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Abstract: The re-suppression of secondary vegetation (SV) in the Brazilian Amazon for agriculture 
or land speculation occurs mostly in the rainy season. The use of optical images to monitor such 
re-suppression during the rainy season is limited because of the persistent cloud cover. This study 
aimed to evaluate the potential of C- and L-band SAR data acquired in the rainy season to dis-
criminate SV in an area of new hotspot of deforestation in the municipality of Colniza, northwest-
ern of Mato Grosso State, Brazil. This is the first time that the potential of dual-frequency SAR data 
was analyzed to discriminate SV, with an emphasis on data acquired during the rainy season. The 
L-band ALOS/PALSAR-2 and the C-band Sentinel-1 data acquired in March 2018 were processed 
to obtain backscattering coefficients and nine textural attributes were derived from the gray level 
co-occurrence matrix method (GLCM). Then, we classified the images based on the non-parametric 
Random Forest (RF) and Support Vector Machine (SVM) algorithms. The use of SAR textural 
attributes improved the discrimination capability of different LULC classes found in the study 
area. The results showed the best performance of ALOS/PALSAR-2 data classified by the RF algo-
rithm to discriminate the following representative land use and land cover classes of the study 
area: primary forest, secondary forest, shrubby pasture, clean pasture, and bare soil, with an over-
all accuracy and Kappa coefficient of 84% and 0.78, respectively. The RF outperformed the SVM 
classifier to discriminate these five LULC classes in 14% of overall accuracy for both ALOS-2 and 
Sentinel-1 data sets. This study also showed that the textural attributes derived from the GLCM 
method are highly sensitive to the moving window size to be applied to the GLCM method. The 
results of this study can assist the future development of an operation system based on du-
al-frequency SAR data to monitor re-suppression of SV in the Brazilian Amazon or in other tropical 
rainforests.  

Keywords: secondary vegetation; rainy season; ALOS-2; sentinel-1; random forest; support vector 
machine 
 

1. Introduction 
Regardless of global importance of tropical forests in terms of biodiversity conser-

vation and carbon and water cycling maintenance, the Brazilian Legal Amazon is losing, 
on average, about 13.8 thousand km2 per year of primary forest by clear-cut deforestation 
since 1988 [1]. The main purposes of such deforestation are beef production, crop plan-
tation, land speculation, and the installation of hydroelectric plants, among other activi-
ties [2–5]. Some authors have pointed out the recent increase of the deforestation rate 
[6,7], raising from 5000 km2 of clear-cut deforestation in 2014 to 13,000 km2 in 2021 [1]. 

Some of the clear-cut deforested areas are abandoned, entering in the process of 
natural regrowth through secondary succession. This regrowing vegetation is known as 
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secondary vegetation (SV) [8,9]. According to the Global Forest Resources Assessment 
report of 2020 [10], the world has 3.7 billion ha of SV. The TerraClass project, coordinated 
by the National Institute for Space Research (INPE) and the Brazilian Agricultural Re-
search Corporation (Embrapa Agricultura Digital and Embrapa Amazônia Oriental) [11], 
showed that SV has increased from 10 million ha to 17 million ha in the Brazilian Legal 
Amazon between 2004 and 2014 [12]. The natural regeneration of forests is an effective 
low-cost mechanism of carbon sequestration, particularly in tropical regions [13]. Alt-
hough the net carbon uptake from atmosphere is up to 20 times higher than that from 
old-growth forests, this tend to be neglected in most of the carbon balance studies in the 
Brazilian Amazon [14]. Besides its particular interest as source of carbon sink, SV can be 
seen as having great potential for agriculture and livestock expansion [15] or for biodi-
versity conservation and ecosystem service [16]. 

Nunes et al. [17] highlighted different aspects related to the growing pressure to 
suppress already-deforested SV found in the Brazilian Amazon. For example, landown-
ers face difficulty to find ways to monetize climate change mitigation and other ecosys-
tem services provided by SV. The Brazilian Federal Law No. 12,651, known as the Bra-
zilian Forest Code, does not protect or regulate land use in areas occupied by regenerat-
ing forests. On the other hand, the same Brazilian Forest Code places severe restrictions 
for deforesting native forests located in the Brazilian Amazon biome. Landowners must 
keep 80% of their rural properties preserved by native forests [18], encouraging the use of 
existing regrowing lands. 

The current deforestation monitoring system of the Brazilian Amazon such as the 
Project of Monitoring Deforestation of the Brazilian Amazon Forest by Satellite 
(PRODES) [1], Near Real-Time Deforestation Detection System (DETER-B) [19], and De-
forestation Alert System (SAD) [20] do not monitor SV since they track only clear-cut 
deforestation, selective logging, and degradation by fire that occurs in primary forests, 
masking previously deforested areas as well as non-forest native vegetation formations. 
The TerraClass Amazon project [11] is the only project aimed at monitoring secondary 
vegetation every two years. In this project, clear-cut deforested areas detected by the 
PRODES are inspected by Landsat-like satellite images (i.e., typically, 30 m spatial reso-
lution and 16 day repeat-pass) after two years to determine the corresponding land use 
and land cover (LULC) class, for example, pasture, cropland, or SV. More recently, 
Nunes et al. [17] assessed the extent, age, net carbon balance, and annual dynamics of the 
SV in the Brazilian Amazon by using the LULC maps derived from Landsat time series 
and produced by the MapBiomas project [21] from 1985 to 2017. The SV area has in-
creased over time, reaching 12 million ha in 2017, 44% of which was under 5 years old. 
Indeed, most of the estimations of the extent of the SV is often conducted based on re-
mote sensing data derived from optical sensors e.g., [22,23]. 

Long time series of optical satellite data such as the Landsat historical data provide 
important information on the spatial and temporal patterns of deforested areas in the 
process of regeneration in the Brazilian Amazon. However, because of the constraints 
related to the persistent cloud coverage in tropical regions, optical re-
mote-sensing-derived information of SV will be mostly related to the peak of the dry 
season, which is from July to September in the Brazilian Amazon. Thus, studies involving 
the seasonal variations of SV, similar to the one conducted by [24] in an Amazon tropical 
evergreen forest, or re-suppression monitoring of SV, which typically occurs during the 
end of the wet season, will be limited. Although the Brazilian Forest Code does not pro-
vide any governance regarding SV, the Pará State, which hosts most areas with regrow-
ing vegetation in the Brazilian Amazon (~64,000 km2 in 2014), has approved administra-
tive procedures for suppressing SV in the initial state of regeneration (Normative In-
struction No. 8, 28 October 2015) [25]. 

Synthetic aperture radar (SAR) observations are available regardless of cloud con-
ditions, enabling the monitoring of the dynamics of the SV throughout the year. The SAR 
data acquired by the Advanced Land Observing Satellite (ALOS)/Phased Array Type 
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L-band Synthetic Aperture Radar (PALSAR) satellite launched by the Japan Aerospace 
Exploration Agency (JAXA) [26] have been used by several authors to detect deforesta-
tion over the Brazilian Amazon e.g., [27,28], or to estimate the above-ground biomass of 
SV over the Central Amazon [29]. The common sense is that the differences in the 
backscattering coefficients between forest and non-forest lands are much more enhanced 
in the L-band than in shorter wavelengths (X- and C-bands) [30]. However, the constel-
lation of two C-band, 5 m spatial resolution Sentinel-1A and Sentinel-1B satellites 
launched by the European Space Agency (ESA) is unique because they comprise the only 
updated SAR data that are freely available on the internet [31], allowing for low-cost 
studies of near real-time deforestation and degradation detections [32–34]. Some authors 
have combined L-band ALOS data with the Landsat data to obtain better classification 
results of different stages of SV in the Brazilian Amazon [35,36]. Despite their promising 
results, such combinations are always dependent on the availability of cloud-free optical 
images. 

Monitoring the near real-time re-suppression of SV in the Brazilian Amazon using 
SAR data, especially in those areas with an advanced stage of regeneration, is crucial for 
environmental law enforcement procedures by the Brazilian Institute of Environment 
and Renewable Natural Resources (IBAMA) and by the state environmental agencies. 
The only L-band, SAR-based, early deforestation monitoring system available for the 
Brazilian Amazon is the JICA-JAXA Forest Early Warning System in the Tropics 
(JJ-FAST), which started in November 2016. This system is based on the 
ALOS/PALSAR-2 ScanSAR images, which operate with a 60 m pixel size, every 42 days, 
and a minimum mapping unit (MMU) of 2 ha [27,28]. More recently, Doblas et al. [37] 
proposed the DETER-R system, a fully automated forest disturbance detection system for 
the Brazilian Amazon based on times series of C-band, Sentinel-1 data processed in the 
Google Earth Engine platform, with a MMU of 1 ha. Both JJ-FAST and DETER-R were 
developed with the aim of monitoring clear-cut deforestation. In other words, approxi-
mately 25% of the total clear-cut areas in the Brazilian Amazon that have been converted 
into SV [38] are not taken into consideration. The objective of this study was to evaluate 
the potential of combined C- and L-band SAR data to discriminate SV in the Brazilian 
Amazon. To our best knowledge, this is the first time that the potential of dual-frequency 
SAR data is analyzed to discriminate SV, with an emphasis on data acquired during the 
rainy season. The results of this study can assist the future development of a du-
al-frequency SAR system to monitor the re-suppression of SV in the Brazilian Amazon. 
Besides the L-band ALOS/PALSAR-2, currently in operation, we will have the launch of 
ALOS-4, the NASA-ISRO SAR (NISAR) mission, and TanDEM-L in the next few years 
[39], ensuring the availability of L-band SAR data for the next years. 

2. Materials and Methods 
2.1. Study Area 

The study area comprises a region of approximately 24,000 ha in the eastern portion 
of the municipality of Colniza (Figure 1), in the northwestern part of the Mato Grosso 
State, between 9° 36’ 23.7” and 9° 45′ 26.5” south latitude and between 59° 10’ 52” and 59° 
19′ 57” west longitude. The vegetation consists of dense ombrophilous forests [40]. The 
climate, according to the Köppen’s climate classification system, is Am, that is, tropical 
(hot and humid) with a short dry season. The rainy season corresponds to the months of 
October to May, with the mean annual rainfall varying from 2100 to 2500 mm [41].  

The municipality of Colniza presents approximately 80% of its territory still covered 
by primary forest [42]. About 25% of its land is covered by three indigenous lands. 
However, together with the neighboring municipality of Aripuanã, it is the current de-
forestation hotspot of the Brazilian Amazon, especially along the BR-174 highway, in the 
eastern part of the municipality, and where our study area is located nearby. Colniza is 
already facing intense landscape fragmentation [43]. 
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Figure 1. Location of the study area in the Brazilian Legal Amazon (a) and in the municipality of 
Colniza, Mato Grosso State (b). Study area over a Sentinel-2 true color composition image from 27 
July 2018 (c). 

2.2. Satellite Images 
We selected Single Look Complex (SLC) Level 1.1, L-band ALOS/PALSAR-2 satellite 

images acquired on 24 March 2018 at the StripMap mode, with a spatial resolution of 6.25 
m, HH and HV polarizations (hereafter refered to L-HH and L-HV polarizations, re-
spectively), and an incidence angle of 36.6°. Another SLC SAR image selected for this 
study was the one acquired by the C-band Sentinel-1A satellite on 2 March 2018, with the 
Interferometric Wide (IW) acquisition mode, a spatial resolution of 14.05 m, VV and VH 
polarizations (hereafter referred to as C-VV and C-VH polarizations, respectively), and 
an incidence angle of 40.8°. 

Two dry-season optical images, acquired by the Sentinel-2 Multispectral Instrument 
Image (MSI) and the China-Brazil Earth Resources Satellite (CBERS-4) data were also 
selected. The Sentinel-2 image was acquired on 27 July 2018, with the spatial resolution of 
10 m. In this study, we selected the spectral bands 2, 3, and 4 (blue, green, and red bands, 
respectively). The CBERS-4 data were acquired by the wide-scan multispectral and 
panchromatic camera (WPM) on 9 July 2018, with the spatial resolutions of 10 m and 5 m, 
respectively. Drusch et al. [44] and INPE [45] provide technical details of Sentinel-2 and 
CBERS-4 satellites, respectively. 

2.3. Methods 
Figure 2 shows the main steps of the methodological approach considered in this 

study. The ground truth data were obtained from the data provided by the TerraClass 
and PRODES projects with the support of visual interpretation of the CBERS-4 image. 
The SAR images acquired by the ALOS-2 and Sentinel-1 satellites were pre-processed 
using the ESA’s Sentinel Application Platform (SNAP) 7.0 software and classified by the 
Random Forest (RF) and Support Vector Machine (SVM) classifiers, after we performed 
texture attribute selection based on the Principal Component Analysis (PCA). The accu-
racies of the classifications were analyzed through the confusion matrix. 
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Figure 2. Flowchart showing the main steps of the methodological approach considered in this 
study. 

2.3.1. Pre-Processing 
The radiometric calibration of each L-HH- and L-HV-polarized image was carried 

out to obtain the backscattering coefficients (σ0) in the ground range (Equation (1)): 𝜎଴= 10 𝑙𝑜𝑔ଵ଴(𝐼ଶ + 𝑄ଶ) + 𝐶𝐹ଵ − 𝐴 (1)

where 𝐼 and 𝑄 are the real and imaginary parts of the complex images; 𝐶𝐹 is the radio-
metric calibration factor (−83 dB); 𝐴 is the conversion factor (32 dB) [46]. 

The ALOS-2 images were also filtered with the GammaMap filter to reduce speckle 
[47,48] using a 5 × 5 window size. The geometric correction was performed through ge-
ocoding, using the digital elevation model (DEM) produced by the Shuttle Radar To-
pography Mission (SRTM) and made available at the 90 m spatial resolution. 

The C-VV- and C-VH-polarized images were pre-processed through the Terrain 
Observation with Progressive Scans (TOPSAR) split and orbit correction algorithm and 
selecting a smaller subarea to minimize the computational effort. Then, the procedures of 
deburst and radiometric calibration were applied in this software. Subsequent speckle 
filtering by the GammaMap filter was applied also using a 5 × 5 window size. The last 
procedure consisted of geometric correction through geocoding, using the same process 
performed for the ALOS-2 image. 

2.3.2. Feature Selection 
The identification of SV in the study area was based on the Gray Level 

Co-occurrence Matrix (GLCM), which provides textural information based on sec-
ond-order statistics. The GLCM is a matrix of relative frequency P(i,j,d,θ) that considers 
two neighboring pixels separated by the distance d and with orientation θ from each 
other in a sub-region of the image, one being gray scale pixel i and the other the gray 
scale pixel j. Four adjacencies are defined: horizontal (0°), vertical (90°), and two diago-
nals (45° and 135°) [49,50]. From each matrix, it is possible to extract the following tex-
tural features, which are widely used in the literature [51]: 

Entropy (Entr) = ∑ 𝑝(௜,௝)𝑙𝑜𝑔൛𝑝(௜,௝)ൟ௜,௝   (2)
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Homogeneity (Homo) = ∑ ଵଵା(௜ି௝)మ௜,௝ 𝑝(௜,௝) (3)

Variance (Vari) = ∑ (𝑖 − 𝜇)ଶ௜,௝ 𝑝(௜,௝)  (4)

Correlation (Corr) = ∑ 𝑛ଶே௚ିଵ௡ୀ଴ ቊ∑ ∑ 𝑝(௜௝)ே௚௝ே௚௜|𝑖 − 𝑗| = 𝑛 ቋ (5)

Mean = ∑ 𝑖(𝑝(௜,௝))௜,௝  (6)

Energy (Ener) = ∑ 𝑝(௜,௝మ)௜,௝  (7)

Contrast (Cont) = ∑ 𝑝(௜,௝)(𝑖 − 𝑗)ଶ௜,௝  (8)

Angular Second Moment (ASMO) = ∑ ൛𝑝(௜,௝)మൟ௜,௝  (9)

Dissimilarity (Diss) = ∑ 𝑝(௜,௝)|𝑖 − 𝑗|௜,௝  (10)

where 𝑝௜௝ is the input value in the normalized GLCM; 𝑁௚ represents the different gray 
levels of the image. 

These textural analyses were applied to the both ALOS/PALSAR-2 and Sentinel-1 
data. According to the previous studies [52–54], the selected window size in the GLCM 
textural analysis can impact the results of LULC classifications. Small windows can am-
plify the amount of noise in the texture image, while larger windows can smooth the 
texture variation, degrading the quality of texture attributes [53,55]. Thus, four different 
window sizes were tested for each set of texture attributes at the 64-bit quantization level 
(5 × 5, 7 × 7, 9 × 9, and 11 × 11). 

2.3.3. Principal Component Analysis 
PCA is a technique that reduces data dimensionality by concentrating as much var-

iance as possible in the first components based on a linear transformation [56]. In this 
study, in order to reduce the number of variables to be considered in the machine learn-
ing classification, we applied the PCA technique for the GLCM texture attributes. Then, 
we selected the first principal component (PC1) and the second principal component 
(PC2) to run the RF and SVM algorithms, which corresponds to same methodology ap-
plied by Wiederkehr et al. [57]. A total of 10 experiments were carried out with the SAR 
images (Table 1). 

Table 1. Parameters of the classification experiments with SAR data. 

Sensor Experiment Data Composition GLCM Window Size 

ALOS/PALSAR-2 

A1 HH+HV - 
A2 HH + HV + GLCMPC1 + GLCMPC2 5 × 5 
A3 HH + HV + GLCMPC1 + GLCMPC2 7 × 7 
A4 HH + HV + GLCMPC1 + GLCMPC2 9 × 9 
A5 HH + HV + GLCMPC1 + GLCMPC2 11 × 11 

Sentinel-1 

S1 VV + VH  - 
S2 VV + VH + GLCMPC1 + GLCMPC2 5 × 5 
S3 VV + VH + GLCMPC1 + GLCMPC2 7 × 7 
S4 VV + VH + GLCMPC1 + GLCMPC2 9 × 9 
S5 VV + VH + GLCMPC1 + GLCMPC2 11 × 11 

The texture attributes have different ranges of values among themselves. To avoid 
overvaluing the attributes presenting higher values, we normalized all attributes in the 
[0−1] interval, according to the approach described by Soares et al. [58] and Azevedo et. 
al. [55]. 
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2.3.4. Reference Data and Sample Selection 
Initially, a set of 122 irregular polygons were manually delimited based on the 

LULC classes mapped by the TerraClass project (year: 2014) and the deforestation data 
produced by the PRODES project (period: 2015−2018), in order to perform the image 
classification. The TerraClass project is composed of 17 classes; however, only the fol-
lowing classes that are found in the study area were considered:  
• Primary Forest (PF): areas of upland, broadleaf rainfall forests and gallery forests 

along drainages with no evidence of human activities;  
• Secondary Vegetation (SV): clear-cut forests that are regrowing as consequence of 

abandonment (see more details in the Introduction section); 
• Clean Pasture (CP): well-managed pastures for beef production;  
• Shrubby Pasture (SP): poorly managed pastures for beef production, with the pres-

ence of weeds; and 
• Bare Soil (BS): relatively small areas without vegetation cover, mostly along the 

roads.  
The number of samples for each LULC classes was defined taking into consideration 

the proportion of size of each class, following the recommendations of Stehman [59] and 
Olofsson et al. [60], who indicated four different approaches for sample allocation: pro-
portional, equal, optimal and power allocation. Thus, a set of 122 polygons was manually 
drawn in the ArcGIS™ software by overlaying the TerraClass and PRODES maps in the 
RGB color composite of bands 6, 7, and 8 of the CBERS-4A satellite fused with the 5 m 
panchromatic band by the Gram–Schmidt technique available in the ENVI 5.0™ image 
processing software. In terms of the number of Sentinel-1 pixels, 2844 pixels were se-
lected in the PF class; 1782 pixels in the SV; 2296 pixels in the CP; 834 pixels in the SP; 168 
pixels in the BS (Figure 3). In terms of ALOS/PALSAR-2 pixels, 5771 pixels were selected 
in the PF class; 3454 pixels in the SV; 4633 pixels in the CP; 1588 pixels in the SP; 298 pix-
els in the BS. These different sets of pixels correspond to the approximate proportion of 
LULC classes mapped in the study area by the TerraClass project: SV = 18%; CP = 31%; SP 
= 11%; BS = 2%. Seventy-five percent of the sampling points were used to train the image 
classifiers while the remaining points were used to validate the results of the classifica-
tion. 

Images from the panchromatic band onboard the CBERS-4 satellite were used as a 
reference. A true composite was performed with the multispectral bands (10 m resolu-
tion) that were later merged through the Gram–Schmidt fusion technique with the pan-
chromatic band with a 5 m spatial resolution. 
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Figure 3. Set of 122 samples based on the LULC classes mapped by the TerraClass project and the 
deforestation data produced by the PRODES project. The RGB color composite corresponds to the 
ALOS/PALSAR-2 data (R: HH/HV; G: HH; B: HV). 

2.3.5. Machine Learning Classifications 
In this study, the image classifications were performed using the RF and SVM clas-

sifiers available in the EnMAP-Box software [61]. They were less sensitive to the speck-
le-affected SAR data, showing good classification results involving LULC dynamics in 
forests [62]. The RF algorithm uses decision trees to increase classification accuracy 
through many combinations of random subsets of trees [63]. It constitutes an ensemble 
and bagging algorithm, ensemble because it gathers and employs a set of regression trees 
classifiers and bagging because decision trees are created from subsets of the same sam-
ple set, with replacement [64]. In this study, we carried out preliminary tests with 100, 
500, and 1000 trees. Although the classification accuracy increased with the increasing 
number of trees, we opted to use 500 trees in all classifications because of the best com-
promise between computational effort and model accuracy. Previous studies also have 
recommended 500 trees [64,65].  

We evaluated the accuracy of the RF classification using an approach in which the 
RF algorithm collects approximately 75% of data as a training set while the remaining is 
left out, a procedure known as out-of-bag (OOB). The OOB samples are then directed to 
trees that have not been used by the classifier yet. The difference between the expected 
and the real class is used to estimate the classification error [63]. This method is consid-
ered unbiased because, as the number of trees increases, the error tends to decrease to a 
certain threshold. The importance of each variable in the classification process, in raw 
and normalized values, is calculated from the OOB samples. We considered the number 
of variables as the default value, which corresponded to the square root of the total 
number of input variables [64]. 

The SVM algorithm is a nonlinear classifier that is trained to find an optimal classi-
fication hyperplane. It minimizes the upper bound of the classification error and max-
imizes the distance of the data points of each class to the ideal separation linear hyper-
plane of the axes created from each variable [66]. The SVM model is optimized to look for 
a non-linear hyperplane in a multidimensional feature space using a kernel function [67]. 
The most used kernel functions are the linear, polynomial, radial basis function (RBF), 
and sigmoid functions [68]. In this study, we selected the RBF function, which has two 
predefined parameters, the cost (C) and the gamma (γ). Both parameters depend on the 
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data range and distribution and differ from one classification to the other. In order to find 
the optimum C and γ parameters, a two-dimensional grid search with internal validation 
was performed within the EnMAP-Box software, for each classification [69]. 

2.3.6. Accuracy Analysis 
The classification results from the experiments were analyzed through the confusion 

matrices (user’s and producer’s accuracies), Kappa coefficient, and overall accuracy 
(OA), with a level of significance of 5%. For the best classification result with the RF al-
gorithm, the ranking of predicted variables showing the most important features was 
calculated. 

3. Results 
3.1. C- and L-Band Backscatter Coefficients 

Figure 4 shows the average values and corresponding standard deviations of the 
backscattering coefficients of C-VV, C-VH, L-HH, and L-HV data sets obtained from the 
calibration sites. Co-polarized signals (L-HH and C-VV) were higher than those from the 
cross-polarized signals (L-HV and C-VH). This was somewhat expected since the 
backscattering process, involving cross-polarized energy, is mainly related to the volu-
metric scattering from the canopy, attenuating the SAR signal returned to the antenna 
[70]. In the case of co-polarized energy, most of the backscattering process is related to the 
stronger signal returns from trunks, branches, and leaves located in the upper part of the 
canopy.  

  

  
Figure 4. Backscattering coefficients of primary forest (PF), shrubby pasture (SP), secondary vege-
tation (SV), bare soil (BS), and clean pasture (CP), derived from L-HH (A), L-HV (B), C-VV (C), 
AND C-VH (D) polarizations. 

3.2. Most Relevant Texture Attributes of SAR Images 
Figure 5 presents the ranking of the percentage of contribution of most important 

texture attributes of each SAR images considered in this study. The total contribution of 
first two principal components varied from 74.2% (L-HH polarization) to 98.4% (C-VV 
polarization). For the L-HH polarization, the variations explained by the first two prin-
cipal components were 48.9% and 25.3%, respectively. For the L-HV polarization, the 
variations in PC1 and PC2 were 71.4% and 17.6%, respectively. For the C-VV polariza-
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tion, the variations explained by PC1 and PC2 were 87.6% and 10.8%, respectively while 
for the C-VH polarization, the variations in PC1 and PC2 were 63.7% and 20.5%, respec-
tively. The order of the importance of textural attributes varied according to the polari-
zation. These texture features are considered the most important among all texture at-
tributes analyzed for the SV samples and were grouped according to the results of each 
polarization. Table 2 shows how each set of texture features that was used in the exper-
iments was organized. The ALOS/PALSAR-2 images had more texture attributes in-
cluded in relation to the Sentinel-1 images, mainly regarding the HV cross-polarization. 

 
Figure 5. Contributions of the texture variables to the PC1 and PC2 components for 
ALOS/PALSAR-2 HH polarization (a), ALOS/PALSAR-2 HV polarization (b), Sentinel-1 VV po-
larization (c), and Sentinel-1 VH polarization (d). The red dashed line indicates the mean value at 
which the contributions were uniform. 

Table 2. Organization of texture features used in each experiment, after PCA analysis. 

Satellite Experiments Data Composition No. Images 

ALOS/ 
PALSAR-2 

A1 L-HH + L-HV 2 

A2, A3, A4,  
and A5 

L-HH + L-HH(mean) + L-HH(vari) + L-HH(ener) + L-HH(entr) + 
L-HH(homo) + L-HV + L-HV(corr) +L-HV(entr) + L-HV(ener) + 

L-HV(diss) + L-HV(homo) + L-HV(contr) + L-HV(ASMO) + 
L-HV(vari) 

15 

Sentinel-1 

S1 C-VV + C-VH  2 

S2, S3, S4,  
and S5 

C-VV + C-VV(homo) + C-VV(vari) + C-VV(ener) + C-VV(ASMO) 
+ C-VV(corr) + C-VH + C-VH(ener) + C-VH(entr) + C-VH(corr) + 

C-VH(ASMO) 
11 

3.3. Random Forest and Support Vector Machine Classification Results for the SAR Data 
Table 3 shows the user’s accuracy, producer’s accuracy, OA, and Kappa coefficient 

for each experiment performed with the RF algorithm. In general, the performance of the 
ALOS/PALSAR-2 data was higher than that from Sentinel-1 data. The best result of the 
RF classification involving ALOS/PALSAR-2 data was achieved by the Experiment A5 
(overall accuracy of 84.20%; Kappa coefficient of 0.78), while for the Sentinel-1 data, the 
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best result was obtained by the Experiment S5 (overall accuracy of 81.07%; Kappa coeffi-
cient of 0.73). We can note an improvement when texture attributes were added to the 
backscatter values in both the ALOS-2 and Sentinel-1 data. 

Table 3. Overall accuracy (OA) and Kappa coefficient for the Random Forest classification exper-
iments involving ALOS/PALSAR-2 and Sentinel-1 data sets. PF = primary forest; SV = secondary 
vegetation; CP = clean pasture; SP = shrubby pasture; BS = bare soil. See details of the experiments 
in Table 1. 

Experiment User’s Accuracy (%) Producer’s Accuracy (%) 
OA %  Kappa 

 PF SV CP SP BS PF SV CP SP BS 
A1 67.52 59.87 75.52 52.99 40.00 81.00 44.29 86.55 32.05 8.60 67.75 0.54 
A2 70.79 72.44 74.72 63.70 75.00 90.50 43.59 94.59 20.99 3.23 72.16 0.60 
A3 74.58 73.43 80.74 74.68 60.00 91.58 53.53 92.53 39.95 9.68 76.29 0.66 
A4 77.50 77.87 84.60 76.31 70.59 91.94 58.69 93.77 55.98 12.90 79.62 0.71 
A5 82.60 84.52 86.63 82.64 91.67 95.15 68.32 95.16 67.72 11.83 84.20 0.78 
S1 59.11 62.18 65.74 57.69 28.57 72.28 53.33 72.52 27.03 8.00 61.35 0.45 
S2 57.45 66.22 58.36 72.41 80.00 72.28 43.56 75.95 18.92 32.00 59.74 0.42 
S3 64.62 80.72 67.35 75.56 71.43 82.88 59.56 75.57 30.63 40.00 68.72 0.55 
S4 66.60 78.28 79.07 73.58 91.67 85.05 68.89 77. 86 35.14 44.00 72.86 0.61 
S5 75.82 81.16 88.89 84.31 90.00 92.99 76.02 85.41 42.57 47.37 81.07 0.73 

Table 4 shows the user’s accuracy, producer’s accuracy, OA, and Kappa coefficient 
for each experiment performed with the SVM algorithm. Again, the performance of the 
ALOS/PALSAR-2 data was higher than that from Sentinel-1 data in terms of the OA and 
Kappa coefficient. For the SV discrimination, the ALOS/PALSAR-2 presented a better 
performance in terms of user’s accuracy (75.66%) and producer’s accuracy (66.97%) than 
that from the Sentinel-1 data (user’s accuracy and producer’s accuracy of 60.80% and 
53.06%, respectively). Figure 5 shows the overall accuracy (OA) and Kappa coefficient for 
each experiment performed with the RF algorithm and for the SVM algorithm, respec-
tively. 

Table 4. Overall accuracy (OA) and Kappa coefficient for the Support Vector Machine classification 
experiments involving ALOS/PALSAR-2 and Sentinel-1 data sets. PF = primary forest; SV = sec-
ondary vegetation; CP = clean pasture; SP = shrubby pasture; BS = bare soil. See details of the ex-
periments in Table 1. 

Experiment User’s Accuracy (%) Producer’s Accuracy (%) 
OA %  Kappa 

 PF SV CP SP BS PF SV CP SP BS 
A1 47.40 65.33 53.24 0.00 0.00 74.18 21.78 69.08 2.26 0.00 50.76 0.27 
A2 50.17 66.33 58.42 50.00 83.33 78.53 28.89 67.56 0.90 40.00 54.69 0.33 
A3 55.41 70.59 66.42 69.57 84.62 82.07 42.67 69.47 14.41 44.00 61.25 0.44 
A4 65.50 75.66 71.89 63.46 81.82 81.52 63.56 77.10 29.73 36.00 69.32 0.56 
A5 70.32 72.20 86.33 65.57 100.00 83.02 66.97 85.41 39.60 57.89 75.23 0.65 
S1 45.92 53.12 53.25 0.00 100.00 60.16 35.06 75.08 0.00 1.04 49.89 0.28 
S2 48.82 56.80 54.79 0.00 57.14 66.45 38.82 71.52 0.00 12.50 52.31 0.32 
S3 50.03 60.80 57.00 0.00 42.50 69.58 42.71 69.58 0.00 17.71 54.04 0.34 
S4 52.47 57.66 60.02 0.00 38.89 72.03 46.47 70.09 0.00 14.58 55.73 0.37 
S5 56.79 59.89 64.83 10.00 36.54 70.60 53.06 80.26 0.25 19.79 59.74 0.43 

 
Figure 6 presents the ranking of importance of each feature in the classification 

process based on the RF algorithm performed, considering the A5 and S5 experiments, 
which showed the highest overall accuracy in the previous test. In both classifications, 
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the GLCM correlation related to the cross-polarizations (HV and VH, respectively) con-
tributed more to the RF classification. 

 
Figure 6. Ranking showing the most important features for the RF classification for the A5 (a) and 
S5 (b) experiments. 

Figure 7 illustrates the result of the best accuracies found with the ALOS/PALSAR-2 
(Experiment A5, RF) and Sentinel-1 (Experiment S5, RF) data. We note a predominance of 
PF in the western part of the study area and the CP in the rest of the study area. The SV 
and SP occupy less than 25% of the study area (Figure 8) and are distributed throughout 
the study area in relatively small areas. The small extension of BS occurs in the western 
part of the study area. 
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Figure 7. Best classification results obtained by the Random Forest classifier considering the 
ALOS/PALSAR-2 (a) and Sentinel-1 (c) data sets. Figures (b) and (d) correspond to the 
ALOS/PALSAR-2 and Sentinel-1 images acquired at HV and VV polarizations, respectively, for 
illustration purposes. 
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Figure 8. Area (%) occupied by each land use and land cover class considered in this study, esti-
mated by the Random Forest algorithm based on the ALOS-2 and Sentinel-1 images. PF = primary 
forest; CP = clean pasture; SV = secondary vegetation; SP = shrubby pasture; and BS = bare soil. 

4. Discussion 
Overall, the backscattering coefficients obtained in this study are in agreement with 

previous values reported by other studies conducted in different sites of the Brazilian 
Amazon: −7.53 dB and −12.59 dB for primary forest and ALOS-2 L-HH and L-HV images, 
respectively [71]; −7.53 dB and −12.45 dB for secondary forest and ALOS-2 L-HH and 
L-HV images, respectively [72]; −14.81 dB and −22 dB for cultivated pastures and ALOS-2 
L-HH and L-HV images, respectively [71]. The lower values of the backscattering coeffi-
cients for bare soils and clean pastures are related to the lack or low levels of biomass. 
None of the SAR configurations showed a clear possibility of discriminating the SV from 
other LULC classes based solely on SAR amplitude (backscattering coefficients) data. 
This indicates the need of additional data such as the use of textural information for 
classifying SV. 

The experiments with the ALOS/PALSAR-2 image presented a better performance 
than those involving Sentinel-1 data, reaching a maximum performance (OA of 84.2%; 
Kappa coefficient of 0.78) when texture attributes with 11 × 11 window size were added 
to the radiometric information (backscattering coefficient). These findings agree with the 
results found by Li et al. [73] who analyzed radiometric images and their textures ob-
tained by the L-band ALOS/PALSAR-1 and C-band RADARSAT (C-band SAR) satellites 
for LULC classification in Altamira, Pará, Brazil. They concluded that the L-band data 
provided better LULC classification than the C-band data, regardless of the classification 
algorithm. Mercier et al. [74] and Nicolau et al. [75] also found significant confusion in 
discriminating secondary vegetation and forest based on Sentinel-1 data sets acquired 
over the study areas located in the municipality of Paragominas, Pará State, Brazil, and 
Madre de Dios region, Peru, respectively. 

In this study, we noted that the largest window size presented the best classification 
results. According to Zhou et al. [76], textural attributes derived from the GLCM method 
are highly sensitive to the moving window size and the best criterion to set the value of 
the moving window size is still not fully understood. Coburn and Roberts [77] reported 
that large window sizes are more suitable when landscape is heterogeneous, and 
vice-versa. This last statement may explain our best results for the largest window size. 

The use of SAR textural attributes improved the discrimination capability of differ-
ent LULC classes found in the study area. Zhu et al. [78] reported an improvement from 
31% to 72% in classification accuracy when texture metrics were added to the 



Forests 2022, 13, 1457 15 of 19 
 

 

ALOS/PALSAR data in an urban and peri-urban environment (Boston, Massachusetts, 
USA). In the study conducted by Pavanelli et al. [79], the addition of these metrics to the 
ALOS/PALSAR-2 data sets increased the classification from 30.0% to 44.6%. According to 
these authors, this relatively low accuracy was due to the much higher number of classes 
selected for classification (17) than in the other studies. Here, it is important to note that 
textural images do not assure improvements in all LULC classes because it varies with 
the landscape characteristics and image acquisition modes [73]. Another important as-
pect pointed out by these authors is the selection of a suitable size of the moving window. 
As the sizes of LULC patches vary greatly, typically less than 1 ha for bare soil to hun-
dreds of hectares of pastures and PF in our study area, no window size will be perfect to 
discriminate all LULC classes at once. 

In this study, the RF outperformed the SVM classifier to discriminate the five LULC 
classes by 14% of overall accuracy for both ALOS-2 and Sentinel-1 data sets, considering 
the five experiments. The performance of discriminating SV was also higher for the RF 
algorithm: 3.6% and 16% higher in terms of OA for ALOS-2 and Sentinel-1 data sets, re-
spectively. Previous studies highlight the low sensitivity to feature selection, simple pa-
rameterization, and short calculation time as being the main advantages of the RF classi-
fier method [64,74,80]. 

One of the most difficult aspects of this study was the gathering of reliable ground 
truth data for training and validation of two selected non-parametric, machine learning 
algorithms. The field campaign was very complicated to be conducted due to the poor 
road accessibility during the rainy season. Besides, there was no forest inventory availa-
ble in the study area. We tried to use the best ancillary data, available from the TerraClass 
project, however, there was a four-year delay between the last LULC map produced by 
this project (2014) and the satellite overpasses (2018). This may contribute to reducing the 
accuracy of our final classifications.  

5. Conclusions 
This study evaluated the potential of C- and L-band SAR data acquired in the rainy 

season to discriminate SV in a region considered to be the new hotspot of clear-cut de-
forestation in the Brazilian Amazon. The approach used in this research brings some 
important contributions to the development of a SAR-based system to monitor the 
near-real time re-suppression of SV in the Brazilian Amazon. First, we demonstrated the 
better potential of L-band ALOS/PALSAR-2 data in comparison with the C-band Senti-
nel-1 data for discriminating different LULC representative classes of the Brazilian Am-
azon. Second, the ability of the RF classifier to discriminate SV was higher when com-
pared to the SVM classifier. Third, the use of both amplitude and texture attributes is 
highly recommended to improve the accuracy of the classification. Further research is 
needed to test the performances of other classification methods such as the U-NET that is 
based on semantic segmentation, the deep learning-based Convolutional Support Vector 
Machine (CSVM) or the Convolutional Neural Network-Multilayer Perceptron 
(CNN-MLP) data augmentation technique. Future research is also demanded to test the 
different polarimetric decompositions and interferometric techniques to discriminate 
between areas of secondary vegetation.  
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