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Abstract

The ability to track the location of a subject in their home allows the provision of a

number of location based services, such as remote activity monitoring, context sensitive

prompts and detection of safety critical situations such as falls. Such pervasive monitoring

functionality offers the potential for elders to live at home for longer periods of their lives

with minimal human supervision.

The focus of this thesis is on the investigation and development of a home room-

level localisation technique which can be readily deployed in a realistic home environment

with minimal hardware requirements. A conveniently deployed Bluetooth R© localisation

platform is designed and experimentally validated throughout the thesis. The platform

adopts the convenience of a mobile phone and the processing power of a remote location

calculation computer. The use of Bluetooth R© also ensures the extensibility of the platform

to other home health supervision scenarios such as wireless body sensor monitoring.

Central contributions of this work include the comparison of probabilistic and non-

probabilistic classifiers for location prediction accuracy and the extension of probabilistic

classifiers to a Hidden Markov Model Bayesian filtering framework. New location

prediction performance metrics are developed and significant performance improvements

are demonstrated with the novel extension of Hidden Markov Models to higher-order

Markov movement models. With the simple probabilistic classifiers, location is correctly

predicted 80% of the time. This increases to 86% with the application of the Hidden

Markov Models and 88% when high-order Hidden Markov Models are employed.

Further novelty is exhibited in the derivation of a real-time Hidden Markov Model

Viterbi decoding algorithm which presents all the advantages of the original algorithm,

while producing location estimates in real-time. Significant contributions are also made

to the field of human gait-recognition by applying Bayesian filtering to the task of motion

detection from accelerometers which are already present in many mobile phones. Bayesian
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filtering is demonstrated to enable a 35% improvement in motion recognition rate and even

enables a floor recognition rate of 68% using only accelerometers. The unique application

of time-varying Hidden Markov Models demonstrates the effect of integrating these freely

available motion predictions on long-term location predictions.
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CHAPTER 1

Introduction

Much recent work highlights the growing issue of the aging population (Scanaill et al.,

2006, Department of Economic and Social Affairs, Population Division, 2009). Population

aging refers to the rising median age of a population. Hence, along with the social and

economic implications of a persistently growing global population, there are also challenges

associated with the changing age distribution within the population. When considering

the age pyramid of Figure 1.1, a shift in the age of the population of Europe over the next

50 years is evident (Giannakouris, 2008). The implications of this shift is that the median

age of the European population will change from 40.4 years in 2008 to an estimated 47.9

years in 2060.

When viewing this effect on a global scale, Figure 1.2 illustrates how the proportion of

the population over the age of 60 grew from 8% in 1950 to 11% in 2009. It also projects

that the population over the age of 60 will to grow from 11% at present to 22% of the

population by 2050 (Department of Economic and Social Affairs, Population Division,

2009). This will have a severe impact on the global Potential Support Ratio (PSR),

which is the number of people in the age range 15-64 for every person aged 65 and older.

Assuming that people in the age range 15-64 are capable of caring for an elderly person,

it indicates the capacity for a population to care for the elderly. As a population ages, the

PSR generally decreases (Department of Economic and Social Affairs, Population Division,

2009), leading to a lower ability for a population to care for its older members. Figure 1.3

indicates how the PSR changed from 1950 to 2009 and how it is expected to decrease by

the year 2050. By the year 2050 the PSR is expected to reach a mere 4 potential carers

for every person over the age of 65.

Population aging is a significant challenge facing the global population. To cope with

1



CHAPTER 1. INTRODUCTION

Fig. 1.1: An age pyramid illustrating the change in population age distribution for males
and females in 2008 and predicted for 2060, taken from Giannakouris (2008).

Fig. 1.2: Proportion of the population over the age of 60 in 1950, 2000 and projected
into 2050, taken from Department of Economic and Social Affairs, Population Division
(2009).
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Fig. 1.3: Global Potential Support Ratio in 1950, 2000 and projected into 2050, taken
from Department of Economic and Social Affairs, Population Division (2009).

the falling human resources and, as a result, growing financial shortcomings of all health

care systems, a more efficient health care paradigm needs to be developed. Assistive

technology has been proposed as an efficient technique for caring for the aging population

without the costly need to commit elders to care facilities (Scanaill et al., 2006). These

technologies can enable elders to live safely in their own homes for a larger portion of

their lives with monitoring and interaction facilities provided by the home environment

itself. Daily activity and motion monitoring technologies are a fundamental part of these

home care technologies. As such, this thesis is committed to developing a relatively

inexpensive technique of unobtrusively monitoring an elder’s movements throughout their

home environment. The availability of this movement information is envisioned to allow

family members and/or part-time caregivers to assess and communicate with the elder on

how their day-to-day behaviours are affecting their health and their ability to continue to

benefit from independent living.

1.1 Smart Home Health Monitoring

Recent technological advances have spurred the emergence of semi-automated home

environments, referred to as smart homes. The predominant benefit of smart homes

is that they use technology to make the activities of everyday life more convenient for

their inhabitants. Recently the importance of smart homes has been heightened by the

fact that they can be used to actively provide health care services to an elder. The

availability of health care services to an elder in their own home means that elders who

would traditionally require attention from carers can have much of their supervision needs

fulfilled by their smart home. This omnipresent monitoring facility is envisaged to allow

elders to live in their own homes for longer periods of their lives before requiring a more

3



CHAPTER 1. INTRODUCTION

specialised care environment.

A wide variety of services can be provided to an elder by their smart home, including;

monitoring of activity patterns (Tapia et al., 2004, QuietCare Systems, 2009), provision

of activities to keep the elder proactive (Nawyn et al., 2006), detection of safety critical

conditions like falls (Chen et al., 2005) and medication adherence promotion (Nugent et al.,

2005, Lundell et al., 2006). As with most smart home functionalities, these technologies

require some technique to detect the current context or activities of the user. To infer

the context of the user a number of sensors are typically employed. These sensors can be

anything from simple contact switches on furniture to RFID proximity sensors.

1.2 Home Localisation Techniques

A variety of sensing modalities are relevant to a home care smart home system. This thesis

focuses on the location sensing component of smart home systems, since the context related

to a particular detected activity can be influenced strongly by the location of the activity

(Ofstad et al., 2008). To date a variety of elder care smart home systems have been

proposed, many of which utilse location as the main form of context. One of the most

obvious uses which can be made of location information is to allow monitoring of an elder’s

activity patterns over long periods of time. One commercially available elder monitoring

system is QuietCare Systems (2009). The QuietCare system uses Passive Infra-Red (PIR)

motion detectors in each room to infer the current location of the elder. Then deviations of

the elder’s movement and activity patterns from typical healthy patterns can be detected

and a caregiver can be informed.

A context sensitive medication prompting system is presented by Lundell et al. (2006)

that infers the subject’s context from their room-level location, also based on PIR sensors.

Based on the subject’s location, different prompting devices throughout the environment

are used to remind the subject to take medication. A portable wristwatch-like prompting

device is used when the elder is in a location where no other form of prompting device is

available. Furthermore medication prompts are sent only at times when the elder’s motion

patterns indicate that they would otherwise miss a dose. For example if the elder exhibits

a motion pattern which, based on baseline data, indicates they may leave the house at

a time close to their usual medication time, they are prompted to take their medication

before they leave the house. This reduces occurrences of missed doses.

Another piece of work, which uses PIR sensors to infer location, but with resolution

finer than room level is presented in Chan et al. (2002). It is achieved by placing several

PIR sensors in each room, one sensor for each location of relevance within the room. That

particular work is focused on assessing the subject’s levels of mobility, which is indicative

of motor behavioural disorders. Statistics of a patients motion patterns over a typical 24
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hours are visible from the trial data. However, it is indicated that PIR based location

predictions are not reliable when a caregiver enters the environment due to PIR sensor’s

inability to differentiate between different people.

A system which uses an ultrasound location tracking technique is presented in Helal

et al. (2003). With their high-accuracy tracking technique, the authors developed a

remote monitoring application, similar to that provided by the QuietCare system. This

application provides location markers on an environment map, in real-time, to interested

parties with the necessary software. The authors also present an attention capture

application which provides interactive displays to an elder to gauge their reactivity to

certain types of prompts. The location information is integrated into the decision of which

environmental display to use to engage the inhabitant, which is similar to the approach

taken by Lundell et al. (2006). Finally the authors propose an indoor navigation system to

assist visually impaired subjects. Navigation requires a high accuracy tracking technique

such as ultrasound to allow useful directions. As such, the tracking system which we will

later present is not suitable for precise indoor navigation.

One further use of indoor location is outlined by Chen et al. (2005). This paper

describes a sensor for detecting falls of an elder. When a fall is detected it is necessary

to be able to pinpoint the location in which the fall occurred to allow emergency

personnel to quickly locate and assist the individual. Not much information is given

about the localisation technique, except that it uses estimates of the portable fall sensor’s

transmission radio signal strength at several Basestation computers to triangulate the

subject’s location.

As this section highlights, there are a number of smart home systems which utilise

location information. Localisation techniques of varying resolution are employed in differ-

ent situations. However in a home environment room-level location is typically sufficient,

which explains the ubiquity of PIR localisation techniques in many implementations to

date. Many of these location-based smart home systems require an array of sensors to be

installed throughout the home environment, typically at a level of one sensor per room.

Hence, the location sensing element of these systems have high installation overhead, a

trait which overshadows the obvious benefit of such systems.

The work presented in this thesis aims to develop and implement a location sensing

technique with minimal hardware requirements to reduce the installation overhead of

location-based smart home systems. To date, a vast body of research has been conducted

on efficient localisation in office environments. Such techniques, however, have rarely

been applied to home environments, which have significantly different topologies than

office spaces. Hence this thesis conducts a summary of general localisation theory before

presenting a comprehensive review of the indoor localisation systems developed to date.

A major limitation of referring to prior localisation research for the development of this
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home localisation technique is that localisation systems generally produce predictions with

resolution inappropriate for a home environment. As will be presented later, room-level

or symbolic location predictions are more relevant to human context sensing than exact

spatial coordinates, as used in most prior indoor localisation techniques.

1.3 Aims and Scope of Thesis

From the discussion of the previous sections it can be understood that the location sensing

elements of smart homes have not been rigorously developed in the past. The simplest

approach, such as PIR sensors, or the most expensive approach, such as ultrasound, has

generally been adopted. This thesis contributes to both the fields of localisation and

home monitoring technologies by building a localisation system specifically for the task of

room detection in a home environment with minimal hardware requirements, rather than

adopting existing generic home localisation technologies for this task.

For this reason it is necessary to review all existing literature in relation to

technologies suited to indoor localisation. Then the optimal technology on which

to build the localisation system must be selected. However, the simple deployment

and experimentation of a localisation platform is not likely to produce results entirely

representative of a realistic home deployment. Hence, it is necessary to explore the

performance of the localisation system over significant periods of time corresponding to

that which would be encountered in a home deployment.

Assuming the availability of a reliable long-term home localisation evaluation platform,

it is possible to explore further augmentations to the base localisation deployment. The

most significant augmentation which can be applied is the inclusion of Bayesian filtering,

which has frequently been shown to increase coordinate location predictions (Kotanen

et al., 2003, Ladd et al., 2002, Rodas et al., 2008). Along with Bayesian Filtering, further

improvements based on observations of the available signals and constraints within the

home environment, can be considered.

The aim of thesis is to develop a room-level home localisation system. The system

must be cheap in terms of hardware costs, power costs and maintenance costs for the

elders, who generally do not have extensive electronic engineering training. To minimise

hardware costs the system must use intelligent signal processing techniques, using all of the

signals available from the equipment present in the test environment. Power costs can be

minimised by utilising a hardware platform developed for low power transmissions. Using

low power hardware introduces deficiencies in the quality of the signals available from the

hardware. This places the onus on the processing algorithms to robustly handle the signals

to enable accurate location predictions while minimising battery drain. Finally the overall

system should minimise the maintenance cost to the elder by using only devices from
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which they can obtain alternative functionality. For example, it is beneficial to include

the localisation functionality into a mobile phone rather than a custom wrist-mounted

tag. This both allows alternative functionality to be derived from the device, increasing

the perceived usefulness, and reduces the assistive stigma.

The scope of the thesis extends as far as predicting location of an elder within their

home during the day. This is due to the fact that detecting an elder’s location outside of the

home has a well defined solution in GPS and the movements which occur throughout the

night are relatively low-magnitude and are better addressed with alternative technologies

(Behan et al., 2008).

1.4 Contributions of this Thesis

The general focus throughout this thesis is on the development of a localisation system

capable of determining the room-level position of an elder inhabitant. A general

localisation platform is developed with the emphasis on cheap deployment and reliable

long-term performance. It is concluded that predicting location from Bluetooth R© signals

arriving at a Basestation computer within the environment from a user’s mobile phone

is the most efficient and long-term reliable solution. In this context, the core novel

contributions of the research presented in this thesis are as follows:

1. The deficiencies in the accuracy metrics of previous indoor localisation work is

highlighted. The majority of previous indoor localisation work focuses on error

distances, i.e. the discrepancy between the true position and the predicted position,

in metres. This work describes techniques of assessing the ability of a system to

resolve the more human-relevant symbolic location. Not only is the ability of the

system to correctly predict symbolic location over long periods of time assessed,

but the effect this has on activity indicators such as distance travelled and room

transition times are also presented.

2. Erroneous location predictions are reduced by incorporating user movement ten-

dencies by modelling the user’s movements using a Hidden Markov Model. This

also constrains the predictions to movements between rooms which are topologically

possible since the user tends not to quickly transition between rooms which are not

connected by doors. It is shown that all of the localisation performance measures

developed in this thesis are improved for the Bluetooth R© localisation system by

utilizing a Hidden Markov Model framework. The Hiddden Markov Models are also

extended to second and third order models to investigate if making reference to

predictions further into the past improve current predictions.

3. Typically the Viterbi HMM-decoding algorithm involves a backtracking step which
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requires starting at the final state prediction and iteratively backtracking over the

most likely previous states. This work proposes a short-term backtracking algorithm

which has not been considered for localisation in the past. This backtracking allows

globally optimal location predictions to occur in almost real-time with relatively

small worst-case prediction delays.

4. To enable HMM state predictions based on motion types, it was necessary to develop

a novel technique for motion prediction. This technique uses accelerometer data

to predict the type of motion which the user is undertaking. While detecting

motion type from accelerometer signals is not novel in itself, the application of

this accelerometer frequency component technique has not been applied to realistic

situations where the motion type can change arbitrarily. Furthermore, Bayesian

filtering has been shown to improve accelerometer frequency component motion

detection.

5. The availability of motion predictions allows the dynamic adjustment of HMM

parameters, namely the transition probability matrices. This, in theory, should

allow different room transition probabilities for different situations. For example,

when a user is stationary, the probability of transitioning to other rooms should

be zero, leading to higher localisation accuracies. In practice, however, it is found

that motion predictions do not increase accuracy, since the training motion data is

subject to misclassifications due to the inability to generate 100% reliable motion

labels.

Besides these contributions, other less significant contributions of this thesis include:

1. A comprehensive literature review of the technologies previously utilised for indoor

localisation is presented. Furthermore, a review of the classification algorithms suited

to the task of symbolic location recognition is presented and their decision boundary

composition is illustrated on a synthetic Gaussian mixture dataset.

2. A small home localisation scenario is considered to allow the determination of the

most suitable wireless technology for our home localisation system. For power-

efficiency, Bluetooth R© and a communication protocol which forms part of the

ZigBee R© standard are considered. The optimal method of obtaining training data

corresponding to human movement for such hardware is empirically confirmed.

The traditional remote localisation scenario of multiple Basestation computers and

our minimal approach to localisation are compared. It is shown that only slight

reductions in localisation accuracy is possible while halving the quantity of deployed

hardware infrastructure.
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3. The novel localisation system developed in this thesis is compared to the commonly

employed PIR home localisation technique. The comparison is enabled by deploying

both a PIR localisation system and a novel technique of obtaining room labels which

utilises an RFID reader and RFID tags on doors between rooms. It has been shown

that in a realistic test environment the Bluetooth R© platform has higher accuracy

and when multiple occupancy occurs in the environment the Bluetooth R© platform

has a lower reduction in localisation accuracy.

4. Experiments investigating the benefits of increasing signal diversity on the lo-

calisation accuracy have been conducted. Higher signal diversity is achieved by

using a second Bluetooth R© beacon cohabited with the Basestation Computer, but

with a different radiation profile or by placing alternative “dumb” Bluetooth R©

transceivers throughout the environment. It is shown that the availability of cheap

Bluetooth R© transceivers throughout the environment significantly contributes to

higher localisation accuracy; an approach previously impossible due to the inability

to retrieve Bluetooth R© signal readings on a cheap mobile device.

5. Improvements to the deployed base localisation algorithms are presented. The

additions which are considered are; signal smoothing, lagged preprocessing, sparse

classifiers, integration of user location preferences and uncertainty rejection. User

location preference integration and prediction uncertainty rejection has been impos-

sible for a majority of localisation techniques in the past due to their maximum

likelihood treatment of the coordinate localisation problem. Since we take a discrete

probabilistic approach to localisation, integration of such relevant information is an

incremental addition.

1.5 Thesis Organisation

This thesis is organised into 8 chapters as follows:

Chapter 2 provides a summary of localisation theory and a comprehensive summary of

indoor localisation systems, grouped by the technology on which the systems are

built on.

Chapter 3 is a second background chapter which describes the variety of direct and

probabilistic classification techniques which are considered for applicability to the

problem of estimating home location from RF signal input features.

Chapter 4 presents the candidate hardware platforms suitable for low-power localisation.

It compares Bluetooth R© and the ZigBee R© physical layer hardware for outdoors and

indoors signal resolution and the localisation accuracy possible with each platform.
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Bluetooth R© is formalised as the base localisation hardware platform on which to

build the localisation algorithms in the following chapters.

Chapter 5 improves upon prior work by illustrating the deficiencies of traditional

localisation accuracy measures. It continues by comparing this thesis’ localisation

system with the PIR home localisation technique by employing a novel room-label

acquisition technique. It then demonstrates the effect of increasing diversity in the

available signals on localisation accuracy. Finally, further augmentations to the

original classification algorithms are evaluated.

Chapter 6 generates further accuracy metrics which quantify the effects of location

prediction errors on estimation of the amount of motion a user exhibits and the delay

in room transition predictions. It then shows how Hidden Markov Models and the

Viterbi algorithm improves both the location prediction accuracy and the transient

effects, such as location jitter and prediction delay. Improvements to the Viterbi

algorithm are proposed such as using higher order transition models and short-time

decoding of the state sequence to permit almost real-time location predictions.

Chapter 7 presents the generation of motion-type predictions from the accelerometer

signals available from the mobile localisation device. These motion predictions

are then utilised by the HMM to inform which transition probabilities are more

appropriate for a given motion type. The effect of this modification to the HMM

framework is illustrated.

Chapter 8 concludes with a summary of the work completed as part of this thesis, the

contributions it made to the field and the relevant areas of work which remain to be

investigated.
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Literature Survey

In the past decade, the possibility for mobile communication devices to estimate their

location indoors by analysing their received Radio Frequency (RF) signals has been

explored. Despite the somewhat unpredictable nature of RF propagation in an indoor

environment it is still one of the most hardware-efficient methods of estimating indoor

location. Location can be modelled as a function of certain traits of a received RF signal

such as received intensity, time of flight and received angle. Some of these traits are

easier than others to deduce, but as a result, are less dependable due to their affordable

availability. For example signal intensity is a reading widely available as standard on RF

receivers, but it sometimes has poor correlation with position due the low spatial resolution

of the signal.

An important predictor of the success of data transmission between a transmitter and

a receiver is the signal strength at the receiver. If the signal strength, hence the signal to

noise ratio, of the signal at the receiver is high, then it is more likely that the information

will be successfully received. Conversely, a low signal strength will mean it is less likely for

the signal to be successfully received. Over the many decades since radio transmission was

invented, many signal propagation models have been developed to allow the prediction of

the radio signal strength for a receiver at a particular point within an environment. Since

the received signal strength varies a function of the position of the receiver relative to

the transmitter, it is a commonly used parameter in the calculation of the position of the

receiver. Hence radio propagation models are important for many localisation systems,

and as such must be understood before the localisation methods can be presented.

This chapter begins by presenting the large-scale propagation mechanisms which

influence RF transmission and how distance may be modelled from the resultant received
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signal intensity. Section 2.2 follows on by presenting the techniques which utilise these

models to predict the position of a device based on RF signal properties. Section 2.3

then summarises the RF localisation systems developed to date and which technique each

system employs.

2.1 Radio Wave Propagation

The behaviour of radio waves in a given environment strongly influences the accuracy of

RF-based localisation systems. For example, the well-known Global Positioning System

(GPS) is highly dependent on the interaction of the radio signals with obstacles. The

presence of buildings in the Line of Sight (LoS) of the Mobile Device (MD) and the

orbiting satellites can cause highly inaccurate predictions of the MD position. That is, of

course, if GPS is even detectable in such conditions, which is not always the case. It is

vitally important for the development and deployment of a localisation system to be able

to understand and predict the behaviour of a radio signal in a specific environment.

There are two types of variations which can occur in radio waves. They are large-

scale path-losses and small-scale fading. Large scale path losses refers to signal strength

variations which occur over large distances (hundreds of meters). In contrast, small-scale

fading refers to the variations which occur with small changes in time and distance, even

of the order of wavelengths. Figure 2.1 illustrates the progression of the received signal

intensity due to large-scale and small-scale effects occur over over increasing transmitter-

receiver separation. The large-scale signal is a low-pass-filtered version of the raw signal,

which incorporates both large-scale and small-scale effects. Hence, the rapid fluctuations

in the raw signal are due to small-scale effects and the gradually changing trend of the

raw signal is due to large-scale path loss (or slow fading).

Fig. 2.1: Large Scale and Small Scale Fading with increasing Transmitter-Receiver
separation, taken from Rappaport (2002).

This section will form a basis for understanding how the behaviour of a radio signal can
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be predicted and subsequently utilised in the localisation techniques presented in Section

2.2. Section 2.1.1 illustrates the basic laws of radio-wave propagation which contribute to

their complicated indoor behaviour. Section 2.1.2 builds on these mechanisms to develop

propagation models, which can be used to predict the signal intensity of the received signal

at a given position.

2.1.1 Propagation Mechanisms

There are 3 propagation mechanisms which can influence wireless signal transmission.

They are Reflection, Diffraction and Scattering and will be explained in sections 2.1.1.2,

2.1.1.3 and 2.1.1.4 respectively. But before these propagation impediments are explained,

the simple case when no obstructions are present must be considered.

2.1.1.1 Free Space Propagation

Free space propagation refers to the transmission of radio waves when the area around,

and in the LoS of the transmitter and receiver, is free of obstructions. In this case the

waves will be able to travel from the transmitter directly to the receiver with the only

factor effecting the signal strength being the degradation due to distance traversed.

A free space propagation model describes how the received power decays as a function

of increasing Transmitter-Receiver (T-R) separation. The Friis free space equation is the

expression used to predict the received power Pr(d) for a T-R separation distance d, given

that the transmitted power is Pt,

Pr(d) =
PtGtGr
L

(
λ

4πd

)2

, (2.1)

where Gt and Gr are the transmitter gain and receiver gain respectively and λ is the

wavelength of the radiowave in meters. L is the system loss factor (L ≥ 1), which applies

to losses not due to propagation behaviour, such as internal hardware losses for example.

L = 1 when it is assumed that there are no system losses, hence shall be ignored.

The antenna gains Gr and Gt are related to the effective aperture Ae. The effective

aperture is derived from the apparent physical area to the front of the antenna from which

it receives the energy from arriving electromagnetic waves and is expressed in units of m2.

The antenna gain is related to the effective aperture as follows,

G =
4πAe
λ2

. (2.2)

λ is related to the carrier frequency by;

λ =
c

f
=

2πc

ωc
, (2.3)
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where f is the carrier frequency in Hz, ωc is the carrier frequency in radians per second

and c is the speed of light [m/sec]. From equations (2.2) and (2.3) it is understandable why

the lengths of antennas are different for communication systems of different frequencies;

the dimensions of the antenna are chosen to maximise the gain of a received signal at a

given frequency.

Another influence the antenna configuration has on the transmission power is the

polarisation of the antenna. Polarisation refers to the orientation of the oscillations of

the EM waves relative to their direction of travel. There are two types of polarisation;

horizontal and vertical. Horizontal polarisation refers to when the EM field oscillates in

the horizontal plane and vertical polarisation refers to EM field oscillations which occur

in the vertical plane. Over long distances of transmission, atmospheric and environmental

effects can cause distortions leading to a mixture of horizontally and vertically polarised

waves arriving at a receiver.

In the ideal case of an antenna with perfectly horizontal polarisation, the maximum

efficiency transmission, hence maximum received signal intensity, occurs when the

receiving antenna is also horizontally polarised. Hence, if either of the antennas are

rotated by φ = 90◦ relative to each other there is an antenna polarisation mismatch;

one is horizontally and the other is vertically polarised. In this theoretical scenario with

perfect polarisation the transfer of power will be zero. The expression for the dependence

of the amount of energy lost during transmission on the relative antenna orientation is

described by the Polarisation Loss Factor (PLF),

PLF = cos2(φ). (2.4)

Hence, the orientation of an antenna influences received signal intensity in two ways.

Firstly, changing the orientation can influence the effective aperture of the antenna,

resulting in a different antenna gain. Secondly, changing the orientation of the antenna

can change the polarisation of the antenna. It has been demonstrated how changing the

relative polarisation angle of the transmitting and receiving antennas influences the PLF,

hence influences the received signal intensity. The application of this phenomenen to this

work will be demonstrated in Chapter 5.

Following on from the Friis free space equation (2.1), which predicts the RF power

received at the end of the transmission path, we can define the Path Loss (PL), as the RF

power lost over the transmission path, assuming PLF is negligible;

PL =
Pt
Pr

=
L

GtGr

(
4πd

λ

)2

. (2.5)

When the antenna gains, Gt and Gr, and hardware losses, L, are assumed to be negligible

and set equal to 1, path loss can be represented, in decibels, as;
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PL(dB) = 10 log

[
d2(4π)2

λ2

]
, (2.6a)

where Pr(d)[dBm] = Pt[dBm]− PL(d)[dB]. (2.6b)

However, this can only be considered a valid predictor of path loss for values of d which

fall within the far-field (or Fraunhofer region) of the transmitter. The Fraunhofer region of

a transmitting antenna is the region beyond the Fraunhofer distance df . The Fraunhofer

distance is defined to be;

df =
2D2

λ
(2.7a)

where D is the largest physical dimension of the antenna. There are two further conditions

which the Fruanhofer distance, df , must satisfy. They are;

df � D (2.7b)

and

df � λ. (2.7c)

If we consider the path loss for a transmission system like Bluetooth R©or Wireless LAN

(f ≈ 2.4GHz) we get the path loss profile illustrated in figure 2.2.
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Fig. 2.2: Path Loss with increasing transmitter-receiver separation distance for f ≈
2.4GHz.

It is clear from Equation (2.1) that the Friis equation does not hold for d = 0. At

d = 0 the received power will be ∞. Hence, it is useful to define a reference distance d0,

known as the received power reference distance. Now the power at the point d, Pr(d), can

be related to the power at the reference point d0, Pr(d0). The value of Pr(d0) can easily be
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predicted from Equation (2.1) or it can be determined empirically from the environment by

averaging the power readings taken at several different points at the distance d0 radially

from the transmitter. This makes using a reference distance even more useful since it

eliminates the need for knowledge of the transmission wavelength, like in Equation (2.6a).

The reference distance must be chosen so that it lies within the far-field region, d0 ≥ df .

Also d0 must be smaller than any practical distance used in the communication channel.

So d0 must satisfy the equation;

d ≥ d0 ≥ df . (2.8)

Since we ensure d is always greater than the reference distance d0, this equation will

always hold. Also since the power decreases as the square of the distance increases (see

Equation (2.1)), we can relate the power at the distance d to the power at the reference

d0 thusly;

Pr(d)d2 = Pr(d0)d
2
0. (2.9)

This can be rearranged to give an expression for the power at a given distance, Pr(d);

Pr(d) = Pr(d0)

(
d0
d

)2

. (2.10)

In a typical mobile radio communications channel, Pr can change by many orders

of magnitude over the range of coverage. For this reason it is often more convenient to

represent the received power in units of dBm or dBW. Converting Equation (2.10) to units

of dBm (decibels with a 1 milliwatt reference level) gives;

Pr(d)[dBm] = 10 log

(
Pr(d0)

0.001

)
+20 log

(
d0
d

)
d ≥ d0 ≥ df (2.11)

It is generally accepted (Rappaport, 2002) that for a 1-2GHz mobile transmission system,

d0 is chosen to be 1m indoors and 100m or 1km outdoors. The reason for choosing values

which are multiples of 10 is to make the path loss computations simple in dB units.

Now that the expected behaviour of radio waves in an un-obstructed environment

have been presented, an understanding of the complicated behaviour when obstructions

are present can be developed.

2.1.1.2 Reflection

Reflection is a propagation mechanism which occurs when an electromagnetic wave

propagating through one transmission medium impinges upon another. Provided the

interface between the mediums is flat and large compared to the electromagnetic

wavelength, reflection can occur. Otherwise scattering occurs (see Section 2.1.1.4).
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Fig. 2.3: Angles of Incidence, Reflection and Transmission, modified from Rappaport
(2002).

When reflection occurs some of the incident energy is reflected back into the original

medium and some is transmitted into the second medium. If the second medium is a

perfect dielectric, some of the energy is reflected and some is transmitted with no energy

loss occurring. Alternatively, if the second medium is a perfect conductor, all of the energy

is reflected. Again no energy loss occurs.

Figure 2.3 illustrates how the signal behaves in what is known as the plane of incidence.

The plane of incidence is a flat plane in a 3-dimensional space in which the lines of

incidence, reflection and transmission all exist. The line of incidence represents the

direction from which the electromagnetic waves arrive at the interface. θi is the angle

which the incident wave makes with the interface between two mediums. Similarly, the

angle of reflection (θr) shows the angle of the reflected energy relative to the interface, after

the wave is reflected by the interface. And finally θt is the angle which the transmitted

energy travels relative to the interface after passing through the interface. It should be

clear from the diagram that θi = θr.

The electric field intensity of the reflected and transmitted waves are related to the

incident waves by the Fresnel reflection coefficient (Γ). The electric field intensity of the

reflected waves (Er) can be determined from the field intensity of the incident waves (Ei)

by using the Fresnel reflection coefficient,

Er = ΓEi. (2.12)

However, the Fresnel reflection coefficient will be different depending on the polarisation of

the wave. The Fresnel reflection coefficients for vertically (Γv) and horizontally polarised

(Γh) waves are
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Γv = Er
Ei

=
η2 sin θt − η1 sin θi
η2 sin θt + η1 sin θi

(2.13)

Γh = Er
Ei

=
η2 sin θi − η1 sin θt
η2 sin θi + η1 sin θt

(2.14)

where ηi is referred to as the intrinsic impedance of the ith medium. Since waves can

contain both vertically and horizontally polarised components, the overall reflected energy

is calculated using superposition.

It is also possible to calculate the angle of incidence which would result in no energy

being reflected. The Brewster angle (θB) is the incident angle which will result in a Fresnel

reflection coefficient of 0, hence no reflected energy. The Brewster angle is calculated to

be;

sin(θB) =

√
ε1

ε1 + ε2
. (2.15)

εn is the permittivity of the nth medium relative to the permittivity of free space (ε0);

εn =
εm
ε0
, (2.16)

where εm is the actual permittivity of the medium m = 1, 2. The relationship between

the relative permittivity and the intrinsic impedance of a material is εi = µi/η
2
i , where µi

is the permeability of the material. Hence, with Equations (2.15) and (2.16) the angle of

incidence which results in no reflected energy can be calculated.1

A useful application of the Fresnel reflection coefficient is that a transmission model

which incorporates ground reflections can be developed, called the Two-Ray Model. This

model can be used to predict the Electromagnetic (EM) signal intensity at the receiver for

an outdoor transmission system over several kilometers. This model takes into account,

not just the direct Line of Sight path to the receiver, but also a ground reflected path. If

we consider a transmitter situated ht meters above the ground, and a receiver d meters

away, hr meters above the ground (see Figure 2.4), an expression for the ground reflection

model can be developed. From the principle of superposition the energy arriving at the

receiver is calculated to be |ETOT | = |ELOS + Er|.
The two transmission paths in Figure 2.4 are referred to as dd for the direct T-R path

and dr for the total reflected T-R path. Hence the two energy components arriving at the

receiver are

1Note equations (2.15) and (2.16) only apply for vertically polarized waves
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Fig. 2.4: Ground reflection model, reproduced from Rappaport (2002).

ELOS =
E0d0
dd

cos

(
wc

(
t− dd

c

))
(2.17)

Er = Γ
E0d0
dr

cos

(
wc

(
t− dr

c

))
(2.18)

where E0 is the free space electric field at a reference distance d0. Assuming a small

angle of incidence, due to large T-R separation distance, Rappaport (2002) shows that

the reflected wave is 180◦ out of phase with the incident wave. Hence, assuming perfect

horizontal polarisation, the Fresnel reflection coefficient is Γ = −1 and the total electric

field incident on the receiver can be expressed as the sum of Equations 2.17 and 2.18,

ETOT =
E0d0
dd

cos

(
wc

(
t− dd

c

))
+ (−1)

E0d0
dr

cos

(
wc

(
t− dr

c

))
. (2.19)

Rappaport (2002) explains how the path difference is calculated from

∆ = dr − dd ≈
2hthr
d

(2.20)

when d is very large compared with ht+hr. With some simplifying assumptions the power

incident on the receiver can be calculated to be

Pr = PtGtGr
h2th

2
r

d4
. (2.21)

It can be seen from Equation (2.21) that at large distances (d�
√
hthr)the power falls

off with distance raised to the fourth power. This fall off in power is much more rapid

than that experienced in free space. The path loss for the Two-Ray model is then defined

as;

PL(dB) = 40 log d− (10 logGt + 10 logGr + 20 log ht + 20 log hr) (2.22)
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Note this equation applies for large propagation distances. It starts to break down over

small distances or in a cluttered environment like that which would be found indoors. The

two-ray model is one example of a simple ray tracing model used to estimate the signal

strength throughout the environment. Of course other, more complicated ray tracing

models can be employed in real environments, such as the one presented in McKown and

Hamilton (1991).

2.1.1.3 Diffraction

Diffraction allows radio waves to propagate behind obstructions, like walls, hills or even

around the earth. The region behind an obstruction is often referred to as the shadowed

region, and exhibits severely degraded signal intensity. The received EM field intensity

decreases rapidly as the receiver moves deeper into the shadowed region. However there

is often enough signal strength to retain a useful signal at the receiver.

Huygens’ principle attempts to explain why this occurs. It states that every point on

a wavefront can be considered as a point source for the production of wavelets. These

wavelets can combine to produce a new wavefront. The diffraction phenomenon is a result

of these new wavefronts propagating into the shadowed region behind the obstruction. To

understand how this occurs one must consider a transmitter and a receiver separated

by a transparent plane as illustrated by Figure 2.5. The concentric circles illustrate

where Fresnel zones cross the plane. Fresnel zones are the paths the radio waves travel

which result in constructive and destructive interference alternately. So the path difference

between the direct LoS path and the diffracted path is known as the excess path length,

denoted

4 =
nλ

2
, (2.23)

where n is the Fresnel zone number.

In Figure 2.5 the first circle on the plane represents where the first fresnel zone crosses

the plane. Since this is the first fresnel zone, the path difference will be λ/2, so it will

cause destructive interference. Similarly the second Fresnel zone exhibits constructive

interference, the third, destructive interference and so forth. The lower order Fresnel

zones have the most significant influence on the net received signal strength. This means

that the higher order zones have less effect on the received signal strength and can be

ignored.

The radius of the loci which cross the plane can be calculated using the expression:

rn =

√
nλd1d2
d1 + d2

, (2.24)

where rn is the radius of the nth Fresnel zone, λ is the wavelength of the transmitted
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Fig. 2.5: Fresnel zones as they interact with a transparent plane between the transmitter
and receiver, reproduced from Rappaport (2002).

wave, d1 the distance between the plane and transmitter and d2 is the distance between

the plane and the receiver. Note that the radius of a locus is dependent on the distances d1

and d2, and it will be at a maximum if the plane is located in the centre of the transmitter

and receiver. The radius will be smaller if the plane moves away from the centre. Hence,

equation (2.24) shows that the level of shadowing is dependent not only on the frequency

of the transmitted wave, but also on the relative position of the obstruction.

The knife-edge diffraction model is used used to estimate the signal attenuation due

to obstructions in the direct line of sight of the transmitter and receiver. Estimating the

total effect of diffraction over some terrain is a complicated and computationally intensive

process, so it is generally simplified to a knife-edge obstruction between the transmitter

and receiver. Figure 2.6 shows a typical knife-edge diffraction geometry.

The excess path length (4), which is the difference in travel distance between the direct

path and the diffracted path is calculated from the geometrically derived expression;

4 ≈ h2

2

(
d1 + d2
d1d2

)
(2.25)

and the corresponding phase difference at the receiver is calculated to be;

φ =
2π4
λ
≈ 2π

λ

h2

2

(
d1 + d2
d1d2

)
. (2.26)

The angle between the transmitted ray and the diffracted ray (α) can be approximated to

be:

α ≈ h
(
d1 + d2
d1d2

)
. (2.27)

Equation (2.26) is generally normalised using the Fresnel-Kirchoff diffraction parameter
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Fig. 2.6: Knife-edge diffraction, modified from Rappaport (2002).

v which is a dimensionless quantity, defined as:

v = h

√
2(d1 + d2)

λd1d2
= α

√
2d1d2

λ(d1 + d2)
, (2.28)

leading to the more convenient phase difference expression of

φ =
π

2
v2. (2.29)

It is clear that the received signal intensity will be a vector sum of all the waves arriving

at R. The presence of a knife-edge obstruction means that the received signal intensity will

be degraded as a function of the dimensions of the obstruction relative to the transmission

LoS, like its height and its distance from the transmitter and receiver. The Fresnel-Kirchoff

diffraction parameter accounts for these dimensions, hence the diffraction gain is related

to the Fresnel-Kirchoff parameter by the function;

Gd(dB) = 20 log |F (v)|. (2.30)

In real situations, graphical models can be employed to calculate the diffraction gain

described by this function. An approximate mathematical solution for Gd(dB) is given in

Rappaport (2002), and the graphical solution is illustrated in Figure 2.7.

This model only applies when one obstruction is present. However, it can be extended
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Fig. 2.7: Knife-edge diffraction gain as a function of the Fresnel-Kirchoff diffraction
parameter, from Rappaport (2002).

to more complicated scenarios. For example, when the terrain corresponds to two knife-

edges, they can be approximated by one dominant knife-edge, as illustrated in Figure

2.8. The overall diffraction gains can then be approximated by determining the Fresnel-

Kirchoff diffraction parameter associated with the equivalent knife-edge and determining

the gain from Figure 2.8. For more than 2 knife-edges this technique becomes extremely

complicated and further methods must be employed, as outlined in Rappaport (2002).

α
Single Knife Edge

Equivalent 

T R

Fig. 2.8: Approximating two knife-edges with a single knife-edge, reproduced from
Rappaport (2002).
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Fig. 2.9: Scattering of an incident wave.

2.1.1.4 Scattering

Another mechanism which influences the amount of energy arriving at the receiver is

scattering. Scattering is similar to reflection in that the waves bounce off a reflective

surface. However in scattering the reflections are more diffused. The energy is reflected

out in several different directions, as illustrated in Figure 2.9.

If the incident surface has flat areas with dimensions larger than the incident

wavelength, reflection will occur. Otherwise the surface is considered to be a rough surface

and scattering occurs. Surface roughness is measured using the Rayleigh criterion which

gives a maximum height for surface protrusions before the surface is considered rough and

reflection becomes scattering. The maximum height of protrusions for reflection to occur

is hp;

hp =
λ

8 sin θi
, (2.31)

where θi is the incident angle of a wave, of wavelength λ. So when the height of the actual

surface protrusions is larger than hp then the surface is considered rough and is modelled

as a scatterer. Then the reflection coefficient (Γ) used in Equation (2.12) is scaled by

a scattering loss factor, ρs, to allow for fewer waves reflected towards the receiver. ρs is

calculated by assuming that the surface height h is a Gaussian distributed random variable

with a local mean and standard deviation σh (Rappaport, 2002) as follows,

ρs = exp

[
−8

(
πσh sin θi

λ

)2]
. (2.32)

So when it is determined that h > hp, the reflection coefficient must be modified using the
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expression,

Γrough = ρsΓ. (2.33)

Scattering is important in understanding the behaviour of the received signal strength,

not only in terms of lost reflected energy, but also in terms of extra energy arriving at a

given receiver. Sometimes more energy can reach the receiver because of scattering effects.

Scattered waves can bounce off a scatterer in several directions and reach a receiver,

whereas a simple reflector at that point may not have delivered as much energy to the

receiver. So it is important to be aware that scattering effects can cause an increase in

received signal strength as well as a decrease.

2.1.2 Radio Propagation Models

Many methods have been developed to predict the amount of EM energy arriving at a

receiver given the amount of transmitted energy. Since most localisation systems utilise

some form of signal strength reading to perform their task, an understanding of the

behaviour of the signal strength for different receiver locations is useful.

2.1.2.1 Log-Distance Path Loss

The variations of the received signal strength throughout a free-field environment can be

approximated using the Log-Distance Path Loss Model. A free-field environment is an

environment in which there are no obstructions between the transmitter and receiver for

all positions of the receiver. This means that for all receiver azimuth angles the transmitter

is placed at, the path loss profile over distance will be the same.

From the equation for predicting received power with reference to the received power at

some distance (2.10), we can develop an expression for signal strength lost with reference

to signal strength lost at some reference distance. This is referred to as the distance-

dependent path loss model (Seidel and Rappaport, 1992);

PL(d) = PL(d0)

(
d

d0

)2

, (2.34)

where PL is the mean path loss at distances d and d0. The exponent of 2 here is referred to

as the free-field path loss exponent. This exponent will be different for indoor environments

since the signal intensity will decay at different rates due to reflective, diffractive and

scattering interactions with objects in the environment. Since the path loss exponent will

be different for different environments we denote it to be the variable n. Now the distance

path loss equation, in decibels, becomes
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PL(d)[dB] = PL(d0)[dB] + 10n log

(
d

d0

)
. (2.35)

Rappaport (2002) gives examples of typical values for the path loss exponent. For

example, in a free-field scenario a value of n = 2 would be expected and in a direct Line

of Sight scenario typical values would be 1.6 ≤ n ≤ 1.8. Indoors, the lower n and, as a

result, lower path loss can be explained by the mechanisms of reflection and scattering.

The signal can reflect and scatter off the walls, floors and ceilings increasing the received

signal strength, which means the signal will degrade more slowly for increasing distance,

assuming direct LoS. Alternatively, for an obstructed LoS indoors, the path loss exponent

is shown to be 4 to 6. The increased path loss exponent can be explained by diffraction

and the attenuation of signals transmitted through walls. Section 2.1.1.3 explained how

the diffracted signal received can suffer severely reduced gain.

2.1.2.2 Log Normal Shadowing

Equations (2.34) and (2.35) calculate the mean value of the path loss at a given T-R

seperation distance. The mean value is more significant than a single value because, due

to small scale fading and measurement noise, a single measurement can vary greatly from

the true mean value. Figure 2.1 illustrates how small scale signal strength can vary around

the mean value. To model the instantaneous measured path loss, another term is added to

the log-distance path loss model to account for the randomness of the received signal. It is

assumed that at any distance d, the measured path loss PL(d) is a random variable with

a mean of PL(d). And it has a log-normal distribution; which means that it is a normal

distribution on a logarithmic scale. Hence, a model describing a single instantaneous signal

strength measurement can be generated by modifying Equation (2.35) as follows;

PL(d)[dB] = PL(d)[dB] +Xσ (2.36a)

⇒ PL(d)[dB] = PL(d0) + 10n log

(
d

d0

)
+Xσ, (2.36b)

where Xσ is a zero-mean Gaussian distributed random variable measured in dB, with a

standard deviation σ, also in dB. The random variations described by Xσ are referred to

as Log-Normal Shadowing. The parameters n and σ are usually determined using linear

regression. The reference distance path loss PL can be determined in one of 3 ways. It

can be determined by measuring the path loss at the reference distance. It can also be

calculated using the free space model for a distance d = d0 or by using linear regression as

described in Chen and Kobayashi (2002). Some typical values for n and Xσ are presented

in Seidel and Rappaport (1992) and Faria (2006).
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2.1.2.3 Attenuation Factor Model

The log-distance path loss model (2.35) gives better signal strength prediction accuracy

than the free space path loss model (2.6a) since it utilises a parameter n which is tuned

to the deployment environment. The log-normal shadowing model (2.36b) can give even

better prediction of measured signal strength by statistically describing the small scale

variations which impinge on the transmitted wave. However none of these models can

account for the large scale attenuation of a signal due to obstructions in the environment.

Partitions such as walls and doors have a significant impact on the received signal strength.

A path loss exponent, n, of 4 to 6 gives reasonable overall prediction accuracy in the

presence of these partitions, but its predictions are based only on T-R distance. So it will

predict the same path loss for a given distance regardless of the number of partitions in

the transmission LoS. Whereas in reality the presence of these partitions will significantly

affect the path loss.

One type of model which utilises information about the presence of these partitions is

the Attenuation Factor Model. This model uses a fixed value for the path loss due to a

single partition, Partition Attenuation Factor (PAF). Now for multiple partitions we just

need to multiply the number of partitions by the PAF to determine the total path loss

due to partitions. We will obviously need a different path loss exponent, which negates

the losses due to partitions, and only accounts for direct LoS losses. A simple partition

attenuation factor model which accounts for partition losses, assuming all partitions cause

the same level of attenuation is given by,

PL[dB] = PL(d0)[dB] + 10n log

(
d

d0

)
+
∑

PAF, (2.37)

where
∑
PAF indicates that we sum the partition attenuation factors of all partitions

in the direct LoS ray drawn between the transmitter and receiver. An example of how

PL(d0), n and PAF can be estimated for a given environment is provided in Chen and

Kobayashi (2002). The partition attenuation factor model gives better prediction accuracy

than the log-distance path loss model because the path loss exponent has its dependency

on the number of partitions removed, and the
∑
PAF term accounts for these influences.

The case when there are multiple floors in the environment must also be considered.

One method of accounting for inter-floor path loss is to use a path loss exponent which is

calculated to account for the effects of multiple floors but negates the effects of partition

losses. We achieve this type of path loss exponent by using regression on data from several

floors, using 3D distances rather than just same floor distances;

PL[dB] = PL(d0)[dB] + 10nMF log

(
d

d0

)
+
∑

PAF, (2.38)
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where nMF is the multiple floor attenuation factor (Rappaport, 2002). As with the PAF we

can remove the dependency of n on the number of floors by introducing a Floor Attenuation

Factor (FAF);

PL[dB] = PL(d0)[dB] + 10nSF log

(
d

d0

)
+ FAF, (2.39)

where nSF is the same floor path loss exponent, ignoring floor attenuation, and FAF is the

attenuation due to floors for a specified number of floors separating the transmitter and

receiver. Typical values of FAF for an office building is presented in Seidel and Rappaport

(1992). Finally we can remove the dependency of n on both partition and floor attenuation

losses by using FAF and PAF to account for these losses and using n to account for the

remaining propagation variations;

PL[dB] = PL(d0)[dB] + 10nLoS log

(
d

d0

)
+ FAF +

∑
PAF, (2.40)

where nLoS is the path loss exponent for LoS propagation throughout the environment

negating the effects of partition and floor obstructions.

2.1.2.4 Soft Partition and Concrete Wall Attenuation Factor Model

The Partition Attenuation Factor model in Equation (2.38) predicts the signal strength in

the presence of partitions assuming that all partitions have the same attenuation factor.

This assumption is not necessarily true in a real-life environment. Concrete partitions will

attenuate the signal more than soft partitions like wooden walls, doors, or office partitions.

A model presented in Seidel and Rappaport (1992) assigns separate attenuation factors

to concrete partitions and soft partitions in an effort to better predict the path loss.

The Soft Partition and Concrete Wall Attenuation Factor Model assumes free space

propagation so the authors use a model similar to that in Equation (2.6a) and do not

use a path loss reference distance. Since free-space propagation is assumed, the path loss

exponent is now fixed at 2. Then terms to describe the attenuation due to soft partitions

and concrete partitions are added;

PL(d)[dB] = 20 log

(
4πd

λ

)
+ p×AF (soft)[dB] + q ×AF (concrete)[dB], (2.41)

where p is the number of soft partitions and q is the number of concrete partitions in the

T-R LoS. For the conducted experiments the T-R separation distance and resultant path

loss for multiple positions are logged. At each position the number of soft and concrete

partitions in the T-R LoS are also logged. Again linear regression is used to determine the

soft partition attenuation and concrete partition attenuation factors. If the assumption of
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free space propagation was discounted, a path loss exponent could be included to account

for attenuation due to environmental propagation effects like reflection, diffraction and

scattering.

2.1.2.5 Distance Dependent Path Loss Exponent

To provide more flexible representation of the path loss exponent over increasing distance,

work by Cheung et al. (1998) proposed using two different path loss exponents. One path

loss exponent n1 is used for the region near the transmitter, in which propagation losses

are similar to that occurring in free space. The further away region has a greater path loss

exponent n2 to allow for the increasingly noticeable influence of reflections, diffractions

and scattering from obstructions. The distance at which a change in propagation loss

occurs is defined as dbp. Hence taking these observations into account, the new expression

for path loss, modified from Cheung et al. (1998), is

PL[dB] = PL(d0)[dB] + 10 log

(
d

d0

)n1

U(dbp − d)

+10

[
log

(
dbp
d0

)n1

+ log

(
d

dbp

)n2
]
U(d− dpb) (2.42)

+FAF +
∑

PAF,

where U(.) is a unit step function. This technique of propagation modelling is shown to

have signal strength prediction accuracy superior to that of Equation 2.37.

However, the downside to algorithms which involve floor and partition attenuation

factors is that they require information about the number of partitions present. This

information is not available online. Instead these types of models are used to obtain a signal

strength map or fingerprint of the environment offline. Then fingerprinting techniques, as

described in Section 2.2.1.3, are used to predict location. In contrast, expressions which do

not involve attenuation factors such as Equation 2.35 allow online triangulation techniques

to be employed. The propagation models presented thus far are relatively simplistic.

Recently a family of more complicated propagation models have been proposed for offline

generation of location fingerprints.

2.1.2.6 Simulation Models

Since the 1980s, empirical simulation models have been developed to aid in planning

wireless network deployment. They capitalise on the computational power becoming

increasingly available in typical computers. This allows tracing of several hundreds of

paths each ray could possibly take from the transmitter, and combining the energy from

each path to estimate the energy arriving at each position in the simulation environment.
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One example of such a model is presented in Ikegami et al. (1991).This work focuses

on modelling the mean strength of 200, 400 and 800 MHz signals in urban environments,

namely downtown Kyoto and Kyoto University. It assumes reflection and diffraction to be

the dominant effects. Reflection attenuation is estimated, from experimental data, to be

6dB. Diffraction effects are calculated using building heights estimated from the number

of stories in the building. This technique works well in this particular test environment,

however, it is stated not to work as well in a city where the building heights exceed the

transmitter height, due to the way in which diffraction is modelled.

However useful this method is outdoors, it is not applicable to indoor environments.

One technique which focuses on indoor signal propagation is presented in McKown and

Hamilton (1991). The employed method models the signal in terms of reflections from

and transmissions/diffractions through walls in a 2 dimensional map of the environment.

Each ray can be traced for up to 6 reflections before termination. The chosen number

of reflections permitted for each ray leads to a trade off between the execution time and

accuracy.

The previous two techniques for signal strength simulation both utilise some form of

theoretical propagation modelling. Another technique, which utilises mostly experimental

data in the simulation, is presented in Pechac and Klepal (2001). Experimental data is

used to build a “motif” for how a signal behaves upon colliding with particular types

and shapes of walls. These motifs are templates for the radiation pattern probability

of the signal resulting from the wave incident on the surface. Every ray traced from

the transmitter has all of its transmissions, reflections, diffractions and scattering at all

surfaces estimated via these motifs. A bitmap of the environment is formed and the energy

at each square is proportional to the number of rays passing through that square. The

benefit of using motifs is that all radio transmission phenomena are approximated by the

motifs and the ability to theoretically model them is not necessary. This technique can

also be easily extended to the 3D case with the availability of sufficient computational

power.

These simulation models permit fine grained modelling and visualisation of the signal

strength throughout a situation where it would be impractical to manually obtain signal

readings throughout the entire environment. Availability of these readings throughout

the environment permits the employment of fingerprinting based localisation techniques,

as will be explained in Section 2.2. Bahl and Padmanabhan (2000b) illustrated that in

a Wireless Local Area Network (WLAN) localisation system, a dataset generated from

a simple propagation model, like that in Equation 2.37, produces inferior accuracy to

that obtained using an empirical training dataset. However, in a more recent paper

Widyawan et al. (2007b) demonstrated the localisation accuracy possible when data from

a simulation model is utilised. It showed that the associated accuracy is competitive with
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that achievable with a manually obtained dataset, and the calibration effort for a large

environment is significantly lower.

So far the propagation modelling algorithms only consider large scale path loss effects.

Other, less significant, propagation effects are also present in any transmission.

2.1.2.7 Small Scale Fading

Small scale fading refers to the rapid fluctuations in the received signal over short periods

of time or travel distance. As alluded to in Section 2.1, small scale fading does not

significantly influence the signal strength over a long period of time. Small scale fading

models are mainly concerned with understanding how speed of the transmitter, receiver

or objects in the environment influence received signal in terms of apparent frequency and

arrival time of signal components from different directions. In a human tracking system,

however, the subject’s speed is insignificant compared to the speed of RF wave travel,

hence relative T-R speed will not influence signal strength intensity.

Small scale fading also describes instantaneous fluctuations in the received signal

intensity due to multipath effects like reflection and scattering. However small scale

multipath effects are so difficult to predict and are so insignificant over long periods of time,

that they are usually mitigated in localisation systems by using average signal strength

values rather than instantaneous values. Small scale variations in received signal strength

are usually modelled in a statistical fashion, as discussed in Section 2.1.2.2.

For radio localisation systems the consequences of small scale variations in the signals

are usually ignored and the signal strength due to large scale propagation effects are used to

interpret the current position. The aforementioned propagation models are commonly used

for distance estimation in triangulation techniques or signal strength dataset acquisition

for fingerprinting techniques, as will be described in the following section.

2.2 Positioning Theory

The field of RF localisation is concerned with determining the position of a piece of radio

communication hardware by analyzing information about the radio signals sent to or

received from a piece of communication hardware. The hardware to be localised is often

referred to as the Mobile Device (MD). When the signals from an MD are analysed by

some other piece of hardware this is known as remote positioning, since the location of

the MD is determined remotely from the device being localised. If the position of the MD

is calculated and stored on the MD, based on signals arriving from a stationery Access

Point (AP) this is known as local positioning. When this MD is carried by a person, they

can be offered location based services from either the local or remote localisation system.

There are two ways of presenting the calculated positions; relatively or absolutely.
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Relative positioning presents the position of an MD in relation to some reference position

within an environment. Alternatively absolute positioning presents the position of an MD

in relation to some absolute frame of reference. An example of absolute positioning is the

coordinate output of a GPS module, whereas relative positioning would say that a user is

20m north of some landmark. It is possible to translate from relative to absolute position

and vice versa if we know the position of the landmark which the MD is relative to.

There are two main categories which a localisation technique can fall under, they are

Direct Techniques and Sequential Bayes Filtering Techniques. These techniques will be

the subject of the following subsections.

2.2.1 Direct Techniques

Direct localisation techniques are techniques in which the current position is derived from

each sample without reference to previous or future location predictions.

There are three main categories which a direct localisation technique can fall within;

• Proximity

• Triangulation

• Scene Analysis/Fingerprinting

Each method of localisation has advantages and disadvantages in terms of installation

and configuration effort, accuracy and reliability (Hightower and Borriello, 2001). There is

no one localisation system ideal for every situation, each one has its ideal application. The

following subsections will describe how each of these methods can be used to determine

location.

2.2.1.1 Proximity

Arguably one of the simplest methods of determining the location of an object or a human

is by using the Proximity method. This method is used when the only reading available

from some sensing hardware is a binary detected/not-detected reading. Hence, the location

is approximated to be the same as the position of the detecting sensor. As a result,

the higher the detecting range of the sensor, the higher the uncertainty of the location

prediction. Proximity localisation techniques do not lend themselves to accurate coordiate

location predictions, instead symbolic location predictions are usually generated. Symbolic

location refers to a location which has some meaning relevant to the actions which usually

take place in that location, such as a room or area within a room.

Proximity sensing methods are well suited to the detection of room-level location when

the signal to be sensed is readily attenuated by walls. Typical technologies suitable for

this purpose are IR and Radio Frequency Identification (RFID). Example of IR proximity
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sensing techniques can be seen in Want et al. (1992, 1995) and Abowd et al. (1997). A

disadvantage of IR proximity technologies is the dependence of IR on LoS transmission.

Obstructions within the room have a severe impact on the likelihood of detection for IR

transmissions. RFID transmissions overcome this limitation by using RF transmissions,

which are less succeptible to obstructions, but as a result are more likely to “leak” into

adjacent rooms. Due to its reliability, RFID has replaced IR for symbolic localisation

systems. Examples of localisation using RFID can be found in Cox et al. (2003) and

Callaghan et al. (2006).

Proximity localisation using RFID technology can obtain finer resolution location

predictions by placing a larger number of sensors or tags throughout the deployment

environment. Koch et al. (2007) suggested fixing an array of RFID tags under a carpet

throughout an entire environment, then an RFID reader fixed on a subject’s foot can

resolve location with high resolution, using only proximity readings. Another piece of work

by Kulyukin et al. (2008) uses similar densities of RFID tags on the floor but this time

the RFID reader is attached to an elder’s stroller. The resolution of location predictions

is sufficiently high to allow navigation to take place. However, this high resolution comes

at the expense of high installation effort.

It is not just short range communication technologies which can be used for proximity

localisation. Any technologies which can detect other devices with little or no indication

of the signal intensity can be considered to be proximity technologies. For example

Google Maps’ positioning system uses cell ID localisation which approximates the location

of a user to be the location of the detected cell tower. In urban areas this can give

accuracy within 200m but this can increase to approximately 3 km in areas with sparse

cell tower deployment. Some bluetooth positioning systems also could be considered

proximity localisation sytems due to the lack of signal strength intensity readings on

some Bluetooth R© chips (see Anastasi et al. (2003) for example).

When a person or object is detected at multiple sensors or receivers at once, higher

localisation accuracy can be obtained by using the centroid algorithm. This algorithm

simply calculates the coordinate position of the object to be the geometric mean of

the coordinate positions of all the sensors which detected the object (see Hightower and

Borriello (2004) for example). These proximity localisation methods are employed when

only binary presence readings are available or when signal strength or timing resolution

is not high enough to permit T-R distance estimation. When such readings are available,

higher accuracy can be obtained by using Triangulation or Fingerprinting methods, hence

proximity techniques are rarely employed in recent work.
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2.2.1.2 Triangulation

Triangulation refers to using the geometric properties of a triangle to determine the

position of an MD relative to a number of stationery APs. Figure 2.10 illustrates an

example where the location of devices A and B are known, and we want to calculate the

relative position of device C. Triangulation will directly give the relative position of device

C. From this and knowledge of the absolute positions of A and B the absolute position of

device C can be calculated. Using triangulation methods, there are two ways the position

of device C can be calculated: Lateration or Angulation.

Fig. 2.10: Triangulation localisation methods can calculate the position of circle C given
the known locations of squares A and B and some other information, either distances, d1
and d2 or angles θ1 and θ2.

Lateration (or Trilateration as it is sometimes called) is used when the distances

between the MD and some APs are known. In Figure 2.10 the positions of A and B

and the distances d1 and d2 are known. The distances d1 and d2 can be used to calculate

the position of C relative to A and C, using simple geometry. In the situation where

there are only two APs the result will be two possible locations of C. This is because two

positions will satisfy separation distances d1 and d2, as illustrated in Figure 2.11(a). If

the distance, d3, to another AP, D, at a known location is available, the position of C can

be deduced. Figure 2.11(b) shows that the only possible position of C can be determined

using information about the third AP.

This suggests that in an unconstrained 2-dimensional space, a minimum of 3 access

points will be needed for lateration. But in a constrained space, like indoors, the

environment configuration can be used to reduce the number of APs required. For example

if both A and B are placed against the perimeter wall of a building and it is assumed that

the MD won’t be detected outside the building (for example in a multi-storey building), it

can be assumed that one location of C is invalid and a confident position prediction using

only 2 APs is possible.

For lateration to successfully work in an unconstrained space the number of access

points required, N, is;
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(a) (b)

Only 2 APs 3 APs

Fig. 2.11: Lateration used to predict the position of C using 2 fixed APs and 3 fixed
APs. (a) Using only 2 APs results in two possible locations of C for the measurements d1
and d2. (b) The availability of 3 APs removes uncertainty.

N = D + 1, (2.43)

where D is the number of dimensions in which localisation must be performed in. D is the

minimum number of APs required to unambigiously predict a position, as corroborated

by Khan et al. (2006). Also if more APs are available they will provide better accuracy.

The first step in lateration is the estimation of the distances d1, d2 and d3. Many

methods of distance estimation can employed in a lateration-based localisation system.

The most used methods are:

Signal Strength Most radio transmission devices have a Received Signal Strength

Indication (RSSI) reading built-in and visible to the application layer. This RSSI

value can usually be converted to a received signal intensity value, measured in

dBm. With this signal intensity value a propagation model like the ones described

in Section 2.1.2 can be used to determine the T-R separation distance. Examples of

systems which use RSSI based lateration are described in Hightower et al. (2001),

Feldmann et al. (2003), Castano et al. (2004), Orooji and Abolhassani (2005), Sugano

et al. (2006), Jin et al. (2006) and Tarrio et al. (2008). RSSI is the most commonly

used distance indicator due to its common availability, even though it gives poor

accuracy due to unpredictable multi-path effects. When less standard transmission

hardware is used further readings are possible, resulting in higher distance estimation
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accuracy.

Time of Arrival (TOA), sometimes known as Time of Flight (TOF), allows for the

prediction of the T-R separation distance by observing the time a signal takes to

reach the receiver after transmission. The time the signal was transmitted must also

be known, usually included in the data packet sent within the signal, so the T-R

propagation time can be determined. With knowledge of the propagation time, and

the speed of propagation of the wave, the T-R separation distance can be calculated.

TOF is generally more accurate for distance estimation than signal strength since

the time it takes for the RF wave to travel is less suceptible to obstructions (Kupper,

2005) but it requires very accurate clock synchronization between the transmitter

and receiver to allow calculation of the transmission time. Also statistical methods

must be employed to prune out secondary signals due to multi-path effects. TOA is

used in GPS (Kupper, 2005). It is also used in ultrasonic systems such as the Active

Bat localisation system (Ward et al., 1997, Harter et al., 1999) and Hexamite’s

ultrasonic positioning sytem (Helal et al., 2003).

Round Trip Time (RTT) is a measure of the time it takes for a signal to reach a

receiver and a response to be sent back to the orignial transmitter. When there are

no delays present in the receiver hardware it is equal to twice the TOF. RTT is an

improvement over TOF since it does not require the transmitter and receiver to have

synchnonised clocks. However, it is an inaccurate distance measure in the situation

when there is a delay between when the receiver receives a packet and when it sends

the response packet. RTT has been proposed for application to cellular network

localisation (Jami et al., 1999) and WLAN localisation using auxilliary hardware

(Izquierdo et al., 2006). The Active Bat localisation system may also be considered

a RTT technique since it sends an RF pulse when it wants an ultrasonic pulse sent

back. Then the RTT is a combination of RF transmission in one direction and

ultrasonic in the other direction.

Time Difference of Arrival (TDOA) predicts distances from information about the

difference in arrival time for different signals which were sent at the same time. Such

signals include RF, ultrasonic, infrared or acoustic. This technique only works when

the different signals have significantly different transmission speeds. Knowledge of

the propagation times of each signal and the recieve time difference between the

two signals allows accurate resolution of transmission distance, assuming the time

resolution of the readings is high enough. The Cricket location support system

(Priyantha et al., 2000) uses the TDOA of RF and ultrasonic signals from a number

of beacon transmitters at known locations to estimate the receiver’s position. Work

on a similar technique by Savvides et al. (2001) indicates that TDOA using RF
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and ultrasonic is more reliable than using RF signal strength distance estimation.

This increased reliability, however, comes not just at the cost of extra signals but of

sophisticated hardware capable of deducing times of arrival with sufficient resolution.

Angulation is a form of triangulation in which information about the angles of the

device at unknown position, C in Figure 2.10, relative to devices A and B are detectable.

This is usually derived from the angle from which a signal arrives at the device or the Angle

of Arrival (AOA). Again if the positions of A and B are known, then the position of C is

deducible. Unlike lateration, angulation can work with only 2 APs, regardless of whether

the localisation problem is 2-dimensional or 3-dimensional, provided the available angle

readings include elevation as well as azimuth angles. If elevation readings are unavailable

for the nodes A and B then only 2-dimensional localisation is possible.

Work by Niculescu and Nath (2003) uses an adapted form of the Cricket localisation

system, called the Cricket Compass, which uses an array of ultrasonic sensors. This

array of sensors allows the detection of the phase difference between a signal arriving

at the different sensors. From this information the AOA, and as a result, location can

be derived. Boushaba et al. (2007) use AOA to allow the nodes in a sensor network to

localise themselves, however they use a Medusa node, like that used by Savvides et al.

(2001), adapted to estimate AOA.

Instead of detecting a signal’s angle of arrival, Khan et al. (2006) proposes an

alternative technique of estimating the angle between nodes by estimating the angle at

which a main node transmitted a signal successfully to a given node. A master node

of known position and orientation transmits a reset beacon to all other nodes. Then it

begins to transmit a narrow directional signal rotating around its axis. The slave nodes

note when they hear each transmission. From these times they can work out the period

of one rotation. They can also work out how long it took to detect the first transmission

after the reset signal. The ratio of this initial transmission time to the period of rotation is

proportional to the angle of this node relative to the master node. Hence each node knows

its angle relative to the master node. This can be considered a hybrid technique since it

also uses signal strength to estimate distance between master and slave. The position of

each node is then estimated from one angle and one distance reading.

In theory, triangulation localisation methods are capable of resolving location with

high accuracy, limited only by the accuracy of the distance or angle estimates. However,

in practice the distance and angle estimates are not sufficiently reliable to allow accurate

localisation. Hence another localistion method, fingerprinting, is more frequently employed

in practice.
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2.2.1.3 Fingerprinting

Fingerprinting is a method of predicting location which does not necessarily involve

knowledge of the propagation characteristics of the environment or the location of the

reference devices (usually wireless Access Points). Instead the device to be tracked is

moved to coordinate or symbolic locations of interest and a training set of AP identities

and corresponding signal strengths is obtained in each location. Obtaining such a set of

training samples for an entire environment makes up the offline phase of fingerprinting-

based localisation. In the second phase, the online phase, samples are obtained and

compared to the offline training samples using a variety of methods to estimate the

most likely location. These methods can generally be considered to be either direct or

probabilistic methods. Examples of direct fingerprinting methods can be found in Bahl and

Padmanabhan (2000b), Krumm et al. (2003), Mantoro and Johnson (2005), Varshavsky

et al. (2006), di Flora and Hermersdorf (2008) and Kelly et al. (2008d) and examples of

probabilistic methods can be found in Castro et al. (2001), Ladd et al. (2002), Roos et al.

(2002b) and Youssef et al. (2003).

Generating a fingerprint for an environment can be performed in two ways: empirically,

by obtaining real data at every position in the environment or mathematically, by using

propogation models, like those outlined in Section 2.1.2. As explained in Section 2.1.2.5

propagation models capable of executing online are not as accurate as ones which can

only execute offline. This is due to the ability of offline models to describe more complex

phenomena such as wall and floor attenuation2. Hence, generation of propagation models

offline before the execution of a fingerprinting algorithm leads to better localisation

accuracy than using propagation models online, for example when using triangulation. The

disadvantage, however, is that fingerprinting requires more offline preprocessing and online

storage of data than triangulation. Also changes in the environment such as changing AP

or furniture positions requires the generation of a new training dataset.

A strong reason fingerprinting is favoured over triangulation is that it allows the use of

signals in localisation which are not readily modelled in a given environment. For example

Otsason et al. (2005) uses Global System for Mobile Communications (GSM) signals to

estimate position indoors. GSM signals are extremely difficult to model indoors since they

usually originate from cell towers over a kilometer away and they can be influenced by

walls, windows and outdoor foliage as well as environmental factors such as diffraction

through the atmosphere. Hence an empirical training dataset is used. Castro et al.

(2001) uses an empirical dataset using Signal to Noise Ratio (SNR) instead of the typical

RSSI reading. This allows the signal intensity throughout the environment to incorporate

interference levels. Interference varies as a function of location so it should be incorporated

2To the author’s knowledge no localisation systems exist which are capable of estimating the number
of partitions in the T-R LoS online.
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into the location indicative readings, something which is not possible with models due to

its unpredictability. Finally, the system developed as part of this thesis uses GSM signal

intensity and Bluetooth R© Link Quality (LQ) readings along with RSSI. These signals are

extremely difficult to model, hence empirical fingerprinting is used.

Fingerprinting is the most popular direct localisation technique since its prediction

accuracy does not rely on propagation models which are sufficiently simple to run online.

It can use sophisticated propagation models which depend on information only available

offline or even mitigate understanding of propagation mechanisms by permitting the use

of empirical training datasets. Regardless of these strengths, fingerprinting still has

deficiencies in predicting movements which correspond to human behaviour. For this

reason, more recent localisation research employs Sequential Bayes’ Filters to provide

location predictions which correspond to human movement behaviours.

2.2.2 Sequential Bayes’ Filters

Direct localisation techniques perform sufficiently accurately when stable noise-free

readings are available from the device to be localised. However, when only noisy readings

are available location jitter can occur. This is when an individual’s predicted location

moves rapidly from one sample to the next. Sequential Bayes’ Filters provide a natural

mechanism to fuse information about an individual’s most likely previous location and

possible movements to provide sequences of location predictions which are realistic for a

subject travelling with typical human behaviour.

Sequential Bayesian filtering is a recursive approach for modelling the probability

density function (pdf) of some system’s internal states over time. The states are estimated

based on two probabilistic models:

Process Model. This model describes the relationship between the internal state of the

system at one discrete instant in time and the next. In localisation this is also

referred to as the motion model.

Measurement Model. This model describes an externally viewable measurement as a

function of the internal state of the system. In localisation this typically relates RSSI

from multiple APs to the device’s location.

From a localisation perspective, the goal is to estimate the posterior pdf of the location,

lt, at discrete time t, given the available measurements, Rt, at discrete time t, that is to

estimate

p(lt | Rt). (2.44)
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This can be recursively estimated in two steps. The first step, before any signal reading is

obtained, is to use the previous location to predict the current location using the motion

model, which is derived from the Chapman-Kolmogorov equation (Ristic et al., 2004),

p(lt | Rt−1) =

∫
p(lt | lt−1)p(lt−1 | Rt−1)dlt−1. (2.45)

This prediction is based on the first-order Markov assumption that the current state (or

location) is dependent only on the previous state (Zàruba et al., 2007), ie.:

p(lt | lt−1, ..., l0, Rt−1, ..., R0) = p(lt | lt−1). (2.46)

Next, when a new sample, Rt, is obtained, this prior probability can be combined with

the motion model, p(Rt | lt), to correct the location prediction. Using Bayes’ rule this

correction takes the form,

p(lt | Rt) =
p(Rt | lt)p(lt | Rt−1)

p(Rt | Rt−1)
, (2.47)

where the normalising constant is

p(Rt | Rt−1) =

∫
p(Rt | lt)p(lt | Rt−1)dlt. (2.48)

This recursive prediction (Equation 2.45) and correction (Equation 2.47) algorithm

forms the optimal Bayesian filtering process. However, this is merely a conceptual

explanation of Bayesian filtering, the integrals present in this algorithm make it

computationally intractable. Instead some simplifications and approximations must be

made to allow this algorithm to execute in discrete computer operations. Next some

discrete approximations of this algorithm are presented.

2.2.2.1 Kalman Filters

A Kalman filter is capable of optimally predicting the continuous-valued multivariate state

of a system by implementing a form of Bayes’ filtering. Optimal prediction is possible in the

case when certain assumptions are true. These assumptions are that the posterior density

is unimodal Gaussian and that the prediction and motion models are linear. The unimodal

Gaussian assumption is necessary to allow the posterior density to be parameterised

entirely by its mean and covariance. The mean value and covariance of the state vector

must be calculated for both motion model based prediction and measurement model based

correction at every iteration of the algorithm. Without presenting the mathematical basis

(a comprehensive explanation can be found in Welch and Bishop (1995)), the Kalman

filter is implemented using matrix algebra as follows.

The mean value of the state is predicted using the motion model,
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l̂−t = Al̂t−1 +But, (2.49)

where A corresponds to the motion model and B specifies the contribution from an input,

ut, to the state evolution. ut may not necessarily be known in a localisation problem

and A is equivalent to the state-transition matrix in control theory. The corresponding

covariance matrix, P−t , must also be updated based on the previous covariance matrix and

the motion model noise covariance matrix, Q, as follows:

P−t = APt−1A
T +Q. (2.50)

P−t represents the uncertainty in the location estimate l−t . The larger the elements of this

covariance matrix, the wider the spread of the location distribution (Fox et al., 2003),

hence the greater uncertainty in the location estimate, l̂−t . When new measurements, Rt,

become available this prediction can be corrected using the measurement model, which

incorporates the output matrix, H. First the Kalman gain must be calculated:

Kt = P−t H
T (HP−t H

T +M)−1, (2.51)

where M denotes the measurement noise covariance matrix. With this Kalman gain, the

state mean and covariance predictions are corrected using the expressions,

l̂t = l̂−t +Kt(Rt −Hl̂−t ) (2.52)

Pt = (I −KtH)P−t (2.53)

Since most realistic systems, especially location estimation systems, typically do not

have linear measurement models the Kalman filter is not applicable. Instead, Extended

Kalman Filters (EKF) (Kotanen et al., 2003) or Unscented Kalman Filters (UKF)

(Orderud, 2005) use linear approximations to satisfy the linear requirements of Kalman

filtering. In these cases the underlying assumption of linear functions is no longer valid

and these filters are no longer optimal Bayes’ filters. Furthermore Kalman filters can only

be employed when measurement models are available. As explained in Section 2.2.1.3

accurate propagation models are not always available. In such situations optimal Bayes’

filtering is not possible using Kalman filters. Instead alternative discrete Bayes’ filter

approximations are necessary.

2.2.2.2 Particle Filters

The main disadvantage of Kalman filters is that they assume the location can be

approximated by a unimodal Gaussian distribution. This is certainely not the case in
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a real system in which the ambigous signal strength readings could be the result of a

number of different locations. Hence, the location is more appropriately approximated

by a multi-modal distribution. As an example, if a user was equally likely to be in two

positions distant from each other, a Kalman filter would estimate the most likely location

to be the Euclidian mean of those two locations, hence it would be entirely wrong (Zàruba

et al., 2007).

To provide a multi-modal density approximation and to overcome the mathamatical

intractability of the integrations in the pure Bayes’ filter, a Monte Carlo sampling

approach can be employed. Monte Carlo filters (also referred to as particle filters) use

repeated random sampling to approximate the results of exact Bayes’ filtering. The entire

distribution is represented by a set of weighted random samples. At each step in the

filtering process each sample value and weight is modified according to the motion and

measurement models. Similar to the Kalman filter each iteration has two steps: prediction

and correction.

At the start of the first step, prediction, a large set of samples and corresponding

weights, (l
(i)
t−1, w

(i)
t−1), exists. Each sample is resampled randomly according to the motion

model p(lt | lt−1). The resulting set of samples, corresponding to Equation 2.45, is denoted

(Zàruba et al., 2007): {(
l̃
(i)
t , w

(i)
t

)
| i ∈ [1, N ], w

(i)
t = 1/N

}
. (2.54)

The second step, update, changes the weights of each sample according to the

measurement model and a new measurement, Rt. Each sample’s weight is adjusted

according to w̃
(i)
t = p(Rt | l̃(i)t ). The weights are then normalised to ensure they sum

to 1. From this set, N samples are randomly drawn according to the normalised weight

distribution. Resampling is permitted to ensure it is possible to get N samples while still

giving greater importance to samples with higher weights. The resulting set of samples,

corresponding to the posterior distribution p(lt | Rt) in Equation 2.47, is denoted:{(
l
(i)
t , w

(i)
t

)
| i ∈ [1, N ], w

(i)
t = 1/N

}
. (2.55)

This set of samples can then be used in the next iteration’s prediction step and the

recursive process continues in this manner. The main factor which influences accuracy

in a particle filter is the number of particles chosen, N . The more particles available the

higher the posterior density representation flexibility but also the higher the iteration

computation time. Due to the increasing computational power available in modern

computers, particle filters are commonly used for coordinate location tracking. It has been

successfully applied to WLAN (Zàruba et al., 2007, Widyawan et al., 2007a), Bluetooth R©

(Rodas et al., 2008) and ZigBee R© (Ren et al., 2007) technologies.
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Along with the multi-modal capability of particle filters, other advantages lie in

their ability to use empirical measurement models and their ability to easily incorporate

information about the environment layout into the motion models. When the task is

to track coordinate position Kalman and particle filters perform extremely well. Kalman

filters perform optimal prediction under the linear assumptions and particle filters perform

better with more computational power. However, neither of these techniques can optimally

predict location when the location state-space is truly discrete in nature.

2.2.2.3 Discrete Approaches

Discrete approaches allow tracking by segmenting the state-space into discrete locations.

One example is a grid-based approach which divides the localisation environment into

equally sized cells (Burgard et al., 1996). Then the Bayes’ filter update equations are

performed on each individual cell using summations instead of integrations. The cell of

highest probability at the end of each iteration is assumed to be the true location. The

advantage of this method is that it can also represent arbitrarily shaped distributions. It

is also assumed to be an optimal Bayes’ filter when the state space is truly discrete (Ristic

et al., 2004). The disadvantage of grid-based techniques is the storage requirements for

the grid and the computational complexity of updating the entire grid on every iteration

(Fox et al., 2003). There is a predictable tradeoff between the tracking accuracy due to

grid granularity and the storage and computational complexity due to grid size.

To overcome the prohibitive computational burden of grid-based approaches topological

approaches have been proposed. Topological approaches segment the environment into

locations of meaningful significance to the user, or symbolic locations, such as different

rooms or hallways. Now each cell corresponds to an entire symbolic location and

the computational complexity is significantly lower than a full grid-based approach.

Furthermore the motion model is easily derived from the connectivity of locations, due to

doorways or adjacency for example. Topological approaches have been said to efficiently

represent the localisation environment and perform sufficiently well when the sensors

provide only very imprecise location information. Hence, as will be presented in Section 6

this approach is adopted to augment the accuracy of the system developed in this thesis.

Examples of discrete Bayes’ filter techniques can be found in Krumm and Horvitz (2004)

and Kelly et al. (2008a).

Thus far this chapter has presented fundamentals of RF positioning theory and the RF

propagation theory on which it builds. The next section summarises the most prominent

indoor localisation systems, both commercial and academic, which have been developed

to date.
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2.3 Existing Localisation Systems

To date, a wide variety of position estimation techniques have been developed. Outdoors,

location predictions are readily available to the consumer from global systems such as GPS

and the upcoming Galileo (EU GPS), GLONASS (Russian GPS) and Compass (Chinese

GPS) systems. There are two major issues with using these global scale positioning systems

indoors. The first issue is connectivity. It is usually difficult for a receiver to detect signals

from enough satellites to predict location, especially in multi-storey buildings. The second

issue is reliability. Even if enough connections are available indoors, the signal is generally

so distorted by multi-path effects that the position estimate is extremely inaccurate.

To address the challenge of indoor localisation a wide variety of alternative techniques

have been investigated. Most of these techniques utilise relatively short-range radio

transmissions to estimate position. These short-range radio transmission protocols,

such as WLAN, Bluetooth R© and cellular networks are particularly applicable to indoor

localisation since they are typically available in indoor scenarios. Other research attempts

to achieve higher accuracy or reliability using hardware more customised to the localisation

problem, relying on transmissions such as Ultrasonic, RFID and IR. These different

techniques will be compared in terms of accuracy, localisation technique employed, location

estimate type (coordinate or symbolic), release type (commercial or academic), location

availability (local or remote) and infrastructure requirements. It is necessary to note

the infrastructure, or quantity of installed hardware, present when each technique was

tested since it is difficult to directly compare localisation techniques deployed in different

environments.

One of the most ubiquitous indoor communication and prominent localisation tech-

nologies, WLAN, shall be presented first.

2.3.1 WLAN

WLAN is a communication protocol frequently employed in indoor localisation. This

is primarily due to its high deployment density in commonly inhabited areas such as

offices, universities and urban homes. RADAR (Bahl and Padmanabhan, 2000b) was one

of the first non-robot indoor localisation systems which relied on WLAN infrastructure

already present in an office environment. Since then many authors have tried to improve

upon RADAR’s accuracy with varying degrees of success. Most WLAN-based localisation

systems are able to calculate and store their positions locally. This is due to the fact that

most WLAN positioning systems are implemented on laptops which have sufficient storage

capacity and computational power to represent and analyse an entire environment’s data

locally. A simple summary of the most prominent WLAN-based localisation systems can

be found in Tables 2.1 and 2.2.
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From these tables it can be seen that until the year 2005, WLAN localisation systems

typically used fingerprinting techniques to estimate location. Furthermore, triangulation

is not widely employed due to the poor accuracies associated with oversimplified online

propagation models. In more recent years particle filtering techniques have experienced

increased adoption. These techniques are capable of achieving higher accuracy from the

same training and test data using Monte Carlo Simulations of a Bayes’ filter. As explained

in Section 2.2.2.2, these techniques require high levels of computational power to achieve

the desired levels of accuracy. As a result, particle filtering techniques are growing in

popularity in line with the increasingly available laptop processing power.

Another trend observable from these tables is that proximity and Kalman filtering

techniques have not been applied to any of the systems surveyed. Prioximity techniques

are rarely, if ever, applied to WLAN localisation systems because their relatively low

accuracy is only acceptable in situations when the resolution of the signals available from

the technology (such as RSSI) is extremenly low or gives binary readings. Kalman filters

are rarely applied to realistic indoor localisation scenarios due to the non-linear nature

of indoor RF propagation. One final observation is that WLAN is such a mature wire

replacement technology that it has spawned some commercial localisation systems such

as Ekahau and Skyhook WPS. The same can not be said for other wire replacement

technologies such as Bluetooth R© or IEEE 802.15.4. As will be presented in the next

section, cellular network localisation is also experiencing some commercial interest due to

its ubiquity.

2.3.2 Cellular Network

Cellular network localisation is a technique that is now widely used due to the prevalence of

mobile phones and cellular network towers. However, only low levels of position accuracy

can be achieved with commonly available handsets. Enhanced performance is available

to the cellular network operator using the link management readings available at the

basestations3, however, these measurands are generally unavailable to the user. Typically

available cellular network devices only indicate the RSSI of the currently strongest cell

tower. For this reason a commonly available commercial cellular network localisation

product, Google Mobile Maps, only uses the proximity localisation technique. This system

has no official accuracy claims, but due to the range of cellular network basestations this

technique can have position error of anything up to 3 km, assuming the position of the

cell tower is correct in the database, which is not always the case. A similar technique,

implemented in Intel’s Place Lab (Lamarca et al., 2005) achieves its best accuracy of

107.2m in a dense urban area, namely downtown Seattle. This indicates that higher

3Examples include; RSSI from multiple basestations, basestation timing advance and time difference of
arrival at multiple basestations. See Jami et al. (1999) for more examples.
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accuracy for such systems is obtained with higher AP density, but the error distances are

prohibitively high for indoor localisation.

More accurate location prediction techniques are possible with specialised hardware or

in simulations which do not account for the limited visibility of cellular signals on most

mobile phones (see Table 2.3). Otsason et al. (2005) use laptops with GSM receivers or

hacked mobile phones to obtain RSSI readings from the 6 strongest cellular basestations.

With this specialised hardware accuracy levels similar to that of WLAN is possible.

A UK-based company, Path Intelligence, is implementing a shopping centre surveying

technology. This technology uses custom cellular network detectors to detect the cellular

signals emanating from customers in the area. Phone identifier numbers along with the

corresponding AOAs are used to triangulate each user’s position and movements allowing

shopping centre planners to better understand customer behaviour. However, since this

technique can remotely estimate a user’s location without permission, it is generating

significant levels of customer concern, in spite of its anonymity preservation measures.

Furthermore, these location predictions are not readily available to the user, making this

technique a planning tool rather than a technique for a user to retrieve their location.

Cellular localisation has received increased attention in recent years due to the high

availability of cellular devices and the presence of cellular signals in most locations.

Recently some mobile phones using the Android operating system allow access to detailed

cellular readings, such as the 6 strongest cell towers and their RSSI. Theoretically, this

would allow more accurate techniques such as cellular fingerprinting (like Otsason et al.

(2005)) or cellular triangulation (like Orooji and Abolhassani (2005)) to be performed

locally on mobile phones. However, in general, the high transmission range and the low

signal resolution and low access point visibility on commonly available cellular devices

leads to poor resolution cellular localisation. Another commonly available communication

protocol sometimes used for indoor localisation is Bluetooth R©.

2.3.3 Bluetooth

Bluetooth is a communication protocol, based on the IEEE 802.15.1 standard, which

is as commonly available as cellular mobile communications due to its inclusion on most

mobile phones, PDAs and laptop computers. In theory, Bluetooth R© localisation is capable

of accuracy similar to that of WLAN. In practice, however, this is not possible since

Bluetooth R© devices do not have RSSI resolution as high as WLAN. Due to Bluetooth’s

use of power control in an attempt to maintain consistent received signal strengths over

increasing distances (Bluetooth R© Special Interest Group, 2001), RSSI is typically a very

poor indicator of distance (Bielawa, 2005). Hence, the accuarcy of the triangulation

techniques highlighted in Table 2.4 is very dependent on the implementation of the

Bluetooth R© specification in a particular device. In reality, high RSSI resolution is only
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possible from the higher priced Bluetooth R© chips. In fact most mobile phone Bluetooth R©

chips do not provide any RSSI information to the application layer. Hence, to estimate

position locally on a typical mobile phone prior to the findings of this thesis, proximity

was the only viable technique (see Cheung et al. (2006) for an example).

Proximity localisation also overcomes another restriction of the Bluetooth R© protocol;

namely connectivity. Unlike WLAN, it is difficult to obtain RSSI readings from

Bluetooth R© devices unless a connection is formed. There is also the restriction that a

device can only connect as the master to 7 slave devices and a device can only be the

slave to a single master. This means that if a remote device connects as the master to a

number of APs, no other remote devices will be able to connect to those APs as a master

at the same time, allowing only one device’s location to be processed at a time. Recent

work by Rodas et al. (2008) has demonstrated success with obtaining RSSI without forming

connections by using the Linux platform and a specific Bluetooth R© adapter. However, this

type of system configuration is not particularly common, meaning dedicated computers

must be used for APs.

The limited connectivity of the Bluetooth R© protocol is one reason why minimal AP

localisation is the focus of this PhD thesis. Using a single AP allows the system to

remotely track the location of up to 7 subjects in a particular environment without the

connectivity issues associated with multiple AP Bluetooth R© localisation. This allows the

use of Bluetooth R© to track subjects while still being more power conservative than WLAN.

Another low power communication protocol which has been used for localisation in the

past is the IEEE 802.15.4 protocol.

2.3.4 IEEE 802.15.4/ZigBee R©

The IEEE 802.15.4 standard describes a wireless communication protocol for low power

consumption, low data rate communications. As such, the ZigBee R© communication

protocol, which builds on the IEEE 802.15.4 specification is intended to be even more

power conservative than Bluetooth R©, while still providing some of the same functionality.

It also experiences less connectivity restrictions than Bluetooth R©. However, in spite of its

disadvantages, Bluetooth R© is a protocol more commonly available in mobile devices due

to its earlier inception4. As a result IEEE 802.15.4 and ZigBee R© localisation generally

requires dedicated devices which would not otherwise exist within a given environment.

Due to IEEE 802.15.4’s high RSSI resolution, triangulation is the most commonly

employed localisation technique (see Table 2.5). Even though IEEE 802.15.4 has RSSI

resolution higher than WLAN devices, its use in localisation systems is not as common.

The main reason for this is the availability of IEEE 802.15.4 devices. Since IEEE 802.15.4

4The original BluetoothR© specification was developed in 1994, whereas the IEEE 802.15.4 standard was
completed in 2003 and the ZigBeeR© specifications were completed in 2005.
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APs rarely already exist in typical deployment scenarios, dedicated IEEE 802.15.4 APs

must be installed for localisation. However, due to the similarities in resolution between

IEEE 802.15.4 and WLAN, and the ubiquity of WLAN APs, WLAN is usually the more

practical choice. Hence all of the ZigBee R© localisation work to date is purely academic,

as evident in Table 2.5. Furthermore, due to IEEE 802.15.4’s relative immaturity, there

are very few commercial devices with computation and IEEE 802.15.4 communication

functionality integrated into a portable form-factor, hence, remote localisation is generally

employed in practice.

Half of the IEEE 802.15.4 localisation techniques surveyed in Table 2.5 use triangula-

tion to convert distance estimates to location estimates, even though distance estimates

based on RSSI generally result in poor localisation accuracy. One localisation technology

which achieves extremely high localisation accuracy using triangulation techniques and

dedicated hardware is Ultrasonic.

2.3.5 Ultrasonic

As presented in Section 2.2.1.2 inaccurate distance estimates caused by multi-path effects

can largely be mitigated by using time-based estimates rather than signal intensity-based

estimates. For this reason ultrasonic positioning techniques can achieve extremely high

localisation accuracy by using triangulation (see Table 2.6). This higher accuracy comes

at the cost of requiring dedicated hardware throughout the deployment environment.

Because of its extremely high accuracy levels, the Active Bat system has been used

in Madhavapeddy and Tse (2005) to illustrate how LQ varies throughout an indoor

environment for a Bluetooth R© chip which is equivalent to the one utilised in this research.

However, the high levels of accuracy in that paper were only possible because the

environment already had the Active Bat system installed. When such hardware does

not already exist within the environment it is difficult to justify the cost and effort of

installation for such limited tests. Hence, the tests performed later in this thesis (see

Sections 4 and 5) do not use an accurate localisation technique such as ultrasonic. Instead,

generation of labels from manual voice annotation and using an RFID localisation system

is considered.

Ultrasonic localisation systems achieve their high resolution location predictions using

expensive custom hardware. This accuracy is higher than necessary for many situations.

When lower resolution location predictions are appropriate, cheaper custom localisation

technologies such as Infrared or Radio Frequency Identification can be employed.

2.3.6 Infrared

Infrared (IR) localisation techniques use the reception of IR light to identify the presence

of a subject in a particular location. There are two types of IR technologies used
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for localisation; active IR and passive IR. An active IR system has two parts an IR

transmitter and an IR receiver. There are two possible topologies for such systems.

The local positioning topology uses multiple transmitters throughout the environment,

one per location, and one receiver on the subject to deduce location(e.g. Abowd et al.

(1997)). Alternatively the remote positioning topology involves one transmitter worn by

the subject and several receivers throughout the environment, one per symbolic location

(e.g. Want et al. (1992)). Unlike any of the previously presented localisation systems,

active IR techniqies require direct LoS, hence they will not function while within someone’s

pocket or bag. On the other hand, the advantage of such positioning techniques is the

relatively unsophisticated, hence cheap, hardware necessary to merely decode the ID

number embedded in an IR signal.

For an even cheaper approach, passive IR (PIR) localisation systems do not involve

any IR transmission components. PIR sensors in each room detect changes in IR radiation

throughout the room which are indicative of human movements. Then the location of the

movements are taken to be the location of the subject (e.g. Lundell et al. (2007)). The

advantage of this type of approach is that tracking can occur without the need for the

subject to carry a device, and PIR sensors are extremely cheap. The disadvantage is that

the system only works in the case when there is only one subject in the environment due

to PIR’s inability to resolve the subject’s identity.

IR detectors generally do not have received signal intensity readings, only binary

presence readings. Hence, the proximity localisation technique is the only option for

IR localisation systems, as can be seen in Table 2.7. Another limitation of IR localisation

is the dependence of the devices on direct LoS reception.

2.3.7 RFID

Radio Frequency Identification (RFID) is a technology similar to IR in that it can

communicate unique identification codes between tags and readers, however it is different

in that it uses RF instead of IR electromagnetic radiation. This different spectrum usage

means that RFID transmissions are more suited to penetrating obstacles allowing better

non-LoS transmission and hence, reliability, than IR transmissions. Due to this superior

reliability, RFID localisation techniques are experiencing more research interest in recent

years than IR, which is evident when comparing Table 2.8 with Table 2.7.

There are two distinctly different types of RFID communication; active and passive. In

active RFID communication an RFID tag can periodically broadcast identification packets

or transmit only in response to a request from an RFID reader. Due to the powered

nature of active RFID tags, their transmission can be anything up to 100 meters and

can penetrate obstacles such as walls and furniture. Since active RFID tags are powered

they can transmit at consistent power levels and useful signal intensity readings can be
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estimated at the receiver. Hence active RFID localisation can utilise techniques such as

triangulation (Hightower et al., 2001) or fingerprinting (Ni et al., 2003).

Passive RFID communication does not use powered tags. Instead the tags harvest

power from the transmission of the RFID receiver when it requests a tag ID. This limited

power is used to charge up the tag’s circuitry allowing the tag to transmit its ID back to

the reader. In this way passive RFID tags do not need to be powered leading to cheaper

tags with lower installation and maintenance overheads. The downside to this is that

passive RFID tags suffer lower transmission ranges and readers cannot deduce consistent,

if any, RSSI information. There is also a high risk of false negatives which must be taken

into account in the design of the localisation system. As a result of the limited resolution

of the available readings, passive RFID localisation systems must employ the proximity

localisation technique. Examples of these techniques can be found in Callaghan et al.

(2006), Koch et al. (2007) and Kulyukin et al. (2008). Passive RFID proximity localisation

systems can be used, not just to locate people or objects within an environment but also

to predict an object’s location relative to a person. For example Hou et al. (2007) uses

RFID readers on a subject to predict which tagged objects the subject is interacting with

and infer whether they have taken their medication.

The reliability of RFID localisation is evident in its frequent use across the world

for transportation tolling scenarios. Active RFID systems are generally used for toll fee

collection on motorways and passive RFID systems are generally used for pedestrian toll

collection such as busses, subways and trams (Oberli and Landau, 2008). These systems

could also fall into the category of proximity localisation techniques.

2.3.8 Combinations of Technologies

Naturally a localisation system is not restricted to using only one sensor or communication

technology at a time. Signal readings from any number of available technologies can be

combined to give one location prediction. Such a location prediction is usually equally, if

not more accurate than if only one of the technologies were used. Table 2.9 summarises

the localisation systems which use a combination of sensors. The types of sensors used are

highlighted in the right of the table. Not included, due to space constraints, is the type of

localisation technique each uses. All of the techniques surveyed use either fingerprinting

or particle filtering techniques. There are two reasons why predictions based on multiple

technologies are beneficial;

1. It generally makes a higher density of access points available for a given area. It has

been shown that accuracy is proportional to the density of access points available in

a given area (Kelly et al., 2009a), hence higher accuracy is the result.

2. It has been demonstrated that using multiple sensor technologies preserves the
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prediction accuracy of the more accurate technology while reducing the prediction

uncertainty below the level of either technology alone (Hightower and Borriello,

2004).

Point 2 is well illustrated in Lamarca et al. (2005). There it is shown that WLAN has

high accuracy but low coverage and GSM has low accuracy but high coverage. Alone each

technology does not have compelling performance, but combined the overall performance

of the system is extremely good, surpassing any single technology alone. This shows that

sensor redundancy is the key to increasing overall performance in terms of accuracy and

reliability. For this reason our work makes use of all RF signals which are available without

any extra hardware.

2.4 Summary and Motivation

This chapter has presented a foundation for understanding the design and analysis of

the localisation system developed in this thesis. The first section outlined the principles

of radio propagation which predominantly effect the travel of radio waves through an

environment, hence influence RF localisation accuracy. The following section illustrated

how the behaviour of radio waves in an environment can be used in the prediction

of the location of a mobile device. Finally, the last section gave a broad picture of

the localisation systems developed to date which utilise these theories in their location

predictions. To summarise this information, Figure 2.12 outlines how the appropriate

localisation technique might be chosen for a given deployment scenario.

Chapter 4 will illustrate how our localisation system builds upon this foundation.

However, before the implementation details of such a system can be presented, the

mathematical foundations of our location prediction algorithms will be presented in the

following chapter.
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CHAPTER 2. LITERATURE SURVEY

Fig. 2.12: Decision tree for selecting the appropriate localisation technique (and most
likely technology in brackets) for a given deployment scenario.
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CHAPTER 3

Background Theory

As will be presented in Chapter 4, the aim of the localisation system developed as part

of this thesis is to predict room-level location, due to the natural human interpretation of

room location as opposed to coordinate location. Also, when considering Section 2.2.1.3 it

is apparent that fingerprinting is the most suitable localisation technique for this system

due to the difficulty inherent in mathematically modeling the available signals. Hence, it

was decided to use classification techniques to translate the signals emanating from the

hardware to categorical room-level location predictions.

A wide variety of pattern classification techniques have been developed to date, each

with differing levels of accuracy under different modeling assumptions and computational

costs. This chapter presents the background theory and implementation details of a variety

of probabilistic and non-probabilistic classification techniques, considered appropriate to

our particular localisation problem. Figure 3.1 outlines the implemented classification

techniques. There are three sections to the classification framework. The first section is the

preprocessing (or feature extraction) stage. The data to be inputted into the classifiers will

be either raw data, filtered data, time-lagged 1 or a combination of filtered and time-lagged.

Once the data has been pre-processed it can either be fed directly into a non-probabilistic

technique such as k-Nearest Neighbour or Support Vector Machines (SVMs) or used for

density estimation in a probabilistic classifier such as Naive Bayes, Discriminant Analysis,

etc. If a probabilistic classifier approach is employed, the probability of each class given

the measurements must be estimated using a density estimator, then these probabilities

are fed into a decision function such as a Maximum Likelihood Class Decision or a Hidden

Markov Model Decoder (see Chapter 6). The focus of this work is on which combination

1Similar to context sensitive classification in speech processing, whereby each feature is expanded to
include the previous f samples in that feature
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CHAPTER 3. BACKGROUND THEORY

of blocks, one from each column, results in the most accurate localisation. This chapter is

concerned primarily with the theory and implementation of the shaded blocks in Figure

3.1. The first classification algorithm, considered due to its simplicity and relatively high

accuracy, is k-Nearest Neighbour.

3.1 k-Nearest Neighbour

The kNN classifier, in its purest form, is a non-parametric, memory-based, algorithm. This

means that it requires the entire training dataset, or a highly representative subset of the

training dataset, to predict the class of a test sample. The training dataset consists of N

sample vectors, denoted xn = (xn(1), xn(2), ..., xn(d), ..., xn(D)), where D is the number

of features, or dimensions, of the dataset and {n ∈ R : 1 ≤ n ≤ N}. Each training vector

has a corresponding categorical class label, Rk. When a test vector, x′ is obtained, it is

evaluated for similarity with every single vector in the training dataset. Any measure of

similarity can be employed; the most popular being the Euclidean distance measure,

en =
√

(xn(1)− x′(1))2 + ...+ (xn(d)− x′(d))2 + ...+ (xn(D)− x′(D))2. (3.1)

This expression must be evaluated for every sample in the training dataset. Then the

list of the k most similar vectors can be populated. Class decision is based on a majority

vote of the classes of these k vectors. Since kNN can use such large quantities of data

for its classifications, it is a highly flexible non-linear classifier. This flexibility comes

at the cost of requiring long processing times, proportional to the training dataset size

(N) and dimensionality (D). Its generalisation ability and decision region flexibility are

controlled by the k parameter, hence k is the most important parameter to be selected.

For example, if k is low the classifier will specialise heavily on the training data, leading

to misclassifications. The greater the value of k, the greater the classifier’s generalisation

ability. However, too much generalisation can also lead to misclassifications. Figure 3.2

illustrates how selection of k influences the classifier’s generalisation ability. k must be

selected carefully to optimise classification accuracy, usually using cross-validation on a

second dataset.

kNN has been used in the past to generate location predictions from RF signals. Bahl

and Padmanabhan (2000b) proposed approximating a device’s coordinate position by the

mean of the positions of the k nearest training samples. That technique simply extends

the base kNN algorithm by substituting the majority class vote by a mean of the position

of the k nearest training samples. Ofstad et al. (2008) used kNN classifiers to determine

a person’s location using data from a phone’s built-in GPS and accelerometer sensors

with higher accuracy than if only GPS data was available. Mantoro and Johnson (2005)
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CHAPTER 3. BACKGROUND THEORY

Fig. 3.2: Effect of varying k parameter on classification region flexibility.

proposed using the kNN classifier to predict symbolic location, also based on WLAN

technology. That work is similar to ours in that we are interested in room-level location,

which can be considered a symbolic location tracking problem. Our work is different in

that we are focused on predicting the location of a subject from small quantities of test

data rather than several hours of data collected from a stable unmoving device. Mantoro

and Johnson (2005) found the optimal value of k to be 10 for the indoor localisation

problem. A value of k = 10 is also employed for these experiments.

In spite of kNN’s highly flexible classification regions it has some disadvantages.

Firstly it is a non-probabilistic classification technique which means that it will not allow

rejection of uncertain predictions or integration into a Hidden Markov Model filtering

framework without modifications to the algorithm. A second disadvantage of kNN is its

high computational load, particularly for large datasets. There are sparse approximations

to the kNN algorithms which reduce the memory requirements (Kuncheva, 2004) and

search algorithms which speed up execution time (Friedman et al., 1975). However,

these techniques result in equal or lower accuracy than the original kNN algorithm. For

this reason it was decided to consider other classifers which natively operate on sparse

representations of the training data.

3.2 Support Vector Machines

kNN estimates the class of a test sample from the classes of the most similar training

samples. Support Vector Machines (SVMs), on the other hand, create decision boundary

hyperplanes between two classes which maximise the margin between the hyperplane

and the vectors perpendicularly closest to the hyperplane. These perpendicularly closest

vectors are referred to as the support vectors, since they are the vectors on which the

classifier is built. The hyperplane is given by the equation
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wTx + b = 0, (3.2)

where w is the normal vector and b is the hyperplane bias. In the simple binary case, the

decision function will be:

D(x) = sign(wTx + b). (3.3)

Since we are interested in the distance between the decision hyperplane and the support

vectors on either side of the hyperplane, two additional hyperplanes are defined which pass

through the calculated support vectors,

wTx + b = +1 (3.4a)

wTx + b = −1. (3.4b)

If a support vector on the positive side of the hyperplane, x1, and another on the negative

side, x2, are considered, equation (3.4b) can be subtracted from equation (3.4a) to get

w.(x1 − x2) = 2. (3.5)

If the distance between these vectors (x1 − x2) are projected onto a vector normal to the

hyperplane, w/‖w‖, the result is,

w

‖w‖
(x1 − x2). (3.6)

Comparing this with equation (3.5) implies that the distance between the hyperplanes

crossing the support vectors is given by 2/‖w‖. Hence, to obtain maximum support

vector separability, this margin must be maximised. This is difficult to maximise since

it depends on 1/‖w‖ which involves a square root. Maximising 1/‖w‖ is the same as

minimising ‖w‖2/2, which can be more readily solved. Since we also want to define the

margin such that no points lie within the margin, the optimisation is

min
w,b

1

2
||w||2 (3.7)

subject to the constraint,

yi(w
Txi + b) ≥ 1, 1 ≤ i ≤ N. (3.8)

It can be observed that the b term is ignored in this optimisation. However, it can be noted

that b is compensated for implicitly by the constraints (Bishop, 2006) and does not need

to be a subject of optimisation. This optimisation, subject to constraints, can be realized

by introducing Lagrange multipliers. Each Lagrange multiplier, αi ≥ 0, is multiplied by
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the constraint in Equation 3.8 to obtain the Lagrangian optimisation;

min
w,b,α

{
1

2
||w||2 −

N∑
i=1

αi{yi(wTxi − b)− 1}
}

(3.9)

The minus term indicates that this is a minimisation with respect to w and b and a

maximisation with respect to α. This optimisation is subject to the constraints

w =

N∑
i=1

αiyixi (3.10)

0 =
N∑
n=1

αiyi. (3.11)

This optimisation problem can be expressed in dual form as

max
αi

{ N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi.xj

}
, (3.12)

subject to

αi ≥ 0 (3.13)
n∑
i=1

αiyi = 0, (3.14)

See Bishop (2006) for more details. This equation is easily solved using quadratic

programming. The array of Lagrange multipliers indicates which vectors are in fact

support vectors. All the Lagrange multipliers for which αi > 0 correspond to support

vectors. Once the Lagrange multipliers have been found, the weight vector in Equation

3.3 can be calculated as

w =

N∑
i=1

αiyixi, (3.15)

hence, binary classification can take place using the decision function,

D(x′) = sign

[ N∑
i=1

αiyixi.x
′ + b

]
(3.16)

This expression, however, only produces linear decision hyperplanes. SVMs can be

extended to perform nonlinear classification by using a kernel function to translate inner

products xi.xj to a higher dimensional space. A hyperplane which is linear in this high

dimensional space is equivalent to a nonlinear hyperplane in the original low-dimensional
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space. The translation is defined as

K(xi,xj)→ φ(xi)
Tφ(xj) (3.17)

and can be implicitly carried out using a kernel function which satisfies Mercer’s condition.

To satisfy Mercer’s condition, the kernel function must satisfy the requirement,

∫
K(xixj)φ(xi)φ(x)dxidx ≥ 0 (3.18)

The kernel function used in this application is a Gaussian radial basis function (RBF),

K(xi,xj) = exp

(
− ‖xi − xj‖2

2σ2

)
, (3.19)

where σ is the kernel width, one of the parameters which must be determined during the

training phase.

Even with a non-linear classifier it is still possible to find classes which are not

completely separable due to intermingling of samples. To permit some misclassifications

and allow better generalisation performance, a slack variable is introduced. Instead of

insisting on the constraint that every sample falls on or outside of the margin on the

correct side of the hyperplane, the constraint in Equation 3.8 can be relaxed to include a

slack parameter εi

yi(w
Txi + b) ≥ 1− εi, (3.20)

permitting some misclassifications to occur. The original minimisation can then be

modified to take this slack parameter into account. This means that points which lie

on the wrong side of the margin are now only softly penalised through the optimisation

min
w,b

1

2
||w||2 + C

N∑
i=1

εi, (3.21)

subject to the constraint in Equation 3.20.

Hence, the parameter C can be thought of as a penalty on errors. The higher it is, the

greater cost an error will have on the optimisation process. The smaller it is, the more

classification errors are permitted, allowing a smoother classification boundary. C is the

second parameter which must be chosen during the training phase. Figure 3.3 illustrates

how the C parameter permits smooth classification borders and avoids over-specialising

on individual vectors.

The SVM algorithm is implemented using the simpleSVM package for Matlab R© (Loosli,

2008). The parameter values σ and C are determined using a grid-search optimisation

method to find the best validation accuracy. Validation accuracy is determined using 5-fold
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Fig. 3.3: Impact of the slack parameter, C, on classification flexibility. A slack parameter
of ∞ is equivalent to permitting no misclassifications, causing overfitting. The optimum
value of C for this dataset, 3, results in smooth classification borders. The calculated
support vectors are circled.

cross-validation on the training data, whereby the accuracy is a mean of the classification

accuracies across all 5 folds.

From Figure 3.3 it can be seen that SVMs are able to achieve a sparse representation

of the training data by performing classification using only the support vectors (circled).

After the selection of the optimal σ and C parameters and the calculation of the support

vectors, classification is relatively fast compared to kNN. In spite of the high decision

region flexibility and sparse representations possible with SVMs, they still do not permit

probabilistic inferences. To allow us to exploit the advantages probabilistic classifiers have

over non-probabilistic classifiers (Lawrence et al., 2003), a number of classifiers which

base their class decision functions on class posteriors were considered. The simplest such

classifier is a Naive Bayes Classifier.

3.3 Naive Bayes Classifier

A Naive Bayes Classifier (NBC) is a maximum likelihood classifier which uses Bayes’

Theorem to estimate the likelihood of each class given some measurements. Given a

single test measurement, x, the probability of the current class being Rk is denoted

P (Rk|x). Calculating this conditional probability becomes mathematically intractable

when x can take on a large number of values. It is far easier to calculate P (x|Rk) using

a probability density function obtained from the training data for class Rk. Then the

posterior probability of the class Rk given the observation x can be calculated using

Bayes’ rule;

P (Rk|x) =
P (x|Rk)P (Rk)

P (x)
, (3.22)
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where P (Rk) is the prior probability of class Rk. In the absence of any other information

P (Rk) is assumed to be equal across all classes. The probability is then normalised by

P (x) which can be calculated over all classes as

P (x) =

K∑
k=1

P (x|Rk)P (Rk), (3.23)

where K is the number of classes. The class decision function can then be based on the

class of maximum probability,

D(x) = argmaxk
(
P (Rk|x)

)
. (3.24)

This single input classifier can be extended into the multi-input case by calculating

P (Rk|x) = P
(
Rk|x(1), x(2), ..., x(d), ...x(D)

)
, where D is the number of features or the

dimensionality of the input space. Similar to Equation 3.22 this can be written as

P
(
Rk|x(1), x(2), ..., x(d), .., x(D)

)
=
P
(
x(1), x(2), ..., x(d), .., x(D)|Rk

)
P (Rk)

P (x)
. (3.25)

The joint probability P (x(1), x(2), ..., x(d), .., x(D)|Rk) requires considerable effort to

calculate, especially for high dimensions. This calculation can be greatly simplified by

assuming conditional independence of the measurements. If x(1), x(2), ..., x(d), .., x(D) are

assumed to be independent given Rk, then their joint probability can simply be written

as a product of their individual conditional probabilities, that is;

P (Rk|x(1), x(2), ..., x(d), .., x(D)) =
P (Rk)

∏D
d=1 P (x(d)|Rk)
P (x)

. (3.26)

Again P (x) is simply a normalising term which can be calculated, using the same

conditional independence assumption, as

P (x) =
K∑
k=1

P (Rk)
D∏
d=1

P (x(d)|Rk) (3.27)

In this work the probability P
(
x(d)|Rk

)
is approximated by a unimodal Gaussian.

Hence the distribution for a given feature in a given class is entirely parameterised by its

mean and variance. The mean and variance for feature d in class k is calculated from

training data using the expressions;

µk(d) =
∑
gi=k

xi(d)/Nk, (3.28)
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Fig. 3.4: The left figure illustrates decision regions along with the means and 50%
confidence interval ellipses for each class. The right figure illustrates the probability of
class 1 given the measurements. Note that the probability of class 1 never reaches 1
because it is normalised to ensure P (R1|x) and P (R2|x) sum to 1.

σ2k(d) =
∑
gi=k

(xi(d)− µk(d))(xi(d)− µk(d))T /(Nk − 1), (3.29)

where gi = k indicates the index i which corresponds to samples belonging to class k. With

these parameters, the measurement probability of a new sample, x′(d), can be calculated

online from the univariate Gaussian distribution

P (x′(d)|Rk) =
1√

2πσ2k(d)
exp

(
−(x′(d)− µk(d))2

2σ2k(d)

)
. (3.30)

Thus the probability of a set of such samples, x, can be calculated from Equation 3.26.

Figure 3.4 illustrates the decision regions for which P
(
R1|x(1), x(2)

)
> P (R2|x(1), x(2))

(or P
(
R1|x(1), x(2)

)
> 0.5) on the same illustrative data used in Figures 3.2 and 3.3.

The assumption of independence necessary for Equation 3.26 is not entirely true,

particularly in this work where a number of the signals are obtained from the same

hardware and are influenced by some of the same mechanisms. However, Bayes classifiers

with this naive assumption have been shown to have unexpectedly high performance in

spite of this simplifying assumption, even when the inputs are not entirely independent

(Domingos and Pazzani, 1996).

There are several advantages to NBCs such as the availability of probabilistic

outputs and its suitability to high dimensional problems where joint density estimation

is computationally intractable. The independence assumption also allows each input

feature/dimension to be modeled using arbitrary probability density functions, which do

not necessarily need to be unimodal Gaussian distributions. For example, in the past
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nonparametric kernel density estimation (John and Langley, 1995) and spline-interpolated

histograms (Kelly et al., 2008a) have been used to independently model the density of

each feature. A disadvantage of NBC is that it produces covariance ellipses whose major

and minor axes lie along the feature axes (i.e. x(1) and x(2) axes in Figure 3.4), which

are not appropriate when the inputs are not conditionally independent Gaussian. In an

effort to mitigate the potentially over-simplified distributions inherent in NBC, other more

sophisticated probabilistic classification techniques were considered. One such classifier is

Discriminant Analysis.

3.4 Discriminant Analysis

Like NBC, discriminant analysis classifiers perform maximum likelihood classifications

using Bayes’ Theorem. The main difference is that Equation 3.22 is modified to estimate

class likelihood using a joint density estimate of the vector of measurements, x, instead of

the product of the individual measurement probabilities,

P (Rk|x) =
P (x|Rk)P (Rk)∑K
k=1 P (x|Rk)P (Rk)

. (3.31)

The denominator is simply a normalising term to ensure all class probabilities for a given

measurement sum to 1 and can be ignored here for simplicity. The measurement density

P (x|Rk) can be estimated in a number of ways. In discriminant analysis it is approximated

by a multivariate Gaussian density of the form,

P (x|Rk) =
1

(2π)
D
2 |Σk|

1
2

exp

(
−1

2
(x− µk)

TΣ−1k (x− µk)

)
, (3.32)

where µk is now a Dx1 vector, Σk is a DxD covariance matrix and |Σk| is the determinant

of the covariance matrix. The denominator in Equation 3.33 is constant across all classes

and can be ignored. Hence, the relative probability of class k can be expressed, using the

log-likelihood, as,

δk(x) = log

[
P (Rk)

1

(2π)
D
2 |Σk|

1
2

exp

(
−1

2
(x− µk)

TΣ−1k (x− µk)

)]
. (3.33)

By also ignoring the 2π
D
2 term which is constant across all classes, this simplifies to,

δk(x) = log(P (Rk))−
1

2
log(|Σk|)−

1

2
(x− µk)

TΣ−1k (x− µk). (3.34)

The formulation of the class covariance matrix, Σk, specifies whether the decision

regions are linear or non-linear. For Linear Discriminant Analysis (LDA) it is assumed

that all classes have a common covariance matrix (Hastie et al., 2001). Hence, by assuming
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1
2 log(|Σk|) is constant across all classes, δk(x) can be simplified to

δk(x) = log(P (Rk))−
1

2
(x− µk)

TΣ−1(x− µk), (3.35)

δk(x) = log(P (Rk)) + xTΣ−1µk −
1

2
µTkΣ−1µk. (3.36)

This function is linear in x, hence the name LDA. Based on δk(x) the class with the highest

probability of containing the measurement x can be predicted using the discriminant

function,

D(x) = arg max
k

(δk(x)). (3.37)

Similar to the Naive Bayes case, the mean of the Gaussian is calculated from the

expression

µk =
∑
gi=k

xi/Nk (3.38)

and the pooled covariance of the data across all classes is calculated from (Hastie et al.,

2001);

Σ =

K∑
k=1

∑
gi=k

(xi − µk)(xi − µk)
T /(N −K), (3.39)

Due to the identical covariance ellipses across all classes, LDA has linear discriminant

hyperplanes, which results in reduced discriminatory power for closely intermingled and

non-Gaussian datasets (see Figure 3.5). Hence it is necessary to consider a more flexible

classifier, Quadratic Discriminant Analysis (QDA). There are two ways to obtain non-

linear discriminant hyperplanes for QDA. The first is to translate the inputs to a higher

dimensional space using a polynomial, then perform LDA in this higher dimensional

space. Another method is to use Gaussians with differing covariance matrices to represent

each class. By permitting the covariance matrices in equation 3.34 to differ across

classes, the simplifications in equation 3.36 do not occur. Instead the more complicated

quadratic expression in Equation 3.34 must be used. This technique of obtaining quadratic

discriminant regions is preferred to the polynomial technique since it does not require the

optimal selection of polynomial order. It has been shown that the classification flexibility

is similar for both polynomial and different-covariance Gaussian QDA (Hastie et al., 2001).

LDA is implemented in this work using the Matlab R© statistics toolbox and QDA is

implemented using Michael Kiefte’s Discriminant Analysis Toolbox (Kiefte, 1999) since it

safely handles singular covariance matrices. A comparison of the covariance ellipses and

the corresponding decision regions can be found in Figure 3.5. It can be seen that using a
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Fig. 3.5: Decision regions for LDA and QDA. The left figure indicates that the common
covariance assumption is not valid for the illustrative dataset. QDA achieves more suitable
decision regions by allowing a different covariance ellipse for each class.

different covariance ellipse allows higher discriminatory power. In spite of QDA’s superior

classification ability to that of the NBC it is also worth noting the similarity between

QDA and the NBC. The QDA classification regions can be made identical to those of

Naive Bayes by restricting Σk to be a diagonal matrix. Hence, inclusion of more realistic

information about the covariance of the input signals contributes to classification regions

more suited to the data.

A conclusion which can be drawn from the probabilistic classification algorithms

presented thus far is that the classification accuracy is dependent on the accuracy of the

underlying probability model. Generally LDA can achieve high accuracy by acknowledging

that the input variables are jointly distributed and QDA achieves higher accuracy by

acknowledging that the covariance model is different for different classes. Upon considering

Figure 3.5 another deficiency of discriminant analysis can be observed. The illustrative

data, like most real-life data, is not truly unimodal. Hence a multi-modal probability

model should be considered. Gaussian Mixture Models use such a probability model.

3.5 Gaussian Mixture Models

As in the previous sections, the goal is to predict the class of maximum probability from

the posterior probability P (Rk|x). Again this can be computed from Equation 3.31. To

allow for more complex datasets in which each class is not truly unimodal, P (x|Rk) can

be represented by a multi-modal mixture of unimodal Gaussians. Figure 3.6 presents the

graphical representation of such a Gaussian Mixture Model (GMM). From this figure it

can be seen that the posterior measurement density for a given class, k, can be calculated

from
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Fig. 3.6: Block diagram view of a GMM density estimator for x in class k, modified from
Reynolds and Rose (1995).

P (x|Rk) =

M∑
m=1

πkmP (x|Rkm), (3.40)

where M is the number of Gaussian components for a given class, Rkm represents the mth

component in class k and πkm is the weighting of the mth component in class k, such that

ΣM
m=1πkm = 1.

By choosing to have an independent covariance matrix for each GMM component, the

measurement density for an individual component takes on the form

P (x|Rkm) =
1

(2π)
D
2 |Σkm|

1
2

exp

(
−1

2
(x− µkm)TΣ−1km(x− µkm)

)
. (3.41)

Hence, the Gaussian mixture density for a given class is entirely parameterised by the

weights, mean vectors and covariance matrices for each component (Reynolds and Rose,

1995);

λk = {πkm,µkm,Σkm},m = 1, 2, ..,m, ..,M. (3.42)

To fully specify the GMM for a given class, λk must be determined from the training

data. The EM algorithm is typically used to estimate these parameters in GMMs. EM

is a recursive algorithm for estimating the parameters in probabilistic models such as

GMMs and Hidden Markov Models (HMMs). There are two steps to the EM algorithm;

the expectation (E) step and the maximisation (M) step (Bishop, 2006). For GMMs

the E-step uses the current parameter values in λk to estimate the responsibilities, or

which Gaussian component is responsible for modelling which sample. This responsibility

calculation is defined as (modified from Bishop (2006))
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γk(znm) =
πkmP (xn|Rkm)

ΣM
j=1πkjP (xn|Rkj)

, (3.43)

where γk(znm) represents the probability P (znm = 1|xn), which corresponds to the

responsibility that component m takes for sample n (Bishop, 2006). With these newly

assigned responsibilities of each component for each sample, the M-step can update the

model parameters using the expressions

µnewkm =
ΣN
n=1γk(znm)xn

ΣN
n=1γk(znm)

(3.44)

Σnew
km =

ΣN
n=1γk(znm)(xn − µnewkm )(xn − µnewkm )T

ΣN
n=1γk(znm)

(3.45)

πnewkm =
ΣN
n=1γk(znm)xn

N
(3.46)

With these updated model parameters, we return to the E-step and repeat the process.

This recursive algorithm continues until the log likelihood of the training data, X, being

described by the model, λk,

lnP (X|µ,Σ, π) =

N∑
n=1

ln

[ M∑
m=1

πkmP (xn|Rkm)

]
, (3.47)

no longer improves beyond some specified threshold value on each iteration. Naturally

before any of the model parameters can be optimised, they must be initialised to some

value. For the EM algorithm the number of Gaussian components per class must be

specified and the parameters can be initialised either randomly or by using a more reliable

technique. K-means clustering is generally used to initialise the mean parameters. The

covariances can be initialised as the covariance of the data for each cluster and the

component weights are initialised to be the ratio of the number of samples in the cluster

to the total number of samples.

A disadvantage of the EM algorithm is that the number of components necessary for

a given class must be known a priori or estimated using cross-validation. A significant

level of effort must be devoted to determining the optimal number of mixtures, especially

when the number of mixtures is different for each class, which is nearly always the case

in real-life data. To overcome this limitation other algorithms have been proposed which

allow the number of components necessary to represent the data to be determined during

the optimisation process. Paalanen et al. (2006) describes two such algorithms. The first

algorithm is the Figueiredo-Jain (FJ) algorithm. This algorithm starts out with a large

number of components. A modified expression for the weight updates in Equation 3.44 is

used, which sets weights to zero when they fall below a certain threshold. In this way the
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component with a weight of zero does not contribute to the model and other components

compensate by taking responsibility for describing its samples. A more detailed description

of this algorithm can be found in Figueiredo and Jain (2000).

Paalanen et al. (2006) also proposes an alternative approach to EM and FJ called the

Greedy EM (GEM) algorithm. The algorithm starts with a single component mixture

per class. Then more components are iteratively added. The added component at each

step is the one which is calculated to increase the log likelihood the most. After each

component is added the model parameters are updated and the log likelihood is estimated

and compared with the terminating log likelihood value. Paalanen et al. (2006) states that

it is computationally easier to iteratively insert a component which increases the likelihood

the most than initialising a near-optimal GMM. GMMs using all of these algorithms were

implemented using the Matlab R© package developed by Paalanen et al. (2006).

A comparison of the algorithms, applied to the illustrative dataset, can be found in

Figure 3.7. The EM algorithm requires the selection of the number of mixtures per class.

A value of M = 2 was chosen for this example. The GEM algorithm requires the selection

of the maximum possible number of mixtures. A value of Mmax = 3 was chosen here. The

FJ algorithm did not require the selection of any parameters and gave a result similar to

GEM for this data. The FJ algorithm is advantageous over the EM and GEM algorithms

in that it does not require any knowledge of the underlying model used to generate the

data. However, it has been empirically found that the EM and GEM algorithms result in

higher accuracies on the practical home localisation data. This is due to FJ’s aggressive

approach to eliminating components. EM and GEM techniques achieve higher accuracy

with the disadvantage that they require optimal selection of the maximum number of

components. Fortunately, the determination of the optimal number of components and the

parameters for each component occurs only once; during training phase. Hence, the more

accurate EM and GEM algorithms shall be employed in practice, using cross-validation to

estimate the most accurate technique and the number of components necessary. The GEM

algorithm automatically permits differing numbers of components between classes. The

EM algorithm would need to be modified to allow this, which would lead to an prohibitively

large search space for each combination of component numbers for each class.

Thus far, a variety of fully parametric maximum likelihood Bayes classifiers have been

presented. More recently a family of kernel methods have emerged which can produce

highly representative non-parametric (or semi-parametric) probabilistic models even when

the data is non-Gaussian. Next, these classifiers shall be presented and later considered

for accuracy against fully parametric classifiers.
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Fig. 3.7: Comparison of GMM classifiers optimised with EM, GEM and FJ algorithms.
The weights of each component are indicated in black.
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3.6 Gaussian Processeses and Informative Vector Machines

Gaussian Process (GP) classification techniques are the result of adapting the non-

parametric GP regression techniques to produce probabilistic estimates from the regression

targets. With these probabilistic estimates, Bayesian classifications can take place as

before. Hence, before GP classification can be considered, the theory of GP regression

must first be presented.

GP regression allows the estimation of the mean and covariance of the output vectors

based on the assumption of a joint multivariate Gaussian distrubution on their values.

In general it is assumed that the mean of a Gaussian process is zero (Rasmussen and

Williams, 2005). Hence, the output vectors are related to each other by a covariance

function which imposes a prior on their values;

cov(yp, yq) = cov(f(xp), f(xq)) = k(xp,xq). (3.48)

However this covariance function does not allow for any measurement noise. To account

for measurement noise a variance parameter, σ2n, is introduced. The covariance function

now becomes

cov(yp, yq) = k(xp,xq) + σ2nδpq (3.49)

(3.50)

where δpq is the Kronecker delta which is one when p = q and zero otherwise. When all

the available training data is amalgamated in an n x D design matrix, X, this can be

written as;

cov(y) = K(X,X) + σ2nI, (3.51)

where K = [Kpq] and Kpq = k(xp,xq). Using this expression for covariance, the joint

distribution of the training outputs, y and the test outputs, y∗, can be defined as[
y

y∗

]
∼ N

(
0,

[
K(X,X) + σ2nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
. (3.52)

This joint distribution can be defined using any covariance function. In this work,

the commonly employed Gaussian radial basis function is used (Rasmussen and Williams,

2005):
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k(xp,xq) = σ2fexp

(
− 1

2l2
(xp − xq)

2

)
+ σ2nδpq, (3.53)

where σ2f is the signal variance and σ2n is the noise variance. l is the length scale which

dictates how much of an influence observations distant from the test point will have on

the prediction, i.e. the larger l is, the more of an influence distant points will have on the

output for the test point (Ebden, 2008). As a result, the selection of these hyperparameters

is important for achieving good model performance. If the model parameters are defined

to be θ = {l, σ2f , σ2n} then their maximum a posteriori estimate occurs when P (θ|x,y) is at

its maximum. Ebden (2008) explains that this is equivalent to maximising log(P (y|x, θ)),
given by

log(P (y|x, θ)) = −1

2
yTK−1y − 1

2
log|K| − n

2
log(2π) (3.54)

using multivariate optimisation, where K refers to cov(yp, yq) from Equation 3.51 and |K|
is the determinant of K.

Finally, using these parameters the covariance matrix can be populated and a

prediction for a single test point, x∗, can take place using the expressions

ȳ∗ = k(x∗)
(
K(X,X) + σ2nI)

)−1
y, (3.55)

var(y∗) = k(x∗,x∗)− k(x∗)
T
(
K(X,X) + σ2nI)

)−1
k∗. (3.56)

where k(x∗) refers to the vector of covariances between the test point and the N training

points (Rasmussen and Williams, 2005). Hence, it is now possible to estimate the mean

and variance of a function entirely from training data and a Gaussian prior over the

outputs.

As previously stated, the GP can be used to model probabilistic estimates for

categorical data. This is achieved by using a GP model to generate a latent function

with a Gaussian prior, which models how the likelihood of one class changes versus the

other. This latent variable is then “squashed” into the range [0, 1] using a logistic transfer

function, λ(f∗) = 1/(1 + e−f∗), to obtain the class probability. Hence, class probability

inference takes place in two steps (Rasmussen and Williams, 2005). Given some test

sample, the first step is to estimate the latent variable

P (f∗|X,y,x∗) =

∫
P (y∗|X,x∗, f)P (f |X,y)dy. (3.57)

Then this latent variable can be translated to a probabilistic prediction using the

expression,
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λ∗ = P (y∗ = +1|X,y,x∗) =

∫
λ(f∗)P (f∗|X,y,x∗)df∗. (3.58)

Equation 3.57 is mathematically intractable for classification since the probability

estimates now follow a Bernoulli distribution rather than a Gaussian distribution. Hence,

the Laplace approximation method must be employed to perform these integrations. More

details of its implementation can be found in Williams and Barber (1998) and Rasmussen

and Williams (2005). Hence, binary classifications can take place based on the class of

maximum probability specified by λ∗. The GP algorithm was implemented in Matlab R©

using the toolbox developed by Williams and Barber (1998). Non-binary classification

was implemented using the “1 versus all” approach.

One significant issue with GPs is the large computational time and memory require-

ments necessary for most non-trivial datasets. For this reason a sparse GP approximation

was considered. The Informative Vector Machine (IVM), developed by Lawrence et al.

(2003) uses a subset of the most “informative” training data samples instead of the entire

dataset. The informative vectors are chosen such that the decision regions for the subset

of vectors is as similar as possible to the decision regions for the full dataset. A greedy

approach is taken in which no vectors are initially active and vectors are iteratively added

to the active set using what is referred to as a “differential entropy score”. This score choses

vectors whose inclusion minimises the predictive variance. More in-depth discussion of the

implementation of this algorithm can be found in Lawrence et al. (2003). This sparse GP

classifier was implemented in Matlab R© using the toolbox developed by Lawrence et al.

(2003).

Figure 3.8 shows the difference between full GP classification and the sparse approx-

imations of IVM. IVM with only half of the available 200 samples active (Figure 3.8(b))

does not produce decision regions anything similar to the original GP. 125 active samples

gives a rough approximation of the original and 130 active samples gives an almost perfect

approximation of the original GP decision regions. This illustrates that IVMs accuracy is

extremely dependent on the number of active vectors permitted. Lawrence et al. (2003)

claims that IVMs can obtain accuracy similar to that of SVMs with far fewer active vectors.

However, when comparing Figure 3.8(d) with Figure 3.3 it is clear that SVMs require far

fewer active vectors (79) to achieve similar accuracy with this simple illustrative dataset.

An advantage of IVMs, however, is that they produce probabilistic outputs.

The computation requirements of GPs makes them unsuitable for our localisation

problem, which could potentially consist of several days worth of training data. IVMs

provide somewhat of a solution to this limitation by using a subset of the training

data. However, they will require optimal selection of the number of training samples

retained, which will restrict their usefulness in a practical deployment. In response to

this limitation, a sparse non-parametric probabilistic classifier which requires little or no
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Fig. 3.8: A comparison of GP classification with IVM classification using 100, 125 and
130 active vectors. Active vectors are circled.

parameter selection is considered.

3.7 Relevance Vector Machines

The Relevance Vector Machine (RVM) is a machine learning technique which, like GPs,

can produce a stochastic estimate of the target vector. As with GPs, RVMs can be used

either for regression or for classification by adapting the regression outputs to produce

class probabilities. Unlike GPs, RVMs produce these predictions by approximating the

data by a linear combination of basis functions,

y(x) =
M∑
n=1

wnk(x,xn) + b, (3.59)

where b is a bias parameter, meaning that the predictions involve M = N + 1 parameters

(Bishop, 2006). Hence, RVMs are similar to SVMs2. RVMs use the weight vector, wn,

to encode which vectors are used in the predictive distribution; this is analogous to the

Lagrange multiplier vector in SVMs. RVMs, however, impose a Gaussian prior over the

weight vector. The weights of the vectors which do not conform to this assumption are

2RVMs have the advantage that the basis functions do not need to satisfy the Mercer condition
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set to zero and are not included in the model. This weight prior is defined as (Tipping,

2000):

P (w|α) =

N∏
i=1

N (wi|0, α−1i ), (3.60)

where αi is the precision of the weight, wi, and α = (α1, α2, ..., αM)T. Bishop (2006)

explains that when the evidence is maximised with respect to the hyperparameters, α,

most of the hyperparameters go to infinity. Hence, the corresponding weights go to zero

and have no contribution to the predictions, leading to an extremely sparse model.

Using Bayesian inference, Tipping (2001) explains how the posterior distribution of

the weights can be estimated using the expression

P (w|t, α, σ2) = (2π)−
M
2 |Σ|−

1
2 exp

(
−1

2
(w − µ)TΣ−1(w − µ)

)
, (3.61)

where t = (t1, t2, ..., tN )T is the set of target vectors corresponding to the training inputs

X = (x1,x2, ...,xN )T and σ2 is the noise variance. The posterior covariance and mean in

this expression are defined to be

Σ = (σ−2ΦTΦ + A−1) (3.62)

µ = σ−2ΣΦT t, (3.63)

where A = diag(α1, α2, ..., αM ) and Φ is the NxM design matrix with Φnm = k(xn,xm).

Estimation of the necessary hyperparameters takes place by maximising the log marginal

likelihood

lnP (t|α, σ2) = −1

2

(
N ln(2π) + ln |C|+ tTC−1t

)
(3.64)

with respect to the hyperparameters α and σ2, where C = σ2I + ΦA−1ΦT .

There are two ways to optimise the hyperparameters (Tipping, 2000). The first way

is to use EM. This is achieved by treating the model weights as the latent variables. This

gives the estimate for α as

αnewm =
1

Σmm + µ2i
. (3.65)

The second approach is to differentiate Equation 3.64 with respect to α to give

αnewm =
γm
µ2m

, (3.66)

where γm = 1−αmΣmm, which is a measure of how well the corresponding parameter, wi,
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is determined by the data (Tipping, 2000). To estimate the noise variance, both methods

lead to the expression

(σ2)new =
||t−Φµ||2

N −
∑

m γm
(3.67)

When these update expressions are recursively evaluated, many of the hyperparame-

ters, αm, go to extremely large (or approximately infinite) values. Hence, using Equation

3.61 the corresponding weights, wm, are calculated to be zero. Now prediction for a new

input sample, x∗, takes place using the expression (Tipping, 2001):

P (t∗|t, αfinal, σ2final) =

∫
P (t∗|w, σ2final)P (w|t, αfinal, σ2final)dw (3.68)

and since this is the convolution of two gaussians, it can readily be evaluated to the form

P (t∗|t, αfinal, σ2final) = N(t∗|y∗, σ2∗), (3.69)

where

y∗ = µTφ(x∗), (3.70)

σ2∗ = σ2final + φ(x∗)
TΣφ(x∗) (3.71)

and φ(x∗) = [1, k(x∗,x1), k(x∗,x2), ..., k(x∗,xN )]. Bishop (2006) illustrates the difference

in regression using RVMs and SVMs. It is shown that RVMs achieve similar accuracy

using far fewer vectors. This means that predictions with RVMs have significantly lower

computational cost. The disadvantage is that RVM training takes longer since it involves

an optimisation of a non-convex function. This disadvantage is negligible for this work

since we only need to train the classifier once; during the system calibration stage.

Similar to GPs, classifications can be obtained by specifying the RVM regression

output, y(x), to be a latent variable and translating the latent variable to a probabilistic

prediction using the logistic function, λ(y) = 1/(1 + e−y). Since the targets are now

probability values, the target vectors take on a Bernoulli distribution of the form;

P (t|w) =

N∏
n=1

λ{y(xn)}tn [1− λ{y(xn)}]1−tn . (3.72)

Since P (t|w) is no longer Gaussian the simplifying substitution of the convolution of two

Gaussian with one Gaussian no longer occurs. Hence the marginal likelihood in Equation

3.64 cannot be calculated analytically. Instead a Laplace approximation must be employed

to estimate the hyperparameters, more details of which can be found in Tipping (2001).

The RVM implementation described here starts with a full set of weights and works
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Fig. 3.9: Decision regions for an RVM classifier. Active vectors are circled.

back to a sparse solution. More recent work describes techniques of starting with

an empty or minimal set of weights and iteratively adding the most relevant vectors.

See “Incremental Gaussian Processes” (Quiñonero Candela and Winther, 2003) and

“Sequential Sparse Bayesian Learning” (Tipping and Faul, 2003) for examples. Such

simplifications are not necessary for this work since training only occurs once. Hence,

the RVM classifier was implemented in Matlab R© using the “SparseBayes V1.1” toolbox

(Tipping, 2002), which implements the model learning algorithm described here. Again,

multiple-class classification was implemented using the “one versus all” approach.

In addition to producing probabilistic outputs RVMs have further advantages over

SVMs. One main advantage is that they exhibit similar generalisation ability to that of

SVMs while requiring significantly fewer support vectors. When comparing Figures 3.3

and 3.9 it is clear that RVMs require fewer training samples to approximate the dataset,

albeit with slightly different decision regions. Although RVMs have longer training times

than SVMs, RVMs do not require optimal parameter selection, such as the σ and C

parameters in SVMs. This means that training a working RVM classifier does not require

a grid search optimisation step, which is necessary for SVMs.

Although not strictly part of the Gaussian Process family (Quiñonero Candela and

Winther, 2003), RVMs exploit Gaussian Processes to aid in optimal weight selection.

They also borrow from SVMs by using a linear weighted combination of basis functions.

In this way RVMs can be considered a hybrid of SVMs and GPs.

3.8 Conclusions

This chapter has outlined the classification framework which has been implemented as

part of this Thesis. A selection of probabilistic and non-probabilistic classifiers have

been implemented. The array of classifiers will be assessed experimentally for suitability
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to our localisation problem. Classifiers with non-probabilistic class predictions will

have their outputs directly evaluated for localisation accuracy. Probabilistic classifiers,

however, allow further analysis of the most likely position of the user. For example

they allow rejection of uncertain estimates and Receiver Operating Characteristic (ROC)

curve analysis. The availability of probability estimates also enables Hidden Markov

Model analysis because the probability estimates can be used as observation probability

models (Rabiner, 1989). More information about this augmentation to the classification

framework can be found in Chapter 6.

The following chapters will describe the implementation details of the novel localisation

technique developed. They will present the application of the classification techniques

described in this chapter to generate location predictions, or more generally location

probability estimates. These location probability estimates can be used for either location

predictions, uncertainty rejection or Bayesian filtering.
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Location Tracking Framework

In Chapter 2 an overview of the various techniques and systems in existence for predicting

indoor location using RF transmissions was presented. Those prior systems share many

common traits, not least the requirement of a plethora of RF Access Points (APs)

throughout the environment. Having a wide array of APs spread throughout the

environment provides readings that are sufficiently uncorrelated to be indicative of the

location of a mobile device. This chapter describes the main contribution of this thesis;

namely, an indoor localisation system which utilises absolutely minimal quantities of

hardware installed in the entire environment.

Section 4.1 begins by describing the candidate technologies on which this localisation

system has been implemented and evaluated experimentally. Section 4.2 assesses the

suitability of the signals emanating from these candidate technologies for our particular

localisation technique. Then Section 4.3 motivates the localisation technique developed

and selects the optimal technology for this purpose. Finally, Section 4.4 presents

experiments on a practical deployment of the technology and discusses the training

data acquisition and pre-processing techniques needed to achieve maximum localisation

accuracy.

4.1 Hardware

WLAN location tracking is a mature area of research, which has exhibited many compelling

results, as highlighted in Section 2. However, most WLAN location tracking techniques

are validated in office environments with multiple WLAN APs detectable throughout. As

a result, these techniques are not as applicable to a home environment. The availability
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of WLAN devices in a subject’s home, especially an elder’s home, is generally quite low,

particularly in rural areas. Even if a WLAN AP is available, multiple APs would be

necessary to provide sufficiently accurate location predictions, with location prediction

accuracy increasing with the number of APs. Installing multiple WLAN APs throughout

a home environment is an option if there are no cost constraints. Along with the expense

of deploying several WLAN APs there is also the necessity of deploying a wired network

throughout the environment to relay information back to the Basestation Computer

(BSC). This work focuses on single BSC localisation to eliminate the installation and

cost overheads associated with multiple BSC localisation.

As well as the installation restrictions precluding the use of a multiple WLAN AP

localisation system, there also exists power consumption limitations. A mobile device

to be carried by a subject must be able to last at least a day before the battery needs

to be recharged. When active, WLAN devices consume high levels of power, especially

when compared to an energy efficient wire-replacement technology, such as Bluetooth R©.

Bluetooth R© devices have a lower battery drain than WLAN devices since they do not

require complicated networking protocols as with WLAN. Furthermore Bluetooth is

present, by default, on a variety of affordable mobile phones, whereas WLAN is available

only on high-end smartphones and Personal Digital Assistants (PDAs). Hence, by

developing this localisation technique for Bluetooth R© devices, it can provide location-

based services extremely cost effectively without the need for the user to carry dedicated

localisation hardware. It could be argued that in the specific deployment scenario this

work is focused on, namely elder monitoring, personal communication devices may not

not already be present. We argue that if personal communication devices need to be

provided, Bluetooth R© is a much more cost effective and power conservative alternative to

WLAN.

As more thoroughly discussed in Kelly et al. (2009b), the Nokia N95 (Figure 4.1(a))

was chosen as the Bluetooth R© test device since it has a feature-set similar to that of most

medium to high-end mobile phones. It has the usual cellular network connectivity along

with Bluetooth R© and WLAN connectivity. Furthermore it has other sensors such as light

sensors, cameras and accelerometers. The availability of accelerometer sensors shall also

be exploited in Chapter 6 to improve localisation accuracy. The Nokia N95 allows the

installation of a Python programming language interpreter, which enables sophisticated

handling of the sensors present in the phone with a very gentle learning curve. Python

scripts were developed to retrieve cellular network and accelerometer data from the phone

and to forward it to the Bluetooth R© BSC in response to data requests. The accelerometer

samples will be used in Chapter 7 to augment localisation accuracy.

The Bluetooth R© mobile phone can estimate and provide cellular network link signal

strength information to the BSC. However, mobile phones generally do not have
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(a) Bluetooth R© mobile phone (b) Bluetooth R© access point

Fig. 4.1: Hardware utilised for Bluetooth R© deployment.

Bluetooth R© transceivers expensive or sophisticated enough to be able to derive Bluetooth R©

link signal strength information. Instead, the task of estimating the signal strength

information of the Bluetooth R© connection is left to the connected BSC. Hence, this work

implements a form of remote positioning. Bluetooth R© is a peripheral wire replacement

technology and as such it is not required to have signal strength readings which are

meaningful to the user. Its use of power control to maintain consistent received signal

strengths over increasing distances means that small changes in actual received signal

strengths are not visible in the Received Signal Strength Indicator (RSSI) readings. Rather

than using a standard Bluetooth AP which is available on most laptops, we chose to

construct an AP using a Blueradios BR-SC30N Bluetooth transceiver (Figure 4.1(b)). This

hardware gives RSSI readings with a higher resolution than that required by the Bluetooth

specifications (Bluetooth R© Special Interest Group, 2001). This permits higher resolution

position discrimination than would be possible with typically available Bluetooth APs.

Another reading which is available from this hardware when a connection is established is

Link Quality (LQ). Explanations of these signals are forthcoming in the next section.

An alternative to Bluetooth R© for power conservative, short-range communications

is ZigBee R©. ZigBee R© is even more power conservative than Bluetooth R© since it is

designed for long-term, low data-rate communications in home, industrial and medical

monitoring environments. The ZigBee R© mobile device adopted for these experiments is

the Intel Digital Health Group’s Sensing Health with Intelligence, Modularity, Mobility,

and Experimental Reusability (SHIMMER) platform (Patel et al., 2007). The SHIMMER,

which can be seen in Figure 4.2, is a wireless sensing platform, developed for health

monitoring applications, which is experiencing growing popularity. Its attractiveness

lies not just in its small form factor but also in its ability to interface with new sensor

boards. Boards such as kinematics (3-axis accelerometer, magnetometer and gyroscope),
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Fig. 4.2: ZigBee R© hardware: SHIMMER without case (left), SHIMMER with case
(centre) and TelosB mote (right), compared with a 1 Euro coin (bottom) for scale.

electrocardiogram (ECG) and Electroencephalograph (EEG) sensors have already been

developed, allowing it to be applied to many different healthcare projects. Along with

a Bluetooth R© chip, it possesses a Chipcon CC2420 IEEE 802.15.4 2.4GHz transceiver

(Chipcon, 2006), which implements the lower level functionality of the ZigBee R© stack1.

Hence, the SHIMMER was chosen to represent a ZigBee R© enabled device.

The advantages of ZigBee R© over Bluetooth R© include the longer battery life and higher

RSSI resolution. Along with high RSSI resolution, ZigBee R© has a reading similar to

Bluetooth R©’s LQ called Link Quality Indicator (LQI). The disadvantages of ZigBee R©

include the fact that ZigBee R© devices are not as ubiquitously available as Bluetooth R©

devices and the lack of an interaction modality on the SHIMMER such as a screen or

speakers. The SHIMMER was programmed to transmit packets at a rate of 1Hz using its

native TinyOS programming language. A TelosB mote (Polastre et al., 2005), which

contains a CC2420 transceiver, was programmed to act as an AP for the BSC. The

TelosB mote was programmed, also using the TinyOS language, to decode every packet

transmitted by the SHIMMER for RSSI and LQI information.

The signals available from the localisation hardware under consideration are the vital

components of a reliable localisation system. Hence, the following sections shall consider

the available signals for suitability to the localisation problem and illustrate how our

localisation technique will exploit the characteristics of the signals.

4.2 Available Signals

Typical RF localisation systems require signals from several APs to obtain a characteristic

signature, or fingerprint, for each location. The signals typically used are RSSI or LQ/LQI,

1The SHIMMER’s communication hardware shall henceforth be referred to as ZigBeeR© for simplicity
of presentation. However, it should be remembered that the CC2420 is not a full ZigBeeR© stack.
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whichever is deemed more accurate for the given hardware (Pandya et al., 2003). It has

generally been assumed that using only the most accurate signal is sufficient and the other

signal, if available, does not provide any extra accuracy. We, however, have found that

RSSI and LQ/LQI, while related, do not have identical characteristics at a given location.

We therefore build our single AP localisation system on the fact that many of the signals

available at a given AP are not entirely redundant. First the signals available from the

Bluetooth R© test platform are considered.

4.2.1 Bluetooth R©

As briefly alluded to already, a Bluetooth R© connection has 2 readings associated with it,

RSSI and LQ. RSSI can coarsely be considered as a measure of the RF energy incident on

the Bluetooth R© receiver. In reality the RSSI reading actually available to the user is not

the same as the incident RF energy. The Bluetooth R© specification (Bluetooth R© Special

Interest Group, 2001) specifies a golden receive power range. This golden range is the ideal

power for an RF wave incident on the Bluetooth R© receiver, such that the transmitter is

not transmitting at an excessively high power which would cause interference with more

distant devices. When the incident RF energy falls below the lower threshold of this range

a power increase request is sent to the transmitter. If the transmitter can, it will transmit

at a higher power level. Similarly if the incident RF energy goes above the upper threshold

of this golden range, a power decrease request is sent to the transmitter.

When the incident RF energy is within the golden range an RSSI value of 0 is returned.

Only when the RF energy steps outside of the golden range will the RSSI value change.

Furthermore, the Bluetooth R© specification only requires the RSSI value to report whether

the incident RF energy is within, above or below the golden range, with no need to indicate

how far from the golden range the actual energy is. It is entirely up to the manufacturer

how much the RSSI reflects the actual signal strength outside of the golden range. It is

generally accepted that the variability of Bluetooth R© RSSI throughout an environment

is too low to be of use in a localisation system (Bielawa, 2005). To quantify how RSSI

falls off over increasing distance in our Bluetooth R© transceiver, free-field experiments were

performed.

The free-field experiment was conducted in an open outdoor environment without any

vertical obstructions within 100m of the test equipment. The transmitting phone and the

receiving Bluetooth R© AP were both placed 1m above the ground on wooden platforms and

their separation distance was increased by 1m at a time. At each separation distance 200

samples were taken. Figure 4.3(a) illustrates the mean and standard deviations of RSSI

for increasing distance. It can be seen that RSSI remains at 0 until about 5 metres, then

it falls off to the minimum of -10 after a further 3 metres. After 22 metres the Bluetooth R©

connection becomes impossible to maintain for any significant period of time. The red line
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shows an attempt to fit the path loss model in Equation 2.35 to the data. Using linear

regression the path loss exponent was calculated to be n = 0.9836, whereas in reality the

value should be n = 2 in a free field. The significant disagreement between theory and

reality indicates that Bluetooth R© RSSI is certainly not a reliable indicator of distance.

The issue with Bluetooth R© RSSI is that it does not exhibit resolution beyond two levels,

making it a bad indicator of location by itself.

To overcome the limited resolution RSSI signal, LQ was considered. LQ is frequently

used for Bluetooth R© localisation due to its generally higher spatial resolution than RSSI

(Pandya et al., 2003, Genco, 2005). Unlike RSSI, LQ is derived from the Bluetooth R©

link’s Bit-Error-Rate (BER). Figure 4.4 illustrates the relationship between BER and the

reported LQ value in the Blueradios BR-SC30N. Figure 4.3(b) shows how LQ varies as a

function of T-R separation distance. It can be observed that, besides a minor fluctuation

at 9 metres, most likely due to destructive interference from reflected and direct path

differences, LQ does not significantly start to fall-off until a distance of 17 metres. The

different fall-off points for RSSI and LQ can be explained by the fact that these signals are

derived in different ways. RSSI is a raw analogue channel reading derived from the incident

RF energy. LQ, on the other hand, is a digital channel reading which is less susceptible to

interference than RSSI. This lower susceptibility is due to Bluetooth R©’s use of Gaussian

Frequency Shift Keying (GFSK) to encode bits as a change in carrier frequency. Hence,

RSSI and LQ are governed by different transmission effects, as corroborated by their

correlation coefficient for this dataset of r = 0.32. From this illustration it should be

evident that using both signals gives more information about the separation distance than

either signal would give in isolation. This will remain the case when these signals are

applied to the task of localisation.

Besides the signals available from the phone’s Bluetooth R© link, there are also

cellular network connectivity readings available from the mobile phone using the Python

programming language. The first such reading is Cellular Received Signal Strength

Indication (CRSSI). CRSSI is an indication of the strength of the currently connected

cell tower, akin to the number of “connection bars” on the phone’s screen. From 4.3(c)

it can be seen that CRSSI does not change as a function of T-R separation. This is

because -80 dBm is the highest value obtainable with this hardware. Since the experiment

is conducted in a free-field with no obstructions, maximum strength reception is always

possible. More interesting CRSSI behaviour can be observed later in the indoor scenario

where obstructions significantly attenuate CRSSI. In addition to CRSSI, the connected

mobile phone can also be queried for the currently connected Cell ID (CID). This CID

number identifies which cell tower is currently strongest, hence, connected to the phone.

Since different cell towers cover different locations, this reading also varies as a function

of position. In the free-field test the CID number remained constant since there would
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Fig. 4.3: Bluetooth R© platform RSSI, LQ and CRSSI for increasing T-R separation in a
free field. RSSI and LQ are unitless quantities and CRSSI is measured in dBm.
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Fig. 4.4: LQ-BER relationship for the Blueradios BR-SC30N.

typically be little or no CRSSI signal variation in a 22 metre distance when compared to

the outdoor transmission range of a cellular basestation. Hence the strongest cell tower,

and as a result the currently connected CID, did not change. However, indoors this reading

can change frequently due to the attenuation of certain cell towers by obstructions.

To appreciate how the available signals behave in an indoor environment the proposed

localisation hardware was deployed in a section of a home environment. As illustrated

in Figure 4.5, the test environment consists of 4 rooms, designated (1) Bedroom 1, (2)

Bedroom 2, (3) Bathroom and (4) Hallway. The map shows two AP locations. Access

Point 1 is used for the single BSC experiments. Access Point 2 will also be used for the

multiple BSC comparison experiments. To illustrate how each signal varies throughout the

environment, a signal map of the environment was obtained. To obtain this map the mobile

phone is moved to a number of different fixed positions on a wooden platform 1m above the

ground and sampled for a period of two minutes at each position in a static, uninhabited

environment. This results in over 100 samples of each signal for every position. Data from

each position is labelled with x coordinate, y coordinate and room number. The sampled x

and y coordinates are selected to form an even grid of squares throughout the environment,

each square covering 1m2. The mean of the samples at each position is assumed to

approximate the real value of the signal at that position. Figure 4.6 demonstrates the

behaviour of RSSI, LQ and CRSSI throughout the environment. Unsampled locations are

indicated by x’s. It can be seen that, while RSSI and LQ vary similarly throughout the

environment, they are not entirely correlated and can be combined to give a more accurate

indicator of location than either one alone.

Figure 4.6(c) illustrates the behaviour of CRSSI throughout the indoor environment.

CRSSI is clearly uncorrelated with RSSI and LQ, which is intuitive when one considers

that CRSSI is dependent on the connection between the phone and a basestation several

kilometres away. In fact it has been found that CRSSI changes as a function of the size of

window and distance from the window in each room. Also rooms with no windows have
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Fig. 4.5: The 4-room indoor test environment.

Fig. 4.6: RSSI, LQ and CRSSI throughout the test environment.

Fig. 4.7: CRSSI for the cell towers detectable in the test environment.
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severely reduced CRSSI. The CRSSI map, however, does not tell the entire cellular signal

story. The CRSSI reading is dependent on the connected basestation and as different

cell towers are attenuated by different obstructions, the currently connected cell tower can

change throughout the environment. Hence the CRSSI map can be broken down according

to CID. Figure 4.7 illustrates the CRSSI readings obtained throughout the environment

when different cell tower IDs are detected. In this figure x’s indicate positions in which the

given cell tower was not detected. From this we can see that certain cell towers are more

likely to be connected at certain locations, meaning that certain cell towers are strongest

at certain locations. Hence the currently connected cell tower ID is indicative of location.

The Bluetooth R© platform has shown the availability of a number of signals useful in the

task of location prediction. A limitation of this platform is the extremely low resolution of

the RSSI signal, a signal typically extremely indicative of location in other technologies,

such as WLAN. In anticipation of the implications this will have on localisation accuracy,

another technology with higher RSSI resolution, ZigBee R©, was trialled.

4.2.2 ZigBee R©

Since ZigBee R© (or at least our chip’s implementation of the ZigBee R© protocol) does not

implement any form of power control, the obtained RSSI readings have a highly linear

relationship with the actual received signal intensity. In fact RSSI is actually measured in

dBm for ZigBee R©. The same free-field experiment was conducted as with the Bluetooth R©

platform. Figure 4.8(a) shows that ZigBee R© RSSI fall-off follows the theoretical path

loss model more reliably. The path loss exponent of n = 2.32 is more appropriate for a

free-field.

LQI is also derived differently than in Bluetooth R©. In ZigBee R© LQI is a measure of

the correlation between the first 8 received symbols of the physical layer header and the

expected value of these symbols calculated at the transmitter before transmission. LQI

is related to packet reception rate, which is significantly decorrelated with RSSI indoors

(Srinivasan and Levis, 2006). Figure 4.8(b) illustrates the LQI fall-off for the free-field

environment. Along with the different behaviour from that of Bluetooth R© it can also be

observed that there is significantly higher standard deviation at all seperation distances.

This indicates that LQI readings in ZigBee R© will be significantly less reliable than that of

Bluetooth R©.

As with Bluetooth R© it is pertinent to consider how the signals vary in a realistic test

environment. The ZigBee R© platform was deployed in the same environment illustrated in

Figure 4.5. The same sampling was conducted throughout the environment, resulting in

the indoor signal maps in Figure 4.9. As in 4.6 there is lower correlation between RSSI

and LQI, than expected for signals which are derived from the same hardware. This trait

in both hardware platforms shall be exploited to enable location predictions from this
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Fig. 4.8: ZigBee R© platform RSSI and LQI for increasing T-R separation in a free-field.
LQI is a unitless quantity.

completely minimal hardware deployment. Since it is difficult, if not impossible, to model

the Bluetooth R© platform’s RSSI, LQI and CRSSI and the ZigBee R© platform’s LQI an

empirical fingerprinting approach shall be taken, as the next section will present.

4.3 Localisation in a Static Scenario

Before the localisation system can be deployed in a realistically challenging localisation

scenario it must be considered for viability in the simplest possible deployment scenario. A

realistic deployment scenario would involve a moving mobile device and moving people and

doors within the environment. Alternatively, the static scenario represents the simplest

possible deployment scenario, which negates the effects of a real moving subject such as

a moving mobile device and signal attenuation effects of the human body. This means

obtaining samples with the mobile device in a fixed position with no people present in the

environment during data acquisition. This type of data is obtained in exactly the same

way as the illustrative data in the previous section. Once the accuracy of the system in this

relatively trivial scenario has been considered, it can be applied to a realistic deployment

with the usual environmental movement effects.
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Fig. 4.9: ZigBee R© RSSI and LQI throughout the test environment.

The primary advantage of this technique over other more traditional localisation

techniques is in its low hardware requirements. For this reason it was decided to

compare this technique with a more traditional localisation system deployment in the

trial environment of Figure 4.5. Typically Bluetooth R© localisation techniques require a

BSC to control every Bluetooth R© AP since stand-alone Bluetooth R© APs are not widely

available. Since other RF localisation systems typically use the highest resolution signal

available from all BSCs, multiple BSC localisation was implemented using a single signal

available from each installed BSC. Our novel localisation technique, however, uses all of

the signals available at a single BSC. Figure 4.10 illustrates the location classification

features available for a traditional localisation deployment. For each sample, the LQ from

the first BSC is illustrated on the x-axis and the corresponding value from the second BSC

is illustrated on the y-axis. The marker colours and shapes indicate which room resulted in

the particular LQ1-LQ2 combination. For multiple Bluetooth R© BSC localisation, the LQ

signal from each computer’s AP was used as the location classifier input due to its higher

spatial resolution than RSSI. For the ZigBee R© platform the RSSI readings from each BSC

were used as the input features for the same reason. From our fingerprinting-classifier

perspective the aim is to define the optimal classification regions for the data from each

class or room. The definition of optimal in this case is the classification regions which lead

to the highest localisation accuracy.

4.3.1 Localisation Accuracy Metric

At this point the method of determining localisation accuracy must be considered. Instead

of the typical localisation accuracy metric of mean error distance, this work employs a
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Fig. 4.10: Two input feature-spaces for the Bluetooth R© and ZigBee R© multiple BSC
localisation scenarios.

Table 4.1: An example confusion matrix. The diagonal terms indicate the frequency of
correct prediction of the actual class. The off-diagonal terms indicate the frequency of
predicting a particular class for the actual class denoted by the column label.

classification success metric. However, overall accuracy, or room recognition rate, is not

the best measure of success since large rooms with a large number of test samples will bias

the overall accuracy. Instead the unweighted average of the accuracies of each individual

room is used as an unbiased error metric. The accuracy of each room is calculated to be

the ratio of correct predictions for a given room to the number of test samples in that

room.

This unbiased accuracy can easily be calculated as the average of the diagonal terms

in the confusion matrix. A confusion matrix is a square matrix in which each element

corresponds to a class detection success rate (see Table 4.1). Each column corresponds to

an actual class label and each row corresponds to the predicted class label for a particular

actual label. Hence, the diagonal entries indicate the proportion of correct predictions for

a class and the off-diagonal terms indicate the “confusion” for that class. We propose that

the accuracy metric of the mean of the diagonal of the confusion matrix is more relevant

to real world applications than error distance because error distances do not indicate

containment of predictions within the correct room. For example a large error distance

in a large room may not be as incorrect as a large error in a small room. Conversely, a

small error distance near a wall may translate to an incorrect room prediction; an effect

not highlighted in other localisation work. Further discussion of this accuracy metric in a

long-term deployment can be found in Section 5.3.
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4.3.2 Multiple BSC Localisation

Previous localisation techniques focused on coordinate location rather than room-level

location. However, their underlying algorithms can be adapted to the symbolic or room-

level location prediction problem. For example Bahl and Padmanabhan (2000b) and

Lorincz and Welsh (2006) use a kNN algorithm and Castro et al. (2001) and Roos et al.

(2002b) use unimodal probabilistic models to estimate location with high accuracy. For

this reason we consider kNN and the unimodal Gaussian probabilistic classifiers NBC, LDA

and QDA for the traditional localisation scenario. The more sophisticated techniques will

be considered for accuracy improvement in later chapters. To calculate multiple BSC

localisation accuracy two separate datasets were obtained. Separate datasets were used

to reduce the influence of temporal variations in the signals on accuracy. Accuracy is

then calculated across two runs. First; the localisation algorithms are trained on dataset

1 and tested on dataset 2. Second; the localisation algorithms are trained on dataset 2

and tested on dataset 1. Hence, for multiple AP localisation there were two algorithm

runs, one for each dataset combination. Table 4.2 summarises the mean multiple BSC

localisation accuracy across both runs.

(a) Multiple BSC Bluetooth R©

Algorithm Mean Accuracy

kNN 0.94 (0.002)
NBC 0.60 (0.000)
LDA 0.42 (0.010)
QDA 0.71 (0.015)

(b) Multiple BSC ZigBee R©

Algorithm Mean Accuracy

kNN 0.60 (0.076)
NBC 0.63 (0.047)
LDA 0.62 (0.032)
QDA 0.60 (0.051)

Table 4.2: Mean accuracy for multiple BSC localisation tests. Standard Deviations are
in parentheses.

From this table it is evident that Bluetooth R© localisation using the kNN algorithm

achieves the best accuracy. The unimodal probabilistic classifiers do not perform as well

on the Bluetooth R© platform, with LDA performing the worst. This can be explained by

the fact that linear decision regions are not appropriate for the level of inter-class data

mixing visible in Figure 4.10. ZigBee R© on the other hand has similar accuracy across all

classifiers. This suggests that the lower localisation accuracy is not only due to inadequate

classification decision region flexibility, but also a fundamental restriction of higher inter-

class overlap and lower inter-dataset repeatability. Hence, even the flexible kNN classifier

is unable to fully discriminate between many of the locations.

Relatively high localisation accuracy has been shown possible with the available

Bluetooth R© and ZigBee R©hardware installed in a traditional multiple BSC configuration.

This high accuracy comes at the cost of a high level of infrastructure. Not only do multiple

BSCs need to be installed, but the BSCs need to communicate with each other to route

signal information to one central location. This leads to further installation effort in terms
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Fig. 4.11: Two input feature-spaces for the Bluetooth R© and ZigBee R© single BSC
localisation scenarios.

of network installation and configuration along with the need to find appropriate locations

throughout the environment to install BSCs. Hence, single BSC localisation reduces not

only hardware costs but also installation effort.

4.3.3 Single BSC Localisation

Using the datasets already obtained, the accuracy for a single BSC localisation scenario

was tested. Figure 4.11 shows the two input feature space when only data from AP 1 is

available. It can be seen that while the classification regions are certainly not as distinct as

those in Figure 4.10, the inclusion of both signals from the same AP allows one to uniquely

discriminate between certain locations which would not be possible with any one signal

alone. This is empirically corroborated in Tables 4.3 and 4.4. Again, the mean accuracy

is evaluated over two runs and the standard deviation is in parentheses. From these tables

it can be observed that it is possible to discern location using only the highest resolution

signal, namely LQ for Bluetooth R© and RSSI for ZigBee R©. For Bluetooth R©, however, when

the second, less resolved signal is introduced the localisation accuracy for access point 1

increases. This indicates that the decorrelated properties of RSSI and LQ contribute to

more location indicative signals. The fact that there is no such improvement for access

point 2 suggests that the decorrelated properties of the signals are highly dependent on the

position in which the BSC is installed. Hence, the accuracy of the single BSC localisation

technique is dependent on the BSC installation location. It should also be noted that the

second AP used a lower gain antenna, hence its RSSI signal was saturated to -10 at most

locations, leading to poorer signal, hence location, resolution. The lack of RSSI variation

for AP2 explains why the inclusion of this signal does not improve localisation accuracy.

Upon considering the ZigBee R© platform, it is evident that the second AP exhibits

lower accuracy confirming that accuracy is BSC location dependent. It is also observable

that there is no localisation accuracy improvement when including the second available
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Algorithm BSC1 LQ BSC2 LQ BSC1 RSSI+LQ BSC2 RSSI+LQ

kNN 0.58 (0.040) 0.31 (0.00) 0.75 (0.01) 0.31 (0.00)
NBC 0.53 (0.004) 0.42 (0.00) 0.63 (0.04) 0.38 (0.04)
LDA 0.50 (0.002) 0.39 (0.01) 0.57 (0.00) 0.37 (0.00)
QDA 0.53 (0.004) 0.42 (0.00) 0.63 (0.03) 0.38 (0.04)

Table 4.3: Single Bluetooth R© BSC static environment localisation accuracy.

Algorithm BSC1 RSSI BSC2 RSSI BSC1 RSSI+LQI BSC2 RSSI+LQI

kNN 0.56 (0.03) 0.35 (0.09) 0.49 (0.01) 0.33 (0.01)
NBC 0.61 (0.15) 0.43 (0.10) 0.60 (0.21) 0.39 (0.04)
LDA 0.71 (0.03) 0.46 (0.03) 0.69 (0.03) 0.46 (0.02)
QDA 0.62 (0.15) 0.44 (0.10) 0.62 (0.18) 0.39 (0.04)

Table 4.4: Single ZigBee R© BSC static environment localisation accuracy.

signal. As a result ZigBee R© has lower overall localisation performance with this raw

data. It has been shown that the high ZigBee R© measurement noise can be reduced

using filtering, emphasising the decorrelated properties of the signals, hence increasing

localisation accuracy (Kelly et al., 2008d). This shall however be omitted for brevity. The

focus of the remainder of this work will be on a single technology, Bluetooth R©, due to its

higher possible localisation accuracy. Using Bluetooth R© allows the use of more commonly

available mobile devices such as mobile phones, leading to potentially lower deployment

costs. This also provides further location indicative signals, namely CRSSI and CID, which

have not yet been considered for localisation accuracy.

For the Bluetooth R© platform there are 4 location-dependent input features; RSSI, LQ,

CRSSI and CID. Figure 4.12 illustrates the different classification regions for each room.

Since it is difficult to visualise this 4-feature space, two separate plots are presented each

with a different combination of signals. The classifiers however shall take all 4 features

as the inputs. Since CID is an identification number based on network assignments it

cannot be treated the same as a continuous input since it will bias the classifiers with

its irregularly spaced ID assignments. Instead it was necessary to replace each CID with

a number such that all CIDs were numbered contiguously from 1 up to the maximum

number of unique CIDs. A conversion table was constructed with the new assignments

for each CID. Then each CID in the test dataset was replaced using this table.

It is evident from the individual plots that there are many classification regions in

each room which would not be uniquely identifiable using one of the illustrated subsets of

signals. Hence, using all the signals available contributes to higher localisation accuracy

in the static environment. Table 4.5 summarises the static localisation accuracy possible
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Fig. 4.12: Three input feature-spaces for the Bluetooth R© localisation platform.

Algorithm BSC1 BSC2 Overall Accuracy

kNN 0.90 (0.00) 0.78 (0.04) 0.85 (0.07)
NBC 0.83 (0.03) 0.63 (0.03) 0.73 (0.12)
LDA 0.76 (0.05) 0.70 (0.03) 0.73 (0.05)
QDA 0.86 (0.00) 0.71 (0.01) 0.79 (0.09)

Table 4.5: Localisation accuracies for a single Bluetooth R© BSC using all available signals
in a static environment. Overall accuracy is the mean of BSC1 and BSC2 accuracies.

using all of the signals available from the Bluetooth R© hardware. When comparing this

with tables 4.3 and 4.4 it can be seen that BSC2 localisation still suffers lower accuracy

than BSC1 in spite of the use of the Bluetooth R© AP independent signals, CRSSI and CID.

This indicates that the AP type and BSC location is still an important consideration in the

deployment of the system. It can now also be observed that the highest accuracy is still

from kNN. For the probabilistic classifiers QDA now exhibits the highest localisation

accuracy, followed by NBC and LDA. NBC performs poorly due to the assumption

of feature independence and LDA performs poorly now because the assumption of a

common covariance across classes becomes increasingly inappropriate with increasing

dimensionality. Again kNN performs best with the downside of a higher computational

cost, proportional to the training dataset size.

Our system’s highest mean single BSC accuracy of 0.85 compares favourably with the

multiple BSC technique’s highest mean accuracy of 0.94, especially when one considers

that it only requires half the level of installed hardware. One issue with these results is that

they do not necessarily correspond to the accuracies possible during non-trivial situations

when the phone does not remain stationary on a platform 1m above the ground, facing

the same direction at all positions, etc. The next section shall consider the localisation

accuracy possible with the localisation platform during realistic daily movements. The
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Bluetooth R© platform will be the focus of the remainder of this thesis due to the ubiquity

of Bluetooth R© enabled mobile devices, the familiar user interface and higher signal variety

the cellular connectivity presents.

4.4 Localisation in a Realistic Scenario

Before the Bluetooth R© localisation system can be deployed reliably in a realistic scenario

some further details of its implementation must be considered. This section addresses the

remaining implementation details impeding long-term accuracy.

4.4.1 Training Data Acquisition

As in most localisation systems this technique is implemented in two phases. The first

phase, known as the calibration or training phase, is where data representative of each

location is obtained. In the second phase, known as the tracking phase, the localisation

algorithm trained on the training phase data is used to predict location from the current

set of samples. One issue with the method of data acquisition described in Section 4.3 is

that training data obtained from the static situation will not correspond to data obtained

from real-life movements. For example, in the situation when a mobile phone is in a user’s

pocket, the signals will be drastically different from when the mobile phone is placed 1m

above the ground on a platform, due to signal attenuation effects of the human body

and the dynamic behaviour of the signals when the device is moving. As a result, basing

location predictions for a human carrying the mobile device on static training data will

not be the most accurate technique.

To address this issue it was decided to also obtain training data from a user inhabiting

each room for a short period of time. This is referred to as the “One-Room-at-a-Time”

(ORAT) method. For each room an experimenter carried the mobile device in their pocket

while the BSC logged 200 samples of each signal, before changing to the next room.

No other people were present when data was obtained. The experimenter walked to

positions they would typically visit along paths they would usually take. This and the

static technique are similar to the training data acquisition techniques employed for other

fingerprinting-based localisation systems. Fig. 4.13(a) shows how RSSI, LQ and CRSSI

vary throughout the environment for this ORAT training dataset. It is clear from the

figure that there are overlapping clusters of data for Rooms 2 and 4, which highlights that

100% classification accuracy is not possible with the available signals.

This ORAT method has a major drawback. It does not allow for the acquisition of

data representative of a subject moving from one room to another, hence it will have

reduced accuracy when this movement is occurring. For this reason it was necessary to

experiment with a third type of training dataset. This dataset is obtained by constantly
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Fig. 4.13: Three-feature-spaces for two different techniques of obtaining training data
for the dynamic localisation scenario.

sampling while the experimenter walks throughout the environment. The experimenter

makes a voice recording during the sampling process, noting the room transitions as they

occur. Using this recording the samples can be labelled offline. This leads to a training

dataset which exactly matches real-life movement-based signal behaviours throughout each

room. For comparison Fig. 4.13(b) illustrates how this so-called “dynamic” dataset varies

throughout the environment. When comparing with Fig. 4.13(a) different coverage of the

RSSI-LQ-CSQ space is observable. Furthermore, the feature-space coverage in Figures

4.13(a) and 4.13(b) is significantly different to that of Figure 4.12(b). This is due to power

control’s dynamic behaviour causing RSSI to exhibit more readings in the intermediate

range. Clearly this will result in different classification accuracy for these different types

of training data.

To quantify the effect the training dataset acquisition method will have on localisation

accuracy a test dataset was obtained. This dataset was obtained during a 15 minute

walk throughout the test environment. This walk was designed to represent a user’s

typical movements throughout the home environment. During the 15 minute walk data

is constantly logged at the BSC. Also a voice recording of locations, much the same as

that obtained during the dynamic data training phase, is obtained. Table 4.6 outlines

the accuracy possible with a realistic test dataset when different types of training data

are employed. It can now be observed that using the data obtained in the static scenario

leads to extremely poor localisation accuracy, on par with random guessing. The highest

possible tracking accuracy occurs using the dynamically obtained training data. Hence,

dynamically obtained data is the training data of choice for the remainder of this chapter.

The accuracy levels reported so far are for classification using the raw (noisy) data. Further

accuracy improvement can be achieved by filtering the data.
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Training Dataset kNN NBC LDA QDA

Static 0.27 0.30 0.27 0.25
ORAT 0.50 0.49 0.52 0.43
Dynamic 0.52 0.54 0.57 0.57

Table 4.6: Localisation accuracy for different training datasets.
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Fig. 4.14: The effect of filtering on localisation accuracy.

4.4.2 Pre-Processing Filter

Like most real-world signals the measurements quantifying radio signal quality are

susceptible to noise. As a result, parts of the training data classification region overlap can

be attributed to undesirable measurement noise. In an attempt to reduce the influence of

measurement noise and obtain a “true” approximation of the signal a simple smoothing

filter is employed. The chosen filter is one of the simplest types of low-pass filters; a

Moving Average Filter (MAF). For each continuous signal; RSSI, LQ and CRSSI, filtering

is performed by applying an N -sample moving window to the data and calculating the

mean of the samples within each window as follows:

xfiltered(i) =

∑N−1
n=0 x(i− n)

N
, (4.1)

where i is the window position. Since CID is a categorical signal, it is not filtered.

Figure 4.14 illustrates the effect increased levels of filtering has on localisation accuracy

when both the training and test data are preprocessed with the mean filter. It can be

observed that the NBC performs best with a filtering window length of 20 samples. It can

also be observed that the probabilistic classifiers outperform the completely data-based

kNN algorithm at all filtering levels, indicating that probabilistic classifiers are more suited
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Fig. 4.15: The three input feature-space with a 20 sample mean filter applied.

to the practical localisation problem, whereas kNN is more suited to the trivial static

localisation case. The improvement in accuracy can be understood by considering Figure

4.15. This filtered version of the dynamic training data has less nose-related overlap than

its raw counterpart in Figure 4.13(b). There is, however, still some overlap which explains

why it is impossible to achieve 100% accuracy with this data alone. Future chapters will

attempt to augment this accuracy with other knowledge, such as room connectivity and

user motion levels.

4.4.3 Signal Redundancy

To permit faster classifier execution and energy savings associated with obtaining less

signals it is important to consider if certain signals are redundant and do not contribute

to localisation accuracy. The CRSSI and CID readings were omitted and the accuracy as a

function of filter pre-processing was calculated. Figures 4.16(a) and 4.16(b) illustrate the

effect omitting CRSSI and CID have on localisation accuracy respectively. Most significant

is the fact that ignoring the CRSSI value results in the same localisation accuracy, albeit

with a different optimal filtering window size (N = 15). There is a slight reduction in

accuracy when CRSSI is used instead of CID. This is because, although CID changes as

a function of CRSSI, it is impossible to access the CRSSI value corresponding to a CID

other than that of the currently strongest basestation. Otsason et al. (2005) overcame

this issue by accessing the CRSSI for all cellular basestations detectable in a location

and performing a form of fingerprinting with all the basetation’s CRSSI. In this work,

however, the test devices do not allow access to multiple CRSSI readings. Hence, it must

be concluded that the available CRSSI reading is based on incomplete information and
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Fig. 4.16: Accuracy when (a)CRSSI and (b)CID signals are unavailable.

CID is the more informative signal.

Another interesting observation is that NBC is the superior probabilistic classification

technique in Figures 4.14 and 4.16(a) which include the CID signal. But in Figure 4.16(b)

all probabilistic classifiers obtain the same optimal accuracy. This can be attributed to

the fact that all the signals used to obtain the accuracy levels in Figure 4.16(b) have

a Gaussian covariance. However, since CID is derived from categorical data it is not

Gaussian and it is certainly not covariate with the continuous signals. The NBC achieves

slightly higher accuracy by realising this independence assumption, but it still treats CID

as a Gaussian variable. Hence, it may be possible to obtain higher classification accuracy

from the NBC classifier by modelling the CID variable as a discrete probability rather than

a continuous Gaussian probability. This is only possible with NBC due to its simplifying

feature independence assumption and will be investigated for the more comprehensive

dataset obtained in Chapter 5.

Finally, it has been found that using only the RSSI signal results in exactly the same

accuracy as using only the LQ signal (accuracy ≈ 0.65). This shows that, while RSSI gives

very little location indicative information in the static case due to power control, it is as

indicative as LQ in the dynamic localisation scenario. When these RSSI and LQ signals

are both utilised they result in a peak localisation accuracy of 0.74, which is as accurate

as if all the cellular signals were also included in the prediction. Hence, CRSSI and CID

do very little to augment accuracy in this simple 4-room deployment scenario. When the

localisation technique is applied to a less trivial localisation scenario RSSI and LQ signals

may not be sufficiently diverse to represent location in a large number of rooms. As a

result, a larger, more realistic deployment environment is considered in Chapter 5 and the

importance of these cellular signals is illustrated.
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Fig. 4.17: The effect on localisation accuracy of using an accuracy metric more
appropriate to the deployment scenario.

4.4.4 Accuracy Metric Suitability

As explained in Section 4.3.1, accuracies presented thus far have given an equal weighting

for each room to the overall accuracy. This is still not an entirely valid assumption and

can result in biased accuracy estimates. For example, Room 4 in the test environment is a

room rarely inhabited during the course of a typical day since it is only a transition room

between Rooms 1,2 and 3. If this room’s contribution to the accuracy was ignored and

accuracy was simply a mean of the accuracies for Rooms 1,2 and 3 the accuracy would

look different. Figure 4.17 compares the accuracy metric when ignoring Room 4 with the

original accuracy metric. It can now be seen that kNN is the more suitable classifier with

a peak accuracy of 0.87.

Still it is unfair to assign an equal accuracy contribution to Rooms 1,2 and 3 while

completely negating the contribution of Room 4. To better understand typical human

behaviours and decide upon a more human-relevant accuracy metric, Chapter 5 will use

highly accurate long-term location information generated from more costly, but more

reliable, localisation hardware. This information will be used to generate accuracy metrics

more relevant to a given user, hence leading to accuracy estimates more appropriate for a

home localisation scenario.

4.5 Conclusions

This chapter has presented the localisation platforms considered for the purpose of single

BSC home localisation. The signals available from each platform were illustrated and

their suitability to the indoor localisation problem was assessed. Bluetooth R© was chosen

as the more suitable technology for its ubiquity, affordability and the wide array of sensor
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readings available from a Bluetooth R© mobile phone. Traditional multiple BSC localisation

was compared to our technique for a static environment and improvements to the system

for the dynamic scenario were highlighted.

Although this platform achieves relatively high performance with extremely low

hardware requirements, it is still an open question whether this accuracy will scale to a

large indoor environment with realistic long-term environmental variations. This chapter

has addressed many of the issues related to positioning under realistic movements and has

raised other questions related to large-scale, long-term reliability. It is clear that the data

acquisition and labeling techniques presented so far will not scale up to such scenarios.

Hence, the next chapter will use sensor redundancy and intelligent deployment techniques

to develop an understanding of the ability of the system to function in a larger scale

scenario both in terms of time and space.
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Long-Term Deployment

As promising as the results are in the previous chapter, they cannot be assumed to reliably

scale to larger environments or more lengthy deployments. For this reason, the Bluetooth R©

localisation system must be considered for long-term localisation accuracy in a realistic

home environment. A realistic test environment should include typically encountered

scenarios, such as large numbers of rooms, multiple storeys and multiple inhabitants in the

environment. Hence, this chapter considers the deployment of the Bluetooth R© localisation

system in a realistic test environment, as illustrated in Figure 5.1. The adopted test

environment consists of 13 rooms of interest labelled 1-13. The rooms include 5 bedrooms,

4 bathrooms, a kitchen, a living room, a study and two hallways.

The availability of data from a realistic long-term deployment allows a number of issues

to be investigated;

1. Home location monitoring technologies commonly employed in the past such as

Passive Infra Red (PIR), have accuracy issues, particularly in multiple occupancy

situations where the identity of each user is unresolvable. The Bluetooth R©

localisation system is relatively immune to such multiple occupancy performance

degradation since it relies on easily identifiable signals from the user.

2. The accuracy measure adopted in the previous chapter is suitable for assessing

accuracy in the unrealistic scenario where the movements, and as a result, the

quantity of test data in each room did not correspond to typical daily activities.

Reliable long-term movement data will allow the determination of an accuracy metric

which can more appropriately assess the accuracy of the system over long periods of

time.
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(a) Ground Floor (b) First Floor

Fig. 5.1: The chosen realistic test environment. Red dots indicate the positions of the
PIR sensors.

3. The signal diversity from a single AP may not be enough to allow discrimination

between all the rooms in a large environment. Further signals can be obtained at

the same single BSC to increase the distinctiveness of the fingerprint for each room.

4. As highlighted by using filtering in the previous chapter, directly applying the

classification techniques to the data will not lead to the optimal classification

accuracy. Pre-processing and post-processing of the data in a manner more specific

to the deployment scenario will lead to higher long-term location prediction accuracy.

This chapter explores each of these issues. Furthermore it will highlight the maximum

long-term accuracy possible with this localisation system in a realistic deployment scenario

as a function of the amount of installed hardware.

5.1 Alternate Technologies

The main contribution possible from a long-term experimental localisation deployment

is the validation of other affordable localisation techniques previously employed in

a home monitoring scenario. Hence this section outlines the installation of and

experimentation with two alternative localisation techniques; one technique typically used

for home localisation and one technique custom-designed to provide 100% reliable location

predictions.
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5.1.1 Radio Frequency Identification

Radio Frequency Identification (RFID) is a technology which allows the retrieval of an

identification code from either a powered or un-powered RFID tag. RFID allows the

deduction of the proximity of an RFID tag-wearing subject to an RFID receiver, allowing

estimation of the current room of a user with approximately one RFID reader per location

(Lin et al., 2006). There is also the option of placing RFID tags around the environment

and asking the subject to carry an RFID reader (Koch et al., 2007). This allows cheaper

deployment costs since the reader is the most expensive component of an RFID localisation

system, but it also results in higher long-term maintenance costs since RFID readers are

extremely power intensive and require frequent charging. Hence, this work employs RFID

technology to produce the accurate location predictions necessary to quantify the long-

term accuracy of our system, in spite of the high long-term maintenance costs.

To minimise hardware costs, a unique approach to RFID localisation is adopted.

Instead of installing one reader per location, or installing an extremely wide array of RFID

tags throughout the environment, it was decided to install an RFID tag on each doorway.

Then a lightweight handheld RFID reader, manufactured by Tracient Technologies R©, was

carried by the experimenter and used to read the door tag as the door was passed. Upon

reading a tag the reader sends the tag information to any connected Bluetooth device. To

improve reliability, it was decided to use the Bluetooth R© phone to store RFID readings,

then relay them to the BSC when sending the cellular connectivity information. This

prevents lost RFID readings when the BSC is out of range of the reader. This has the

downside that the extra Bluetooth R© connections cause a reduction in the Bluetooth R©

basestation signal sampling frequency to 0.5 Hz. During installation, all of the tags

corresponding to each doorway were recorded. When the tag for a given doorway is

detected during testing, the user’s position is estimated based on their previous location

and the doorway number.

To quantify the accuracy levels possible with this RFID technology 15 minutes of RFID

data was obtained, with the experimenter moving constantly throughout the environment.

While this data was being obtained, a voice recording noting the room transitions is made,

identical to the method outlined in Section 4.4.1. The room labels derived from this voice

annotated movement are assumed to be consistently accurate since they are not subject to

any delays. This voice annotation data is compared to the RFID-derived location estimates

in Figure 5.2. From this figure it can be seen that almost perfect location predictions are

resultant from the RFID platform. The mean delay between the voice annotated data

and the RFID predicted movements is 0.12 seconds and the standard deviation is 0.63

seconds. The mean error is extremely low when considering that anything up to an hour

can be spent in a room at a time. The standard deviation can be explained by the fact

that the RFID-derived room transitions are returned to the BSC with approximately one-
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Fig. 5.2: Comparison of RFID derived location estimates and 100% accurate voice
annotated movements for the first 200 seconds of test data.

second resolution. But even this variation in room-transition timing is acceptable when

one considers the amount of time typically spent in a room at any one time.

This RFID localisation technique results in almost 100% localisation accuracy since it

was not succeptible to environmental effects such as other humans moving and low RF

signal diversity for each location. However, it cannot be considered a realistic localisation

system since it requires the user to scan an RFID device every time they pass through a

door. Instead this RFID localisation system is used as the baseline technology to obtain

room labels for the training and test data for the Bluetooth R© localisation technique and

to quantify the accuracy of the Passive Infrared (PIR) localisation technique commonly

employed in home monitoring systems. Using this reliable manual RFID localisation

technique we were able to quantify the effects of human interference on the ability of our

Bluetooth R© technique and the PIR technique to resolve the location of an individual over

long periods of time.

5.1.2 Passive Infrared

Passive Infra Red (PIR) is a technology commonly employed in academic (e.g. Lundell

et al. (2007) and Pavel et al. (2007)) and commercial (e.g. QuietCare Systems (2009)

and GrandCare Systems (2009)) elder home monitoring systems since it does not require

the user to carry any mobile device. It simply requires the installation of a PIR sensor

in every room, making it a completely passive monitoring solution. When the PIR in

a given room detects motion it signals the BSC. When the BSC receives a signal from

114



CHAPTER 5. LONG-TERM DEPLOYMENT

a PIR sensor in a given room, it assumes that that room is the current location of the

elder. The obvious downside to this technique is that when there is more than one person

in the environment the identity of each person in each room cannot be resolved. Hence,

this long-term deployment allows the estimation of the accuracy of the PIR localisation

technique against the RFID-derived true location, over the range of occupancy levels likely

to be encountered.

PIR localisation in these tests is enabled by deploying one PIR sensor in each room,

in the positions illustrated by the red dots in Figure 5.1. The readings are relayed back

to the BSC, in room 1, using the wireless X10 communication protocol. These readings

are interpreted and logged using Intel’s BioMOBIUSTM health research platform. This

can be considered an objective appraisal of the accuracy of a typical PIR localisation

system since X10 is one of the communication protocols used by GrandCare’s (GrandCare

Systems, 2009) commercial monitoring system, and possibly others, due to its relative

affordability. The accuracy for this commonly used home localisation technique will be

presented in Section 5.3.4. However, before accuracy for the PIR localisation technique and

the Bluetooth R© technique can be impartially compared, accuracy metrics more relevant

to the particular deployment scenario must be considered.

5.2 Accuracy Metrics

This work utilises an accuracy metric not used in other localisation work since the focus is

on the ability to predict which room the user is in, rather than a less meaningful coordinate

position. Unless the application is for navigation, coordinate location would need to be

converted to area or room level location to be meaningful to many applications. Navigation

is not a useful service for someone in their own home, so coordinate location has little use in

a home environment. Hence, the cumulative distribution function (cdf) derived accuracy

measure utilised in a majority of indoor localisation work is not applicable to this work

(see Youssef et al. (2003), Hightower and Borriello (2004) and Widyawan et al. (2007b)

for examples). Consider the accuracy measures in Tables 2.1 and 2.2 in Chapter 2 of this

thesis. Examples of the coordinate location prediction accuracy measures used are “2.94m

median location error”, “less than 4m error 98% of the time” and “less than 2m error 90%

of the time”. Not only do these measures fail to indicate the ability of the systems to

resolve location in human-understandable terms but they are also difficult to conclusively

compare with each other.

Section 4.3.1 has already outlined a novel location prediction accuracy metric, which

uses an equal contribution of the prediction accuracy for each room towards the overall

accuracy. This metric eliminates the bias resulting from obtaining a disproportionate

number of samples in a given room during the extremely short test data acquisition period
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Fig. 5.3: Cumulative distribution function for LDA location classification of a day’s worth
of test data.

of 15 minutes. To illustrate how the commonly used cdf accuracy measure compares to

our equal contribution prediction success metric, a simple test was conducted. The LDA

classifier is applied to a day’s worth of test data from the large test environment.1 For

each true position and predicted position combination, an error distance is estimated from

the distances between the centres of the rooms using the map in Figure 5.1. Based on this

entire set of error distances a cdf can be constructed indicating the probability of returning

an error less than each given distance. Figure 5.3 illustrates the resultant cdf. From this

cdf it can be deduced that less than 3m error can be obtained 65% of the time and that the

median error distance is approximately 2m. Although this sounds competitive with other

work, the same set of predictions yields an equal contribution prediction success measure

of only 28.7%. Hence, previous work which uses coordinate location predictions give no

indication of the ability of the technique to resolve symbolic, or room-level, location.

The equal contribution success metric is more relevant than error-distance metrics

to application-focused localisation systems since it quantifies the ability of a localisation

system to correctly predict each room in a user-understandable format. A disadvantage

of this technique, as has been alluded to in Section 4.4.4, is that an equal contribution of

each room does not give a realistic appraisal of the long-term accuracy of the localisation

technique. Rooms which are rarely inhabited and as a result would have little effect on

long-term accuracy, are given as much importance as frequently inhabited rooms. The

availability of long-term movement data now allows the calculation of a more application-

focused accuracy metric.

The accuracy metric thus far is calculated from the arithmetic mean of the accuracy

for each room, defined as

1The acquisition technique for this data is described in the next section. Knowledge of how the location
predictions are obtained is not yet necessary. All that is of interest is that a set of true positions and the
corresponding predicted positions is available.
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ā =

K∑
k=1

ak.wk, (5.1)

where

wk = 1/K, (5.2)

and

[a1, a2, ..., ak, ..., aK ] = diag(C), (5.3)

where K is the number of rooms in the environment and C is the confusion matrix for

the room predictions. An equal wk across all classes leads to an equal weighting for the

accuracy of each room towards the overall mean accuracy, as illustrated in Figure 5.4(a).

The availability of accurate RFID-derived room labels, however, allows the estimation

of the amount of time a person spends in each room during a given period of time, in

this case, a week. Over 7 consecutive days, RFID label data was obtained while the

experimenter conducted their usual activities within the house. Movement data was only

obtained during the day because the night-time movements are confined to one room and

would bias the overall accuracy assessment of the system. Furthermore, a realistic home

monitoring system would most likely utilise alternative sleep monitoring technologies (see

Behan et al. (2008) for example), making a room localisation system redundant at night.

Each day started at 10am and ended at 8pm to avoid discrepancies in days when the

subject got out of bed early or went to bed early.

The availability of a week of accurate RFID-derived daytime movement data allows

the calculation of a normalised histogram of room occupation, as illustrated in Figure

5.4(b). Instead of using an equal weighting for each room, the weighting for each room

can now be set equal to the relative frequency of occupation of each room over the entire

data acquisition period. Hence, this Empirical Accuracy (EA) metric can incorporate the

importance of each room into the accuracy measure, based on the long-term frequency of

occupation of that room. This means that the localisation accuracy evaluated using this

metric, no matter how short the experimentation period is, will represent the correct room

classification rate of the system over the period of an entire week.

Now that a more application-specific localisation accuracy metric has been developed,

the localisation accuracy of the deployed system over long periods of time in a realistic

environment can be explored.
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(a) Weightings for an equal contribution from each room towards the overall
accuracy
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(b) Weightings for the empirically derived contribution from each room
towards the overall accuracy

Fig. 5.4: Comparison of the equal contribution mean accuracy weights and empirically
derived weights.
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Fig. 5.5: Examples of RFID tags affixed to doors at positions convenient for manual
scanning. Note that the numbers are only written on the tags for installation purposes,
the RFID system automatically derives these numbers from the stored tag IDs.

5.3 Long-Term Tests

The long-term deployment scenario allows the validation of the ability of the Bluetooth R©

localisation technique to resolve the room-level location of the user over long periods of

time. The most important requirement for useful long-term tests is the acquisition of

reliably accurate location labels. This requirement is fulfilled by the use of the manual

RFID localisation technology. To allow this technology to reliably detect room transitions,

each door had an RFID tag attached to it, as illustrated in Figure 5.5. Each side of each

door has an RFID tag, each one corresponding to a particular direction of movement

through the door, which is converted to a room number during offline data labelling.

Since this chapter addresses the task of observing movements of a subject over

significant periods of time, it was decided to focus on the performance over the period

of a day. This required an entire day of testing data for each of the experiments outlined

in the following sections. Because a day of test data was necessary, it was decided to also

use a second day of data as the training data for each experiment. With the two sets of

data available for each experiment it is possible to perform two tests, as in Section 4.3.

The first test involves training each classifier on data from the first day and testing on

data from the second day. Then the datasets are swapped and the test repeated. The

mean accuracy of the two tests can then be calculated.

During data acquisition, the environment was mostly only inhabited by one person.

However, 4 other people live in the house besides the experimenter. Since this was a

realistic home environment it was unavoidable that other people periodically enter and

leave the environment. Hence it was necessary to manually note how many people were

present in the envrionment at all times. Figure 5.6 compares the PIR and RFID location

estimates with the levels of occupancy over a two hour period. This manual record of
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Fig. 5.6: Comparison of occupancy levels with PIR-derived location and accurate RFID
derived location. Notice how PIR location becomes extremely varied and uncorrelated
with RFID when occupancy goes to 3 people.

occupancy allows the available data from each day to be parsed according to the number

of people present. Sections 5.3.1, 5.3.2 and 5.3.3 will consider the performance of the

Bluetooth R© localisation system at all levels of occupancy which could be encountered in

a typical scenario. During these tests the number of inhabitants can change from just one

person, the person being tracked, up to and including 4 other inhabitants. The occupancy

levels change in an uninhibited and realistic fashion. Then Section 5.3.4 will compare

our localisation technique with the PIR localisation technique for commonly encountered

occupancy levels.

5.3.1 Single Bluetooth R© Access Point

The first scenario to be considered is the absolutely minimal deployment of a BSC with

a single Bluetooth R© Access Point (AP) available. The computer with a BlueRadios AP

is deployed in room 1 in the position illustrated in Figure 5.1. Then two consecutive

days of data were obtained. Again, data acquisition for each day starts at 10am and

ends at 8pm. These datasets are referred to as the Single AP (SAP) datasets. For the

single AP scenario the signals employed for location classification are Bluetooth R© RSSI,

Bluetooth R© LQ, phone CID and phone CRSSI, as described in Chapter 4. Since this

environment has significantly more rooms than the simple test environment employed

in the previous chapter, there will be higher levels of feature overlap possible with all

classes. This makes sufficiently flexible density estimation difficult with the unimodal

density estimation techniques considered thus far and in previous work. As such, it

is necessary to also consider the more sophisticated density estimation technique; the
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kNN Naive Bayes LDA QDA GMM

Day 1 0.18 0.26 0.29 0.19 0.20
Day 2 0.22 0.25 0.33 0.19 0.19
Mean 0.20 (0.03) 0.26 (0.01) 0.31 (0.03) 0.19 (0.00) 0.19 (0.01)

Table 5.1: Mean General Accuracy for location predictions over two consecutive days.
Standard deviations are in parentheses.

kNN Naive Bayes LDA QDA GMM

Day 1 0.63 0.52 0.51 0.57 0.62
Day 2 0.70 0.53 0.54 0.71 0.59
Mean 0.67 (0.05) 0.53 (0.01) 0.52 (0.02) 0.64 (0.09) 0.60 (0.02)

Table 5.2: Mean Empirical Accuracy for location predictions over two consecutive days.

Gaussian Mixture Model (GMM).

Tables 5.1 and 5.2 highlight the mean of the accuracies from using the first and

then the second day of data as the test data for a range of prediction algorithms. The

prediction algorithms are k-Nearest Neighbour (kNN), Naive Bayes Classifier (NBC),

Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and

Gaussian Mixture Model (GMM) as described in Chapter 3. The accuracies are calculated

using both the General Accuracy (GA) metric, which refers to the accuracy metric which

was originally employed in Chapter 4 and the EA metric described in Section 5.2. It

can be observed that the mean GA is relatively low for all location prediction algorithms

in this long-term scenario. This is due to the uneven distribution of available data for

each room (reflecting the frequency of room occupancy), causing classifiers to bias their

performance towards those rooms with higher quantities of data. Hence, these rooms are

predicted more frequently than the less commonly inhabited rooms, which would lead to

higher long-term accuracy. GA, however, does not highlight the long-term accuracy since

it assumes an equal amount of time is spent in each room during a typical day.

Table 5.3 shows the confusion matrix from the kNN classifier applied to the SAP

dataset for day 1. The off-diagonal elements represent the misclassifications for the room

labels in the horizontally adjacent diagonal elements. It can be seen that many of the

rooms with poor recognition rates are frequently misclassified as room 3. Figure 5.7

illustrates the frequency of correct room predictions for each room on day 1, which is

obtained directly from the diagonal of the confusion matrix for the kNN classifier. When

comparing this with Figure 5.4 it can be seen that the most frequently inhabited rooms

generally have higher accuracy and the less frequently inhabited rooms generally have lower

accuracy; causing the extremely low GA. By using the EA measure, these individual room

accuracies can be translated to a long-term estimate of accuracy. As a result, Table 5.2
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1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.82 0.04 0.12 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

2 0.44 0.12 0.39 0.01 0.00 0.00 0.03 0.00 0.01 0.01 0.00 0.00 0.00

3 0.03 0.00 0.90 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00

4 0.28 0.02 0.65 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.04 0.91 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.05 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.06 0.01 0.47 0.03 0.00 0.00 0.08 0.15 0.20 0.00 0.00 0.01 0.00

8 0.01 0.00 0.43 0.01 0.00 0.00 0.09 0.12 0.25 0.00 0.00 0.01 0.08

9 0.16 0.00 0.63 0.00 0.00 0.00 0.00 0.14 0.06 0.00 0.00 0.00 0.00

10 0.01 0.00 0.35 0.00 0.00 0.00 0.05 0.06 0.51 0.00 0.00 0.00 0.01

11 0.01 0.00 0.93 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.01

12 0.00 0.00 0.29 0.00 0.00 0.00 0.07 0.29 0.00 0.00 0.00 0.21 0.14

13 0.00 0.00 0.62 0.00 0.00 0.00 0.03 0.13 0.14 0.00 0.00 0.06 0.02

Table 5.3: Confusion matrix for kNN classifications from the SAP dataset, day 1. The
diagonal elements, in bold, are the correct room predictions.
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Fig. 5.7: Frequency of correct room prediction for the kNN classifier. These values are
obtained directly from the confusion matrix for the classifier.

better illustrates how this system will generally perform over long periods of time.

When considering Table 5.2 it can be established that the completely data-based kNN

classifier performs the best. It can also be observed that the probabilistic classifiers,

QDA and GMM, achieve high accuracy, approaching that of kNN. They also have the

advantage over kNN in that their online execution is significantly more efficient since they

are parametric classifiers, instead of an entirely data-based classifier like kNN.

To achieve this accuracy it was necessary to spend a day obtaining the training dataset.

Obtaining the training dataset is time-consuming and would most likely be performed by

a professional rather than the subject themselves to ensure persistent scanning of RFID

tags and, as a result, training dataset reliability. Hence it is necessary to investigate if

similar levels of accuracy can be achieved with smaller quantities of training data in each

room. To this end, the number of data points available per class was modified by deleting

all but the first N training data points in each class. Figure 5.8 highlights the effect of
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increasing the maximum number of training data points available per room on the EA.

In general, increasing the maximum number of samples available for each room increases

the EA. GMM exhibits the highest accuracy at approximately 3000 samples per room.

However, it should be noted that only the three most commonly inhabited rooms have

such a high number of training samples, as illustrated in Figure 5.10. When a high number

of samples per room is permitted for training, approximately one third of the rooms still

only have less than 100 training samples available, since those rooms were rarely inhabited

during the training data acquisition phase. This training dataset imbalance, however,

leads to higher EA as the permitted number of training samples per location increases

since it biases the classifiers towards producing higher accuracies for the more frequently

inhabited rooms. Hence, using a quantity of data for each room more representative of

the time spent in a room during a typical day leads to higher localisation accuracy.

To understand why similar accuracy is not possible when using the GA measure it is

important to consider the effect a greater number of samples per room has on the GA.

Figure 5.9 compares the kNN, QDA and GMM algorithms for accuracy with increasing

numbers of samples per room for both the GA and EA measures. It is evident that,

while the EA increases with higher numbers of samples permitted per room, GA shows

no improvement. This indicates that higher accuracy for the commonly inhabited rooms

occurs with more samples available per room. Instead of focusing on the more important,

commonly inhabited rooms, the GA measure masks the effect of higher accuracy in

important rooms with lower accuracy in the less important rooms. Hence, to obtain

maximum long-term accuracy it is necessary to have a sufficiently imbalanced training

dataset and validate the results with an accuracy measure befitting the desired long-term

accuracy.

Section 4.4.3 indicates that the cellular signals, CRSSI and CID, do not contribute to

localisation accuracy in the smaller, more trivial, localisation scenario. It also suggests,

however, that a less trivial localisation scenario, such as the one under consideration in

this chapter, will benefit from the inclusion of such cellular signals. Using all of the

signals available at a single Bluetooth R© AP, RSSI, LQ, CRSSI and CID, results in a

peak empirically-derived accuracy measure of approximately 70%. Table 5.4 highlights the

localisation accuracy possible when the cellular connectivity readings are unavailable to the

location prediction algorithms. It can be seen that the accuracies for all except the GMM

algorithm are significantly reduced from those in Table 5.2. Hence, the inclusion of the

cellular signals, which are available at no extra cost, leads to higher localisation accuracy

in a realisticly large home environment. In an effort to obtain further location-indicative

signals at little extra cost, the next section considers the effect of using another Bluetooth R©

AP at the same single basestation comptuer to increase signal diversity throughout the

environment.
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Fig. 5.8: Effect of increasing maximum permitted samples per room on the empirically
derived accuracy measure.
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Fig. 5.9: Effect of increasing maximum permitted samples per room on EA and GA for
kNN, QDA and GMM classifiers.
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Fig. 5.10: Mean number of samples per location per day for the SAP dataset.

kNN Naive Bayes LDA QDA GMM

Day 1 0.53 0.47 0.51 0.60 0.63
Day 2 0.52 0.28 0.36 0.64 0.70
Mean 0.53 (0.01) 0.37 (0.13) 0.43 (0.11) 0.62 (0.03) 0.66 (0.05)

Table 5.4: EA over two days when cellular connectivity information is no longer available.

5.3.2 Single Basestation Computer with Increased Signal Diversity

Remote localisation systems typically increase signal diversity for each location by

deploying several basestations throughout the environment. This dramatically increases

the installation cost of a localisation system if the hardware does not already exist within

the environment. To increase signal diversity while retaining minimal installation overhead

it was decided to use a second Bluetooth R© access point at the original BSC. To illustrate

the influence different types and orientations of access point antennas have on the RSSI and

LQ signals throughout an environment, the controlled environment presented in Chapter

4 is considered. Figure 5.11 illustrates the effect on changing antenna type and orientation

on the antenna radiation profile, hence environment RSSI and LQ profiles. The antenna

position remains constant throughout all tests. Figure 5.11(a) shows the antenna used for

all the single AP experiments in this Thesis. The direction of the antenna is indicated

by the bode plots in each figure. This profile is similar to that in Figure 4.6 since it was

obtained using the same antenna type and orientation.

A second Blueradios Bluetooth R© chip was considered, one with a ceramic antenna

instead of a monopole antenna. When orientated as illustrated in Figure 5.11(b) it exhibits

a radiation profile with slightly lower intensity than the monopole antenna. This is a

result of changing the effective aperture (Ae) and polarisation (PLF ) which influence the

received signal intensity as described in Section 2.1.1.1. Hence, the indoor signal profile
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(a) Antenova antenna (Antenova Titanis Product Specification, 2009)

(b) Blueradios Ceramic Antenna (Ceramic Chip Antenna Data Sheet, 2003)

(c) Alternative Orientation (Ceramic Chip Antenna Data Sheet, 2003)

Fig. 5.11: The influence of access point antenna orientation and type on antenna radiation
profiles, hence, environment signal profiles.
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differs from that given in Figure 5.11(a). Intuitively the availability of signals from both

APs leads to better ability to discriminate between different rooms. This is certainely the

case for the antenna orientation in Figure 5.11(c) which results in a severely attenuated

radiation profile, hence, different environment signal profiles.

This feature of antenna-related signal diversity can be exploited in the large test

environment. This is achieved by connecting two access points to the BSC, one orientated

as illustrated in Figure 5.11(a) and one as illustrated in Figure 5.11(c). Since the

Bluetooth R© chip used by the mobile phone is unable to derive the link RSSI or LQ

information, this has to be derived by the AP Bluetooth R© chips. There is also the

significant limitation that it is impossible to connect two APs to one Bluetooth R© device

as a master: each Bluetooth R© device can have only one master and up to 7 slave devices

(Bluetooth R© Special Interest Group, 2001). Hence, the mobile phone must be programmed

to establish a connection to one of the APs before sampling takes place. Then the BSC can

establish the second Bluetooth R© connection to the phone and proceed to retrieve RSSI

and LQ samples from both APs at regular intervals. This results in 6 signals available at

the single BSC, the original RSSI, LQ, CID and CRSSI signals along with the second AP

RSSI and LQ signals.

kNN Naive Bayes LDA QDA GMM

1 AP 0.67 (0.05) 0.53 (0.01) 0.52 (0.02) 0.64 (0.09) 0.64 (0.04)
2 APs 0.74 (0.10) 0.38 (0.14) 0.55 (0.03) 0.67 (0.13) 0.71 (0.04)

Table 5.5: The effect of the availability of a second Bluetooth R© AP co-located with the
original Bluetooth R© AP on EA.

Again, two days of test data was obtained with this configuration, referred to as the

Single Basestation (SBS) dataset, and the effect on the maximum number of samples

available per room on mean localisation accuracy was investigated. Table 5.5 shows how

the extra signal diversity allows slightly higher EA accuracy for all but the Naive Bayes

technique. The increased accuracies are only slight since the second AP is orientated to

obtain a radiation profile as different as possible from that of the first AP. As a result,

the second antenna is orientated as illustrated in Figure 5.11(c). However, as illustrated

in Figure 5.11(c), with this orientation the signals fall off to the minimum value closer

to the basetation. Hence, higher signal diversity with the second AP is only obtainable

in areas very close to the BSC. This is corroborated by comparing the confusion matrix

in Table 5.6 with the SAP confusion matrix in Table 5.3. It can be seen that the SBS

deployment has marginally higher accuracy in room 1 where the BSC is deployed, in the

horizontally adjacent rooms 2,3 and 4 and the vertically adjacent rooms 7, 8 and 9. All

other rooms have accuracy similar to the single AP scenario. This means that higher

location discrimination with a second AP is only possible in locations very close to the
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1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.84 0.03 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.15 0.31 0.47 0.04 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00

3 0.04 0.01 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.17 0.06 0.65 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.91 0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.03 0.03 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.02 0.03 0.49 0.03 0.00 0.00 0.10 0.13 0.17 0.00 0.00 0.01 0.02

8 0.10 0.01 0.31 0.00 0.00 0.01 0.10 0.16 0.23 0.00 0.00 0.00 0.07

9 0.05 0.01 0.75 0.00 0.00 0.00 0.01 0.03 0.14 0.00 0.01 0.00 0.00

10 0.03 0.01 0.30 0.00 0.00 0.00 0.14 0.04 0.45 0.00 0.00 0.00 0.01

11 0.07 0.01 0.81 0.01 0.00 0.01 0.01 0.00 0.03 0.00 0.05 0.00 0.00

12 0.00 0.07 0.07 0.00 0.00 0.00 0.14 0.07 0.36 0.00 0.21 0.07 0.00

13 0.00 0.01 0.61 0.00 0.00 0.00 0.08 0.14 0.13 0.00 0.00 0.02 0.02

Table 5.6: Confusion matrix for kNN classifications from the SBS dataset, day 1.

BSC, such as rooms 1, 2, 3, 4, 7, 8 and 9.

This confirms that increased accuracy in certain locations is possible by increasing the

signal diversity in that location. By deploying a second AP at the original basetation

computer it is possible to marginally increase accuracy with little extra deployment cost.

This has not significantly increased the overall empirically-derived localisation accuracy

since it was impossible to sufficiently increase signal diversity in many of the rooms in

the environment. This is a limitation of the transmission range of low-power Bluetooth R©

chips such as those found in mobile phones. The next section shall investigate the effect

of increasing signal diversity in all rooms by deploying cheap Bluetooth R© beacons in the

environment.

5.3.3 Signal Diversity from Multiple Beacons

The previous two sections highlighted the accuracy possible with a single BSC installed

within the environment. The availability of higher signal diversity, due to different

APs with different antenna radiation profiles, led to slightly higher accuracy with no

extra installation effort. To further increase signal diversity throughout the deployment

environment it is necessary to be able to install Bluetooth R© APs in different locations

throughout the environment. However, as with previous work it is extremely cost-

prohibitive to install BSCs to manage each of these APs. Instead, a novel approach is

employed, whereby only “dumb” APs are installed and powered up without any connection

to a controlling BSC, as illustrated in Figure 5.12. Then the Bluetooth R© phone connects

to the “dumb” AP or beacon. Since the Bluetooth R© chip in the mobile phone is unable to

calculate RSSI or LQ information, it must place the AP in command mode and remotely

perform operations on the AP to calculate these readings.

This has the result that the Bluetooth R© phone can retrieve the remote RSSI and

LQ readings for connections to all beacons within the environment. These readings can
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Fig. 5.12: Examples of the deployed “dumb” access points.

Fig. 5.13: The connection topology for the multiple AP deployment. Each arrow
represents a Bluetooth R© connection. The start of each arrow indicates the connection
master and the end of each arrow represents the slave.

then be relayed to the BSC via its Bluetooth R© connection, as presented in Figure 5.13.

Throughout a typical day it is possible for connections to temporarily drop, due to T-

R distance and attenuation from obstructions. In this case the phone must re-establish

the connection and continue to obtain RSSI and LQ readings. Even if a connection is

dropped, default values indicating a dropped connection must be stored, since the lack

of a connection from a given AP is characteristic of certain locations. When the BSC

connection is dropped, the readings from the other APs cannot be retrieved. For this

reason the phone must store all remote BT AP measurements and RFID readings and

return them to the BSC when it is reconnected. To minimise occurrences of dropped BSC

connections, it was decided to install the BSC in the centre of the environment.

Prior to this thesis it has not been possible to obtain RSSI or LQ readings on a
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(a) Ground Floor (b) First Floor

Fig. 5.14: Locations of the APs, indicated by green triangles.

Bluetooth R© phone and the acquisition of these high resolution signals with such cheap

hardware is a direct result of the novel connection topology employed. Hence, the

position estimates can be produced at the BSC as before, using the extra available signals.

Naturally, the availability of a majority of the signals locally on the mobile phone would

allow the location predictions to take place on the mobile phone itself, but the calculations

remain on the BSC to save energy and prolong battery life of the mobile phone.

The locations of the deployed Bluetooth R© beacons are illustrated in Figure 5.14. The

positions are chosen to maximise the separation of the beacons in three dimensions while

favouring positions which are in proximity to plug sockets, for ease of installation. Again,

two days of data was obtained for this experiment. These datasets will henceforth be

referred to as the Multiple AP (MAP) datasets. As before, an investigation into the effect

of the quantity of available data on the localisation accuracy was conducted. Figure 5.15

illustrates the mean GA and EA for such a deployment. The mean GA in Figure 5.15(a) is

almost 60% with minimal quantities of data available in each room. When the maximum

number of samples is available per room, the mean GA increases to 68%.

The EA in Figure 5.15(b) is less than 50% for all classifiers when there is only

minimal data available for each room. As in the single AP scenario, the multiple AP

EA significantly increases when all the data for each room is used as training data. The

maximum EA is 85% using the kNN method. Table 5.7 allows an understanding of the

source of the increased accuracy over the SAP and SBS methods; higher recognition rates

occur for nearly all of the rooms due to the higher signal diversity in all rooms. After

the kNN method, the probabilistic classifiers which use covariance information in their
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(a) Multiple Access Point General Accuracy
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(b) Multiple Access Point Empirical Accuracy

Fig. 5.15: GA and EA as a function of training dataset size for the multiple AP
deployment scenario.
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1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.95 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

2 0.30 0.61 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.19 0.01 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.28 0.02 0.04 0.44 0.10 0.09 0.03 0.00 0.00 0.00 0.00 0.00 0.00

5 0.03 0.00 0.01 0.10 0.76 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.10 0.00 0.01 0.29 0.14 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.03 0.01 0.11 0.05 0.01 0.00 0.59 0.02 0.05 0.05 0.02 0.01 0.08

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.01 0.00 0.00 0.00 0.00

9 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.54 0.14 0.00 0.00 0.00

10 0.29 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.18 0.46 0.00 0.01 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.92 0.00 0.00

12 0.00 0.01 0.30 0.00 0.00 0.00 0.24 0.00 0.00 0.01 0.00 0.26 0.18

13 0.00 0.00 0.11 0.00 0.00 0.00 0.01 0.01 0.06 0.01 0.00 0.13 0.68

Table 5.7: Confusion matrix for kNN classifications from the MAP dataset, day 1.

predictions (i.e. LDA, QDA, and GMM) have relatively high EA of over 80%, without the

computational overhead of the kNN method.

To understand which APs have the greatest influence on localisation accuracy and

potentially save on installation effort, the localisation accuracies were re-calculated using

a subset of the available APs. The effect of the availability of signals from AP2, AP3 and

AP4 are investigated. Since AP1 is the main AP its signals must always be available during

location predictions. Figure 5.16 illustrates the EA for all classifiers for all combinations of

APs. Each combination of APs is denoted by the binary string corresponding to [AP1 AP2

AP3 AP4], where a ‘1’ represents available, and a ‘0’ represents not available. Intuitively,

the highest accuracy is possible when all APs are utilised. However, when AP3 is not

included in the location predictions, the accuracy is approximately similar to when all

APs are available for the kNN, LDA, QDA and NBC classifiers. Surprisingly GMM

accuracy is slightly higher with less APs, which can be attributed to the randomness of

the initialisation stage of the GEM training algorithm. However, when AP4 is unavailable

instead of AP3, the location predictions are lower for all classifiers. This indicates that

EA is highly dependent on which subset of APs are employed. Hence, EA is sensitive to

AP installation locations.

When the same test is considered for GA in Figure 5.17 it can be observed that GA is

not as sensitive to AP location. Instead GA is sensitive to the number of APs present since

the tests with the same number of APs available have strikingly similar accuracies. It is

also noteworthy that LDA has the highest accuracy for all GA tests because of the equal

emphasis placed on each class by the common covariance matrix assumption. Conversely,

the kNN algorithm performs the best for the EA measure since its prediction ability is

dependent on the number of samples available in every location. Its disadvantage lies in

the significantly high computational effort for a location prediction. After kNN, QDA and

GMM have the highest empirical accuracies. Hence, QDA and GMM are the algorithms

of choice for efficient, high long-term accuracy, location predictions.
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Fig. 5.16: The effect of the subset of available APs on the EA.
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Fig. 5.17: The effect of the subset of available APs on the GA.

It has been illustrated that more available Bluetooth R© APs lead to higher GA and EA.

It has also been shown that EA is sensitive to the location of the installed APs. Previous

work has used genetic algorithms to decide on the subset of most informative basestation

locations (Genco et al., 2005). However, the decision of which APs can be removed

from the environment cannot be made without installing and practically evaluating which

combination of APs leads to the highest accuracy. Since our APs are so affordable it

is not cost-prohibitive to leave them in the environment, even if they are not found to

significantly increase EA. Keeping APs which do not contribute to higher EA will allow

better detection of the less-commonly inhabited rooms, as corroborated by the higher GA

resulting from more APs.

Even though it may appear that this multiple AP localisation technique is approaching

the typical high installation requirement Bluetooth R© localisation scenario, this work has

one major difference. Unlike work where either several computers were required to
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General Accuracy Empirical Accuracy

PIR Localisation 0.56 0.73

Table 5.8: PIR localisation technique accuracy over 6 days.

calculate remote position (Agostaro et al., 2004, Genco et al., 2005, Rodas et al., 2008) or

the user needed to carry a computer or PDA to calculate their position (Kotanen et al.,

2003, Feldmann et al., 2003, Castano et al., 2004), this work requires only a single BSC

and one mobile phone. Instead of installing multiple BSCs or networked APs, affordable

“dumb” Bluetooth R© beacons are installed to improve location prediction accuracy by

increasing signal diversity throughout the environment. This leads to a novel system

which can reliably predict the location of the user over long periods of time while only

requiring the user to carry a compact device which has functionality besides that of a

simple monitoring device. It can also be used as a location-based interaction device and a

personal communication device. Hence, the user has more motivation to carry the device.

In the past, such affordable indoor location predictions have commonly been generated

by using PIR sensors throughout the home environment. To understand how the

Bluetooth R© localisation technique compares to the previously adopted techniques, a long-

term comparison was conducted.

5.3.4 Passive Infra Red Localisation

The previous section highlighted that the Bluetooth R© localisation system is capable of

producing an EA of approximately 85% using the kNN algorithm and approximately 80%

using the efficient unimodal probabilistic classifiers. In comparison, Table 5.8 highlights

the localisation accuracy for the PIR localisation hardware. The PIR hardware was present

during all of the previous tests; making 6 days of PIR data available. With this data it

is possible to reliably estimate the accuracy possible with the PIR localisation technique

in a realistic long-term deployment. It can be seen that the PIR localisation technique

has a GA of 56% and an EA of 73%. Hence the Bluetooth R© localistion technique, which

employs 3 Bluetooth R© beacons is able to achieve 16% higher EA than the PIR localisation

technique which requires a sensor in every room.

To understand what might be impeding high PIR localisation accuracy, one must

consider how susceptible to environmental interference the motion detectors are. They

can be falsely triggered when curtains or doors move, or when they are directed towards

windows in direct line of sight of where people occasionally move. Although care has been

taken to install the sensors in positions which are not pointing out windows, as illustrated

in Figure 5.1, there is still the significant effect of the sensors continuing to fire a short time

after someone leaves a room, since the door in the room can still be moving. Besides the
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environmental interference, there are also transmission issues. To increase transmission

reliability the employed X10 communication protocol must retransmit the sensor firing

packet several times. Hence, a packet from a sensor in a previous room may be received

after packets from a sensor in the current room have been received, leading to location

confusion.

At this point it should be noted that the extra occupants were permitted to carry

mobile phones and utilise wireless laptops within the test environment to simulate

a realistic deployment scenario. These wireless protocols do not interfere with the

experiments since X10 transmits in a licensed frequency band which is different from

that of GSM, Bluetooth R© and WiFi. Furthermore, the background WiFi transmissions in

this environment have been found not to interfere with Bluetooth R© since Bluetooth R© is

designed to use frequency hopping to transmit on relatively noise-free channels. Naturally

a more reliable communication protocol such as Bluetooth R© or ZigBee R© could be used to

relay the PIR sensor firings back to the BSC without spurious retransmissions, but X10

is significantly less expensive, hence, more commonly used in PIR localisation systems,

making this a more appropriate technology comparison.

Even if more reliable communication protocols were used for PIR sensors, there is

still the issue of the inability of the sensor to resolve a user’s identity. To quantify the

effect of the number of inhabitants in the environment on the ability of the system to

predict the location of the subject of interest, the data from the 6 days is parsed according

to the occupancy levels. Over the 6 days single occupancy occurred 78% of the time.

Double occupancy occurred approximately 15% of the time and triple occupancy occurred

approximately 7% of the time. Higher levels of occupancy occurred so infrequently that it

was impossible to calculate a confusion matrix, and as a result; accuracy, since some rooms

were not inhabited by the moving test subject during those levels of occupancy. Figure 5.18

illustrates the influence of occupancy levels on the GA and EA for the PIR system. It can

be seen that location predictions are sufficiently accurate for single occupancy localisation.

However, when occupancy increases past one person, accuracy significantly decreases.

To appreciate how the issue of multiple occupancy is influencing the accuracy measures

in Table 5.8, the location predictions are generated again; this time based on single and

multiple occupancy. Table 5.9 shows the peak GA and EA for the PIR localisation system

and the Bluetooth R© localisation system. It can be seen that EA for the PIR system is

relatively high, especially when considering the user does not need to carry a mobile device.

However in the multiple occupancy case, where there is more than the one person in the

environment, the accuracy is significantly reduced. The Bluetooth R© localisation system,

on the other hand, has almost 90% EA in the single occupancy case which reduces to 66% in

the multiple occpancy case. The PIR localisation system has a 32% reduction in EA when

multiple inhabitants are present in the environment, whereas the Bluetooth R© localisation
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Fig. 5.18: Effect of occupancy levels on PIR GA and EA.

General Accuracy Empirical Accuracy

Single Occ Multiple Occ Single Occ Multiple Occ

PIR 0.59 0.42 0.78 0.53
Bluetooth R© 0.62 0.54 0.89 0.66

Table 5.9: PIR and peak Bluetooth R© localisation accuracies. Peak Bluetooth R©

localisation accuracy is obtained using the kNN algorithm.

system has only a 25% reduction in EA. The reduction in Bluetooth R© performance can be

attributed to the interference of the extra occupants on the Line of Sight (LoS) between the

mobile phone and BSC’s AP. The reduction in PIR performance, on the other hand, can

be attributed to the inability of PIR to resolve the identity of the subject being tracked.

Hence, it can be concluded that, not only does the Bluetooth R© localisation technique

have higher accuracy in the single occupancy case, but it also has a lower susceptability

to environmental interference from people, doors, lighting, etc.

This section has outlined the accuracy of the Bluetooth R© localisation system in a

realistic home environment with varying levels of installed hardware. The unweighted

accuracy (GA) and application specific accuracy (EA) of the Bluetooth R© system has been

compared with the PIR localisation system which has been used by commercial entities

such as GrandCare Systems and QuietCare Systems in the past, under varying levels of

realistic occupancy. It has been found that the Bluetooth R© localisation system, which

uses Bluetooth R© beacons in the environment, has higher accuracy in both the single and

multiple occupancy scenarios than a PIR localisation system.
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Fig. 5.19: Effect of filtering on EA in the multiple Bluetooth R© beacon deployment
scenario.

5.4 Algorithm Improvements

The previous section has presented the accuracies available from the localisation system

when applying classifiers directly to the test features available from the hardware. In

Chapter 4 preprocessing, in the form of smoothing or filtering, allowed higher accuracy

location predictions with the same available data. This section investigates how knowledge

of this application and the behaviour of the signals in this particular application can be

exploited to increase the frequency of correct location predictions. The first augmentation,

which has already been considered in the trivial home environment, is filtering.

5.4.1 Preprocessing Filter

Preprocessing the data with a Moving Average Filter (MAF) significantly improved the

localisation accuracy in the small test environment considered in Chapter 4. Since the

realistic long-term test environment has been shown to exhibit different characteristics

than the small test environment, the application of filtering must be reconsidered. Similar

filtering tests to those illustrated in Chapter 4 are conducted on the multiple Bluetooth R©

beacon data, whereby the localisation accuracy as a function of filtering window length is

determined. kNN is not considered since its computational load per location estimate is

prohibitively high for real-time location predictions.

Figure 5.19 illustrates the effect of MAF window length, N , on the mean EA for

the data for the two days. This figure suggests that less filtering is necessary to

137



CHAPTER 5. LONG-TERM DEPLOYMENT

260 280 300 320 340 360
−4

−3

−2

−1

0

1

2

3

4

Sample Number

S
ca

le
d 

M
ag

ni
tu

de

 

 

RSSI
LQ
CID
CRSSI

Fig. 5.20: Raw CID, CRSSI and BSC RSSI and LQ signals.

acquire maximum classification accuracy than previously estimated. The peak filtering

window lengths with the highest accuracies are N = 2 and N = 3 for QDA and GMM

respectively, which is significantly lower than the optimal of N = 20 in Chapter 4. This

can be attributed to the lower hardware sampling rates resulting from connecting several

Bluetooth R© devices to the mobile phone. In Chapter 4 the test Bluetooth R© platform was

able to acquire samples at a rate of 1Hz, whereas the extra connections necessary for the

plurality of devices connected in the reliable long-term tests lead to a sampling rate of less

than 0.5Hz. Hence, a lower level of filtering is necessary to obtain the same reduction in

noise-related signal variations.

Furthermore, this realistic test scenario generates test data with less movement-related

signal variations, since the subject and mobile phone are typically stationary for long

periods of time, which leads to less transient signal variations. The small test environment,

on the other hand, required the user to move almost constantly to maximise coverage of

the environment during the 15-minute test period. Hence, more filtering was necessary

to correct for signal fluctuations during movements due to the use of power control in

Bluetooth R©. From Figure 5.19 it can also be observed that GMM accuracy is at a

maximum at N = 3, but does not monotonically decrease as would be expected. Instead

it again increases at N = 7. This can be explained by the fact that the EM and GEM

algorithms are initialisation dependent algorithms which means that their “goodness-of-

fit”, hence accuracy, is highly dependent on the initially selected mixture parameters,

which in turn are dependent on the specific post-filtering dataset. Since QDA uses only

a single Gaussian to represent each class, it can always find the globally optimal set of

densities and as a result, has a monotonic decrease in accuracy.

In an attempt to find a more appropriate filtering technique for the available data,
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Figure 5.20 was considered. This figure compares RSSI and LQ from the BSC AP with the

cellular readings CID and CRSSI. The magnitudes of the signals are scaled for comparison.

It can be seen that the CID signal has no noise-related variations, which is why it is

generally not filtered. If CID is filtered differently from the other signals due to fewer noise

fluctuations, the other signals should also be filtered by different amounts, proportional

to their apparent measurement noise. Upon considering Figure 5.20 it is evident that

LQ has persistent fluctuations, even when RSSI and CRSSI are not changing. Hence,

LQ should have higher levels of filtering applied to reduce the higher measurement noise.

To experiment with the optimal combination of filtering levels for each signal, an extra

filtering parameter was introduced solely for the LQ signals. Now there is a filtering

window length parameter for the CRSSI and all RSSI signals. There is also a second

filtering parameter for all LQ signals.

Figure 5.21 illustrates the effect of different levels of RSSI filtering (Bluetooth R© RSSI

and CRSSI) and LQ filtering on the mean EA. For brevity, only QDA and GMM are

illustrated here since they had the highest peak accuracies for filtering with a common

window length. Squares with darker shades of red indicate combinations of RSSI and

LQ filtering values which result in higher EA. The image matrix is upper triangular since

combinations where LQ filtering windows were smaller than RSSI filtering windows were

not considered, hence the blue regions do not have any accuracies associated with them.

The QDA classifier accuracy plot in Figure 5.21(a) confirms that highest accuracy is

possible with extremely low levels of filtering. The highest accuracy of 82.1% occurs at

the window lengths RSSI = 1, LQ = 2. The second highest accuracy of 81.9% occurs at

window lengths of RSSI = 2, LQ = 2, which is identical to the common filtering window

length of N = 2 in Figure 5.19. Hence, there is little improvement in using differing RSSI

and LQ filtering levels for the QDA algorithm.

As for the GMM algorithm in Figure 5.21(b), it can be observed that the intensity is

not as smooth as that for the QDA algorithm. This is similar to the common filtering

window length in Figure 5.19 in which GMM accuracy was less smooth than QDA due to

the sensitivity of GMM to the randomness of the mixtures’ parameter initialisation. It can

also be observed that the peak accuracy of 84.1% occurs at the filtering window lengths

of RSSI = 3, LQ = 3, which is identical to the common filtering window length of N = 3.

Hence, using different RSSI and LQ filtering window lengths provides no improvement in

GMM EA.

These results suggest that filtering provides very little increase in EA for QDA. It does

allow a significant increase in GMM EA at particular filtering levels. However, this is not

a reliable indicator of filtered GMM accuracy on other datasets since the unpredictable

increase in accuracy at certain filtering levels is due to the initialisation of the GMM

parameters for the particular post-filtering dataset. Furthermore, the practical estimation
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Fig. 5.21: The effect of the combination of RSSI and LQ filtering levels on mean EA.

140



CHAPTER 5. LONG-TERM DEPLOYMENT

of optimal filtering values for a given deployment would require both a training and a

cross-validation dataset. Since the EA measure requires a full day of data for reliable

accuracy estimates (see Section 5.3.3) this will require a day of training data and a day of

validation data. Hence, filtering produces a significant overhead in classifier training which

is not guaranteed to significantly increase accuracy in a realistic deployment. Filtering,

however, can be seen to allow a minor increase in accuracy across all classifiers up to a

value of N = 2. Accordingly, only a small fixed level of filtering will be considered for

long-term accuracy improvement in a realistic deployment scenario.

5.4.2 Time-Lagged Preprocessing

One thing which the classification techniques have not considered thus far, is the temporal

evolution of the signals. For example, the signals may change as a subject moves through

a certain location in a house, in a way which is distinct for that particular location. On

a sample-by-sample basis each one of these samples could be classified as being part of

other locations. However, when considering the sequence of signals as a whole, it may

be possible to deduce that this distinct sequence of samples is the result of one unique

location. This can loosely be considered a form of time-sequence classification, which has

applications in speech recognition. An efficient solution to generating predictions based

on a sequence of input data is the Time-Delay Neural Network (TDNN) (Chou and Juang,

2003).

The TDNN uses a tapped delay line to generate multiple input features from a

single input feature. Borrowing from this technique of time-sequence recognition, a

similar tapped delay line can be used to generate new features for the classifiers under

consideration in this work. The general form of a classifier with the time-lagged

preprocessing can be seen in Figure 5.22. The number of samples per original feature

is L = 3 in this case. Mathematically the expression for generating the new classifier

input features from the original input features is,

xn =
(
xn(1), xn−1(1), .., xn−L+1(1), ..., xn(D), xn−1(D), .., xn−L+1(D)

)
. (5.4)

To quantify the improvement of localisation accuracy possible with this technique of

temporal pattern matching, the data was preprocessed with the time-lagged preprocessing

expression before applying the classifiers. Figure 5.23 illustrates the impact of using more

lagged samples for each feature on the EA. GMM is not considered because when the

number of features increases above the original 10, it starts to suffer from the problem of

insufficient training data. It is impossible to estimate the mixture parameters for certain

rooms, one of which has as few as 80 samples; which is insufficient when the dimensionality

of the problem is increased via the inclusion of time-lagged samples. QDA has the same
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Fig. 5.22: Using a tapped delay line to generate a time-lagged set of classifier input
features from the original feature vector.
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Fig. 5.23: EA as a function of the number of lagged features per original feature, L.

problem when the number of time-lagged samples, L, reaches 8. Generation of a QDA

model with 80 features and only 80 training samples is impossible because the problem is

ill-posed (Kuncheva, 2004). Hence, it is only possible to consider time-lagged QDA up to
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L = 7.

It can be seen from Figure 5.23 that the kNN classifier is unable to achieve higher

classification accuracy by employing time-lagged samples since it is a highly specialising

classifier. It is unable to generalise on the particular temporal patterns for each location

and in fact the inclusion of more time-lagged samples causes more misclassifications and

lower EA. It is difficult to visualise how QDA could optimally perform with the time-

lagging technique since there is insufficient training data to consider the case when L > 7.

For the available training data, at least, it does not appear to increase accuracy. LDA

does have a slight increase in accuracy when time-lagged preprocessing is applied, with

the peak EA of 83.4% occurring at L = 7. An even more significant increase in accuracy

can be seen with the NBC technique. Accuracy for the NBC increases from 65.8% for raw

data to 76.4% at L = 19. NBC has a higher ability to model time-lagged samples since it

does not place any constraints on the covariance between the samples. On the other hand,

the common covariance matrix restriction of LDA gives it reduced ability to accurately

represent the time-evolution of the signals.

Hence, it is possible to increase the accuracy of the probabilistic classifiers by using

time-lagged preprocessing to generate more features to describe the evolution of the signals

over time in a particular location. It has been found that avoiding a common covariance

constraint between all features in all rooms permits a higher increase in time-lagged

classification accuracy, hence NBC has the highest accuracy increase in the presence of

time-lagged preprocessing. The disadvantage of using this time-lagged preprocessing is

that it drastically increases the number of features necessary for each classifier, with the

peak time-lagged accuracy for NBC occurring when there are 190 input features. And

even with this computational overhead, the NBC classifier still can only approximate

unimodal Gaussian distributions. Hence, it is necessary to consider if higher accuracy

and more efficient location estimates can be produced by using classifiers which use sparse

representations of the data and which are capable of representing arbitrary probability

densities, such as Relevance Vector Machines, Informative Vector Machines and Support

Vector Machines.

5.4.3 Sparse Approximations

Kernel machines are a family of pattern recognition techniques which utilise kernel

functions to transform data to some feature space. The pattern recognition algorithms

can then operate in these higher dimension feature spaces permitting flexible classifications

with relatively few classification parameters. This has the potential to enable extremely

sparse and efficient representations of data.
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Max Samples per Room 100 200 300 400 800

Mean Empirical Accuracy 0.40 0.42 0.54 0.64 0.67
Mean Training Time [days] 3.6 8.35 15.03 21.98 51.4

Table 5.10: Mean EA for SVM classifiers and corresponding training times when different
quantities of training data are available.

5.4.3.1 Support Vector Machines

As presented in Chapter 3, Support Vector Machines (SVMs) are non-probabilistic

classifiers which generate optimal decision boundaries using constrained optimisation.

This is a computationally intensive process which is further exacerbated by the cross-

validation stage necessary to establish the optimal radial basis function (RBF) width and

slack parameter. It has been shown that optimal SVMs can be trained for small datasets

obtained over short periods of time in the test environment considered in Chapter 4 (Kelly

et al., 2008c,b,d). When these optimisation techniques, however, are extended to datasets

such as the MAP datasets, which have high sample counts with high dimensionality, these

optimisations become impractical. It was found that performing the 5-fold cross validation

grid-search optimisation of 20 RBF width and 20 slack parameters took far in excess of a

month on a dedicated high-processing-power computation server for the entire dataset.

The long optimisation time can be partially attributed to using the simpleSVM toolkit

for Matlab R© which is not optimised for fast execution. Implementing an SVM training

algorithm in a faster language, such as C for example, would result in faster training and

optimisation times. However, even if an order of magnitude decrease in optimisation and

training times were possible, the SVM optimisation would still take at least 3 days on a

dedicated high-processing-power computer. This is not a permissible time overhead for

the installation of this system in a home environment. For this reason it was necessary

to consider the suitability of smaller training datasets for generating SVMs for long-term

localisation. As in Section 5.3, the training datasets are modified by deleting all but the

first N samples in each class before training occurs.

Table 5.10 highlights the mean EA obtainable with the SVM classifiers when different

maximum levels of training data is permitted for each room. Upon considering the

corresponding results in Figure 5.15(b) it can be seen that the probabilistic classifiers

perform better than SVMs for all quantities of available samples per room. This is

likely due to SVMs high ability to flexibly model the data in each class. The optimised

SVM classifiers provide a faithful representation of the training dataset. The optimal

parameters, however, are also produced using cross validation on the same dataset. Hence,

any minor trends in data from one day to the next will result in misclassifications. The

probabilistic classifiers, on the other hand, automatically generalise on the data and are

less susceptible to daily trends in the signals.
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Max Samples per Room 100 200 300 400

Mean Empirical Accuracy 0.04 0.29 0.29 0.40
Mean Training Time [hours] 0.5525 1.591944 2.988333 4.483472

Table 5.11: Mean EA for IVM classifiers and corresponding training times when different
quantities of training data are available.

Furthermore, the training times for SVMs are prohibitively high, even when small

quantities of training samples are available for each room. Conversely, the probabilistic

classifier models can be generated almost instantly, leading to more convenient and robust

installation. Even in terms of sparsity, the SVMs require greater numbers of parameters

to parameterise a single class. For example, when a maximum of 100 samples per room

is used, an average of 424 support vectors are necessary for each class. Hence, even

GMMs can represent the same dataset with significantly fewer parameters. Another

significant issue is that SVMs do not have probabilistic outputs. As already presented,

probabilistic outputs enable further analysis, such as ROC curve analysis, uncertainty

rejection and HMM framework implementation. Hence, sparse kernel machines which

produce probabilistic outputs shall be considered.

5.4.3.2 Informative Vector Machines

Gaussian Process regression has been used in the past to model coordinate wide-scale

outdoor location as a function of cellular signal strength (Schwaighofer et al., 2004).

This work is different in that we are interested in using classifiers to determine symbolic

location from Bluetooth R© signals. This can be implemented using a Gaussian Process

classifier, which has the advantage over SVMs of producing probabilistic outputs. As

explained in Chapter 3, an Informative Vector Machine (IVM) is a sparse approximation

of a Gaussian Process classifier. Hence, a classifier with similar classification performance

to a full Gaussian Process classifier can be obtained by using a greedy training approach

to select an optimal subset of training vectors. For the long-term localisation datasets the

employed IVM algorithm (Lawrence et al., 2003) exceeded the 8 Gb of memory available

on the processing computer. Hence, a subset of training data was considered, as in the

previous subsection. Since Chapter 3 suggested that classification boundaries similar to

a Gaussian Process classifier is achievable by using 65% of the training samples as the

informative vectors. Hence, it was decided to permit 75% of the available samples to be

used as informative vectors.

Table 5.11 indicates that using this technique on the same subsets of training data

as used for the SVM, results in significantly poorer performance. This is likely due to

the sensitivity of IVMs to the number of permitted informative vectors, as illustrated in

Figure 3.8. Hence, for a practical deployment, a cross-validation stage would be required
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Max Samples per Room 100 200 300 400

Mean Empirical Accuracy 0.33 0.39 0.48 0.53
Mean Training Time [hours] 0.067222 0.220139 0.464861 2.021944

Table 5.12: Mean EA for RVM classifiers and corresponding training times when different
quantities of training data are available.

to determine the optimal number of informative vectors for each class, leading to even

significantly higher training times. However, given the poor performance of the IVM

classifiers with 75% active vectors, it is evident that the IVMs will not produce classifiers

more sparse or accurate than the SVM classifiers, let alone the simple probabilistic

classifiers considered thus far. Even though IVMs can represent data with arbitrary

densities, their representation power is highly dependent on the quantity of informative

vectors permitted. Hence, IVMs are not the solution for efficient localisation.

5.4.3.3 Relevance Vector Machines

In the regression case, Relevance Vector Machines (RVMs) can approximate data using a

linear combination of basis functions. In the case of classification the regression output

can be translated to a probabilistic output using a logistic function. Hence, the RVM can

also represent arbitrary probability distributions. Chapter 3 explains that the training of

an RVM takes longer than a SVM. However, RVMs do not require the optimal selection

of the kernel width or slack parameters. Hence, RVMs have significantly lower overall

cross-validation and training times than SVMs. Table 5.12 allows a comparison between

the total training times for RVMs and SVMs in Table 5.10. It should be emphasised that

the SVM cross-validation and training times are noted in days and the RVM times are

noted in hours. It should also be noted that the RVM is not considered for 800 samples

per room since memory usage exceeded the available memory for the test computer. This

is because the RVM starts with a full set of weights and iteratively works towards a sparse

solution.

From Tables 5.10 and 5.12 it can be observed that RVMs require significantly shorter

time to train a classifier. However, it can also be observed that RVMs produce lower

accuracies than the SVM classifiers. Furthermore, when comparing Table 5.12 with the

equivalent sample quantities in Figure 5.15(b) even lower accuracies than the simple

probabilistic classifiers are evident. Hence, it can be concluded that the sparse probabilistic

classifiers do little to improve localisation accuracy. This is likely due to the “one versus

all” approach taken to training the IVM and RVM classifiers. Since these are probabilistic

classifiers it would be more appropriate to model the densities for all rooms dependently

of each other with a single model, rather than one model per room. Refer to Rasmussen

and Williams (2005) for example. However, in spite of the implications of the name,
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these sparse classifiers are unable to model the densities of the data in each room more

sparsely than the simple probabilistic classifiers. Furthermore, for this localisation problem

the sparse classifiers have shown to have lower localisation accuracy than the simple

probabilistic classifiers, indicating that highly generalising classifiers are more appropriate

to the localisation problem under consideration in this thesis.

5.4.4 Cellular Signal Treatment

Section 4.4.3 highlighted the signal redundancy in the CID and CRSSI signals. It also

suggested that these signals may not be as redundant in a realistic home environment

which consists of more rooms with varying levels of cellular network coverage. It also

demonstrated that NBC performs competitively with the other classifiers when the discrete

valued CID signal is present and less competitively when the CID signal is unavailable.

Hence it was suggested that the relationship of the CID signal with location could be

further emphasised by treating CID as a discrete signal, independent from the other

signals. This can be achieved by modelling CID with a discrete probability model and

combining it with the other signals using the Naive Bayes assumption of independence.

Mathematically, this can be expressed as a modification to Equation 3.26:

P (Rk|x) =
P (Rk)P (x(CID)|Rk)

∏D−1
d=1 P (x(d)|Rk)

P (x)
, (5.5)

where

P (x(CID)|Rk) =
# samples of a particular CID in room Rk

total # samples taken in room Rk
. (5.6)

The use of this discrete representation of P (x(CID)|Rk) is not restricted to NBC. It can

also be used for LDA, QDA and even GMM classifiers by excluding the continuous CID

feature from the signal density estimation and post-multiplying the partial probability

P (x|Rk) by P (x(CID)|Rk). This, however, is not as valid for LDA, QDA and GMM as it

is for NBC since the discrete signal probability does not model the dependencies of CID

on the other signals. Table 5.13 compares the original treatment of the CID signal as a

continuous variable with the method of including CID as a discrete probabilistic variable.

This confirms that treating CID as an independent discrete variable decreases accuracy

for the probabilistic classifiers which model the dependence of signals on each other using

the covariance matrix. For the Naive Bayes Classifier it only shows a marginal increase in

EA. However, the variability of the accuracy is lower for the discrete CID NBC treatment,

as indicated by a lower standard deviation.

Unexpectedly, omitting the CID variable leads to similar EA as including it for the

NBC classifier. Omitting it for the covariance sensitive probabilistic classifiers leads to

lower accuracy. Conversely, eliminating the CRSSI reading leads to lower NBC EA but

147



CHAPTER 5. LONG-TERM DEPLOYMENT

NBC LDA QDA GMM

Original 0.658(0.12) 0.796 (0.00) 0.783 (0.04) 0.784 (0.04)
Discrete CID 0.660(0.05) 0.777 (0.02) 0.685 (0.11) 0.685 (0.12)
No CID 0.661(0.11) 0.746 (0.05) 0.773 (0.06) 0.773 (0.06)
No CRSSI 0.622 (0.16) 0.792(0.00) 0.806(0.00) 0.814(0.00)
No Cellular 0.617 (0.16) 0.732 (0.07) 0.750 (0.07) 0.753 (0.07)

Table 5.13: The effect of different treatments of the cellular connectivity information on
EA.

higher EA for the covariance sensitive classifiers, QDA and GMM. Hence, omitting the

CRSSI signal leads to the highest accuracy. This confirms the suggestion in Chapter 4,

Section 4.4.3 that CRSSI is an uninformative signal and CID is more indicative of location.

Finally, completely omitting all cellular signals leads to significantly lower localisation

accuracy.

This section has indicated that the discrete treatment of the CID signal does not

contribute to higher localisation accuracy. It has, however, found that highest localisation

accuracy is possible with QDA and GMM by removing the CRSSI feature from location

predictions, since it is a signal which is not indicative of location.

5.4.5 Incorporating Prior Knowledge

All of the probabilistic classifiers considered allow the incorporation of prior information

into the probability estimates. Without any information to the contrary, it can be assumed

that this prior probability, P (Rk), is equal across all rooms, k. However, this chapter has

outlined the use of a week of training data to estimate the room-level location preference

of the user. This user movement profile was then used to estimate a more application

specific accuracy measure: the EA. This movement preference information can also be

more directly considered to be the a priori probability that a user is in a particular location

before any location-indicative measurements have become available.

Castro et al. (2001) suggests that movement histories of users can be incorporated into

the employed Bayesian network classifier. It was proposed that the location preferences

can be modelled via the a priori distribution, which corresponds to P (Rk). In this work,

long-term location preferences can be empirically derived from the relative frequency of

occupation illustrated in Figure 5.4(b). Now the probabilistic classifiers can be executed

as before, except that the P (Rk) term in Bayes’ rule in equation 3.22 no longer consists of

equal values. Instead they take on values proportional to each room’s relative frequency

of occupation and all the values of P (Rk) are normalised so that they sum to 1. Tables

5.14 and 5.15 outline the accuracies when prior probabilities are ignored as before and

when they are included in the location density estimates. The highest accuracy for each
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NBC LDA QDA GMM

No Priors 0.63(0.04) 0.68(0.02) 0.64(0.02) 0.57 (0.18)
Priors included 0.62 (0.02) 0.61 (0.03) 0.59 (0.01) 0.58(0.10)

Table 5.14: The effect of a priori information inclusion on GA.

NBC LDA QDA GMM

No Priors 0.66 (0.12) 0.80 (0.00) 0.80 (0.00) 0.78 (0.04)
Priors included 0.80(0.01) 0.82(0.01) 0.81(0.01) 0.79(0.03)

Table 5.15: The effect of a priori information inclusion on EA.

type of classifier is highlighted in bold.

These summary tables indicate that GA suffers a decrease for most of the classifiers

when prior location probabilities are incorporated. This is intuitive when one considers

that priors have the effect of increasing the likelihood of detecting certain rooms, while

decreasing the likelihood of other rooms. Conversely, this effect of priors is actually

advantageous when the more relevant EA is considered. An increase in EA can be seen

across all classifiers when prior location probabilities are included. This is because the

priors can be thought to place emphasis on classes with higher prior probabilities. Since

our priors are derived from the metric which indicates the relevance of each room to

the EA, rooms which are more commonly inhabited will be more “detectable” over time,

increasing the long-term localisation accuracy.

Hence, incorporating prior location information into the classification algorithms has

the effect of increasing long-term accuracy; most significantly for the NBC which has

a 21% increase in EA. Application-specific handling of the input probabilities improves

the performance of the localisation system. More appropriate handling of the posterior

probabilities can also increase accuracy.

5.4.6 Uncertainty Rejection

So far, the class decision block in Figure 3.1 has decided on class membership based on

class posterior probabilities. However, the availability of probabilistic class membership

indicators, rather than direct class predictions, allows an understanding of the confidence

in a given prediction. The availability of information about the probability of a sample

belonging to a given class allows minimisation of the misclassification rate by refusing

to classify samples which are uncertain. An example of a health-critical application of

uncertainty rejection can be found in Antal et al. (2003) which suggests leaving uncertain

samples for human consideration. Similarly, falsely predicting the position of a user could

also have safety-critical implications since it can cause misinterpretation of the movement
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Fig. 5.24: A comparison of the different uncertainty rejection methods on the same
uncertain problem.

habits of a user which can lead to interventions at inappropriate times or no intervention at

all. Instead of producing location predictions regardless of their confidence, there should

be the facility to refrain from making a location prediction when there is insufficient data

to confidently make such a prediction. Then any user or applications wishing to retrieve

location can then be informed that the available signals are currently insufficient to reliably

predict location.

According to Bishop (2006), probabilistic classification errors generally occur in one of

two situations,

1. The largest posterior probability is significantly less than unity

2. More than one class has the highest, or approximately highest, posterior probability.

Hence, two approaches to uncertainty rejection have been employed. The first approach is

to reject predictions for which the highest posterior class probability is outside a selected

threshold of unity, as illustrated in Figure 5.24(a). This is referred to as the absolute

threshold and is denoted θa. The alternative approach is to reject predictions for which

the highest class posterior is “near” to the second highest class posterior. The term “near”

is realised in the specified relative threshold, denoted θr. Hence, any predictions for which

the posterior of the most probable class is within θr of any other class, it is rejected, as

illustrated in Figure 5.24(b).

Figure 5.25 highlights the effect of uncertainty rejection with increasing rejection

thresholds on EA and GA. It also indicates what proportion of samples are rejected

to achieve such accuracies, referred to as the rejection ratio. It can be seen that the

proportion of uncertain samples increases with higher rejection thresholds and that higher

levels of accuracy are possible when more uncertain samples are rejected. A rejection

threshold of 1 is never considered since this would result in all samples being rejected.
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The primary difference between the absolute threshold and relative threshold rejection

approaches is the rate at which the accuracies and the rejection ratio increases. For the

absolute threshold the accuracies and rejection ratios generally do not change for a value

of θa < 0.5. The increases of accuracies and rejection ratio for the absolute threshold

method in the range 0.5 ≤ θa ≤ 1 are identical to those for the relative threshold method

in the range 0 ≤ θr ≤ 1. Hence, the relative threshold method can be thought of as

having a more gradual change in accuracy and rejection ratio than the absolute threshold

method. This means that the relative threshold method is a more appropriate method to

use in practice since it shows variation in the metrics of interest, such as accuracy and

rejection ratio, for the entire range of rejection threshold values. On the other hand, the

absolute threshold method only shows variation for half of the rejection threshold range

of interest.

Although it is difficult to quantify from the figures, a definite increase in accuracy

is possible with all classifiers when uncertainty rejection is employed. NBC exhibits the

highest increase in accuracy, at a 25% increase from the original EA. QDA and GMM

experience an accuracy increase of 7% and 9% respectively at the maximum rejection

threshold value. Interestingly LDA experiences a 6% increase in accuracy which starts

to deteriorate as the maximum rejection threshold is approached. This is likely due to

the inability of LDA to independently model the densities of individual classes due to

the common covariance assumption. Hence, with LDA incorrect classes generally have

lower posteriors and incorrect classes have higher posteriors than if they were modelled

independently and samples are rejected even though their highest posterior is the correct

class.

A major issue with uncertainty rejection is that it leads to times when no location

predictions can be produced. For example, the technique which produces the highest

accuracy, QDA at 86%, achieves this by refusing to make predictions 25% of the time.

This 7% increase in accuracy may not justify being unable to make predictions so

frequently. Instead it may be more appropriate to make a “best guess” when the sample

is rejected. Previously a best guess would have been the class of highest probability, but

high measurement noise and movements slightly different from training data movements

could cause the class of slightly higher probability to be that of an incorrect room. Hence,

another “best guess” mechanism is proposed. This mechanism uses uncertainty rejection

to find uncertain classes. Then it is assumed that the cause of the uncertainty is due

to noisy or as yet unseen signals and not a room change. Then the uncertain prediction

is replaced by the last certain prediction. An illustration of the accuracies for such an

algorithm is illustrated in Figure 5.26. This time the rejection ratio is not illustrated

because it is always equal to zero, since predictions can now be made at all times.

With this rejection-with-replacement (RWR) algorithm, accuracy increases are not as
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Fig. 5.25: EA, GA and rejection ratios for increasing absolute and relative rejection
thresholds.
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Fig. 5.26: Illustration of the increase in accuracy when uncertain samples are assigned
the class label of the last certain prediction.
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large as when complete rejections (CR) are possible. Again, NBC has the highest EA

increase, at only 8.3% this time. LDA, QDA and GMM have accuracy increases of 1.4%,

0.9% and 3% respectively. Hence, RWR has slightly higher accuracy than the original

algorithms without rejection, but lower accurcy than the CR algorithms. However, the

advantage of RWR over CR is that it can make predictions at all times without refusing to

make a prediction. There is an issue with RWR in that it actually has reduced accuracy

when the rejection threshold approaches the upper limit. This occurs because there are

simply not enough good samples retained. At any one point in time it may be a long

time since a correct prediction was obtained and the user is likely to have moved in that

time, making the RWR “best guess” increasingly invalid. Hence, employing the RWR

algorithm requires an optimisation stage to determine the most suitable threshold value,

which would require another day of training data. Furthermore, if the location predictions

are safety-critical, for example in an elder monitoring scenario, it would be more suitable

to use the CR algorithm to obtain the highest accuracy possible and openly admit when

the predictions are unreliable. Then the end-user or application using this information can

decide for themselves how to deal with this information, which may include a RWR-type

algorithm.

5.4.7 Combined Accuracy Augmentations

Up to this point, individual accuracy improvements have been considered in isolation.

Intuitively, to achieve the most reliable and accurate localisation technique these

augmentations should be cascaded together into one entire system. Figure 5.27 illustrates

how the accuracy improvement algorithms can be cascaded together. The accuracy

augmentation blocks can be categorised into pre-processing, density estimation and

decision blocks. Hence, there is a direct correspondence between this configuration of

blocks and the general classification framework presented in Figure 3.1. Each block

corresponds to an algorithm presented in this section, which has been shown to contribute

to the performance of the localisation system. Accordingly, the only investigated

augmentation not included in this framework is the use of sparse classifiers, which do

not contribute performance improvements in spite of their processing overheads.

The implementation details of each block are as follows:

1. Filtering The filtering block is the first block which the raw input feature encounters.

It applies a small amount of filtering to the data to reduce noise-related misclassifi-

cations. Hence, it must have memory of the last N − 1 samples. A filtering window

length common to all features of N=2 is chosen because Figure 5.19 illustrated

that increases in accuracy generally occur for this level of filtering for all classifiers

considered.
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2. Lagged Pre-Processing The 10 features of the filtered data are sent to the lagged

preprocessing block. Like the filtering block, the lagged preprocessing block must

maintain a record of the previous feature vectors to construct the new feature vector.

For the QDA and GMM data no lagged preprocessing is applied, based on the

findings in Section 5.4.2. As found in Section 5.4.2 data for NBC uses a lagged

sample number of L = 7 and the data for LDA uses a lagged sample number of

L = 10. This produces between a 10 and 100 sample feature vector, depending on

the classifier for which the data is being prepared.

3. Cellular Signal Management This block handles the cellular signals in the appro-

priate fashion. According to Section 5.4.4 it is beneficial to completely remove the

CRSSI features from the data for the QDA and GMM classifiers. Removing CRSSI

has no effect for the LDA classifier. For NBC, however, removing CRSSI features

results in lower accuracy due to NBC’s ability to independently model the CRSSI

signal, hence CRSSI is retained for NBC. Hence, a feature vector with a length of

between 9 and 100 features is produced for the next block.

4. Density Estimation (Incorporating Priors) The preprocessing stage generates

training and test data, each with 9-100 features. The training data is used to build

a probability density estimation model using one of NBC, LDA, QDA or GMM. The

construction of this model now incorporates prior information about the location

tendencies of the user. This prior information is derived from the long-term relative

frequency of occupation as explained in Section 5.4.5. When the model is applied to

the test data, this block outputs a set of posterior probabilities, one for each room.

5. Decision with Uncertainty Rejection As already presented, this block is a max-

imum likelihood decision block as illustrated in Figure 3.1. Before performing

maximum likelihood predictions it detects uncertainty based on the selected

probability margin. This probability margin is the relative rejection threshold, θr

and specifies how much the user wants the probability of the most likely class to be

above the next most likely class. For these experiments a value of θr = 0.95 was

selected.

Four probabilistic classifiers are employed in this framework. Hence, different levels

of processing are necessary at each block for each classifier. After each block the relevant

classifier is executed and the accuracy is recorded to illustrate the contribution of each

block to the overall accuracy for each probabilistic classifier. Figure 5.28 shows the

accuracy when only raw data is available (step 0) and after each processing step (steps

1-5). At every stage in this classification system EA is shown to improve. The only time

EA does not improve is when the features are unmodified for that stage. For example
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Fig. 5.28: Accuracy levels at each processing stage in the overall system.

NBC LDA QDA GMM

95% Probability Margin Acc 0.792 0.893 0.881 0.887
Rejection Ratio 0.053 0.242 0.159 0.165

99.99% Probability Margin Acc 0.818 0.897 0.933 0.944
Rejection Ratio 0.127 0.374 0.574 0.585

Table 5.16: The effect of imposing a higher probability margin on the uncertainty
rejection and the corresponding rejection ratios.

between stages 1 and 2 the QDA and GMM data are unmodified, hence accuracy does not

increase for these classifiers.

Table 5.16 presents the EA and the corresponding rejection ratios. Uncertainty

rejection enables a peak localisation accuracy of 89.3% with a rejection probability margin

of 0.95. If a more stringent probability margin was imposed, localisation accuracy would

understandably increase. Table 5.16 also highlights the accuracy resulting from increasing

the probability margin to 0.9999. It can be seen that the peak accuracy for the probability

margin of 0.95 results in a rejection ratio of 24% for LDA. If the QDA or GMM algorithms

are employed the EA is approximately the same, but the rejection ratios are much more

favourable at approximately 16%. Once the probability margin is increased to 0.9999,

the accuracy increases to 94%. This accuracy, however, comes at the cost of refusing to

produce location estimates 59% of the time. This higher rejection ratio severely reduces the

usefulness of the system. Hence, there is a tradeoff between the frequency of availability

of location predictions and the accuracy of the location predictions. Instead of rejecting

uncertain predictions and deciding on the appropriate accuracy versus rejection ratio
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tradeoff, there is an alternative approach which uses Bayesian inference to fuse posterior

probabilities with information about the home environment to infer the location of the

subject. This shall be the focus of the following chapter.

This section, however, has highlighted the improvements which can be made to

the location prediction accuracy by using experimental knowledge of the behaviour of

the signals in the home environment. It has shown that, in the case of GMM, 17%

improvement in accuracy can be achieved by filtering, removing nuisance signals such as

CRSSI, incorporating user location preferences and detecting difficult-to-classify features.

5.5 Conclusions

The experimental testbed presented in this chapter enabled numerous experiments to

be carried out. These experiments were aimed at quantifing the performance of the

localistion sytem developed in this thesis over significant periods of time. The 3 major

novel contributions of this chapter are:

Technology Comparison Three different localisation technologies were deployed for

long-term data acquisition. Besides the localisation system developed in this thesis, a

traditional home PIR localisation system was also deployed. This chapter compared the

localisation accuracy of the Bluetooth R© localisation system with the PIR localisation

system. It was shown that the Bluetooth R© localisation technique has higher accuracy in

the single occupancy scenario and experiences less performance degradation in the multiple

occupancy scenario.

A novel RFID localisation technique was also designed and deployed. Section 5.1,

however, noted that it cannot necessarily be considered a realistic RFID localisation system

since it requires users to scan an RFID device every time they pass through a door. Instead

it is used to obtain training data labels over long periods of time. This means that it

would require an experienced installer to obtain the training data to ensure the tags are

consistently read every time a room is entered. Requiring an installation technician to

spend a day walking around the house of the subject is not an ideal deployment scenario,

even if the technician was able to exactly replicate the typical movements of the subject,

which is unlikely to be the case.

Instead, it is proposed that the RFID reader would be mounted on the shoe of the

elder as illustrated in Figure 5.29 and the training data can be obtained passively while

the subject follows their typical routine. To detect the shoe crossing the room interface

the RFID reader would need to scan at a high interval. To last a day with this high scan

interval the RFID reader would need to be fitted with a larger battery. To last several

days the battery would need to be charged or changed every day by the elder. Using the
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Fig. 5.29: Automatic RFID label acquisition technique. When the foot moves across the
RFID tag strip an RFID reading occurs. Then the IDs of the read tags can be used to
resolve the room-level location.

RFID technology for the first day allows the acquisition of reliable training data, and after

the first day the more convenient mobile phone, which has alternative functionality, is the

only device the elder needs to carry and care for.

The use of the RFID localisation technique allowed the inference of an accuracy metric

corresponding to long-term movements and location preferences which contribute to more

accurate location predictions. Hence, the availability of an RFID localisation technique

is imperative to the reliable installation in a realistic environment. Furthermore, reliable

long-term location labels allowed the comparison of the Bluetooth R© localisation technique

which is the subject of this thesis and the PIR localisation commonly utilised in elder

monitoring scenarios.

The Importance of Signal Diversity It has been demonstrated that signal diversity

is the main contributor to high localisation accuracy. It provides more location indicative

features throughout the environment. The single AP test scenario had the lowest accuracy.

When a second AP was added at the basestation the accuracy increased, only marginally

because of the transmission power limitation of the Bluetooth R© protocol. When several

affordable beacons were deployed in the environment, using a novel connection topology,

accuracy significantly increased. The availability of these beacons allowed an investigation

of the effect of each beacon on the long-term accuracy. It was confirmed that accuracy is

sensitive to the location of deployment of each beacon.

The use of extra Bluetooth R© beacons means this technique begins to approach a

traditional RF localisation scenario, in that multiple reference points are used. However,
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it still forgoes the high cost of previously employed RF localisation topologies which used

either networked APs or power-hungry and sometimes inconvenient WiFi devices such as

PDAs or laptops. Previously these types of devices were necessary because conveniently

carried Bluetooth R© devices are not sophisticated enough to allow local estimation of RSSI

information. This work has overcome this limitation by employing a novel technique of

retrieving signal measurements to the mobile phone. Hence, signal diversity is generated

throughout the environment with the installation of relatively inexpensive hardware.

Intelligent Handling of Signals Finally this chapter investigated and concluded on

the most appropriate treatment of the signals in the given deployment scenario. A

smoothing filter was used to reduce measurement noise, lagged-preprocessing was used to

generate probabilistic models for the time-evolution of the signals and nuisance signals

were removed for particular classifiers. Knowledge of user location preferences were

incorporated into the density estimation techniques and analysis of certainty was used

to decide on which predictions were sufficiently confident.

The result of this improved handling of signals led to higher localisation accuracy.

Most notably, there is a significant trade-off in the specification of the rejection probability

margin. A high margin ensures higher accuracy predictions at the expense of being more

frequently unable to make predictions. Conversely, a low margin allows predictions to

be made more frequently but with less accuracy. Fortunately there is another technique

for handling probabilistic class predictions which produces predictions based not only

on class posteriors but also knowledge of the deployment scenario. These elements can

be incorporated using a Hidden Markov Model framework, which is the subject of the

following chapter.
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Hidden Markov Model Constrained Localisation

All of the location predictors presented in this thesis so far produce location estimates on

a sample-by-sample basis. Each location prediction is based only on the current signal-

derived feature set, regardless of the previous or future location predictions. Since the main

focus of this work is on safety critical location monitoring and convenient location-based

interactions, the location predictions must be produced as fast as possible (often referred

to as real-time predictions). Such a constraint on predictions means that future predictions

can be assumed to be unavailable. However, at every sample instant, information about

the previous location predictions can be utilised. This thesis has already illustrated the

positive effects of integrating the location preferences of a user into location predictions.

With the availability of previous location predictions the movement preferences of a user

can also be integrated into the location prediction framework.

As briefly presented in Section 2.2.2, Sequential Bayesian Filtering can be used to

fuse current location probability predictions with previous location posterior densities to

mitigate the effect of location jitter resulting from measurement noise. Generally speaking,

this is performed by using a motion model to describe how a user is most likely to move.

The predicted movement is then refined by the measurement model which relates the most

likely location to the measurements when they become available. Since this work is focused

on predicting the discrete location of a user, a discrete topological approach is employed.

From a localisation perspective, the most efficient discrete topological sequential Bayes’

filtering technique is the Hidden Markov Model (HMM).

Although the previously proposed location estimation algorithms produce acceptably

accurate location predictions over long periods of time, they still have deficiencies in their

frequency of movement prediction. Hence, the first section of this chapter motivates further
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localisation system performance measures which progress beyond simple correct sample

ratios. Section 6.2 proposes the HMM framework in an attempt to improve the overall

performance of this localisation system. Section 6.3 attempts to improve the accuracy of

traditional HMM algorithms even further by including higher levels of information about

the movement habits of the user. Finally Section 6.4 demonstrates improvements to the

HMM algorithms which allow HMM filtered predictions to occur as close to real-time as

possible.

6.1 Dynamic Performance Measures

The accuracy metrics considered in previous chapters sufficiently describe the location

detection performance of the localisation system over long deployment periods. They

essentially allow the estimation of the number of samples for which the localisation system

would correctly predict the location of the user in a typical day. These metrics, however,

are unable to detect the difference between a classifier which incorrectly predicts user

location one in every 10 samples and a classifier which is 100% correct for the first

90% of the day, then 100% incorrect for the remaining 10% of the day. Intuitively,

when one reviews the movements of the user for both classifiers two different movement

interpretations are possible. The first classifier would imply that the user moved between

rooms on average once every 5 seconds. The second classifier would correctly detect the

movements of the user for most of the day and give an unrealistic estimate for a very small

portion of the day. The absolute accuracy measures considererd up to this point mask

such effects.

As a result, it is necessary to consider further classifier performance measures which

highlight this important dynamic characteristic for the chosen classifiers. Three such

performance measures are considered.

6.1.1 Transition Count

One of the simplest applications which can be provided by the localisation system is to

summarise the levels of movement a user exhibits during a day. This can be used as a

measure of the level of healthy exercise which a person automatically undertakes and can

also be indicative of a change in their cognitive health (Lightner and Erdogmus, 2008).

This room transition count can easily be derived from the number of times the user moves

between locations. Each time the predicted room label changes from one sample to the

next is noted as a transition. Then the transition count is simply a record of the number

of such transitions in a given day. Accordingly, quantifying the ability of the system to

accurately detect the number of transitions in a given day is the simplest measure of

the dynamic performance of the system. This requires the definition of a new localisation
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NBC LDA QDA GMM

Raw Data Classifiers TCE 546.5 358.5 300.5 441.5
Augmented Classifiers TCE 161 154.5 478 492

Table 6.1: Mean Transition Count Error (TCE) for the various classifiers compared to
the true value.

NBC LDA QDA GMM

Raw Data Classifiers TCIF 2.72 2.13 1.95 2.37
Augmented Classifiers TCIF 1.51 1.48 2.52 2.56

Table 6.2: Mean Transition Count Increase Factor (TCIF) for the various classifiers
compared to the true value.

performance metric, the Transition Count Error (TCE). The TCE indicates the difference

between the actual number of transitions for the given test day and the detected number

of transitions.

It would, however, be inappropriate to directly count the number of transitions between

predicted labels, since any measurement noise which still remains after smoothing will

cause the predicted room to temporarily change. This will lead to a higher transition

count simply because of short-term misclassifications. This effect must be minimised

before room-transition counting takes place. This is achieved by obtaining a moving

window of the data. For each window the predicted sample is taken to be the most

frequently occurring sample, or the mode, of this window. A relatively short window

length of n = 3 is selected to minimise the prediction lag resulting from this operation.

This processing, which we refer to as mode filtering, is performed immediately before the

room transitions are counted.

Table 6.1 shows the mean TCE obtained with the the Multiple AP (MAP) data

considered in the previous chapter. The TCE is considered both for the application of

the classifiers directly to the available data (as in Section 5.3) and when the classification

augmentations are applied (as in Section 5.4). From this data it can be seen that for

the raw data the lowest transition count error occurs with the QDA classifier. When

the classification augmentations outlined in the previous chapter are applied, the TCE

decreases for the NBC and LDA classifiers but actually increases for the QDA and GMM

classifiers. This is likely due to the fact that NBC and LDA use lagged features for the

augmented classifiers, leading to more stable predictions and less spurious transitions than

the augmented QDA and GMM classifiers, hence a lower TCE. Overall, LDA allows the

best transition predictions using augmented classifiers.

This TCE measure does not have a great deal of meaning unless one considers the

number of transitions which actually occurred. For this reason another performance
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metric must be employed. This metric, the TCIF, presents the number of predicted room

transitions with reference to the actual number of transitions which occurred. Hence,

it indicates the factor by which the number of room transitions is overestimated. It is

calculated from the expression

TCIF =
ĉ

c
, (6.1)

where ĉ is the predicted number of room transitions and c is the actual number of room

transitions. The average transition count for the two days is 318, which is taken into

account in Table 6.2. Table 6.2 confirms that the best performing classifier for the raw

data in terms of transition number estimation is QDA, which has less than twice as many

predicted room transitions as the actual number. The best performing augmented classifier

overestimates the number of room transitions by a factor of 1.5. Hence, the classifiers which

appeared to have the worst EA of the augmented classifiers considered in Chapter 5, NBC

and LDA, now have the best room transition detection performance. Accordingly, there

is a tradeoff in choosing between classifiers which have high location prediction accuracy

and classifiers which have the ability to detect movements between rooms. Furthermore,

even though the augmented classifiers show superior movement detection ability, the best

overestimates the transition counts by a factor of 1.5.

6.1.2 Distance Travelled

Transition count is a useful indicator of the number of times a user transitioned between

rooms in a given period of time. However, the implications of such a reading is lost when

information about the layout of the house is unavailable, i.e. a large transition count in

a small home environment corresponds to less healthy exercise than the same transition

count in a large home environment. Hence, to allow activity level estimation which is

comparable between people in different home environments, an algorithm to estimate the

distance a user travels on a particular day is developed. Now, instead of an environment-

independent transition count, stakeholders in the health of the user/users can understand

the user’s exercise levels in a meaningful manner.

The travel distance estimator is a simple extension of the transition count estimator.

The distance between the centre of one room to another room is assumed to be the average

distance travelled when moving between them. Each time a transition between two rooms

is detected the distance between the room centres is added to the current total distance for

that day. Again a mode filter is applied to reduce spurious transitions predicted between

rooms. For the MAP dataset, the actual average distance travelled was 1141.64 m. Similar

to before, Table 6.3 highlights the average daily Predicted Distance Error (PDE). Again,

QDA has the lowest average error for the raw data but NBC and LDA have the lowest
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NBC LDA QDA GMM

Raw Data Classifiers PDE 2030.21 1477.46 1426.31 1878.16
Augmented Classifiers PDE 594.81 772.01 2015.96 2035.36

Table 6.3: Mean PDE for the various classifiers compared to the true value [metres].

NBC LDA QDA GMM

Raw Data Classifiers PDIF 2.78 2.29 2.25 2.63
Augmented Classifiers PDIF 1.52 1.67 2.77 2.79

Table 6.4: Mean PDIF for the various classifiers compared to the true value.

NBC LDA QDA GMM

Raw Data Classifiers MTD 4.42 4.78 4.68 4.92
Augmented Classifiers MTD 4.79 4.27 4.05 3.97

Table 6.5: The MTD averaged over both test days. [seconds]

errors for the augmented classifiers.

Similar to the TCE, it is beneficial to consider the factor by which the predicted

distance is above the actual distance. This Predicted Distance Increase Factor (PDIF)

is presented in Table 6.4. The augmented NBC classifier distance prediction is the most

similar to the actual distance. However, the best-case PDIF is still 1.52 times that of

the actual travelled distance. Hence, there is still the necessity for localisation algorithm

improvements which allow more accurate dynamic behaviour estimation.

6.1.3 Transition Delay

The two previous performance measures allowed quantification of the ability of the system

to detect the levels of movement a user exhibits in a given day. They do not, however,

provide an indication of the delay between a room transition and the detection of that

room transition. Accordingly, there could be a significant time difference between when

a user moves between rooms and when the room transition is detected. Hence, a third

dynamic localisation performance metric is proposed, the Mean Transition Delay (MTD).

For this performance metric, each time a room is entered, the length of time it takes for

the predictions to indicate that this room has been entered is noted as the delay. Then

the mean of all of the delays for a given day is calculated. If the room remains undetected

when the user transitions from the room, the timer is discarded and the next occupied

room is monitored for delay.

Table 6.5 indicates that, unlike before, the augmented probabilistic classifiers which use

covariance information in their density estimates produce the best performance. This is
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due to the fact that augmented QDA and GMM do not have lagged feature preprocessing,

which means that they do not experience delay in waiting for a particular temporal

template to occur before detecting a new room. Hence, there is a tradeoff between the

speed with which a room is detected, the reliability of the distance travelled predictions

and the overall long-term localisation accuracy.

6.1.4 Overall Performance Visualisation

It has been illustrated that the overall performance of the localisation system involves

significant tradeoffs between the long-term accuracy, transition detection ability, distance

estimation ability and the speed in detecting transitions for the localisation system. Hence,

a technique for comparing all of these traits for all classifiers at the same time must be

developed. Since the PDE can be derived from the TCE, while giving information which is

more comparable across different environments, the TCE measure shall be ignored. This

leaves three performance measures to be compared; EA from the previous chapter, PDIF

and MTD. Fortunately the tradeoff between three different measurements can readily be

visualised in a three-dimensional plot.

Figure 6.1 summarises the tradeoffs for the NBC, LDA, QDA and GMM algorithms

for both when raw data is used and when the augmented classifiers are used. Figure 6.1(a)

shows a general view of the comparison, while Figures 6.1(b) and 6.1(c) allow more direct

comparison between the classifier traits. For EA and PDIF, the optimal values are 1. For

the MTD the optimal value is 0. From this comparison it can be gleaned that QDA is the

best raw data classifier. It has the best EA and PDIF. It has higher delay at detecting

transitions than NBC. This, however, is acceptable when one considers that NBC achieves

faster room detection at the expense of localisation accuracy.

Figure 6.1(a) confirms that the augmented classifiers generally have superior overall

performance than the raw data classifiers. In particular, QDA and GMM have the best

performance in terms of accuracy and transition detection delay. This performance comes

at the expense of less accurate distance estimates. LDA has higher accuracy and better

travel distance estimates at the expense of having higher transition prediction delays.

NBC, on the other hand, sacrifices accuracy and transition prediction timing in favour of

travel distance estimation ability.

Hence, the long-term accuracy is not the only metric relevant for appraising the

performance of the localisation system. Other dynamic effects such as transition prediction

timing and the ability to reliably detect movement levels over time are also important.

Based on this knowledge, a more complete performance comparison framework has been

presented. This contribution is entirely novel in the field since other work generally only

focuses on the error of coordinate position predictions. This thesis highlights system

performance in terms of being able to detect user-relevant locations, user activity levels
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Fig. 6.1: Localisation algorithm performance comparison for the different algorithms.
The projection in (a) allows a visualisation of the best overall performing classifiers. (b)
allows a comparison of the classifiers in terms of EA and MTD and the projection in (c)
allow a comparion of the classifiers in terms of PDIF and EA. EA and PDIF are optimal
at values of 1. MTD is optimal at a value of 0.

and the speed in making such predictions. The availability of such a balanced performance

measure will allow better illustration of the improvement a discrete Bayesian filtering

approach will bring.

6.2 Hidden Markov Models

The primary disadvantage of all of the classification techniques considered up to this

point is that they do not have any natural mechanism of incorporating information from

the previous predictions into the current prediction. Each location prediction is locally

optimal on an individual basis. The ability to use previous predictions to narrow down

the subsequent possible predictions would clearly be beneficial in a system involving a user

moving through a known configuration of rooms in an environment. Hence, HMMs have a
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1
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4

Fig. 6.2: A Markov chain representing the configuration of the environment used for the
controlled test environment used in Chapter 4.

natural application to this localisation system. Before the theory behind Hidden Markov

Models is presented it is necessary to consider an unsupervised method of modelling

discrete states.

6.2.1 Markov Chains

A Markov chain is a discrete random process in which it is assumed that the values of future

states are dependent only on the values of the present states. In a Markov chain there is

a finite number of discrete internal states. Each state typically corresponds to a real-life

entity. In the case of modelling the movements of a user in their home environment, each

state corresponds to a symbolic location. Hence, the progression of the location of a user

over time can be modelled as a discrete-time first-order Markov chain. The first order

restriction ensures that the discrete state, or location, at time t, denoted qt, is dependent

only on the location at time t−1, denoted qt−1. If there are N possible locations, denoted

L1, L2, ...LN , the probability of moving from one location qt−1 = Li to the next location

qt = Lj is represented by the transition probability aij . Figure 6.2 illustrates a graph

structure which corresponds to the simple test environment used in Chapter 4. From

this figure it can be seen that rooms 1, 2 and 3 are all connected to room 4. Hence,

there are certain probabilies of transitioning from each room to room 4, denoted a14, a24

and a34. There are also the probabilities of transitioning from room 4 to any other room,

denoted a41, a42 and a43. Since rooms 1, 2 and 3 are not directly connected their transition

probabilities a12, a23 and a31 are equal to zero. Finally, the quantities a11, a22, a33 and

a44 represent the probabilities of staying in the current location at any instant in time.

Using the aij values for every i-j combination, an NxN transition probability matrix,

denoted A, can then be constructed, where each row corresponds to the room being moved
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from and each column corresponds to the room being moved into. The diagonal elements

indicate the probability of staying in the same room. Each element in the matrix is

calculated as

aij = P (qt = Lj |qt−1 = Li). (6.2)

Then at every instant in time, the probability of being in location i and then transitioning

to location j can be calculated using

P (qt−1 = Li, qt = Lj) = aijP (qt−1 = Li). (6.3)

Thus the probability of being in a particular state at time t = T can be calculated

recursively through the known sequence of states q = q1, q2, ...qt. The probability of being

in the state Li at t = 1 is based solely on the initial probability, πi. For t ≥ 2 the

probabilities are obtained simply by multiplying the probability of the previous state by

the transition probability from that state to the current one.

The transition probability matrix, A, can be calculated from some reference data. For

each element aij , the number of samples which correspond to a transition from location Li

to location Lj is divided by the total number of samples corresponding to a transition from

Li. Samples of the user staying in Li are also included in this count as they correspond to

transitions from Li to Li. As a result, each element of the transition matrix is calculated

to be

aij =
# transitions from Li to Lj

# transitions from Li
. (6.4)

Hence, a Markov chain could be used to simulate the movements of a user throughout a

typical day, to gain insights into where a user is likely to be at a certain time of the day.

However, this functionality alone is of little use to our location prediction problem. Further

information must be used in parallel with this model to enable location predictions.

6.2.2 HMM Theory

The Markov chains described in the previous section are only useful when the state

sequence, q, is directly observable. From the localisation perspective the sequence of

locations is certainly not observable online, since it is the sequence which we are interested

in predicting using the available RF signals. A HMM is a model in which the state sequence

is not observable and all that is visible is the observation sequence o = o1, o2, o3, ..., oT .

Hence, besides the transition probability matrix, a HMM also needs an observation

probability model which relates each state to a probability of observing a particular

reading. Such a probability model, for a given class j at time t takes the form,
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bj(ot) = P (ot|qt = Lj). (6.5)

The collection of measurement models for an entire HMM is denoted B.

As a result a HMM is entirely parameterised by the expression

λ = (A,B,π), (6.6)

where A is the transition probability matrix, B is the observation probability model and

π is the initial state probability vector. For such a HMM there are three problems which

are typically of interest (Rabiner, 1989):

Problem 1: Given a particular observation sequence and model, how do we compute

P (o|λ), the probability of getting the observation sequence given the particular

parameters of λ

Problem 2: Given the observation sequence and model, how do we estimate the most

likely sequence of hidden states.

Problem 3: Given the observation sequence how can the model parameters be chosen to

maximise P (o|λ).

Problem 2 is particularly applicable to this work since in an RF localisation system

the observation sequence is available in the form of RF readings and we are interested

in estimating the most likely underlying state sequence. Hence the entire HMM, λ, is

available since A is derivable from the statistics of a user’s room occupancy over the

period of a day. The probabilistic measurement model matrix, B, is also already available

since the probabilistic classifiers employed in previous chapters are essentially probabilistic

signal models with class decisions applied. The quantity bj(ot) is identical to P (x|Rj) for

the probabilistic classifiers. Hence, the measurement model matrix can be constructed

from the parameters of the probabilistic models presented in previous chapters. Finally,

the initial probability vector π can be assumed to be equal across all classes or if the

starting room is known, its probability can be set to 1 and all others set to zero. The

estimation of the most likely state sequence from this data is commonly estimated using

the Viterbi algorithm.

6.2.3 The Viterbi Algorithm

The major issue with the previously employed classification algorithms is that they perform

classifications without knowledge of the connectivity of the environment or the movement

habits of the subject. When one considers the transition matrix it may become evident

that some of these transitions should rarely (aij ≈ 0), or never (aij = 0) occur. Hence,
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1 1

Hidden

Observable

Fig. 6.3: Estimating the partial probability of all states at the next instant of time using
only the information about the probabilities at the current instant in time. Moving from
left to right on the graph corresponds to time progression.

instead of producing the locally optimal prediction, the Viterbi algorithm is concerned

with estimating the sequence of states which is globally optimal when considering the

sequence of observations. This maximisation of P (q|o, λ) is equivalent to maximising

P (q,o|λ). For convenience we define this as the partial probability,

δt(i) = max
q1,q2,...,qt−1

P (q1, q2, ..., qt = i, o1, o2, ..., ot|λ), (6.7)

which is the un-normalised probability of being in the most likely location, location i, at

time t and observing the measurement sequence o1, o2, ..., ot.

The assumption of a first-order Markov process means that if the quantity δi(i) is

available then the probabilities of earlier states need not be known for the estimation of

future states. The partial probabilities of all states reached from this state, i, on the next

time interval, t+ 1, can be calculated from the expression,

δt+1(j) = max
i

[δt(i)aij ].bj(ot+1), (6.8)

which is the product of the probability of the most likely current state and the probability

of the next state given the observation ot+1. Hence, the partial probability of each state at

each instant in time can be maintained by a recursive algorithm which only needs memory

of the states from the previous iteration, as illustrated in Figure 6.3.

It is important to note that the location of highest partial probability in each step
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is not necessarily the most likely location, since it may lead to an unlikely or even an

impossible location given the transition matrix and future observations. Hence, at every

iteration of the recursive algorithm it is necessary to store the most likely previous location

for each current possible location. This corresponds to the value of i in Equation 6.8. A

matrix Ψ is constructed which keeps track of the most likely previous state for every state

at each instant in time. Then the final part of the Viterbi algorithm is to start at the

final most likely prediction and recursively “backtrack” over time, calculating the most

likely previous state for every state. After this step, the globally most probable sequence

of states is available.

Mathematically the Viterbi algorithm is executed in four steps (Rabiner, 1989):

1 Initialisation

δ1(i) = πibi(o1), 1 ≤ i ≤ N (6.9a)

Ψ1(i) = 0. (6.9b)

2 Recursion

δt(j) = max
1≤i≤N

[δt−1(i)aij ]bj(ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N (6.10a)

Ψt(j) = argmax
1≤i≤N

[δt−1(i)aij ], 2 ≤ t ≤ T, 1 ≤ j ≤ N (6.10b)

3 Termination:

q∗T = argmax
1≤i≤N

[δT (i)]. (6.11)

4 Backtracking:

q∗t = Ψt+1(q
∗
t+1), t = (T − 1), (T − 2), ...1. (6.12)

This is implemented in Matlab R©using the pseudocode described in Algorithm 1. Due to

the backtracking step, the Viterbi algorithm in its current form cannot produce location

estimates in real-time. The final sample for a given period of time must be processed

before a globally informed location decision can be made for each state at each instant in

time. Hence, improvements to the Viterbi algorithm will be considered in Section 6.4 to

enable location predictions to be produced as fast as possible and the effect this has on

localisation performance will be investigated.

It should be remembered that the Viterbi algorithm implements a discrete state form

of the sequential Bayes’ filter. When comparing the Viterbi algorithm implementation

with the general Bayes’ filter nomenclature in Section 2.2.2 similarities are evident.

In particular, Equation 6.10a implements the recursive “Process Model”-“Measurement

Model” update. The max1≤i≤N [δt−1aij ] term is the process model which relates the
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Input: observationSequence, obProbs, transMatrix
Output: decodedLocSeq
// Initialise probabilities at t = 1:
for j ← 1 to N do

prior ← 1/N ;
currentOb ← observationSequence(1);
obProb ← GetObProb(currentOb, j, obProbs);
partialProb(i) = prior x obProb;

end
// Recursively update state probabilities for 2 ≤ t ≤ T:
for t← 2 to T do

currentOb ← observationSequence(t);
for j ← 1 to N do

obProb ← GetObProb(currentOb, j, obProbs);
for i← 1 to N do

possibleCurrentProb(j) ← prevProb(i) x transMatrix(i,j) x obProb;
end
currentProb(j) ← max(possibleCurrentProb);
likelyPrevState(t,j) ← argmax(possibleCurrentProb/obProb);

end
prevProb ← currentProb;

end
// Termination:

decodedLocSeq(T ) ← argmax(prevProb);
// Backtracking:

for t← (T − 1) to 1 do
decodedLocSeq(t) ← likelyPrevState((t+ 1),decodedLocSeq(t+ 1));

end

Algorithm 1: Viterbi algorithm implemented in Matlab R©
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Fig. 6.4: Schematic of the HMM localisation technique applied to raw signal data.

internal location state at one instant in time to the next and the bj(ot) term is the

measurement model which refines the predicted location probabilities with information

derived from the newly available measurements.

6.2.4 Bayesian Filtering Performance

To enable Bayes’ filter location prediction updates, the previously described Viterbi

algorithm is implemented as per Algorithm 1. Figure 6.4 illustrates the complete

localisation system which uses the Viterbi algorithm in an attempt to provide improved

location predictions. It can be seen that the Viterbi state-sequence decoder takes two

inputs. The transition probability matrix is calculated from the training data labels, and

as a result corresponds to the intra-house movement pattern of the user on the training data

acquisition day. An illustration of the transition probability matrix for this environment

can be seen in Figure 6.5. This matrix describes the subject movement inclinations and

room connectivity of this environment. For example, to move from room 2 to room 10 a

subject must travel from room 2 to room 3, then room 4, then room 7 and finally room

10. Some elements of this matrix are too feint to be seen, such as room 1 to room 2

and room 3 to room 2. This is because transitions from these rooms happen rarely when

compared with the length of time spent in the rooms. The observation probability model,

bj(ot), is derived from the probability estimation block, which utilises the probabilistic

signal models previously described for NBC, LDA, QDA and GMM.

Figure 6.6 compares location predictions for the original LDA classifier with the HMM

classifier, which uses the observation probability model derived for LDA. It can be seen

that in Figure 6.6(a), transitions between rooms occur more frequently and, in fact, behave

in a nonsensical fashion. At many times, the predicted room oscillates rapidly between

two different rooms. Such movements are not physically possible in reality. The HMM

classifications in Figure 6.6(b), which constrains the predictions with room connectivity

and typical user movement habits, produces much more sensible predictions over time.

Table 6.6 summarises the performance metrics resulting from this localisation system

implementation. When comparing the HMM empirical accuracies with the raw empirical

classifier accuracies in the previous chapter an increase in accuracy is evident. Furthermore
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Fig. 6.5: Intensity plot of the transition probability matrix for the home environment.

NBC LDA QDA GMM

EA 0.71 0.83 0.83 0.79
PDIF 1.66 1.29 1.48 1.58
MTD 4.57 4.51 4.11 4.05

Table 6.6: Localisation performance comparison for the HMM classifier using different
observation probability models.

when comparing this table with Tables 6.4 and 6.5 there is also an improvement in the

lowest PDIFs but no improvement in MTDs. Even though the accuracy of the HMM

classifier is higher than the raw data classifiers, it is still lower than the augmented location

classifiers. The augmented location classifiers, however, achieved higher localisation

accuracy by refusing to produce classifications in the presence of uncertainty. In fact

95% accuracy was possible by refusing to predict location 60% of the time. HMMs, on

the other hand, produce classifications at all times even in the presence of uncertainty by

integrating environment configuration and user movement tendencies into the predictions.

Hence, HMM classifiers produce high localisation accuracy at all times while allowing

more reliable transient event detection, such as user travel distance estimates and room

transition detection timing.

6.2.5 Bayesian Filtering with Augmented Classifiers

Prior to considering HMMs for localisation system performance improvement, classifiers

were augmented with pre-processing, prior room probability inclusion and uncertainty

rejection. The HMM Viterbi state decoder completely negates the use of the uncertainty

rejection block illustrated in Figure 5.27. There is, however, still the potential for
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Fig. 6.6: Comparison of HMM predictions which use LDA derived observation
probabilities and the original LDA predictions.
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Fig. 6.7: Schematic of the HMM localisation technique which pre-processes the raw data
and includes priors in the density estimation technique.

increasing performance by considering the other augmentations illustrated in Figure 5.27.

That figure is similar to Figure 6.4 except that the probability estimation block in Figure

5.27 includes the prior room probabilities as explained in Section 5.4. Furthermore the

observations can be pre-processed using filtering, lagging and cellular signal handling as

described in Section 5.4.

Figure 6.7 illustrates the complete set of additions which can be made to the HMM

framework to improve accuracy. Hence, there are three different ways in which the

augmentations can be applied;

1. Only include prior probabilities in the density estimation. This means the pre-

processing block is excluded from the system, making ot = o′t. This is referred to

“Prior HMM” for comparison.

2. Only pre-process the observations as per Section 5.4. This means the prior

probabilities are now equal across all classes, πi = 1/N . This is referred to as
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Fig. 6.8: A comparison of the performance trade-offs for the different HMM
augmentations. As in Figure 6.1, (a), (b) and (c) show different projections of the same
graph to allow a direct comparison of the classifiers under the different accuracy measures.

“Pre HMM” for comparison.

3. Use both pre-processing and prior probabilities in the observation model, as

illustrated in Figure 6.7. This fully augmented HMM configuration is referred to

as “Aug HMM” for comparison.

Figure 6.8 illustrates the tradeoffs for these different approaches to improving HMM

performance. From Figure 6.8(b) it can be seen that of the three HMM augmentation

approaches the fully augmented LDA HMM produces the lowest MTD. It can also be seen

from Figure 6.8(c) that using LDA density estimates produces the best PDIF for all HMM

types. For overall performance it can be seen that Aug LDA HMM not only produces the

highest accuracy, but also exhibits the best trade-off between PDIF and MTD.

Hence the fully augmented HMM allows the best performance of all the HMM

augmentations. For comparison with Figure 6.6, Figure 6.9 illustrates the improvement

the augmented LDA HMM classifier allows over the original augmented LDA classifier.
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Fig. 6.9: Comparison of HMM predictions which use augmented LDA derived observation
probabilities and the original augmented LDA predictions.

NBC LDA QDA GMM

EA 0.79 0.86 0.86 0.86
PDIF 1.29 1.13 1.48 1.50
MTD 4.99 3.61 4.12 4.06

Table 6.7: Localisation performance for the fully augmented HMM classifier.

It can be seen that the original augmented LDA classifier of Figure 6.9(a) has far fewer

location fluctuations than the un-augmented LDA classifier in Figure 6.6(a). This is

due to reduced misclassifications as a result of more appropriate preprocessing and prior

probability inclusion. Furthermore, the augmented HMM classifier in Figure 6.9(b) has

more realistic location predictions than the original augmented LDA classifier.

Table 6.7 summarises the overall performance of the fully augmented HMM classifiers.

It is evident that the performance of the augmented classifiers is generally superior to that

of the raw HMM classifier summarised in Table 6.6. Hence, augmented HMM classifiers,

as with the original augmented classifiers, allow improved performance. The accuracy

however, is still not as high as that which occurred with the augmented classifiers. This,

however, is expected because the HMM classifiers do not need to resort to rejection in the

presence of uncertainty.
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Fig. 6.10: Comparison of the localisation trade-offs between the different localisation
algorithms. The blue and red markers represent the previously presented raw data and
augmented classifiers respectively. Note that the Aug QDA HMM marker in figure (c)
cannot be seen because it has identical PDIF and MTD to the un-augmented QDA HMM.

6.2.6 Overall HMM Performance

Now that the theory behind Hidden Markov Models has been presented and the application

of the Viterbi algorithm to long-term localisation has been described, a summary of the

effect of HMMs on localisation performance can be produced. Of particular note is that

there are inherent trade-offs in the selection of the optimal localisation algorithm. The

graphical method of comparing these trade-offs allows a direct comparison between the

different localisation algorithms. Figure 6.10 compares the raw classifiers and augmented

classifiers already presented in Figure 6.1 with the newly available raw data HMM

classifiers and the augmented data HMM classifiers.

From the figure it can be seen that the highest absolute accuracy occurs with the

original augmented classifiers. However, this accuracy comes with the caveat that the

classifiers are unable to produce predictions at all times due to uncertainty rejection.
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Besides that, the highest accuracy comes from the augmented HMM classifiers, which are

able to produce these accurate predictions at all times. Not only are accurate predictions

consistently available with the HMM classifiers, but the distance predictions and the

transition detection speed are superior to the original classifiers which do not exploit

HMM theories. Hence, HMMs provide improved overall localisation performance, with

the best performance occurring with the augmented HMM classifiers.

6.3 High Order Markov Processes

The HMM has exhibited excellent ability to model the probability of a user occupying

a discrete location over time. The main deficiency, however, of the HMM structure is

that it relies on the first order Markov assumption that the current state depends only on

the previous state. In an indoor localisation scenario, knowledge of states earlier in time

than the previous state would clearly be beneficial. Understanding which room a person

has transitioned from before the current room would allow insight into which room they

may transition to next. The fact that the standard HMM allows only the most recent

state probabilities to contribute to the evolution of the state probabilities in the following

time instant prevents this. Hence, this section considers a modification to the HMM

form presented in the previous section to allow the inclusion of further user movement

information.

6.3.1 2nd Order Hidden Markov Models

To allow the inclusion of further movement information into the HMM it is necessary to

forgo the first order Markov assumption. This allows modelling the probability of the

current state on not just the previous state but the probabilities of any number of states

prior to the current state. To investigate the applicability of such a HMM structure to this

localisation problem a second order HMM was first considered. A second order Markov

model extends the original HMM implementation to include state partial probabilities

from both the last step in time and the second last step in time. Hence the transition

probability matrix must be extended to note the probabilities of transitioning from the

state qt−2 to state qt−1 and then to state qt. One such transition probability is referred

to as aijk. Hence, the transition probability matrix, A, is now a NxNxN matrix, where

each element is

aijk = P (qt = Lk|qt−1 = Lj , qt−2 = Li). (6.13)

As a result, the partial probability at each point in time is dependent on the state

partial probabilities for the last time instant, i, and the second-last time instant, j. Hence,
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the state partial probabilities at each time instant, δt(j, k), must be maintained by an NxN

matrix. Similarly, the matrix to track the most likely previous state for each state at each

time instant, Ψ, must also keep track of the most likely second last state based on the

states in the subsequent two time instants. Hence, an NxN matrix must be maintained

for each instant in time to allow backtracking of the most likely second last state, qt−2,

given the most likely subsequent states, qt−1 and qt.

The most likely state-sequence in this HMM is decoded using the extended Viterbi

algorithm (modified from He (1988));

1 Initialisation

δ1(i) = πibi(o1), 1 ≤ i ≤ N (6.14a)

Ψ1(i) = 0. (6.14b)

δ2(i, j) = δ1(i)aijbj(o2), 1 ≤ i ≤ N, 1 ≤ j ≤ N (6.15a)

Ψ2(i, j) = 0. (6.15b)

2 Recursion

δt(j, k) = max
1≤i≤N

[δt−1(i, j)aijk]bk(ot), 3 ≤ t ≤ T, 1 ≤ j ≤ N, 1 ≤ k ≤ N (6.16a)

Ψt(j, k) = argmax
1≤i≤N

[δt−1(i, j)aijk], 3 ≤ t ≤ T, 1 ≤ j ≤ N, 1 ≤ k ≤ N (6.16b)

3 Termination:

q∗T = argmax
1≤k≤N

[δT (j, k)], (6.17a)

q∗T−1 = argmax
1≤j≤N

[δT (j, k)]. (6.17b)

4 Backtracking:

q∗t = Ψt+1(q
∗
t+1, q

∗
t+2), t = (T − 2), (T − 3), ...1. (6.18)

This algorithm was also implemented in Matlab R©, with the transition probability

matrix again derived from the training day data. Since it has already been shown

that using the density estimates from the augmented classifiers leads to the best HMM

performance, these will also be used to generate the observation probabilities, bk(ot), for

the second order HMMs. Table 6.8 highlights the performance for this implementation

of the Viterbi algorithm. The table confirms that marginally higher long-term accuracy

is possible with the higher order HMM, when compared with Table 6.7. Along with
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NBC LDA QDA GMM

EA 0.79 0.87 0.87 0.87
PDIF 1.23 1.00 1.18 1.21
MTD 4.81 3.68 4.01 3.95

Table 6.8: 2nd order HMM algorithm using the augmented density estimation techniques
to produce the observation probabilities, bk(ot).

NBC LDA QDA GMM

EA 0.79 0.87 0.87 0.88
PDIF 1.13 0.90 1.05 1.08
MTD 4.81 3.69 3.94 3.85

Table 6.9: 3rd order HMM algorithm using the augmented density estimation techniques
to produce the observation probabilities, bk(ot).

higher accuracy, there is also improved ability to estimate the travelled distance in a given

day, with HMMs using augmented LDA density estimates producing optimal distance

predictions. The second order HMM also enables lower MTD for NBC, QDA and GMM,

meaning it generally produces room predictions with lower delay.

The slight performance improvements possible with the higher order Markov model

come with higher computational cost. The recursion step is the most significant part of

the Viterbi algorithm since it involves performing multiplications for every combination

of values for j and k. For an environment with N rooms, the second order Viterbi

decoding algorithm has N times as many multiplications as the first order Viterbi decoding

algorithm. Furthermore, the higher dimensionality of the previous state matrix, Ψ, causes

a storage requirement increase by a factor of N . This higher memory requirement still

does not exceed the memory restrictions of the test computer for the data for an entire day.

Hence, the second order HMM is still computationally tractable on a desktop computer

with moderate specifications.

6.3.2 3rd Order Hidden Markov Models

Since increasing the HMM order to 2 enabled higher empirical localisation accuracy and

travel distance prediction accuracy with some extra computational overhead, it is necessary

to investigate the implications of further HMM order increases. Hence, a third order HMM

was implemented in Matlab R©. The Viterbi algorithm presented in the previous section

is extended to the third order by incorporating state probabilities for the previous three

time intervals into the prediction of the current state probabilities. Hence, this requires

a 4-dimensional transition probability matrix and for every discrete time interval; a 3-

dimensional partial probability matrix and a 3-dimensional previous state matrix.

Table 6.9 presents the performance for the 3rd order HMM. This time it can be seen
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that the increase in accuracy over the 2nd order HMM in Table 6.8 is minimal. More

significantly, there is a further reduction in PDIF and a marginal reduction in MTD

for QDA and GMM HMMs. Hence, if the computational implications of the selected

algorithm were negligible, a higher order HMM would allow the best distance prediction

and the lowest room transition prediction delay. The computational implications, however,

are not negligible. The 3rd order Viterbi decoding algorithm is actually N times more

computationally intensive than the second order HMM. This makes it N2 times more

computationally intensive than the first order Viterbi algorithm.

There are also extremely high memory requirements for the previous state matrix,

Ψ. For the third order HMM this means that an NxNxN matrix must be maintained

for every discrete time interval. In the test scenario considered, there were up to 12,000

samples on a given day. This led to extremely high memory overheads, which actually

caused the execution of the third order Viterbi algorithm to fail with a Matlab R© memory

warning on occasion. Hence, the execution of the third order HMM is extremely unreliable

in its current form. Accordingly, Section 6.4 will consider a real-time augmentation to the

Viterbi algorithm, which will not only reduce the location prediction lag, but also eliminate

the significant memory requirements of the higher order HMMs by discarding many of the

past samples when the current partial probabilities are high enough to make an informed

decision.

Finally, it should be noted that Lee and J.-C.Lee (2006) illustrated that higher HMM

efficacy is possible by using both a higher order transition probability model and a higher

order observation probability model. This work, however, does not need to consider the

higher order probabilistic observation model since the use of time-lagged input samples in

the augmented density estimation framework can be considered a high-order probabilistic

observation model. Hence, the order of the observation model is equivalent to the number

of lagged samples, referred to as L in the previous chapter. The optimal values have been

found to be L = 7 for the NBC, L = 10 for the LDA and L = 1 for both the QDA and

GMM density estimation techniques. Hence, the overall HMM implementation in this

thesis can be considered to have a high order probability transition probability model and

a high order observation probability model, when appropriate.

In summary, Figure 6.11 compares the performance measures for augmented HMMs

in the first order, second order and third order implementations. This confirms that the

empirical localisation accuracy increases marginally with HMM order. It also shows that

both PDIF and MTD generally decrease with higher model orders. Figures 6.11(b) and

6.11(c) indicate that the higher order HMMs have better overall performance than the

first order HMMs. The only exception is for LDA which has marginally higher MTD for

the 1st order HMM than for the higher order HMMs. Even though the second and third

order HMMs have higher localisation performance, the third order HMM produces its
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Fig. 6.11: Comparison of performance for the first, second and third order HMMs.
Density estimates are derived from the augmented classifiers. As before, (a), (b) and (c)
show different projections of the same graph to allow a direct comparison of the classifiers
under the different accuracy measures.

performance with an almost prohibitively high memory cost. Hence, when high location

prediction accuracy, high travel distance prediction accuracy and low prediction delay is

important the higher order models produce better results. However, the 1st order LDA

HMM produces the lowest MTD while still achieving relatively high EA and PDIF with

significantly lower computational overhead than the higher order HMMs.

6.4 Real-Time Viterbi Decoding

Thus far, a number of techniques have been explored for improving localisation perfor-

mance by employing a HMM framework. The original HMM formulation, along with

second-order and third-order Markov models have been considered. In spite of the

improvements in localisation performance possible with HMMs, there is still the significant

delay inherent in requiring the entire set of past and future transition predictions before
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decoding of the current state can take place. In the context of a home localisation system,

this means that it is necessary to wait until the data from an entire day or week has been

processed before the global optimal state sequence can be estimated using the backtracking

step. This presents significant issues when the purpose of the home localisation system is to

enable real-time monitoring of the activities of the elder to allow detection and response to

irregular behaviour. For this reason, techniques to enable HMM-based location predictions

to be produced as fast as possible must be investigated.

To date, there have been a number of attempts at real-time HMM decoding in the

fields of speech and image processing. Ryynanen and Klapuri (2007) use Viterbi decoding

to estimate the sequence of notes in polyphonic audio. That work observes that it is

possible to periodically backtrack along the past n samples. When backtracking over a

window of the past n samples is conducted, the first n/2 states are stored and the window

is moved forward by a further n/2 samples. This overlapped window approach means that,

while locally optimal predictions can be produced online, there is still a minimum of n/2

sample delay and a maximum of n sample delay for each prediction. Ardo et al. (2007),

on the other hand, keeps note of multiple backtracked hypotheses until they converge to

a common state. Then the local optimal path is backtracked from the most recent local

optimal state. This has the issue that a number of hypotheses must be maintained over an

unpredictable number of previous states. Bloit and Rodet (2008) introduces the concept

of a fusion point, which exists when the initial portions of the backtracked window are

identical. When this fusion point is found, the initial paths which are identical across all

of the backtracked state paths are stored. This also has the issue that multiple hypotheses

must be stored and updated.

This work develops real-time Viterbi decoding algorithms to allow the production of

Bayesian-filtered room predictions as early as possible. To our knowledge, all previous

work on HMM localisation uses the original formulation of the Viterbi decoding algorithm

and is incapable of generating online location predictions. In this work, online predictions

are produced using new algorithms which do not require maintaining multiple backtracked

sequences and are able to produce predictions with a minimum lag of zero samples. First a

fixed-windowed backtracking algorithm, which backtracks from points at regular intervals,

is presented. Then the deficiencies of this algorithm are alleviated with the derivation of

an algorithm which detects the optimal backtracking interval online.

6.4.1 Fixed Window Backtracking

The original formulation of the Viterbi decoding algorithm made it impossible to make

a globally optimal prediction of the Bayesian-filtered location without the availability

of all future and past transition predictions. Now we allow the decoding algorithm to

perform the backtracking step before all samples up until termination have been processed.
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Instead of performing backtracking at t = T , the backtracking step is performed at regular

intervals of t = sl, where l is the non-overlapping backtracking window length and s is the

backtracking iteration. Hence, for each value of s, backtracking occurs starting at t = sl

and ending at t = (s− 1)l + 1.

Since backtracking occurs online, there is no longer the final termination (stage 3) or

global backtracking (stage 4) stage present in the original Viterbi algorithm. Now the

recursion stage (stage 2) continues as before, and in each step if t = sl the following steps

take place:

q∗t = argmax
1≤i≤N

[δsl(i)] (6.19a)

q∗t = Ψt+1(q
∗
t−1), t = (sl − 1), (sl − 2), ..., ((s− 1)l + 1). (6.19b)

There is, however, no guarantee that the state which maximised the probability of

occupation in equation 6.19a is the globally optimal state. Hence, if a particular value

of sl occurs at a time when the state partial probabilities have not settled to their true

values, backtracking could begin at a globally sub-optimal state. As a result, the global

optimality of the decoded state-sequence is sensitive to the chosen value of l.

To understand the effect of backtracking window length on localisation accuracy the

original Viterbi algorithm was modified as above and the augmented localisation technique

illustrated in Figure 6.7 was again implemented. Figure 6.12(a) shows the effect of the

backtracking window length on EA. From the zoomed view in Figure 6.12(b) it can be

seen that extremely small window lengths result in slightly reduced accuracy. When a

backtracking window length of 20 is used, the accuracy is equal or greater than that of the

original non-real-time Viterbi decoding algorithm. Hence, when a backtracking window

of 20 samples is used this technique allows a reduction of prediction lag to a maximum of

20 samples and a minimum of 0 samples while obtaining the same localisation accuracy

as the original offline Viterbi algorithm.

Even though it is possible to generate near-real-time predictions with localisation

accuracy similar to the original HMM, there is still an issue of sensitivity of the algorithm

to backtracking window length. The reason accuracy does not approach the original

Viterbi algorithms’ accuracy until approximately l = 20 is that, the smaller the window

length is, the more likely it is that a particular value of sl will occur when the maximum

partial probability has not truly settled to the most likely true state. The algorithm can

be modified to allow for this defect.
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Fig. 6.12: (a) Empirical localisation accuracy as a function of backtracking window
length, l, and (b) a zoomed comparison of the real-time decoding algorithm with the
original Viterbi decoder.

6.4.2 Stable Partial Probability Backtracking

The main issue with the fixed window-length algorithm presented in the previous section

is that it allows backtracking to start at an inappropriate time, such as when the partial

probability of the incorrect room is temporarily elevated. An example of the effect this has

on backtracking can be seen in Figure 6.13. Subfigure (a) illustrates the original Viterbi

algorithm which performs backtracking from the final prediction of the day. Subfigure (b),

on the other hand, performs fixed window backtracking with a window length of l = 20.

At sample number 500 backtracking occurs, beginning at room 6 rather than room 5

because it does not have future information to suggest that the room of maximum partial

probability at this point is not the globally most likely room. To overcome this issue it is

necessary to employ a method of detecting if a given sample instant is a suitable time to

commence backtracking.

By studying prediction and backtracking traces such as that in Figure 6.13(a) it is

apparent that the globally optimal backtracked prediction generally occurs when the

highest partial probability has remained unchanged for a number of samples. Hence,

the backtracking interval can be detected online based on the variation in the value of

the state of maximum partial probability over a window of the past m samples. That is,

backtracking occurs at time t if, and only if,

std(argmax
1≤i≤N

(δ[t,(t−l),(t−2)...(t−m+1)](i))) = 0. (6.20)

Then backtracking takes place from t back to the last sample backtracking proceeded from.

Hence, the maximum lag for this approach is dependent on the frequency of movement

within the environment and RF measurement noise.

Figure 6.14(a) illustrates that a stable partial probability detection window length
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Fig. 6.13: Comparison of the original Viterbi backtracking technique and the fixed
window backtracking technique. At sample 500 a backtracking step begins, initialising
to room 6, since it has the highest partial probability.
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Fig. 6.14: (a) Empirical localisation accuracy and (b) mean and maximum prediction lag
as a function of stable partial probability detection window length. Solid lines in Figure
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because they are identical to GMM in this graph.

188



CHAPTER 6. HIDDEN MARKOV MODEL CONSTRAINED LOCALISATION

0.775
0.8

0.825
0.85

0.875
0.9 1

1.2

1.4

1.6
3.6

4

4.4

4.8

5.2

 

 

M
T

D
 [s

ec
on

ds
]

 (a)

PDIFEA

NBC Aug HMM
LDA Aug HMM
QDA Aug HMM
GMM Aug HMM
NBC Real−Time Aug HMM
LDA Real−Time Aug HMM
QDA Real−Time Aug HMM
GMM Real−Time Aug HMM

0.7750.80.8250.850.8750.9
3.6

4

4.4

4.8

5.2
 (b)

M
T

D
 [s

ec
on

ds
]

EA
1 1.2 1.4 1.6

3.6

4

4.4

4.8

5.2
 (c)

PDIF

Fig. 6.15: Comparison of the performance of the original Viterbi decoding algorithm with
the short-time Viterbi algorithm. As before, (a), (b) and (c) show different projections of
the same graph to allow a direct comparison of the classifiers under the different accuracy
measures.

of m = 10 leads to accuracy similar to the original Viterbi algorithm for all density

estimation techniques. Figure 6.14(b) indicates that the maximum corresponding lag is

100 samples, and the mean lag is approximately 13 samples for real-time Viterbi decoding

with all density estimation techniques. Hence, it can be observed that prediction lag

is less predictable and mean prediction lag is actually higher than the fixed window

length backtracking technique. However, it can also be observed that this less favourable

prediction lag comes with the benefit of reducing instances of backtracking into invalid

state sequences due to backtracking from uncertain samples. Maximum prediction delays

of 100 samples (or under 3 and a half minutes, given the 0.5 Hz sampling frequency)

would be a justifiable cost in all but the most time-sensitive of localisation applications.

Furthermore permitting online variable prediction lags will allow more robust performance

at times when long periods of frequent room transitions are occurring while permitting

faster predictions when backtracking is more reliable.
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To compare the overall performance of the original augmented HMM implementation

with the short-term backtracking implementation, Figure 6.15 was produced. The short-

term backtracking in this comparison is implemented using the stable partial probability

method. The only significant difference between the original HMM implementation and

the real-time implementation is the marginally higher MTD for the LDA, QDA and

GMM density estimation techniques. This figure confirms that even though the real-time

Viterbi algorithm allows predictions to occur with minimal lag, it still permits localisation

performance on par with the original full backtracking implementation. Finally, it should

be noted that, besides the low latency location predictions, real-time localisation also

eliminates the need to maintain memory of the previous state for every single state at

every instant of time since tracking began. With the short-time Viterbi algorithm all

that needs to be stored is the most likely previous state for every state for every time

instant since the last backtracking step. Hence, the memory limitations precluding higher-

order HMM implementations could be alleviated. This would make the higher localisation

performance associated with the 3rd order HMM possible with only high computational

cost and relatively low memory requirements.

6.5 Conclusions

This chapter has explored numerous ways of improving in-home localisation performance

by applying a HMM framework to the localisation problem. The simple application

of discrete Bayesian filtering to the task of localisation is not a new concept. Bahl

and Padmanabhan (2000a) were one of the first to propose incorporating previous

location information into proceeding predictions in indoor human-tracking scenarios.

That work uses what is referred to as a “Viterbi-like” algorithm on a number of

kNN “best guesses” of the user’s location. That algorithm removed physically unlikely

predictions in favour of smooth travel paths, hence minimising the influence of noise on

predictions and increasing accuracy. Krumm et al. (2002) use a HMM to describe a user

moving throughout an environment in a custom RF hardware localisation testbed. They

constructed a connectivity graph of the environment and placed probabilistic constraints

on the connections between each position. The transition probabilities were manually

assigned between rooms. This is not entirely appropriate when one considers the assigned

probability of 0.95 of remaining in a room and 0.05 of transitioning to an adjacent room

in the following second. This assumes that a person moves from one room to the next

once every 20 seconds during the day, which is not a valid assumption. Finally, Deasy and

Scanlon (2004) propose an algorithm which borrows from HMM theory to filter predictions

onto a grid, maintain a list of potential paths and eliminate paths which are infeasible

considering a maximum movement speed of 2m/sec. This however is not strictly an
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implementation of the Viterbi algorithm.

Based on previous work, the contributions of this work in relation to discrete Bayesian

filtering are as follows;

Localisation Performance Metrics As already explained, prior localisation work

generally presents accuracies in relation to an error distance cumulative distribution

function (cdf). This was addressed in Chapter 5 with the development of an empirical

localisation accuracy metric. This measure, however does not indicate the timing accuracy

of changes between rooms or the frequency at which such changes occur. To this end

further metrics were necessary to fully quantify the performance of an indoor localisation

system. The complete set of metrics; Empirical Accuracy (EA), Mean Transition Delay

(MTD) and Predicted Distance Increase Factor (PDIF) addressed all relevant location

prediction performance measures not encapsulated by EA alone. A novel combination

of original localisation performance measures and a 3-dimensional visualisation technique

was presented to compare the tradeoffs between different localisation techniques and select

the optimal.

HMM Implementation Describing an indoor human localisation scenario using

HMMs has been presented in some previous work. The work of this thesis builds upon

previous work by deriving transition matrices entirely from room labels for a typical

day. This approach has not been attempted previously since it was easier to make

assumptions about the movement tendencies of the user. The availability of an automatic

labelling technology was a significant enabling factor for this approach. Further to utilising

empirically derived transition matrices, this work also employs high-order HMMs to create

higher dependencies of predictions on room connectivity, which is a novel contribution to

the field of indoor localisation. Although higher localisation performance was possible, it

is computationally prohibitive to progress higher than a 3rd order HMM.

Real-Time Viterbi Decoding The final investigation of this chapter was whether

internal HMM state predictions could be produced in real-time or in near-real-time. It

was found that it was possible to obtain maximum performance almost identical to the

original Viterbi algorithm by using a short-time Viterbi decoding scheme. It was possible

to produce these predictions with a mean lag of 13 samples, rather than having to wait

until the end of a day to benefit from HMM predictions for the day. The maximum

lag for the short-time Viterbi algorithm developed in this work was approximately 100

seconds which equates to a maximum prediction lag of just under 3.5 minutes. This is

an entirely novel contribution to the field since HMM augmented localisation has always

been implemented in the offline-backtracking form.
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Time-Varying Hidden Markov Models

The use of HMMs to model a moving person has been shown to improve localisation

performance. This occurs by incorporating information about the movement tendencies

of the user into the location predictions. Higher order HMMs have demonstrated that

inclusion of more information in the location predictions generally lead to improved

localisation performance. Intuitively, if knowledge of the movement levels of the user

at different times of the day were available, it could be incorporated into the HMM

localisation framework to allow more informed movement predictions. One way of

achieving this is to use different transition matrices for different times of the day. This

has the downside of not being robust to changes in behaviour of the user in similar time

periods of different days.

A more appropriate way of varying the transition probabilities is to use further sensors

to detect the movement levels of the user at a given time. Krumm and Horvitz (2004)

propose using a Viterbi algorithm to produce WiFi location predictions which incorporate

the probability of a user travelling a particular distance in a particular period of time.

The probability of the user moving a given distance to a particular room is coarsely

estimated from the variability of the WiFi signal strength. Chapter 4 has indicated that

the hardware utilised in this thesis allows the acquisition of other signals, besides RF

signals. Accelerometer data is one signal which is consistently streamed back to the

BSC. Accelerometers are a more reliable indicator than signal strength variability of the

intensity of the movements of the MD since RF signal strength variability can be high

even when the user is not moving. In fact, previous work has indicated the possibility of

using accelerometers to discriminate between the different types of movement undertaken

by the user (Allen et al., 2006, Ibrahim et al., 2008, Kilmartin et al., 2009, Wang et al.,
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2009).

Instead of mathematically estimating the likelihood of a user transitioning a given

distance (Krumm and Horvitz, 2004) we take an approach which makes better use of

the available training data. This approach involves empirically estimating the transition

matrix given each type of movement from the training data. Then in the location

estimation phase a different transition matrix can be used for each type of detected

movement. Hence, the most important element of such a time-varying HMM is the reliable

detection of movements and the correct identification of the movement type. Accordingly,

Section 7.1 considers the detection of the movements relevant to the localisation of a

person in a typical home environment. Section 7.2 then discusses how knowledge of these

movements can be integrated into the localisation framework and the effect this has on

localisation system performance.

7.1 Movement Detection

To date, a number of systems have used motion estimates to predict location or improve

location predictions. Widyawan et al. (2008) describes a system which utilises only inertial

measurements from extremely accurate accelerometers and magnetometers mounted on the

foot of the subject to predict their location indoors. Such an approach is not applicable

to this work since the mobile phone under consideration does not contain magnetometers,

hence, the orientation information necessary to track the movement of the user entirely

from inertial measurements is unavailable. Ofstad et al. (2008), on the other hand, uses

accelerometer sensors on a phone the same as the phone considered in this work to augment

GPS location predictions. Estimates of whether the user is walking, sitting or standing

is used to refine GPS estimates of the building the subject currently resides in. That

approach worked in a large-scale urban environment where the posture and movements

of the user are distinctly different in different locations, for example, if they are sitting

in a restaurant instead of standing in a retail store. The system in this thesis, however,

cannot rely solely on such information to refine position estimates since the user can

typically undertake any arbitrary combination of postures and motions throughout the

home. Furthermore, it is unreliable to assume that the phone is always similarly orientated

in the pocket of the user at all times.

As already stated, Krumm and Horvitz (2004), use crude motion estimates, derived

from WiFi signal strength variability, to contribute to the accuracy of a HMM-based WiFi

localisation system. That approach is most applicable to the work of this thesis since it

does not rely on consistently repeatable actions in each location or highly calibrated inertial

sensors to predict location. The motion information is merely an aid for the RF-based

location filtering. Unfortunately the work of Krumm and Horvitz (2004) does not indicate
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Label Motion Type Label Motion Type

1 “Downstairs-static” 2 “Downstairs-moving’
3 “Upstairs-static” 4 “Upstairs-moving”
5 “Moving-up-the-stairs” 6 “Moving-down-the-stairs”

Table 7.1: Motion labels for motion prediction test.

the localisation improvement, if any, permitted by the inclusion of motion estimates into

the localisation framework. Furthermore, since our work relies on an RF communication

protocol which does not provide signal intensity readings with resolution as high as WiFi,

it is necessary to borrow from other work by using accelerometers to reliably estimate

motion levels and even motion types.

First it is necessary to consider the localisation scenario to establish the most

appropriate motion detection algorithm. The simplest piece of motion information, a

binary moving/not-moving estimate, would allow more appropriate location predictions.

For example, if the user is moving, there is some probability of a room transition occurring.

If the user is not moving there should be zero probability of a room transition occurring.

If more detailed motion information is available further constraints can be placed on

the transition probabilities. For example, if certain events, such as the use of stairs, is

detectable then informed decisions can be made as to which floor the user is occupying.

Stairs detection alone is enough to theoretically reduce the prediction search-space by

half. Such a constraint on candidate search-space can naturally be realised by the HMM

framework by modifying the transition probabilities according to which floor is most

likely. Hence, the HMM framework can integrate motion information by modifying the

transition probability matrix according to the detected type of motion. As a result, it

is necessary to consider the effect of utilising two types of motion sets available in a

typical home environment; (1) simple binary “moving”/“non-moving” states and (2) more

detailed motion states, such as “moving”/“non-moving”/“moving-up-stairs”/“moving-

down-stairs”.

Before the integration of motion information into the HMM framework is possible,

it is first necessary to quantify the ability to detect such motions. To this end it was

necessary to acquire another set of data in the large-scale test home environment. This

environment presented the ideal test environment since it contained stairs. It should

be noted that stairs are not present in all home environments, hence any performance

improvements which result from the more detailed motion information are not applicable

to all deployment scenarios. To acquire this test data two 5-minute walks were conducted

on two different occasions while logging the usual collection of RF and accelerometer

signals from the test hardware. During the walks voice-recordings were made which noted

the current motion of the user from the list of labels described in Table 7.1.
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As will be presented later, these are the labels which are used for the experiments on

applying HMMs to the motion predictions. These detailed labels can be easily converted

to less detailed labels. For example, binary “moving”/“static” labels can be obtained by

replacing all instances of label 1 and 3 with label 1 for “static” and all instances of labels

2, 4, 5 and 6 with label 2 for “moving”. Hence, with this dataset, both the simple and

detailed approaches to motion detection can be explored.

7.1.1 Binary Moving/Static State Detection

The simplest form of motion detection is the binary “moving”/“static” motion detection.

Krumm and Horvitz (2004) performs discrimination between such motions by analysing

the standard deviation of a moving window of RSSI samples from a single signal. Maximum

probability estimates are used to decide whether the detected signal standard deviation

is the result of a “moving” or a “static” user based on some training data. Hence,

before considering the motion recognition rates using accelerometer signals, it is necessary

to investigate the motion recognition rates possible on phones which do not contain

accelerometers, by utilising only RSSI variability. With the available labelled motion

data an RSSI variability motion recognition technique, similar to that of Krumm and

Horvitz (2004), was implemented by replacing the original labels in Table 7.1 with binary

“moving”/“static” labels. As in earlier experiments, one of the available datasets were

used as the training dataset and the other used as the test dataset. Then the datasets

were swapped and the test repeated. Then the accuracy for each classifier is the mean

accuracy for both test runs.

An algorithm similar to that in Krumm and Horvitz (2004) was implemented to

determine the ability of this system to predict whether the user is moving without using

accelerometers. This algorithm uses the standard deviation of the running window of

samples as the classification feature for a “moving”/“static” radio signal source. A window

length of 10 samples is used. Since the available communication hardware only provides

RSSI signals with extremely low resolution it was decided to use further available signals,

rather than one RSSI signal, as proposed in Krumm and Horvitz (2004). Depending on

the number of connected APs there can be any number of signals available, however, there

is always a minimum of four signals available; AP1 RSSI, AP1 LQ, CRSSI and CID.

Firstly, CID would not be a reliable indicator of motion since it is a categorical signal

which changes in certain locations, but not others. RSSI, LQ and CRSSI are continuous

signals which should exhibit higher levels of variation when the user is moving, but also

when placed in a highly changeable transmission environment, such as when doors are

moving or when placed near reflective surfaces. Hence, signal variability will not be a

completely reliable indicator of movement due to environmental factors.

Figure 7.1(b) illustrates the progression of the state of the user during test data
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Fig. 7.1: RF signal windowed standard deviation, the actual user state progression and
the corresponding LDA state prediction using the windowed standard deviation features.

acquisition and Figure 7.1(a) illustrates the corresponding signal windowed standard

deviation features, normalised for illustration. It can be observed that the Bluetooth R©

RSSI signal frequently does not exhibit an elevated standard deviation feature, even though

motion is occurring. This occurs because the user is far from the BSC and the signal is

saturated to -10. Hence, the LQ and CRSSI signals can allow motion detection from

signal variation when RSSI is saturated. It is difficult to visually infer if the combination

of these features would lead to accurate motion detection. Instead it must be empirically

determined if it is possible, by applying the probabilistic classifiers already considered

to these test features. The reason why only probabilistic classifiers are considered will

become evident when Bayesian filtering is applied to these predictions in Section 7.1.3.

This algorithm improves upon previous work by utilising the windowed standard deviation

feature of more than one signal to allow motion detection with hardware which has lower

RSSI resolution than that available in prior work.

When considering the LDA predictions in 7.1(c) it is apparent that numerous

misclassifications are possible. This is an issue with the fact that the variability of the RF

signals is the result of environmental interference as well as user movement. There is also

the issue that predictions, if they do occur, are delayed compared to the actual states.

This is the result of producing predictions from the standard deviation of a window of

the last 10 RF samples, which is equivalent to the last 20 seconds of data. To address

these deficiencies of the windowed RF signal standard deviation approach it was decided
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Fig. 7.2: Accelerometer windowed standard deviation, the actual user state progression
and the corresponding LDA state prediction using the windowed standard deviation
features.

to use the standard deviation of the accelerometer signals as the input features to the

motion detection classifiers. This should be a more reliable indicator of movement since

the accelerometer signals are not susceptible to environmental interference; only phone

movements. Furthermore, it will reduce prediction lag since the accelerometer samples

are available at the BSC at a much higher rate. Every accelerometer channel is filtered

and decimated by the mobile phone before being sent back to the BSC to reduce the

amount of data sent on each query. Hence, each accelerometer channel produces samples

at a rate of approximately 10Hz. As a result, producing predictions from the windowed

standard deviation of the accelerometer signals will reduce prediction lag.

Figures 7.2(a) and 7.2(b) illustrate the windowed standard deviation of the accelerom-

eter channels over a window of 20 samples and the actual state evolution respectively. It

can easily be observed that the accelerometer standard deviation is at a minimum when

the user is static and high when the user is moving. Hence, the LDA classifications in

Figure 7.2(c) illustrate that almost perfect motion detection is theoretically possible with

the accelerometer standard deviation features.

Table 7.2 allows a direct comparison between motion detection using RF signals and

accelerometer signals. The accuracy metric employed this time is the Mean Recognition

Rate (MRR) for each state. This is analogous to the General Accuracy (GA) metric

considered in Chapter 5. This accuracy metric is employed because the recognition of a

particular state will switch how the HMM handles predictions, hence, the ability to detect
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NBC LDA QDA GMM

RF Signal Std 0.613 (0.02) 0.607 (0.00) 0.642 (0.06) 0.640 (0.05)
Accelerometer Std 0.920 (0.03) 0.907 (0.05) 0.906 (0.04) 0.930 (0.01)

Table 7.2: MRR of movement type for different feature extraction techniques and
classifiers. Values indicate mean values across both datasets and parentheses indicate
standard deviations.

each state is equally important. This accuracy metric also negates the effect of a large

sample size for a particular state, which leads to an accuracy measure more robust to the

quantity of data available. From the table it can be seen that using the accelerometer

signals allows significantly higher motion detection for all types of classifiers. The highest

accuracy occurs with the GMM classifier, which now uses 3 components for each class and

is trained using GEM.

Previous work by Krumm and Horvitz (2004) obtains correct predictions 84.5% of

the time when using only WiFi signal strength variability, which increases to correct

predictions 87.4% of the time with the use of Bayesian filtering. Experiments with our

hardware, however, were only able to obtain maximum accuracy of 64.2% with signal

strength standard deviation. This is for two reasons; firstly the signals do not have

the resolution and range of variation necessary to allow signal variations to occur in

all locations in the house and secondly the the RF signals can vary as a function of

environmental factors as well as user motion. This work also uses a more challenging

accuracy metric, the Mean Recognition Rate (MRR). Krumm and Horvitz (2004) use

a classification success rate which reduces the impact of rarely occurring classes on the

estimated accuracy. Hence, classifiers which specialise on predicting the class which has

more data will exhibit higher accuracy while actually being less able to predict infrequently

occurring classes. This work finds that when using the more relevant, but challenging,

MRR, higher recognition rates are possible using accelerometer data.

7.1.2 Detailed Movement Information

Simple binary motion predictions will allow HMM location predictions which incorporate

knowledge of the user’s mobility. Intuitively, the availability of more detailed movement

information should allow more informed location predictions. Hence, it should also be

investigated if further useful movement information can be derived from the available

signals. Previous work investigated the possibility of using accelerometer signals to detect

whether a user is walking on flat ground, moving up or down stairs or moving up or down

a slope (Ibrahim et al., 2008, Kilmartin et al., 2009). Such techniques are relevant to this

work since a subject sometimes needs to traverse stairs to reach certain locations. The

ability to detect such events may lead to more accurate location predictions. Hence, the
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NBC LDA QDA GMM

RF Signal Std 0.344 (0.06) 0.327 (0.04) 0.313 (0.02) 0.298 (0.01)
Accelerometer Std 0.639 (0.02) 0.607 (0.02) 0.482 (0.07) 0.494 (0.02)

Table 7.3: MRR of movement type from the four movements; “static”, “moving”,
“moving-up-the-stairs” and “moving-down-the-stairs”, using RF and accelerometer
variability.

approach to detecting stairs from accelerometer signals should be empirically evaluated

for efficacy in this realistic home deployment.

Before the approach adopted by Ibrahim et al. (2008) is implemented, it should be

investigated if the standard deviation feature classifiers presented in the previous section

will allow the detection of stair-crossing events. To generate data with the relevant labels

it was necessary to convert the original high-detail motion data to medium-detailed data

by replacing certain labels. The required labels are

1. “Static”

2. “Moving”

3. “Moving-up-the-stairs”

4. “Moving-down-the-stairs”.

Hence, to acquire such labelled data it was necessary to replace labels 3 and 4 with labels

1 and 2 respectively and replace labels 5 and 6 with labels 3 and 4 respectively in the

original datasets.

Table 7.3 highlights the MRR for the four classes outlined. It can be observed that the

recognition rates are significantly lower than those in Table 7.2 for all classifiers and feature

extraction techniques. As before, using features extracted from the RF signal windowed

standard deviation results in significantly lower recognition rates than when using the

accelerometer windowed standard deviation features. Furthermore, NBC exhibits the

highest recognition rates and the more sophisticated density estimation techniques such

as QDA and GMM result in lower motion recognition rates. This indicates that the

windowed variability of the RF signals and the different accelerometer channels should be

modelled independently.

Even though the ability to discriminate individual motion types using only accelerom-

eter variability has been demonstrated, the recognition rates would need to be extremely

high to enable an improvement to the already relatively accurate RF location predictions.

Table 7.4 shows the confusion matrices for the NBC algorithm based on both RF signal

and accelerometer standard deviation. It can be observed from Table 7.4(a) that using

RF features leads to a high bias towards the “moving-up-the-stairs” class, resulting in the

199



CHAPTER 7. TIME-VARYING HIDDEN MARKOV MODELS

poor recognition rates highlighted above. Table 7.4(b), on the other hand, confirms that

using accelerometer features allows excellent ability to discriminate between a “static”

state and all other states. There is, however, a great deal of confusion between “moving”,

“moving-up-the-stairs” and “moving-down-the-stairs”. This is because, even though there

is more variation in the accelerometer’s z-axis when stairs are traversed, there is still not

sufficient variation to allow unique identification of such events. Hence, the variation of

the accelerometer signals are approximately equal for all states which involve movement.

(a) RF Signal Standard Deviation
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Static 0.38 0.13 0.42 0.07
Moving 0.16 0.17 0.60 0.07
Moving-Up 0.00 0.00 1.00 0.00
Moving-Down 0.12 0.06 0.82 0.00

(b) Accelerometer Standard Deviation
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Static 0.89 0.10 0.00 0.01
Moving 0.01 0.49 0.22 0.28
Moving-Up 0.00 0.32 0.66 0.02
Moving-Down 0.00 0.44 0.09 0.46

Table 7.4: Confusion matrices for the four movements, “static”, “moving”, “moving-up-
the-stairs” and “moving-down-the-stairs”.

To address this issue it was decided to adopt an alternative approach which describes

the accelerometer signal resulting from a subject’s gait at every instant of time by its

frequency components, rather than just the variation levels. Ibrahim et al. (2008) use the

Fast Fourier Transform (FFT) to estimate the frequency components of the accelerometer

signal over a window of the previous 8 seconds. Then a Discrete Cosine Transform (DCT)

is applied to the logarithm of the resultant frequency components to represent the result

of the FFT more efficiently, i.e. with less features. The outputs of the DCT are taken as

the input features for a GMM classifier. In this work the DCT step is not necessary since

there are fewer FFT components due to the lower accelerometer sampling rate. Ibrahim

et al. (2008) perform classifications on data compiled from focused walking tests. As a

result they can use a long window length to maximise the recognition rates. This work,

however, cannot use such long FFT windows since it is focused on recognising motion

type in the presence of persistently changing motion. When motion type can frequently

change, lower recognition rates are the result of higher lag due to long window lengths.

Hence, for realistic motion type recognition, only short FFT windows are used and the

DCT stage is not necessary.

Figure 7.3(a) illustrates the frequency spectrum features extracted from the training

dataset for an FFT window length of 20 samples for all accelerometer channels. Since

the FFT spectrum is symmetrical we only need 10 samples to represent the features for

each channel. The darker the shade of red in the figure, the larger the logarithm of the

FFT component. Figure 7.3(b) illustrates the progression of the state of the user during
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 (a) Accelerometer FFT Frequency Components
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Fig. 7.3: Accelerometer frequency components, the actual user state progression and
the corresponding state prediction using the accelerometer frequency components. This
example uses a FFT window length of 20 samples.

the acquisition of this data. It is difficult to visually infer if the combination of the 30

features allow unique representation of a given class. Figure 7.3(c), however, illustrates

the predictions possible with a NBC classifier. It can be observed that the “moving” and

“static” classes are easily detected and the going up and down the stairs classes cause

misclassifications.

Since the recognition rates are dependent on FFT window length, as a result of

frequency detection ability and prediction lag, it is necessary to consider the influence

of FFT window length on recognition rates for each classifier. The number of samples in

the FFT window was varied and the MRR for the probabilistic classifiers was noted. Figure

7.4 illustrates the variation of MRR as a function of FFT window length. The optimal

FFT window length is 25 samples, followed closely by a window length of 15 samples. A

window length of 25 samples corresponds to just over 2 seconds of accelerometer data.
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Fig. 7.4: MRR for the four movement types; “static”, “moving”, “moving-up-the-stairs”
and “moving-down-the-stairs” as a function of the FFT window length.
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Static 0.87 0.13 0.00 0.00
Moving 0.01 0.81 0.14 0.03
Moving-Up 0.00 0.25 0.72 0.03
Moving-Down 0.00 0.51 0.11 0.38

Table 7.5: Confusion matrix for the optimal frequency component classification method;
NBC with an FFT window length of 25 samples.

Table 7.5 shows the confusion matrix for this optimal algorithm. When comparing this

with the accelerometer variance algorithm results in Table 7.4(b) it can be seen that

there are higher recognition rates for “moving” and “moving-up-the-stairs” classes. There

is, however, more confusion for the “moving-down-the-stairs” class, which is frequently

misclassified as either “moving” or “moving-down-the-stairs”.

The low ability to discriminate between “moving-down-the-stairs” and other moving

classes, suggests that it might be possible to improve recognition rates by grouping

the “moving-up-the-stairs” and “moving-down-the-stairs” classes into one class, namely

“using-the-stairs”. This will reduce the effect of confusion between “moving-down-the-

stairs” and “moving-up-the-stairs”. Then crossing the stairs could be used to predict

which floor the user is on, which can be used by the HMM. It is, however, unreliable to

assume which floor the subject resides on, because an erroneous detection of the “using-

the-stairs” class will change which floor the person is on. Instead information about

whether someone is crossing the stairs can be used to indicate that the subject is likely

to transition to a room close to the stairs, which will reduce location prediction errors
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Fig. 7.5: MRR for the three movement types; “static”, “moving” and “using-the-stairs”
as a function of the FFT window length.
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Static 0.87 0.13 0.00
Moving 0.01 0.81 0.18
Using-Stairs 0.00 0.32 0.68

Table 7.6: The three-state confusion matrix for the optimal frequency component
classification method; NBC with an FFT window length of 25 samples.

without introducing an excessively high sensitivity to erroneous predictions of movement

type. The available datasets were re-labelled to produce a dataset with the labels:

1. “Static”

2. “Moving”

3. “Using-the-stairs”

Figure 7.5 shows that, for the available datasets, the peak recognition rates occur

again for the NBC with a 25 sample FFT window length. The confusion matrix for this

dataset can be found in Table 7.6. The MRR for this motion recognition technique is

now 79% which is an improvement over the 70% for the four-movement discriminator.

Since reducing the number of classes increases the overall recognition rate it is necessary

to investigate if it is possible to obtain higher ability to detect stairs-use by reducing the

number of alternative states. To this end the states of the available datasets was reduced

to the states:

1. “Using-the-stairs”
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Fig. 7.6: MRR for the two movement types; “using-stairs” and “all-other-motions” as a
function of the FFT window length.
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Using-Stairs 0.99 0.01
All-other-motions 0.41 0.59

Table 7.7: The two-state confusion matrix for the optimal frequency component
classification method; NBC with an FFT window length of 10 samples.

2. “All-other-motions”

When considering Figure 7.6 and Table 7.7 it can be seen that the optimal MRR is 79%.

This technique almost never fails to detect when the stairs are being used. This, however

occurs with the disadvantage that it frequently misclassifies the other motions as stairs

crossings. This is a result of the fact that stair crossing events occur with some of the

same frequency components as when walking is occurring. The result is that this technique

has the same MRR as the three-motion-state classifier, even though it has fewer states

and should actually have higher accuracy. Hence, the three-motion-state classifier has

better performance when one considers that it has the task of discriminating between

three distinct classes rather than 2 somewhat similar classes.

It has been illustrated that the use of accelerometer standard deviation levels are an

extremely effective indicator of whether a user is moving when compared to RF signal

standard deviation. When more detailed motion information is necessary, however, the

use of accelerometer standard deviation information is not sufficient. Previous work on gait

recognition from accelerometer signals has been applied to the task of recognising the type
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of motion the user is undertaking, with some success. Unlike previous work, this work

is focused on recognising motion type in the realistic situation in which the movement

type can change at any time, rather than with a dataset in which the user performs a

specified action for a prolonged period of time. Furthermore, this work suggests that an

independent feature modelling technique such as a Naive Bayes Classifier performs better

than a conditionally dependent feature probabilistic modelling technique employed in the

past, such as GMM. Further work, such as Kilmartin et al. (2009), uses artificial neural

networks and SVMs on similar datasets for motion recognition, which implicitly ignore

dependencies between features. We, however, do not consider such approaches since the

probabilistic classifiers lend themselves to HMM implementation.

7.1.3 HMM Motion Filtering

HMMs allow the production of sequences of predictions which are globally more likely than

direct sample-by-sample predictions. As a result, the predicted sequence of internal HMM

states are usually more accurate than a sequence of direct probabilistic classifications.

Similar to location predictions in previous sections, HMMs can also be used to apply

Bayesian filtering to user motion predictions, leading to more sensible state changes and

more accurate state predictions as a result. The gait recognition work considered thus

far has been unable to exploit Bayesian filtering, since the datasets are not sequentially

arranged; they merely produce motion estimates from the mean accuracies of individual

detection tests on partitioned data. To our knowledge, the best example of applying

HMMs to activity recognition can be found in Shi et al. (2009). That work uses FFT

feature extraction for both accelerometer and gyroscope sensors and indicates that HMMs

produce higher accuracies than the direct classifiers; cascaded neural networks and SVMs.

That work, however, also uses partitioned motion datasets in which motions do not change

in a realistic sequence. No information about how HMMs are applied to the data or how

they produce such high accuracies on partitioned datasets is presented.

This work attempts to improve the motion recognition rates by applying Bayesian

filtering, in the form of the already presented HMM, to the motion datasets already

considered. As before, the Viterbi algorithm is used to decode the sequence of hidden

motion states which resulted in the sequence of sensor observations. Now the HMM

model λ = (A,B,π) is derived from the available motion data. The transition probability

matrix, A, is derived from the probability of transitioning from one motion type to

another. For example, it should be impossible to change from the state “static” to the state

“moving-up-the-stairs” without first transitioning to the state “moving”. The observation

probability model, B, describes the relationship between the frequency component or

standard deviation features and the corresponding probability of occupation of a given

class, which is available from the probabilistic classifiers considered already. A and B are

205



CHAPTER 7. TIME-VARYING HIDDEN MARKOV MODELS

Static

Moving

 (a) LDA Movement Predictions

 

 

Predicted Room
Actual Room

0 500 1000 1500 2000 2500

Static

Moving

 (b) HMM Movement Predictions using the LDA Measurement Model

Sample Number

 

 

Predicted Room
Actual Room

Fig. 7.7: Progression of the predicted state-sequence for (a) the original LDA classifier
and (b) the Viterbi decoding of the state-sequence which uses the LDA density estimation
technique.

both derived from the training dataset. The prior probability, π, is simply assumed to be

equal across all states.

To illustrate the effect of Bayesian filtering on movement predictions, Figure 7.7

compares the un-filtered predictions from Figure 7.2 with the predictions resulting from

Viterbi decoding of the state sequence. It can be observed that the noisy transitions present

in Figure 7.7(a) do not occur in the Bayesian-filtered version in Figure 7.7(b). Hence, there

will be less erroneous predictions in the Bayes’ filtered predictions. At this point it should

be noted that it is equally valid to estimate the binary “static”/“moving” state from the

accelerometer frequency components as it is from the accelerometer standard deviation.

Figure 7.8 illustrates that similar, if not slightly higher, recognition rates are possible

when applying the HMM classifier to the frequency component features rather than the

standard deviation features. It should also be noted that GMM is the optimal density

estimation technique when standard deviation features are employed, but are extremely

unreliable when frequency component features are used. This suggests that the standard

deviation of the three accelerometer axes are covariate features which are best modelled

by a specialising multi-modal density estimation technique. The frequency component

features, on the other hand, are better modelled by more generalising density estimation

techniques.

Now, by applying HMMs to the binary “static”/“moving” classification task using

accelerometer standard deviation features, the peak recognition rate increases from 93% in

Table 7.2 to 94.3% using GMMs. By using the frequency components of the accelerometer
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Fig. 7.8: Comparison of the MRR when (a) accelerometer standard deviation and (b)
frequency domain features are used, as a function of standard deviation and FFT window
lengths respectively.
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Fig. 7.9: MRR for (a) “stairs” versus “all-other” motion classifications and (b) “static”
versus “moving” versus “stairs” motion classifications, as a function of FFT window length.
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Using-Stairs 0.88 0.12
All-other-motions 0.19 0.81

(b) Static Vs. Moving Vs. Stairs
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Static 0.88 0.12 0.00
Moving 0.04 0.84 0.12
Using-Stairs 0.00 0.10 0.90

Table 7.8: Confusion matrices for the optimal classifiers illustrated in Figure 7.9.

signals the peak recognition rate rises to 95% for HMMs using the QDA density estimation

technique. Hence, in the case of binary movement type, HMMs allow an improvement in

motion recognition rate by constraining the state sequence. Next the effect of HMM-

constrained classifications on datasets with more varied and numerous motion types shall

be considered. Previously, the “using-the-stairs” versus “all-other-motions” classifier was

capable of detecting the use of stairs extremely reliably (see Table 7.7). This was, however,

achieved with a reduced ability to detect the “all-other-motions” class. By using HMMs

it is possible to reduce the effect of over-specialising on the “using-the-stairs” class by

imposing transition probabilities which recognise the relatively small time spent in that

state and as a result the small probability of remaining in that state at any time. Figure

7.9(a) illustrates the peak recognition rate possible with the classification of these motions

by using HMMs. It can be seen that the peak recognition rate is now 85% as opposed to

the 79% resulting from the un-filtered classifier in Figure 7.6 and Table 7.7.

85% recognition rate is still not particularly high for a two-class problem such as this.

As before, the limited discrimination ability between the two classes can be attributed to

the similarity between the frequency components of the “using-the-stairs” class and some

of the motions which make up the “all-other-motions” class. This “using-the-stairs” versus

“all-other-motions” approach was previously adopted due to the inability to detect the use

of stairs in the three-state motion detection technique, which attempted to discriminate

between “moving”, “static” and “using-stairs”. By using the HMM framework we can

reduce the confusion between “using-stairs” and “moving” classes evident in Table 7.6 by

imposing relevant transition probabilities. Figure 7.9(b) and Table 7.8(b) show the peak

three-state recognition rates and corresponding confusion matrix respectively. It is evident

that a more evenly distributed confusion matrix occurs, with less confusion between “using-

stairs” and “moving” than in Table 7.6. Hence, by using the HMM framework it is possible

to detect the use of stairs along with a moving and a stationary subject without needing

to use a dedicated stairs detection technique. Hence, it is now possible to achieve a MRR

of 87% when classifying these three states, which is even higher than the recognition rate

for the two states, “using-the-stairs” and “all-other-motions”.
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Fig. 7.10: MRR for the four-state HMM predictions.
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Static 0.88 0.11 0.01 0.00
Moving 0.03 0.80 0.12 0.05
Moving-Up 0.00 0.24 0.76 0.00
Moving-Down 0.00 0.28 0.01 0.71

Table 7.9: Confusion matrix for the recognition of the four motion states, “static”,
“moving”, “up-the-stairs” and “down-the-stairs”, when the HMM framework is adopted.

The ability to detect the use of stairs allows the reduction of the room prediction

possibilities by emphasising rooms adjacent to the stairs with the transition probability

matrix. The ability to detect the direction in which the stairs are being traversed allows

further modification to the transition probability matrix, according to which floor the

subject is occupying. Hence, it is again necessary to consider the accuracies of the four-

state, “static”, versus “moving” versus “up-the-stairs” versus “down-the-stairs”, classifier

proposed in the previous section. By using the HMM approach it is possible to achieve an

increase in the peak recognition rate to 79% in Figure 7.10 over the un-filtered recognition

rate of 70% in Figure 7.4. The confusion matrix in Table 7.9 demonstrates a better ability

than that demonstrated in Table 7.5 to detect whether the movement is up the stairs

rather than down the stairs, by using HMMs.

A significant issue with using this technique of detecting which floor the user resides

upon is that it is extremely sensitive to prediction errors. For example, if the most recent

detection of a stairs crossing erroneously indicated that the subject was walking down the
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Fig. 7.11: The influence of HMM Bayesian-filtering on the recognition rates for the six
state motion classifications.

stairs instead of up the stairs, it would suggest that the user was downstairs instead of

upstairs. This would mean that when using an “improved” HMM which utilises this floor

information, all location predictions since the last stairs prediction will be undoubtedly

incorrect. This inability to reliably infer the correct floor can be addressed by creating new

states. These states contain not just motion information, which is directly derivable from

accelerometer frequency components (such as “moving”, “static” or “using-the-stairs”)

but also information which cannot be derived from accelerometer signals alone, such as

which floor the user is inhabiting. As already noted, the original motion states in Table

7.1 already contain this information.

However, with only accelerometer signals it would be impossible to discriminate

between certain states. For example, it is impossible to determine if a subject is in

the state “downstairs-moving” instead of “upstairs-moving” without further information.

Fortunately, by incorporating memory of the previous predictions it is possible to reduce

the current possible states based on the previous states. For example, it is impossible

for the subject to be “upstairs-moving” without first being either in the state “upstairs-

static” or “moving-up-the-stairs”. Similarly the subject cannot be in the state “downstairs-

moving” without first inhabiting either the state “downstairs-static” or the state “moving-

down-the-stairs”. Conveniently, this relationship between the different states can be

encoded in the transition probability matrix, A, of a HMM. The probability of getting

to any of the motion states from any other motion state can be empirically derived from

the training data. Hence, the use of HMMs allows the prediction of motion type and

general location states which would be otherwise extremely unreliable on a sample-by-

sample basis. This is achieved by introducing classes which explicitly contain this general

location information and realising their relationship with the transition matrix.

Figure 7.11 highlights the peak accuracies possible for the detection of these six motion
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Static-Downstairs 0.69 0.03 0.20 0.04 0.03 0.01
Moving-Downstairs 0.01 0.37 0.01 0.29 0.24 0.09
Static-Upstairs 0.26 0.07 0.60 0.05 0.02 0.01
Moving-Upstairs 0.02 0.41 0.04 0.28 0.17 0.08
Moving-Up-the-Stairs 0.00 0.30 0.00 0.10 0.54 0.06
Moving-Down-the-Stairs 0.00 0.22 0.00 0.09 0.12 0.57

Table 7.10: Confusion matrix for the application of un-constrained classifiers to the
six-state motion classification problem.
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Static-Downstairs 0.73 0.08 0.15 0.03 0.01 0.00
Moving-Downstairs 0.02 0.63 0.01 0.24 0.08 0.03
Static-Upstairs 0.20 0.04 0.63 0.12 0.00 0.00
Moving-Upstairs 0.03 0.09 0.04 0.71 0.07 0.06
Moving-Up-the-Stairs 0.00 0.05 0.00 0.05 0.57 0.33
Moving-Down-the-Stairs 0.00 0.06 0.00 0.00 0.07 0.88

Table 7.11: Confusion matrix for the application of HMM classifiers to the six-state
motion classification problem.
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Fig. 7.12: Progression of the predicted and actual motion state for (a) the un-constrained
predictions and (b) the HMM predictions.

states when using both (a) classifiers applied directly to the data and (b) HMM-based

classifiers applied to the data. It can be seen that 69% peak recognition rate is possible

with the use of HMMs, as opposed to only 51% with the direct application of the classifiers

to the accelerometer frequency component features. This is a 35% improvment in motion

recognition rate. To understand why such low recognition rates are the result of the un-

constrained classifiers, it is necessary to consider Table 7.10. This confusion matrix shows

how there is a great deal of confusion between the states “static-downstairs” and “static-

upstairs” and the states “moving-downstairs” and “moving-upstairs”. This is because

accelerometers are not indicative of which floor the user currently resides upon. When

HMMs are used to constrain the state transitions the result can be seen in the confusion

matrix in Table 7.11. There is now less confusion between all states.

The progression of state predictions compared to the actual state progression for both

the un-constrained and HMM constrained classifications is illustrated in Figure 7.12. The

fluctuations in the state predictions in Figure 7.12(a) is the result of not having enough

distinct signal information in each class to reliably predict a single class. Conversely,

Figure 7.12(b) uses temporal, as well as signal information to produce visually more

sensible predictions. Hence, by adopting this approach, the floor recognition rates increase

to 68% by using HMMs instead of 49% without using HMMs.1 The main limitation to

the accuracy of the HMM technique is the ability to discriminate between “moving-up-

1The floor recognition rates can be derived from the mean of the individual recognition rates for the
states; “static-downstairs”, “moving-downstairs”, “static-upstairs” and “moving-upstairs”.
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the-stairs”, “moving-down-the-stairs” and all other classes. Erroneously high observation

probability for either class results in the Viterbi decoded state sequence progressing down

an incorrect path. It could be argued that using higher-order HMMs would reduce

instances of instantaneous transitions from stairs to a “moving” state and back to the

stairs again, such as that evident at sample 1050 in Figure 7.12(b). However, the

higher-order HMMs presented in Section 6.2 have been evaluated on this data, but with

no improvement evident over first-order HMMs. By using the third order HMM, the

instantaneous transition at sample 1050 was merely delayed rather than avoided. In fact,

to avoid such an error indefinately, the employed HMMs would need to have an extremely

high order to keep a memory of the likelihood of making such a sequence of transitions,

which is computationally intractable, especially since accelerometers have such a high

sampling rate (10 discrete observations per second).

7.2 Online-Varying Transition Probabilities

Now that predictions with respect to the motions of the user have been made available,

the HMM framework can be modified to include this information. Krumm and Horvitz

(2004) used binary motion classifications to inform the transition matrix in the HMM.

The transition matrix was constructed from the set of locations the user is likely to be

able to reach in a given period of time based on the speed of the user. That approach

had the downside that it based the transition matrix entirely on assumptions about the

speed of travel of the user. It was assumed that, when the user is in the “moving” state,

he or she would move at a probabilistically derived speed, with a maximum speed of

10.22 meters/second. It did not account for the fact that the user could move within their

current room. In this work, on the other hand, we avoid the necessity of such assumptions.

Instead of assuming what speed the user moves at given a particular state, we take the

approach of empirically deriving the room transition matrix for each motion state.

The empirical transition matrix derivation is conducted using the training data room

labels and the states predicted from the accelerometer data obtained during the training

phase. The movement states for the training and test data are not available a priori ;

instead they must be estimated, using all of the accelerometer data acquired in the

previous section as HMM classifier training data. For each detectable motion state in

the training data, a different room transition probability matrix is derived from the

room transitions which occurred during all instances of that motion state. Once a

room transition probability matrix has been derived for each motion state, a complete

intra-house movement model can be constructed as illustrated in Figure 7.13. This

model has two phases; firstly, the motion state predictions must be produced using the

techniques described in the previous section. Secondly, for each RF signal sample the
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Fig. 7.13: Intra-house movement model which takes into account the RF signals, the
motion state of the subject and the room transition tendencies of the subject during a
given motion state.

room prediction is executed by the Viterbi Room State-Sequence Decoder which uses a

transition probability matrix which is selected based on the type of detected motion at

that instant of time.

It is important to note that the accelerometer data and the RF data are produced

at different rates. RF data is produced at a rate of 0.5 Hz and the accelerometer data is

produced at a rate of approximately 10 Hz. Since the motion predictions are also modelled

with an HMM, it is inappropriate to produce motion predictions only when needed by

the Viterbi Room State-Sequence Decoder. Instead it is necessary to produce motion

predictions for every available accelerometer sample. Then, approximately 1 out of every

20 motion predictions are used for the selection of room transition matrix, which is used in

the production of each new room prediction. Another important issue with this technique

is the effect of motion prediction accuracy on the room prediction accuracy. If an incorrect

motion prediction occurs, it will almost certainly result in incorrect room prediction. For

example, if a “static” state is erroneously predicted it will prevent the room prediction
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from changing, causing incorrect room predictions. Hence, HMM localisation techniques

which attempt to increase localisation accuracy by discriminating between more motions

could actually cause more incorrect room predictions due to their lower mean motion

recognition rates. To determine the benefit motion detection has on room predictions,

three of the motion prediction techniques presented in the previous section are considered;

binary motion (“static” versus “moving”), three-state (“static” versus “moving” versus

“stairs”) and six-state (“static-downstairs” versus “moving-downstairs” versus “static-

upstairs” versus “moving-upstairs” versus “moving-up-the-stairs” versus “moving-down-

the-stairs”). The stairs versus all and four-state methods are not considered due to their

relatively low recognition rates.

7.2.1 Binary Motion Predictions

The use of binary motion predictions in the production of Viterbi decoded room sequences

necessitates derivation of two motion-dependent transition matrices from the training data.

Figure 7.14 compares (a) the static and (b) the dynamic transition matrices for the binary

motion HMM room predictor. The static room transition matrix generally has higher

magnitude diagonal elements. The only exceptions are for rooms 4 and 7. The high

probabilities of transitioning away from rooms 4 and 7 during a “static” motion state is

due to the fact that rooms 4 and 7 are intermediary rooms between other rooms and are

very rarely occupied in a “static” state. Hence there is very little training data for a static

subject in rooms 4 and 7, and any transitions from rooms 4 and 7 in the “static” state are

unrepresentative of real movements. The unexpectedly high probabilities of transitioning

away from certain rooms in the static transition probability matrix is due to the incorrect

classification of motion states for the training data.

The static subject room transition matrix is the most similar to the original transition

matrix in Figure 6.5 since the subject was static for the majority of the time spent in the

environment. The moving subject room transition matrix, on the other hand, has lower

intensity diagonal elements, which confirms that the subject is less likely to remain in a

particular room if he/she is moving. This approach, however, still permits the subject to

remain in a given room with a probability of approximately 0.5 to 0.7, which improves on

previous work which insisted on a transition when motion was detected.

The HMM configuration illustrated in Figure 7.13 is first implemented using the binary

motion predictor and the transition matrices illustrated in Figure 7.14. The Viterbi room

sequence decoder is implemented using both the raw and the augmented room probability

estimates, as described in Section 6.2. The motion-based localisation performance for

the raw density estimation can be seen in Table 7.12 and for the augmented density

estimation in Table 7.13. Figure 7.15 provides a comparison of the performance of the

motion-based HMM classifier with the performance of the classifier which does not use

215



CHAPTER 7. TIME-VARYING HIDDEN MARKOV MODELS

Fig. 7.14: Transition probability matrices for when the user is (a) static and (b) moving.

NBC LDA QDA GMM

EA 0.71 0.83 0.83 0.80
PDIF 1.75 1.36 1.57 1.67
MTD 4.55 4.61 3.78 3.99

Table 7.12: Localisation performance for the binary motion-dependent HMM classifier
using raw RF data density estimates.

NBC LDA QDA GMM

EA 0.79 0.86 0.86 0.86
PDIF 1.31 1.20 1.55 1.57
MTD 4.58 3.73 4.27 4.18

Table 7.13: Localisation performance for the binary motion-dependent HMM classifier
using augmented density estimates.
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Fig. 7.15: Performance comparison for original raw HMM (blue), original augmented
HMM (red), binary motion-based raw HMM (green) and binary motion-based augmented
HMM (black).

motion information. In this figure, the blue and green markers indicate the original raw

HMM and the motion-based raw HMM classifiers respectively. The red and black markers

indicate the performance of the original augmented and the motion-based augmented

HMM classifiers respectively. As would be expected, the augmented motion-based HMM

classifiers perform better than the raw motion-based HMM classifiers. However, the only

cases in which including motion information increases performance is for the raw QDA

HMMs and augmented NBC HMMs. For these classifiers, the availability of motion

information reduces the Mean Transition Delay (MTD). For all other classifiers, the

motion-based online-varying HMMs have minimal effects on performance.

This relatively low localisation performance increase indicates that the binary motion

predictions contribute very little to the localisation framework. The binary motion

information available from the accelerometer signals offer little extra location indicative

information than the available RF signals. Since the RF-based location predictions

are now dependent on motion predictions, they are very sensitive to incorrect motion

predictions. To investigate if the ability to detect the use of stairs contributes to

localisation performance, the use of the three-state motion predictor as an input to the
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Fig. 7.16: Performance comparison for original raw HMM (blue), original augmented
HMM (red), three-state motion-based raw HMM (green) and three-state motion-based
augmented HMM (black).

transition matrix selection block is considered.

7.2.2 Three-State Motion Predictions

The motion-based HMM classifier in Figure 7.13 is now implemented using a three-state

motion detector. Hence, the training data is now used to derive the room transition

matrices for three motion states; “static”, “moving” and “stairs”. As before, the scatter

plot in Figure 7.16 compares the performance of the three-state motion-based HMM

localisation technique with the non-motion-based technique for both raw and augmented

room probability density estimates. This figure indicates that the use of three-state motion

predictions does not allow localisation performance higher than when binary motion

predictions are used. In fact, there are reductions in performance for the raw QDA HMMs,

augmented NBC HMMs and augmented LDA HMMs. Hence, the ability to recognise the

extra motion state does not permit higher localisation accuracy.

The most likely reason the availability of motion predictions does not contribute to

localisation performance is the misclassifications of motion states for both the training and

test data. It is impossible to get reliable motion labels for the training and test data since it
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Fig. 7.17: Comparison of predicted stairs use from the three-state motion classifier and
the actual stairs transitions deduced from the training data labels.

is impractical to require the user to voice annotate every single motion change throughout

a given day. Room transitions were easily detectable for the long-term deployment due to

the availability of the RFID labelling technique, however, there is no automatic technique

for labelling motion states. Instead the motion labels for both the training and test RF

localisation data have to be generated using the motion classifiers described in the previous

section, using all of the available motion data as the motion training data. Hence, both

the training and test RF data are prone to motion state errors. As a result, the transition

probability matrices are not exactly as would be expected for a given state.

Since there are no motion labels available for the long-term localisation data it is

difficult to quantify the frequency of incorrect motion classifications. It is, however,

possible to detect the instances of stairs-use by processing the labels of the training and

test data. For example, a transition from room 4 to room 7 corresponds to walking up

the stairs and transitioning from room 7 to room 4 corresponds to walking down the

stairs. Figure 7.17 compares the instances of actual stairs use, as derived from the first

5000 samples of the training data, and the stairs detected from the accelerometer data

using the HMM framework as described in the previous section. It can be observed

that stairs detections are frequently incorrect. In fact only 36% of stairs detections are

actually correct. Hence, generating transition matrices from motion predictions which are

so frequently incorrect will lead to transition matrices which have little correspondence

with their intended function. For example, transition matrices for stairs detection should

have high probability of transitioning to either rooms 4 or 7.

If the stairs state is detected at incorrect times for the training data, the transition

probability matrices will not constrain the predictions to rooms 4 or 7 when stairs are

detected. This effect can be confirmed when viewing Figure 7.18(c) which, amongst other

things, has a relatively high probability of transitioning from room 7 to room 1 when stairs

are detected. It does, however, correctly identify that there should be a high probability

of transitioning from room 4 to room 7 when stairs are detected, suggesting that there

are high detection rates for ascending the stairs. Regardless, the fact that there are high

probabilities for transitions between any rooms besides 4 and 7 when stairs are detected
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Fig. 7.18: Room transition probability matrices derived from the training data for the
three states, (a) “Static”, (b) “Moving” and (c) “Stairs”.

confirms that the false detection of stairs is extremely frequent and will lead to incorrect

room transition constraints during Viterbi decoding. Hence, the detection of stairs also

does not positively contribute to room recognition accuracy.

7.2.3 Six-State Motion Predictions

The final consideration for the efficacy of motion-based HMM classifications is if

the availability of floor predictions from the accelerometers contributes to localisation

performance. As before, the motion-based HMM classifier illustrated in Figure 7.13 is

implemented, but with the six-state motion predictor and 6 corresponding transition

matrices. Again, the performance of this motion based technique can be viewed in Figure

7.19. It can be seen that, even though augmented LDA HMMs which utilise 6 state motion

information have increased performance over the 3 state technique in Figure 7.16, neither

it or any other classifiers have performance improvement beyond the classifiers which do

not incorporate motion information.

Upon considering the ability of the six-state motion predictor to recognise stairs in

Figure 7.20, it is understandable why an increase in accuracy is not possible with this

technique. Compared to the three-state predictor in Figure 7.17, this technique over-

predicts stairs, while still only producing correct stairs predictions 36% of the time. Hence,

this technique is unable to reliably predict which floor the user is on. This unreliability

is evident in Figure 7.21(c) which should have high probabilities of remaining in rooms 8,

9, 10, 11, 12 and 13, but instead has zero probability of remaining in rooms 10 and 12.

This indicates that the floor predictions were frequently incorrect for the training data.

Furthermore, it is expected that for the “moving-up-the-stairs” state there should only be

a high probability of transitioning from room 4 to room 7 and for the “moving-down-the-

stairs” state there should only be a high probability of transitioning from room 7 to room

4. This is not the case due to frequently incorrect stairs detections.

This section has presented the integration of accelerometer-derived motion information

into the Viterbi decoded state-sequences. Accelerometer frequency components were used
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Fig. 7.19: Performance comparison for original raw HMM (blue), original augmented
HMM (red), six-state motion-based raw HMM (green) and six-state motion-based
augmented HMM (black). As before, (a), (b) and (c) show different projections of the
same graph to allow a direct comparison of the classifiers under the different accuracy
measures.
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Fig. 7.20: Comparison of predicted stairs use from the six-state motion classifier and the
actual stairs transitions deduced from the training data labels.
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Fig. 7.21: Room transition probability matrices for the six-state motion predictor.

instead of RF variability and accelerometer variability as motion classification features due

to the higher recognition rates they permit. Phone orientation, derived from accelerometer

magnitudes (Ofstad et al., 2008), is not used to detect if the user is sitting in a “static”

state since it is unreliable to assume the phone is consistently orientated in the subject’s

pocket. It has been found that even though the accelerometer frequency components

allow detection of a range of motion states with varying degrees of accuracy, they do

not contribute to the localisation performance. This is likely due to the fact that the

available RF signals already contain sufficient location indicative information, and motion

information, in its current level of reliability, does not permit any additional localisation

performance.

The finding of this work, that motion information does not contribute to localisation

accuracy, goes against the implication of Krumm and Horvitz (2004) that using motion

information allows higher HMM localisation accuracy. Even though this work uses more

accurate accelerometer frequency components rather than RF variability components and

does not make assumptions about the speed of the subject, it actually shows either a

negligible improvement or a marginal disimprovement in localisation performance when

including motion information. The slight reduction in localisation performance is due to

the inability to automatically label the training data with 100% accurate motion labels

as evident in the transition probability matrices which are not as would be expected for

the detected motion types. Hence, the investigated technique of incorporating motion

predictions into Viterbi state sequence decoding is not a viable approach to increasing

localisation peformance, unless a realiable motion detection technique similar to the RFID
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location labelling technique is available to generate training data.

Even though the detectable motion levels, in their current levels of accuracy, do

not contribute to long-term localisation performance, they can still be used for healthy

activity indicators. The binary static versus moving predictor or the detection of stairs

crossing can be used to appraise the levels of healthy activity a user undertakes in a

day. This would actually be more reliable than estimating the distance travelled from

room transitions since a user could be performing a high level of healthy activity within a

room with no room transitions being detected. Hence, a majority of the motion detection

techniques developed in this chapter can be applied in an elder physical and cognitive

health monitoring scenarios.

7.3 Conclusions

Prior to this work Krumm and Horvitz (2004) suggested using the Viterbi algorithm for

a WiFi localisation platform. That work used WiFi signal variability as the dependent

variables for the HMM transition matrices. Transition probability matrices were estimated

based on assumptions about the travel distances of the user given detected motion. The

work of this thesis, however, showed that basing a HMM localisation framework on motion

information does not contribute to higher localisation accuracy. This finding is based on

more reliable accelerometer motion predictions rather than the RF variability method,

which has been shown to be inferior. The main contributions of this chapter are as

follows;

Movement Classification This chapter derived effective methods for detecting motions

of interest to a motion-dependent localisation system. It was shown that binary moving

and static classifications could be conducted using the windowed accelerometer variability.

By employing frequency component feature extraction further motion types could be

discriminated between, such as “moving”, “static”, “moving-up-the-stairs” and “moving-

down-the-stairs”. The true novelty in this approach is in applying Bayesian filtering to

produce more realistically distributed predictions, hence higher mean motion recognition

rates. Finally, the availability of Bayesian filtering allowed the prediction of which floor

the user is inhabiting from only accelerometer signals with 68% MRR. Such an approach

has not been attempted in literature prior to this work.

Time-Varying HMMs Varying the probabilities of making certain transitions based

on the detected motion type should, in theory, produce higher localisation accuracies.

Even though is was possible to detect many motions with varying degrees of success, it

was found that basing the location predictions on these motion predictions did not permit

higher accuracies. The main issue was that the training data did not have labels for the
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motion data. Hence, the motion labels had to be produced from classifiers which were not

100% reliable. Then training a time-varying HMM using these potentially mis-labelled

classes was likely to result in degraded localisation performance. Unfortunately, it is

impractical to deploy technologies to automatically obtain motion labels and unrealistic

to expect an elder subject to produce these labels manually in a realistic deployment.

Finding resolutions to these issues shall be the focus of future work.
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Concluding Summary and Future Work

8.1 Concluding Summary

This work contributes to an affordable and relatively unobtrusive home localisation system

with the aim of making aging in place a more attractive alternative to dedicated elder care

facilities. The developed system achieves its affordability by utilising absolutely minimal

levels of cheap Bluetooth R© hardware within the home environment. Location predictions

with such minimal hardware are generated using as many location and activity indicative

signals as possible, such as Bluetooth R© signals, cellular signals, phone accelerometer

signals and even RFID readings for redundancy. A variety of improvements to the

localisation system are explored and compared for efficacy in a typical home environment.

The findings of this exploratory research have led to the development of an optimal home

localisation system which is capable of generating location predictions in near-real-time

by using a modified discrete Bayesian filtering framework.

The core contributions of this thesis can be summarised as follows.

8.1.1 Localisation and Classification Literature Review

Chapter 2 presented a review of the fundamental theories and concepts of localisation

theory, including Radio Frequency (RF) signal propagation models and RF localisation

techniques which depend on such signal propagation mechanisms. Following that, a

comprehensive review of the existing indoor localisation work is presented. Fingerprinting

is the most commonly utilised localisation technique since it does not rely on simplified

propagation models to inform location predictions. For this reason Chapter 3 was

dedicated to presenting the candidate pattern recognition techniques which were to be
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employed throughout this thesis.

8.1.2 Localisation Hardware Platform Design

Chapter 4 enabled the selection of the optimal home localisation hardware by experimen-

tally comparing the low-power wireless technologies Bluetooth R© and ZigBee R©. Higher

redundancy, hence location prediction accuracy, was illustrated by employing all available

transmission channel readings from each wireless protocol. It was found that the signal

resolution present in the chosen Bluetooth R© implementation enabled higher localisation

accuracy. Furthermore Bluetooth R© devices allow the acquisition of cellular signals and

Bluetooth R© devices are more commonly available, leading to cheaper and more useful

mobile localisation devices. It is later found that the use of the standard Bluetooth R©

protocol allows the easy integration of an RFID localisation technique. Finally, the selected

Bluetooth R© localisation platform’s localisation potential was demonstrated in a 4-room

environment with absolutely minimal deployed infrastructure, a single Bluetooth R© enabled

computer.

8.1.3 Long-term Localisation Accuracy

The localisation technology is all but useless unless it can be validated in a realistic

home environment. For this reason Chapter 5 presented results from a realistic day-

to-day application of the localisation technology. Alternative localisation techniques, such

as Radio Frequency Identification (RFID) and Passive Infrared (PIR), were installed

to enable a number of experiments. The availability of the accurate RFID localisation

technique enabled the generation of a novel localisation accuracy metric, the Empirical

Accuracy (EA), which allows the estimation of the accuracy of the system over long periods

of time from only short periods of experimentation. The availability of reliable location

labels also allowed a comparison between the localisation system developed in this thesis

and the PIR localisation technique frequently employed in home room-level localisation

scenarios. It is demonstrated that the Bluetooth R© localisation system outperforms the

PIR localisation system, especially as the environment occupancy increases.

This chapter also highlighted the importance of signal diversity throughout the

deployment environment. The single access point deployment topology which showed

promise in Chapter 4 was unable to resolve the high number of locations in a typical

home environment, in this case 13 rooms. A novel connection topology was utilised to

enable signal resolution previously impossible with cheap Bluetooth R© mobile devices and

inexpensive “dumb” Bluetooth R© beacons. An exploration of the optimal subset of access

points indicated that long-term localisation accuracy is sensitive to the AP deployment

locations. With this multiple AP data it was possible to explore further improvements

to the classification framework to maximise localisation accuracy. These improvements
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include smoothing, dynamic modelling, room prior probability inclusion and uncertainty

rejection. The optimal parameters for each improvement was explored and the implications

of increasing accuracy using uncertainty rejection was explained.

8.1.4 Hidden Markov Models

Chapter 6 developed further measures of localisation system performance, which have

been ignored in prior localisation work. As well as the long-term room detection ability,

it was necessary to examine the effect of spurious transitions between rooms and the

delay in detecting transitions between rooms. The ability to visualise these performance

metrics enabled the selection of the classifiers which exhibit the best overall performance.

However, there were still deficiencies in the performance of the original classifiers, even

the augmented implementations. Hence, a Hidden Markov Model (HMM) framework was

applied to the localisation problem to allow the integration of room connectivity and user

movement tendencies into the location predictions. It was demonstrated that applying

augmented HMMs enabled higher overall localisation performance. This performance was

shown to improve with the use of higher order Markov models, which have not previously

been considered for localisation. This performance improvement came with significantly

higher computation and memory overheads.

To combat the high order Markov model memory overheads and to achieve near-real-

time computation of room predictions, a modified implementation of the Viterbi decoding

algorithm was developed. Instead of producing globally optimal room sequence estimates

after the final observation has been obtained, the Viterbi algorithm was modified to

produce state sequence estimates as soon as the room partial probabilities have stabilized

to a single room. This approach is also unique to the field of localisation and is achieved

with approaches far simpler than those necessary for real-time speech recognition. This is

because in a localisation application there are far fewer states and the partial probability

is likely to converge on a stable maximum probability state for longer.

8.1.5 Time-Varying HMMs

In an attempt to improve localisation performance, Chapter 7 develops a HMM framework

which permits the modification of the room transition probabilities based on auxiliary

knowledge about the motions of the user. A previous approach of analysing signal strength

variability is considered but it is found that the frequency components of the accelerometer

signals permit better motion discrimination, particularly when higher numbers of motion

classes are considered. This work contributes to other motion classification work by

modelling motion as the hidden states of a HMM. This has been shown to permit higher

motion recognition rates for all combinations of motions. Even the possibility of being

able to predict which floor the user is inhabiting from accelerometer signals has been
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demonstrated. This is achieved by using a unique combination of HMMs and labels which

contain information beyond that which can be inferred from accelerometer signals alone.

A floor recognition rate of almost 70% has been shown which improves upon the 50%

resulting from accelerometer floor classification without HMMs.

The availability of these motion predictions enables the modification of HMM location

transition constraints depending on the current motion. For example the probability of

remaining in the current room is at a maximum if the user is “static”, and the probability

of transitioning to other rooms goes up when a “moving” state is detected. Even though

relatively high motion detection accuracies were possible they did not consistently enable

significantly higher localisation performance. However, for the accurate binary motion

predictions there were two instances of the room prediction delay decreasing when utilising

accelerometer motion predictions, which indicates that there is potential for decreasing

room transition detection lag with this technique. The main limiting factor is the quality

of the motion labels for the long-term localisation dataset. It was prohibitively difficult to

obtain actual motion labels for long periods of time so the labels had to be generated from

the relatively small motion prediction test dataset. Hence, the room transition matrices

are based on some erroneously labelled motions and as a result do not accurately represent

all of the room transitions typical of certain motions.

8.1.6 Limitations

In spite of the positive findings of this work, it is important to highlight the caveats which

underpin these findings. The initial localisation tests for a static scenario in Chapter 4,

Figure 4.5, were obtained in an unrealistic test scenario. This scenario required the mobile

phone to be moved to positions throughout the test environment and held 1m above the

ground on a wooden platform. Positions which fell on beds required a smaller platform

to be used to ensure the total height of the platform and bed was 1m. This smaller

platform was made of cardboard which may have slightly different RF characteristics than

the wooden platform. This could have a minor effect on signal repeatability for locations

which are similar, but have different types of platforms underneath the mobile phone.

These static tests also use the experimental simplification that the phone’s orientation

does not change throughout the test environment. This is not meant to be representative

of a realistic scenario; rather merely suggest the viability of the proceeding experiments.

Next, dynamic tests were conducted to alleviate these simplifications. The dynamic

test results obtained in Chapter 4 are obtained using training and test datasets which are 15

minutes in length. Such short periods of data acquisition are conducted because the tests in

the small test environment use the accurate, but lengthy process of using voice-annotation

to produce the room labels. Again, these dynamic small environment experiments were

merely to explore the viability of more rigorous tests which are conducted in Chapter 5.
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Chapter 5 utilises the RFID labelling technique to enable the acquisition of labelled data

for “long-term” experiments.

The term “long-term” should also be clarified. Long-term experiments could be

presumed to take place over several weeks or months. In this work, however, long-term

refers to experiments which use one day of training data and one day of test data. Hence,

these tests are “long-term” relative to the tests in Chapter 4. Furthermore, they are

significantly longer than tests which have generally been employed in the field of RF

localisation to date.

Even though the tests in Chapter 5 quantified the localisation accuracy over the

significant period of a day, the results would have benefited from evaluation over a greater

number of days. It was prohibitively difficult to obtain numerous days of training and test

data since it required the experimenter to stay at home and refrain from leaving the house

as much as possible during the test period. The tests also needed to be conducted during

weekdays to reduce instances of multiple occupancy. Hence, it was only possible to obtain

two days of data for the SAP tests, two days for the SBS tests and two days for MAP

tests. The difficulty in obtaining greater quantities of data was addressed by employing the

Empirical Accuracy (EA) measure. This measure was derived from the relative frequency

of room occupation for a week. Hence, EA was employed for these experiments to suggest

the accuracy which would occur with this deployment for a week of experimentation.

There were also implications of allowing the phone to move freely within the

experimenter’s pocket. Even though the phone was placed in the experimenter’s pocket in

a consistent orientation, it was able to freely move during experiments. This could have

implications on the consistency of the detected signal readings. In a realistic deployment,

the phone could be placed in the user’s pocket in any arbitrary orientation. The affect this

could have on signal repeatability, due to changing PLF, and as a result, accuracy, was not

explored in this work. There is also the issue in a realistic deployment that the user could

leave the phone down for periods of time. This would suggest that the user is static while

he/she is actually moving around. Since accelerometer readings are consistently relayed to

the basestation computer, implementing a technique to detect when the phone is placed

down for a significant period of time would be a trivial addition to the system which was

not implemented in this work. In reality, such a technique would refrain from tracking the

user when the magnitudes of the accelerometer axes suggest that the phone is lying flat

and prompt the user to carry the phone when it is left down for several minutes.

This work could have also benefited from a more reliable BSC configuration. Due

to the transmission range limitations of the Bluetooth R© protocol, the BSC had to be

placed central to the test environment to ensure a connection was consistently maintained.

Even still, it was possible for the Bluetooth R© connection to momentarily fail. When the

connection is re-established the data which was stored by the phone since the connection
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failure is downloaded to the computer. In a real deployment, this would make location

predictions impossible when the user is outside the range of the BSC. If this became a

serious issue, for example in houses with concrete walls, the connection topology of the

phone presented in Chapter 5 could be modified to remove the necessity of a BSC. Then

the calculations could be performed on the phone or the readings could be downloaded to

a remote server via GSM for location calculation. However, the current topology ensures

the greatest power savings while providing relatively consistent coverage of the home

environment. Furthermore, using Intel’s BioMOBIUS research platform to decode the

X10 PIR packets at the BSC may have led to some erroneous room predictions. More

accurate PIR tracking may be possible by decoding the X10 packets using custom software.

Finally, significant issues were present with the motion labels for the experiments

in Chapter 7. Room labels were easily obtained using the RFID labelling technique.

There is, however, no such technique to automatically generate labels for user motion

type. Previous work focused on accelerometer motion predictions from data obtained in

unrealistic sequences of motion (e.g. Allen et al. (2006), Ibrahim et al. (2008)). In the

realistic scenario we are investigating, it would take considerable sensor redundancy within

the environment to accurately label the motions of the user. Instead of deploying a vast

array of sensors, it was decided to automatically generate the motion labels for the long-

term test data using classifiers trained on a small amount of voice-labelled accelerometer

data. This means that the labels for the long-term data used for the Time-Varying HMM

experiments are susceptible to labelling errors even before the location predictions take

place. To ensure accurate labels for the long-term Time-Varying HMM experiments it is

necessary to either produce voice-labels for the entire long-term localisation experiment

or equip the home environment with sensors which can detect these motions.

8.2 Future Work

This thesis addresses many of the central issues surrounding the deployment of a cheap,

accurate and reliable indoor localisation system. However, there are still issues remaining,

which, if addressed correctly, could lead to a localisation system with lower deployment

costs and higher long-term accuracy. Some of the issues for future consideration are as

follows.

8.2.1 Bluetooth R© Beacon Location Optimisation

It has been demonstrated in Chapter 5 that the positions of the deployed access points

strongly influences the long-term localisation accuracy. It has also been proposed that the

establishment of which access points are most beneficial to localisation performance can

only be empirically evaluated when APs are installed in all of the candidate deployment
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locations. Furthermore, when APs have been deployed there is little benefit to removing

the least useful APs since they can still occasionally be of use to the localisation system.

Hence, to minimise deployment costs, it would be beneficial to generate patterns for

the best deployment methodologies from experimental evidence from several deployment

environments.

This would allow the establishment of a set of best practices for AP installation

locations without requiring a comprehensive deployment, experimentation and then

removal of the most redundant APs. For example, deploying APs only in locations where

the user spends the most time during the day may generally lead to the highest accuracy.

Hence, the best deployment locations could be easily established with a simple survey of

the person to be localised when the system is deployed.

8.2.2 Automatic Room Labelling

An RFID technology was employed to generate labels for accuracy metric derivation,

training and testing of the Bluetooth R© localisation system. For a realistic scenario,

however, it would be inconvenient for an elder to manually scan each doorway they pass

through for the first day of deployment, which would inevitably lead to inaccurate room

labels. Hence, Chapter 5 concluded by proposing a foot-mounted RFID reader and RFID

tags across doorways to enable automatic room label acquisition. This would allow at

least a day of labelled data to be automatically obtained before the RFID reader could be

discarded in favour of the mobile phone alone. Using the mobile phone alone is favourable

since the RFID reader would require the elder to ensure the device is placed on whatever

footwear they choose for a given day and ensure the battery is charged every day.

The automatic RFID labelling system, however, still requires some development. The

battery capacity of the reader is at present insufficient for the constant scanning cycle

necessary to successfully detect all door crossings for an entire day. There is much scope for

the development of the automatic RFID labelling system. For example the phone can turn

off the reader when a “static” state is detected to save battery, or the detection of stairs

can be used to increase confidence in detected transitions to certain floors. Furthermore,

the antenna of the foot-mounted RFID reader could be redesigned and repositioned to

reside on the sole of the shoe, to minimise the effect of attenuation of the human foot on

tag detection rates.

8.2.3 Motion Sensing Redundancy

Chapter 7 concluded that the motion labels for an entire day were insufficiently accurate

to base motion-dependent predictions on. This could be addressed in future work by

increasing sensor redundancy throughout the test environment to allow the accurate long-

term detection of all motion states. For example, pressure pads could be placed on seats
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to detect when the subject is sitting in an unmoving state, break-beam sensors could be

placed on stairways to detect when stairs are used and more accurate accelerometers can

be foot-mounted to increase motion detection rates. Independently of motion estimation,

higher accuracy motion predictions are envisaged to permit more informative summaries of

the levels of exercise an elderly person undertakes on particular days. In terms of location

estimation, improved motion detection capability will enable higher accuracy location

predictions with even lower quantities of APs within the environment. Most significantly,

higher accuracy motion predictions will enable more reliable detection of which floor an

elder resides upon, using only accelerometer signals.

8.2.4 Efficient High-Order HMM Implementations

It was demonstrated in this thesis that improvements in localisation performance were

possible using higher order Hidden Markov Models to further constrain the state sequence

to probable paths. These improvements, however, came with significant computational

and memory requirement increases for each model order increase. The real-time Viterbi

algorithm had the attractive property that short-term backtracking required significantly

less memory to maintain a list of states since the previous backtracking interval.

Even though memory requirements were significantly reduced, there were still identical

computational requirements.

Future extensions to this work can reduce the computational requirements of decoding

higher order HMMs by borrowing from prior work in the field. For example, early work by

du Preez (1997) proposes a technique of translating arbitrarily high-order HMMs to a first-

order equivalent. This is equivalent to translating arbitrarily high-dimension transition

matrices and partial probability matrices to the 2-dimension equivalents. This approach

has the attractive property that unused combinations of state sequences have negligible

computational overheads. Hence, higher localisation performance can be obtained without

requiring the full computational burden of high order HMM decoding. Future work

will explore the optimal tradeoff between localisation performance and computational

burden such that maximum performance can be accomplished within the computational

constraints of affordable Basestation computers.
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