148 research outputs found

    Location estimation in smart homes setting with RFID systems

    Get PDF
    Indoor localisation technologies are a core component of Smart Homes. Many applications within Smart Homes benefit from localisation technologies to determine the locations of things, objects and people. The tremendous characteristics of the Radio Frequency Identification (RFID) systems have become one of the enabler technologies in the Internet of Things (IOT) that connect objects and things wirelessly. RFID is a promising technology in indoor positioning that not only uniquely identifies entities but also locates affixed RFID tags on objects or subjects in stationary and real-time. The rapid advancement in RFID-based systems has sparked the interest of researchers in Smart Homes to employ RFID technologies and potentials to assist with optimising (non-) pervasive healthcare systems in automated homes. In this research localisation techniques and enabled positioning sensors are investigated. Passive RFID sensors are used to localise passive tags that are affixed to Smart Home objects and track the movement of individuals in stationary and real-time settings. In this study, we develop an affordable passive localisation platform using inexpensive passive RFID sensors. To fillful this aim, a passive localisation framework using minimum tracking resources (RFID sensors) has been designed. A localisation prototype and localisation application that examined the affixed RFID tag on objects to evaluate our proposed locaisation framework was then developed. Localising algorithms were utilised to achieve enhanced accuracy of localising one particular passive tag which that affixed to target objects. This thesis uses a general enough approach so that it could be applied more widely to other applications in addition to Health Smart Homes. A passive RFID localising framework is designed and developed through systematic procedures. A localising platform is built to test the proposed framework, along with developing a RFID tracking application using Java programming language and further data analysis in MATLAB. This project applies localisation procedures and evaluates them experimentally. The experimental study positively confirms that our proposed localisation framework is capable of enhancing the accuracy of the location of the tracked individual. The low-cost design uses only one passive RFID target tag, one RFID reader and three to four antennas

    Device Free Localisation Techniques in Indoor Environments

    Get PDF
    The location estimation of a target for a long period was performed only by device based localisation technique which is difficult in applications where target especially human is non-cooperative. A target was detected by equipping a device using global positioning systems, radio frequency systems, ultrasonic frequency systems, etc. Device free localisation (DFL) is an upcoming technology in automated localisation in which target need not equip any device for identifying its position by the user. For achieving this objective, the wireless sensor network is a better choice due to its growing popularity. This paper describes the possible categorisation of recently developed DFL techniques using wireless sensor network. The scope of each category of techniques is analysed by comparing their potential benefits and drawbacks. Finally, future scope and research directions in this field are also summarised

    Wi-Fi For Indoor Device Free Passive Localization (DfPL): An Overview

    Get PDF
    The world is moving towards an interconnected and intercommunicable network of animate and inanimate objects with the emergence of Internet of Things (IoT) concept which is expected to have 50 billion connected devices by 2020. The wireless communication enabled devices play a major role in the realization of IoT. In Malaysia, home and business Internet Service Providers (ISP) bundle Wi-Fi modems working in 2.4 GHz Industrial, Scientific and Medical (ISM) radio band with their internet services. This makes Wi-Fi the most eligible protocol to serve as a local as well as internet data link for the IoT devices. Besides serving as a data link, human entity presence and location information in a multipath rich indoor environment can be harvested by monitoring and processing the changes in the Wi-Fi Radio Frequency (RF) signals. This paper comprehensively discusses the initiation and evolution of Wi-Fi based Indoor Device free Passive Localization (DfPL) since the concept was first introduced by Youssef et al. in 2007. Alongside the overview, future directions of DfPL in line with ongoing evolution of Wi-Fi based IoT devices are briefly discussed in this paper

    A hybrid Passive & Active Approach to Tracking movement within Indoor Environments,

    Get PDF

    An indoor positioning system using Bluetooth Low Energy

    Get PDF
    In this paper, we present a Bluetooth Low Energy (BLE) based indoor positioning system developed for monitoring the daily living pattern of old people (e.g. people living with dementia) or individuals with disabilities. The proposed sensing system is composed of multiple sensors that are installed in different locations in a home environment. The specific location of the user in the building has been pre-recorded into the proposed sensing system that captures the raw Received Signal Strength Indicator (RSSI) from the BLE beacon that is attached on the user. Two methods are proposed to determine the indoor location and the tracking of the users: a trilateration-based method and fingerprinting-based method. Experiments have been carried out in different home environments to verify the proposed system and methods. The results show that our system is able to accurately track the user location in home environments and can track the living patterns of the user which, in turn, may be used to infer the health status of the user. Our results also show that the positions of the BLE beacons on the user and different quality of BLE beacons do not affect the tracking accuracy

    Minimal Infrastructure Radio Frequency Home Localisation Systems

    Get PDF
    The ability to track the location of a subject in their home allows the provision of a number of location based services, such as remote activity monitoring, context sensitive prompts and detection of safety critical situations such as falls. Such pervasive monitoring functionality offers the potential for elders to live at home for longer periods of their lives with minimal human supervision. The focus of this thesis is on the investigation and development of a home roomlevel localisation technique which can be readily deployed in a realistic home environment with minimal hardware requirements. A conveniently deployed Bluetooth ® localisation platform is designed and experimentally validated throughout the thesis. The platform adopts the convenience of a mobile phone and the processing power of a remote location calculation computer. The use of Bluetooth ® also ensures the extensibility of the platform to other home health supervision scenarios such as wireless body sensor monitoring. Central contributions of this work include the comparison of probabilistic and nonprobabilistic classifiers for location prediction accuracy and the extension of probabilistic classifiers to a Hidden Markov Model Bayesian filtering framework. New location prediction performance metrics are developed and signicant performance improvements are demonstrated with the novel extension of Hidden Markov Models to higher-order Markov movement models. With the simple probabilistic classifiers, location is correctly predicted 80% of the time. This increases to 86% with the application of the Hidden Markov Models and 88% when high-order Hidden Markov Models are employed. Further novelty is exhibited in the derivation of a real-time Hidden Markov Model Viterbi decoding algorithm which presents all the advantages of the original algorithm, while producing location estimates in real-time. Significant contributions are also made to the field of human gait-recognition by applying Bayesian filtering to the task of motion detection from accelerometers which are already present in many mobile phones. Bayesian filtering is demonstrated to enable a 35% improvement in motion recognition rate and even enables a floor recognition rate of 68% using only accelerometers. The unique application of time-varying Hidden Markov Models demonstrates the effect of integrating these freely available motion predictions on long-term location predictions

    RSSI based self-adaptive algorithms targeting indoor localisation under complex non-line of sight environments

    Get PDF
    Location Based Services (LBS) are a relatively recent multidisciplinary field which brings together many aspects of the fields of hardware design, digital signal processing (DSP), digital image processing (DIP), algorithm design in mathematics, and systematic implementation. LBS provide indirect location information from a variety of sensors and present these in an understandable and intuitive way to users by employing theories of data science and deep learning. Indoor positioning, which is one of the sub-applications of LBS, has become increasingly important with the development of sensor techniques and smart algorithms. The aim of this thesis is to explore the utilisation of indoor positioning algorithms under complex Non-Line of sight (LOS) environments in order to meet the requirements of both commercial and civil indoor localisation services. This thesis presents specific designs and implementations of solutions for indoor positioning systems from signal processing to positioning algorithms. Recently, with the advent of the protocol for the Bluetooth 4.0 technique, which is also called Bluetooth Low Energy (BLE), researchers have increasingly begun to focus on developing received signal strength (RSS) based indoor localisation systems, as BLE based indoor positioning systems boast the advantages of lower cost and easier deployment condition. At the meantime, information providers of indoor positioning systems are not limited by RSS based sensors. Accelerometer and magnetic field sensors may also being applied for providing positioning information by referring to the users’ motion and orientation. With regards to this, both indoor localisation accuracy and positioning system stability can be increased by using hybrid positioning information sources in which these sensors are utilised in tandem. Whereas both RSS based sensors, such as BLE sensors, and other positioning information providers are limited by the fact that positioning information cannot be observed or acquired directly, which can be summarised into the Hidden Markov Mode (HMM). This work conducts a basic survey of indoor positioning systems, which include localisation platforms, using different hardware and different positioning algorithms based on these positioning platforms. By comparing the advantages of different hardware platforms and their corresponding algorithms, a Received Signal Strength Indicator (RSSI) based positioning technique using BLE is selected as the main carrier of the proposed positioning systems in this research. The transmission characteristics of BLE signals are then introduced, and the basic theory of indoor transmission modes is detailed. Two filters, the smooth filter and the wavelet filter are utilised to de-noise the RSSI sequence in order to increase localisation accuracy. The theory behind these two filter types is introduced, and a set of experiments are conducted to compare the performance of these filters. The utilisation of two positioning systems is then introduced. A novel, off-set centroid core localisation algorithm is proposed firstly and the second one is a modified Monte Carlo localisation (MCL) algorithm based system. The first positioning algorithm utilises BLE as a positioning information provider and is implemented with a weighted framework for increasing localisation accuracy and system stability. The MCL algorithm is tailor-made in order to locate users’ position in an indoor environment using BLE and data received by sensors locating user position in an indoor environment. The key features in these systems are summarised in the following: the capacity of BLE to compute user position and achieve good adaptability in different environmental conditions, and the compatibility of implementing different information sources into these systems is very high. The contributions of this thesis are as follows: Two different filters were tailor-made for de-nosing the RSSI sequence. By applying these two filters, the localisation error caused by small scale fading is reduced significantly. In addition, the implementation for the two proposed are described. By using the proposed centroid core positioning algorithm in combination with a weighted framework, localisation inaccuracy is no greater than 5 metres under most complex indoor environmental conditions. Furthermore, MCL is modified and tailored for use with BLE and other sensor readings in order to compute user positioning in complex indoor environments. By using sensor readings from BLE beacons and other sensors, the stability and accuracy of the MCL based indoor position system is increased further

    Influence of measured radio map interpolation on indoor positioning algorithms

    Get PDF
    Indoor positioning and navigation increasingly has become popular and there are many different approaches, using different technologies. In nearly all of the approaches the locational accuracy depends on signal propagation characteristics of the environment. What makes many of these approaches similar is the requirement of creating a signal propagation Radio Map (RM) by analysing the environment. As this is usually done on a regular grid, the collection of Received Signal Strength Indicator (RSSI) data at every Reference Point (RP) of a RM is a time consuming task. With indoor positioning being in the focus of the research community, the reduction in time required for collection of RMs is very useful as it allows researchers to spend more time with research instead of data collection. In this paper we analyse the options for reducing the time required for the acquisition of RSSI information. We approach this by collecting initial RMs of Wi-Fi signal strength using 5 ESP32 micro controllers working in monitoring mode and placed around our office. We then analyse the influence the approximation of RSSI values in unreachable places has, by using linear interpolation and Gaussian Process Regression (GPR) to find balance between final positioning accuracy, computing complexity, and time requirements for the initial data collection. We conclude that the computational requirements can be significantly lowered, while not affecting the positioning error, by using RM with a single sample per RP generated considering many measurements.- (undefined

    Indoor navigation for the visually impaired : enhancements through utilisation of the Internet of Things and deep learning

    Get PDF
    Wayfinding and navigation are essential aspects of independent living that heavily rely on the sense of vision. Walking in a complex building requires knowing exact location to find a suitable path to the desired destination, avoiding obstacles and monitoring orientation and movement along the route. People who do not have access to sight-dependent information, such as that provided by signage, maps and environmental cues, can encounter challenges in achieving these tasks independently. They can rely on assistance from others or maintain their independence by using assistive technologies and the resources provided by smart environments. Several solutions have adapted technological innovations to combat navigation in an indoor environment over the last few years. However, there remains a significant lack of a complete solution to aid the navigation requirements of visually impaired (VI) people. The use of a single technology cannot provide a solution to fulfil all the navigation difficulties faced. A hybrid solution using Internet of Things (IoT) devices and deep learning techniques to discern the patterns of an indoor environment may help VI people gain confidence to travel independently. This thesis aims to improve the independence and enhance the journey of VI people in an indoor setting with the proposed framework, using a smartphone. The thesis proposes a novel framework, Indoor-Nav, to provide a VI-friendly path to avoid obstacles and predict the user s position. The components include Ortho-PATH, Blue Dot for VI People (BVIP), and a deep learning-based indoor positioning model. The work establishes a novel collision-free pathfinding algorithm, Orth-PATH, to generate a VI-friendly path via sensing a grid-based indoor space. Further, to ensure correct movement, with the use of beacons and a smartphone, BVIP monitors the movements and relative position of the moving user. In dark areas without external devices, the research tests the feasibility of using sensory information from a smartphone with a pre-trained regression-based deep learning model to predict the user s absolute position. The work accomplishes a diverse range of simulations and experiments to confirm the performance and effectiveness of the proposed framework and its components. The results show that Indoor-Nav is the first type of pathfinding algorithm to provide a novel path to reflect the needs of VI people. The approach designs a path alongside walls, avoiding obstacles, and this research benchmarks the approach with other popular pathfinding algorithms. Further, this research develops a smartphone-based application to test the trajectories of a moving user in an indoor environment
    corecore