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ABSTRACT 

 

Indoor localisation technologies are a core component of Smart Homes. Many applications 

within Smart Homes benefit from localisation technologies to determine the locations of things, 

objects and people. The tremendous characteristics of the Radio Frequency Identification 

(RFID) systems have become one of the enabler technologies in the Internet of Things (IOT) 

that connect objects and things wirelessly. RFID is a promising technology in indoor 

positioning that not only uniquely identifies entities but also locates affixed RFID tags on 

objects or subjects in stationary and real-time. The rapid advancement in RFID-based systems 

has sparked the interest of researchers in Smart Homes to employ RFID technologies and 

potentials to assist with optimising (non-) pervasive healthcare systems in automated homes.  

In this research localisation techniques and enabled positioning sensors are investigated. 

Passive RFID sensors are used to localise passive tags that are affixed to Smart Home objects 

and track the movement of individuals in stationary and real-time settings. In this study, we 

develop an affordable passive localisation platform using inexpensive passive RFID sensors. 

To fillful this aim, a passive localisation framework using minimum tracking resources (RFID 

sensors) has been designed. A localisation prototype and localisation application that examined 

the affixed RFID tag on objects to evaluate our proposed locaisation framework was then 

developed. Localising algorithms were utilised to achieve enhanced accuracy of localising one 

particular passive tag which that affixed to target objects. 

This thesis uses a general enough approach so that it could be applied more widely to other 

applications in addition to Health Smart Homes. A passive RFID localising framework is 

designed and developed through systematic procedures. A localising platform is built to test 

the proposed framework, along with developing a RFID tracking application using Java 

programming language and further data analysis in MATLAB. This project applies localisation 

procedures and evaluates them experimentally. The experimental study positively confirms 

that our proposed localisation framework is capable of enhancing the accuracy of the location 

of the tracked individual. The low-cost design uses only one passive RFID target tag, one RFID 

reader and three to four antennas. 
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1 INTRODUCTION 

 

1.1 Background 

Location estimation systems in indoor environments have recently gained popularity in the 

domain of Smart Homes. Indoor Positioning Systems use wireless communication networks 

(short-range to long-range) and are one of the main components in Smart Homes. Several 

technologies within indoor environments have been adapted to different applications such as 

asset management, healthcare, security, warehouse and people tracking. Technologies such as 

RFID, Bluetooth, and WiFi are commonly use in Smart Homes. Other technologies like Global 

Positioning Systems (GPS) are not suitable for indoor tracking due to non-line-of-site issues 

and the need for communication satellite systems [1]. 

 

The principle of locations systems (localisation systems) in Smart Homes relies on sensing the 

activity performed by individuals and location estimation at a specific time. Localisations 

systems in Smart Homes are categorised into radio frequency (RF) based technologies, optical 

sensors, sound waves sensors and electromagnetic field sensors [2]. These technologies are 

commonly used in Smart Homes to allow subject tracking and object localisation. Radio 

frequency based systems have gained significant popularity in Smart Home projects in various 

life applications. Examples of indoor localisation technologies include radio frequency 

identification (RFID) [3], Bluetooth [4], Zigbee [5] ultra-wide band (UWB) [6], and infrared 

[7]. 

RFID based systems have potential to offer a substantial improvement to healthcare delivery, 

both within the clinical and home environment [8]. A significant trend in Smart Home 

healthcare has been in aged care and for impaired individuals. Research into Smart Home 

healthcare and localisation technologies has focused mainly on building technologies and on 

improving location based systems for a better understanding of human movements and 

activities within the indoor environment system [9-12]. With previous localisation works and 

systems that were successfully able to track objects and movement of individuals in indoor 

environment. Using various technologies with desired characteristics and accuracy resolution 

of being able to locate people individuals in more than centimetres [13, 14].  
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1.2 Research limitations 

Localisation in Smart Homes based on radio frequency (RF) tracking systems to improve 

wellbeing has become feasible in the indoor environment. Nevertheless, there are still a number 

of key issues with these smart technologies which are adapted in indoor environments, 

including accuracy in the location estimation and affordability of such systems. These 

challenges need to be improved in order to design, develop and adopt better Smart Home 

solutions for wellbeing and healthcare applications. This requires further examination of the 

problems associated with accurate localising of object and individuals  location in stationary 

and real time scenarios to provide a better understanding of the exact nature of the activities 

that are performed by an individual. Better decisions could then be made to ensure a healthcare 

monitoring system that monitors and assists individual’s healthcare needs in their homes. 

 

1.3 Research Objectives 

The primary research objective is to overcome the challenges with Smart Home deployment 

such as localisation accuracy, tracking stationary objects and moveable subjects. This research 

uses inexpensive passive RFID positioning sensors to develop¬¬¬ process and 

accuracy/interference mapping protocol to allow tracking of position and movement of tagged 

objects and subjects in the Smart Homes. The aims of this thesis are: 

 

1) To develop and investigate a cost-effective Smart Home platform using indoor 

localisation technologies, such as RFID sensors, that can track tagged objects and 

subjects movements accurately. 

2) To develop a localisation framework using minimum tracking resources to achieve a 

desirable accuracy. 

3) To optimise the accuracy of tracking entities by using appropriate localisation 

algorithms. 

4) To develop an application platform for localisation purposes.   

 

The first aim addresses the affordability challenge of Smart Homes by designing a cost-

effective tracking platform using RFID sensing technologies. Development of an appropriate, 

feasible technique is required to locate tagged objects and subjects in Indoor smart space. The 

second aim entails development of a localisation based framework that provides high location 
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accuracy using minimal tracking resources and systematic localisation procedures. Testing and 

examination of the design is needed to validate our proposed module. The third aim is to 

optimise the accuracy of localising an individual’s location. This is achieved by employing the 

suitable localisation algorithms within the framework. The algorithms should be able to 

accurately measure the subjects and their interaction with the stationary objects in real-time. In 

the fourth aim, application programming interface is required to fulfil with above mentioned 

aims for localisation purposes.   

1.4 Thesis Contribution 

This thesis makes the following contributions: 

1) Provides a comprehensive survey of the Smart Home healthcare using RFID-based 

systems as well as RFID localisation systems and technologies in Smart Homes settings. 

2) Proposes a framework for indoor RFID location systems using passive RFID sensors to 

localise objects and subjects in the Smart Home environment 

3) Develops a calibration process for passive RFID sensors to reduce the interference caused 

by ambient noise in RFID signals. Extensive experiments and measurements were carried 

out in the laboratory using passive RFID tags. 

4) Implements a low-cost tracking system that uses three to four RFID antennas and a single 

passive RFID tag. 

5) Develops a localisation platform and enabling algorithms to determine the location of an 

individual in real time. 

6) Provides an analysis on the mapping accuracy of various anticipated localisation methods 

in the proposed localisation platform. 

1.5  Thesis Outline 

The remainder of this thesis is organised as follows.  

Chapter 2 presents and discusses related work in Smart Homes and Smart Homes systems in 

healthcare, including projects, techniques, technologies, and backgrounds of RFID system 

challenges. It also covers a broad range of research topics related to RFID and indoor location 

based systems, as well as discussing the challenges of current RFID systems with a 

comprehensive table to compare various RFID solutions.  
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Chapter 3 is divided into two parts. The first section presents the experimental setup of our 

localisation platform using passive RFID technologies while the second introduces the 

localisation framework using passive RFID tags for stationary and real-time tracking.  

Chapter 4 provides the details of the implementation of the passive RFID localisation. Real 

experiments were developed and carried out in a laboratory environment where we evaluated 

the collected data from the system. A discussion is also provided exploring  the main findings 

and key results of the experiments. 

Chapter 5 concludes this thesis,  providing discussion on the overall findings from the 

experiments. This chapter shows the benefit of our approach in Smart Homes as well as other 

potential areas of future work. 
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2. RELATED WORK 

 

This chapter reviews existing literature on prior work related to the Smart Homes concept, 

Smart Homes in healthcare and the challenges associated with core Smart Homes systems and 

challenges in Smart Homes healthcare domain. This chapter also reviews current tracking 

technologies in Smart Homes, including RFID localisation based systems, RFID algorithms 

and challenges of the RFID-based system. Finally, it presents research gaps within the field 

which are required for successful daily living within Smart Homes. 

2.1  Smart Home 

The Smart Homes concept is formally defined as places of residence that are outfitted with 

computers and technological devices. The aim of Smart Homes is to provide not only comfort, 

convenience and a safe environment for occupants but also improvements to the technology 

which can provide assistance to occupants on a daily basis and help connect them to the outer 

world [9]. Research into Smart Homes has focused on building advanced technological 

systems. Smart Homes include applications that unobtrusively monitor the elderly via 

connection sensors, and that can warn them or healthcare providers of any abnormal conditions 

[15].  

2.1.1 Smart Home in the Case of Healthcare  

Smart Homes for healthcare are designed to assist residents to accomplish their daily living 

activities and improve the quality of health care using advancements in ambient assisted living 

technologies [16]. The aim of Smart Homes within the healthcare sector is to provide 

autonomous support for: i) people living in their own residence, ii) elderly and impaired 

individuals who live independently and require constant health care, and  iii) people who suffer 

from numerous pathologies and handicaps, such as chronic diseases, that require them to stay 

at hospital or within a caregiver’s home [17]. The technology could potentially improve living 

quality for elderly people and disabled individuals. Therefore, healthcare Smart Homes can 

also be understood as being a specialised area of Smart Homes, integrated with sensors and 

actuators that allow intelligent communication and localisation of inhabitants so as to support 

their daily activities [17].  
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The amount of research into Smart Homes related to the healthcare domain has increased 

significantly since the 1990s. Ubiquitous homes have been studied by several researchers who 

have proposed promising contributions in healthcare and to supporting impaired individuals. 

Chan et al. [18] reviewed other relevant aspects of Smart Homes (SH) such as human activity 

recognition and efficiency of implemented sensor systems. The authors argued that Smart 

Homes are one of the favourable, cost-effective solutions for home care for the elderly and 

disabled people.   

2.1.2 Smart Homes Projects in Healthcare 

Several later research projects utilised Smart Home solutions to benefit impaired individuals, 

the elderly people and patients who required continuous health care support. These projects 

are summarised in Table 1. 

Table 1. Smart Homes for healthcare projects 

Project Target Description 

Ageing In Place [19] Impaired elders Early illness detection 

CASAS [20] Residents daily activities 
Home automation and pattern 

discovery 

MavHome [21] Home inhabitant 
Rational agent, inhabitant action 

prediction 

TREVA [22]  
Subject (elderly) Smart 

homes 
Wellness status monitoring system 

ENABLE [23] People with dementia 
Assistive technology for dementia 

patients 

Smart House [24] Older people 
Lifestyle monitoring, detection of 

panic alarms 

Ubiquitous Home 

[25] 
Living family members 

Home context-aware service, real life 

data collection 

Intelligent Sweet 

Home [26] 
Home inhabitant 

Intelligent, interaction and interface 

system (hand gesture recognition) 

Welfare Techno 

Houses [27] 
Human behaviour 

Monitoring human behaviour in daily 

life 

SPHERE [28] 
Ageing people with 

chronic health conditions 

Managed people/elders care and well-

being of home environment 

 

Researchers at the University of Missouri, USA, developed a cost-effective project called 

“Ageing in Place” to assist seniors when living independently at home [19]. The CASAS [20] 
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project at the University of Washington aimed to detect activity patterns using data mining 

techniques. It also created an automation of policies that helped understand changes in activity 

patterns. The University of Texas, Arlington, introduced the MavHome Smart Home project 

that acted as a rational agent to maximise an inhabitant’s living conditions and minimise 

operational costs [21]. The Smart Condo at the University of Alberta, Canada [29] was a 

simulated Smart Home that integrated intelligent technologies such as wireless sensors to assist 

in remote monitoring, improving the quality of living for chronically ill patients and reducing 

the time spent in hospital.  

Several smart home projects have been introduced in ambient assisted living situations in 

Europe. Gloucester’s Smart House [24], a community contribution project, targeted the 

problems associated with increases of demographic changes of the elderly people throughout 

the Telecare system, and was based on lifestyle monitoring. SPHERE [28] by the University 

of Bristol in the UK aimed to help people suffering from chronic health conditions by 

predicting falls and strokes and by detecting periods of depression or anxiety using computer-

based therapy as well as by analysing human eating behaviour. Another project named, TREVA 

[22], was a Smart Homes station that monitored long-term physiological and psychosocial 

variables. The station helped study the well-being of individuals, including the slow 

development and deterioration and their vital signs such as; beat-to-beat RR intervals, activity 

levels and blood pressure. PROSAFE [30] aimed to target long-term care and was used as a 

multi-sensor to continuously monitor elderly people including mobility changes and signs of 

activity, and sent an alarm in the case of an emergency. 

Other notable works in Europe are presented at [23], [31] and [32]. Enable project [23] aimed 

to provide assistive technologies designed to increase independent living for people with 

dementia. Devices were installed to assist the patients without technical supporters. PAMAP 

[31] was an Information Communication Technology (ICT) based system that targeted the 

daily physical activity of elderly individuals in clinical environments. Similar projects such as 

(HMFM, HOPE and HERA [32] ) were innovative ICT service systems focused on ambient 

assisted living and cost-effective solutions. 

In Asia, many smart home projects have been the subject of research. In Japan, the Ministry of 

International Trade and Industry developed a series of 13 research examples for a project called 

“Welfare Techno Houses” [27]. This project monitored human behaviour on a daily basis with 

the aim of improving the quality of both mental and physical health using a combination of 
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infrared and magnetic positioning sensors. Ubiquitous Home [25] was a home context-aware 

service designed to support seniors in real life scenario to help them live independently in their 

own homes. It integrated devices and sensors with existing data network infrastructure. 

Another project, the Intelligent Sweet Home, was introduced to provide an easy living 

environment for the inhabitants by giving the subjects the freedom of movement using hand 

gesture recognition [26]. 

In Australia, Celler et al. [33] proposed a system that showed the interaction between 

participants and their environments while examining the health status of elderly participants by 

monitoring their activity remotely within a Smart Homes. Researchers also introduced a smart 

home model that helped the elderly people and supported their needs based on simple 

approaches using a hidden semi-Markov [34].  

2.1.3 Healthcare Challenges in Smart Homes 

Smart Homes have become a feasible and cost-effective aid to assist impaired individuals to 

live independently. Nevertheless, there are major issues to overcome with smart technologies 

as in the following: 

2.1.3.1 Affordability  

Affordability in Smart Homes is still a hard task to achieve. Smart Homes could be designed 

in order to minimise the installation costs of various components by using existing 

infrastructure (e.g. Wi-Fi network devices) and examine technologies that could be adapted to 

a new system [35]. Better designed Smart Home devices, such as sensors, system components, 

system tools and applications could also reduce the computational time and minimise the cost 

of implementing the system [36].  

2.1.3.2 Reliability  

Reliability and usability are important issues to determine whether or not a solution is 

applicable for Smart Homes in healthcare. Demiris [37] revealed that there were significant 

reliability and user-friendly concerns when using smart home technologies in residential 

homes. For example, devices and technologies need to be more user-friendly so that elderly 

people can use them regularly without difficulty. Further, adequate training for elderly users is 

crucial, and systems should not obstruct a user’s movements or daily activities. Smart Homes 

will also help patients and older residents in emergency situations, by analysing their daily life 
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patterns, physical movements and by reliably monitoring physiological parameters such as 

blood pressure [18]. 

2.1.3.3 Ethical and legal  

Privacy is a crucial element when building or adapting Smart Homes. Technologies such as 

sensors and cameras could lead to privacy issues due to the constant surveillance and 

monitoring required. Consequently, these technologies are less likely to be a feasible solution. 

Unfortunately, there is still limited regulation on the patients’ rights to protect them from 

malpractice related issues [18, 38]. 

 
Figure 2.1. Taxonomy of challenges in Smart Home health in indoor environments 

2.2 Tracking Technologies in Smart Home 

Researchers have recently attempted to find an optimal solution that locates and tracks objects 

in real time. This would help residents localise and position home objects in indoor 

environments which assist impaired individuals and elders. Numerous radio frequency 

technologies for indoor localisation have been investigated such as camera sensors, WLAN 

[39], Zigbee [5], Ultrasound [40], UWB [41], Bluetooth, Infrared [39] and RFID [39]. Among 

them, RFID is one of the more promising and robust technologies, and it has been applied in 
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several projects for indoor localisation. It’s benefits are due to the low cost and high reliability 

for indoor environments.  

Table 2 summarises the existing RF technologies for indoor localisation. Further, it compares 

the average accuracy range of  RF technologies along with Frequency range and common 

measurement method are used in indoor localisation. The accuracy range it various from 

technology to other and it depends on the communication feature of each technology such as 

Frequency range and the measuring algorithms that used on each one.  

Table 2. A summary of Radio Frequency based systems. 

Technology  
Accuracy 

Range 
Frequency Range Measuring Method   

RFID dm – m 

30 kHz – 500 kHz (LF) 

3 MHz – 30 MHz (HF) 

433 MHz / 868 MHz – 

930 MHz (UHF) 

2.4 GHz – 5.8 GHz 

(SHF) [42] 

Scene Analysis 

(Fingerprinting), 

Proximity detection, 

Triangulation, RSSI 

WLAN m  IEEE 802.11x Standard 
RSSI, 

(Fingerprinting) [43] 

Zigbee m IEEE 802.15 Standard RSSI 

Bluetooth 

 
cm-m IEEE 802.15 Standard RSSI 

UWB cm 3.1 GHz-10.6 GHz [42] 

Triangulation TOA, 

TDOA, 

Angulation AOA 

 

2.2.1 Radio-Frequency Based Technologies 

2.2.1.1 Radio Frequency Identification  

RFID is a new, promising technology. It has been exploited in the last decade by several 

researchers in the field of Smart Homes dealing with finding auspicious indoor positioning 

solutions for healthcare facilities [9, 44-46]. 

RFID technology enables the tracking of individuals and objects automatically and 

independently within an indoor environment, based on the RFID communication model and 

via radio waves (between readers and tags). It works by sending and receiving the unique 

identity of persons and objects wirelessly using radio waves. A RFID system consists of 
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readers, tags and a data collection module as seen in Figure 2.2. The readers can either be static 

or mobile and there are two methods for tracking. In the first method, the reader can be installed 

in a static location inside the household (such as a wall, a table or a kitchen) to sense the 

movement of RFID tags. The reader then searches for the tags which are either attached to 

objects or carried by the person. In the second method, the portable reader detects the static 

tags in certain positions while the RFID reader can be carried by individuals [47, 48]. 

 

Figure 2.2. Working principles of UHF RFID object-based systems 

There are three main categories of RFID tags including active, semi and passive. Active RFID 

tags have an internal battery to continuously power the device. Of all three types of tags, active 

has the greatest range [48]. However, active tags have limited lifespans and they rely on energy 

stored in the internal batteries. Maintenance levels and the degree of intrusiveness for active 

tags are higher than for their passive counterparts as are the price of the tags and maintenance 

costs. Semi RFID tags also have an internal battery to power the internal circuits [48]. Semi 

RFID does not add radio noise and have longer reading range with a memory to store more 

data. Nevertheless, because it has battery which is larger size, quite expensive, limited battery 

life 

Passive RFID tags have no internal battery. They are smaller in size and are much cheaper than 

active or semi-active tags. Notably, passive RFID tags are powered by the radio waves that are 

emitted by the antennas, so they do not require an internal source of power. The tags are usually 

affixed to objects in Smart Homes, such as cups, kettles or furniture [49]. 
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2.2.1.2 Wi-Fi (WLAN ) localisation system 

WLAN (Wireless Local Area Networks, IEEE 802.11 standard) or Wi-Fi has become one of 

the most conventional technologies deployed for indoor positioning and is widely available for 

home and industrial applications. Several researchers applied WLAN to find effective solutions 

for indoor positioning for healthcare needs [50]. 

WLAN’s indoor positioning solutions are available as commercial products that use received 

signal strength indicator (RSSI) based on a fingerprint sensing technique. Some systems also 

use other positioning methods such as time of arrival (TOA) [51] and angle of arrival (AOA) 

[52]. RADAR [53] is the first system that uses Wi-Fi for indoor positioning. The accuracy of 

the RADAR positioning approach has been improved by later research that achieves on average 

2m-3m of  accuracy[52]. 

WLAN offers several advantages for healthcare and for the localisation of objects in Smart 

Homes. Firstly, it is extremely cost efficient as it uses existing infrastructure by connecting 

with a location server within the coverage area and requires no additional hardware installation 

[54]. Further, WLAN provides scalable aspects for localisation in indoor environments. For 

these reasons, WLAN has become one of the effective solutions for commercial uses and 

residential indoor environments [55]. There is , however, a drawback when using this 

technology - a multipath occurs due to the physical interaction between individuals and 

physical objects and the signal strength may change according to the assigned time. Also, the 

signal may interfere with other appliances on a 2.4GHz ISM band [54]. 

2.2.1.3 Ultra-wideband 

UWB is a technology for both short and high range bandwidth communication. UWB uses RF 

pulses to communicate between transmitters and receivers. Because can operate by non-line-

of-sight (NLOS), UWB has gained popularity as a suitable option for inside-building 

localisation and aware applications [48, 56]. UWB achieves a higher localisation accuracy (20 

to 30 cm) compared to other RF technologies and offers strong multipath resistance. The 

Ubisense system [39] is an unidirectional UWB location platform, which provides a real-time 

tracking solution for indoor positioning. The tags emit UWB signals via a network using 

localisation techniques such as time difference of arrival (TDOA) and angle of arrival (AOA). 

However, UWB technology is expensive, and is only really suitable for being deployed in 

large-scale indoor applications.  
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2.2.1.4 Bluetooth 

Bluetooth (IEEE 802.15) is a standard WPAN specification. Bluetooth devices run on a 2.4 

GHz ISM band, and most modern mobile devices have a Bluetooth feature. There are several 

benefits of using Bluetooth tags for indoor usage such as the low cost, higher security (it 

requires authentication), low power consumption and its small size. Morevoer, each Bluetooth 

device has a unique identification.  

 

BLIP [4] and Topaz [39] are popular projects that applied Bluetooth technology for indoor 

location tracking. The accuracy of the Bluetooth systems is within the range of 10m to 15m 

depending on the positioning techniques (such as RSSI or fingerprint) and other algorithms. 

The disadvantage of these systems is that the Bluetooth devices have to run during the 

discovery procedure which increases localisation latency (10-30s) and is not suitable for indoor 

positioning [54].   

2.2.1.5 Zigbee  

Zigbee [5] is an emerging wireless technology based on IEEE 802.15.4 standard which is a 

short to medium communication system. It provides various benefits for indoor home 

localisation such as it being suitable for low power consumption applications and it does not 

require higher data processing and transformation in a system. The coverage area of the Zigbee 

system ranges from 20m to 30m [54]. Similar to most of indoor positioning systems, Zigbee 

uses RSSI as a positioning method. Its accuracy is varied depending on the use of algorithms, 

such as Chen et al. [57]. Although this technology has some beneficial features for indoor 

localisation, the positioning accuracy of Zigbee solutions is limited. Other researchers adapted 

to Indoor Hybrid solutions that combined Zigbee technology for better accuracy. 

2.2.2 Hybrid Systems 

The idea of combining different indoor positioning systems is to find better localisation 

solutions by reducing the limitations of each approach. Therefore, hybrid systems could offer 

supplementary solutions for indoor scenarios. Several researchers have attempted to find 

optimal solutions using two or more various positioning technologies. Choi et al. [58] merged 

Ultrasonic with passive RFID to achieve higher accuracy (1 to 3 cm). However, the system 

was affected by line-of-sight (LOS) issues which are inherant in Ultrasonics. Sample et al. [59] 

utilised an optical positioning system with passive RFID tags to improve the accuracy. Jukka 
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et al.[60] combined WLAN with passive RFID tags whose solution provided 80% accuracy. 

The estimated positions in the applied scenarios had low distance errors which were less than 

1 meter. 

2.2.3 Other Indoor Positioning Systems 

Research was also conducted into the use of optical-based navigation technologies for home 

indoor positioning [42]. Optical localisation is a preferable solution for many operations due 

to the high accuracy achieved. Some researchers also combined camera solutions with other 

positioning technologies and RFID systems as a hybrid approach [59]. However, optical 

localisation technologies had limitations such as high infrastructure cost and ethical issues 

associated with video capturing.   

2.2.3.1 Infrared-based systems  

Infrared systems are favourably used for indoor localisation due to their wide availability in 

many applications. IR systems mostly use the LOS communication mode while transferring 

data between receivers and transmitters. The benefits of IR indoor based localisation solutions 

include their lightweight and high accuracy, making them suitable for portable applications. 

Nonetheless, using IR for indoor localisation has privacy concerns and security issues and 

requires expensive infrastructure and system maintenance [54]. 

2.2.3.2 Ultrasound technologies  

An ultrasound localisation system works similar to the way a bat communicates with its 

surroundings - using low-frequency signals. Ultrasound systems have been used for real-time 

scenarios, such as in a Cricket indoor location system [40]. These systems are inexpensive and 

provide relatively good accuracy. However, ultrasound technologies have a negative aspect in 

that interference, such as metal collision, may reflect from the surroundings when transmitting. 

2.3 Smart Homes for Healthcare Components Based on RFID Systems 

2.3.1 RFID Technology in Smart Home Healthcare  

RFID based applications have been succesfully employed in Smart Homes. In the healthcare 

domain, RFID technology has been adapted by caregivers to reduce the gap for health care 

progression and improve patient care. RFID systems have tremendous benefits in Smart Home 

environments, particularly, 1) RFID tags are small and easy to attach to objects such as plates, 
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spoons, kettles and furniture and 2) they are light enough to be worn by individuals. Smart 

Homes for healthcare can provide facilities and real-time tracking for elders and patients 

through the use of RFID chips, which can provide a highly accurate location of a patient and 

allow the collection information for use by health care professionals. RFID technologies are 

potentially applicable for indoor objects, subject localisation, recognition of activity and user 

interaction with household objects. It functions by categorising the information from RFID 

sensors in order to define the nature of a residents daily activities.  

RFID technology enables the tracking of individuals and objects in an indoor environment 

automatically and independently, based on the communication model (between readers and 

tags). It operates by sending and receiving information about the unique identity of persons and 

objects wirelessly by radio waves. The readers can be static or mobile, and there are two 

methods for tracking. In the first method, the reader can be installed in a static location inside 

the household (such as a wall, a table or the kitchen) to sense the movement of RFID tags. Then 

the reader searches for the tags which are either attached to objects or carried by the person. In 

the second method, the portable reader detects the static tags in certain positions while the 

RFID reader can be carried by individuals [47, 48].  

A Smart Homes health based monitoring system with RFID consists of several components 

that are combined in one context-aware system (see Figure 2.3). Healthcare information unit is 

responsible for monitoring healthcare system and users activities, keeping healthcare 

information records in safe database that is accessible by authorised caregiver staff member 

such as doctor, nurse, etc. RFID is the communication mechanism between the healthcare 

application and the healthcare information unit. Figure 2.4, represents the architecture of RFID-

based Smart Homes healthcare system includes three main layer; sensing layer, middleware 

layer, and service layer. 
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Figure 2.3. Components of RFID System in Smart Home healthcare applications 

2.3.2 RFID-Based Perception of Smart Homes for Health 

 

Figure 2.4. RFID-based perception of Smart Homes for health 

 

Sensing Layer
(tagged Objects/ 
individuals RFID 

Enviromental Sensors,  
RFID wearable  sensors)

Middleware 
Layer

(Classifier, Filters, etc.)

Service Layer
(Monitoring consoles , 
assessment sensors)
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2.3.2.1 Sensing layer 

The sensing layer consists of RFID physical components which are able to sense the movement 

of targeted objects (e.g. medical equipment). It also captures data from individuals and detects 

their health status for further processing. The layer collects the information from RFID devices 

in the test bed from either environmental (e.g. RFID sensors) or wearable sensors (e.g. RFID 

and accelerometer). RFID Static Environmental Sensors are commercially available with 

various functionalities. RFID Wearable Sensors can be worn by the participants to measure a 

person’s interactions with home objects and track body movement or detect a fall.  

2.3.2.2 Middleware layer 

The raw data from the physical layer can be translated to a particular context using inference 

engines that describe the condition of individuals. Classifiers filter and categorise the data to a 

particular context such as position and movement of the person [61]. Data reduction and data 

analysis are also processed in this layer. The software in this layer may combine multiple 

sensors to intelligibly analyse a data stream [62]. The inference engines are considered to be 

knowledge representation in the middleware layer and are a main component of the RFID 

systems [8].   

2.3.2.3 Service layer 

RFID health information systems in the service layer store information about an individual’s 

health and physical condition (e.g. health database server) which can be accessible by medical 

staff and caregivers [8] via real time monitoring servers. The context-aware reasoning module 

assists the end users with their health care needs in various ways such as a notification or 

warning in case of risks. It also notifies the caregivers about the health of individuals via 

monitoring and assessment consoles [62]. These consoles help researchers and practitioners to 

monitor their patients and provide the patients’ health status and medical information. The 

service layer allows the caregivers to interact remotely with the patients and assist them when 

dealing with abnormal health conditions. 

Context-aware systems for healthcare have significantly enhanced the quality of healthcare 

services and enabled services delivering in healthcare in Smart Homes. It is apparent that 

RFID-based solutions and studies are improving the advancement in the field. 
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2.4 Localisation Systems in Smart Homes 

Localisation of objects and persons remains a challenging issue in Smart Homes. Researchers 

have been trying to find inexpensive solutions for tracking objects within the indoor 

environment using RFID or other locating systems. Some of these studies have used hybrid 

approaches that provide better localisation yet, add cost and complexity to the systems. 

Unfortunately, finding affordable solutions to indoor positioning in Smart Homes is an ongoing 

endeavour.  

 

RADAR [7] by Microsoft is the first RF project applied in an indoor localisation environment. 

RADAR was dependent on Wi-Fi signal strength or the fingerprinting localisation method. The 

system achieved accuracy between 2m-5m with 90% precision within 5.9m [7]. It uses WLAN 

network infrastructure so is easily installed. Nevertheless, the localisation devices have limited 

energy levels and received signal strength (RSS) as well as privacy concerns [7].     

 

The first noble indoor localisation system that combines ultrasound with RF technologies is 

used in cricket system [9] and could be used in other various indoor applications such as 

medical, healthcare and human tracking. The system can achieve high accuracy between 1-

3cm for long range tracking with reasonably low cost. However, this system uses battery-

powered tags that are not an ideal solution for long running times, whereby the system suffers 

from an energy consumption issue.  

 

Active Badge [32] is a novel location system proposed by researchers at MIT University. It is 

aimed at detecting the location of staff members inside the university facilities and provides 

information about their movements. The active badge is a cost effective solution based on IR 

sensors which use a small wearable device to transmit infrared radiation every 15 seconds to 

the sensors through an optical pathway.  

 

Interestingly, Hodges et al. [33] proposed a system that used ultrasonic sensors to determine a 

location in 3D. The system achieved up to 95% efficiency when reading at 3cm. However, 

implementation of the sensors was relatively costly. 
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2.4.1 Metrics and challenges in Indoor Localisation Systems 

This section specifies the performance metrics associated with indoor localisation systems 

with the following criteria: 

2.4.1.1 Accuracy  

Accuracy is defined as the average Euclidean distance between the estimated location and the 

actual location [33]. Accuracy in the localisation of individuals in personal monitoring is one 

of the biggest challenges facing Smart home solutions. Multiple factors affect the accuracy of 

the results, including 1) the method for determining locations of the subjects in the indoor 

environment, 2) the size of the testing area and 3) the distance between targeted objects and 

sensing devices (e.g. sensors and readers). The orientation of sensors also plays a significant 

role in obtaining better accuracy during the experiments.  

2.4.1.2 Coverage 

For indoor localisation systems, the coverage parameter can be defined as the spatial extension 

where system performance should be ensured by indoor positioning [42]. Therefore, in most 

indoor localisation systems, coverage is a closely related factor to the accuracy of determining 

the performance of such a system. The coverage is measured in (m), (m2) or (m3) [54].  

2.4.1.3 Robustness 

Finding a means to address accuracy and the robustness of activity recognition is a current 

pressing issue in the Smart Homes field. At this stage, the infrastructure of Smart Homes must 

be designed to perform well to interpret several sources of data or distinguish between different 

sources. If the proposed approach ignored the accuracy factor or the robustness of the activity 

recognition problem, then unaccountable activities would show up as noise in the data. In most 

cases, this noise in the data will lower the accuracy and robustness of the system to recognise 

the activity.  

2.4.1.4 Performance 

The performance of the Smart Homes system is measured by the success of the system to obtain 

accurate readings. Some factors affect the localisation processes, such as time delay in 

calculating the positions of objects or individuals, sudden movements, and environmental 

changes. Similarly, scalability can influence the performance of the system. 



26 
 

2.4.1.5 Complexity  

The complexity of the solution is an important factor when designing Smart Homes. Adding 

more infrastructure components to the existing solution will result in a more complex system. 

If a system requires time to locate subjects during localisation and uses a sophisticated 

algorithm, it is less likely to be adaptable and applicable in daily life scenarios in Smart Homes. 

Maintenance of such systems is another problem when using a complex solution, as it is 

ineffective in the long term if the system requires frequent maintenance.   

2.4.1.6 Costs 

Costs associated with Smart Homes systems include added infrastructure to the existing 

fixtures, the devices (e.g. positioning devices and system components), installation and 

maintenance, as well as costs to carry out experiments. For example, WLAN systems have a 

high relative accuracy that can be used in addition to existing localisation devices. 

Unfortunately, it costs more when using systems such as WLAN while RFID systems use 

cheaply available tags [39]. 

2.4.2 RFID Smart Homes Projects 

Early research focused on RFID technology for indoor tracking, but RFID has also been applied 

to areas such as industrial, medical, automobile and agriculture. RFID technology has been 

scientifically proven in applications because of its advantages as far as accuracy, cost, 

efficiency, adaptability, scalability, robustness and simplicity. A comprehensive list of RFID 

solutions for Smart Homes is discussed in a summaried version in Table 3 and  the full version 

in Table 11 in the Appendix A. The tables compare the common RFID and recent localisation 

approaches for indoor Smart Homes. The comparison is based on localisation parameters and 

assessment features that tell us how efficient and robustness each work. For instance, accuracy 

parameter describes the best precision result achieved in centimetres or meters. This also can 

be called the margin error of estimated location compared to the actual location of the target 

entity. Whilst efficiency describes the overall accuracy performance of each system. Technique 

it can describes the localisation approach that used in each work, and tracking describes type 

of tracking objects whether it is active, semi active, and passive. Reader, tag and coverage area 

column it simply demonstrates the deployment area of each system. Last column describes 

benefits and drawback of each work.  
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Table 3 provided a compact comparison between common localisation RFID systems in Smart Homes. A comprehensive comparison is presented 

in Appendix A, Table 11. 

Table 3 Short comparison between RFID based localisation solutions in Smart Homes 

Solution Application Accuracy  Benefits / Drawbacks 

LANDMARC [63] Location awareness ≤ 2m 

• Cost effective solution. 

• Less infrastructure required during deployment 

• Minimises the localisation error caused by environmental interference ( more precise ) 

• Complexity and flexibility such as: 

o Long latency. 

o Different tag behaviour during detection (different reading values) 

Chawla et al[64] 
Indoor localisation 

(object localisation) 
0.18cm 

• Several algorithms to achieve  higher accuracy and efficient solution 

• Need to deploy a large number of tags for higher accuracy 

• High complexity and installation issues 

Athalye, Savic et al. [65] Location awareness 30cm 
• New Sense tags which have a dual ability to locate objects 

• Battery life issues caused by a comparator that runs whole power circuit. 

Bouchard, Fortin-Simard 

[66] 

Indoor tracking (people) 

/ Activities of Daily 

Living (ADL) detection 

≈ 16cm 

• Reduced inaccuracy by applying some localisation filters 

• New mapping protocols 

• The system was not tested on a large scale with different zones. 

• Lack of real-time tracking for multiple objects. 

Bolic et al [67] 
Indoor localisation 

(proximity detection) 
32 cm 

• Inexpensive UHF RFID tags and they are maintenance free 

• Requirement of landmark tags for localisation application 

• Relying on semi-passive tags (needs battery changes) 
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Lionel et al [63] introduced the concept of localisation using tag references in their 

LANDMARC system which used active tags that were located in fixed positions and measured 

the distances between readers and tags using a multi-level power method. There were eight 

levels where Level 1 was the shortest range and eight the longest. The system relied on the 

received signal to estimate and detect the position of the tags. LANDMARC obtained an 

accuracy of 1m (50% error distance) with less than 2m in maximum error distance. Work by 

Zhao et al. [68] used the principles of the LANDMARC system to implement the Virtual 

Reference Elimination (VIRE) system that located reference tags in a virtual reference tag 

which enhanced the performance and avoided interference as well as multipath. The authors 

reported the least error estimation 0.47m within the average of error estimation (0.29m) for 

non-boundary tags [68] when compared to LANDMARC. Other works also used the 

LANDMARC concept to enhance the localisation [3, 69]. A solution was presented by Jin et 

al [3], which improved the overall localisation performance of the former and achieved an 

accuracy of 72cm using fewer tags around the targets. FLEXER [69] utilised a simulated 

solution to increase the accuracy where their solutions attained 70cm (or 80%) using applied 

region mode [69]. 

Zhang et al [70] implemented RFID diversity elimination algorithm called RFID DeffFree Loc 

to reduce the mean locating error. In their simulated work, the system obtained an accuracy of 

10cm in an environment free of noise, while 19cm was achieved in noisy environments - the 

accuracy was improved in noisy environments compared to LANDMARC solutions. In 

contrast, work by Hahnel et al. [71] was one of the first projects that considered indoor 

localisation and mapping using passive RFID tags, based on a probabilistic measurement 

model. It applied two antenna readers installed on a mobile robot to detect the static passive 

RFID tags that were attached to the walls of the tested environment.  

Tesoriero et al [53] expressed the idea of turning the area (floor surface) into a grid. A RFID 

reader attached to a mobile robot sensed the passive RFID tags that were attached in small 

spaces inside the grid floor. RFID tags were linked to a particular position on a virtual map. 

The system achieved an accuracy of 0.9m. However, the readers had to be carried during 

localisation. Work by Bouchard et al. [66] was presented to enhance Fortin-Simard’s 

trilateration model and algorithms [72]. The authors improved the fuzzy localisation using the 
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mean of interface engine and linguistic variables such as likeliness, distance and object 

detection. 

Hekimian-Williams et al. [55] proposed a project that achieved very high and precise 

localisation results in millimetres using phase difference between two readers. The system used 

a simple approach that consisted of two readers for locating one active RFID tag. The system, 

however, always used battery powered tags which required high maintenance and had high 

associated costs. 

Other systems also provided high accuracy in their solutions Vorst [73] applied a Particle Filter 

(PF) based on a pre-probabilistic approach (self-localisation) to achieve better accuracy while 

Joho [74], used an antenna orientation and RSSI model. Similarly, Chawla [64] developed 

several new, linear, binary and parallel search localisation algorithms to enhance the overall 

accuracy and achieved very good results compared to the previous works with up to 18cm 

accurate localisation. However, these systems used many tags and more readers which added 

costs as well as added to the complexity of the system, making them less suitable for indoor 

environments.  

Hybrid methods that combined UWB with RFID were also proposed. Semi-active tags were 

introduced by D'Errico R. et al [75] where the system used UWB antenna and UHF technology 

to sense RFID Semi-active tags based on backscattered signals were modelled. The system 

detected two types of tags 1) dynamic tags based on extended Kalman filters (EKFs) algorithm 

and 2) static tags using least squares (LS) algorithm. This method achieved relatively high 

accuracy (20 cm) with less than 0.53m (75%). 

 

Xiong et al. [76] combined WSN and RFID devices as a hybrid approach to achieve desirable 

results. The authors applied hybrid cooperative positioning algorithms that extended the 

Kalman filter (EKF) with numerous measurement modules [76]. Their purpose was to find a 

reliable solution to indoor positioning that was compatible with existing infrastructure from 

different IPS technology. The method was tested in simulated and experimental environments 

and achieved considerable levels of accuracy. 

Fortin-Simard et al. [72] proposed a method that adopted a new, enhanced trilateration 

approach using RSSI. They applied various filtering algorithms to reduce the localisation errors 
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that were caused by the interference of environmental surroundings (e.g. metal and walls). The 

work also reduced the problems generated by the nature of the passive tags and RFID readers 

during localisation processing. It obtained a high accuracy of 14cm overall. The system was 

also implemented to support daily life activity recognition.  

Sunhong et al. [77] used RFID readers attached to a robot to detect fixed location tags on the 

floor during robot movement. The work aimed to provide assistance and localisation movement 

of elders and individuals with disabilities who used motorized wheelchairs. The researchers 

presented an algorithm to read the speed of the robots movements (or a portable chair), where 

the accuracy depended on the reading speed against the tag locations. This obtained a promising 

accuracy of 10cm in comparison to previous similar approaches.  

Jachimczyk et al [78] utilised a 3D RFID localisation method using hybrid algorithms in a 

scene analysis and neural network. The system was tested in three different test cases including 

active readers, different scenario and cost effectiveness. It performed in both simulated and in 

real environments to find the optimal configuration for RFID readers. The results were obtained 

according to some active readers in different scenarios. The scenarios required a certain number 

of RFID readers to be allocated in each test where it performed according to the number of 

readers (from 1 to 8). The best condition was achieved when using four or eight readers and 

the averages of the accuracy were 11cm and 7cm respectively as well as 49cm and 50cm 

respectively for standard deviation uncertainty.  

 

Athalye et al [65] proposed a solution for indoor localisation by using new semi-active tags 

called senstags that had dual detection ability. Senstags first detected and decoded backscatter 

signals from RFID tags (within proximity range) and then communicated with the reader using 

backscatter modulation as a regular tag. Although this technique achieved good accuracy, it 

required a long battery life and high system maintenance.  

Yang et al [79] introduced some principles for tag distribution localisation and grid patterns. 

The system defined (SRE) method as the ratio of the number of successful tag readings. This 

method was successfully applied in detecting multiple RFID passive tags. 

Bolic et al [67] presented an approach called Sense-a-Tags (STs) by applying the proximity 

technique to enhance the passive RFID tags functionality in tracking people and their 
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interaction with objects in real time. The authors tested their STs system in two experiments 

using a particular number of RFID tags with various tag orientations. The system achieved 32 

cm and 48 cm detection accuracy respectively. 

2.4.3 Tag- Free Localisation Using RFID-Based Sensors  

Several methods have been introduced to address RFID localisation related problems and 

track within the indoor environment as aforementioned. One of these was a highly desirable 

method called (Tag-Free localisation). 

Tracking using Tag-Free approaches have recently become an active research topic. Many 

researchers adapted Device-Free localisation using RFID systems due to its feasibility, 

accuracy and cost-effectiveness compared to previous solutions as mentioned in the literature 

review. Furthermore, this method does not require subjects to wear tags, especially in the case 

of tracking an impaired patient such as dementia patients who frequently forget to wear tags or 

wearable readers. Thus, Tag-Free has become a desirable solution to track moving subjects in 

Smart Homes. 

2.4.3.1 Tag Free RFID Related Work  

The Tag-Free passive RFID technique uses RFID tag array for location sensing and route 

tracking [47]. Work by Ruan et al. [80], introduced a new approach which tracks moving 

subjects based on classification tasks. They used learning-based classification methods (GMM-

based HMM model and kNN-based HMM), to localise subjects from RSSI observed values of 

RSSI distributions at each grid. Moreover, they introduced a multivariate Gaussian mixture 

model (kNN and HMM-based) to track moving subjects based on continuous sequences of 

RSSI. 

TASA [47] is a promising hybrid approach that uses inexpensive passive tags with a few RFID 

active tags located in previously determined positions as reference tags to improve the tracking 

of moving objects based on both the Tag-Free principle and the RFID array tags. Due to 

behaviour variations in RFID readers, TASA used group behaviour monitoring in large areas 

to reduce the noise caused by passive RFID tags. In order to achieve higher accuracy, the 

authors developed algorithms to reduce the noise in RFID readings and recover trajectories in 

an online mode. Following, was a work named Twins [81], which implemented a novel cost-
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effective solution of motion detection using Device-Free Passive RFID tags. The authors 

implemented two adjacent tags to enhance object localisation thereby achieving an error 

location of 0.75m, compared to TASA and LANDMARC. 

Table 4. Comparison between tag free RFID-based localisation solution 

Solution Application Method /algorithms  Benefits 

TASA [47] Location sensing  
Reference Tags  

(active & passive tags)  

Reduces the noise in 

passive RFID tags  

(optimises the 

accuracy) 

Twins [81] 
Object localisation 

in warehousing 
kNN & Particle filter 

Able to track multiple 

objects 

TagTrack [80] 
Track Subjects 

(Real time) 

• kNN-based Hidden 

Makov Model  

• Multivariate 

Gaussian Mixture 

Model & Hidden 

Makov Model 

(GMM-based 

HMM) 

• SVM  

Optimises the accuracy 

in tracking moving 

subjects using learning-

based classification 

Wagner et al 

[82] 

Location sensing / 

Imaging based 

Localisation  

Clustering Module  

Increases measurement 

speed and localisation 

precision    

 

2.5 RFID Tracking Techniques in Smart Homes 

Several detection methods have been proposed in the literature for RFID indoor localisation. 

There are three main detection techniques and position estimations for RFID technology 

including Triangulations (distance estimation), Scene Analysis and Proximity.  
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2.5.1 Geometrical Time-based Algorithms  

2.5.1.1 Triangulations 

This technique relies on the geometrical properties [54] of triangles to determine the target 

locations. In triangulations, there are two main methods including lateration and time-based. 

• Lateration, trilateration and multilateration techniques estimate the position of an 

object, where RFID tags were attached, by measuring its distance from multiple 

reference points (either RFID objects or RFID antenna). This technique is usually called 

the range measurement technique [39]. 

• Time-based methods such as TOA and TDOA are techniques which measure the 

positions of RFID tags (or objects) based on distance measurements [39]. RSS is based 

on the received signal phase method and phase of arrival based techniques such as 

Phase Difference of Arrival (PDOA) [54].  

Many researchers have investigated RFID localisations using the lateration triangulations on 

various models for indoor positioning such as those in TOA [83], TDOA [84], PDOA [85] and 

RSS [86] [74]. Localisation, along with RFID lateration techniques have been used for various 

indoor positioning applications. However, there are some drawbacks such as multipath (TOA, 

TDOA) and non-LOS ( TOA, TDOA and PDOA). 

2.5.1.2 Angulation 

The Angulation technique, AOA, is defined as the angle between the propagation directions of 

the incident waves and references, called orientation. The orientation is defined as the fixed 

direction against which AOA is measured [87]. In this approach, the location is determined in 

2-D by calculating the intersection between two beacons, or two positions as measuring 

elements [40]. AOA requires two beacons to improve the accuracy and needs more than three 

angles for triangulation. However, AOA is affected by multipath, NLOS propagation and wall 

reflection, which causes errors for indoor location estimation [54].  

2.5.2 Scene Analysis 

The scene analysis method first collects the features (fingerprints) of the scene and then 

estimates the location of the tagged objects by matching the online measurements with the 
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closest deductive location fingerprints [39]. One of the most common approaches is RSS 

location based fingerprint. There are two stages in the location fingerprint: the offline stage and 

the online stage (run-time stage). A site survey is performed in certain environments during the 

offline stage. The locations of the coordinate values, or labels, and the signal strength are 

determined by collecting nearby measuring units. In the online stage, the current detected signal 

strength and the gathered information are used to discover the new estimated location. 

However, errors can happen in received signals whose strength can be  influenced by reflection, 

diffraction and scatter that occurs in indoor environments [39].  

Fingerprinting-based positioning methods typically consist of five pattern recognition 

techniques including probabilistic, kNN, neural networks, SVM, and smallest SMP [39].  

2.5.3 Proximity 

In this method, the location depends on the symbolic relative location that is derived from an 

intense grid of antennas. When a mobile target enters the single antenna’s radio signal range, 

the antenna will consider the target as a collocated object on its entire coverage. If more than 

one antenna detects the same target, it will be collected by the antenna that receives the 

strongest signal. The cell of origin (COO) defines the position of the mobile target and if the 

positon is within limited coverage. The localisation method is simple, and does not require 

heavy implementation. However, the accuracy relies on the density of the antennas and the 

strength of the signal range. This also means that the approximate position of the tagged object 

is used at a given time. 

Table 5 compares three main types of tracking technique methods that used in RFID indoor 

localisation. Triangulations method; including Lateration and angulation, scene analysis, and 

proximity. Table 6, describes scene analysis (fingerprint) algorithms along with common work 

in each from the literature. 
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Table 5. A comparison between RFID localisation methods 

RFID localisation technique Method Dimension 

Advantages (A) 

Reference 
Disadvantages 

(D) 

T
ri

a
n

g
u

la
ti

o
n

s 

Lateration 

Techniques 

TOA 2D 

A: High 

precision 

localisation 

D:direct TOA 

suffers from 

synchronisation 

and time-stamp 

multipath effect. 

Shen et al. [83] 

TDOA 2D 

A: Accurate for 

Real-time 

locating (RTLS) 

D: NLOS 

Multipath 

Kim et al. [84] 

POA/PDOA 2D 

D: Multipath 

propagation 

Rely on LOS 

Povalac [85] 
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RSS 3D 

A: -Cost 

effective method 

of location 

estimation 

-Better estimate 

of the distance. 

D: uncertainty 

location related 

issues 

Chawla et al. 

[86] 

Angulation AOA 2D, 3D 

A: no 

synchronization 

required 

D: multipath 

reflections 

Azzouzi et al 

[87] 

Scene Analysis (fingerprint) 

**(Refer to 

Table 4) 

 

2D,3D 

Proximity 

Reference 

points (well-

known 

position) 

2D 

A: offer 

proximate 

position 

information 

D: cannot give 

absolute ( 

relative) position 

Song [88] 
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Table 6. Algorithms in RFID Scene Analysis (Fingerprint) 

Scene Analysis 

Algorithms 
Description Author 

Probabilistic Approach 

Based on Bayesian 

network [86] to 

estimate target (tags) 

location. 

Seo et al. [89] 

k-nearest-neighbour 

(kNN)  

Radio mapping 

based in online RSS. 
Ni et al. [63] 

Neural Networks 

method 

It uses offline RSS 

and a-like location 

coordinates as an 

input for the target 

training purpose.   

Moreno-Cano et al. 

[90] 

SVM 

It uses statistical 

analysis and 

machine learning to 

perform the 

classification and 

regression. 

Yamano [91] 
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2.6 Challenges of RFID Localisation in Smart Homes  

The main challenges of RFID location tracking systems and technologies are the high variation 

of principles and functionalities in localising objects and moving subjects in indoor 

environments. Researchers have worked on finding optimal indoor localisation solutions that 

worked across numerous indoor positioning platforms. Nonetheless, there is no fully optimal 

solution using RFID platform technology. 

2.6.1 Accuracy-related Challenges in Tracking Entities in RFID Systems   

2.6.1.1 Behavioural Variation of RFID tags 

One of the most common problems facing passive RFID tags used in tracking systems is the 

fact that passive RFID tags fluctuate in their RSSI readings, even if the tags and readers are 

static (in a fixed position) and no objects or subjects are crossing one another. Furthermore, 

tags that are working in the same conditions may be different in RSSI. These behavioural 

variations could be caused by manufacturing defects or even differences within chips, 

integrated circuits and noise [47]. More approaches and methods need to be undertaken in order 

to calculate the RSSI changes and RFID tags’ abnormal behaviour. 

2.6.1.2 Behavioural Variations of RFID Readers 

Another common issue in RFID localisation systems is behavioural variations. This happens 

when the readers are not able to fully query the tags within their reading range [92]. This could 

be addressed by finding a mechanism that can increase the power level and also by finding 

ways to optimise the distance between the tags and readers within acceptable reading values 

and without significant changes in RSSI readings.  

2.6.2 Interference 

Interference is a common issue in RFID localisation. It is caused by environmental interference 

factors like radio noise and collision caused by impermeable metal and liquids, meaning the 

signal cannot pass through it. Internal factors related to RFID such as tags and readers can also 

create interference. This causes RF propagation and eventually leads to errors in localisation 

[64]. The interference problem can affect both active and passive tags in localisation. However, 

in active mode tracking, the localisation errors are less than in passive tracking because the 
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active RFID readers emit less energy to detect the tags. In passive tracking, RFID readers 

require more energy to localise the passive RFID tags that do not have any source of energy 

and rely on the RFID reader’s emissions. UHF RFID interference can be divided into three 

types including tag interference, multiple readers to tag interference and reader to reader 

interference [93]. Research has proposed to reduce localisation errors caused by interference 

[94] [95] but unfortunately, further investigation is required to produce better and more scalable 

results.    

2.6.3 Tag related problems  

Tag orientation is very important for detecting a tag’s location via reader communication. Tags 

can be attached vertically, horizontally or at an angle on the sides of objects to obtain better 

detection. Parallel orientation usually reduces the chance of detection compared to the previous 

setup due to one side of directivity in a parallel orientation. 

The sensitivity of tags is another issue in RFID localisation applications. It defines the 

minimum power required to activate or read the tags and those with lower sensitivity cause 

more location errors while tags with higher manufactural sensitivity provide better location 

detection [94]. 

Tag spatiality affects localisation errors. For example, frequent replacement of tags at random 

locations will lead to lower accuracy. Tags placement at specific and consistent locations will 

provide better results during the interactions between readers and tags. 

2.7 Activity in Daily Living in Smart Homes for Healthcare 

The activity in daily living (ADL) refers to the things that individuals do in their daily life such 

as work, homemaking and leisure and particularly their daily self-care activities such as 

feeding, bathing, dressing and grooming [96]. These activities define the individuals’ ability to 

live independently in residential homes. ADLs are categorised into two main groups, basic 

activity in daily living (BADL) and instrumental activity in daily living (IADL). BADLs are 

the necessary basic domestic or routine activities required for an individuals’ wellbeing 

including mobility, eating, drinking, sleeping, dressing, bathing and going to the bathroom. On 

the other hand, IADLs are other tasks that are not crucial for life. However, IADLs provide 
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comfort for the elderly people and impaired individuals and include housework, food 

preparation, medication, exercising, shopping, ironing, sweeping, telephoning, etc. 

 

The recognition of human activities in indoor environments is a difficult task to achieve [97]. 

ADL focuses on addressing these challenges and finding solutions to understanding human 

activity in Smart Homes. Ubiquitous environments like Smart Homes have facilitated the 

detection of daily activities by deploying various environmental sensors such as RFID, 

wearable sensors and vital signs sensors to collect data such as location, movement patterns 

and patient health status. The data is then translated to descriptions of activities using models 

and algorithms within context-aware systems and computerised applications. 

2.7.1 Sensors for Activity in Daily Living  

There are three main groups of sensors for human activity recognition including wearable 

based, physical environment based and other sensors as shown in (Figure 2.5 ) 

 

 

Figure 2.5. Human Activity Recognition Sensors 

2.7.1.1 Physical Environment Based Sensors 

Types of sensors such as RFID, Proximity, Pressure, Zigbee, and WLAN can be used to detect 

the interaction between the person and the environment around them [98]. Environmental 

variable based sensors use the raw data from sensed objects to assume the nature of activity 

undertaken by the individuals [98]. The distributed sensors detect the a person’s activity and 

their interaction with objects. The data is collected by the ubiquitous sensors and is then sent 

to a local server for further processing. 

Human Activity 
Recognition sensors

Wearable based sensors

e.g. tri-axial accelerometer 
sensors

Physical Environment
based Sensors

e.g. RFID sensors

Other Sensors

e.g. Camera / Video 
sensors
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2.7.1.2 Wearable Based Sensors 

Wearable sensors such as inertial sensors, accelerometers, electromechanical switches, 

goniometers and pedometers gyroscopes are body-attached sensors and are one of the most 

common sensors for human activity recognition. They are used to recognise the motions of a 

human body and to support the human recognition movements as well as fall detection using 

wireless monitoring systems [99]. The devices are designed to continuously measure 

physiological data such as vital signs of the human body, as well as biomechanical data. 

Analysing such data helps to identify human activities in daily living and translate them into a 

meaningful form using pattern recognition [100]. 

2.7.1.3 Other Activity Recognition Sensors  

Camera based sensors, which are widely used for human activity recognition within a finite 

sensing coverage are those sensors which rely on the cameras recording and video sequences 

to recognise the human activity using computer vision algorithms [98]. Video sensors such 

RGB video [101], RGB-D video [102] and depth images sensors [103] are common types of 

visual sensors and are broadly accepted in human activity recognition with good recognition 

rates. However, they are costly, have high energy consumption and also require frequent 

maintenance and are subjected to privacy related concerns 

2.7.2 Problems Related to ADLs in Smart Homes 

Activity misclassification - This problem happens when the method cannot distinguish between 

BADLs and IADLs [104]. 

Specific activities - Some of the BADL activities such as making a sandwich and making toast 

are usually classified as the same, however, they are different activities and need to be 

identified differently in the discriminated model [105].  

Ambiguous activities – These occur when activities appear that are not predefined in the 

training model. These may also happen when several sensors and objects are activated at the 

same time so that the system reports the same activity from different sensors. For example, 

most of the systems classify lying in a bed as sleeping but cannot actually determine whether 

a person is sleeping, reading a book or watching TV [106, 107]. 
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The current issues related to ADLs in Smart Homes are summarised in Table 7. 

 

Table 7. Current issues in ADLs in Smart Homes 

Activity Activity Level Nature of problems 

Ironing IADL 
Misclassified between two different activities (e.g. 

confusion between ironing and dressing [104]) 

Dressing BADL 
Misclassified (e.g. confusion between ironing and 

dressing [104]) 

Washing Dishes IADL 
Misclassified (e.g. confusion between washing dishes 

and clothes [104]) 

Brushing teeth BADL 
Misclassified (e.g. confusion between brushing teeth 

and washing dishes [104]) 

Sleeping BADL 

Ambiguous with other activity (e.g. ambiguity 

between recognising sleeping from reading a book or 

lying in bed or watching TV [106]) 

Making 

sandwich/ toast 
BADL 

Specific activity (e.g. most systems cannot 

distinguish between particular food activities such as 

making a sandwich from making toast [105]) 

 

2.7.3 Research Challenges in ADL 

ADL detection is still a difficult task to achieve in Smart Homes with regards to healthcare 

requirements. Many approaches have been introduced towards solving ADL recognition 

problems. However, there are still limitations. The following table (8) summarises current 

challenges of ADLs as perceived from the literature. 
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Table 8. Current research challenges in ADLs 

Challenges  Description 

Accuracy and robustness in 

activity recognition [108] 

Some human activities can be carried out by different 

humans at different times.  The actions that are taking 

place rather than evaluate how correctly the activity was 

carried out as well as other qualitative information. 

High-level and long-term 

activity monitoring [108] 

Monitoring high-level activity in large-scale data [49] and 

a real-world scenario is still difficult to achieve, and needs 

proper formalisation of activities. 

Long term activities usually include several sub-activities 

that may be performed in different order. 

Multi-user and multi-sensor 

activity monitoring [108] 

In lab experiments, the data are usually collected by a 

single user activity. However, in a in real life scenario, 

activities can be performed by multiple users concurrently 

and there may be interaction between them.  

Multiple sensors are still a research challenge. 

Real world data collection 

[108] 

Most of experiments and ADL activities are carried out in 

laboratories where designs and solutions are based on lab 

settings. The activities that are performed in the lab are 

also based on the lab environment.  

Behaviour trend profiling 

and analysis from 

monitoring sensor [109] 

Long-term monitoring poses some challenges such as data 

labelling and issues of profiling and analysis with data 

integration. 

Affective states detection 

[109] 

How successfully affective states are identified and 

performed (e.g. happiness, sadness, anger, etc.). Activities 

that monitor human physiological parameters could 

contribute significantly to behaviour trend analysis. 

Distinguishing between fall 

and ADL events[108] 

Distinguishing between falls and ADL events still poses 

challenges, though each event has distinct characteristic 

signatures in the sensor data. 

 

Within the scope of this thesis, the development of ADL tasks has not been carried out. 
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3 FRAMEWORK AND EXPERIMENTS   

 

Explored  throughout this chapter is the methodological framework of our proposed indoor 

RFID  location system using passive RFID sensors to localise our target.  Ultimately, the goal 

was to optimise the accuracy using minimal and affordable tracking resources. The system 

utilised implementation of the RFID localisation test bed setup, evaluation, sensors 

calibrations, localisation algorithms and experiments. Low cost passive RFID-based sensors 

were utilised with the overall aim of achieving a desirable accuracy of localising subjects and 

objects.   

3.1 Environment 

In this section, the design of the RFID system is described, including the core components and 

the setup environment. The experiments were deployed in the Smart Home infrastructure at the 

Telehealth Research & Innovation Laboratory (THRIL) at the School of Computing, 

Mathematics and Engineering (SCEM), Western Sydney University. The experimental test 

area was 2.75m × 3.0m. The testing environment was effected by other external influences 

including wi-fi network, metal stands, furniture, lab equipment and on occasion magnetic field 

from other labs so as to replicate a real-life scenario. The system was deployed inside THRIL 

lab room and covered the majority of the room’s floor area. RFID sensors were located around 

the room with an average temperature of 22-24°C in accordance with the recommended 

operating temperature from the manufacturer (Impinj technologies).   

3.2 System Design and Setup 

This section describes the system design, deployment and implementation of the hardware 

and software components. The integration of both components enabled evaluation of the 

localisation approach using passive RFID (see Figure 3.1).  
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Figure 3.1 An example of our hardware setup 

3.2.1 Hardware Components  

This section provides a brief description of the equipment and hardware that were used in our 

experiments. 

3.2.1.1 Reader 

Impinj is a provider of a range of RFID readers. For our system requirement and space 

localisation needs, “Speedway Revolution R420” was selected (see Figure 3.2). 

 

Figure 3.2 Impinj Speedway Revolution UHF R420 RFID Reader 

The R420 RFID reader provided the following features which were suitable for our 

requirements: 
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- The device had four ports which were expandable up to 32 antennas using Antenna Hub 

to reduce the system expansion cost and achieve flexibility in various applications. 

- It provided high RF read sensitivity up to (-84dBm) which was useful to improve 

accuracy and ensure a longer reading range. 

- It was relatively easy to install. Moreover, its interface could connect to a personal 

computer using a Power over Ethernet (PoE) port. 

- The device had a decent Application Program Interface (API) that used Java 

programming language. 

3.2.1.2 Antenna 

Impinj provided the RFID antennas together with the Speedway Revolution kit. The antenna 

(series S9028PC, Figure 3.3) worked at the maximum frequency received by the reader 

within an operating frequency range of UHF 860- 960 MHz, region dependent.  

 

Figure 3.3 UHF RFID antenna type S9028PC 

3.2.1.3 Tags 

Based on our system design, only passive tags were utilised. A collection of passive RFID tags 

of different sizes and models were obtained. Each type had strengths and weaknesses. We 

selected the best tags from the collection by applying a systematic tag selection procedure. The 

selection identified candidate tags for the planned localisation experiment. 

3.2.1.4 Hardware Setup  

The physical platform setup was divided into two components; the first was to examine target 

tags using a trilateration algorithm and three antennas (Figure 3.4 a). The second setup localised 
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the target using multilatertion and four antennas (Figure 3.4 b). Physical setup was 

implemented in (2.75m * 3.0 m) test area.  

  

a b 

Figure 3.4. Visual Localisation Testbed, where a) 3 antenna setup and b) 4 antenna setup  

Due to limited space, human body impacts,  and environmental effects such as interference 

from metals bars, tables, cables, and wireless transmitting devices  attempts were made to 

reduce the environmental noise by isolating the obstacles at the rear using wall attached 

furniture pieces (see Figure 3.4 b). 

Antenna angle and coordinates were measured using the laser measurement technique to 

achieve the most accurate readings from all antennas (see Figure 3.5).  

 

Figure 3.5. Adjusting an equilateral triangle with a laser guide 
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To achieve the best overall performance of the antennas, antenna tendency was set up at 45 

degrees facing the floor, as recommended by Impinj Technologies. The preparatory test 

showed that RSSI values were the highest at 45 degrees from each antenna. Therefore, 

experiments were undertakenbased on the suggested design and RFID sensor setup. Table 9 

shows the technical specification of our localisation platform setup.  

Table 9. Technical specifications of our localisation system 

Components Information 

RFID development kit 

Reader:  

Impinj R420 UHF RFID x 1 

Antenna: 

Near- and far-field reader antennas x 3 

Tags: 

EPC global UHF Gen 2 

(MONZA types tags) 

Monitoring machine 

CPU: AMD Phenom II X4 945 Processor 3.00 

GHz /RAM: 3 GB / Hard-Disk:232 GB /  

Operating System: Windows 7 

Application Interface Java IDE 

Test Bed Localisation grids floor 2.75m* 3.0 m. 

 

3.2.2 Software Components 

The software in the tracking experiment included two components. The first component used 

MultiReader inbuilt software to connect the RFID readers and reads the tags (see Figure 3.6). 

Using this software at the first stage helped in interpreting the behaviour of the tags during the 

selection process. The second component used Impinj’s Application Programming Interface 

(API) in Java programming language to retrieve RSSI values for positioning and calculating 

coordinates. 
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Figure 3.6 MultiReader v6.6.13 software application from Impinj Technologies 

The second component consisted of four main parts, including ReadTag,  

TagReportListnerSetup, Graphical and MainProgram files. 

Tag reading established the connection with the reader by telling it to start performing 

measurements and retrieve RSSI values. A text file was generated and the information saved 

for further analysis.  

Tag reporting relayed the required information to the console command or via a text file.  

Program setup took measurements such as RSSI, phase angles, Doppler frequencies, time of 

the test, and the EPC of each sensing tag.  The program converted RSSI values into distant 

values from a distance formula and coordinates by using the trilateration and multilateration 

algorithms.   

The graphical class file was used to visualise the outcomes. Java graphics library was then 

utilised to setup and draw the coordinate systems. It then visualised the output in real-time 

using the coordinate data from the Tag Report file. This process allowed location tracking of  

the target tag in real time. 

3.2.3 Data Analysis 

This experimental process used MATLAB to analyse the results and conduct data 

manipulation. The program also evaluated our localisation algorithms in the first initial 
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localisation stages by analysing the sensor’s raw data and applying several tracking algorithms 

to justify these inputs, and to generate valid and meaningful outputs. (See Figure 3.7). The 

analysis processes  involved examining  the RSSI values received from each tag. The RFID 

tags were sensed by RFID reader, then the Java API stored RSSI raw data values for further 

analysis in MATLAB. 

 

Figure 3.7 MATLAB R2015b for RSSI and data analysis 

3.2.4  Received Strength Signal Measurements (RSSI) 

Successfully performing localisation is not possible without knowing the RSSI values from the 

RFID reader. Therefore, in order to send the values to our Java program, Octane Simple 

Network Management Protocol (SNMP) from Impinj was used with Octane standard MIB-II 

SNMP [110]. We used the software development kit SDK provided by Impinj to establish 

connections with the RFID reader. Our program was also able to retrieve the RSSI (peakRSSI). 

Further details are discussed in the following chapter. 

3.3 Passive RFID Localisation Framework 

A system was introduced that used a minimal number of antennas and one passive tag for object 

localisation. Various devices and technologies supporting localisation and tracking of objects 

in Smart Homes were also used. 
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To justify our hypothesis of tracking using minimum resources, we divided our proposed 

localisation framework to three main localisation processes. Firstly, the tag selection stage was 

carried out to select the most desirable tags that performed well under a range of situations. 

Secondly, sensor and tag calibrations were implemented to ensure uniform performance of a 

tag at a number of calibration processes, such as antenna height, tag orientation and antennas 

calibrations. Finally, suitable algorithms were implemented to estimate our target tag positions 

at a stationary location and were extended to cater for moving subjects.  

 

 

Figure 3.8. Localisation processes of passive RFID-based objects and subjects 

3.3.1 Tag Selection Procedure 

Twenty tags were selected from Impinj and were examined in the selection process to identify 

the best tags and ensure they would perform well in other tests. 

A methodology was designed to select the candidate tags for the localisation process with a 

specific selection criteria. The first stage of the localisation process was to enter all tags into 

the selection procedure to determine the most suitable and readable for our localisation 

purpose. This involved several steps to define which tags were chosen for the next stage in our 

localisation framework. At the first procedural test, the read range evaluation examined the 

tags’ reading ranges from various distances from the RFID antenna. This was achieved by 

determining which tags were still readable at the furthest distance from the antennas. The 
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following test examined the tag reading based on different power levels of the reader, where 

the tag was set at a fixed location from the antenna. A tag sensitivity test determined the most 

suitable tags in the collection from the readings of various sensitivity levels.  

 

Figure 3.9. MONZA tag types used in tag selection experiments 

3.3.1.1 Reading Range Selection 

Passive RFID tags have a different level of performance. In general, small tags have smaller 

antenna circuits which results in poor performance. This test aimed to observe the tags’ reading 

performance at specific distances with a maximum power level of 32dBm, and at maximum 

sensitivity. This procedure ensured and determined the best tags which were readable at greater 

distances. Tags were placed in a measurement line starting at 0.5m then the distance was 

increased in 0.5m increments until it reached 4.0m. All tags faced the designated antenna for 

this test, and RSSI readings were reported for further analysis. 

In this test, the relationship between the distance in meters and tag readings in RSSI were 

analysed to find the distance formula which could be applied to tag location measurements 

later on. 
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3.3.1.2 Power level-RSSI Selection 

This test was designed to examine the performance of each tag under different power levels by 

varying the power levels from the reader from 20dBm to 32dBm and then the RSSI readings 

of each tag were recorded. 

3.3.1.3 Tags Sensitivity Selection  

Similar to the power level RSSI selection, this test evaluated the behaviour of tags amongst 

different level of sensitivities. The range of sensitivities was -90, -70, -60, -50, with a maximum 

power level and varying tag distances.  

The aforementioned tag selection procedures were completed, the tag that was still readable 

after various procedural selections, was selected the designated prime tag for our localisation 

purposes.  

3.3.2 Tags Calibration Procedure    

After the selection process, the candidate tags were further tested using various stationary 

locations and orientations to evaluate tag readings at different directions from the antennas. 

This procedure also evaluated tag performance amidst a set of nearby tags to determine the 

impact of neighbouring tags on the target RSSI values. In other words, this test observed the 

characteristics of reference tags in relation to the target tag. This procedure was essential to 

select the most suitable tag as the orientation was an important factor in deciding the 

performance of tag. 

In this experiment, all the antennas were located in fixed positions on a gridded floor. The 

antennas were facing the target tags at the same height. Various power levels were set to find 

the optimal power level of each antenna. Other factors, such as tag orientation and antenna 

angulation, were examined to obtain the proper settings of our localisation platform. 

3.3.3 Localisation Procedure 

After meeting the requirements of the previous tests, we intended to use the selected tag with 

target subjects or objects to estimate the location and evaluate our platform performance. 

Further, our goal was to optimise the accuracy using minimal tracking resources and achieving 
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the highest accuracy required to understand the appropriate localisation theories and formulas 

and to use the correct algorithms which will be addressed in the following sections. 

3.4 Received Signal Strength Indication (RSSI) 

3.4.1 Radio Wave Propagation Passive RFID Model 

Typically, a passive RFID tag does not have internal batteries, therefore, it relies on an RFID 

antenna to receive enough radio power to become activated and reflect power back to the 

antenna. This mechanism is called backscatter (Figure 3.10). 

 

Figure 3.10. Radio wave propagation model between RFID reader and tag [111]. 

The following equation represents Friis equation [112] to estimate the tag backscatter Power 

Received (PR) by a RFID Reader.   

 

𝑷𝑹 =
𝑮𝑻

𝟐𝝀𝟐𝝈

(𝟒𝝅)𝟐𝑹𝟒
𝑷𝑻 

where, 

𝑃𝑇 = Reader transmits power at the transmit antenna input (Watts)  

GT = Reader antenna gain  

 ƛ= Carrier wavelength (meters)   

(1) 
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σ = Tag Radar Cross Section (meters2)  

R = Distance between reader and tag (meters)  [111] 

3.4.2 RSSI Theoretical Model 

Wireless Sensor Network and Active RFID systems measure the received signal strength 

indicator (RSSI) using RF-sender to RF-receiver system as indicated in equation [113]. 

Nevertheless, this equation does not suit passive UHF RFID systems because passive tags are 

unable to measure the strength of incoming power [113]. 

Once a passive tag receives the power transmitted by the reader, represented by backscattering 

power at the tag side (equation 2), a portion of the power will be reflected from the passive tag 

back to the reader antennas (equation 3).  

 

𝑷𝒕𝒂𝒈
𝑹𝑿 =  

𝑷𝒕𝑮𝒕𝑨𝒆

𝟒𝝅𝑹𝟐
 

Where 𝐴𝑒 is the effective aperture of the tag 

𝑨𝒆 =
𝑮𝒕𝒂𝒈 𝝀

𝟐

𝟒𝝅
 

 

𝑷𝒕𝒂𝒈
𝑻𝑿 = 𝑷𝒕𝒂𝒈

𝑹𝑿 / 𝑳 

 

where, L is transmission loss ratio 

In theory, Path Loss Module and Friis equation [112, 114] will be applied to measure RSSI  at 

the interrogator’s antenna.  

3.4.3 RSSI to Distance  

Based on our observations from previous preliminary experiments, we found that there was an 

existing relationship between the average value of the RSSI and the tag distance from the 

(2) 

(3) 
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antenna in static locations.  It was necessary to obtain the correct formula to measure the 

distance from the RSSI values for further application processes such as location detection in  

indoor location systems. In experiment, Friis equation converted to an approximate linear 

logarithmic distance equation [115, 116] Taking in consideration confined environment, we 

have considered using the method [117] to determine the distance between RFID tag and RFD 

antenna.  

3.4.4 Localisation Algorithms  

Our localisation approach targeted passive tags (i.e. movable and non-expensive) that could be 

easily attached to impaired individual’s assistive devices such as a wheelchair, or walking stick. 

To achieve this goal, multiple algorithms have been studied including trilateration algorithms 

[23, 24] for distance estimation and filtering algorithms. We now present the localisation 

algorithms. 

To determine Received Signal Strength Indication (RSSI) values, loss path propagation model 

[114] derived from Friis Transmission Equation [112] was studied to estimate the tags 

backscatter signal power received 𝑃𝑅. In experiments, Friis equation converted to an 

approximate linear logarithmic distance equation [115]. 

After measuring the distance of the passive RFID targeted tag using the methods mentioned 

above, the well-known trilateration algorithm [48, 118]  was applied to estimate three distance 

points from each antenna around the targeted tag. The system performed the trilateration to 

estimate the location of the targeted tag in real time. The position of the target tag was 

calculated usiong the intersection of the three circles. 

Due to the noise and the major changes in RSSI values, filtering was essential to ensure the 

quality and smoothness of the reading signals. Although there were many different types of 

available filter algorithms, at that stage, we only applied the moving average filter to reduce 

the noises from the readers. The filter use the average of every (N) sequential readings from 

each RSSI sample. It then reduced the mean of the distance variance of each estimate and the 

actual position [119]  
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3.4.4.1 Localisation using RSSI Trilateration Module  

Trilateration is one of the simplest localisation approaches used to estimated locations in indoor 

positioning systems. The principle of this approach requires knowing the positions of three 

reference points (three antennas). The RSSI values received by each antenna from the target 

tag were converted to RSSI to three distances; 𝑑1, 𝑑2 and 𝑑3 respectively from each antenna to 

perform position estimation. Based on our initial antenna design, the target tag was determined 

by estimating its coordinates using the well-known geometric trilateration algorithm [120] to 

estimate the tracked position in 2D. In trilateration, the estimated location was determined by 

calculating locations of points by measurement of distances. This required using the geometric 

characteristic of a triangle, sphere and circle to determine the target location. In RFID systems, 

the target location is converted to RSSI values of the tracked tag from each antenna to generate 

three distance values (𝑑1, 𝑑2 and 𝑑3. The mobile user can then be located by determining the 

intersection of the three circles and knowing the real coordinates of each antenna (see Figure 

3.11). 

 

Figure 3.11 Trilateration locations estimation 

Based on the coordinates of the three antennas (𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3) and the 

corresponding distances 𝑑1, 𝑑2 and 𝑑3 from each antenna to the target tag. The trilateration 

formula was then applied to determine the coordinate of the unknown target tag location (X,Y).  
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To solve the system of the three equations with three variables using Cramer's rule, we 

determine X and Y coordinates as follows: 

 

𝑿 =

|
(𝒅𝟏

𝟐 − 𝒅𝟐
𝟐) − (𝒙𝟏

𝟐 − 𝒙𝟐
𝟐) − (𝒚𝟏

𝟐 − 𝒚𝟐
𝟐) 𝟐(𝒚𝟐 − 𝒚𝟏)

(𝒅𝟏
𝟐 − 𝒅𝟑

𝟐) − (𝒙𝟏
𝟐 − 𝒙𝟑

𝟐) − (𝒚𝟏
𝟐 − 𝒚𝟑

𝟐) 𝟐(𝒚𝟑 − 𝒚𝟏)
|

|
𝟐(𝒙𝟐 − 𝒙𝟏) 𝟐(𝒚𝟐 − 𝒚𝟏)
𝟐(𝒙𝟑 − 𝒙𝟏) 𝟐(𝒚𝟑 − 𝒚𝟏)

|
 

 

𝒀 =

|
𝟐(𝒙𝟐 − 𝒙𝟏) (𝒅𝟏

𝟐 − 𝒅𝟐
𝟐) − (𝒙𝟏

𝟐 − 𝒙𝟐
𝟐) − (𝒚𝟏

𝟐 − 𝒚𝟐
𝟐)

𝟐(𝒙𝟑 − 𝒙𝟏) (𝒅𝟏
𝟐 − 𝒅𝟑

𝟐) − (𝒙𝟏
𝟐 − 𝒙𝟑

𝟐) − (𝒚𝟏
𝟐 − 𝒚𝟑

𝟐)
|

|
𝟐(𝒙𝟐 − 𝒙𝟏) 𝟐(𝒚𝟐 − 𝒚𝟏)
𝟐(𝒙𝟑 − 𝒙𝟏) 𝟐(𝒚𝟑 − 𝒚𝟏)

|
 

3.4.4.2 Localisation Using Mulilateration Module 

Similar to the trilateration principle, multilateration [121] determines the location of passive 

RFID tags by calculating the distance ( 𝑑1, 𝑑2 , 𝑑3 and 𝑑4) of the target tag from each antenna 

at known locations (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3) and (𝑥4, 𝑦4). (See Figure 3.12). 

 

(4) 

(5) 

(6) 
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Figure 3.12  passive RFID tag location estimation using the multilateration algorithm 

The intersection of multiple hyperbolic curves identifies the estimated locations of the target 

passive RFID tag. This method is also called TDOA (Time Difference of Arrival). The 

pseudocode of the localisation procedure is shown in Algorithm 1. 

Algorithm 1 localisation procedure 

Input: Antennas 

  TagID(target Tag) 

  RSSI(series of values for each antenna) 
 

Output: 
  Location( X, Y) 

  var ant = count.AntennaNumbers(); 

  for ( each recorded series of RSSI from each antenna) 

  do   

     𝑆𝑀𝐴 (
1

𝑛
∑ 𝑅𝑆𝑆𝐼𝑖 )

𝑛
𝑖=0  

  end do 

  new RSSI  = SMA(RSSI) 

  switch (ant) 

     case A: 

        if (ant == 3)  

           do (Trilateration) 

        end if 
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     case B: 

       if (ant > 3)  

          do ( multilateration)   

       end if 

   end switch 

    

   return location 

3.4.4.3 Filtering Algorithms 

Signal filtering is an essential step in indoor localisation systems because several 

environmental factors can significantly affect the signal’s readings such as multipath, human 

body chaos, nearby magnetic fields, other wireless communication interference (e.g. Wi-Fi) 

and other environmental interference related problems. It is important to acquire the right signal 

filtering with a view to disregarding the irregular signal readings.  

3.4.4.3.1 Simple Moving Average filter (SMA) 

In order to reduce the noise in RSSI readings (odd values), a smoothing filter is required to 

perform this task. A simple moving average filter is one of the simplest signal smoothing 

techniques which reduces the offbeat RSSI readings.  An array of RSSI raw (noisy) data (x1, 

x2, …, xn) can be converted to a new array of smoothed RSSI data as appears in the following 

equation (9) which was implemented in our localisation program.  

Array of RSSI raw (noisy) data {𝑥1, 𝑥2, … , 𝑥𝑛) can be converted to a new array of smoothed 

RSSI value as shown in (9). 

𝑺𝑴𝑨 =
𝒙𝟏 + 𝒙𝟐 + ⋯ + 𝒙𝒏

𝒏
=

𝟏

𝒏
∑ 𝒙𝒊

𝒏

𝒊=𝟏

 

where 𝑥𝑖 refers to ith RSSI (n) number. The above SMA is implemented in our localisation 

program. The pseudocode of the SMA is shown in Algorithm 2. 

Algorithm 2 Simple Moving average Filter 

Input: RSSI series (for each antenna) 
 

Output: RSSI` after removing odd readings     

  var A = (RSSI ≠ 0) 

  var P = (moving filter length) 

  var x = 1:length(A) 

(7) 
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  for n = 1:length(A) 

    if n > P 

        average(n)=mean(A(n-P+1:n)) 

    else 

        average(n)=mean(A(1:n)) 

    end if 

  end for 
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4 RESULTS AND ANALYSIS 

 

This chapter presents the experimental results and the evaluation of the proposed localisation 

framework. Several experiments were conducted to evaluate the new localisation platform 

using passive RFID technology. The results highlighted the distinct aspects of our localisation 

framework using passive RFID tags in procedural steps. This chapter also provides an 

discussion on the results and findings of each experiment.  

4.1 Experimental Results and Evaluation  

In this section we present the experimental setup, steps and testing procedures of our entire 

passive localisation framework. We performed extensive experiments to validate our 

localisation approach to determine the potentials and the limitations of our tracking platform.  

The experiments were grouped into three sets of experiments. The purpose of the first set was 

to choose the suitable tag amongst candidate tags for localisation purposes, by evaluating all 

tags using a specific procedural tag selection method. The second set of experiments was 

conducted to determine the characteristics of the elected tag from the previous experiments. By 

calibrating and configuring both tag and RFID tracking antenna, we aimed to achieve the best 

calibration procedure to contribute toward obtaining the desired accuracy. Finally, this thesis 

investigated and evaluated the performance of the target tag using geometry localisation 

algorithms and RSSI filtering. This tag was affixed either to a stationary object or to a walking 

stick handled by moving individuals.             

4.1.1 Tag Selection Procedure 

This procedure was significant in determining the right tags for the localisation process. The 

goal of the test was to select the most feasible tags amongst others. Twenty tags were 

incorporated into the selection process at the preliminary stage (see Figure A.36, Appendix A). 

We were able to narrow down the selection to choose only ten tags as candidate tags and to 

examine them in the multilateration (see Figure 4.1 and Table 10). The first procedure tested 

all candidate tags’ RSSI reading ranges. In the second selection, all tags were tested under 

various power levels in (dBm) to evaluate which tags were still responding well at various 
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power levels. Finally, a tag sensitivity procedure was undertaken to evaluate the tags responses 

at different sensitivity levels.  

  
a b 

Figure 4.1 Tag selection procedures. 

- a) candidate tags used in the tag selection and b) experimental tag distance reading selection 

setup 

Table 10. Candidate Tag types 

Tag type Tag description 

Tag A Tag A - Monza 4D: EPC (0000-0000-0000-0000-0000-0002) 

Tag B Tag B - Monza 4D: EPC (3008-33B2-DDD9-0140-0000-1000) 

Tag C Tag C - Monza 4E: EPC ( 3008-33B2-DDD9-0140-0000-0005 ) 

Tag D Tag D- Monza 4E: EPC ( 3008-33B2-DDD9-0140-0000-0002) 

Tag E Tag E - Monza 5:EPC  (3008-3382-DDD9-0140-0000-0004 ) 

Tag F Tag F - Monza 5: EPC (3008-3382-DDD9-0140-0000-0006) 
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Tag G Tag G - Monza 4U: EPC (3008-3382-DDD9-0140-0000-0007 ) 

Tag H Tag H - Monza 4U: EPC(3008-3382-DDD9-0140-0000-0003) 

Tag I Tag I - Monza 4D : EPC (3008-3382-DDD9-0140-0000-000A) 

Tag J Tag J - Monza 5: EPC (3008-3382-DDD9-0140-0000-000C) 

 

4.1.1.1 Tags Distance Reading Range Evaluation 

In this test, we examined all tags performance at specific distances with the maximum power 

level of 32 dBm. After evaluating the results, we identify the most readable tags at the longest 

distances from the RFID antenna (RFID antenna on the floor with 90° orientation facing each 

tag). Furthermore, we were able to select the tags that can be read in a longer distance, as an 

important factor to achieve better performance.  

Figure 4.1b illustrates tag distance reading (RSSI) results for the ten candidate tags. Note, that 

the lower RSSI values (e.g.-30), the better the readings we received. According to the 

observation, tag (A) showed the best RSSI readings among all candidate tags at different 

distances from the RFID antenna. This was due to the fact that tag A had a longer antenna 

circuit which was capable of sensing and absorbing more signal power coming from the 

antenna, and thus more efficiently reflected back RFID signal. In the preliminary tests, we 

disregarded the small tags with small antennas due to our previous initial observations.  

Each pair of tags (such as C&D/ E&F/ G&H) came from the same tag type. Therefore, we 

examined the distance behaviour of the candidate tags by repeating the same test, while 

recording the overall performance. The results were presented in Figure 4.2 and Figure 4.3. 
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Figure 4.2. Tags Distance Readings Range.  

Tag A = Monza 4D type 1, Tag B = Monza 4D type 2, Tag C = Monza 4E type 1, Tag D = 

Monza 4E type 2, Tag E = Monza 5 type 1, Tag F = Monza 5 type 2, Tag G = Monza 4U type 

1, Tag H = Monza 4U type 2, Tag I = Monza 4D type 3, Tag J = Monza 5 type 3. 

 

 

Figure 4.3 Maximum Tag Reading Ranges 
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Figure 4.4 clearly shows that tag A had the longest distance reading. . The tag was still 

readable and performed efficiently at a distance 3.7 meters (m). 

 

Figure 4.4 The relationship between RSSI and distance of all candidate tags 

 

4.1.1.2 Power Level RSSI Selection 

To achieve the best tag selection results from the selection procedure, another mechanism was 

required to test and measure the tags RSSI. We measured the backscatter from the reader-

transmitted radio signals back to the reader. Power level metrics was determined to ensure that 

we selected the best tag across different reader power levels and various distances between the 

tag and the antenna. In this test we varied the reader power levels (32, 30, 25, 20), over a set of  

dBm at distances ( 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 3.9) meters respectively. Figure 4.5 and 

figures in section Power Level RSSI Selection in Appendix A)  show the candidate RSSI tag 

readings at different power level outputs.   
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Figure 4.5. Tags Power Level Readings at a Distance of 0.5 m 

From our experiments, we observed the following: 

Tag A was performing reasonably well, except that at distances between 3.0 m and 3.5 m which 

the tag was not readable at lower power level values, 25 and 20 dBm. The tag did not respond 

well at a distance 3.9m yet showed the best RSSI readings of all the other tags. Tag B showed 

good performance within 3m. Tags C, D, E, F, and H responded similarly to Tag B in the power 

level experiment, except that Tag J was the most readable tag at 3.9m, compared to the other 

candidate tags. In summary, Tag A showed the best RSSI values over the other candidate tags 

even though it showed lower performance at certain dBm levels. Thus, Tag A was the most 

reliable tag in our power level experiment..  

4.1.1.3  Tag Sensitivity Readings  

This study measured the sensitivity of the various reader sensitivity levels at the maximum 

power level. This test helped us to understand which tag had the most sensitive characteristic 

from the sensing reader signals, and the experiment was important in determining the 

radiosensitivity behaviour of that tag. 
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Figure 4.6.Tag Sensitivity Readings at a Distance of 0.5 m 

According to the observations from the experiments, all tags performed well until a distance of 

1.5 m, except for Tag B that did not report any RSSI readings. Tags E, F, G and H had not 

reported any readings at a distance of 2.0m, and that was due to the response factor of the tags’ 

antenna and to the different sensitivity levels at different distances. At a distance of 3.5m, Tags 

A, I and J still reported RSSI values, while only Tag I reported RSSI readings at sensitivities 

(-73, – 70 and -50). In summary, tag sensitivity was determined in an inverse relationship 

between the tag position and sensitivity. The closer the tag was to the reader, the better the tag 

readings we noted. Based on overall performance, tag A recorded relatively good RSSI 

readings at various sensitivity levels compared to the other candidate tags, while Tag I was the 

most sensitive over all the other tags. 

After analysing the three selection procedures, we noted tag A had the most desirable overall 

performance. Thus, tag A became our designated tag for localisation purposes. On the other 

hand, tags I and J showed distinctive, coveted features which would be useful for future 

localisation related experiments. 

4.1.2 Antenna Calibration Procedures 

An evaluation procedure was conducted to ensure consistent target tag behaviour over a set of 

tag distances and orientations facing each antenna. The evaluation stage was a benchmark in 

our localisation platform to evaluate the tag RSSI behavioural performance at various tag static 
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positions and different target tag orientations from antennas. This procedure includes antenna 

high calibration  and tag orientation - calibration evaluation. 

4.1.2.1 RFID Antennas Height  Calibration 

It is important to defining the most appropriate calibration settings for the antennas. This 

required an antennas setup in an appropriate configuration in order to retrieve the maximum 

RSSI readings while sensing such RFID tags. We ran our program and tested the antenna 

performance at several heights  30, 50, 70, 80, 100 and 120cm respectively. The antennas 

returned superior RSSI readings at heights 30 cm and 50 cm respectively, as illustrated in 

Figure 4.7.  

 

Figure 4.7. Antenna Height Calibration Setup 
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Figure 4.8. Antenna Readings at Height 50 cm 

We noticed that Antenna 3 obtained lower RSSI values compare to Antennas 1 and 2. This 

could be because the power level emitted in the cable was subject to signal energy loss when 

we extended the connection cable to the RFID antenna coming from RFID reader. To overcome 

this problem, we increased the power value from the reader which was going throughout 

Antenna 3 cable at a maximum power level to enhance the performance of this Antenna. The 

recorded RSSI values of Anenna 3 remained lower than the readings from Antennas 1 and 2.  

From the experiment, we observed that as we increased the height of the antennas, the RSSI 

readings starting to drop, which meant the higher the antenna, the lower the RSSI reading, and 

the lower the antenna, the better the RSSI reading. At a height of 50cm, our outcome 

coordinates were the closest to the actual tag location. Appendix A demonstrates further 

antenna height analysis at various antenna heights. 

4.1.2.2 Tag A Orientation and Calibration  

Tag A behaviour at static locations over periods of time. 

In this experiment, we aim to evaluate the RSSI readings of the target tag A and the 

performance of each antenna at a point facing the target tag. We located tag A 50 cm away 
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from the target antenna in a static location. Then, we ran the program for a short time, less than 

8 seconds. We obtained the results illustrated in Figure 4.9:  

 

Figure 4.9 Tag orientation at static location (50 cm) of each antenna – 8 seconds 

In this experiment, the results from the three antennas were obvious – the RSSI signals had 

steady patterns with similar features. Consequently, we concluded that that RSSI values did 

not change significantly at stationary locations. This helped us to understand the nature of RSSI  

In the second test, we performed orientation of tag A a longer time, five minute intervals, 

moving the tag 10 cm each time, starting at 50 cm up to 150 cm, with the tag facing Antenna 

1. We obtained the results illustrated in Figure 4.10: 

 

Figure 4.10 tag A facing Antenna 1 over 5 minutes run-time 
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From the experiment, we noticed that the performance of the tag was relatively stable until the 

readings started to drop from 60 points after 100cm, as can be seen in Figure 4.10. Based on 

our observation, the further the tag was moved over a period of time, the lower the RSSI values 

we obtained. As seen in Figure 4.10, because of the human interference caused when picking 

up tag A to move it to a new position, irregular readings were reported. In this experiment, we 

intended to evaluate the performance of tag A over a longer timeframe, where the run time was 

over 5 minutes. The overall performance indicated that tag A was suitable for a reasonable 

period of run time (5 minutes). Further, the RSSI readings were reliant on the tag orientation 

and tag distance.  

Tag A orientation calibration at various distances from target antenna 

The tag orientation test was a crucial step to determine the performance of the target tag and 

the power level received from the tag to evaluate its functionality for localisation purposes. 

This test evaluated the behaviour of each antenna from different tag A positions. In the 

beginning, we executed this experiment when the tag was facing each antenna at a distance of 

10 cm ( see Figure 4.11). We evaluated the performance of each antenna by running the Java 

program for two minutes with the following results:   

 

Figure 4.11 Test A facing Antenna 1 



73 
 
 

 

The experiments showed that the orientation of the tag had a significant impact on the RSSI 

values. In other words, if the tag directly faced the antenna, it gave hight RSSI values. When 

the tag’s reverse side was facing behind the antenna, it gave relatively good RSSI readings 

which were reported by the back side of the other antenna. Thus, each time tag A was facing a 

specific antenna, it reported stable RSSI values, while other antennas reported lower values 

and fluctuations in RSSI readings if tag A was not facing the antenna. This led us to understand 

that the antenna reported different RSSI values each time, based on the orientation of the tag. 

To examine the orientations of tag A, we extended the experiments by moving tag A 30 cm 

away from Antenna 1 each time, (see Appendix A). According to the results, we observed that 

tag A performed well and gained desirable RSSI readings when it was facing Antenna 1 with 

distances between 30 cm and 180 cm. This showed that tag A had better RSSI values when it’s 

orientation and distance were not too close to, or too far from the antenna. This led us to 

understand that at any distance between 30 cm to 180 cm from Antenna 1, tag A recorded the 

best RSSI values and thus, the optimal location accuracy.  

4.1.2.3 Neighbour Tags Influence in Target Tag  

Passive RFID signals (RSSI) are impacted by interference from their surrounding environment. 

We assumed that tag A would be influenced by its neighbouring tags so we decided to run 

those tags for 8 minute running times to evaluate tag A’s performance ( see Figure 4.12) and 

Appendix A for further analysis.  

 

 
Figure 4.12 Neighbouring tags test with target tag A (indicated by small yellow box)  

facing Antenna 1 (indicated by large yellow box) 
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Figure 4.13 tag A facing Antenna 1 - neighbouring tag analysis 

From the experiments, we observed that the RSSI readings were stable when tag A was facing 

each antenna at static locations and we did not observe any significant changes in RSSI values 

when there were nearby passive RFID tags. Thus, our assumptions were justified.  

 

We concluded from the tag and antenna orientation experiment that the best antenna height 

was at approximately 50 cm, and there was no significant changes in RSSI during calibration 

experiments. Eventually, neighbour tag has so direct influence on target tag for localisation 

process.   

4.2 Localisation Results  

In this section, we present the localisation procedures, steps and experimental results from the 

evaluation of our proposed localisation framework using only one target tag, i.e. tag A. Our 

localisation framework aimed to improve the accuracy of location estimation by deploying only 

one affixed tag. Localisation experiments were necessary to approve our system to ensure their 

role in improving personal healthcare monitoring systems in Smart Homes. By understanding 

the target locations for related health assistance such as personal health via  daily living 

activities using cost-effective localisation technique. The localisation experiments were 

conducted through systematic steps which are described in the following subsection.  

4.2.1 Distance Measurement  

To determine the location of the target tag, it was important to know the distance of the subject 

referring to the node (RFID Antenna). Finding the best position for the target tag was reliant 

on knowing the coordinates of the other tags and where they were located on our localisation 
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platform grid. In the tag selection procedure (tag readings at different distances), there was a 

strong relationship between the tag RSSI values and the tag distance at a specific time. If the 

distance increased, the tag’s RSSI reading decreased. Based on our observations of tag 

behaviour during the selection procedure, we plotted the tags RSSI readings against the 

distance of all other tags. tag A showed the most outstanding RSSI values over different 

distances from the RFID reader ( see Figure 4.14). Therefore, we carried out another 

experiment to understand the relationship between RSSI and distance so that we could derive 

a distance formula.  

 

Figure 4.14. Distance vs. RSSI for tag A 

By using the logarithm trendline, we extracted the following equation by converting RSSI to 

distance: 

𝐷 =  −14.11𝑙𝑛(𝑥)  −  20.127 

where D is the distance of a tag at a certain position. 

The above formula was the key to calculate the distance of each tag and to determine which 

tag would be used in later experiments, using the geometry algorithms. The extracted distance 

formula is almost the same as the theatrical distance formula in equation (5) [115]. 
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4.2.2 Smoothing RSSI Readings 

The fluctuations in RSSI values led to uncertainty in location estimation. Typically, RSSI 

signals are easily interferred with by environmental factors and other influences that lead to 

multi-pathing and increase the error in location estimation. To smooth RSSI readings and 

reduce the noise in the RSSI signal, we decided to use appropriate, efficient smoothing filters 

such as the moving average filter. The average moving filtering experiment illustrated that 

RSSI values were smoothed plainly as shown in Figure 4.15. 

 
Figure 4.15. Showing filtered RSSI values for Antenna 2 using average moving filter 

 

4.2.3  Localisation Experimental Results 

4.2.3.1 Localisation Trilateration Results in Stationary 

To determine the appropriate location of an affixed target tag, it was essential to determine the 

location of the individual. To evaluate the most appropriate results for localising passive tag 

A, we evaluated our system at stationary settings, where tag A was replaced in our platform 

(see hardware setup, Section 3.2.1), at different static locations, facing all antennas at different 

angles from each antenna. The results represent tag A positions at several locations in the grid 
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floor in our localisation platform (See Table B. 1 for further details in Appendix B). These 

experiments were vital to learn the locations of the tags at several static locations. This 

knowledge was used for determining the location of tag A at movable locations. 

To communicate and retrieve RSSI values for further distance calculations, we implemented a 

prototype in Java and applied a suitable localisation algorithm. We developed Java GUI ( see 

Figure 4.16) to examine the performance of the target tag A. The graphical interface simulated 

our real localisation platform, where each grid represented several coordinates. Each coordinate 

represented an X- position and Y- position.  

To locate the target tag and estimated locations, it was necessary to know the coordinates of 

each tag on the floor. We applied the distance formula to calculate tag distances (𝑑1, 𝑑2 and 

𝑑3) of tag A in relation to each antenna, We then applied the geometry trilateration algorithm 

to estimate the target tag position (X, Y). We conducted several sub-experiments to draw an 

accuracy map for our localisation platform from static locations. The results are illustrated in 

Figure 4.17. 
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Figure 4.16 The figure shows tag A estimated location in comparison to actual location at 
coordinates (X-450, Y-450 or centre point). See Table B. 1  for localisation comparison 

results between original coordinate and estimated position in Java GUI. 

The above figure illustrates the actual location tag A with a blue dot, while the estimated 

location is represented by a red dot. Appendix (B) shows the original actual coordinates drawn 

in our localisation platform. The estimated location (red dot) comparing the actual location in 

the blue dot. The experiments estimate the position of tag A compared to the actual location in 

stationary settings ,which also shows the accuracy percentage of each estimated location in 

relation to the actual position. The accuracy percentage represented by following: 

First, we calculate the distance error (€) between actual position (X, Y) and estimated position  

(X calculated , Ycalculated ) as following: 
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€ = √(𝑋 −  X calculated )2 + (Y −   Ycalculated )2  

Then we calculated accuracy as following: 

Accuracy = (
(1−€  )

𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑎𝑟𝑒𝑎 𝑠𝑖𝑧𝑒
) * 100 

 

We overlaid our platform with a grid consisting of several coordinates represented by actual 

locations ( see Figure 4.16). Each time we placed tag A at a known static position on the floor, 

we ran our Java program.  
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Figure 4.17. Accuracy map of the estimated locations of tag A at several positions using the 
trilateration algorithm in our localisation software using Java API  

We conducted our experiment to determine the accuracy of our localisation platform. Tag A 

positions were at various points, mostly within the central area of the grid as shown in Figure 

4.17. The figure also illustrates the average performance in accuracy percentage of the target 

tag A at different positions. The results indicated that high accuracy points were located at the 

central area of the grid. Each colour represents a different accuracy level. For instance, green 

dots represent the average accuracy above 90% with (mean M = 94.27%, standard deviation 

SD = 2.08%). With an average error of 16.5 cm, the highest accuracy recorded was 98% which 

is represented by the centre point of the grid in the localization platform (less than 2 cm of 

error). Dark blue dots are located in the outer centre of the grid - 80% to 90% recorded accuracy 

with (M = 84.81%, SD = 2.81%) and 70% to 80% (M = 76.45%, SD = 2.83%) respectively. 

Yellow, orange and red dots showed the lower accuracy percentages (60% to 70%, 50% to 

60% and below 50% respectively). These dots were located at the outer of the centre grid. 
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According to these results, our system indicated that there were some limitations. For example, 

the red dots at the far outer areas represented the lowest accuracy we obtained. Moreover, our 

system recorded blinds spots. These blind spots were closer to the antennas and our platform 

boundaries. In fact, we observed that RSSI change rapidly or even become unreadable at times 

due to the lower antenna coverage at those spots. Further, our localisation algorithm required 

tag location coordinates in order to calculate the actual location in order to obtain a relatively 

acceptable accuracy rate. For more details on trilateration experiments see Table B. 1 in 

Appendix B. 

4.2.3.2 Localisation Multilateration Results in Stationary 

We added a fourth antenna to our localisation platform, as it was important to know which 

algorithm would work more efficiently in our developed localisation platform. Hence, we 

found that using other interesting geometry localisation algorithms such as multilaterion would 

help us to calculate the distances (d) from all four antennas. Multilaterion determined the 

distances from multiple nodes, after which we applied the calculation to find the location of 

the target tag based on the distance the tag generated from each node (RFID Antenna). We 

made a few changes in our localisation platform once we added the fourth antenna. Further, we 

adjusted our localisation protoype with no changes in Java GUI original coordinates, and we 

added the fourth antenna in the graphical settings as well as our physical platform 

configurations ( see Figure 4.16).  

We decided to use the fourth antenna in order to optimise the accuracy results of the target tag 

A, and to investigate whether adding extra resources would be valuable based on our first 

results from the trilateration (three antennas). In a similar fashion to trilateration, we performed 

extensive experiments to evaluate multilateration in stationary settings in our localization 

platform. The results of our experiments using four antennas and multilateration algorithm are 

illustrated in Tables (Appendix B, Tables B.2 to B.5). 
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Figure 4.18. Accuracy map of the tag A estimated locations at several positions using 
multilateration algorithm 

Figure 4.18 illustrates the average performance in accuracy percentage for tag A in various 

positions of our localisation platform. According to the recorded results, the overall 

performance was improved by using four antennas and the multilateration algorithm. For 

example, green dots (90% with mean, M = 93.5% and standard deviation, SD = 2.88%), with 

an average error of 19.45 cm. The highest accuracy was recorded with a 1 cm error at the centre 

grid, illustrated by dark blue (80% - 90%, M = 84.64%, SD = 3.01%) and sky blue dots (70% 

- 80%, M = 75.37%, SD = 2.77%) respectively. These more apparent in the accuracy map 

distribution and which is taking over the less accurate dots ( Orange, Yellow and Red), 

comparing to accuracy results from trilateration accuracy map ( see Figure 4.17). 

Outside the central area of the grid, a clear improvement can be seen in accuracy levels at 

different position in our platform using multilateration and four antennas compared to the 
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previous results in Figure 4.17. Note that the blind spots were not examined in the 

multilateration experiments because our goal was to improve the accuracy map compared to 

the previous experiments. For more details on multilateration experiments see Table B. 2 to 

Table B. 5 in Appendix B. 

Comparing the results achieved by both techniques, trilateration showed better average 

accuracy in the central area while multilateration showed better accuracy overall. 

During our stationary experiments, we noticed that tag orientation had a significant role in 

improving the RSSI readings. Further, we found that the angle of arrival, or phase angle, in 

between the tag and the antenna, had a significant impact on RSSI values. For instance, if the 

tag setting on the floor was where the tag A sensor was not facing the RFID antenna, the 

recorded RSSI of that antenna was lower than when the tag faced a certain antenna. Thus, it is 

important to investigate further the tag disposal to understand tag response during the 

localisation process in various orientations.  

4.2.3.3 Localising Movable Object  

In our scenario, we intended to test the accuracy of localising an elderly person’s movements 

in a Smart Home space. Tracking the movement of a person in a Smart Home environment is 

the key to successful outcomes in personal health monitoring. In order to recognise their 

activities in an indoor environment it is essential to use the appropriate activity recognition 

module. To evaluate our system in real-world scenarios, we decided to track tag A affixed to a 

moving walking stick that was carried by an individual. Our goal was to see how the human 

body interference affected the target tag’s RSSI readings and how that would reflect in the 

accuracy of the results. Our scenario was non-interventional to the human body, which meant 

the human was not required to wear the tags on their body. We evaluated the scenario by 

running experiments to determine the accuracy level in the centre of the localisation platform 

and the grids around the centre grid. A graph depicting the results is illustrated in Figure 4.19. 
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Figure 4.19. Tag A - estimated locations density distribution in real-time tracking in our 
localisation platform 

In the experiment, a volunteer carried the walking stick with tag A affixed to it and walked 

around the centre area of the platform. The data collected from experiments were in 30 second 

timeframes. According to Figure 4.19, the results show that the tag A position estimations were 

higher at the centre of our localisation platform (X,Y positions in-between 400 and 600 in the 

grids), but when the person moved slightly from the centre area, the accuracy in estimated 

location dropped. Also, the graph shows some irregular estimated positions (900 or above), 

which do not represent any location inside the localisation platform. This is due to the fact that 

when a person moved faster or changed their direction suddenly, or blocked tag A from the 

antenna, the results were poor.  
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Figure 4.20. Tag A - attached to with walking stick carried by volunteer who is inside the 
localisation platform 

In the experiment, we noticed that when the person moved away from the centre grid, the 

estimated positions of tag A dropped significantly, when the tag was closer to blind spots. 

Further, we observed that tag orientation during real-time localisation had another substantial 

role in determining a positive estimate of the tag location. For instance, when tag A was facing 

an antenna, then the estimated position of tag A created a better RSSI value. In summary, tag 

localisation in real-time reported promising results in location awareness of tracking a moving 

individual. Nevertheless, further research is needed to address localising a movable tag in a 

real environment with human body interference. Moreover, another method is required to study 

real-time localisation using only a single target tag. 

4.3 DISCUSSION 

Observing from trilateration experimental tests, low accuracy results were recorded outside 

central area as well as the blind spots (see Figure 4.17). We found that when localisation 

configuration consists of only three antennas in a triangular format, this configuration can 

create blind spots, e.g. the areas that are not covered by antennas. The orientation of the tags 

and the antennas also plays a significant role in the accuracy outputs. The trilateration 

configuration only uses one passive tag so that the orientation of the tag affects significantly 

the RSSI readings. Results showed that the relationship between RSSI and AoA (Angle of 

Arrival) varies significantly during the measurement. The results indicate that the RSSI reading 

gets its peak performance when the tag is facing directly towards the corresponding antenna 
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(i.e. AoA is 0° or 180°). When the tag is facing the antenna’s sideways, the reading decreased 

dramatically. This suggested that this type system is suitable for operations that track subjects 

within the area of 1.10m × 1.20m. Despite the challenges that we faced during the experiments, 

our proposed framework was able successfully to track subjects’ movement. We applied a 

RFID tag on a walking stick in the space of 60cm × 60cm. A person is acting as an elder and 

moving the walking stick slowly in the area. We visualized the movements and determined its 

accuracy. Results suggested that the accuracy is still over 90% in the central area, even with 

human and objects interferences. However, there were a few spikes during the experiment. This 

could be resulted by the sudden change of movement from the person moving the walking 

stick. The experiment positively shows that our system performs well with high accuracy in 

the central and near central areas. Reasonably good results were achieved considering the 

simplicity of our system that uses minimal tracking resources: three antennas and one “almost 

nil cost” passive RFID tag.  

Similarly, in Multilateration experiments, we noticed that the tag orientation had a significant 

role in improving the RSSI readings.  We found that the angle of arrival, or phase angle, in 

between the tag and the antenna, had a significant impact on RSSI values.  As we face the tag 

directly towards an Antenna, we receive the best reading from that corresponding Antenna.  

However, the readings from the sides are not good.  This also explains that why we have bad 

accuracy at the outer circle of the grid.  The positioning of the tag is not great at those points, 

the vertical and horizontal orientation of the tag from each reader affects the RSSI readings 

greatly. Altough we got average accuracy of  19.45 cm in the centre of the platform, the overall 

accuracy results outside centre grid it has significantly improved ( see Figure 4.18). Since 

Multilateration requires four distance readings in order to derive the actual location, if we get 

an inaccurate reading from one of the Antennas, it will lead to inaccurate position estimation.  

Thus, it is important to investigate further the tag disposal to understand tag response during 

the localisation process in various orientations. 

We have validated our hypothesis in real experiments and we have received  promising results 

in both trilateration and multilateration in comparison with the existing systems. We also 

carried out a successful tracking experiment that used one passive RFID tag which was attached 

to an assistive walking tool. It did not require the individual person to wear it or attach the tag 
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to his/her body. In addition, by using passive tag, our system does not need frequent 

maintenance and bucky items compared to the active tags that use of the battery. 
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5 CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

The key contributions of of each chapter are summarised as follows: 

In chapter two, we carried an extensive survey on Smart Homes and Smart Homes healthcare 

projects from which we identified the challenges in Smart Homes healthcare. We also 

discussed indoor localisation and technologies in Smart Homes in this chapter with a 

comprehensive summary of RFID indoor tracking techniques and the estimated location 

accuracy levels of the previous research works.  

In chapter three we proposed a localisation framework using passive RFID-based technology 

to localise affixed tags to objects in stationary settings and in real time. We designed and 

developed our localisation platform in a cost-effective way by using a minimal number of 

tracking resources, yet we obtained desirable results in accuracy within stationary settings. The 

localisation framework was divided into three stages. The first stage was to select the suitable 

passive tag through set of tag selection procedures such tag selection based on RSSI reading 

range, tag selection based on power reading level, and tag sensitivity selection. Tag calibration 

in second stage, was carried to evaluate the performance of the selected tag from the previous 

selection stage. The performance evaluation includes tag performance at different directions of 

the passive RFID antenna and tag orientation. In the last stage, an appropriate passive RFID 

localisation technique was implemented to optimise the accuracy of the localisation works.  

In the following chapter, we developed a physical localisation platform to verify our theoretical 

localisation framework, and test the effectiveness and the efficiency of the new approach. To 

evaluate our framework, we built a hardware platform based on passive RFID technology using 

speedway revolution R420 kit from Impinj technologies. Also, we developed a prototype that 

used Java to retrieve RSSI values from target tags for further analysis, as well as devised 

distance measurements and applied localisation algorithms.  The experimental results showed 

that our system was able to achieve a desirable accuracy levels in stationary scenarios for both 

trilateration and multilateration with average of16.5 cm and 19.45 cm respectively (see Table 

B. 1 and Tables B. 2- B.5  in Appendix B for details). We believe that our localisation system 
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has a potential in various indoor localisation applications including healthcare, such as tracking 

elderly people, human activity recognition and others.   

5.2 Future Work 

With the limited timeframe and the scope of this thesis, a limited evaluation procedures and 

experiments were carried out the laboratory environment. Further research in indoor 

localisation is required to improve passive tag localisation in RFID-based systems, especially 

in using Kalman filter and Particle filter to estimate affixed tag on movable subjects (such as 

human). 

An important factor in tag orientation procedure is to examine the candidate tags under multiple 

reader placements and various configurations. Within the limitation of this thesis, we only 

evaluated the tag orientation once which the target tag is facing each antenna at several heights. 

The tag orientation could improve the tag RSSI readings performance if the tag performance 

was investigated at different angles in relation to each antenna, and with variations in tag 

placement. 

Another potential improvement may be revealed by studying target tag localisation at various 

AOA and evaluating the system performance while considering the most suitable algorithms. 

During our experiments, we noticed that the phase of angle had an impact on RSSI values, and 

a suitable angle would improve the performance of the localisation. 

In our system, we evaluated the distance measurement after tags RSSI was filtered using 

moving average filter algorithm. Applying further RSSI signal and location estimation 

filterings could improve the overall accuracy. This could be achieved by optimising the 

experimental results using the suitable RSSI filters.   

The future work will also apply RFID technologies to tracking basic daily tasks in Smart 

Homes for healthcare and wellbeing, such as ironing, dressing or washing dishes. It is important 

to investigating suitable human activity recognition algorithms and machine learning 

techniques such as supervised, semi-supervised or unsupervised to optimise the accuracy in 

recognition the activities. This includes the differentiation of basic and concrete activities of 

daily living. 
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A. APPENDIX A 

In this Appendix we present a detailed overview of experimental results, evaluation, and a comparison of RFID based systems from literature 

review. 

6.1 RFID Smart Homes Projects 

Table 11. Comparison based solutions for Smart Homes using RFID 

Solution Application 
Accuracy / 

Efficiency 

Technique / 

Tracking 

Hardware* / 

Coverage ** 
Benefits / Drawbacks 

LANDMAR

C [63], 2004E 

Location 

awareness 

≤ 2m 
References 

tags 
9/ 64 

• Cost effective solution. 

• Less infrastructure required during deployment 

• Minimises the localisation error caused by environmental interference ( more precise ) 

1m (50%) 

5.9m (90%) 
Active tags N/A 

• Complexity and flexibility such as: 

o Long latency. 

o Different tag behaviour during detection (different reading values) 

Jin et 

al.,2006[3]E 

Location 

awareness 

72cm Reference tags 4/20 
• The new mechanism (based on previous work by LANDMARK) to reduce the computational load caused 

by tags (reduced number of neighbour tags). 

83cm (per 10 

tags in 2m 

“average 

tolerance “) 

Active tags N/A 
• System used changes active tags (high cost and  battery requirement) 

• Complexity and maintenance issues. 
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FLEXER,200

6 [69]S 

Location 

awareness 

(indoor 

localisation) 

40cm-1m Reference tags 
4/64 

 

• Flexible localisation method (localise region mode and coordinates) 

• Reduces computational load and enhances the localisation speed 

70cm (80%) 

Region mode 
Active tags 492 

• System used Active tags (high cost, battery requirement) 

• System complexity implementation 

VIRE[68], 

2007E 

Indoor 

localisation 

1.5m Reference tags 4/16 • Cost effective solution 

0.5m Active tags N/A 
• Lack of the solution in large scale 

• Complexity and maintenance issues (battery requirement) 

Zhang et al, 

[70]S 

2009 

Location 

awareness 

10cm 

(1m space 

between tags 

Reference tags 4/49 • Reducing the diversities of tags in a home environment and the mean locating error. 

19cm (2.4m 

space between 

tags) 

Active tags 100m 
• High cost and system rely on active tag battery requirement). 

• High complexity and needs maintenance. 

Hekimian-

Williams et 

al[55]T,2010 

Location 

awareness 

Millimetres 

accuracy 

Phase 

Difference 
2/1 • Very precise and highly accurate approach (accuracy in millimetres) 

Very precise Active tags 18m 

• Not applicable for tag localisation for Passive tags. 

• High cost (active tags are expensive and need a battery) 

• High complexity and that needs maintenance. 

• The system suffers from intrusiveness that resulted from multipath. 

Hahnel et 

al[71]T, 2004 

Indoor 

positioning 
≤ 2m 

References 

tags 
2/100 • Map learning approach using Mobile Robot 
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(robot 

localisation) 
1m-1.4m Passive tags 282 

• Required several RFID tags (high cost and high complexity) 

• Line of sight issues (Laser range scan) 

Vorst et al 

[73], 2008 

Indoor 

localisation 

(mobile robot) 

20cm-26cm Reference tags 
4/374 

 
• Proposed probabilistic fingerprint technique (in particle filter) for considerable accuracy. 

≈ 0.25cm 

0.32cm(90%) 
Passive Tags 125m 

• High cost with many tags and readers 

• High complexity due to the large number of tags and readers 

 

Joho et al 

[74], 2009 

Indoor 

localisation 

(mapping) 

27cm-29cm 
References 

tags 
1/350 • Probabilistic sensor model (Sensor calibration) based on RSSI to improve the accuracy of the system 

≈ 35cm Passive Tags N/A • High cost as adding more tags will add extra costs to the system 

Tesoriero et 

al [53], 2009 

Indoor Tracking 

(autonomous 

entities) 

≈ 0.9 m Sense Analysis 1/19 
• Locating objects based on entities (inside grids) 

• Virtual mapping 

Error = 0 ( 

50% speed 

against 19 

tags 

Error = 10% 

(75% / 18tags) 

Error = 20% 

(100% / 14 

tags) 

Passive tags 432 

• High cost as it requires many tags for more efficient and accurate localisation. 

• Usability issues. 

• High complexity, every object (even smaller, cups, kettle, etc.) need to be attached to readers for 

localisation. 

Sunhong et al 

[77], 2010 

Indoor Tracking 

(robot location) 
≈ 10cm 

References 

tags 
1/198 • A method to reduce the number of used tags and sensors. 
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N/A Passive tags 26m 

• Usability issues, limited localisation application (not suitable for real time for non-disabled elderly 

individuals) 

Chawla et 

al[64],2011 

Indoor 

localisation 

(object 

localisation) 

0.18cm 
References 

tags 
1/132 • Several algorithms to achieve  higher accuracy and efficient solution 

0.35cm 

(overall 

average) 

Passive tags 8m 
• Need to deploy a large number of tags for higher accuracy 

• High complexity and installation issues 

D'Errico, R., 

et al. 

(2012)[75]S&E 

Indoor 

localisation 

(Real time 

tracking ) 

20cm TOA 4/Many 
• Minimise energy consumption (battery) by enabling semi-active tags with UWB antenna and improved 

synchronisation. 

0.37m-0.53m 

(75%) 

Hybrid 

(UWB-Semi-

active tags) 

N/A 

• High cost (adding more tags and readers will increase the cost of the whole system) 

• Line-of-sight and multipath problems 

• Interferences 

• High complexity and maintenance issues 

• Usability issues 

Fortin-

Simard, D., et 

al. (2012)[72] 

Indoor 

localisation 

(Real-time 

tracking) 

≈ 14cm 
Trilateration/R

SSI 
4/4 

• New trilateration positioning model with various existing filters and fuzzy logic to achieve accuracy and 

system efficiency. 

≈ 32.5cm 

( higher 

efficiency) 

Passive Tags 6m2 

• Results obtained in limited coverage area (no actual test for various objects in Smart Homes e.g. furniture, 

different sized and shapes) 

• Limited to positioning simple objects and does not cover multiple objects. 

Yang, Wu et 

al. 2013[79] 

Location 

awareness 

10cm 
References 

tags 
4/96 • High accuracy based on tag distribution  (grid approach) 

10cm± 2.56 

cm 

Passive 

tags 
N/A • The results are varied upon different localisation algorithms and RFID tags. 



102 
 
 

Athalye, 

Savic et al. 

2013[65] 

Location 

awareness 

30cm 
References 

tags 
1/12 • New Sense tags which have a dual ability to locate objects 

≤ 40cm 

CDF Method 
Semi-Active 6m2 • Battery life issues caused by a comparator that runs whole power circuit. 

Xiong, Song 

et al. 2013 

[76]E&S 

Indoor Tracking 

(people / 

objects) 

1.6m RSSI 4/N/A 
• Cost effective approach (combined WSN with RFID devices) 

• Robust IPS solution (effective solution in harsh environment) 

1.8m 

(hcEKF 

algorithm ) 

Hybrid 

RFID Passive 

Tags/WSN 

 

3002 • The system was not tested in a large-scale experimental space. 

Bouchard, 

Fortin-

Simard et al. 

2014[66] 

Indoor tracking 

(people) / 

Activities of 

Daily Living 

(ADL) detection 

≈ 16cm 
Trilateration/R

SSI 
8/4 

• Reduced inaccuracy by applying some localisation filters 

• New mapping protocols 

Correct 

(67.2%) 

16cm 

 

Passive Tags 9m2 
• The system was not tested on a large scale with different zones. 

• Lack of real-time tracking for multiple objects. 

Jachimczyk 

et al [78], 

2014 S&E 

Indoor 

positioning (3D 

localisation) 

7cm,11cm( 

based on 4 

and 8 

respectively 

readers) 

TOA/RSS 8/N/A 
• More robustness and avoided obstacles 

• Various configuration of active RFID Readers 
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49cm, 50cm 

(based on 4 

and 8 readers) 

3D passive 

tags- Hybrid 
46.173 

• Higher cost depends on how many RFID readers used in the configuration. 

• High system complexity and more computational cost based on the scenarios 

Bolic et al 

[67]E 

Indoor 

localisation 

(proximity 

detection) 

32 cm Proximity 2 /N/A • Inexpensive UHF RFID tags and they are maintenance free 

48 cm Passive tags 4m*2m 
• Requirement of landmark tags for localisation application 

• Relying on semi-passive tags (needs battery changes) 

Alsinglawi et 

al [122] E 

Location 

estimation in 

Healthcare 

settings 

16.5 cm 
Trilateration/R

SSI 

3/1 
• Good accuracy levels with minimum tracking resources 

• Cost-effective 
1.1m*1.2m 

 

Note: Experimental results (E); Simulation results (S); Simulation and Experimental Results (S&E); Target location for human tracking (H); and for tracking (T) only. *Hardware = Readers/ 

Tags /  ** Coverage m/m2/m3 
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6.2 Tag Selection Procedure Experiments 

6.2.1 Power level RSSI Selection procedure. 

 

Figure A.1 Tags Power Level Readings at a Distance of 1.0 m 

 

Figure A.2 Tags Power Level Readings at a Distance of 1.5 m 
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Figure A.3 Tags Power Level Readings at a Distance 2.0 m 

 

Figure A.4 Tags Power Level Readings at a Eistance of 2.5 m 
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Figure A.5 Tags Power Level Readings at a Distance of 3.0 m 

 

Figure A.6 Tags Power Level Readings at a Distance of 3.5 m 
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Figure A.7 Tags Power Level Readings at a Distance of 3.9 m 

6.2.2 Tag Sensitivity Readings 

 

Figure A.8 Tag Sensitivity Readings at a Distance of 1.0 m 
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Figure A.9 Tag Sensitivity Readings at a Distance of 1.5 m 

 

Figure A.10 Tags Sensitivity Readings at a Distance of 2.0 m 
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Figure A.11 Tags Sensitivity Readings at a Distance of 2.5 m 

 

 

 

Figure A.12 Tags Sensitivity Readings at a Distance of 3.0 m 

 

-80

-70

-60

-50

-40

-30

-20

-10

0

R
SS

I

Sensitivity

Tags Sensivity Readings at distance 2.5 m

-73

-70

-60

-50

-90
-80
-70
-60
-50
-40
-30
-20
-10

0

R
SS

I

Sensitivity

Tags Sensivity Readings at distance 3.0 m

-73

-70

-60

-50



110 
 
 

 

Figure A.13 Tags Sensitivity Readings at a Distance of 3.5 m 

 

Figure A.14 Tags Sensitivity Readings at a Distance of 3.9 m 

 

6.3 RFID Antennas height  Calibration Experiments 

Antenna 1 calibration experiments evaluation. 
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Figure A.15 Antenna's Readings at height 30 cm 

 

Figure A.16 Antenna's Readings at height 70 cm 
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Figure A.17 Antenna's Readings at height 80 cm 

 

Figure A.18 Antenna's Readings at height 100 cm 
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Figure A.19 Antenna's Readings at height 120 cm 

6.4 Tag A orientation calibration at various distances from target 

antenna experiments 

6.4.1 Tag A facing antennas 1 at various distances experiment 

 

Figure A.20 tag A facing antenna 1 at distance 20 cm 
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Figure A.21 tag A facing antenna 1 at distance 50 cm 

 

Figure A.22 tag A facing antenna 1 at distance 80 cm 
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Figure A.23 tag A facing antenna 1 at distance 110 cm 

 

Figure A.24 tag A facing antenna 1 at distance 150 cm 
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Figure A.25 tag A facing antenna 1 at distance 180 cm 

 

Figure A.26 tag A facing antenna 1 at distance 210 cm 



117 
 
 

 

Figure A.27 tag A facing antenna 1 at distance 240 cm 

 

Figure A.28 tag A facing antenna 1 at distance 270 cm 
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Figure A.29 tag A facing antenna 1 at distance 210 cm 

6.4.2 Tag A facing antennas 2 and 3 experiment 

 

Figure A.30 Test A facing Antenna 2 at distance of 50 
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Figure A.31 Test A facing Antenna 3 at distance of 50 

 

6.5 Neighbour tags Influence in Target Tag Experiment 

 
Figure A.32 Neighbouring tags test with target tag A facing Antenna 2 
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Figure A.33 tag A facing Antenna 2 – neighbouring tag analysis 

 

 
Figure A.34 Neighbouring tags test with target tag A facing Antenna 2 

 
Figure A.35 tag A facing Antenna 3 – neighbouring tag analysis 

 

 

-60

-50

-40

-30

-20

-10

0

R
SS

I

Tag A facing Antenna 2 - Grid Analysis

ANT1

ANT2

ANT3

-70

-60

-50

-40

-30

-20

-10

0

R
SS

I

Tag A facing Antenna 3 - Grid Analysis

ANT1

ANT2

ANT3



121 
 
 

 

Figure A.36 All passive RFID tags 
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B. APPENDIX B 

 

Table B. 1 Real positions of tag A in coordinates in JAVA graphical user interface (JAVA GUI 
)vs. the estimated locations in stationary settings in JAVA GUI – trilateration experiments 

Real Location – tag A 

CM 

Estimated location – tag A 

CM 

∆ d 

% Accuracy 

X Y X Y  

180 360 349.2 477.3 205.9 77.12408 

180 540 41.2 680.3 197.4 78.07152 

180 720 1030.3 150.5 1023 13.7107 

225 405 32.6 639 302.9 66.3398 

225 495 317.2 514.4 94.22 89.53123 

225 585 359 492.2 163 81.88928 

270 270 349.3 444.9 192 78.66247 

270 450 193.7 518.6 102.6 88.59952 

270 630 151.8 590.4 124.7 86.14921 

315 405 184.2 540.1 188 79.10619 

315 495 58.6 700.5 328.6 63.49003 

315 585 457 544.2 147.7 83.58387 

360 360 224.8 520.1 209.5 76.71671 
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360 540 4 669.1 378.7 57.92382 

360 720 435 410.5 318.5 64.61582 

405 315 382 456.4 143.3 84.0824 

405 405 418.4 460.3 56.9 93.67774 

405 495 431.7 437.3 63.58 92.93576 

405 585 465.8 434.7 162.1 81.98535 

450 270 194.4 557.6 384.8 57.24819 

450 450 463.5 441.9 15.74 98.25071 

450 630 405.5 446.8 188.5 79.05254 

495 315 460 459.8 149 83.44779 

495 405 503.4 452.7 48.43 94.61845 

495 495 478.4 435.8 61.48 93.16852 

495 585 666.7 517.6 184.5 79.505 

540 360 625.3 504.7 168 81.33658 

540 540 489 440.4 111.9 87.56689 

540 720 500.6 469.8 253.3 71.85742 

585 315 617.1 484.5 172.5 80.83191 

585 405 777.4 552 242.1 73.09671 

585 495 715 532.2 135.2 84.97581 
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585 585 682.4 529.7 112 87.55513 

585 675 604.3 482 194 78.4486 

630 270 520.1 438.7 201.3 77.62892 

630 450 671 510 72.67 91.9255 

630 630 446 407 289.1 67.87659 

675 405 561 460.5 126.8 85.91198 

675 495 889.3 617.7 246.9 72.56213 

675 585 909.7 611.7 236.2 73.75402 

675 675 777.6 678.6 102.7 88.59298 

720 360 1299.1 786.3 719.1 20.10126 

720 540 762.6 541.3 42.62 95.26446 
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Table B. 2 Accuracy results (90%-100%) for tag A in real positions coordinates ( JAVA GUI )vs. 
the estimated locations in stationary ( JAVA GUI )- Multilateration experiments 

Real Location – tag A 

CM 

Estimated Location – tag A 

CM ∆ d % Accuracy 

X Y X Y 

180 225 143 203 43.04649 95.21706 

180 720 150 645 80.77747 91.02473 

225 180 196 257 82.28001 90.85778 

315 270 357 288 45.69464 94.92282 

315 405 366 402 51.08816 94.32354 

360 315 349 356 42.44997 95.28334 

360 405 365 363 42.29657 95.30038 

360 495 392 423 78.79086 91.24546 

405 270 371 354 90.62009 89.9311 

405 315 415 401 86.57944 90.38006 

405 360 441 423 72.56032 91.93774 

405 405 449 454 65.8559 92.68268 

405 450 479 487 82.73452 90.80728 

405 495 405 407 88 90.22222 

405 540 480 491 89.58795 90.04578 
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450 360 441 443 83.48653 90.72372 

450 405 440 432 28.79236 96.80085 

450 450 485 475 43.01163 95.22093 

450 495 503 447 71.50524 92.05497 

450 540 493 482 72.20111 91.97765 

495 450 430 426 69.28925 92.30119 

495 495 495 496 1 99.88889 

495 630 510 610 25 97.22222 

540 405 483 435 64.41273 92.84303 

540 450 540 515 65 92.77778 

540 495 534 478 18.02776 97.99692 

540 540 495 459 92.66067 89.70437 

540 675 585 674 45.01111 94.99877 

585 225 592 230 8.602325 99.04419 

585 360 571 442 83.18654 90.75705 

585 450 531 478 60.82763 93.24137 

630 540 605 517 33.97058 96.22549 

630 585 542 573 88.81441 90.13173 

630 630 650 611 27.58623 96.93486 
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630 675 663 587 93.98404 89.55733 

630 720 645 676 46.48656 94.83483 

675 270 647 234 45.60702 94.93255 

675 585 600 601 76.68768 91.47915 

720 630 740 631 20.02498 97.775 

720 720 701 694 32.20248 96.42195 
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Table B. 3 Accuracy results (80%-89%) for tag A in real positions coordinates in JAVA GUI vs. 
the estimated locations in stationary settings in JAVA GUI- Multilateration 

Real Location – tag A 

CM 

Estimated Location – tag A 

CM ∆ d % Accuracy 

X Y X Y 

180 180 258 275 122.9187 86.34237 

180 315 276 357 104.7855 88.35717 

225 405 399 413 174.1838 80.64624 

225 450 367 384 156.5886 82.60126 

270 180 291 289 111.0045 87.66617 

270 225 235 327 107.8378 88.01802 

270 405 354 350 100.4042 88.84398 

270 450 431 445 161.0776 82.10249 

270 495 342 372 142.5237 84.16404 

315 450 380 376 98.49365 89.05626 

315 495 435 436 133.7199 85.14224 

360 180 336 356 177.6288 80.26346 

360 225 446 346 148.4486 83.50571 

360 270 379 403 134.3503 85.07219 

360 360 485 454 156.4001 82.62221 
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360 450 521 529 179.3377 80.07359 

360 540 481 495 129.0969 85.6559 

360 630 493 517 174.5222 80.60864 

405 585 416 403 182.3321 79.74088 

405 630 490 534 128.2225 85.75306 

450 270 424 406 138.463 84.61522 

450 315 439 422 107.5639 88.04845 

450 585 550 555 104.4031 88.39966 

450 630 501 505 135.0037 84.99959 

450 675 593 603 160.1031 82.21077 

495 225 437 386 171.1286 80.98571 

495 270 506 443 173.3494 80.73896 

495 315 525 463 151.0099 83.22112 

495 360 538 504 150.2831 83.30188 

495 405 537 531 132.8157 85.2427 

495 540 400 512 99.0404 88.99551 

495 585 605 610 112.8051 87.4661 

495 675 550 552 134.7368 85.02925 

540 270 609 339 97.58074 89.1577 
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540 315 568 454 141.7921 84.24532 

540 360 435 420 120.9339 86.5629 

540 720 593 563 165.7046 81.58838 

585 315 590 426 111.1126 87.65416 

585 495 594 657 162.2498 81.97224 

585 585 514 505 106.9626 88.11527 

585 630 731 735 179.836 80.01822 

585 720 670 662 102.9029 88.56635 

630 225 563 376 165.1969 81.64479 

630 405 642 547 142.5061 84.16598 

630 450 612 574 125.2996 86.07782 

630 495 534 492 96.04686 89.32813 

675 180 551 286 163.1318 81.87424 

675 315 648 415 103.5809 88.49101 

675 405 573 495 136.0294 84.88562 

675 450 589 541 125.2078 86.08802 

675 675 510 600 181.2457 79.86159 

675 720 594 773 96.79876 89.24458 

720 360 576 441 165.218 81.64244 
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720 495 614 554 121.3136 86.52071 

720 540 686 683 146.9864 83.66818 

720 585 593 489 159.2011 82.31099 

720 675 866 750 164.1371 81.76254 

 

 

 

Table B. 4 Accuracy results (70%-79%) for tag A in real positions coordinates in JAVA GUI vs. 
the estimated locations in stationary settings in JAVA GUI. 

Real Location – tag A 

CM 

Estimated Location – tag A 

CM ∆ d % Accuracy 

X Y X Y 

180 270 373 401 233.2595 74.08228 

180 405 256 584 194.4659 78.39267 

180 495 420 443 245.5687 72.71459 

180 540 350 370 240.4163 73.28708 

225 270 362 417 200.9428 77.67302 

225 360 417 428 203.686 77.36822 

225 495 418 428 204.2988 77.30013 

225 585 349 358 258.66 71.26 
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270 270 435 432 231.2336 74.30737 

270 315 425 453 207.5307 76.94103 

270 540 345 332 221.1086 75.43238 

270 585 430 454 206.7873 77.02363 

270 675 510 567 263.1805 70.75772 

315 180 417 384 228.0789 74.6579 

315 225 271 418 197.952 78.00533 

315 315 442 475 204.2768 77.30258 

315 585 516 534 207.3692 76.95897 

315 630 547 578 237.7562 73.58265 

360 585 544 550 187.2992 79.18897 

360 675 479 524 192.255 78.63833 

405 180 398 401 221.1108 75.43213 

405 225 446 425 204.1593 77.31564 

405 675 623 654 219.0091 75.66565 

405 720 567 586 210.238 76.64023 

450 180 202 254 258.8049 71.24389 

450 225 447 433 208.0216 76.88649 

450 720 547 554 192.2628 78.63746 
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495 180 441 398 224.5885 75.04572 

540 180 481 355 184.6781 79.48021 

540 225 525 496 271.4148 69.8428 

540 585 761 717 257.4199 71.39779 

540 630 752 716 228.7794 74.58007 

585 180 453 375 235.4761 73.83599 

585 270 467 456 220.2726 75.52527 

585 405 650 585 191.3766 78.73593 

585 540 734 728 239.8854 73.34607 

630 270 607 472 203.3052 77.41053 

630 315 597 523 210.6015 76.59983 

630 360 441 414 196.563 78.15967 

675 225 520 447 270.7563 69.91596 

675 360 521 474 191.6038 78.71069 

675 540 751 767 239.3846 73.40171 

675 630 478 477 249.4354 72.28496 

720 225 622 406 205.8276 77.13027 

720 270 576 400 194 78.44444 

720 315 516 478 261.1226 70.98638 
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720 405 713 630 225.1089 74.9879 

720 450 514 441 206.1965 77.08928 

225 225 423 409 270.2961 69.9671 

 

Table B. 5  Accuracy results below 70 for tag A in real positions coordinates in JAVA GUI vs. 
the estimated locations in stationary settings in JAVA GUI. 

Real Location – tag A 

CM 

Estimated Location – tag A 

CM ∆ d % Accuracy 

X Y X Y 

60%-70% Accuracy 

180 675 378 385 351.1467 60.9837 

225 315 517 491 340.9399 62.11779 

225 630 275 315 318.9436 64.56183 

225 675 554 568 345.9624 61.55973 

225 720 372 388 363.0881 59.65687 

270 720 371 384 350.8518 61.01646 

315 540 625 611 318.0267 64.6637 

495 720 791 760 298.6905 66.81217 

630 180 590 518 340.3586 62.18237 

675 495 810 810 342.7098 61.92113 
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50%-59% Accuracy 

180 360 550 545 413.6726 54.03638 

180 585 584 678 414.566 53.93711 

315 360 619 683 443.5595 50.71561 

315 720 688 702 373.4341 58.50733 

720 180 627 552 383.4488 57.39458 

 Accuracy less than 50% 

180 450 598 805 548.4059 39.06601 

180 630 703 710 529.0832 41.21298 

225 540 960 980 856.6359 4.818238 

270 360 980 974 938.6671 -4.29635 

270 630 913 934 711.2419 20.97313 

315 675 918 920 650.8717 27.68092 

360 720 1036 1050 752.2473 16.41697 

585 675 990 978 505.8004 43.79996 

 

 

 

 




