x0)

k = 2 * np.log(phi) / np.pi

a = -x0 / (np.exp(k * theta0) * np.cos(theta0))

t = np.linspace(-20, theta0, resolution)

def x(t):

return x0 + a * np.exp(k * t) * np.cos(t)

def y(t):

return y0 + a * np.exp(k * t) * np.sin(t)

return list(zip(x(t), y(t)))

def closest_point_and_distance(point_list, target_point, box_width, box_height):

center_x, center_y = box_width / 2, box_height / 2

box_center_x, box_center_y = target_point[0] + center_x, target_point[1] + center_y

min_distance = math.inf

closest_point, closestp = None, None

for p, point in enumerate(point_list):

distance = math.sqrt(

(point[0] - box_center_x) ** 2 + (point[1] - box_center_y) ** 2

)

if distance < min_distance:

min_distance = distance, closest_point = point, closestp = p

return closest_point, min_distance

def golden_spiral(imagedataset):

for m, img in imagedataset:

topleft = (0, img["width"])

topright = (img["height"], img["width"])

bottomright = (img["height"], 0)

point_list = compute_spiral(topleft, topright, bottomright)

for i, item in enumerate(img["object_data"]):

start_coordinates = (item["x"], item["y"])

closest, dist, point = closest_point_and_distance(

point_list, start_coordinates, item["width"], item["length"])

yield (img, closest, dist)
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5.4 Experiments and Results

This section explores the visual features, visual dataset features, and visual privacy risk

scoring algorithms. The experiments employ the object detection algorithm, YOLOv5, as

the backbone and are coupled with pre-trained MS COCO Labels and privacy risk labels

for objects to investigate the efficacy of OIW, GSD, and OAR calculations. The study

examines the object frequency and visual feature calculations of objects across the datasets.

Furthermore, the section compares two visual privacy risk scoring methods by running them

across three datasets. Experiment 2 offers insight into the effectiveness of visual privacy risk

methodologies for visual datasets.

5.4.1 Experiment 1: Exploring of the Efficacy of OIW, GSD, and

OAR as Visual Features for Visual Privacy Risk Scoring

This study investigates the effectiveness of the OIW, GSD, and OAR visual features for

analyzing objects within images at scale. To this end, the state-of-the-art object detection

algorithm, YOLOv5, is leveraged, along with a privacy risk classification for objects in MS

COCO. The evaluation of the proposed methods is conducted across three distinct visual

datasets: PrivacyAlert, VISPR, and Open Images v7.

The central task of this experiment is to identify trends in the frequency of objects and

trends regarding the visual features across the visual datasets. This task involves object

detection for visual data, as well as the calculation of an image’s visual features and their

respective measurements across the datasets. By systematically analyzing the performance

of these visual features across the datasets, this study aims to provide a comprehensive

understanding of their efficacy for visual privacy risk.
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Visual Feature: The efficacy of Object Importance Weights

With Object Importance Weight (OIW), I analyze visual data by quantifying the object’s

weight that occurs in an image for a given dataset. The results below show the frequency

occurrence of n-gram objects in the datasets and the object weights for each dataset using the

OIW methodology. In this experiment, I consider n-grams to understand how the occurrence

of objects in images correlates with trends, frequency, and object importance weighting. The

n-gram objects contain one public or one private; n-gram objects containing two objects can

contain public-private, private-public, or private-private bigram objects. The order of this

varies based on the sequence of detection. Instances of the person class have been excluded

due to the exponentially high frequency across the datasets.

Open Images v7 Dataset: Frequency occurrence of n-gram objects. This analy-

sis examines the Open Images v7 dataset and presents the results of the object frequency

distribution. The findings are presented in Figure 5.5, which reports the top 30 unigram

and bigram objects in the dataset, irrespective of their privacy risk level. The unigram

graph illustrates that the objects with the highest frequency counts are chair (34,210), car

(27,856), and tie (19,778), while backpack (3,349), traffic (2,904), light (2,904), and

motorcycle (2,748) are least frequent. Notably, the remaining unigram objects occur be-

tween 105 and 2,025 times across the dataset, with the snowboard object having the lowest

frequency count.

The bigram graph shows that the most frequently occurring bigram objects are chair

person (13,090), car car (12,734), and person chair (10.971), while umbrella person

(1,929), person laptop (1,889), and book book (1,731) have a lower frequency. The bigram

objects after these have between 1 to 1,722 occurrences across the dataset, with airplane

bird having the lowest frequency count. Based on the results in Figure 5.5, it is evident

that certain objects are more frequently depicted in images than others. The occurrence of

person, chair, and car are the highest among all of the objects in the dataset, including
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the unigram and bigram objects. However, it is important to note that this analysis only

considered object frequency and did not consider the privacy implications of these objects.
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Figure 5.5: This figure displays the frequency (y-axis) of n-gram objects (x-axis) across the
Open Images v7 dataset. The figure excludes the person label due to its extremely high
occurrence across the dataset.

Open Images v7 Dataset: Object importance weights for n-grams. This analysis

examines the Open Images v7 dataset and presents the results of the object weights. The

findings are presented in Figure 5.6, which reports the 27 unigram and the top 30 bigram

objects in the dataset. The unigram graph illustrates that the private objects with the

highest importance weights counts are train, airplane, and toilet, while traffic and

light, wine, and glass have a lower OIW. Notably, of the unigram private objects, the
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lowest weight is glass with a score of 0.234.

The bigram objects laptop truck, car oven, and oven car have the heaviest weights

for public-private and private-private bigram objects. Of the 30 private object bigrams, 6

of those contain two private object classes. Those bigrams are laptop truck, bus laptop,

truck toilet, suitcase remote, tv boat, and airplane toilet. These object bigrams

indicate that these objects are more important than others across the entire dataset. The

private object bigram objects show uniquely weighted occurrences compared to unigram

objects.
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Figure 5.6: This figure displays the average object importance weight (y-axis) of n-gram
object (x-axis) across the Open Images v7 dataset. The first graph displays all of the private
object unigrams and their OIW. The second graph displays the bigrams that contain at least
one private object label.
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PrivacyAlert Dataset: Frequency occurrence of n-gram objects. This analysis

examines the PrivacyAlert dataset and presents the results of the object frequency distribu-

tion. The findings are presented in Figure 5.7, which reports the top 30 unigram and bigram

objects in the dataset, irrespective of their privacy risk. The unigram graph illustrates that

the objects with the highest frequency counts are car (1389), chair (994), and bottle

(483), while bicycle (136), backpack (134), and tv (115) are the least frequent. Notably,

the remaining unigram objects occur between 5 and 114 times across the dataset, with the

snowboard object having the lowest frequency count.

The bigram graph shows that the most frequently occurring bigram objects are car car

(588), chair person (345), and car person (298), while backpack person (82), person

bottle (77), and bicycle person (75) are the least frequent. The bigram objects after

these have between 1 to 73 occurrences across the dataset, with airplane bird having the

lowest frequency count. Similar to Open Images v7 frequency distribution Figure 5.5, the

occurrence of person, chair, and car are the highest among all of the objects in the dataset,

including unigram and bigram objects.

PrivacyAlert Dataset: Object importance weights for n-grams. This analysis ex-

amines the PrivacyAlert dataset and presents the results of an analysis of its object weights.

The findings are presented in Figure 5.8, which reports the 27 unigram and the top 30 bi-

gram objects in the dataset. The unigram graph illustrates that the private objects with the

highest weights counts are train, airplane, and toilet, while traffic, light, and bus

have a lower OIW weight. Notably, the lowest weight of the unigram private objects is bus

with a score of 0.236.

The bigram objects car vase, truck airplane, and toilet toilet have the heaviest

weights for public-private and private-private bigrams. Of the 30 private object bigrams,

10 of those contain two private object classes. Those bigrams are truck airplane, toilet

toilet, airplane boat, airplane airplane, suitcase suitcase, suitcase keyboard,
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Figure 5.7: This figure displays the frequency (y-axis) of n-gram objects (x-axis) across
the PrivacyAlert dataset. The figure excludes the person label due to its extremely high
occurrence across the dataset.

toilet mouse, boat motorcycle, clock book, and train handbag. These bigram objects

indicate that these n-grams objects are more important than others across the entire dataset.

The bigrams show that the combination of private objects can lead to uniquely weighted

occurrences in comparison to their unigram counterparts.

VISPR Dataset: Frequency occurrence of n-gram objects. This analysis examines

the VISPR Dataset and presents the results of an analysis of its object frequency distribution.

The findings are presented in Figure 5.9, which reports the top 30 unigram and bigram object

possibilities in the dataset, irrespective of their privacy risk. The unigram graph illustrates
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Figure 5.8: This figure displays the object importance weights (y-axis) of n-gram objects (x-
axis) across the PrivacyAlert dataset. The first graph displays the private object unigrams
and their OIW weights. The second graph displays bigrams that contain at least one private
object label.

that the objects with the highest frequency counts are car (2,730), chair (2,471), and

handbag (1,116), while wine (302), glass (302), and sports (275) are the least frequent.

Notably, the remaining unigram objects occur between 1 and 275 times across the dataset,

with toaster having the lowest frequency count.

The bigram graph shows that the most frequently occurring bigram objects are car car

(1,190), chair person (997), and person chair (816), while phone person (235), person

cup (231), and bottle bottle (227) are the least frequent. The bigram objects after these
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have between 1 to 201 occurrences across the dataset, with airplane dog having the lowest

frequency count. Similar to Open Images v7 (Figure 5.5) and PrivacyAlert (Figure 5.7)

frequency distributions, the occurrence of person, chair, and car are the highest among all

of the objects in the dataset including unigram and bigram objects.
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Figure 5.9: This figure displays the frequency (y-axis) of n-gram objects (x-axis) across the
VISPR Dataset. The figure excludes the person label due to its extremely high occurrence
across the dataset.

VISPR Dataset: Object importance weights for n-grams. This analysis examines

the VISPR Dataset and presents the results of an analysis of its object weights. The findings

are presented in Figure 5.10, which reports the 27 unigram and the top 30 bigram object

possibilities in the dataset. The unigram graph illustrates that the private objects with the
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highest weights counts are toilet, airplane, and train, while light, wine, and glass

have a lower OIW. Notably, of the unigram private objects, the lowest weight is glass with

a score of 0.231.

The bigram objects horse car, couch car, and cat car have the heaviest weights for

public-private and private-private bigram combinations. Of the 30 private object bigrams,

9 of those contain two private object classes. Those bigrams are clock boat, tv backpack,

clock motorcycle, clock handbag, suitcase tv, laptop remote, backpack tv, handbag

boat and toilet toilet. These object weights indicate that these bigrams are more im-

portant than others across the entire dataset. The bigrams show that private objects can

lead to uniquely weighted occurrences in comparison to unigrams.

Discussion. The analyses of the Open Images v7, PrivacyAlert, and VISPR datasets have

provided valuable insights into the frequency and weight distribution of n-gram objects in

these datasets. The results reveal that certain objects, such as chair, car, and person, are

more frequently depicted in images than others, while private objects such as traffic, light,

and wine occur less frequently in the datasets and do not have a significant weight. The

occurrence of these objects and their combinations have implications for privacy risk and

preservation. Moreover, the use of term frequency and inverse document frequency (OIW)

can help to identify the importance of objects in these datasets. In the context of image

analysis, OIW can be used to identify the most important objects and their combinations

based on their frequency and weight. By using OIW, it is possible to extract significant

information from visual content datasets and help identify and prioritize important objects

for various image-related tasks. The findings suggest that visual content datasets can use

OIW vectorization to understand object importance in images, while also highlighting the

importance of visual privacy when analyzing the frequency and unique objects among the

datasets.
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Figure 5.10: This figure displays the object importance weights (y-axis) of n-gram objects
(x-axis) across the VISPR Dataset. The first graph displays the private object unigrams
and their OIW. The second graph displays bigrams that contain at least one private object
label.

Visual Feature: Object Area Ratio

The Object Area Ratio (OAR) measurement is a valuable technique for analyzing images

that contain complex objects or scenes with multiple objects. It quantifies the visibility of

objects across the image by calculating the size of the objects detected, which can provide

crucial information about the image’s overall composition and identify key features and at-

tributes. When analyzing the visibility of objects, it is important to consider the relative

size of private objects, assuming that their size influences privacy risk. The results of the

OAR methodology show the object ratios for both public and private categories, providing
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Avg Object Area Ratio in VISPR Dataset

(c) VISPR

Figure 5.11: This figure displays the average OAR measurement of the top 10 and bottom 10
objects across the Open Images v7 Dataset. The average standard deviation of the object’s
ratio is shown in the error line. (a) Open Images v7, (b) PrivacyAlert, (c) VISPR

insights into the ratio of objects in the visual content datasets.

Open Images v7 Dataset: Object Area Ratio of objects. The analysis of the Open

Images v7 dataset yielded interesting findings regarding the relative size of objects in images.

As depicted in Figure 5.11a, certain objects tend to occupy a larger area in images compared

to others. For instance, the ratio of bed (0.73), dining table(0.68), and pizza (0.59)

objects take up a larger portion of the entire image among all of the objects in the dataset.

Interestingly, only one private object, train, appears in the top 10 OAR measurements.

Furthermore, the OAR analysis highlights that private objects such as stop sign(0.33), tv

(0.30), clock (0.29), and traffic light (0.23) have smaller average OARs compared to

other objects in the dataset.

Open Images v7 Dataset: Object Area Ratio of the Private Objects. Looking

at the OAR of the private object classes from the Open Images v7 dataset (shown in Fig-

ure 5.12), the results show that vehicle objects are frequently larger in images than others.

For instance, the occurrence of train (0.57), bus (0.50), airplane (0.49) and motorcycle

(0.49) are the highest among all of the objects in the dataset. All of the vehicle objects are

considered private for the scope of this chapter. The Moderate privacy risk graph further
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shows that images containing toilet are taken in close proximity to the object leading to

a larger OAR measurement of 0.52 on average. On the other hand, the Severe privacy risk

graph reveals that traffic signals such as stop sign (0.33) and traffic light (0.23) have

smaller OAR measurements.
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Figure 5.12: This figure displays the average OAR measurement of the moderate and severe
privacy risk object labels across the Open Images v7 Dataset. The standard deviation of the
object’s measurement is shown in the error line.

PrivacyAlert Dataset: Object Area Ratio of objects. The results of the PrivacyAlert

dataset analysis show that animals, on average, are larger than other objects, shown in

Figure 5.11b. For instance, the average ratio of zebra (0.83), cat(0.69), bear (0.59), and

elephant (0.58) cover more than 50% of the image. Of the top 10 OAR measurements,

two private objects, train and motorcycle, appears to have a large OAR on average. This

object has a consistently larger OAR measurement as seen in the Open Images v7 analysis.

Moreover, the OAR analysis of the PrivacyAlert dataset highlights that private objects, such

as tv (0.32), clock (0.29), and traffic light (0.24) have small averages across the objects,

95



which is consistent with the Open Images v7 OAR scores.

PrivacyAlert Dataset: Object Area Ratio of the Private Objects. Through an

analysis of the PrivacyAlert dataset, the private object classes were examined for their Object

Area Ratio (OAR) in Figure 5.13. The results indicate that vehicle objects, such as train

(0.65), motorcycle (0.57), airplane (0.50), and truck (0.50) are often larger in images

than other objects in the dataset. Additionally, the study observed that images containing

computer accessories (mouse, laptop, keyboard) are photographed in closer proximity to

the object, leading to a higher OAR measurement of approximately 0.45 to 0.51 on average.

The Severe privacy risk graph reveals that objects, such as cellphones (0.33) and traffic

light (0.23), have smaller OAR measurements, indicating that they are less frequently

photographed in close proximity to the object.
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Figure 5.13: This figure displays the average OAR measurement of the moderate and severe
privacy risk object labels across the PrivacyAlert Dataset. The standard deviation of the
object’s measurement is shown in the error line.
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VISPR Dataset: Object Area Ratio of objects. The analysis of the Object Area

Ratio (OAR) of private object classes within the VISPR dataset is displayed in Figure 5.11c.

The results indicate that certain non-private objects, namely bed, dining table, cat, and

couch, occupy a larger portion of the image, with an average OAR greater than 0.59, ac-

counting for more than 55% of the images. Interestingly, only one private object, namely

train, displayed a large OAR measurement on average, consistent with previous analyses of

Open Images v7 and PrivacyAlert datasets. Furthermore, the OAR analysis of the VISPR

dataset revealed that private objects, such as clock, parking meter, and traffic light,

have small average OARs across the object classes, which is in line with previous findings

from Open Images v7 and PrivacyAlert OAR scores.

VISPR Dataset: Object Area Ratio of the Private Objects. From the analysis of

the VISPR dataset, the private object classes were examined for their Object Area Ratio

(OAR) in Figure 5.14. The results follow similar trends to Open Images and PrivacyAlert

dates. Vehicle objects are often larger in images than other objects in the dataset: train

(0.57), motorcycle (0.51), airplane (0.49), and truck (0.47). Private objects related to

computer accessories (mouse, laptop, keyboard) had a high average OAR measurement as

well. There is also a trend of the objects having lower OAR scores across the datasets which

includes such as tv, clock, cellphones, and traffic light (0.23).

Discussion. The Object Area Ratio (OAR) measurement is a technique used to analyze

images with complex objects or multiple scenes. It quantifies the visibility of objects by

calculating the size of objects detected, providing vital information about the overall com-

position of the image, and identifying key features and attributes for analysis. The OAR

methodology results show the ratio of objects in the visual content datasets, with the anal-

ysis revealing that private objects tend to occupy a larger area in images. These results

highlight the importance of considering the OAR of private object classes in image privacy

analyses and suggest that these objects may pose a higher privacy risk due to their larger
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Avg Object Area Ratio for Severe Privacy Risk Object Classes in VISPR Dataset

Figure 5.14: This figure displays the average OAR measurement of the moderate and severe
privacy risk object labels across the VISPR Dataset. The standard deviation of the object’s
measurement is shown in the error line.

spatial coverage in images. Automotive objects have large OAR measurements which could

make items like license plates more visible and even increase the privacy risk due to noticing

landmarks, signs, or objects to reveal their location.

Visual Feature: Golden Spiral Distance

The Golden Spiral Distance (GSD) measurement analyzes visual data by quantifying the

visibility of the object based on how close an object is to the most appealing portions of an

image. The distance is measured from the center of the objects’ bounding box to the closest

point on the golden spiral. For these experiments, the golden spiral has a fixed starting

location starting from the lower left corner of the image. The results below show the average

distances for the objects that are considered both public and private in the datasets using

the GSD methodology.
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(c) VISPR

Figure 5.15: This figure displays the average GSD measurement of the top 10 and bot-
tom 10 objects across the visual content datasets. The standard deviation of the object’s
measurement is shown in the error line. (a) Open Images v7, (b) PrivacyAlert, (c) VISPR

Open Images v7 Dataset: Golden Spiral Distance for Objects. The average dis-

tance of an object from the golden spiral for the Open Images v7 dataset is shown in Fig-

ure 5.15a. This figure shows the objects that are the farthest and closest to the golden spiral.

The objects that are farthest away are bench, sink, and toilet. When analyzing the OAR

measurements, the private object toilet had a larger GSD score; however, it can be noted

that the object on average, is farther away from the spiral. The objects that are the closest

to the spiral are refrigerator, tie, and toaster. Three of the private classes are typically

farther away from the golden spiral; there are also three private objects that are close to the

spiral.

Open Images v7 Dataset: Golden Spiral Distance of the Private Objects. Through

an analysis of the Open Images v7 dataset, the private object classes were examined with

respect to GSD in Figure 5.16. The results indicate that automotive objects, such as train,

airplane, and truck, are often closer to the golden spiral in images than most private

objects in the dataset. The Severe privacy risk graph reveals that objects, such as stop

sign, parking meter, and traffic light, have smaller distance from the golden spiral,

indicating that they are more likely to identified.
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Avg Distance from Golden Spiral for Severe Privacy Risk Object Classes in OpenImagesv7 Dataset

Figure 5.16: This figure displays the average GSD measurement of the moderate and severe
privacy risk object labels across the Open Images v7 Dataset. The standard deviation of the
object’s measurement is shown in the error line.

PrivacyAlert Dataset: Golden Spiral Distance for Objects. The analysis of the

PrivacyAlert dataset yielded interesting findings regarding the GSD of objects in images.

As depicted in Figure 5.15b, snowboard, skateboard, and bench objects tend to be farther

away from the golden spiral in images compared to objects. Similar to the Open Images v7

dataset, the mouse object also has a larger GSD. Interestingly, of the 10 closest objects only

one private object, bus, has closest the average GSD seen in Figure 5.15b.

PrivacyAlert Dataset: Golden Spiral Distance of the Private Objects. Through

an analysis of the PrivacyAlert dataset, the private object classes were examined with respect

to GSD in Figure 5.17. The results show a similar trend to Open Images v7 dataset where

the vehicle objects are closer to the golden spiral in images. The figure also shows toilet,

mouse, and wine glass as having the highest distance in the Moderate privacy risk classes.

100



suitcase, parking meter, and motorcycle objects were the furthest from the golden spiral

in the Severe privacy risk classes.
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Avg Distance from Golden Spiral for Severe Privacy Risk Object Classes in PrivacyAlert Dataset

Figure 5.17: This figure displays the average GSD measurement of the moderate and severe
privacy risk object labels across the PrivacyAlert Dataset. The standard deviation of the
object’s measurement is shown in the error line.

VISPR Dataset: Golden Spiral Distance for Objects. This analysis investigates the

distribution of objects in the VISPR dataset with respect to the golden spiral. The analysis

reveals the average distance of objects from the golden spiral, as depicted in Figure 5.15c,

and identifies the objects that are farthest and closest to it. In Figure 5.15c, skateboard,

suitcase, and bench objects tend to be farther away from the golden spiral in images com-

pared to objects. The graph follows similar trends to the Open Images v7 (Figure 5.16) and
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PrivacyAlert (Figure 5.17) graphs with these objects being in the top 10 distances that are

the farthest away.

VISPR Dataset: Golden Spiral Distance of the Private Objects. Through an

analysis of the VISPR dataset, the private object classes were examined with respect to

GSD in Figure 5.18. The results show a similar trend to Open Images v7 and PrivacyAlert

datasets where the vehicle objects are closer to the golden spiral in images. The figure also

shows toilet, mouse, and keyboard as having the highest distance in the Moderate privacy

risk classes. The Severe privacy risk graph further corroborates that objects dealing with

traffic are closer to the golden spiral.
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Avg Distance from Golden Spiral for Severe Privacy Risk Object Classes in OpenImagesv7 Dataset

Figure 5.18: This figure displays the average GSD measurement of the moderate and severe
privacy risk object labels across the VISPR Dataset. The standard deviation of the object’s
measurement is shown in the error line.
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Discussion. The analysis of the three datasets (Open Images v7, PrivacyAlert, VISPR)

yielded interesting findings regarding the distance of objects from the golden spiral in im-

ages. The Open Images v7 dataset showed that vehicle objects tended to be closer to the

golden spiral, while objects such as the toilet and sink were the farthest away. In the

PrivacyAlert dataset, snowboard, skateboard, and bench objects were farthest from the

golden spiral, while vehicle objects were again closer to it. The visual datasets showed that

the average distance of objects from the golden spiral varied significantly across the object

classes. Overall, these findings suggest that the location of an object in an image with re-

spect to the golden spiral could provide insights into the visual privacy risks in the image,

as well as the object’s identifiability.

5.4.2 Experiment 2: An Empirical Comparison of VPScore and

Vango Privacy Risk Scoring Algorithms for Visual Dataset

Analysis

This study aims to assess the efficacy of two privacy risk scoring algorithms, VPScore and

Vango, for analyzing images at scale. To obtain the Vango privacy risk score, I combine visual

feature attribute scores with weights. The evaluation of these methods is conducted across

three diverse datasets: PrivacyAlert, VISPR, and Open Images v7. The primary objective

of this research is to compare the VPScore and Vango privacy risk scoring algorithms in

identifying potentially sensitive content in the datasets.

Visual Privacy Risk Scores for Private Objects

In this study, I evaluate the visual privacy score for n private objects across the datasets.

The x-axis is the n amount of private objects in an image from the dataset. The range of n

is between 0 to 7 private objects. The y-axis shows the visual privacy risk score for images

in the dataset containing n private objects. The range of the visual privacy risk score is
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between 0 to 1. The lower the privacy score is the less privacy implications are; the higher

the privacy score the more risk an image is in the dataset. In Figures 5.19 and 5.20, we look

at the visual privacy risk scores for the VPScore and Vango algorithms.

The visual privacy risk scoring algorithm proposed in this chapter, Vango, has a similar

score range across the datasets with respect to the n private objects. As the number of

private objects increases, the visual privacy risk scores shown have a consistent score as it

approaches the largest n private objects in an image. The score range from Vango is between

0 to 0.9. The VPScore privacy risk scorer also shows consistent score ranges across all three

datasets. The high increase in privacy risk scores is in correlation to the number of objects

in the images across the dataset. From the three datasets, the score ranges between VPScore

is between 0 to 0.7. With both algorithms, it can be noted that the privacy scores increase

as more objects are present; however, in the VISPR dataset when the number of objects per

image is 7, both scores show a drop.

(a) Open Images v7 (b) PrivacyAlert (c) VISPR

Figure 5.19: This figure displays the Vango visual privacy score using objects across the
visual content datasets. The standard deviation of the object’s measurement is shown in the
error line. (a) Open Images v7, (b) PrivacyAlert, (c) VISPR

104



(a) Open Images v7 (b) PrivacyAlert (c) VISPR

Figure 5.20: This figure displays the VPScorer visual privacy score using objects across the
visual content datasets. The standard deviation of the object’s measurement is shown in the
error line. (a) Open Images v7, (b) PrivacyAlert, (c) VISPR

Understanding Visual Feature Influence in the Vango Algorithm

For this analysis, I look at the influence of visual features in the visual privacy score for the

Vango algorithm is shown across three datasets. In Figures 5.21 to 5.23, the x-axis ranges

are over the OIW weights, golden spiral distance, and object area ratios respectively. The

y-axis shows the typical visual privacy risk score for images in the dataset in a specific range

of the respective feature measurement. The range of the visual privacy risk score is between

0 to 1. Looking at the trends in Figure 5.21, it can be predicted that the lower the OIW

weight the larger the image privacy score is. This visual feature also correlates with the

assumption that the private objects across a dataset occur less, thus giving the object more

importance. The object area ratio measurements show a closer trend in the graph, indicating

that the OAR impact on the visual privacy score directly increases (shown in Figure 5.23).

The graphs in Figure 5.22 show a different correlation. The closer an object is to the golden

spiral will decrease the visual privacy score. This insight implies that private objects will

not be close to the spiral.
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(a) Open Images v7 (b) PrivacyAlert (c) VISPR

Figure 5.21: This figure displays the Vango visual privacy score in respect to the Object
Importance Weights across the images in the visual content datasets: (a) Open Images v7,
(b) PrivacyAlert, (c) VISPR

(a) Open Images v7 (b) PrivacyAlert (c) VISPR

Figure 5.22: This figure displays the Vango visual privacy score in respect to the Golden
Spiral Distance across the images in the visual content datasets: (a) Open Images v7, (b)
PrivacyAlert, (c) VISPR

(a) Open Images v7 (b) PrivacyAlert (c) VISPR

Figure 5.23: This figure displays the Vango visual privacy score in respect to the Object Area
Ratio across the images in the visual content datasets. (a) Open Images v7, (b) PrivacyAlert,
(c) VISPR
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5.5 Summary

This chapter addresses the third question of this dissertation, “How can importance, promi-

nence, and identifiability contribute to visual privacy risk scoring methodologies?”. The

insights from this chapter were drawn with the use of object detection using YOLOv5, by

designing a privacy hierarchy using MS COCO labels and adopting the privacy taxonomy

defined in Section 3.2.2, and by incorporating existing visual content datasets to investigate

the efficacy of visual features and applications two visual privacy risk scoring algorithms:

VPScorer and Vango. It further demonstrates the application of visual features (i.e., Object

Importance Weight, Golden Spiral Distance, Object Area Ratio) in visual privacy risk scor-

ing, showing a trend between the use of OIW and OAR visual features and Vango privacy

scoring methodology.

This analysis affirms that OIW identifies sensitive objects across a visual dataset by

increasing the weight of private objects due to them being less frequent. OIW uses labels

generated from the object detection algorithm to extract significant objects from within

the visual data set. The experiments show that using OIW Equation (5.5) contributes to

object importance and subsequently the sensitivity values of the privacy score. The OAR

measurement (Equation 5.6) computes the size of the bounding box of each object in each

image. The results show that automotive objects have large OAR measurements which

makes license plates, landmarks, and signs increased privacy risks. With further exploration,

the OAR measurement could show promise to enhance privacy scoring methodologies by

considering object spatial coverage in images. Additionally, the analysis confirms that OAR

can be applied to privacy risk scores, showing the visibility of the object correlates to its’

privacy score. The findings in this study did not show a correlation between GSD and the

visual privacy risk score. GSD computes a score representing the likelihood that the object

would be viewed (shown in Equation 5.7 and Listing 1). This visual feature could provide

insight into the privacy risks associated with the object’s identifiablility.
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In Section 5.2.1, an existing privacy score was adapted to be applied to visual content

datasets. In addition to adapting an existing privacy risk scoring method, the Vango privacy

risk scoring method was developed using the visual features as a backbone. The visual privacy

algorithms were analyzed over n private objects across three datasets. The results show that

across the visual datasets, the visual privacy risk scores have a consistent score increase as

it approaches the largest n private objects in an image. In summary, this chapter argued

that privacy risk in visual content can be accomplished by quantifying visual features. I

apply a number of theories and concepts to establish visual feature measurements that can

be incorporated into a visual privacy risk score. The need for visual privacy risk scoring

is not limited to binary or dichotomous approaches but can leverage computer vision and

visual analysis to improve understanding of visual content.
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Chapter 6

An Interactive Audit Pipeline for

Investigating Privacy and Fairness in

Visual Privacy Research

As society progresses, people can become more dependent on the accessibility and conve-

nience that technology offers. Every day a large amount of visual content is uploaded to

SMNs and collected by smart city servers across the globe, which can explain the large

amounts of sensitive data that is available online. While these ecosystems have goals that

revolve around helping people build connections with others; there are gaps in the methods

used to protect the information of individuals and corporations who share or collect con-

tent (Krishnamurthy and Wills 2008; Gross and Acquisti 2005; Rosenblum 2007; Madejski

et al. 2011; Van Zoonen 2016; Elmaghraby and Losavio 2014; DeHart et al. 2020c). A need

for visual privacy has emerged from SMNs and the integration of technology in smart cities

that can expose sensitive information through visual content (Korayem et al. 2016; Hoyle

et al. 2015; Sánchez-Corcuera et al. 2019). The constant sharing and storing of videos and

images bring skepticism about individual privacy and rights (Such et al. 2017b; Zhong et al.

2018). Visual privacy techniques extend from SMNs, smart cities, lifelogging, and much
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more (DeHart et al. 2020a).Various harms can occur as a result of sensitive information

being displayed, which makes visual privacy a growing area of concern (Gross and Acquisti

2005; Li et al. 2017c; Rosenblum 2007). Existing technologies in the industry can show a

disregard for protecting the information of individuals who share visual content or for in-

dividuals who are captured in the content (Madejski et al. 2011; Elmaghraby and Losavio

2014).

Researchers have created datasets, models, and deployed applications that they believe

will provide privacy to its’ users (Arlazarov et al. 2019; Tonge and Caragea 2016, 2020;

Li et al. 2017b; Zhong et al. 2018; Zerr et al. 2012c; Tierney et al. 2013). Within these

algorithms and systems, researchers should continually make decisions to assess the fairness,

privacy, and accessibility of the data and model in regard to the communities they serve.

Bias can be curated from the data collection process, reinforced in the model’s training, and

systematically imposed in the deployment phase (Suresh and Guttag 2019). While research

is being done to address these concerns, a gap exists in understanding the overlap between

fairness, privacy, and human feedback for visual privacy issues in the machine learning (ML)

pipeline. With privacy and bias issues arising throughout the ML pipeline, it provokes the

question: can visual privacy systems bring rise to additional privacy and fairness risks for

individuals and stakeholders? In an ideal world, deployed ML models will enhance our

society. Researchers hope that those models will provide unbiased and ethical decisions

that will benefit everyone. However, this is not always the case; issues arise during the data

curation process and throughout the steps leading to the models’ deployment. The continued

use of biased datasets and biased processes will adversely damage communities and increase

the cost of fixing the problem later.

The goal of this chapter is two-fold. First, it aims to understand visual privacy and

fairness as their issues intrude into the ML pipeline and potentially impact the stakeholders

and community where the ML pipeline is deployed. Secondly, I provide a comprehensive

pipeline indicating fairness and privacy issues and propose auditing strategies to reduce these
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effects in visual privacy research. I examine visual privacy research and draw lessons that can

apply broadly to artificial intelligence (AI) and I observe the critical decisions that are often

overlooked when deploying AI. In this chapter, I walk through the decision-making process

that a researcher must make before, during, and after their project to consider the broader

impacts of their research on the community. Throughout this chapter, I discuss several

privacy, fairness, and ownership issues that can arise in the ML pipeline (Sections 6.1, 6.2).

I argue for the use of human-over -the-loop strategies to discover privacy and fairness issues in

the ML pipeline. I extend this technique to suggest two auditing processes: Fairness Forensics

Auditing System (FASt) and Visual Privacy (ViP) Auditor (Section 6.3). Finally, reflect on

the need to review research agendas focusing on harmful societal impacts (Section 6.4).

6.1 Defining the Machine Learning Pipeline

I describe the ML pipeline as having three phases (Figure 6.1). Phase 1 is the Data Prepa-

ration process. This phase includes considerations of (1) raw data sources, (2) data collection

processes, (3) data storage, and (4) data cleaning processes that a researcher should explore

before entering into the next phase. Data can come from anywhere and everywhere. With

so many data source possibilities available, the researcher should consider which sources are

relevant to them. The data collection process for researchers can include using existing image

datasets, social media datasets, or web scraping methods with respect to the visual privacy

research task. Once a dataset is collected, a researcher could employ data cleaning tasks

(e.g., crowd-sourced labeling) to derive an optimal dataset and labels.

In Phase 2, shown in Figure 6.1, I begin the Modeling process. The cleaned data from

Phase 1 can be divided into three datasets: training, testing, and validation. Training data

is used as input for the ML algorithm. After training with the researcher’s desired ML

algorithm, the researcher receives a model to run testing and validation datasets on. The

model provides the output of the performance with several metrics. This new information
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Figure 6.1: This figure illustrates the traditional ML pipeline. The pipeline has three phases:
data preparation, modeling, and deployment.

can be used for refining the model before entering the final phase of the pipeline.

The last phase of the proposed machine learning pipeline is Deployment. The Deploy-

ment phase uses real-world data as input for the selected model. The researcher or end-user

will see the real-world results and impact of their selected model from Phase 2. This phase

allows the researcher to evaluate their model’s performance and impact on the communities

they serve.

6.1.1 The Guise of Pipeline Ownership

Researchers must consider who has ownership of the data and model at each phase before

beginning these processes. These considerations are essential when protecting the privacy of

individuals and biases that someone could impose.

At the Data Preparation and Deployment phases, the researcher should consider

who are the owners of the data and how they are receiving the content. This can explore

if online visual content belongs to the users or a corporation, if existing datasets belong to

the proprietary researchers, or if agreements on volunteered data belong to companies or

individuals. Furthermore, if the researcher is using online resources for data processing, the

researcher should consider: how the data is stored, does it still belong to the researcher, and

what information is being stored on these platforms.

In the Modeling and Deployment phases, the researchers should consider who holds
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ownership of the model. Considerations should be given to understand if the rights and

ownership of the model are owned by the researcher, company, or third party (Neyaz et al.

2020).The data uploaded to the model could lead to an individual perceiving that their

privacy has been breached due to the authorization and ownership of the model. If a third

party owns the model, it is important to consider what information they are collecting from

the use of it and who they share this information with. Throughout each phase of the ML

pipeline, the stakeholders should continue to ask tough questions and make critical decisions

that are ethical, fair, and in the best interest of those the technology is meant to serve.

6.2 Exploring Privacy and Fairness Concerns in the

Visual Privacy ML Pipeline

Efforts to implement technology that serves to mitigate harm is the motivation behind visual

privacy research. Positive outcomes are desired from systems that are created to help solve

society’s most pressing issues, such as visual privacy leakage on social media and in smart

cities. In this section, I will discuss privacy and fairness issues frequently occurring with

developing and deploying visual privacy systems. Examples of these issues are shown in Fig-

ure 6.2 and Table 6.1. I suggest that when evaluating visual privacy systems, researchers

should consider bias issues as they arise in the ML pipeline. As apparent from Figure 6.2,

fairness issues are involved with all stages of the ML pipeline. This investigation will com-

prise three over-arching visual privacy issues and describe how they could affect the ML

pipeline.

6.2.1 Privacy

Visual privacy issues can arise at any point in the ML pipeline. The stakeholders and

researchers must be aware of these issues and develop ways to solve them proactively as they

arise. This section discusses three visual privacy issues that can arise in the ML pipeline:
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Table 6.1: This table displays the privacy and fairness issues in various phases of the machine
learning pipeline. The description provides a high-level overview of what those issues are.
The checkmark (X) indicates that those issues could arise in that part of the pipeline.
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Obtaining
Content
Consent

Exploring the ethics and privacy
methodology of researchers to ob-
tain consent for collected visual
content on a public domain.

X X X X

Multiparty
Conflict

Understanding privacy concerns
for images and videos which are
owned by multiple persons.

X X X X X X X X

P
ri

va
cy

is
su

es

Image Re-
moval Re-
quest

Determining when and how visual
consent should be removed from
the pipeline via requests.

X X X X X X X

Historical bias The inherent bias from a biased
world is absorbed by the source
data. Suresh and Guttag 2019

X X

Algorithmic
bias

The bias relates to the algorithm
in the ML pipeline, and it could
have different bias sources and
types. Bantilan 2018 Calmon et al.
2017 Danks and London 2017

X X X X X X

Software
Discrimination

The output from a predictive soft-
ware used to aid in decision mak-
ing may lead to unfair conse-
quences. Galhotra et al. 2017

X X

Individual
fairness

Similar individuals should be
treated as similarly as possi-
ble. Dwork et al. 2012

X X X X X X

Group fair-
ness

The groups defined by protected
attributes should obtain similar
treatments or equal opportunity
as the privileged group. Hardt
et al. 2016

X X X X X X

Disparate
treatment

Protected attributes are directly
applied in modeling where unfair-
ness occurs. Zafar et al. 2017

X X X X X X

F
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es

s
is
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es

Disparate im-
pact

Even though the protected feature
is not directly used, its relevant
features still could lead a selec-
tion process to make unfair out-
puts. Feldman et al. 2015

X X X X X X
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visual content consent, multiparty conflict, and image removal requests.

Obtaining Visual Content Consent

Researchers use large public image datasets (Zerr et al. 2012c; Lin et al. 2014; Deng et al.

2009) to train ML algorithms to perform various visual privacy research tasks (Tonge and

Caragea 2016, 2020; Zerr et al. 2012a). Additionally, when collecting a large amount of data,

many researchers question the use of web scraping methods to obtain this data (Zimmer 2010;

Zimmer and Kinder-Kurlanda 2017; Mancosu and Vegetti 2020; Krotov and Silva 2018) and

the use of crowd-sourcing methods to label data (Lin et al. 2014; Deng et al. 2009; Xiao

et al. 2010; Torralba et al. 2008). While researchers’ efforts can focus on creating systems

to help with visual privacy, their approach in collecting data can bring rise to privacy and

ethical concerns in Phase 1 of the machine learning pipeline. The methods that researchers

use to collect this data can overlook individuals’ privacy, consent, and protection. When

collecting visual content or using existing datasets, researchers can un-intentionally collect

private content containing minors or bystanders (Perez et al. 2017; Dimiccoli et al. 2017;

Hasan et al. 2020; Birhane et al. 2021).

The topic of consent is essential to gauge participants’ willingness to participate in the

study or research. For traditional studies that include people or living subjects, specific pro-

cedures and policies need to be followed according to a governing entity (i.e., an institutional

review board). The visual data collection processes do not abide by any standard practice

policies or procedures when using personal data. Visual content consent issues begin to

arise in the Data Preparation phase and can continue to be a pressing issue during the

Deploymentphase. There is no quick or easy way to handle this issue if consent is collected

too late in the ML pipeline. If this visual privacy issue is resolved early, researchers can

tangentially reduce issues with multiparty conflicts and image removal requests.
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Multiparty Conflict (MPC)

Visual content can seem to be owned by multiple people or entities (Such et al. 2017a).

Co-ownership issues can arise in various situations, a few of these scenarios can include: (1)

group photos, (2) reposting images or videos of others (e.g., children, pets), or (3) a person

having physical possession of images of other people on posting on social media (Zemmels

and Khey 2015). Multiparty conflicts can affect the privacy of minors (Lwin et al. 2008;

Batool 2020) and bystanders (Li et al. 2019; Perez et al. 2017) when discussing ownership

and consent. Co-owned visual content can cause visual privacy leakage for others without it

being the individual’s intent (DeHart and Grant 2018). Ownership can also extend to the

stakeholders, organizations, and companies who collect, store, and host this content in their

environments. In the ML pipeline, the researcher should consider possible issues for MPCs

in all phases.

Considerations for content ownership and individual rights should be made early in the

ML pipeline. When working with visual content, it can be necessary to seek permission from

all parties involved. Multiparty conflicts can enter the ML pipeline as early as the Data

Preparation phase. In the Deployment phase, the real-world data used for the ML task

can bring additional concerns for this issue.

Image Removal Requests

When collecting data or using existing datasets, ownership issues will arise and should be

addressed early and appropriately. Instead of using public resources, researchers should

seek participation consent from individuals. This becomes important when using data for

research and in deployed systems. This raises the issue of what to do if an individual’s

visual content is requested or petitioned to be removed from the dataset and the model’s

training phase. In July 2020, MIT decided to remove the 80 Million Tiny images dataset

because of the bias and offensive labels that occurred in the dataset (Torralba et al. 2020).

If researchers have used this dataset, these issues can affect the credibility of their work and
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the deployed system. Image removal requests can affect all phases of the ML pipeline and

should be handled accordingly.

6.2.2 Fairness

In this section, I discuss three typical fairness issues. These fairness issues sneak into most

phases of the ML pipeline. These issues can lead researchers to consider where or when

bias can occur. Later, in the algorithmic bias section, I will discuss additional biases (i.e.,

individual fairness versus group fairness, disparate treatment versus disparate impact) that

explore who is affected and how those issues arise in the pipeline.

Historical Bias

When data is generated, the inherent bias from the world could stealthily engrave into

data. Historical bias can enter the ML pipeline at the start of the Data Preparation phase

through the Deployment phase. Even under ideal sampling and feature selection, historical

bias could still exist and cause concern. When the historical bias proliferates through the ML

pipeline, it can impact modeling and decision-making in the deployment stage (Hellström

et al. 2020; Suresh and Guttag 2019).

Algorithmic Bias

Algorithmic biases are bound together with each process in the ML pipeline. Roughly, algo-

rithmic bias is focused in the Modeling phase. Because algorithms are connected with every

part of ML systems, there are different bias sources and types from different components of

the ML pipeline. The algorithm’s bias could be sourced from biased training data, a biased

algorithm, or misinterpreting the algorithm’s output (Danks and London 2017). Identifying

the source of algorithmic bias contributes significantly to dissolving fairness issues. In addi-

tion, researchers must also consider the types of algorithmic bias. It is typical to think about

who is the victim impacted by algorithmic bias. For example, similar individuals are treated
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inconsistently based on the predictions of the model, while individual fairness requires that

each similar individual should be treated as similarly as possible (Dwork et al. 2012). As a

more general example, group fairness considers groups defined by protected attributes (e.g.,

gender, race), and it requires that the protected groups should obtain similar treatment as

the privileged group (Hardt et al. 2016). Group fairness is also referred to as statistical

parity or demographic parity.

After identifying who suffers from the algorithmic bias, it becomes increasingly important

to understand how fairness issues arise in the ML pipeline. Disparate treatment, also known

as direct discrimination or intentional discrimination, occurs when protected attributes are

used explicitly in ML systems. Consequently, disadvantaged groups identified by the pro-

tected attributes are deliberately treated differently. Disparate impact is pervasive and en-

trenched in our society (Feldman et al. 2015). Regarding disparate impact in the ML pipeline,

it exists under the guise of correlated variables that implicitly correspond to protected at-

tributes.

Software Discrimination

Last but not least, software discrimination appears at the end of the entire ML pipeline,

which is the Deployment phase. Bias could exist due to a problematic model. After an

ML model is passed to its end-users, the interpretability and transparency of the model can

benefit from identifying and mitigating potential bias generated by the software. Researchers

have developed many tools that audit fairness for deployed ML models. Tools like IBM’s

AI Fairness 360 toolkit (Bellamy et al. 2019) implement fairness metrics and bias mitigation

algorithms. Other works have generated test suites to measure software fairness from a

causality-based perspective (Galhotra et al. 2017).
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Figure 6.2: In the ML pipeline, I indicate where privacy (green) and fairness (red) issues
could arise. Possible overlaps in the system are defined in orange.

6.2.3 Overlaps in Privacy and Fairness Issues

Figure 6.2 shows overlapping phases that contain visual privacy and fairness issues. When

both issues arise, researchers should be ready to deal with them; otherwise, they will affect

the system’s outcome. For instance, a model builder perceives that the protected groups

could be affected by the fairness issues in a facial recognition system. Consequently, the

modeler strives to collect more data to make up for the disproportion. However, the increased

visual privacy risk for individuals during the data collection process could be an unexpected

problem and is increased for the underrepresented group (Raji et al. 2020).

It is essential to understand the relationship between visual privacy issues and fairness

issues, since solving one issue could have a negative impact on the other. For instance, a

user uploaded a picture to a biased ML model in the cloud. The user could experience unfair

decisions from the biased model with simultaneous loss of privacy to the service provider. A

goal of this chapter to raise awareness of such worse cases. The trade-off analysis between

privacy and fairness will develop an in-depth understanding of building a process for visual

privacy systems.
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6.3 Integration of Interactive Audit Strategies for the

Machine Learning Pipeline

ML models are constantly being updated once deployed to the real world; regular updates

help avoid and minimize costly errors. Differences in the time between error discovery and

model correction for the deployed model is crucial. Systems should be able to respond to

unexpected bias before, during, and after deployment. It could be impossible to erase the

damage caused by the aftermath of a system; however, stakeholders could start making a

change now. One way to do this would be using an interactive ML approach, human-in-the-

loop (Fails and Olsen Jr 2003; Amershi et al. 2014, 2015; Lee et al. 2019). Training in the

human-in-the-loop framework requires humans to make incremental updates to anticipate

issues (Bond et al. 2016). Traditional ML pipelines conduct training on their own without

interference from humans. To debug these models, the researcher must begin a thorough

investigation of the model’s predictions, parameters, and data after the learning phase has

been completed. An interactive approach would allow a human in the Modeling phase,

which will reduce debugging and runtime. The human is able to check the learning for the

model and coach the model to meet the desired results in a feedback cycle. Feedback cycles

allow the researcher to provide positive feedback iteratively to the model after viewing the

processes. This can allow the researcher to understand the possible bias and privacy issues

in the model and mitigate it immediately. This approach can be extended to various ML

research areas in fairness, computer vision, and privacy.

In traditional human-in-the-loop approaches, the human becomes a bottleneck for the

feedback process. In light of this, I suggest using a human-over-the-loop approach (Gra-

ham et al. 2017). Human-over -the-loop allows researchers to step into the pipeline as needed

to perform corrections. This removes the necessity of a human approving each iteration of

the model. With this feature integrated in the ML pipeline, the researchers should consider

having multiple humans to monitor the training. This, in turn, can lower response times
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to resolve biases that may be imposed from humans during learning. Based on the human-

over -the-loop technique, I propose the use of two interactive auditing strategies that can

reduce fairness and privacy issues to allow researchers to conceptualize, develop, and deploy

safer visual privacy systems.

Data 
Collection

Data 
Cleaning

Test 
Data

Validation 
Data

Training 
Data

ML Training

Model

Model 
Analysis

Model Output

Data

Phase 1: Data Preparation Phase 2: Modeling Phase 3: Deployment

DataRaw 
Data

VP Audit FF AuditVP FF

VP

VP

VP FF

FF

FF

Figure 6.3: This figure illustrates the feedback loops when human-over -the-loop techniques
are implemented. The green lines denote audit traces for feedback loops. The loops that are
suggested to have a ViP Audit are denoted with a VP marker. The loops that are suggested
to have FASt are denoted with a FF marker. Data Preparation has one feedback loop from
Data to Data Cleaning. The Modeling phase has two feedback loops: (1) from model analysis
to ML training, and (2) from Model Analysis to Data (in the Data Preparation phase). In
the final phase of the pipeline, the deployment loops are from (1) Output to Data (in the
Data Preparation phase) and (2) Output to ML training in the Modeling phase.

6.3.1 Incorporating a Fairness Forensics Auditing System (FASt)

ML bias is a rising threat to justice, and it has been investigated in broad areas, including

employee recruitment, criminal justice, and facial detection. ML research can cause unan-

ticipated and harmful consequences on daily life. Decision-makers begin to utilize the result

of the output from ML algorithms without considering fairness. Fairness forensics focuses

on supporting researchers and modelers to inspect a dataset or a new model by techniques

and tools evaluating for bias.

Fairness forensics requires an overarching understanding of the types of bias, the ML

pipeline, and analysis processes for bias at different stages of the ML pipeline. It is vital

to understand how biases have harmful impacts on different communities of people when
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deploying ML systems related to visual privacy. Fairness forensics has three major tasks:

bias detection, bias interpretation, and bias mitigation. Researchers and domain experts can

use fairness metrics to evaluate the input or output of ML models for bias detection. Bias

report generator tools and bias visualization tools can facilitate analysis and interpretation

of bias to understand the meaning and impact of bias detection results. Once the bias is

discovered, bias mitigation strategies can be applied by the interventions to the input data,

the algorithm, or the decision-making. Bias mitigation algorithms can be categorized into

three types: pre-processing, in-processing, and post-processing algorithms (Bellamy et al.

2019).

6.3.2 Proposing a Visual Privacy (ViP) Auditor

Visual privacy content consent and leakage are important for individuals, stakeholders, and

researchers. Mitigating visual privacy issues proactively can improve the ML systems’ im-

pact on the community. The auditor in this section focuses on supporting researchers and

modelers to inspect the learning process for evaluating privacy.

For actively investigating visual privacy research, I propose the use of a human-over -

the-loop technique specifically designed to handle privacy and computer vision issues. Most

visual privacy systems are comprised of visual data and mitigation techniques that employ

ML techniques. I envision the ViP Auditor as a comprehensive auditing tool that will

enable researchers to use visual analytics (Liu et al. 2017) to understand the models’ learning

process. During learning, the modeler will be able to enhance the feedback process by using

similar schemes as ModelTracker (Amershi et al. 2015) or Crayons Classifier (Fails and Olsen

2003). With a visual privacy auditor, the modeler will protect an individual’s privacy in the

ML process by incorporating visual privacy mitigation strategies built into the auditor. For

model analysis, the researcher can obfuscate objects in visual content, understand the dataset

attributes (e.g., number of faces, number of privacy leaks for each category), the models’

classification performance, and the perceived privacy risk score of the model.
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6.3.3 Integrating FASt and ViP Auditors in the ML Pipeline

From the Data Preparation phase in Figure 6.3, researchers examine the dataset, data

labels, and ownership for the content regarding privacy concerns. This loop allows a re-

searcher to consider the initial privacy concerns (in Section 6.2) and develop other strategies

to mitigate them. In the Modeling phase, the researcher should employ auditors at both

feedback loops (see Figure 6.3). The first feedback loop allows the researcher to conduct a

privacy evaluation from the model’s output. Evaluating the results from this feedback loop

enables the human-over -the-loop to step in and make changes to achieve the desired level

of privacy in the model. Auditing at this phase of the pipeline allows researchers to accu-

rately correct recognition errors (bounding boxes, instance segmentation) from the models’

learning. The second feedback loop conducts a privacy evaluation that allows the researcher

to identify issues within the dataset from the Model Analysis. When the dataset issues are

identified, the researcher can collect more data, remove the data from the pipeline, or add

more tags/labels to mitigate privacy concerns that arise. The Deployment phase feedback

loops consider the real-world output from the model. With auditors in place at this phase,

the stakeholders can understand privacy issues as they arise. The stakeholders can fix issues

in deployment as they arise by sanitizing the data and re-training the model. The ViP Au-

ditor will produce a privacy risk score based on the models’ performance and flag potential

privacy issues.

The feedback loop from FASt is similar to the loop from the ViP Auditor. Fairness

forensics system feedback occurs at different steps in all three phases of the ML pipeline

(see Figure 6.3), and it can encourage researchers to sanitize their data or adjust the model.

The process of fairness forensics allows the human-over -the-loop to determine the need for

human intervention and assess for fairness in order to achieve social justice. Imperfect

fairness metrics or conflicting fairness objectives (Friedler et al. 2021) means humans will

need to intervene to maintain performance guarantees.
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6.4 Summary

This chapter addresses the fourth research question of this dissertation, “How can privacy

and fairness risks created by the development and deployment of visual privacy systems be

mitigated to protect individuals and stakeholders?”. Researchers should closely monitor data

preparation, modeling, and deployment processes to avoid harming communities and stake-

holders. The decision-making process for researchers can be challenging, but it is imperative

to continually evaluate to improve the model’s learning process and the deployment outcomes

for the communities they serve. When building a visual privacy model needing large amounts

of data, it can be easy to obtain datasets that are already widely distributed but may not

have been examined for discriminatory, private, or fairness issues. This work discusses pri-

vacy and fairness issues that frequently occur in the ML pipeline that could emerge at various

phases. I also assert the need for a responsible auditing system to bring accountability into

model training and the deployed system. To do this, I propose using human-over -the-loop

strategies to introduce interactive auditing for fairness and privacy. With ML pipeline audits

and engaged researchers, the evaluation and consideration given to project development and

deployed systems can become a standard procedure. These proposed mitigation strategies

are the first steps of a much-needed effort to address privacy and fairness issues in the ML

pipeline.

Being mindful of the societal impacts, evaluation methods (i.e., FASt and ViP) and mon-

itoring strategies (i.e., human-over -the-loop) have been presented as mitigation techniques

to reduce errors in the ML pipeline and in the deployed system’s life cycle. However, there

are no full-proof techniques for ensuring that the software is exempt from producing harm.

For a stakeholder to know when to halt deployment implies that they have developed a plan

for the system and require human intervention throughout the ML pipeline for proactive

decision-making. Monitoring for privacy and fairness issues and their potential to harm the

community throughout the software’s life is an essential part of this. When evaluating the
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fairness of a model, a researcher can explore the model’s training data and performance met-

rics to decipher sub-trends and anomalies. From this evaluation, the researcher can generate

an idea of what success can look like from their model.

It might also be helpful to pivot directions for the machine learning model to avoid going

too far down a path that could prove disastrous for marginalized communities. There may be

a point at which the model is beyond recognition. It may be worth completely re-imagining

the ML pipeline or abandoning the effort altogether when it has strayed far from its intended

goal. Before completely re-imaging or abandoning the model, the researcher could integrate

human-over -the-loop techniques to improve the ML pipeline’s consideration for privacy and

fairness. The decision of which route to go ultimately involves the researcher evaluating the

trade-off between the safety of the impacted communities or the potential accomplishments

of producing innovative software. Success should be inspired by the ability to impact society

positively, not by a system’s ability to quickly solve an idea. Halting deployment on a project

that has gone awry should be seen as a successful learning result, not as a failed project. If

permissible, the stakeholder should consider opening up the research project or system for

external review to cultivate a meaningful conversation around learning from the harm that

development and deployment could have caused.
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Chapter 7

Conclusion

With the increasing popularity and advancements in SMNs and smart environments, there

has been a significant challenge in protecting visual privacy, thereby necessitating a better

understanding of the visual privacy implications in these environments. These concerns can

arise intentionally or unintentionally from the individual, other entities in the environment,

or a company. To address these challenges, it is necessary to understand visual privacy

leakage in various domains, create viable strategies to aid in quantifying visual privacy risk,

and design fair and privacy data collection processes and ML pipelines. In this dissertation,

myrgued that visual privacy is a point of critical concern for SMNs and smart cities because

of the growth, advancement, and visual data shared in these domains. In particular, I

demonstrated that there is a need to visual privacy leakage and risk to provide mitigation

strategies that consider subjectivity, methods to quantify privacy leakage, and the creation

of privacy and fair visual privacy systems. The consideration of these needs will improve the

individual, stakeholder, and researcher’s understanding of visual privacy in SMNs and smart

environments. The studies, methods, and algorithms provided by this dissertation explore,

investigate, and propose visual privacy mitigation and interactive auditing strategies for

SMNs and smart environments.

Chapters 3 and 4 of this dissertation aimed to identify visual privacy challenges for social
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media networks and smart city environments. Based on qualitative and quantitative analysis

of privacy-related experiences, concerns of social media users regarding visual content, and

infrastructure privacy considerations of smart city stakeholders, it can be concluded that the

development of visual privacy mitigation strategies should be introduced to reduce privacy

leakage and dangers in these domains. The risks and dangers that could arise in these do-

mains require individuals and stakeholders to understand how visual privacy leaks can affect

them and those around them. The implementation of these visual privacy mitigation systems

can be incorporated into the infrastructure of SMNs and smart environments. While these

are useful findings, they are limited by the sampling size and collection method. Broadly,

issues with research samples and selection can lead to skewed results and bias. These issues

do not capture the spectrum of visual privacy perspectives and experiences.

Chapter 5 endeavors to explore visual privacy risk scoring methodologies as an initial step

of visual privacy mitigation. With computer vision as the backbone of these scoring methods,

I investigate the necessity to exploit visual features to understand visual content and a

case for using visual features in privacy risk scoring. I explored visual privacy risk scoring

methods by adapting an existing privacy scoring methodology, VPScore, and developing

a visual privacy scoring method using visual features as components, Vango. The visual

privacy risk scores used a quantitative privacy severity weight inspired by Section 3.2.2. The

results show that TF-IDF, Golden Spiral, and Object Area Ratio approaches can be used as

visual privacy risk score components. This chapter adds to the methods privacy risk scoring

is applied across domains, focusing on visual privacy scoring methods with computer vision

support. The findings of this research are limited to using visual datasets that do not contain

annotations for object detection or that are not focused on privacy research, utilizing pre-

trained object detection models, and applying existing class labels for the generalizability of

privacy risk scoring methodologies.

Lastly, this dissertation asserts the need for responsible auditing systems in the ML

pipeline to reduce privacy and fairness issues that can occur, as proposed in Chapter 6. This
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chapter walks through privacy and fairness issues that can arise in visual privacy research

and broadly extends the findings to other fields of ML research. Due to technologies and

practices that can violate the privacy and fairness of individuals, this chapter proposed

interactive auditing strategies in an effort to reduce privacy leakage and harm to individuals.

The interactive auditing strategies are introduced with a human-over-the-loop framework

to allow an engaged approach to bring accountability to the ML training and deployment

phase. This chapter provides a high-level overview of considerations and the impact of

visual privacy and fairness issues. It provides a comprehensive auditing pipeline indicating

fairness and privacy issues to reduce these effects in visual privacy research. There may

be possible limitations in this study since there are no full-proof techniques for ensuring

that the software is exempt from producing harm. This chapter suggests an interactively

auditable ML pipeline to help reduce the risks and implications of the ML pipeline, but these

suggestions are only those of the author.
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Appendix B

Terms and Definitions

B.1 Relevant Definitions

This section introduces preliminary concepts needed to understand this dissertation. This

section will include definitions and examples of the terms included in this dissertation.

Throughout this dissertation, I refer to these terms frequently.

Term Frequency-Inverse Document Frequency (TF-IDF)

TF-IDF is a measure of how relevant a word is to a given document from a collection of

documents. That is, for a term t that appears in an answer d among the set of all answers

D. The term frequency (TF) is the frequency at a term t that appears among any term t in

the answer (Equation B.1).

tf(t, d) =

∑
|t∈d| 1∑
|t′∈d| 1

(B.1)

The document frequency is the number of times a term t appears across all answers (d ∈ D).

The document frequency is given by Equation B.2.

df(t,D) =
∑
d∈D

1(t ∈ D) (B.2)
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The inverse document frequency (IDF) is a factor that down weights terms that appear too

often across all documents. These words are viewed as less important. The idf formula is

given by Equation B.3.

idf(t, d) = 1 + log
1 + n

df(t,D)
(B.3)

The average importance of each term in the data set is calculated by the product of the

inverse document frequency and average term frequency for each document the term appears

as shown in Equation B.4.

avg(TF-IDF)(t,D) = idf(t,D) ∗ avgt∈d(tf(t, d)). (B.4)

Word Tokenization.

Word tokenization is the process of splitting each sentence into smaller units. It takes a raw

data string and converts it into useful data. These smaller units are referred to as tokens.

Here is an example string of data that can be tokenized: “What is visual privacy?”.

Word tokenization is performed in order for the machine learning model to understand the

data. The string is broken down into several parts by tokenizing into words: what, is,

visual, privacy, ?. Word tokenization helps the machine learning model understand each

word individually and the word’s functionality in a larger text. This also allows the machine

learning model to count the frequencies of words as they appear in the document.

Lemmatization.

Lemmatization is the process of replacing words that contain prefixes and suffixes with their

root word with the use of dictionaries. Lemmatization allows treating the list of words with

different inflections or derivatives of meaning as the same word. For example, to lemmatize

the words images, image’s, and images’ means to remove the suffixes s, ’s, and s’ to bring

out the root word image. Lemmatization aids the machine learning model in understanding

the context around the words from the document and helps the model approximate the

131



meaning of the sentences in the document.

Stemming.

Stemming is a rule-based process that reduces words to their root form. A word can be

mapped to a stem by removing prefixes and suffixes even if the word is not a real word. A

limitation of using stemming is shown with the word troubled, which is stemmed into the

word troubl. With this method, we try to avoid over-stemming to preserve the meaning of

the word. For example, to stem the words likes, likely, and liking means to remove the

suffixes s, ly, and ing to bring out the root word like.

Alphanumeric characters and Stopword removal.

Stopwords are commonly used words like the, is, a, and are. These stopwords include

prepositions, pronouns, and conjunctions and are removed based on words from the standard

English language. Alphanumeric characters can consist of letters (from A to Z), symbols

(e.g., +, -, ¡), and numbers (0 to 9). In this process, we remove the low-level information

from the data to focus on information that is more insightful for themes and keywords. The

removal of these words did not show a negative impact on the algorithms used.
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B.2 Selected Private Items from COCO Labels

In Chapter 5, the private classes were selected from an existing dataset: MS COCO. From

MS COCO, the classes used were the object categories. This section discusses the choices of

private items for the scope of this dissertation. The private classes were divided into three

categories: public, moderate, and severe. The lists below only cover moderate and severe

privacy labels.

Moderate risk objects include public transportation, household items, or time-based

items. This content might not provide an individual’s exact location, place of residence,

or contain any of their government-issued identification.

• airplane - public transportation vehicle that can give location information

• bus - public transportation vehicle that can give location information

• train - public transportation vehicle that can give location information

• truck - public transportation vehicle that can give location information

• boat - public transportation vehicle that can give location information

• backpack - a personal item that holds or contains documentation

• wine glass - a personal activity

• toilet - an item that is used privately

• tv - a household item that could let someone know your location or interests

• mouse - an item that is an accessory to a computer/laptop

• remote - an item that is connected to personal electronic devices

• keyboard - an item that is an accessory to a computer/laptop

133



• clock - an item that can let others know the time of an event or location

Severe privacy risk contains items that can contain or carry personally identifying infor-

mation, personal devices or vehicles, or items that contain insight into a person’s location

and place of residence

• car - a personal vehicle that can contain license plates

• motorcycle - a personal vehicle that can contain license plates

• traffic light - an item that can contain street names and/or reveal a location

• stop sign - an item that can contain street names and/or reveal a location

• parking meter - an item that can contain street names and/or reveal a location

• handbag - a personal item that holds or contains private items

• suitcase - a personal item that can indicate traveling plans or location

• laptop - a personal device that can show revealing information

• cell phone - a personal device that can show revealing information
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B.3 Acronyms

AI Artificial Intelligence

ANOVA Analysis of Variance

CNN Convolutional Neural Network

DPScorer Dichotomous Privacy Score

DSRC Dedicated Short Range Communica-

tion

DTN Delay Tolerant Network

FASt Fairness Forensics Auditing System

GSD Golden Spiral Distance

IDF Inverse Document Frequency

IOT Internet of Things

LDA Latent Dirichlet Allocation

ML Machine Learning

MS COCO Microsoft Common Objects in

COntext

OAR Object Area Ratio

OIW Object Importance Weight

PCA Principal Component Analysis

SCAP Smart City Applications Platform

SMN Social Media Network

TF Term Frequency

TF-IDF Term Frequency-Inverse Document

Frequency

TSP Traffic Signal Priority

Vango Visual Area, eNcoding, and Golden

spiral Object distance

ViP Visual Privacy Auditor

VISPR VISual PRivacy Dataset

VPScorer Visual Privacy Score

YOLO You Only Look Once
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Appendix C

Study Instruments

C.1 Social Media & Privacy Survey Interview Protocol

C.1.1 Survey 1: Privacy Attitudes and Perspectives

• Are you over 18 years old?

– Yes

– No

• Have you used social media in the past two months?

– Yes

– No

• Of what Social Media Networks (SMNs) do you consider yourself a frequent user?

– Facebook

– Snapchat

– Instagram

– Pinterest
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– Tumblr

– Flickr

– LinkedIn

– Twitter

– Reddit

– Twitch

– YouTube

– No Social Media Accounts

• How many hours per week do you spend on social media networks?

– 0 -10

– 11- 20

– 21 +

• What type of content do you usually post on social media?

– Images

– Videos

– Text

• Do you post any of these types of images or videos on your SMNs? (Check all that

apply)

– Selfies

– Scenery

– Food

– Animals
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– Art

• How would you define privacy?

• Would you define privacy the same for social media networks?

• If not, why?

• Personally identifying information is information that can be used to uniquely identify,

contact, or locate a person.

– Agree

– Disagree

• Privacy leaks include any instance in which a transfer of personal identifying visual

content is shared on Social Media Networks. Private visual content exposes intimate

information that can be detrimental to your finances, personal life, and reputation.

– Agree

– Disagree

• Would you consider any of these images to have identifying information?

• As a typical user of Social Media Networks (SMNs), if you were to post these items

(images and/or videos) on your social media page would you consider them a privacy

leak? (Answer Yes or No for each option)

– Baby Face

– Credit Card

– Driver’s License

– House Keys

– Phone Number
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– Social Security Card

– Passport

– Birth Certificate

– Personal Letters

• Drag and drop the following dangers in order of most threatening (most threatening

ranked 1 and so on).

– Burglary (Home invasions)

– Kidnapping (Physically or digitally kidnapping by means of taking visual content

and posting as their own)

– Explicit Websites (Images or Videos exported to explicit sites)

– Financial Threat (Imposes on credit, bank account, loans and etc)

– Identity Theft (Impersonation, Fraudulent accounts)

– Stalking (Closely follows everything you do/post on SMNs and/or in real life)

• Do you believe there are other dangers on Social Media Networks? If so, list them.

• What type of threat would these items fall under? - Location

– Credit Cards

– House Keys

– Baby faces

– Passport

– Driver’s License

– Social Security Card

– Passwords
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– Personal Letters

• What type of threat would these items fall under? - Identity

– Credit Cards

– House Keys

– Baby faces

– Passport

– Driver’s License

– Social Security Card

– Passwords

– Personal Letters

• What type of threat would these items fall under? - Asset

– Credit Cards

– House Keys

– Baby faces

– Passport

– Driver’s License

– Social Security Card

– Passwords

– Personal Letters

• Do you believe that conflict (e.g. bullying, domestic disputes) can increase the occur-

rence of privacy leaks?

– Strongly agree
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– Agree

– Somewhat agree

– Neither agree nor disagree

– Somewhat disagree

– Disagree

– Strongly disagree

C.1.2 Survey 2: Twitter Users and Privacy

• Are you over 18 years old?

– Yes

– No

• Do you have a Twitter Account?

– Yes

– No

• Why haven’t you created a Twitter Account?

• What made you create a Twitter Account?

• How many hours per week do you use Twitter?

– 0 - 5 hours

– 5 - 10 hours

– 10 - 20 hours

– Over 20 hours

• What is your definition of sensitive information?
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• Which of the following images do you think contains sensitive information?

• Sensitive information is defined as data that should be guarded from unauthorized

access and unwarranted disclosure in order to maintain the information security of an

individual or organization.

– I agree

– I do not agree

• While using Twitter have you ever seen sensitive information that was publicly posted

online?

– Yes

– No

• What are the hashtag(s), keyword(s), and/or username(s) where the sensitive infor-

mation was publicly posted on Twitter?

C.2 Smart City Survey Interview Protocol

• What type of organization do you work for?

– Local Government

– State Government

– Federal Government

– Utility

– Transportation Agency

– Non-Profit

– Live, Work, Play Community
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– Other Private Sector Business

– Not Employed

– Comments

• What best describes your role in that organization?

– Business Owner

– Elected Official

– Transportation Engineer/Planner

– Information Technology Staff

– Senior/Policy Advisor

– Public Works Staff

– Other

– Not Applicable

– Operations or Property Manager

• About how many employees work for your organization?

• Is your organization involved in any Smart City/Community work?

– Yes

– No

• Are you familiar with the term ”smart city” or ”smart community”?

– Yes

– No

• How would you define a smart city/community?
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• How would you define privacy?

• How worried are you about Smart City/Community applications impacting your pri-

vacy?

– Not close to worrying

– Slightly worried

– Moderately worried

– Very worried

– Extremely worried

• Describe any additional applications that would be valuable for your organization.

• Do you have other comments regarding privacy concerns in a Smart City?

• Where are the locations you need to have pedestrian, bicycle, and e-scooter counting

data? (Check all that apply)

– Downtown/main shopping street

– Busy intersection

– Parks

– Greenwalks

– Bus/Train stations

– Stadiums

– Government buildings (courthouse, fire & rescue, town hall, etc.)

– Hospitals and healthcare facilities

– Other

– Not Sure
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• What are the biggest challenges or pain points associated with pedestrian, bicycle, and

e-scooter counting data? (Check all that apply)

– Cost

– Accuracy

– Frequency

– Data Analysis

– Other, please list:

– Not Sure

• If using today, what do you value most about your current pedestrian, bicycle, e-scooter

counting data? On a scale of 1-5, please rate these features.

– Accuracy

– Simplicity

– Frequency

– Privacy

– Distinguishing transportation types

• How important is pedestrian, bicycle, and e-scooter privacy?

– Not at all important

– Could be important

– Moderately important

– Very important

– Extremely important

• How important is providing electric vehicle charging stations in your community?
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• Consider each of the potential Smart City/Community applications below. For each,

please rank how valuable these applications could be to your organization.

– Discovering trends related to how pedestrians move throughout a city or commu-

nity

– Getting vehicular traffic data in real time to redirect traffic if there is an accident

or lane closure

– Solutions that help direct pedestrian and vehicle traffic

– Adjusting traffic signal timing in real-time

– Detecting potholes, burnt out streetlights, clogged drainage inlets, and other

maintenance issues

– Directing people to local businesses and events

– Providing severe air quality and severe weather alerts

– Directing drivers to open parking spots

– Managing e-scooter and bicycle traffic and parking

– Making retail location decisions

– Making residential or commercial development decisions

– Sizing and designing infrastructure

• For each of the following situations, please describe the level of importance of local

data collection to your community or organization.

– Counting the number of people passing a public location using a technology that

could not identify individuals (such as radar, a pressure pad, etc.).

– Counting the number of people passing a public location using video image recog-

nition technology, as long as only counts are stored. Images would not be stored,

and would not be available to view.

146



– Storing video images from a public location with faces and license plates obscured.

– Live video of a public location that is not stored.

– Live video of a public location that is stored for future use.

– Video or data is shared with a police department.

– Video or data is shared with a police department only with a court order.

– Video or data is shared with the public under a Freedom of Information Act

request.

– Recording mobile phone information without the ability to identify individuals.

– Recording mobile phone information with the ability to identify individuals.

– Recording credit card transactions without the ability to identify individuals.

– Recording mobile phone screen interactions without the ability to identify indi-

viduals.

– Automated parking enforcement (violators are sent a ticket in the mail).

• Consider each of the following types of data that could be collected on every street

corner in a Smart City/Community. For each, please indicate how valuable the appro-

priate storage is for such data.

– Traffic Counts

– Pedestrians counts on streets or passing retail business

– Air Quality Monitoring

– Noise

– Maintenance issues (e.g., potholes, burnt out street lights, clogged storm sewer

inlets)

– Public Transit Arrivals

– Public Transit Ridership
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– Parking availability and cost

– E-scooter and bicycle traffic

• Consider each of the following types of data collection. For each, indicate the processes

your organization currently uses. Check all that apply.

– Traffic Counts

– Pedestrians counts on streets or passing retail business

– Air Quality Monitoring

– Noise

• Describe how difficult it is to mount a camera enclosure on your community street-

lights?

– Extremely difficult

– Somewhat difficult

– Neither easy nor difficult

– Somewhat easy

– Extremely easy
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Appendix D

Additional Data

D.1 Smart City Challenge Finalist Application Data
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Table D.1: This table contains the city name, population, and requested technologies for
each Smart City Challenge finalist. The list is in ascending order based on population.

City Population Size Technology Requested

Pittsburgh, PA 305,704
1. Smart Grid

2. Electric Vehicle Charging Station

3. Autonomous Vehicles

4. Connected Vehicles: DSRC

5. Autonomous home delivery

6. Use of Cellphone signals

7. Use of Cameras

8. Use of WiFi/Communications

9. Use of Sensors

10. Web Applications

11. Smart Traffic Signals

* Table D.1 – Continued on the next page *
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City Population Size Technology Requested

San Francisco, CA 413,775
1. Bike/Pedestrian Counters

2. Electric Vehicle Charging Station

3. Electric bus

4. Autonomous Vehicles

5. Smart Parking

6. Autonomous home delivery

7. Use of Cameras

8. Use of WiFi/Communications

9. Use of Sensors

10. Web Applications

11. Smart Traffic Signals

12. Smart roadside lights

* Table D.1 – Continued on the next page *
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City Population Size Technology Requested

Kansas City, MO 459,787
1. Smart Grid

2. Electric Vehicle Charging Station

3. Autonomous Vehicles

4. Smart Parking

5. Use of Cameras

6. Use of WiFi/Communications

7. Use of Sensors

8. Web Applications

9. Kiosks

10. Smart Traffic Signals

11. Smart roadside lights

* Table D.1 – Continued on the next page *
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City Population Size Technology Requested

Portland, OR 583,776
1. Electric Vehicle Charging Station

2. Autonomous Vehicles

3. Connected Vehicles: DSRC

4. Use of GPS

5. Use of Cameras

6. Use of WiFi/Communications

7. Use of Sensors

8. Web Applications

9. Smart Traffic Signals

* Table D.1 – Continued on the next page *
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City Population Size Technology Requested

Denver, CO 600,158
1. Electric Vehicle Charging Station

2. Electric bus

3. Connected Vehicles: DSRC

4. Traffic Management Centers

5. Use of Cellphone signals

6. Use of Cameras

7. Use of WiFi/Communications

8. Use of Sensors

9. Web Applications

10. Kiosks

11. Information screens for bus stops

12. Smart Traffic Signals

13. Road condition monitors

* Table D.1 – Continued on the next page *
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City Population Size Technology Requested

Columbus, OH 787,033
1. Smart Grid

2. Electronic Signs

3. Bike Sharing

4. Electric Vehicle Charging Station

5. Autonomous Vehicles

6. Connected Vehicles: DSRC

7. Smart Parking

8. Universal smart access card

9. Use of GPS

10. Use of Cameras

11. Use of WiFi/Communications

12. Use of Sensors

13. Web Applications

14. Kiosks

15. Information screens for bus stops

16. Smart Traffic Signals

* Table D.1 – Continued on the next page *
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City Population Size Technology Requested

Austin, TX 790,390
1. Bike/Pedestrian Counters

2. Travel Hub

3. Electric Vehicle Charging Station

4. Autonomous Vehicles

5. Connected Vehicles: DSRC

6. Autonomous home delivery

7. Use of Cellphone signals

8. Use of GPS

9. Use of Cameras

10. Use of WiFi/Communications

11. Use of Sensors

12. Web Applications

13. Interactive Voice Response

14. Smart Traffic Signals

15. Road condition monitors
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