377 research outputs found

    PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON

    Get PDF
    In northern Brazilian Amazon, the crops, savannahs and rainforests form a complex landscape where land use and land cover (LULC) mapping is difficult. Here, data from the Operational Land Imager (OLI)/Landsat-8 and Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)/ALOS-2 were combined for mapping 17 LULC classes using Random Forest (RF) during the dry season. The potential thematic accuracy of each dataset was assessed and compared with results of the hybrid classification from both datasets. The results showed that the combination of PALSAR-2 HH/HV amplitudes with the reflectance of the six OLI bands produced an overall accuracy of 83% and a Kappa of 0.81, which represented an improvement of 6% in relation to the RF classification derived solely from OLI data. The RF models using OLI multispectral metrics performed better than RF models using PALSAR-2 L-band dual polarization attributes. However, the major contribution of PALSAR-2 in the savannahs was to discriminate low biomass classes such as savannah grassland and wooded savannah

    Mapping Secondary Vegetation of a Region of Deforestation Hotspot in the Brazilian Amazon: Performance Analysis of C- and L-Band SAR Data Acquired in the Rainy Season.

    Get PDF
    Abstract: The re-suppression of secondary vegetation (SV) in the Brazilian Amazon for agriculture or land speculation occurs mostly in the rainy season. The use of optical images to monitor such re-suppression during the rainy season is limited because of the persistent cloud cover. This study aimed to evaluate the potential of C- and L-band SAR data acquired in the rainy season to dis- criminate SV in an area of new hotspot of deforestation in the municipality of Colniza, northwest- ern of Mato Grosso State, Brazil. This is the first time that the potential of dual-frequency SAR data was analyzed to discriminate SV, with an emphasis on data acquired during the rainy season. The L-band ALOS/PALSAR-2 and the C-band Sentinel-1 data acquired in March 2018 were processed to obtain backscattering coefficients and nine textural attributes were derived from the gray level co-occurrence matrix method (GLCM). Then, we classified the images based on the non-parametric Random Forest (RF) and Support Vector Machine (SVM) algorithms. The use of SAR textural attributes improved the discrimination capability of different LULC classes found in the study area. The results showed the best performance of ALOS/PALSAR-2 data classified by the RF algo- rithm to discriminate the following representative land use and land cover classes of the study area: primary forest, secondary forest, shrubby pasture, clean pasture, and bare soil, with an over- all accuracy and Kappa coefficient of 84% and 0.78, respectively. The RF outperformed the SVM classifier to discriminate these five LULC classes in 14% of overall accuracy for both ALOS-2 and Sentinel-1 data sets. This study also showed that the textural attributes derived from the GLCM method are highly sensitive to the moving window size to be applied to the GLCM method. The results of this study can assist the future development of an operation system based on du- al-frequency SAR data to monitor re-suppression of SV in the Brazilian Amazon or in other tropical rainforests

    Comparative analysis of the global forest/non-forest maps derived from SAR and optical sensors: case studies from brazilian Amazon and Cerrado biomes.

    Get PDF
    Abstract: Global-scale forest/non-forest (FNF) maps are of crucial importance for applications like biomass estimation and deforestation monitoring. Global FNF maps based on optical remote sensing data have been produced by the wall-to-wall satellite image analyses or sampling strategies. The German Aerospace Center (DLR) and the Japan Aerospace Exploration Agency (JAXA) also made available their global FNF maps based on synthetic aperture radar (SAR) data. This paper attempted to answer the following scientific question: how comparable are the FNF products derived from optical and SAR data? As test sites we selected the Amazon (tropical rainforest) and Cerrado (tropical savanna) biomes, the two largest Brazilian biomes. Forest estimations from 2015 derived from TanDEM-X (X band; HH polarization) and ALOS-2 (L band; HV polarization) SAR data, as well as forest cover information derived from Landsat 8 optical data were compared with each other at the municipality and image sampling levels. The optical-based forest estimations considered in this study were derived from the MapBiomas project, a Brazilian multi-institutional project to map land use and land cover (LULC) classes of an entire country based on historical time series of Landsat data. In addition to the existing forest maps, a set of 1619 Landsat 8 RGB color composites was used to generate new independent comparison data composed of circular areas with 5-km diameter, which were visually interpreted after image segmentation. The Spearman rank correlation estimated the correlation among the data sets and the paired Mann–Whitney–Wilcoxon tested the hypothesis that the data sets are statistically equal. Results showed that forest maps derived from SAR and optical satellites are statistically different regardless of biome or scale of study (municipality or image sampling), except for the Cerrado´s forest estimations derived from TanDEM-X and ALOS-2. Nevertheless, the percentage of pixels classified as forest or non-forest by both SAR sensors were 90% and 80% for the Amazon and Cerrado biome, respectively, indicating an overall good agreement

    Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review

    Get PDF
    The coastal zone offers among the world’s most productive and valuable ecosystems and is experiencing increasing pressure from anthropogenic impacts: human settlements, agriculture, aquaculture, trade, industrial activities, oil and gas exploitation and tourism. Earth observation has great capability to deliver valuable data at the local, regional and global scales and can support the assessment and monitoring of land‐ and water‐related applications in coastal zones. Compared to optical satellites, cloud‐cover does not limit the timeliness of data acquisition with spaceborne Synthetic Aperture Radar (SAR) sensors, which have all‐weather, day and night capabilities. Hence, active radar systems demonstrate great potential for continuous mapping and monitoring of coastal regions, particularly in cloud‐prone tropical and sub‐tropical climates. The canopy penetration capability with long radar wavelength enables L‐band SAR data to be used for coastal terrestrial environments and has been widely applied and investigated for the following geoscientific topics: mapping and monitoring of flooded vegetation and inundated areas; the retrieval of aboveground biomass; and the estimation of soil moisture. Human activities, global population growth, urban sprawl and climate change‐induced impacts are leading to increased pressure on coastal ecosystems causing land degradation, deforestation and land use change. This review presents a comprehensive overview of existing research articles that apply spaceborne L‐band SAR data for geoscientific analyses that are relevant for coastal land applications

    Mapping a Brazilian deforestation frontier using multi-temporal TerraSAR-X data and supervised machine learning

    Get PDF
    Satellite remote sensing enables a repeated survey of the earth’s surface. With machine learning it is possible to recognize complex patterns from extensive data sets. Using methods from machine learning, remote sensing images are utilized to derive large scale land use and land cover (LULC) maps, carrying discrete information on the human management of land and intact primary forests, as well as change processes. Such information is particularly relevant in little developed regions, and areas which are undergoing transformation. Therefore, satellite remote sensing is generally the preferred method for generating LULC products within tropical regions, and particularly useful to assist tracking of change processes with regard to deforestation or land management. The Amazon is the largest area of continuous tropical forest in the world, and of substantial importance with regard to biodiversity, its influence on global climate, as well as providing living space for a large number of indigenous tribes. As tropical region, the Amazon is particularly affected by cloudy conditions, which pose a serious challenge to many remote sensing efforts. Utilization of Synthetic Aperture Radar (SAR) hence is promoted, as this warrants data availability at fixed intervals. Performing land cover mapping at the deforestation frontier in the Brazilian states of Pará and Mato Grosso, the aim of this thesis is to evaluate latest concepts from machine learning and SAR remote sensing in the light of real world applicability. As a cumulative effort, this thesis provides a scalable method based on Markov Random Fields, to increase classification performance. This method is especially useful to enhance the outcome of SAR classifications, as it directly addresses inherent SAR properties such as multi-temporality and speckle. Furthermore, ALOS-2, RADARSAT-2, and TerraSAR-X, which are current SAR sensors fulfilling different properties with regard to ground resolution and wavelength, are being investigated concerning their synergetic potentials for the mapping of vegetated LULC classes of the Brazilian Amazon. Here, the additional value of combining multiple frequencies is evaluated using reliable validation techniques based on area adjustment. Additionally, single performance of the three sensors is evaluated and their potentials concerning the task of tropical mapping are estimated. Lastly, different potentials of TanDEM-X for the purpose of tropical mapping are investigated. TanDEM-X is the first continuous spaceborne missionvi to offer a bi-static acquisition of data, enabling the generation of height models and the collection of coherence layers via a single pass

    Remote Sensing of Savannas and Woodlands

    Get PDF
    Savannas and woodlands are one of the most challenging targets for remote sensing. This book provides a current snapshot of the geographical focus and application of the latest sensors and sensor combinations in savannas and woodlands. It includes feature articles on terrestrial laser scanning and on the application of remote sensing to characterization of vegetation dynamics in the Mato Grosso, Cerrado and Caatinga of Brazil. It also contains studies focussed on savannas in Europe, North America, Africa and Australia. It should be important reading for environmental practitioners and scientists globally who are concerned with the sustainability of the global savanna and woodland biome

    Global Forest Monitoring from Earth Observation

    Get PDF
    Covering recent developments in satellite observation data undertaken for monitoring forest areas from global to national levels, this book highlights operational tools and systems for monitoring forest ecosystems. It also tackles the technical issues surrounding the ability to produce accurate and consistent estimates of forest area changes, which are needed to report greenhouse gas emissions and removals from land use changes. Written by leading global experts in the field, this book offers a launch point for future advances in satellite-based monitoring of global forest resources. It gives readers a deeper understanding of monitoring methods and shows how state-of-art technologies may soon provide key data for creating more balanced policies

    Utilization of bistatic TanDEM-X data to derive land cover information

    Get PDF
    Forests have significance as carbon sink in climate change. Therefore, it is of high importance to track land use changes as well as to estimate the state as carbon sink. This is useful for sustainable forest management, land use planning, carbon modelling, and support to implement international initiatives like REDD+ (Reducing Emissions from Deforestation and Degradation). A combination of field measurements and remote sensing seems most suitable to monitor forests. Radar sensors are considered as high potential due to the weather and daytime independence. TanDEM-X is a interferometric SAR (synthetic aperture radar) mission in space and can be used for land use monitoring as well as estimation of biophysical parameters. TanDEM-X is a X-band system resulting in low penetration depth into the forest canopy. Interferometric information can be useful, whereas the low penetration can be considered as an advantage. The interferometric height is assumable as canopy height, which is correlated with forest biomass. Furthermore, the interferometric coherence is mainly governed by volume decorrelation, whereas temporal decorrelation is minimized. This information can be valuable for quantitative estimations and land use monitoring. The interferometric coherence improved results in comparison to land use classifications without coherence of about 10% (75% vs. 85%). Especially the differentiation between forest classes profited from coherence. The coherence correlated with aboveground biomass in a R² of about 0.5 and resulted in a root mean square error (RSME) of 14%. The interferometric height achieved an even higher correlation with the biomass (R²=0.68) resulting in cross-validated RMSE of 7.5%. These results indicated that TanDEM-X can be considered as valuable and consistent data source for forest monitoring. Especially interferometric information seemed suitable for biomass estimation

    Utilização de imagens SAR na classificação de formações florestais brasileiras

    Get PDF
    Brazil has a large territorial area with a large cover of vegetation and several forest typologies with different physiognomies. It is necessary to map the forest areas in the country in order to know the spatial distribution and the dynamics of each forest formation. An efficient and reliable way to obtain this information is using remote sensing techniques, and radar – SAR - imaging can be applied, which in turn has been the focus of many researchers. Thus, the objective of the present study is to gather scientific productions related to the use of radar images applied to the mapping of different forests in Brazil, analyzing the most recent approaches and classification techniques. There was a significant application of SAR images in forests of the Amazon biome, mainly for the detection of deforestation. The images of the ALOS/PALSAR L-band radar system were the most used in the mapping of forest typologies, associated to several classifier algorithms, such as: Iterated Conditional Modes, Maximum Likelihood and random forest. The data types worked in the classifications varied according to the polarimetric capacity of each image, with emphasis on the greater use of backscattering coefficients and attributes extracted from matrix decompositions. It was also observed that most studies related SAR data to those obtained by optical sensors. Therefore, the present study made it possible to gather several applications of classification techniques for the discrimination of forest formations in Brazil using microwave imaging, indicating the potentiality of the various classifiers with SAR images, and showing that radar systems are an important technology that is being used for mapping forests in the country.O Brasil tem uma vasta área territorial com várias tipologias florestais compostas por diferentes fisionomias. É necessário o mapeamento das áreas de florestas no país, com o intuito de se conhecer sua distribuição espacial, bem como de avaliar sua dinâmica de expansão ou redução. Uma forma eficiente e confiável de se obter tais informações se dá por meio de técnicas de sensoriamento remoto, podendo ser aplicado o imageamento por radar (micro-ondas), que por sua vez tem sido o foco de muitos pesquisadores. Sendo assim, o objetivo do presente estudo é reunir as produções científicas relacionadas à utilização de imagens de radar aplicadas ao mapeamento das diferentes florestas no Brasil, analisando as mais recentes abordagens e técnicas de classificação. Notou-se uma significativa aplicação de imagens SAR em florestas do bioma Amazônia, principalmente para a detecção do desmatamento. As imagens do sistema do radar de banda L do ALOS/PALSAR foram as mais utilizadas nos mapeamentos das tipologias florestais, associadas a vários algoritmos classificadores, tais como: Iterated Conditional Modes, Máxima Verossimilhança e random forest. Os tipos de dados trabalhados nas classificações variaram de acordo com a capacidade polarimétrica de cada imagem, com destaque à maior utilização dos coeficientes de retroespalhamento e atributos extraídos das decomposições de suas matrizes. Observou-se ainda que a maioria dos trabalhos relacionaram os dados SAR com os obtidos por sensores ópticos. Portanto, o presente estudo possibilitou reunir várias aplicações de técnicas de classificação para a discriminação de diferentes formações florestais no Brasil utilizando o imageamento por micro-ondas, indicando a potencialidade dos vários classificadores nos dados SAR, mostrando que os sistemas de radar são uma importante tecnologia utilizada para o mapeamento de florestas no país

    Assessment of high resolution SAR imagery for mapping floodplain water bodies: a comparison between Radarsat-2 and TerraSAR-X

    Get PDF
    Flooding is a world-wide problem that is considered as one of the most devastating natural hazards. New commercially available high spatial resolution Synthetic Aperture RADAR satellite imagery provides new potential for flood mapping. This research provides a quantitative assessment of high spatial resolution RADASAT-2 and TerraSAR-X products for mapping water bodies in order to help validate products that can be used to assist flood disaster management. An area near Dhaka in Bangladesh is used as a test site because of the large number of water bodies of different sizes and its history of frequent flooding associated with annual monsoon rainfall. Sample water bodies were delineated in the field using kinematic differential GPS to train and test automatic methods for water body mapping. SAR sensors products were acquired concurrently with the field visits; imagery were acquired with similar polarization, look direction and incidence angle in an experimental design to evaluate which has best accuracy for mapping flood water extent. A methodology for mapping water areas from non-water areas was developed based on radar backscatter texture analysis. Texture filters, based on Haralick occurrence and co-occurrence measures, were compared and images classified using supervised, unsupervised and contextual classifiers. The evaluation of image products is based on an accuracy assessment of error matrix method using randomly selected ground truth data. An accuracy comparison was performed between classified images of both TerraSAR-X and Radarsat-2 sensors in order to identify any differences in mapping floods. Results were validated using information from field inspections conducted in good conditions in February 2009, and applying a model-assisted difference estimator for estimating flood area to derive Confidence Interval (CI) statistics at the 95% Confidence Level (CL) for the area mapped as water. For Radarsat-2 Ultrafine, TerraSAR-X Stripmap and Spotlight imagery, overall classification accuracy was greater than 93%. Results demonstrate that small water bodies down to areas as small as 150m² can be identified routinely from 3 metre resolution SAR imagery. The results further showed that TerraSAR-X stripmap and spotlight images have better overall accuracy than RADARSAT-2 ultrafine beam modes images. The expected benefits of the research will be to improve the provision of data to assess flood risk and vulnerability, thus assisting in disaster management and post-flood recovery
    corecore