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Abstract

Satellite remote sensing enables a repeated survey of the earth’s surface. With machine

learning it is possible to recognize complex patterns from extensive data sets. Using methods

from machine learning, remote sensing images are utilized to derive large scale land use

and land cover (LULC) maps, carrying discrete information on the human management of

land and intact primary forests, as well as change processes. Such information is particularly

relevant in little developed regions, and areas which are undergoing transformation. Therefore,

satellite remote sensing is generally the preferred method for generating LULC products

within tropical regions, and particularly useful to assist tracking of change processes with

regard to deforestation or land management. The Amazon is the largest area of continuous

tropical forest in the world, and of substantial importance with regard to biodiversity, its

influence on global climate, as well as providing living space for a large number of indigenous

tribes. As tropical region, the Amazon is particularly affected by cloudy conditions, which

pose a serious challenge to many remote sensing efforts. Utilization of Synthetic Aperture

Radar (SAR) hence is promoted, as this warrants data availability at fixed intervals.

Performing land cover mapping at the deforestation frontier in the Brazilian states of Pará

and Mato Grosso, the aim of this thesis is to evaluate latest concepts from machine learning

and SAR remote sensing in the light of real world applicability. As a cumulative effort, this

thesis provides a scalable method based on Markov Random Fields, to increase classification

performance. This method is especially useful to enhance the outcome of SAR classifications,

as it directly addresses inherent SAR properties such as multi-temporality and speckle.

Furthermore, ALOS-2, RADARSAT-2, and TerraSAR-X, which are current SAR sensors

fulfilling different properties with regard to ground resolution and wavelength, are being

investigated concerning their synergetic potentials for the mapping of vegetated LULC classes

of the Brazilian Amazon. Here, the additional value of combining multiple frequencies is

evaluated using reliable validation techniques based on area adjustment. Additionally, single

performance of the three sensors is evaluated and their potentials concerning the task of

tropical mapping are estimated. Lastly, different potentials of TanDEM-X for the purpose of

tropical mapping are investigated. TanDEM-X is the first continuous spaceborne mission
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to offer a bi-static acquisition of data, enabling the generation of height models and the

collection of coherence layers via a single pass.



Zusammenfassung

Satellitenfernerkundung ermöglicht eine periodische Erhebung der Erdoberfläche. Durch

Machine Learning besteht zudem die Möglichkeit, Muster aus umfassenden Datensätzen

abzuleiten. Unter Verwendung von Methoden des Machine Learning, werden Fernerkun-

dungsbilder eingesetzt um großskalige Landnutzungs- und Landbedeckungskarten zu gener-

ieren, die diskrete Informationen über Bewirtschaftungspraktiken und intakte Primärwälder,

als auch über Änderungsprozesse aufzeigen. Diese Informationen sind insbesondere von

Interesse in wenig entwickelten Regionen sowie Gebieten, die Transformationsprozessen

ausgesetzt sind. Daher ist satellitengestützte Fernerkundung generell die bevorzugte Methode

um Landbedeckungs- und Landnutzungsprodukte tropischer Regionen zu generieren. Sie

ist insbesondere nützlich Transformationsprozesse hinsichtlich Entwaldung oder Landbe-

wirtschaftung zu erfassen.

Der Amazonas ist das weltgrößte Gebiet zusammenhängenden tropischen Waldes und

von substantieller Bedeutung hinsichtlich Biodiversität, globalen Klimas sowie als Lebens-

grundlage für eine große Anzahl indigener Völker. Als tropische Region ist der Amazonas

insbesondere von bewölkten Bedingungen betroffen, die eine große Herausforderung für viele

Fernerkundungsansätze darstellen. Die Verwendung von Verfahren basierend auf Synthetic

Aperture Radar (SAR) ist aus diesem Grund bevorzugt, da somit die Datenverfügbarkeit in

festen Intervallen gewährleistet werden kann.

Durch Landbedeckungskartierungen an der aktuellen Entwaldungsfront der brasilianis-

chen Staaten Pará und Mato Grosso sollen in dieser Arbeit aktuelle Konzepte des Machine

Learnins und SAR basierender Fernerkundung angewandt und ihre Verwendbarkeit unter

realweltlichen Bedinungen geprüft werden. Als kumulativer Ansatz wird in der vorliegenden

Arbeit eine skalierbare Methode basierend auf Markov Random Fields vorgestellt, die zur

Verbesserung von Klassifizierungsgenauigkeiten verwendet werden kann. Der Nutzen dieser

Methode betrifft insbesondere auf SAR basierende Klassifizierungen, da durch sie inherente

SAR Eigenschaften wie Körnung und multi-temporale Datensätze adressiert werden. Weiter-

hin wird die Verwendbarkeit der aktuellen SAR Sensoren ALOS-2, RADARSAT-2 sowie

TerraSAR-X, welche über individuelle Eigenschaften hinsichtlich Bodenauflösung sowie
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Wellenlänge verfügen, auf ihre Tauglichkeit hinsichtlich synergetischer Nutzung als auch

zur Kartierung tropischer Vegetationsklassen des Amazonas untersucht. Diese Validierung

wird anhand moderner flächenbereinigter Metriken durchgeführt, um eine verlässliche Va-

lidierung zu gewährleisten. Weiterhin werden alle drei Sensoren bezüglich ihrer Eignung,

tropische Kartierungen durchzuführen, verglichen. Abschließend folgt eine Bewertung der

Potenziale von TanDEM-X vor dem Hintergrund tropischer Kartierung. TanDEM-X ist die

erste orbitale Satellitenmission, die eine bistatische Akquise von SAR-Daten ermöglicht,

sodass Höhenmodelle und Kohärenzinformationen mit einem einfachen Überflug abgeleitet

werden können.
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Chapter 1

Introduction



2 Introduction

1.1 Motivation

In 2015 natural forests encompassed roughly 40000000 km2, with tropical and subtropical

forests accounting for more than half of total forest area (Keenan et al., 2015). They function

as hotspots for biodiversity (Pimm et al., 2014), carbon sinks (Pan et al., 2011), and reservoirs

of freshwater. Yet, following land pressure and global demand for growable as well as fleeting

resources, there exists a strong economic drive to transform these areas for cultivation and

exploitation purposes (Verburg et al., 1999; Koh et al., 2008; Mantz, 2008).

Land Use and Land Cover (LULC) science is concerned with analyzing the multi-faceted

structure and utilization of the earth’s surface (Lambin et al., 2001; Cihlar et al., 2001). While

land cover is defined as the physical surface of earth, with land use anthropogenous practices

such as management regimes can be characterized. With an estimated 40 % of all land

surfaces being under direct human use (Foley, 2005), a strong need exists to map and assess

processes which affect tropical ecosystems to contribute to conservation efforts, assist land

management, and safeguard efficient as well as sustainable growth. Information on LULC is

further an integral part of various fields of research, including but not limited to hydrology

(Wagner et al., 2013), epidemiology (Kienberger et al., 2014), and climatology (Broxton

et al., 2014). Its relevance is underlined by a variety of non-governmental organizations

and international Programmes, e.g. Reducing Emissions from Deforestation and Forest

Degradation by the United Nations (UN-REDD), the Worldbank, the World Wildlife Fund

(WWF), or UN’s Food and Agriculture Organization (FAO), whose work is predominantly

based on LULC information.

In this framework of gathering spatial measures on different types of land cover, satellite

remote sensing plays an important role, as it offers comparable periodical surface measure-

ments on a global scale. Surveying the earth on polar orbits, modern constellations, such as

Sentinel-2, allow the acquisition of images at up to 10 m ground pixel resolution within a five

day repeat window (Drusch et al., 2012), enabling an exhaustive monitoring even of small

scale processes. Representative programmes highlighting the capabilities of such systems

include Brazilian Prodes and Deter (Valeriano et al., 2004; Initiative et al., 2013), which are

based primarily on data by Landsat and the Moderate-resolution Imaging Spectroradiometer

(MODIS) to perform deforestation and degradation mapping.

In practice, tropical regions are particularly affected by the diurnal cycle in convection

(Yang et al., 2001), which often coincides with the sensors’ acquisition schedule at highly

illuminated daytimes (Asner, 2001b). Therefore, multi-spectral remote sensing is influenced

negatively by atmospheric interferences, i.e. haze and cloud cover, hampering its potentials

to collect continuous time series data. Contrary to multi-spectral sensors, Synthetic Aperture

Radar (SAR) operates at microwave frequencies, with wavelengths generally longer than
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2.5 cm. Its signals can pass through the atmosphere and clouds, enabling SAR a guaranteed

collection of gapless images at fixed revisit rates. For example, the Sentinel-1 constellation,

consisting of two structurally identical satellites, comes with an orbital revisit of six days,

and offers wall to wall mapping capabilities within a one week time window (Torres et al.,

2012). Despite advantages in coverage, SAR images are inherently affected by speckle,

terrain effects, and the operational limitations of a given wavelength (Woodhouse, 2005).

For this reason, development of new instruments and methods in the context of SAR is of

particular interest.

Within this chapter, the aim is to outline the overall motivation for the conducted research,

and to elaborate on the chosen structure for the thesis. Overarching topics include the utiliza-

tion of SAR images for the derivation of LULC maps within Amazonian study regions, while

particular chapters refer to standalone methods for the improvement of mapping accuracy.

Furthermore, the following sections of Chapter 1 are concerned with communicating a high

level introduction to the given subjects, i.e. land cover mapping of the Amazon, SAR,

validation, and classification methods.

1.2 Brazilian Amazon

The Brazilian Amazon is the largest area of tropical rain forest shared by a single country,

covering nearly 40 % of Brazil’s entire area. It is of global importance due to its function

as a carbon sink (Brienen et al., 2015), and is expected to harbor at least 10 % of total

global biodiviersity. Moreover, many of its effects on global systems are just recently being

investigated. For example, Medvigy et al. (2013) discuss the significant impact of the

Amazon on weather patterns within the USA. The Amazon further plays an important role in

the subcontinental water cycle, affecting regional precipitation, with single trees emitting

an estimated 1000 l of water vapor per day (Nobre et al., 2014; Makarieva et al., 2006). For

this reason, the potential effects of deforestation on the increasing number of droughts in

south-eastern metropolitan regions of Brazil are discussed (Nazareno et al., 2015).

Over the last decades, the Amazon became threatened by a variety of anthropogenic

factors (Davidson et al., 2012; Oliveira et al., 2013; Lapola et al., 2014). By spatial extent,

cattle ranching might be the most severe, and due to the negative effects of cattle on CO2

cycles, large scale ranching in the Amazon has global implications. By extension, increased

herding of cattle also raises demand for soy, which is traditionally grown outside of the

Brazilian tropics. Yet, high demand and advances in agriculture are causing a northward

spread leading to further deforestation in the Amazon (Aide et al., 2004; Coy et al., 2014).



4 Introduction

Overall, Brazil is the top global producer for many agriculturally extensive products, like

soybean, coffee, sugar, and beef (Rada, 2013).

Within the last years, a debate on a potential full stop of Amazonian deforestation has

been brought up in scientific literature and global political conversation alike (Nepstad

et al., 2009; Soares-Filho et al., 2014; Nepstad et al., 2014a). Recent changes in policy,

i.e. the beef and soy moratoria (Tollefson, 2015; Gibbs et al., 2015), and the increased

utilization of remote sensing have been presented as potential reasons for a strong decline in

deforestation rates starting in 2005. Yet, more recent statistics from 2012 onward show rates

to be gradually increasing, raising questions on the long-term effectiveness and the effects

of cyclic regimes on deforestation rates (Fearnside, 2015; INPE, 2015). Within Brazil, the

federal states Mato Grosso and Pará are the largest contributors to Brazil’s greenhouse gas

emissions (Bustamante et al., 2012). As deforestation in Mato Grosso set in earlier than in

Pará, it is just since 2006 that Pará is the state with the highest forest losses. Today, in Mato

Grosso large parts of the Cerrado and the Amazon are already removed, yet, particularly

in northern Mato Grosso, large scale deforestation remains a regular occurrence. On the

other hand, many recent deforestation frontiers exist today in Pará. While Mato Grosso

has traditionally played a bigger role infrastructurally, development of Pará is specifically

linked to the Transamazonian highway BR-230, and the intersecting BR-163, which connects

Santarém and Cuiabá.

Figure 1.1 introduces the study sites of this thesis. The general focus lies on a region just

north of Novo Progresso, in south-western Pará, which in the last years came into public

attention for its strong deforestation dynamics. Due to constraints in data availability, for

Chapter 5 a second study site is introduced in northern Mato Grosso. It is characterized

by similar dynamics, and results are assumed to be transferable. It was chosen due to the

availability of a set of multi-temporal TanDEM-X (TD-X) scenes.
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Fig. 1.1 Location of the two study areas in Pará and Mato Grosso.
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1.3 Synthetic Aperture Radar

1.3.1 Background

The functioning principles of SAR allow for a cloud-free survey of land surface even under

cloudy conditions (Moreira et al., 2013a). Contrary to multi-spectral systems, which in

general sense the sun’s radiation as it is reflected back by earth, SAR is an active system that

measures its own sent out chirps (sweep signals), called backscatter. To achieve an acceptable

pixel resolution, SAR is a side looking system that synthetically forms an antenna through

its own forward motion. Image formation, also called focusing, relies on a two dimensional

construction of the image, which is conventionally achieved through Fourier transformations

(Moreira et al., 2013a).

SAR backscatter is comprised of two parts. As product of an active acquisition, the

backscatter’s intensity as well as its phase can be interpreted to infer information on scatterers

on the ground (real world objects). While the intensity carries information on properties such

as the surface’s roughness, exposition, or dielectricity, the phase of coherent acquisitions

can be used to derive information on the elevation of terrain, or, in the case of differential

interferometry, to detect miniscule changes in elevation over time. In general, intensity

is associated with the wavelength of the SAR system relative to scatterers on the ground.

Additionally, the wavelength also determines the penetration of signals into different surfaces,

such as tree canopy, certain soils, or ice sheets. Therefore, and due to SAR sensors operating

at specific frequencies, different applications favor different sensors. Here, Englhart et al.

(2011) highlight the advantageous properties of long wavelengths for the estimation of

biomass, while in the agricultural domain short wavelengths help with the detection of early

growing stages for certain crops. Still, if additional factors are taken into consideration, such

as ground resolution or revisit rates, vagueness with regard to applicability remains due to the

specific capabilities of different sensors. Moreover, some studies highlight possible benefits

of the combined utilization of different wavelengths (Englhart et al., 2011; Schmullius et al.,

1997).

Besides intensity, phase information of multiple SAR acquisitions can be utilized to

determine detailed information on the surface structure by resolving the ambuiguity of

direction resulting in topographic distortion (Woodhouse, 2005). It is overall based on the

time delay of an echoed signal not being equivalent to the distance, if topographic features

on the ground are present (Woodhouse, 2005). Interferometry is often achieved through

antennas with an across-track displacement, i.e. a displacement perpendicular to the flight

direction. In the aerial case, this displacement is usually achieved through the wingspan of

a plane, while in case of the Shuttle Radar Togpography Mission (SRTM) a mast attached
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to the space shuttle Endeavour was utilized. Across-track interferometry, for this reason, is

often associated with single-pass interferometry, which describes utilization of two slightly

displaced sensors to achieve the angular variation needed for estimating topography. On the

other hand, repeat-pass interferometry describes one collecting sensor, which, in the case

of space-borne SAR, gathers several scenes at revisiting orbits, either in an across-track or

an along-track geometry. This is particularly useful to quantify processes over time, e.g.

vertical movements, (Ferretti et al., 2000), and also falls under the category of differential

interferometry.

Since commissioning of TD-X, a constellation of two twin satellites allowing to gather

single-pass interferometric data, first studies have been published to use this data for land

cover mapping. Schlund et al. (2013) utilize interferometric coherence, a by-product from

the creation of the Digital Surface Model (DSM), to assist classification of a forest site in

Indonesia. Other studies include the detection of urban footprints (Esch et al., 2013), or

biomass classifications (Caicoya et al., 2012).

Another key principle of SAR is the polarization of transmitted and received signals,

which is described as the movement in time and at a fixed location, of the tip of the electric

field vector in space (Woodhouse, 2005). While radiation is in general non-polarized, chirps

of a SAR system are transmitted, either with horizontal or vertical polarization. Modern

sensors are able to operate different polarizations in quick succession, in a way that they

can transmit and collect polarimetric information. For example, current systems are, in

general, able to specify the transmission to be either horizontally or vertically polarized, and

are able to subsequently receive both horizontal as well as vertical backscatter from both

transmissions. In an optimal, fully polarimetric setup, the received signal can then be stored,

on a pixel-level, in backscatter matrices (1.1).

S =

(

SVV SV H

SHV SHH

)

(1.1)

Here, S are complex numbers representing amplitude and phase of the wave, while SHV

describes the received vertical signal for the associated horizontal transmission. In this ideal

case of a filled matrix, S can be decomposed into a covariance matrix, which can then be

used to precisely characterize scatterers on the ground (Moreira et al., 2013a; Woodhouse,

2005). Yet, as fully polarimetric spaceborne sensors remain experimental, such potentials are

not investigated as part of this work. Instead, cross-polarized data is utilized (e.g. VH+VV),

and analysis is targeted on amplitudes neglecting interferometric phase.
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1.3.2 SAR for tropical Remote Sensing

Since its introduction, SAR data has played an important role for remote sensing of tropical

forests. With the launch of the Japanese Earth Resource Satellite 1 (JERS-1), and the

European Remote-Sensing Satellite (ERS-1) in the early 90s, two spaceborne SAR sensors

were commissioned to gather orbital images at L- and C-band, respectively. Backscatter

of both sensors has been investigated with regard to estimations of above-ground biomass.

Luckman et al. (1998) found that with JERS-1 data, only three broad classes of regenerating

forest biomass density could be distinguished for a Brazilian study site, yet Santos et al.

(2002) show applicability for biomass estimations for certain forest types and conditions. For

boreal forests, albeit transferable also to tropical stands, Kurvonen et al. (1999) show a higher

correlation coefficients for JERS-1 at L-band than ERS-1 when estimating biomass. Similarly,

Luckman (1997) show ERS-1 to be merely able to separate forest from non-forest areas,

while JERS-1 and the L-band instrument of SIR-C could be used for biomass estimations.

Shimabukuro et al. (1998) investigate the capabilities of the C-band sensor RADARSAT

(RS) for the distinction of several vegetation classes in Brazil, but due to the lack of spatial

features could not achieve convincing results using automated approaches. Enabled by the

utilization of spatial features, such as texture parameters, and the advancement of techniques

from machine learning, such as decision trees and neural networks, first successes could also

be achieved to perform vegetation based classifications using these data sources. (Dobson

et al., 1996; Miranda et al., 1998). Especially for the distinction of inundated areas and

mangroves SAR has proven useful (Simard et al., 2000).

The 2000s saw the rise of interferometric methods for forestry applications, and the

commission of succeeding missions such as the Advanced Synthetic Aperture Radar (ASAR),

RS-2, the Phased Array type L-band Synthetic Aperture Radar (PALSAR), as well as

TerraSAR-X (TS-X) and TD-X. Here, Luckman et al. (2000) demonstrate for a Brazilian

study site that repeat-pass interferometric coherence can help with the detection of forest

disturbances, while the additional inclusion of interferometric ERS data yields no measurable

benefits. These results are achieved accordingly by Takeuchi et al. (2003) for a site in

Sumatra, underlining the capabilities of both sensors to detect deforestation, yet also showing

the higher potentials of JERS-1 for more complex applications. While the focus of short

wavelength SAR for forestry lies on boreal forests, some studies evaluate the potentials of the

new missions within the tropical context. In particular logging and deforestation are topics

of interest, which can be detected reliably even at X- and C-band ().

Because of the growing data volume, recent topics of investigation include multi-sensoral

integration as well as the utilization of archive data for data mining purposes. Very promi-

nently, Shimada et al. (2014) produce global forest maps using annual PALSAR data gathered
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between 2007 and 2010, and transfer this approach for a 2014-2015 dataset of its successor

ALOS-2 (Advanced Land Observing Satellite) to also perform change detection (Shimada

et al., 2016). Using multi-sensoral data, land cover mapping accuracy can be optimized

(Gessner et al., 2015), and also the performance of monitoring efforts can be increased

(Reiche et al., 2016).

In summary, over the last decades areas of application for different types of SAR data

have been outlined, yet also the development of new methods and the availability of abundant

data enables applications under non-optimal conditions.

1.4 Classification Overview

Classification algorithms, so called classifiers, form the basis of any modern land cover

mapping effort (Jin et al., 2014; Waske et al., 2009b; Moser et al., 2011). In the case of land

cover mapping, a classifier commonly describes a program to transform pixel values into

meaningful, discrete classes of land cover. Within the scope of this thesis, different classifiers

from the field of non-parametric supervised learning are applied, namely Import Vector

Machine (IVM) and Random Forest (RF) (Zhu et al., 2005a; Breiman, 2001a). Supervised

learning describes the algorithms’ property of utilizing labeled data for model adjustment

(Mohri et al., 2012), and hence the gradual process of finding a set of model parameters

in order to produce sensible outcome. In the case of a classification task, labeled data is

understood to be of a discrete kind. This type of training is called non-parametric, since it

does not aim to model the target classes via a set of distribution parameters µ,σ . In contrast to

non-parametric methods, popular parametric methods include maximum likelihood (Hastie

et al., 2009), as well as the recent and promising developments surrounding Generative

Adversarial Nets (Goodfellow et al., 2014).

For training, the first step is to collect representative samples from the target classes,

and a second, independent set for model validation (Hastie et al., 2009). After training

and application of the model on unlabeled data, this validation set in conjunction with the

classified outcome can be used to form a cross table to achieve a comprising evaluation. While

this high level description outlines the general supervised learning approach, classification of

image and remote sensing data come with additional potentials and challenges.

Many methods in the field of remote sensing are derived from approaches stemming from

the domains of computer vision and image processing, which at their basis have the analysis

of images (Parker, 2010). Besides training a model via a set of random samples, the images’

intrinsic spatial properties are recognized and exploited to assist the classification task. Most

relevantly, images are viewed as a matrix (or grid) of features. Each sample, called a pixel,
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consists of an identical number of features, the channels, which are usually between one

(greyscale), and four (RGBA), in the case of traditional image analysis. Each pixel is hence

located at a distinct position in the image grid, and its appearence is highly correlated with

its neighbors. Methods which address this structure outperform naive approaches, which

do not pose these restrictions on the feature space. Examples are superpixels (Achanta

et al., 2012), quadtrees (Samet, 1984), but also filtering techniques in general (He et al.,

2013), and the recent technique of convolutional neural networks (Lee et al., 2009). Lastly,

image processing in most cases is only concerned with the classification of entire images,

or sometimes the classification of image subsets (Wang et al., 2010; Shi et al., 2000), for

example, to recognize the presence of certain objects, like numbers, faces, or animals. In this

case, classification of single pixels is generally not of interest.

Just as images offer a binding structure, remote sensing images fulfill a couple of

additional properties. The number of channels, in remote sensing called bands, is highly

variable and differs for each sensor and the chosen preprocessing. For example, Schlund

et al. (2013) use a mixture of experimental SAR and texture bands, and Waske et al. (2010)

use hundreds of hyperspectral bands, highlighting the diversity in potential data sets. While

the high number of bands promotes class separability, it also increases computational cost of

the conducted analysis and enhances the effect of the curse of dimensionality, thus increasing

demands on a representative sampling and classifier (Shultz et al., 2011). In addition to the

spatial grid, remote sensing images are usually collected in repeated intervals over the same

location, which allows extension of the grid by an additional, temporal axis. Just like spatial

vicinity, temporal vicinity is highly indicative on pixel appearence and class affiliation, yet,

normalization is required for analyzing multiple dates (Small, 2011; Vermote et al., 2016).

Furthermore, challenges can arise from different sensors collecting multi-temporal data,

which means that the associated land cover (the discrete label at a certain pixel), is highly

correlated, while the feature space is not comparable, neither in bands nor pixel alignment

(Reiche et al., 2015a). Contrary to conventional image recognition, remote sensing is usually

concerned with assigning classifications to each single pixel, as these represent ground areas

associated with distinct land covers.

1.5 Adjusted Validation

Validation is particularly aimed at estimating the quality of the generated land cover maps.

The land cover map is a combination of a certain number of independent classification

(i.e. the number of pixels in the image). This poses additional challenges on the validation

procedure, as different types of land cover are not present in similar proportions. For this
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purpose, accuracy measures within this thesis are mostly based on practices as proposed by

Foody (2002), Olofsson et al. (2013), and Olofsson et al. (2014). In particular, area adjusted

measures are utilized to better reflect the effects of unevenly distributed land cover within

study areas.

A conventional confusion matrix carries information on the actual state and target states

of classifications. Items of known class get classified by the algorithm, and depending on

their outcome they are associated with a certain cell in the confusion matrix. Contrary to

a conventional confusion matrix, Olofsson et al. (2014) define the population error matrix

through entries pi j, with i representing the algorithm’s output, and j the known reference.

Instead of counted occurrences, entries within the population error matrix are normalized by

the total number of available reference samples. For this reason, each entry is associated as a

proportion, and the diagonal sum of the matrix expresses the overall accuracy, while user’s

(U) and producer’s (P) accuracies can be inferred using the ratios of the columns’ and rows’

sums, respectively.

Afterwards, poststratification is applied, which is achieved through multiplication of the

proportion of area mapped of a certain class Wi, by the ratio ni j/n j+. Here, n j+ describes

the iterated sum over all columns for the jth row. The resulting matrix is the foundation to

derive additional variance metrics, such as the variance of the overall accuracy (1.2)

V̂ (Ô) =
q

∑
i=1

W 2
i Ûi(1−Ûi)/(ni+−1). (1.2)

Note that elements n refer to entries of the post-stratified error matrix. Additionally, the

variance of user’s accuracy can be estimated using (1.3)

V̂ (Û) = Ûi(1−Ûi)/(ni+−1), (1.3)

while the variance of producer’s accuracy for some reference class j = k is estimated by

(1.4)

V (P) =
1

N2
+ j

[

N2
j+(1−Pj)

2U j(1−U j)

n j+−1
+P2

j

q

∑
i ̸= j

N2
i+

ni j

ni+

(

1−
ni j

ni+
/(ni+−1)

)

]

, (1.4)

with N+ j = ∑
q
i=1

Ni+
ni+

ni j, the estimated marginal total number of pixels of reference class

j, N j the corresponding marginal total of map class j, and n j the number of samples in map

class j.
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Building upon such metrics, it is possible to define other sophisticated measures such as

confidence intervals or area estimates.

Please note that the above explanation is an abbreviated version of Olofsson et al. (2014),

with the purpose of keeping the chosen accuracy metrics transparent. To get a full under-

standing and explanation of the utilized method, please see the referred articles.

1.6 Aims and Structure

This thesis is a cumulative effort consisting of four scientific manuscripts, which propose

methods for different stages in the processing chain of SAR-based land cover mapping of

the Brazilian Amazon. All methods aim at introducing a different aspect to assist with the

task of tropical land cover classification with SAR data, and the evaluation of the proposed

methodology in terms of accuracy measures. Within this section, an argument is offered for

its logical structure as well as the contents of the associated manuscripts. The overarching

goal is to advance SAR-based tropical mapping. The following research questions are

addressed:

• Are discriminative Markov Random Fields (MRF) viable for integrating multi-temporal

datasets showing many occurrences of land cover change? It further poses the question,

which methods can be used for MRF inference given the constraints of the multi-

temporal setup as well as the size of the dataset.

• How well suited for the task of tropical land cover mapping are standard products by

TS-X, RS-2, and ALOS-2?

• What are the current potentials of multi-frequent land cover classification in this

context?

• What is the additional value of TD-X’ interferometric features, in particular with regard

to the separation of different vegetation types?

• What additional value can be generated by subtraction two height models derived from

TD-X within a one year interval, with the purpose of mapping deforestation?

As part of Chapter 2, modern algorithms from the field of machine learning are adapted

and their performance is evaluated for the purpose of tropical vegetation mapping. The

goal is to develop a classification method, which can utilize spatial-temporal context to

enhance classification accuracies. To achieve this, discriminative Markov Random Fields

are applied in unison with a probabilistic Import Vector Machine classifier. MRF’s are a
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method to integrate information about pixel neighborhoods on top of the classification proce-

dure. The classification procedure gets complemented by the integration of spatio-temporal

neighborhoods, meaning each pixel is directly linked to its four spatial, and additionally

to its two temporal neighbors. This way, land cover trajectories can be defined to prohibit

temporally illogical changes in land cover, and spatially it enforces Tobler’s first law of

Geography (Tobler, 1970), that near things are more related than distant things, to sharpen

classification quality. The method directly addresses various properties as highlighted in the

previous Section 1.4. Besides the spatial-temporal integration, it is by definition transferable

to multi-sensor cases, and is based on the intra-image classifications within the land cover

map.

As part of Chapter 3, current spaceborne SAR sensors are evaluated with regard to tropical

mapping. The goal is to evaluate the mapping potentials at different wavelengths, and also

to gather knowledge on multi-frequency applicability. With TS-X, RS-2, and ALOS-2, this

study utilizes data from three systems which are currently operational. Multiple scenes from

each sensor are acquired in different seasons, allowing for a comparative study of these

satellites’ multi-temporal capabilities. A wrapper is set up to compare both, the mono- as

well as the multi-frequent classification potentials. This is a method to concatenate input

features based on their performance in previous iterations. In a first step, all scenes are

classified independently. Afterwards, the best outcome is concatenated with each of the

remaining scenes, again logging the classification accuracies. This procedure is iterated until

the entire stack of images is classified. The order is considered a reliable indicator for the

information gain of each scene.

Finally, two chapters (Chapter 4 and Chapter 5) are dedicated to an evaluation of inter-

ferometric TD-X data. Chapter 4 investigates the capabilities of including information on

interferometric into a LULC classification within the Pará study region. As part of Chapter

5, two interferometric datasets within a one year interval are acquired. Both datasets are

processed independently to derive height maps, which are afterwards subtracted to indicate

land cover change, in particular deforestation.

The chapters of this work are written as autonomous manuscripts:

• R. Hagensieker, R. Roscher, J. Rosentreter, B. Jakimow, and B. Waske (2017a).

“Tropical land use land cover mapping in Pará (Brazil) using discriminative Markov

random fields and multi-temporal TerraSAR-X data”. In: International Journal of

Applied Earth Observation and Geoinformation 63, pp. 244–256

• R. Hagensieker and B. Waske (2018). “Evaluation of Multi-Frequency SAR Images

for Tropical Land Cover Mapping”. In: Remote Sensing 10.2, p. 257
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• R. Hagensieker, I. Zeller, and B. Waske (submitted[a]). “Land Cover Classification

based on interferometric TanDEM-X Imagery in the Brazilian Amazon”. In: Geo-

science and Remote Sensing Letters

• R. Hagensieker, P. Lubig, and B. Waske (submitted[b]). “Mapping Deforestation from

Height Differences of multi-temporal Tandem-X Images”. In: Remote Sensing Letters
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Abstract

Remote sensing satellite data offer the unique possibility to map land use land cover trans-

formations by providing spatially explicit information. However, detection of short-term

processes and land use patterns of high spatial-temporal variability is a challenging task.

We present a novel framework using multi-temporal TerraSAR-X data and machine learning

techniques, namely Discriminative Markov Random Fields with spatio-temporal priors, and

Import Vector Machines, in order to advance the mapping of land cover characterized by

short-term changes. Our study region covers a current deforestation frontier in the Brazilian

state Pará with land cover dominated by primary forests, different types of pasture land and

secondary vegetation, and land use dominated by short-term processes such as slash-and-burn

activities. The data set comprises multi-temporal TerraSAR-X imagery acquired over the

course of the 2014 dry season, as well as optical data (RapidEye, Landsat) for reference.

Results show that land use land cover is reliably mapped, resulting in spatially adjusted

overall accuracies of up to 79% in a five class setting, yet limitations for the differentiation

of different pasture types remain.

The proposed method is applicable on multi-temporal data sets, and constitutes a feasible

approach to map land use land cover in regions that are affected by high-frequent temporal

changes.

2.1 Introduction

The Brazilian Amazon is the largest area of tropical rain forest shared by a single country. In

the last decades it has become increasingly threatened by large scale deforestation, forest

degradation, and the expansion of agriculture (Davidson et al., 2012; Lapola et al., 2014).

They affect the Earth’s ecosystems and ecosystem services far beyond the boundaries of the

original region, and can influence the climate directly at local and even regional scales (Foley,

2005; Vitousek, 1997). Thus, detailed knowledge and information on land use and land cover

(LULC) offers valuable input for decision support and environmental monitoring systems.

Remote sensing satellite data offers the unique possibility to generate consistent LULC maps

over large areas at a temporally high resolution. Mapping of LULC change in the Amazon

is predominantly achieved by analyzing multi-spectral remote sensing data (INPE, 2015;

Wulder et al., 2012a; Hansen et al., 2013). However, a limitation of the analysis of multi-

spectral remote sensing data is imposed by its dependency on cloud-free conditions. These

are rare in tropical regions and in general not met during wet season (e.g. Rufin et al., 2015;

Müller et al., 2015). Synthetic aperture radar (SAR) data can overcome these problems and
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various studies demonstrate the potential for mapping LULC and their changes (Pfeifer et al.,

2016; Qi et al., 2012; Bovolo et al., 2005), also in the context of deforestation and related

processes (Sarker et al., 2013; Reiche et al., 2015a; Englhart et al., 2011; Almeida-Filho

et al., 2009). Such mapping approaches become even more attractive due to recent missions

with increased repetition rates, higher spatial resolution (e.g. TerraSAR-X and Sentinel-1),

as well as better data availability, e.g., by virtue of the Copernicus data policy (Aschbacher

et al., 2012). TerraSAR-X and the Sentinel-1 constellation guarantee cloud free coverage

within 11 and 6 days respectively, while the repetition rate of the Sentinel-2 constellation (5

days) and Landsat-8 (16 days) might be affected by clouds.

Although the classification accuracy of SAR data can be limited in direct comparison to

multi-spectral data, various approaches exist to increase the mapping accuracy. These in-

clude the integration of one-pass interferometry (Schlund et al., 2013), contextual spatial

information derived from texture parameters or segmentation (Cutler et al., 2012a; Sarker

et al., 2013; Schlund et al., 2013; Waske et al., 2008), or the utilization of multi-temporal

or multi-sensoral data (Reiche et al., 2013; Stefanski et al., 2014; Waske et al., 2009b).

Although limitations of short wavelength SAR data for the classification of dense vegetation

are well documented (e.g. Kumar et al., 2013), various studies have highlighted the potentials

of this data for LULC mapping (e.g. Schlund et al., 2013; Qi et al., 2015; Uhlmann et al.,

2014; Qi et al., 2012; Khatami et al., 2016; Sonobe et al., 2014), e.g. by utilization of multi-

temporal data, modern classification algorithms, or spatial context. Multi-temporal data sets

are generally more adequate when classes can be characterized by clearly defined temporal

signatures, e.g. caused by differences in the phenology of crops, land use management, or

seasonal cycles (Blaes et al., 2005; McNairn et al., 2009). While the single classification of a

multitemporal data set might be useful for study sites without or long-term changes (Waske

et al., 2009b; Stefanski et al., 2014), it might be limited for study sites with temporally

high-frequent changes in land cover, e.g. slash-and-burn activities, at arbitrary points in time.

Recent studies have shown great potentials to tackle these problems by time series analysis

of multispectral data (Zhu et al., 2014), but SAR speckle and quick succession processes still

pose difficult challenges using such methods, especially if very long time series are often not

available.

In the context of multi-temporal data analysis, a main drawback is often the assumption of

non changing land cover during the investigation period. Consequently, temporally dynamic

LULC, such as slash-and-burn activities or transitions between clean and shrubby pasture,

are neglected. Various studies emphasize the usage of an adequate classification approach to

ensure a high mapping accuracy (Liu et al., 2006; Waske et al., 2007; Waske et al., 2009b).

Especially the integration of spatial information by means of region-based classification or
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spatial features such as texture lead to a gain in accuracy. In addition, Markov Random

Fields (MRFs) are a promising approach to integrate spatial context (Moser et al., 2013b;

Moser et al., 2013a; Liu et al., 2006). MRFs are employed to model prior knowledge about

neighborhood relations within the image, called spatial relations, but can also be extended

to describe relations of the same area but at different acquisition dates (temporal relations).

Since the early 1990s, approaches based on MRFs have been utilized in remote sensing

for various purposes (Bouman et al., 1994; Xie et al., 2002; Tran et al., 2005; Solberg

et al., 1996). Liu et al. (2008a) use locally variant transition models to account for spatial

heterogeneity and have applied the model on subsets of two Landsat scenes from 1990 and

2001. More recently, Wehmann et al. (2015) have adapted an integrated kernel as proposed by

Moser et al. (2013a), and used Iterative Conditional Modes (ICM) as optimization technique

with spatially-variant transitions for classifying Landsat data. Hoberg et al. (2015) apply

multi-temporal Conditional Random Fields to regularize annual remote sensing imagery

from different high resolution scales (IKONOS, RapidEye, Landsat) over the course of five

years.

With the emergence of efficient probabilistic classifiers over the last decade, standard MRFs

have been extended to discriminative MRFs (Kumar et al., 2003), and turn out to be increas-

ingly useful to optimize land cover classifications (Moser et al., 2010; Tarabalka et al., 2010;

Voisin et al., 2013). Liu et al. (2006) highlight the advantages of utilizing non-parametric,

probabilistic Support Vector Machines (SVMs, Platt (1999)) over a maximum likelihood clas-

sifier. However, although many remote sensing studies highlight the positive capabilities of

MRFs, only few studies aim on using MRFs for landscape-scale mapping with multi-temporal

data sets (e.g. Cai et al., 2014; Wehmann et al., 2015; Olding et al., 2015), for example, to

map forest cover change (Liu et al., 2008b; Liu et al., 2006). If multi-temporal data sets

are available, MRFs can also be used to optimize the corresponding maps by considering

predefined spatial-temporal inter-dependencies between neighboring pixels, which are stored

in transition matrices.

We present a novel framework for classification of a TS-X time series using discriminative

MRFs and Import Vector Machine (IVM), a probabilistic, discriminative, non-parametric

classifier. Each scene is separately classified using IVM, afterwards MRFs are utilized in an

independent step to post-regularize the classification map. We chose IVMs over commonly

used probabilistic SVMs, since they have proven to offer a more reliable probabilistic output

(Zhu et al., 2005b; Roscher et al., 2012a; Roscher et al., 2012b). For MRF optimization we

choose Loopy Belief Propagation (LBP) over ICM as this method has been shown repeatedly

to yield higher accuracies (Szeliski et al., 2006; Andres et al., 2010). Few studies have

utilized LBP in the field of remote sensing (Li et al., 2012), and as a novelty we integrate
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LBP into a multi-temporal setting.

The presented framework aims on the classification of each individual acquisition, and thus

enables mapping of high frequency spatial-temporal LULC patterns. In contrast to related

studies, we use a multi-temporal MRF model on SAR data to detect short-term transitions

within one season and Loopy Belief Propagation (LBP) for inference.

The overall goal of this research is focused on two objectives: (i) to map LULC in a tropical

setting with short-term processes, by adapting recent MRF methods, and (ii) to assess the

potential for LULC mapping using time-series image data of short wavelength SAR. The

specific objective is to map LULC in Pará, Brazil, where transformations of forest to pasture

are the major driver of deforestation. Pasture management in the study region tends to fall

into one of two categories: long-term processes of intensively managed pasture land (pasto

limpo), or short-term processes of episodically managed pasture land with a high degree

of successive dynamics (pasto sujo). Pasture management in general is characterized by

slash-and-burn processes resulting in sudden changes in LULC.

2.2 Study Area & Data

2.2.1 Study Area

The study area lies in the Northern part of the Novo Progresso municipality (southern Pará

state, Brazil), and is intersected by the BR-163 highway in the Southwest 2.1. The BR-163

is accompanied by fishbone structures indicative of deforestation (Ahmed et al., 2013; Coy

et al., 2014). A major driver of deforestation in the study area is the transformation of forests

into pasture land. The climate in the study region is characterized by a wet and a dry season.

While the dry season, between June and September, sees abrupt land cover changes in the

form of large scale burning and clear cuts, the wet season is defined by gradual regrowth, yet

deforestation rates over the wet season are on the rise.

Table 2.1 Scenes utilized in this study. All scenes were collected over the same area using
the same incidence angle.

Date Polarization
2014-06-08 VV-VH
2014-06-30 HH-HV
2014-07-22 VV-VH
2014-08-24 VV-VH
2014-09-04 HH-HV
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Fig. 2.1 Composite of three TerraSAR-X acquisitions (Red: VV June 8, Green: HH Septem-
ber 4, Blue: VV November 9 of 2014). True color ETM (L8, 12 September 2014) in the
background shows the diverse LULC properties.
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Fig. 2.2 Photograph illustrating the fluent transitions and interactions of different land cover
types in the study region.

2.2.2 Remote Sensing Data

The data base for the study consists of five TS-X strip map scenes with 5m× 5m spatial

resolution (Table 2.1). All images are ordered in single-look complex format, comprising

different VV-VH and HH-HV polarization at an incidence angle of 37.75◦, and cover a swath

of roughly 50km×15km (5663×11856 pixels). Data is calibrated and processed according

to common procedures (see Section 2.2.2). Preprocessing in the context of this study includes

all necessary steps before random sampling of training and test data is performed. After

random sampling, training of IVM, and MRF regularization are taken out, land cover maps

are generated and validated, and average measures are calculated.

Preprocessing of the TS-X scenes is conducted using the Sentinel 1-Toolbox and the Geospa-

tial Data Abstraction Library (Team, 2015). All scenes were processed separately in the

following order:

Multilooking: 3 range looks, 2 azimuth looks, yielding a ground resolution of ∼ 4.7m×

4.7m.
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Terrain & Radiometric Correction: Range-Doppler terrain correction (SRTM 3Sec) and

resampling to 5m×5m pixel spacing. The data is projected into UTM Zone 21S. γ0

radiometric normalization is applied using an SRTM.

GLCM-Texture Texture measurements are widely used to increase the mapping accuracy

of SAR data (Sarker et al., 2012; Dekker, 2003; Cutler et al., 2012b). Gray Level

Co-occurence Matrices (GLCM) are calculated with 11×11 moving window size into

all symmetric directions with offset one. Probabilistic quantization is conducted into

64 levels. Ten texture parameters are separately derived for any available polarization

and any available scene: contrast, dissimilarity, homogeneity, angular second moment

(ASM), energy, maximum probability, entropy, GLCM mean, GLCM variance, and

GLCM correlation. These will be included as additional features to improve the IVM

classification. For more information on GLCM-based texture parameters see Haralick

et al. (1973) and Sarker et al. (2012). In respect to findings by Sarker et al. (2013) and

Nyoungui et al. (2002), and our own experiments, we abstain from combining texture

metrics with speckle filtering. Since we use 10 texture measures per layer, we have a

total of 22 features per scene for the classification process.

2.2.3 Reference Data

Reference data includes multispectral RapidEye and Landsat data, in situ data, as well as land

cover data from various Brazilian agencies (e.g. PRODES, TerraClass). PRODES (Programa

de Cálculo do Desflorestamento da Amazônia) is an effort by the Brazilian space agency

(INPE) to generate annual maps documenting deforestation of primary forests inside the

Legal Amazon with a minimum mapping unit of 6.25ha (INPE, 2015). Targeting only the

sites that PRODES considers deforested, TerraClass is an effort to determine LULC classes of

the affected areas (Almeida et al., 2016). The overall coverage of all available TS-X swaths

constitutes the study area (Figure 2.1), and is sufficiently covered by reference information.

While forests as well as clean and shrubby pasture are present in the study area, occurrence

of water and burnt pasture is overall scarce. To address this issue, polygons are manually

distributed over the entire area. Afterwards, each polygon is assigned one class label for

each date covered by TS-X to address changes of LULC. If necessary, polygons are split to

avoid class ambiguity within different temporal instances. E.g., if a coherent pasture area is

only partially burnt, the polygon gets split. The generation of reference data is supported

by visual interpretation of RapidEye as well as Landsat 7 ETM+ and Landsat 8 OLI data of

the same time period. In addition to Landsat and RapidEye imagery, fire products derived

from MODIS are also considered. Moreover, photographs from a field campaign conducted
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Table 2.2 Number of sample points available for training distinguished by class, extracted
from polygons.

Date

Class 06-08 06-30 07-22 08-24 09-04

Burnt Pasture 15 55 139 469 434
Clean Pasture 487 444 375 384 420
Shrubby Pasture 749 783 789 438 428
Water 28 28 28 28 28
Forest 799 701 704 616 516

in August 2014 are available.

Sampling is conducted by two of the authors in close cooperation and was harmonized with

classification schemes by INPE (Instituto Nacional de Pesquisas Espaciais). The following

LULC classes are considered: clean pasture, shrubby pasture, burnt pasture,

water, and forest. Clean pasture, also called pasto limpo, describes pasture land

that is intensively worked. This includes regular tillage and burning of land to support

cattle ranching. Shrubby pasture, also called pasto sujo, is not intensively managed

and thus affected by bush encroachment. The coarser appearence of shrubby pasture

generally allows a visual separation from clean pasture in high resolution images. Burnt

pasture includes clean as well as shrubby pasture areas which were recently burned, and

are characterized by open soil and vegetation residues. Such areas can be easily identified

using false color composites. Forest, beside primary forests, includes areas of secondary

vegetation and regeneration as these are usually non-separable by X-band SAR. Forests have

a very characteristic appearance in TS-X images and high resolution multispectral imagery.

Table 2.2 gives an overview of the number of available training samples for each class and

date. It should be underlined that the burning season usually starts around end of July. Hence

only few burned pasture areas could be identified before that period. Water bodies are also

very scarce and only two lakes over the entire study area are included. Table 2.3 visualizes

the classes considered in our classification scheme. The considered LULC classes match

comparable studies using TS-X data in Brazilian, or tropical settings, respectively (Garcia

et al., 2011; Schlund et al., 2013). As the time period of our study falls into the dry season

between June and September, corresponding multispectral remote sensing data could be

interpreted sufficiently well. Yet, some challenges remain:

• For the study region two dominating pasture types can be identified: pasto sujo, i.e.,

shrubby pasture, and pasto limpo, i.e., clean pasture (Almeida et al., 2008;

Adami et al., 2015). While both types are generally used for cattle ranching in this
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Table 2.3 Classification scheme.
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region, pasto sujo is characterized by bushes and occasional early stages of succession.

However, the transition between these types can be gradual and consequently hard to

interpret from remote sensing imagery alone; even at 5m ground resolution as offered

by RapidEye.

• Transitions from pasto sujo into early stages of secondary vegetation are hard to

distinguish, due to the gradual nature of this process. However, it is not as relevant in

our study site since significantly less areas are affected. To allow a solid separation of

these classes, we consider multi-annual time series to identify pasture management.

In addition, we include information offered by TerraClass which reliably separate

different types of secondary vegetation and pasture land.

• Primary and secondary forests, as well as secondary vegetation, are combined into one

class, as various studies and own preliminary tests indicate the limitation of X-band

for separating these two classes.

2.3 Methods

The proposed framework consists of four steps: (i) preprocessing, (ii) random sampling, (iii)

classification of each single scene using IVM, and (iv) optimization of the MRF model. Final

validation is performed on averages over 10 independent runs, using a random sampling

(50:50) into spatially disjoint train and test polygons. As pixels sampled from training

polygons are solely used for IVM parameterization (grid search) and model training, pixels

sampled from test polygons enable an independent validation.

Throughout the paper we use the following notation: Let there be a training set (xn,yn) ∈

T comprising N feature vectors {x1, . . . ,xn, . . . ,xN} and corresponding class labels yn ∈

{1, ...,K}, distributed over an image lattice I . We later address image samples at any given

coordinate as xi, and probability estimates as pi = [p1, ..., pnk, ..., pnK] with pnk = p(yn = k |

xn).

2.3.1 Import Vector Machines

IVM is a discriminative and probabilistic classifier based on kernel logistic regression and

has first been introduced by Zhu et al. (2005b). Roscher et al. (2012b) have shown that IVMs

provide more reliable probabilities than probabilistic SVMs, since IVMs’ probabilities are

more balanced, whereas SVMs generally overestimate maximum probabilities. To account

for complex decision boundaries between classes, IVM generally benefit from integrating a
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t +1

t

t −1

Fig. 2.3 Temporal (green) and spatial (yellow) neighbors of a given pixel (blue).

kernel function. For this study, we utilize the radial basis function (rbf) kernel parameterized

by kernel width σ , which is a standard for remote sensing purposes. Parameterization is

achieved analogously to standard SVM practices using a grid search, to estimate the cost

parameter C and σ . For a more encompassing description of IVM see Zhu et al. (2005b) and

Roscher et al. (2012a).

2.3.2 Markov Random Field

In this study, we use post classification MRF with spatio-temporal neighborhood relations

between pixels, as illustrated in Figure 2.3. Parameterization is achieved through transition

matrices, which are 5×5 matrices indicating spatial and temporal transition probabilities

between the five classes. For our description of MRF, we adapt a terminology similar to

Moser et al. (2013b) and Melgani et al. (2003). Therefore, with xi denoting pixel features

and yi its corresponding class label, we reformulate the IVM-based probabilities p(yi | xi) as

energy terms

U
X

=−∑
i∈I

ln p(yi | xi). (2.1)

As the energy U
X

are equivalent, minimization of U
X

is identical to maximization of P.

Now consider a function for the spatial neighborhood Usp, with i ∼sp j applying to any two

pixels, which are direct, 4-connected, spatial neighbors, and a function δ (yi,y j) to assign

weights to neighboring classes:

Usp = ∑
i∼s j

1−δ (yi,y j) (2.2)

In this case the function δ yields a K ×K matrix which can be used to favor certain neigh-

boring constellations. The function δ is generally defined as Potts model to result in an

identity matrix, which encourages the generation of homogeneous areas. The standard



2.3 Methods 35

mono-temporal MRF model is given by summation of (2.1) and (2.2)

U
X ,sp =−∑

i∈I

ln p(yi | xi)+β ∑
i∼s j

1−δ (yi,y j) , (2.3)

with weight parameter β to regulate importance of the spatial component. For the multi-

temporal case we consider co-registered images with the temporal neighbors being the

spatially congruent cells at the neighboring acquisition times t −1 and t +1. Only if pixel j

is the temporal successor of i, i ∼t+1 j applies; and only if pixel j is the temporal predecessor

of i, i ∼t−1 j applies. Temporal energy is hence given by (2.4), analogous to the spatial case.

Utemp = ∑
i∼t+1 j

1− τ1(yi,y j)+ ∑
i∼t−1 j

1− τ2(yi,y j) (2.4)

Here, τ1 and τ2 are K ×K matrices defining the temporal transitions as observed from

land cover trajectories. In opposition to the spatial weighting δ , we require multiple, non

symmetrical matrices τ to respect trajectories with regard to the future, or the past. The

overall energy function is defined by integrating the temporal vicinity into (2.3), which yields

U =−∑
i∈I

ln p(yi | xi)+βsp ∑
i∼s j

1−δ (yi,y j)

+βtemp

(

∑
i∼t+1 j

1− τ1(yi,y j)+ ∑
i∼t−1 j

1− τ2(yi,y j)
)

.
(2.5)

This function combines (2.3) and (2.4). Weight parameters β(·) can be used to adjust the

importance of temporal and spatial weights.

2.3.3 Passing scheme & transition matrices

LBP is an inference algorithm utilizing Message Passing (Pearl, 1982), and is shown to

approximate maximum values sufficiently well (Murphy et al., 1999). We choose LBP over

graph-cut based methods for their more general applicability, as graph-cuts are specifically

defined for symmetrical binary factors (Boykov et al., 2001), and can not be applied in

non-symmetric environments (Kolmogorov et al., 2004). ICM (Iterated Conditional Modes)

is another algorithm which is commonly used to achieve inference, especially in remote

sensing and using multi-temporal data sets (Liu et al., 2008b; Liu et al., 2006; Wehmann

et al., 2015). While it has low computational cost, it is generally outperformed by LBP in

terms of accuracy (Szeliski et al., 2006; Andres et al., 2010). For this reason we formulate

an implementation of LBP using moving windows, which can be applied to image stacks
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Fig. 2.4 Passing schedule as applied in this study. One pass over all layers corresponds to
one iteration of LBP.

Action Description

Step 1: Generation of a fallback copy of
the current energy layer (blue). Necessary
for future calculation of messages passed
to the red layer.

Step 2: Messages are passed from the
previous fallback, the next energy layer,
and the current layer, also factoring in the
unaries upon receiving. This procedure
is performed using a set of moving win-
dows.

Step 3: Discarding of the previous fall-
back, and backing up of the next energy
layer (see Step 1). Iterate over each layer.

of arbitrarily large image stacks sufficiently well. Figure 2.5 illustrates the neighborhood

of one pixel in a factor graph, analogous to the MRF neighborhood as described in Section

2.3.2. Using the Potts function to define δ is common practice in remote sensing literature

(Moser et al., 2013b), and since the focus of this study lies on the examination of MRF for a

multi-temporal linking of classifications, we follow this practice. The Potts function can be

represented by an identity matrix, which supports assignment of neighboring pixels to the

same class. It is in general not sensible to formulate an asymmetric message passing for the

two spatial dimensions, as a pixel will assume the same properties of its left as of its right

neighbor. More specifically, the Potts model is a way to reflect Tobler’s assumption on spatial

autocorrelation, promoting the idea of close objects to be more alike than distant objects.

In contrast to the spatial transitions, utilization of the Potts model for temporal transitions

can lead to serious distortions and cause equalization of all subjected probability maps, i.e., it

would prohibit any land cover changes from occuring. While we can not assume any spatially

directional patterns in the area, and thus rely on the Potts model, a pixel will pass different

messages to its temporal successor opposed to its predecessor. Through adjustment of τ it

is possible to assign probabilities for all possible types of class transitions. We therefore
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Fig. 2.5 Factor-graph as implemented in this study. Variable nodes illustrated by yellow
(spatial neighbor) and green nodes (temporal). Circles mark the corresponding factor nodes
and the unary IVM-based energy.

express temporal transitions through two asymmetric transition matrices (τ1 and τ2). While

matrix τ1 illustrates the messages pixels pass from the scene at time t to its neighbor at t −1,

τ2 defines the messages the pixels pass from t to t +1. This differentiation is important, e.g.

considering that burnt pasture at t will prohibit primary forests at t +1, yet it might endorse

pasture at t −1. We integrate the user-defined transition matrices τ1 and τ2 as interface to

inject a-priori expert knowledge into our regularization model. While not empirically derived,

these matrices are based on weak assumptions on land cover trajectories.

The assumptions include that Water and Forest are regarded very consistent classes, yet

that pasture areas have some kind of interaction with each other. This especially concerns

the transition of pasture land to burnt pasture land, which is explicitly tolerated. Further-

more, forest does not explicitly prohibit predecessing non-forest areas, which is due to

forest including secondary vegetation and to offer the model some tolerance with regard to

misclassifications. Hence, the formalization of land cover trajectories is relatively straight

forward, and not necessarily based on elaborate a-priori knowledge. Previous tests showed a

very similar outcome concerning the modification of these parameters, yet using very strict

transitions could lead to undesired results and suppress dynamics entirely. In the scope of

this study we utilize different transition matrices due to the varying time gap between the

five TS-X acqusitions. The revisit rate of TS-X is eleven days, and the available imagery

shows one gap of eleven days, two gaps of 22 days, as well as one gap of 33 days in between
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neighboring acquisitions. We hence linearly modify the transitions to adjust to the varying

temporal resolution, since with increasing time, more change is expected to occur.

The following summarizes the most relevant assumptions we made for specification of the

transition matrices.

• Pasture areas can potentially be burnt. After burning, likelihood is high to transition

back into clean pasture or shrubby pasture.

• Transitions from shrubby pasture to clean pasture are permitted.

• Clean pasture is considered stable, yet may transition into shrubby pasture or

forest. Following observations of TerraClass, for the study region we assume a slow

shift from clean pasture into shrubby pasture overall.

• Forest is the most consistent class. It can get removed, yet especially shrubby

pasture can develop into forest as the class also includes secondary vegetation.

• Water is used to describe bodies of water which are permanently filled within this dry

season.

• For any class there is a small tolerance to evade to counteract inconsistent transitions

which may be caused by misclassifications.

2.3.4 Classification & Validation

Three different types of classification are compared: (i) the baseline IVM classification, (ii)

the spatial-only MRF with βt = 0, from now on referred to as s-MRF, and (iii) the spatial-

temporal MRF, referred to as st-MRF. While many studies rely on supervised classification

using SVM and Random Forest classifiers, various studies show that IVM perform at least

equally well in terms of accuracy (Roscher et al., 2012b; Braun et al., 2012). Therefore the

original IVM classification is considered as adequate baseline classification.

Reference polygons exclusively comprise either training or test samples to avoid spatial

autocorrelation. For training purposes, 15 samples per polygon are randomly selected, using

a minimum sampling distance of 30 meters. A systematic sampling ensures that an adequate

number of training samples is selected for all five classes; clean pasture, shrubby

pasture, burnt pasture, water, and forest. Validation is conducted considering the

current terms of good practice as laid out by Olofsson et al. (2014). Samples are clustered

in polygons to improve on the spatial variability of both, training and test samples, with

pixels being the assessment unit. This sampling strategy is a necessary trade-off between



2.4 Results 39

ideal conditions of independent random sampling and the difficulties of obtaining large scale,

multi-temporal reference data in a challenging environment (Olofsson et al., 2014). Error

matrices are derived to serve as a basis for the estimation of overall accuracies (OA), user

accuracies (UA), producer accuracies (PA), and their corresponding confidence intervals (CI).

In addition, we calculate area measures and their confidence intervals at each acquisition

date to estimate the development of burnt pasture land over the entire 2014’s dry season.

Classification and validation is conducted ten times using different training and test sets and

the results are averaged.

2.4 Results

We show that we can benefit from the high repetition rate and high ground resolution of TS-X,

and that the proposed framework outperforms common classification approaches in terms

of area adjusted mapping accuracy (Olofsson et al., 2014). Table 2.4 illustrates the average

area adjusted OA for the five TS-X scenes, using the three different methods. Irrespective of

the acquisition date, the accuracy was significantly improved by the MRF, with the s-MRF

consistently outperforming the IVM only results, and st-MRF consistently outperforming

s-MRF to a lesser degree. The weakest classification of IVM (60%) and s-MRF (69%) could

be clearly improved by up to 19 and 10 percentage points compared to the classification

results achieved with st-MRF (79%). On average, OA could be improved by 8.6 percentage

points using s-MRF, and 12.2 percentage points using st-MRF when compared to the IVM

classification. As recommended by Olofsson et al. (2014), we additionally calculated variance

measures for results, yet with confidence intervals generally falling well below 1 percentage

point, we will not further address these measurements.

Figure 2.6 summarizes the average UA’s and PA’s of the three approaches (IVM, s-MRF,

st-MRF). IVM yields the lowest accuracies, while st-MRF generally shows the highest, and

most balanced class-specific accuracies. All approaches are especially reliable concerning

Table 2.4 Area adjusted overall accuracies for different dates. The shown values are means
over 10 iterations.

Acquisition Date Polarization IVM s-MRF st-MRF

2014-06-08 VV-VH 0.65 0.75 0.77

2014-06-30 HH-HV 0.60 0.69 0.79

2014-07-22 VV-VH 0.66 0.76 0.78

2014-08-24 VV-VH 0.69 0.74 0.76

2014-09-04 HH-HV 0.68 0.77 0.78
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Fig. 2.6 User’s and Producer’s Accuracy for all the classes at each date.
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Table 2.5 Comparison of different classifications inside the subsetted area of Figure 2.1.
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the classification of forest areas, with st-MRF achieving especially high PA’s for this class

(≥ 90%). For any given approach, the three pasture classes are classified with significantly

lower accuracies than forest areas. Shrubby pasture and clean pasture are overall

underrepresented, with PA’s between 30% and 60% depending on the scene and method.

Clean pasture generally yields accuracies of approximately 50%, but also classification

of this class is particularly problematic concerning the PA of the last scene (around 40%).

Weak classification results of the different pasture classes are generally caused by confusion

within the different pasture types, and reflects findings of comparable studies which utilize

X-band SAR data (Schlund et al., 2013). In general, st-MRF shows higher accuracies, when

compared to the classification results achieved by the other approaches, and is capable

of mapping burnt pasture starting from 2014-08-24. This is very notable, as a general

concern regarding multi-temporal MRF’s are its smoothing effects, which could cause the

suppression of sporadic events. Due to the low number of burnt pasture areas before the

end of July, we are not able to reliably calculate accuracies for burnt pasture areas at every

date. Only up to two burnt fields exist for the first two acquisitions, which do not allow for

an adequate classification and validation. However, this is also in accordance to the typical

land management in the region, insofar slash-and-burn activities usually start later in the

season. Nevertheless, the class is kept as st-MRF utilizes any class for the scenes and to have

a consistent classification scheme over the entire period. Although some additional burnt

pasture areas occur in July (ten areas over the entire study area), the classification accuracy

remains very low. Despite consisting of few samples, possibly due to its temporal consistency

and very distinct signature, water is mapped especially well. As water encompasses just

very few areas over the entire study site, yet yields PAs of 85% and higher for the baseline

approach. This weakness appears to get enhanced by the s-MRF approach, which yields a

remarkable drop in the PA of water at some dates, while the spatio-temporal MRF appears

to ensure its further designation. This behavior underlines capabilities of st-MRF to not only

increase mapping accuracy of temporally sporadic classes, such as burnt pasture, but,

remarkably, also proves the value of st-MRF regarding the mapping of classes which are

static, yet spatially small scaled. Contrastingly, using mono-temporal MRF such classes tend

to get suppressed more frequently. Regarding UA, water is mapped very convincingly with

accuracies of over 95% using the MRF approaches, yet the IVM classification shows much

less reliable accuracies.

The visual assessment of the classification maps underlines the positive effect of the MRF-

based approaches (Table 2.5 and 2.8). A large number of speckle induced misclassification

can be attributed to any of the maps classified using IVM with texture parameters. This effect

is suppressed to some extent by s-MRF, yet individual clusters of misclassification can still
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Fig. 2.7 Growth of burnt areas over the 2014 dry season. Error bars are indicative of the 95%
confidence interval.

be located. While not entirely homogeneous, st-MRF suppresses the noise considerably, yet

maintaining the general spatial patterns of LULC. Fine spatial structures appear to not get

suppressed by the st-MRF, despite conservative IVM estimates.

Using land cover maps derived from st-MRF, Figure 2.7 illustrates that clear trends can still

be derived using the proposed data and methods. The figure illustrates a high percentage of

shrubby pasture land early in the dry season. Over the course of the dry season, this amount

is continuously shrinking, while the burning of pasture starts growing exponentially at the

end of July. At the end of the dry season, the area of clean pasture land is comparable to that

of shrubby pasture.
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2.5 Discussion

The main objective of this study, i.e., the adaptation of recent methods for the mapping of

dynamic LULC in a tropical setting, is shown to be generally positive in our study. The

proposed approach of using spatial-temporal MRF with expert knowledge is generally able to

capture short term LULC dynamics, which are challenging to map using standard classifica-

tion techniques. Although our validation confirms limitations of short-wavelength SAR data

(e.g., when differentiating different pasture types, especially mono-temporally), the proposed

approach enables the generation of a meaningful time series of homogeneous LULC maps

using only SAR data. Consequently, the reliable prompt mapping of LULC change can be

achieved independent of cloud cover and atmospheric inference.

The results show that the use of the proposed approach outperforms standard IVM clas-

sifications utilizing texture parameters only, as well as common spatial MRF, in terms of

classification accuracy. Visual inspection of burnt pasture areas of early dates shows bright

and overall heterogeneous backscatter within the class, and similarity to the other pasture

classes at TS-X images, while Landsat and RapidEye images unambiguously indicate burnt

pasture. Possible reasons for this could be organic debris or wet conditions. Contrary to that,

many burnt areas of subsequent scenes, after the occurrence of large scale burning, can be

identified more clearly at X-band as areas of low backscatter.

Regarding X-band data the potential transfer of the approach to the wet season, which is

characterized by higher saturation of backscatter intensity, is another challenge. While sepa-

ration of pasture types already appears difficult in the dry season, the integration of temporal

context via the MRF might allow for a reliable separation of pasture and forest areas over the

wet season. Additional testing showed furthermore that utilization of temporal trajectories

alone, despite generally not as effective as utilization of the spatial context (s-MRF), can be

used to significantly elevate all accuracies above 70%. In particular the weak classification

of 2014-06-30 could benefit from this approach as the variance of classification outcomes is

reduced between different scenes.

Our findings are in accordance with the results of other recent studies, which were able to

improve the classification accuracy via implementation of multi-temporal MRF (Wehmann

et al., 2015; Liu et al., 2008b). While Wehmann et al. (2015) use regionally optimized

transition matrices, and a state of the art integrated kernel based on Moser et al. (2013a) to

achieve high classification accuracies over long time periods, the proposed method aims on

the detection of short term land cover change in SAR imagery, and utilizes LBP for inference

as well as IVM for classification. The visual assessment of the classification results confirms

the positive effect of the MRF on the classification accuracy. Although the maps provided by

the conventional IVM classification show general land use patterns, the results are affected
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Fig. 2.9 Difference map between 2014-06-30 classifications of st-MRF and IVM. Light
colors indicate agreement between the two maps. Dark colors indicate class ambiguities,
while the class of the final st-MRF classification is presented.
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by typical SAR-inherent noise. Even homogeneous areas appear very noisy, despite texture

parameters that were included in the classification procedure. Boundaries between individual

land cover and land use classes may appear blurred and are hard to identify. This drawback is

significantly reduced by both MRF-based methods. As LBP tries to minimize the transition

energy by homogenizing adjacent pixels, areas become overall more concentrated and edges

along different LULC classes can be more clearly identified. Benefits can also be attributed to

the classification of the interior of areas, as the application of MRF suppresses outliers. Thus,

the results confirm the edge preserving capabilities of MRF, even for challenging spatial

class transitions (e.g. forest to shrubby pasture).

With regard to class-specific accuracies, the spatio-temporal MRF offers preferable results

over just IVM and the spatial-only approach. Figure 2.9 illustrates the differences between a

2014-06-30 classification of the IVM and the st-MRF approaches, underlining the potentials

of solving confusion between forest and shrubby pasture. It is colorized to highlight

disagreements of the classifications, with pale colors signifying consenting classifications,

and opaque colors indicating classes as assigned by st-MRF (for legend see Table 2.5). It

is especially obvious that with increasing vegetation density confusion also rises, and that

clean pasture is classified congruently in both approaches. While the classification of

clean pasture and shrubby pasture remains challenging, TS-X data constitutes an ade-

quate data source for forest / non-forest mapping. The PA and UA for forest are higher

compared to the accuracies achieved for the other classes, and are in accordance with the

accuracies of comparable studies (Schlund et al., 2013; Garcia et al., 2011). While we did not

perform specific analysis on the differences of HH-HV and VV-VH polarized data sets, Table

2.4 shows the OA of the internal HH-HV polarized scenes (06-30) to especially benefit from

the multi-temporal integration, and also its neighboring scenes to benefit disproportionately.

We can thus assume synergetic effects to be transferable through a multi-temporal MRF,

yielding a promising outlook for the multi-sensoral integration of various data sources.

Regarding the low requirements concerning parameterization and the implementation through

moving windows, we consider the introduced method to be transferable to other study re-

gions. Adaptation of the transition matrices allows the method to be fitted to more static

environments, or also to address multi-annual time series data. Despite the ambitious goals

of this study, i.e. to perform land cover mapping in a densely vegetated and dynamic tropical

study region using TS-X data, and some documented limitations concerning the separability

of different pasture types, we were able to achieve improvements over standard classifications.

As the method incorporates adjacency information, potential shortcomings exist when the

ground resolution is coarse relative to the mapped land cover. In this case, fragmented

structures might get suppressed. Further adjustment would also be required if assumptions on
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land cover trajectories are variant in a multi-temporal setup. For example, two scenes from

the dry season carry a different transition probability with regard to burning than two scenes

from the wet season. While this can be easily solved through different transition models,

within this study we just included slight modifications of transition matrices to account for

the different intervals between TS-X acquisitions.

2.6 Conclusion

The results show clearly that the integration of spatial-temporal MRFs are advantageous to

the baseline classification approach and spatial MRF methods. Especially the classification

of forest areas yields very high accuracies. We were able to successfully implement an LBP

optimization for the regularization of high resolution, multi-temporal TS-X images of a

tropical context. We were furthermore able to give adequate estimates on the spatio-temporal

pattern of land use dynamics such as burned pastures. Importantly, the suggested approach is

able to handle process of small spatio-temporal scale, and despite its smoothing effects does

not suppress fine structures. Separation of different types of pasture (pasto sujo and pasto

limpo) remains a challenging task at the short wavelength. Classification of burnt pasture

early in the season highlights limitations of the MRF-based model, which arise when the

underlying classification accuracy is already limited. While the approach is well suited to

regularize small classification errors using contextual information, it is not able to sufficiently

address misclassifications in complex, transitional environments with weak classification

accuracies. The sometimes relatively low class accuracies are not necessarily a limitation of

the proposed method, but rather caused by the short-wave TS-X data as well as class-specific

characteristics.

Particularly for study sites which are characterized by land use patterns of high spatial-

temporal variability, the proposed approach (i.e., using spatial-temporal MRF with expert

knowledge) appears feasible. Using expert knowledge on land cover trajectories, we could

positively influence model performance and bypass computationally demanding techniques

for the estimation of MRF parameters.

When derived from multiple classifications, change maps are generally strongly affected by

weak initial classifications.

The proposed method is formalized to be transferable to large, possibly multi-sensoral, image

stacks. For future studies our aim is to integrate the regularization of short-term, intra-annual

dynamics with long-term dynamics such as deforestation and agricultural trends, using

multi-sensoral imagery.
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Abstract

Earth Observation (EO) data plays a major role in supporting surveying compliance of several

multilateral environmental treaties, such as UN-REDD+ (United Nations Reducing Emissions

from Deforestation and Degradation). In this context land cover maps of remote sensing

data are the most commonly used EO products and development of adequate classification

strategies is an ongoing research topic. However, the availability of meaningful multispectral

data sets can be limited due to cloud cover, particularly in the tropics. In such regions the

use of SAR systems (Synthetic Aperture Radar), which are nearly independent form weather

conditions, is particularly promising. With an ever-growing number of SAR satellites, as well

as the increasing accessibility of SAR data, potentials for multi-frequency remote sensing are

becoming numerous. In our study we evaluate the synergistic contribution of multitemporal L-

,C-, and X-band data to tropical land cover mapping. We compare classification outcomes of

ALOS-2, RADARSAT-2, and TerraSAR-X datasets for a study site in the Brazilian Amazon

using a wrapper approach. After preprocessing and calculation of GLCM texture (Grey

Level Co-Occurence), the wrapper utilizes Random Forest classifications to estimate scene

importance. Comparing the contribution of different wavelengths, ALOS-2 data perform

best in terms of overall classification accuracy, while the classification of TerraSAR-X data

yields higher accuracies when compared to the results achieved by RADARSAT-2. Moreover,

the wrapper underlines potentials of multi-frequency classification as integration of multi-

frequency images is always preferred over multi-temporal, mono-frequent composites. We

conclude that despite distinct advantages of certain sensors, for land cover classification

multi-sensoral integration is beneficial.

3.1 Introduction

Land Use and Land Cover Change (LUCC) is a main contributor to many acute environmental

problems, constituting a loss of biological diversity (Hooper et al., 2012), intensifying the

emission of greenhouse gases (Bustamante et al., 2012), and affecting the climate (Foley,

2005; Sombroek, 2001). It is hence a major driver of global environmental change (Lambin

et al., 2001). Remote sensing is an important tool, enabling detection and quantification

of LUCC on large scales and in regular intervals, emphasizing its prevalent role in LUCC

sciences (Beuchle et al., 2015). Mapping and monitoring tropical forests seem particularly

relevant, e.g., due to their significant carbon store and rich biodiversity, and remote sensing

plays a major role for development of a Measurement, Reporting, and Verification system and

the implementation of REDD+ (Reducing Emissions from Deforestation and Degradation).
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Change detection is closely linked to land cover mapping. While methods exist to directly

detect gradients within remote sensing data (Zhu et al., 2014; Reiche et al., 2015a), many

applications are based on the comparison of land cover products at different points in time

(Liu et al., 2008a; Müller et al., 2016; Tewkesbury et al., 2015).

The Brazilian Amazon is the largest area of tropical rain forest shared by a single

country and for many decades it has been particularly affected by LUCC (Barretto et

al., 2013; Nepstad et al., 2014a; Müller et al., 2016). Therefore, many studies use re-

mote sensing data to monitor and quantify different types of land transformation, includ-

ing deforestation (Nepstad et al., 2014a; Soares-Filho et al., 2014), conservation (Reynolds

et al., 2016), or land use intensification (Carreiras et al., 2014).

Although multispectral systems are well established and widely used for LUCC based

remote sensing (Hansen et al., 2013; Müller et al., 2016), systems utilizing SAR (Syn-

thetic Aperture Radar) offer additional unique properties. SAR sensors are almost weather-

independent, enabling a reliable generation of a time series and thus, a regular monitoring

of forest cover. Optical systems are negatively affected by clouds and haze, which occur in

particular frequency in tropical regions (Asner, 2001a). Moreover, the number of spaceborne

SAR sensors significantly increased during the last several years and further missions will be

launched in the future (Ouchi, 2013; Moreira et al., 2013b). With the launch of Sentinel-1

in 2014, the first operational SAR mission is available to offer freely available spaceborne

imagery to the public (Aschbacher et al., 2012; McNairn et al., 2009). Considering the impact

of freely accessible Landsat imagery (Wulder et al., 2012b), SAR based remote sensing is

expected to become increasingly important over the coming years.

The increasing availability of various SAR sensors also fosters the combination of SAR

images acquired at different frequencies. While the SIR-C/X-SAR payload onboard the

Endeavour space shuttle provided the first spaceborne, multi-frequency (L-, C-, X-band) SAR

datasets (Stofan et al., 1995), various satellite missions are in operation nowadays. Missions

such as ALOS-2 (AL2), RADARSAT-2 (RS2), TerraSAR-X (TSX), and the recently launched

Sentinel-1 enable a harmonized data acquisition, and thus the generation of multi-frequency

data sets, consisting of L-, C, and X-band imagery. Concerning the mapping of LUCC and

LULC (Land Use and Land Cover), these wavelengths are often used in different study sites

to benefit from the particular backscattering characteristics of various land surfaces (e.g.,

(Schmullius et al., 1997)).

Although X-band data is successfully used for mapping of forests (Schlund et al., 2013),

short-wavelength SAR is mainly used for the mapping of low vegetation areas, such as

grassland (Schuster et al., 2015), crop types (Sonobe et al., 2014), and urban environments

(Ban et al., 2015; Du et al., 2015). On the contrary, L-band sensors are predominantly used for
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mapping forests and densely vegetated environments (Rakwatin et al., 2012; Almeida-Filho

et al., 2009), while, given its median wavelength and high availability, C-band data is used for

a very wide range of applications. This includes the mapping of boreal and tropcial forests

(Kurvonen et al., 1999; Nelson et al., 2009; Zhang et al., 2012), and urban areas (Taubenböck

et al., 2012; Ban et al., 2015). Additionally, C-band data is widely used for mapping

agricultural regions, including crop type mapping and changes in agricultural management

(Shao et al., 2001; Waske et al., 2009b; McNairn et al., 2009; Stefanski et al., 2014). Still,

these examples are not exhaustive. Moreover, the results of many studies prove that the

mapping accuracies can be increased when using advanced techniques, e.g., interferometry

(Schlund et al., 2013; Jin et al., 2014), spatial features (Cutler et al., 2012b; Du et al., 2015),

and state-of-the-art machine learning methods (Voisin et al., 2013; Waske et al., 2008).

To further benefit from the positive capabilities of multiple frequency remote sensing,

various studies aggregate datasets from different sensors. Li et al. (2012) combine multi-

temporal ALOS-PALSAR and RS2 products to improve classification accuracies in a tropical

context, stressing the positive properties of L-band over C-band.

However, very few studies to date have focused on an encompassing integration of L-,

C-, X-band images in the context of land cover mapping. Particularly in the tropics, Wang

et al. (2013) observe the backscattering characteristics of different wavelengths with regard

to pasture monitoring in a South Australian study site, while Naidoo et al. (2014) and Naidoo

et al. (2015) correlate multi-frequency backscatter with above-ground biomass. Similarly,

Baghdadi et al. (2009) evaluate the potentials of ALOS-PALSAR (L-Band), ASAR (C-Band),

and TSX for sugarcane monitoring. Despite these studies, there is still a lack of research

concerning land cover mapping.

The aim of this study is to assess the contribution of multi-temporal, multi-frequency

SAR data sets, consisting of AL2, RS2 and TSX images, to LULC mapping in a complex

study site in in South Western Pará, in the Brazilian Amazon. The study site is significantly

affected by the transformation of forests to pasture, including different types of pasture

management and secondary regrowth. We assess the relevance of the different images and

potential combinations of data from different sensors through a wrapper approach (Kohavi

et al., 1997). This approach enables estimating the importance of different scenes via an

iterative generation and evaluation of land cover maps using varying combinations of input

scenes. We expect the results to support the understanding of the synergetic potentials of

different SAR frequencies in the context of tropical mapping, and offer recommendations for

future applications.
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3.2 Study Area

The study area lies in South Western Pará state, Brazil, in vicinity to the Novo Progresso

municipality (Figure 4.1). The area is a current deforestation frontier and is also affected by

post-deforestation dynamics, such as pasture management and secondary regrowth (Fearnside,

2007; Müller et al., 2016). Cattle ranching is the single most dominant form of agricultural

land use in the region, despite a slow shift to soy farming, which has recently been affecting

farmers in the neighboring, southern state of Mato Grosso (Coy et al., 2014). Hence,

with regard to land cover mapping, the aim of this study is to evaluate the potentials of

different SAR wavelengths for the separation of the region’s most relevant land cover types,

i.e., Primary Forest, Secondary Regrowth, Clean Pasture, Shrubby Pasture, and Water. Within

the context of LUCC and management practices, primary forests are forests that are unaltered

and in their natural state. After degradation and deforestation, two relevant types of land use

exist within the study area: clean pasture is intensively managed land for cattle ranching

often associated with tillage and burning patterns. Shrubby pasture is less maintained, with

bushes and signs of secondary succession. Lastly, secondary regrowth describes areas that

are not managed anymore and are densely vegetated up to the stage of secondary forests.
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Fig. 3.1 The study area is defined in an area of severe LULC processes and as the intersection
of the available L-, C-, and X-band swaths.

3.3 Data

3.3.1 Remote Sensing Data

For this study, three multi-temporal data sets of current L-, C-, and X-band sensors are

considered (Table 3.1). Available imagery includes wet, intermediate, and dry season images,

corresponding to acquisitions in January, March, and June, respectively.
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PALSAR-2 on AL2 is an L-band system operated by the Japan Aerospace Exploration

Agency (JAXA) (Suzuki et al., 2009). AL2 works at a wavelength of 24 cm, which marks the

longest currently available wavelength from a spaceborne SAR system for scientific purposes.

Long wavelength SAR is generally considered the most promising for the mapping of densely

vegetated environments, as the signals can penetrate canopy and backscatter can be correlated

to above-ground biomass (Schmullius et al., 1997). Data for this study is available in dual,

HH-HV polarization, and acquired in Fine Beam StripMap mode at 10 m target resolution

after multi-looking.

Operated at C-band, RS2 is a satellite of the Canadian Space Agency (CSA), which

offers a wavelength of 5.5 cm (Morena et al., 2004). Studies have shown RS2 and its

predecessor, RADARSAT-1, to be applicable for many purposes, but limitations concerning

vegetation mapping are well documented (Sarker et al., 2013). The available data is acquired

in Standard Beam mode, at VV-VH polarization, and, after multi-looking, we approximate

the recommended operational resolution at 20 m (Morena et al., 2004).

TSX is a German SAR satellite mission for scientific and commercial applications. TSX

operates at a wavelength of 3.1 cm (Werninghaus, 2004) and for our study standard StripMap

mode data was acquired. While X-band is generally considered less powerful for the mapping

of dense vegetation than L-band, due to its high ground resolution and low wavelength TSX

could be complementary when used in junction with AL2 data. The recommended nominal

resolution of DLR for StripMap TSX imagery is at 5 m, which we approximate through

multi-looking.

The subsets in Figure 3.2 give an overview of the different data sets. As expected, all

scenes indicate temporal variability within pasture areas, e.g., due to grazing activities and

management practices, while forest areas cause high backscatter. While the rectangular

borders along individual pasture areas appear blurred in the RS2 image, edges along different

natural objects can be visually recognized due to the high spatial resolution of TSX.
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ALOS-2 (HH top, HV bottom) RS-2 (VV top, VH bottom) TS-X (VV top, VH bottom)

Fig. 3.2 Composites of the available SAR images consisting of January (red), March (green),
and June (blue) acquisitions.

Table 3.1 SAR images included in wrapper analysis. TerraSAR-X data acquired as StripMap,
RADARSAT-2 in Standard Beam mode, and ALOS-2 as Fine Beam StripMap, at 5 m, 20 m,
and 10 m targeted ground resolution, respectively.

Sensor Date

TerraSAR-X 2015-01-14

RADARSAT-2 2015-01-15

ALOS-2 2015-01-23

TerraSAR-X 2015-02-27

RADARSAT-2 2015-03-04

ALOS-2 2015-03-06

ALOS-2 2015-06-07

RADARSAT-2 2015-06-08

TerraSAR-X 2015-06-17
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3.3.2 Reference Data

We use TerraClass (Mapeamento do Uso e Cobertura da Terra na Amazônica Legal Brasileira)

as reference data. TerraClass is an effort by INPE, the Brazilian National Institute for Space

Research, to manually digitize LULC for the entire Legal Amazon (Almeida et al., 2016).

TerraClass addresses areas that are considered deforested according to PRODES (INPE,

2015), and differentiates between 17 LULC classes. PRODES (Programa de Monitoramento

do Desflorestamento na Amazônia Legal) is an effort by Brazilian authorities to detect and

map deforestation sites based on Landsat and the Moderate Resolution Imaging Spectrora-

diometer (MODIS) earth observation data, at a minimum mapping unit of 6.5 ha. Due to its

exhaustive coverage, and the regional expertise of the interpreters, TerraClass products are

considered a meaningful foundation to derive large scale, high quality reference data. As Ter-

raClass is built on 2014 data, comparisons with past TerraClass products (2008, 2010, 2012),

show that dynamics can overall be neglected considering the scale of interest. Additionally,

our own interpretation using additional RapidEye imagery of 2014 and 2015 furthermore

attests its validity. To counteract ambiguities caused by recent deforestation, we use current

PRODES data to mask out latest deforestation sites, as deforestation is the most dominant

land cover dynamic in the study region (Hansen et al., 2008). While TerraClass encompasses

17 classes, many of these are either not present in the study area (e.g., mining), or they

are considered potentially inseparable using the given classification approach and data sets.

Therefore, some classes are semantically aggregated into five target LULC classes Primary

Forest, Secondary Regrowth, Clean Pasture, Shrubby Pasture, and Water. Concerning classes

of interest within the study area, primary forest is analogous to TerraClass’ forest class,

secondary regrowth is composed of TerraClass’ secondary vegetation and regeneration with

pasture classes, clean pasture is a combination of TerraClass’ pasture with exposed soil and

clean pasture, while shrubby pasture and water are used synonymously. Masked out are the

four TerraClass classes encompassing recent deforestation, other areas, utilization, and non

observed areas. In summary, reference areas encompass 277.3 km2 for forest, 208.1 km2 for

clean pasture, 24.2 km2 for shrubby pasture, 40.9 km2 for secondary vegetation, and 0.4 km2

for water, while 18.5 km2 are masked out. These areas are rasterized into an image of 5

by 5 m pixel resolution to sample pixels for training and testing. Due to TerraClass being

collected based on optical data, which is predominantly available in the dry season between

June and September, areas of clean pasture in the reference data can be assumed to be

overrepresented due to intra-annual dynamics (Hagensieker et al., 2017a).
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3.4 Methods

3.4.1 Preprocessing

All data sets are processed following current standard practices. In a first step, Single Look

Complex (SLC) data of all sensors is radiometrically corrected to yield γ0 terrain-flattened,

normalized data (Small, 2011). Multi-looking is applied to approximate target resolutions of

AL2, RS2, and TSX, at 10 m, 20 m and 5 m, respectively. Afterwards, Range-Doppler Terrain-

Correction with an 3 s SRTM is performed. Images are projected into Lambert Azimuthal

Equal Area using the SAD69 spheroid, which corresponds to the available TerraClass data.

Additionally, images are sampled to exactly meet their intended target resolutions. Following

findings by Sarker et al. (2013), 10 GLCM texture parameters are derived per polarization

and scene. Subsequent filtering (GammaMap) is applied on the γ0 layers only (Haralick

et al., 1973; Baraldi et al., 1995). To ensure homogeneity of the resolutions, these steps are

performed using windows of approximately 100m×100m for any sensor, and the number of

grey levels is adjusted accordingly. The derived texture parameters are Contrast, Dissimilarity,

Homogeneity, Angular Second Moment, Energy, Maximum Probability, Entropy, GLCM

Mean, GLCM Variance, and GLCM Correlation. While we acknowledge the existence

of correlation and redundancy between different GLCM attributes, our own testing in the

past showed these effects to be negligible as long as a capable classifier and a sufficient

amount of training data are provided. For this study, we utilize the filtered intensity layers in

combination with texture parameters, which were derived from the unfiltered products.

3.4.2 Classification

A random sampling stratified by class is conducted using the reference data set (see Sec-

tion 3.3.2). Three thousand samples per class (i.e., Primary Forest, Secondary Regrowth,

Clean Pasture, Shrubby Pasture and Water) are selected for classifier training, while the

remaining reference data is used for validation. Training samples are drawn point based with

a minimal distance of 50 m to avoid redundancy and reduce the effect of spatial correlation.

For testing, locations of all RS2 pixels are considered, and contained TSX as well as AL2

pixels are selected. Polygons are drawn well within the interpreted class borders from

the optical and TerraClass reference image. While this might weaken the expressiveness

of the classification and its validation for regions at class borders, it ensures that border

discrepancies stemming from varying image resolutions are reduced.

Classifications are performed using Random Forest (RF), which is successfully used

for various remote sensing applications, including the classification of SAR data (Waske
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et al., 2008; Du et al., 2015). A detailed description of RF is given by Breiman (2001b), and

detailed overviews in the context of remote sensing by Belgiu et al. (2016), and Waske et al.

(2009b).

We apply a wrapper approach (Kohavi et al., 1997; Chan et al., 2008; Waske et al., 2009a;

Maghsoudi et al., 2013) with a forward feature search strategy (FFS) to assess the contribution

of the different SAR images on the classification accuracy. By sequentially selecting the

next most relevant data set, in our study, each SAR acquisition with the corresponding

texture layers from both polarizations, the impact of the different data sets on classification

accuracy is assessed. A wrapper is based on a classification algorithms (here: RF) and a

specified accuracy measure. Let us assume that we have a set of N candidate SAR images

A = {α1, ...,αN}, and a set of selected images Ω = {}. A total of N iterations are conducted.

At each iteration, unions of Ω and any element of A get classified and evaluated, resulting

in |A| classifications per iteration, with |A| the number of elements in A. The candidate

image associated with the highest classification accuracy then gets removed from A and

integrated into Ω. Afterwards, the next iteration commences. The order of selection refers to

the relevance of each data set in terms of classification accuracy.

As an accuracy measure, we choose the area adjusted overall accuracy as discussed

by Olofsson et al. (2014). For this measure, area adjusted accuracies are derived from a

population error matrix. This approach is particularly useful if class occurrences are uneven.

In addition, it can be used to yield confidence intervals for the generated accuracy measures.

Entries of the population error matrix are estimated by Equation (4.1):

pi j =Wi

ni j

ni·
. (3.1)

Contrary to a conventional confusion matrix, pi j are proportion area elements, stemming

from the corresponding sample counts ni j of the confusion matrix, and the total area propor-

tion Wi of class i. Accordingly, the overall accuracy is the sum of the main diagonal of this

population error matrix.

3.5 Results

Table 4.1 shows the overall accuracies achieved on the individual acquisitions (i.e., iteration

1) and the various combinations, using an RF-based wrapper approach (i.e., iteration 2–9).

Confidence intervals of all measures are generated to verify significance.



68 Evaluation of Multi-Frequency SAR Images for Tropical Land Cover Mapping

Table 3.2 Area adjusted overall accuracy (%) for each dataset and iteration of the wrapper.

Iteration

Scene 1 2 3 4 5 6 7 8 9

AL2-Jan 62.23

AL2-Mar 59.60 64.05 66.26 68.07 68.54 68.81 69.02

AL2-Jun 60.62 64.50 66.75 68.26 68.64 68.87 68.97 69.21

RS2-Jan 48.93 65.56 67.79

RS2-Mar 39.15 64.62 66.84 68.40

RS2-Jun 46.76 65.28 67.23 68.26 68.64 68.87

TSX-Jan 56.25 65.33 66.58 68.24 68.67 68.83 69.00 69.15 69.27

TSX-Mar 57.53 65.24 66.71 68.27 68.67

TSX-Jun 55.51 65.78

Comparing all mono-temporal, single-sensor results, i.e., the results achieved in the first

wrapper iteration, it can be assessed that the AL2 data yields the highest accuracies, even

when the weakest AL2 classification (AL2-Mar, 59.60%) performs better than the best non-

AL2 dataset (TSX-Mar, 57.53%). As these accuracies are based on Olofsson et al. (2014),

calculation of standard errors of these accuracies is also feasible. Having used exhaustive

TerraClass data as test data, the associated standard errors are all well below 0.001%. This

is also emphasized by a visual interpretation of the best classification results, achieved by

a single data source (see Figure 3.3 for reference). It can further be observed that TSX

overall outperforms RS2, which is notable given the wavelength and the area of application,

and might be a consequence of the favorable spatial resolution of TSX.
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Primary Forest 

Secondary Vegetation 

Shrubby Pasture 

Clean Pasture 

Water 

1. AL2-Jan (62.23%) 

1. TSX-Mar (57.53%) 

1. RS2-Jan (48.93%) 

Fig. 3.3 Comparison of the single scene mapping capabilities. Scenes are shown that yield
the highest overall accuracy per sensor. The bottom right shows the TerraClass reference
image.

The visual interpretation of the results underlines the strong contribution of AL2 data

to tropical land cover mapping. Areas are generally correctly classified, and few misclassi-

fications can be observed. Contrary to TSX and AL2, RS2 shows very high confusion not

only between Clean Pasture and Shrubby Pasture, as well as Primary Forests and Secondary

Vegetation, but additionally between managed and non-managed regions (e.g., Primary Forest

and Shrubby Pasture). Accuracies of RS2 are significantly lower when compared to the

results achieved by TSX data, and especially RS2-Mar is a negative outlier.
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0 2 4 6 km

1. AL2-Jan (62.23%)

Primary Forest

Secondary Vegetation

Shrubby Pasture

Clean Pasture

Water

2. TSX-Jun (65.78%) 3. RS2-Jan (67.79%)

4. RS2-Mar (68.40%) 5. TSX-Mar (68.67%) 6. RS2-Jun (68.87%)

7. AL2-Mar (69.02%) 8. AL2-Jun (69.21%) 9. TSX-Jan (69.27%)

Fig. 3.4 Subsets of the classification result, achieved after each iteration of the wrapper. The
classification is based on all specified data sets, e.g.,: the RS2-Jan is selected as the third
data set and added to the AL2-Jan and TSX-Jun, which have been selected beforehand. The
classification of these three datasets results in an accuracy of 67.79%.

As expected, the classification accuracy increases steadily with increasing number of

acquisitions, ranging from 62.23% up to 69.27%. Comparing the results of iteration 2, it

can be assessed that the combination of the AL2-Jan with additional AL2 images performs

worst in terms of accuracy. Despite the documented lower accuracies at iteration 1, RS2

offers results that are comparable to AL2 and TSX in terms of accuracy. Nevertheless, the
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combination of one AL2 and one TSX scene is most adequate, resulting in the highest gain

of 3.55 percentage points using the TSX-Jun image. The dataset is complemented by RS2

images in the third iteration. However, from iteration three onwards, and including scenes

from all three sensors, the positive impact of additional scenes on the accuracy is significantly

reduced. The visual assessment of the classification results (Figure 3.4) underlines these

findings. The numeration in Figure 3.4 indicates the corresponding iteration of the wrapper

approach and the added scene. For example, after selecting AL2-Jan at the first iteration, the

TSX acquisition from June is selected at iteration two. Classification of these two scenes

results in an area adjusted OA of 65.78%. Although all maps show the general structures of

the classified area, some maps are noisy even in homogeneous areas. Borders along the edges

appear blurred and hard to identify. This drawback is significantly reduced by combining

different data sets.
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Fig. 3.5 Gains in User and Producer Accuracy for wrapper iterations 2–5.
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The contribution of the SAR data to the tropical LULC mapping is also underlined by an

analysis of the Producer and User Accuracies (PA, UA). Figure 4.2 shows the gains in area

adjusted UA’s and PA’s achieved by the RF-wrapper approach. Correlating with the receding

increase of overall accuracy, UA’s and PA’s mark high gains for the first additional scenes,

before the gains are approaching zero. The figure shows that the PA of clean pasture benefits

overall very well from the inclusion of further scenes in addition to the original AL2-Jan

scene. Figure 3.6 compares the final multi-temporal, multi-frequency land cover product

with the reference data derived by TerraClass. The corresponding confusion matrix is shown

in Table 3.3.
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0 2 4 6 8 10 km

Fig. 3.6 Final classification product using multi-temporal, multi-frequency imagery compared
to TerraClass reference data set. Note that inconsistent classes from the TerraClass dataset
are masked out white.

As noted previously, the highest confusion exists between Primary Forest and Secondary

Vegetation, as well as between Clean Pasture and Shrubby Pasture. Notably, many Clean

Pasture regions are misclassified as Shrubby Pasture, while Shrubby Pasture is generally

not labeled Clean Pasture. Additionally, many Primary Forests are classified as Secondary



3.6 Discussion 75

Vegetation and vice versa. While confusion exists between Secondary Vegetation and Shrubby

Pasture, it is not as prevalent.

Table 3.3 Population error matrix derived from classification of the full dataset and TerraClass
reference data. Numbers reflect area adjusted percentages as introduced by Equation (4.1).

Reference

Classification 1 2 3 4 5 Sum User’s Accuracy

1 Primary Forest 39.27 1.94 0.27 2.04 0.00 43.51 90.26

2 Clean Pasture 1.13 24.05 1.00 0.79 0.00 27.01 89.04

3 Shrubby Pasture 2.23 8.42 2.55 1.25 0.00 14.46 17.64

4 Secondary Vegetation 7.32 3.44 0.57 3.33 0.00 14.66 22.72

5 Water 0.04 0.21 0.01 0.02 0.08 0.36 22.22

Sum 49.99 38.07 4.44 7.43 0.08 100

Producer’s Accuracy 78.56 63.17 57.43 44.81 100

3.6 Discussion

As expected, the combination of multitemporal SAR data from different sensors sets proves

useful for tropical land cover mapping. Obtained overall accuracies are higher than those

achieved by single source data sets. The results clearly underline the relevance of the AL2

scenes, which yield the highest accuracies when compared to the TSX and RS2 data. This

reflects the general consensus in literature, which acknowledges systems of longer wave-

lengths to be favorable concerning vegetation mapping (Naidoo et al., 2015; Schmullius et al.,

1997; Sarker et al., 2013). AL2 is in particular the most adequate sensor for mono-frequent,

mono-temporal classifications (Table 4.1) and, thus, seems sufficient when data availability

is limited. A visual interpretation of the classification results confirms these findings (Figure

3.3). While Primary Forest and Secondary Vegetation tend to be less confused when using

AL2 data, Secondary Vegetation is overestimated by TSX data. However, the positive effects

of the high spatial resolution of TSX are clearly visible in the classification results. Edges

along individual land cover types, e.g., the nearly rectangular pasture area, can be more

clearly identified, while these boundaries appear blurred in the results achieved by RS2

and AL2 data. Moreover, the differentiation between managed and unmanaged areas is

challenging for RS2 data, indicated by many patches of Primary Forest that are misclassified

as Pasture. While any individual AL2 acquisition outperforms any RS2 as well as any TSX

scene, the wrapper selects a TSX at the second iteration. Even the combination of one AL2
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scene with a RS2 scene outperforms the classification results achieved by two AL2 scenes.

The positive impact of combining multi-frequency data is further underlined by the third

iteration of the wrapper. After integration of the first TSX scene at the second iteration, RS2

images lead to the strongest gains in accuracy, despite their weak initial performances. Hence,

acquisitions of each sensor are utilized after just three iterations, underlining the potential

of including multi-frequency SAR images for land cover mapping. This is in accordance

with previous findings, e.g., by Naidoo et al. (2015), who also document slight advantages

of multi-frequency integration, yet remark on limited gains over L-band data alone for the

purpose of biomass mapping.

After scenes of each sensor are integrated, gains in accuracy are receding rapidly. Ad-

ditionally, it appears that the advantages of AL2 and TSX do not appear to transfer over to

the subsequent iterations. Two times RS2 is chosen over AL2 and TSX (iterations 5 and 6),

yet all scenes are performing very similarly as they yield a low variance in accuracy. The

range of accuracies for the fifth iteration is already very narrow at 0.13 pp., and the gain

of the fifth over fourth iteration is only at 0.27 pp. The population error matrix (Table 3.3)

reflects the stratified sampling, with Shrubby Pasture and Water being overrepresented. The

confusion between pasture areas deserves special attention in particular. While TerraClass

products imply Clean Pasture and Shrubby Pasture to be stable over the years, we observe

these classes to be very ambiguous. Inspection of the land cover maps shows the confusion

of Pasture classes to often affect continuous areas that are misattributed (see Figure 3.3).

Counterintuitively, we observe that Shrubby Pasture areas do not necessarily align with

regions of increased backscatter. Reasons might be a high inner-class and intra-annual

variance, seasonality overall, and possibly limitations concerning the interpretation of the

two classes in the TerraClass dataset. Intra-annual variance is of particular interest, as the

underlying SAR acquisitions are spread over the entire dry period, which in general also

coincide with a decrease of shrubby, in favor of clean pasture (Hagensieker et al., 2017a).

Since these effects are present in the training as well as testing data, classification outcomes

are affected to a certain degree. In particular, results of classifications that might be capable

of separating the pasture types might be lessened, as the inherent variance could introduce

non-recoverable confusion. This is also indicated by the lower confusion between Secondary

Vegetation and Shrubby Pasture, which can be separated more reliably despite being very

similar in visual appearance. In contrast, the confusion between Secondary Vegetation and

Primary Forest appears to be more random and is distributed spatially, while individual small

regions of Secondary Vegetation can generally be made out. Consequently, these classes

might not be classified well even with available L-band imagery, which might be a direct

consequence of the saturation of L-band in environments of high biomass (Yu et al., 2016;
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Mermoz et al., 2015). Comparing the reference classification as shown by Figure 3.3 with

the classification outcomes of the first iteration, TSX shows the potential to improve on the

Pasture classes. However, these potentials are not reflected after integration of TSX scenes

into the fused product (Figure 3.4).

Given its low resolution and all of the data being upsampled to TSX’ spatial resolution,

RS2 should be affected more positively by spatial autocorrelation than the other sensors, yet

these effects appear to be miniscule. Additional tests also show a very limited effect of the

chosen upsampling strategy with regard to the confidences of accuracies, which remains on a

comparably high level even when just an eighth of the testing data is utilized.

Some factors are not considered in this study. Data is obtained in the standard operation

modes of the examined sensors. While other acquisition modes might lead to more similar

data sets regarding spatial resolution, spatial extent, or polarization, the authors had no

influence in e.g., the acquisition of AL2 data, which is HH-HV polarized. A potential

consequence could be a higher gain in accuracy at the second iteration for non-AL2 scenes,

as not only the benefits of including an additional wavelength are factored in, but also the

benefits of including an additional polarization. As 45 models have to be trained using 15,000

samples with up to 198 features, and the classification of entire images has to be conducted

to estimate area adjusted accuracies, the study is effortlessly handled by a common desktop

PC (i7-3770 @ 3.40 Ghz). In case of accessible multi-frequency SAR data, it is possible to

utilize current open source packages, i.e., ESA’s Snap, GDAL, Python, Q-GIS, to conduct

powerful land cover analyses using a combination of standard workflows. Limitations can

be caused by a mixture of ascending and descending passes, as well as inconsistent looking

directions. Having considered this and not aiming for interferometric accuracy, coregistration

of images could be achieved without manual adjustments even at varying looking angles.

Reference data was mainly collected using alternative sources, which we highly recommend

in any case for conducting land cover analyses on SAR data.

3.7 Conclusions

In the presented study, the contribution of multi-frequency SAR data to topical land cover

mapping was analyzed. However, a complementary integration of additional X- and C-

band images yield higher accuracies when compared to the classification of multi-temporal

AL2 scenes alone. Moreover, the results show that TSX outperforms RS2 for individual

classifications in terms of accuracy. Given a set of multi-frequency imagery, the integration

of additional scenes leads to an increase in accuracy, yet this effect is weakened with a

growing number of scenes. In addition, advantages of adding multiple AL2 over TSX or
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RS2 scenes do not exist if an AL2 scene is integrated already. For this reason, when adding

scenes to a dataset that is already multi-frequency, advantages of adding certain frequencies

are also negligible. Finally, we show that a wrapper can be implemented effortlessly and

is very applicable for the identification of most relevant acquisitions. Generally, the results

show that the use of multisensor SAR data is worthwhile and the classification accuracy is

significantly increased by such data sets. Moreover, classifiers such as Random Forest prove

useful in various studies for handling large and multisource data sets. This is particularly

important with respect to recent and planned missions with increased revisit times and better

spatial resolutions such as Sentinel-1 (C-band), the NASA-ISRO Synthetic Aperture Radar

(NISAR, L/S-band), or High Resolution Wide Swath (HRWS, X-band).
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Abstract

With TanDEM-X for the first time single-pass interferometric information is gathered as

part of a continuous mission. We investigate potentials of TanDEM-X imagery for the land

cover mapping of densely vegetated forest areas, in particular the benefits of integrating

interferometric coherence and elevation information. Besides interferometric information,

textural features are derived. The specific objective is the classification of forest and different

types of pasture in a study site located in the Brazilian Amazon. In order to evaluate the

potential of TanDEM-X, we perform four classifications, using a Random Forest classifier

and different feature sets. Integrating all features yields an overall accuracy of 89 %, opposed

to 55 % when relying on dual-pol SAR intensity alone. Moreover, results underline that both

aspects, the integration of InSAR information as well as texture metrics, prove useful in

terms of classification accuracy. Overall, TanDEM-X data seems promising for tropical land

cover mapping.

4.1 Introduction

Land use, land use change, and forestry are defined by the United Nations Framework

Convention on Climate Change as human activities that directly impact carbon sinks. In the

past, remote sensing has played an important role in monitoring the anthropogenic impact

on forest ecosystems (Butler, 2014). Besides multi-spectral systems, SAR has proven to be

particularly relevant for mapping land cover as well as the detection of land cover change

(Joshi et al., 2016). While long wavelength SAR, such as PALSAR’s L-band, has been

shown to be positively correlated to aboveground biomass (Rakwatin et al., 2012), shorter

wavelength SAR is often used to discriminate forested areas and shrubby succession or

pasture land (Li et al., 2012; Hagensieker et al., 2017b). The TanDEM-X (TD-X) mission

by DLR utilizes a short wavelength X-band system in a constellation consisting of two twin

satellites, enabling the derivation of single pass interferometric products (Moreira et al.,

2004). First studies have discussed the capabilities of TD-X data for mapping forest areas

(Schlund et al., 2013) and estimating forest biomass (Treuhaft et al., 2015; Soja et al., 2017).

Recently, Martone et al. (2018) have provided a global forest/non-forest map, which was also

derived from interferometric TanDEM-X data.

The main objective is to evaluate the contribution of TD-X data for tropical land cover

mapping. As previous studies have highlighted capabilities of including spatial features, e.g.

via image segmentation or texture features (Stefanski et al., 2013; Schlund et al., 2013), we

include textural information as well as inteferometric features. The specific objective of our
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study is the classification of TD-X data of a study site within the Brazilian Amazon. We aim

at the separation of forest and different types of pasture. In order to evaluate the potential of

TD-X data for tropical land cover mapping, we assess the impact of the different features on

the classification accuracy in detail.

4.2 Data & Study area

The study area is located close to the current deforestation frontier of the Brazilian Amazon

region in the state of Pará, about 50 km north of the municipality of Novo Progresso. It

spans from 6°29′47′′ S to 6°54′22′′ S and from 55°13′8′′ W to 55°26′54′′ W, is 42.845 km in

azimuth extent, 17.420 km in range extent and covers an area of 750.745 km2 (Figure 4.1).

The study area is comprised of primary forest, pasture (separated into clean and shrubby),

and secondary vegetation from different stages. While many studies particularly focus on

forest cover mapping, we also aim on the separation of the two pasture types. Both pasture

types are generally used for cattle ranching in this region, but differ on land management.

Shrubby pasture is characterized by bushes and occasional early stages of succession, while

clean pasture is intensely managed pasture land, often composed by patches affected by

grazing, tilling, or slash and burn practices. Tree crowns of primary forests can reach up to

40 m in height. Over the dry season, leaf fall can be observed through decrease of backscatter

intensity. While this might affect classification outcome, these observations are hard to

quantify and warrant further investigation. Secondary vegetation and water bodies have

been omitted due to only occasional occurrence and difficulties of providing a legitimate

interpretation in case of secondary vegetation.

Acquired as part of the TanDEM-X science phase, five interferometric, VH-VV dual-

polarized TD-X scenes could be acquired at experimental across-track baselines of up to 3 km.

Initial testing has revealed four of the acquired scenes to be unusable due to decorrelation

caused by the baseline, which is in accordance with Krieger et al. (2007), and the general

recommendation of across-track baseline for forest height estimation between 100 m and

300 m. The last image pair was taken on 2015−10−8 at a baseline of 208.68 m, and with

a coherence of 0.81 the images appear suited for the envisioned task. For the sampling of

reference data, additional RapidEye and scenes from the Landsat 8 OLI (Operational Land

Imager) are utilized, as well as TerraClass and Prodes data (Almeida et al., 2016; Instituto

Nacional de Pesquisas Espaciais (INPE), 2015). Acquisition dates of the corresponding

RapidEye and Landsat 8 OLI scenes are 2015− 9− 18 and 2015− 10− 17, respectively.

Both optical scenes are cloud free, and despite the one month gap show negligible land cover

change. As the TD-X acquisition lies in between, its land cover is assumed not to deviate
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Fig. 4.1 The utilized StripMap scene. Position of the subset in the lower part is indicated by
the red window.
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from these two scenes. Thus, the optical data seems adequate for the collection of reference

data for our TD-X scene, which was acquired within this time period.
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4.3 Methods

Preprocessing was performed in SNAP, following the standard practices for both polariza-

tions VH and VV: i) Generation of interferograms & coherence estimation, ii) Goldstein

filtering, iii) Topographic Phase Removal, iv) Multi-Looking, v) Phase Unwrapping (snaphu),

vi) Phase to height conversion, and vii) Range-Doppler Terrain correction. Analogously, non-

interferometric intensity products are a) multi-looked, b) speckle filtered, and c) geocoded

using Range-Doppler Terrain correction. Afterwards, Grey Level Cooccurence Matrix

(GLCM) based texture parameters are derived from all resulting products; i.e. Contrast,

dissimilarity, homogeneity, angular second moment (ASM), energy, MAX, entropy, GLCM

mean, GLCM variance and GLCM correlation. GLCM texture is a way to integrate infor-

mation on spatial vicinity into the classification, which is derived through discretization of

the pixel’s values into bins and subsequently counting neighboring patterns at predefined

directions. A detailed description is given in Haralick et al. (1973).

For classification, we utilize the R implementation of Random Forests (RF) (Breiman,

2001b). RF’s are well suited for classifying SAR data and outperform other algorithms

in terms of accuracy. Another advantage of RF is its simple handling and computational

efficiency (Waske et al., 2009b). We randomly select 200 samples per class for model training

and the same number of independent test samples. A total of 1200 samples are hence raised

well distributed over the extent of the entire StripMap scene. All accuracy estimates in

this manuscript are based on area-adjusted accuracy measures as introduced by Olofsson

et al. (2014). For area-adjusted accuracy metrics, entries of the population error matrix are

estimated by (4.1).

pi j =Wi

ni j

ni·
(4.1)

In contrast to conventional confusion matrices, pi j are proportion area elements stem-

ming from the corresponding sample counts ni j of the confusion matrix, and the total area

proportion mapped as class i, Wi. The Overall Accuracy (OA) is hence given by the sum

of the main diagonal. Also note the dot operator . in the denominator, which signifies the

sum over the corresponding matrix vector, in this case the ith row of n. Analogously to

conventional population error matrices, it is further possible to estimate class-based user’s

accuracies signifying the proportion of areas mapped as some class i with reference class i

via (4.2).

Ui = pii/pi· (4.2)
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Its complementary metric, the producer’s accuracy, which signifies the proportion of

class j’s area to be mapped as class j is yielded by (4.3).

Pj = p j j/p· j (4.3)

Having determined these basic metrics, it is further possible to derive additional statistics

such as variances as well as area proportions. For a more in-depth overview see Olofsson

et al. (2014).

4.4 Results

To assess the potential of TD-X data for tropical land cover mapping in terms of accuracy we

perform a detailed accuracy assessment for the following four different classifications:

1. SAR: Classification of only the original SAR images

2. InSAR: Classification of original SAR images + Coherence images + DEM

3. SAR+T: Classification of original SAR images + corresponding GLCM

4. InSAR+T: Classification of original SAR images + Coherence images + DEM’s +

corresponding GLCM for any band

The classification of original SAR images only results in a 55 % OA. Misclassification

for this feature set is particularly present for the class shrubby pasture, which shows high

confusion with both, forest and clean pasture. The map appears noisy even in homogeneous

areas, and a quarter of all forest pixels is classified as shrubby pasture (Figure 4.3). Integration

of interferometric information (i.e., coherence as well as DEM) increases the classification

accuracy significantly to 78 %. The result shows a strong decrease in misclassified forest

areas, and misclassifications within clean pasture areas can often be attributed to the effects

of individual trees.

Despite the absence of spatial texture information, classification accuracy of InSAR also

surpasses SAR+T, which yields an OA of 72 %. While effects of speckle are reduced even

further for this approach, strong confusion remains for shrubby pasture. Combining all

data, InSAR+T yields a very high OA of 89 %. The effects of speckle are overwhelmingly

suppressed, and forest is classified particularly well at 95 % (Figure 4.3). These findings are

also underlined by a comparison of the derived User’s (UA) and Producer’s Accuracies (PA)

(Figure 4.2). The class accuracies are increased by using interefometric and textural features.
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Fig. 4.2 Comparison of UA’s and PA’s.

Fig. 4.3 Visual comparison of generated land cover products.
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The final land cover map, derived using all available features, is given by Figure 4.4. The

map illustrates particularly well the separability of clean pasture and forest areas, and also

indicates increasingly dense vegetation at forest edges. The corresponding confusion matrix

is given by Table 4.1. Very evidently, there is no confusion between forests and clean pasture,

and it also indicates the more common occurrence of shrubby pasture’s over clean pasture in

the study region.

Table 4.1 Area proportion matrix for the InSAR+T approach.

Class Forest Clean Pasture Shrubby Pasture PA

Forest 0.39 0.00 0.03 0.93
Clean Pasture 0.00 0.17 0.03 0.85
Shrubby Pasture 0.02 0.03 0.33 0.87
UA 0.95 0.85 0.85 0.89
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Fig. 4.4 Final land cover map using the InSAR+T data set.
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4.5 Discussion

It is well known that SAR data with short wavelengths (X-band) has limitations for the

classification of densely vegetated areas. Concerning the integration of interferometric

coherence, this study underlines its usefulness to differentiate forest from non-forest. The

classification accuracy increases by 10 p.p., from 55 % to 65.7 % when coherence is added

to the SAR images. Yet using interferometric coherence alone is not sufficient to accurately

separate shrubby pasture from the other classes, which is also confirmed by Schlund et al.

(2013). Additional inclusion of a DEM yields a significant increase of 16 p.p.. Consistent

with Santos et al. (2010a), this study shows the high significance of texture analysis for

separability. Since texture analysis can possibly omit small scale variations within the

map, such as individual trees or bushes, its integration should be considered carefully. In

comparison with studies utilizing different sensors, yet are located in the same study region

using similar classes, accuracies of this approach are on par with an approach based on

Landsat time series (Jakimow et al., 2018).

In case a very high resolution is mandatory, InSAR offers the highest accuracy without the

filtering effect of texture. When comparing the area of clean pasture and shrubby pasture for

InSAR, they are almost equal at 21214 ha ± 8 % for clean pasture, to 19734 ha ± 11 % for

shrubby pasture, with ± indicating a 95 % confidence interval. In contrast, InSAR+T yields

a 1 : 2 ratio for clean and shrubby pasture, with 14979 ha ± 9 % for clean and 29210 ha ±

15 % for shrubby pasture. This strong decrease in clean pasture when comparing texture

vs. no texture shows that a pixel based approach acknowledges smaller patches of clean

pasture while a texture based approach incorporates these patches more readily into shrubby

pasture. In general, the use of texture information increases forest areas and shrubby pasture,

and decreases the area of clean pasture. It can further be assumed that the high UA’s of

95.1 % for forest, 85 % for clean pasture, and 84.6 % for shrubby pasture produce a fairly

accurate representation of class proportions in the study area.

However, the results using SAR images, interferometric coherence, the phase generated

DEM, and their texture information yield great success with an overall classification accuracy

of 89 %.

4.6 Conclusion

TD-X delivers bi-static, weather independent images with high resolution. It is the first

mission to simultaneously utilize two orbiting sensors to obtain across-track bistatic scenes

enabling interferometric analysis. Although a simple distinction between forest and non-
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forest can be achieved for all setups, separation between different pasture types is much more

challenging. However, both feature sets, i.e., interferometric as well as textural features, lead

to an increase in the mapping accuracy. The final overall classification accuracy of the three

classes primary forest, clean pasture and shrubby pasture is increased from 55 % from SAR

images alone to 89 %, by integrating interferometric and texture features. Comparing the

two feature sets, it can be assessed that the interferometric features outperform the textural

infromation in terms of accuracies.
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Abstract

TanDEM-X is the first spaceborne mission to allow single-pass bi-static interferometry as

part of a continuous effort. In this study we investigate its multi-temporal capabilities for the

detection of deforestation sites. Specifically, two height models and two intensity images

are derived for two continuous years, before differences are calculated between the height

and intensity images, respecitvely. With the help of optical RapidEye and Landsat images,

reference information on land cover change is collected, and Random Forest classifications

are performed on the difference images to derive deforestation maps. Using this method,

accuracies of 89 % for the detection of forest are achieved, with an overall mapping accuracy

of 89 %. The proposed method is applicable using currently available open source packages,

requiring only few adaptations, e.g. to address effects such as interferometric ramp building.

5.1 Introduction

Changes in land use and land cover (LUCC) directly influence the earth’s carbon stock, with

the high deforestation rates of the 20th century contributing to anthropogeneically released

CO2 in a major way (Canadell et al., 2008). Besides its effects on the global carbon cycle,

forests directly influence regional climate and hydrology (Makarieva et al., 2006), and they

are further hotspots of biodiversity (Lawton et al., 1998).

Deforestation is defined as active removal of forests toward areas with crown cover

below 10 % (UN-REDD Programme Collaborative Online Workspace 2015). Information on

land cover is conventionally derived from optical remote sensing imagery, yet technological

progress allows for an increasing quality of SAR-based mapping (Kumar et al., 2017; Kuntz,

2010). Moreover, SAR data seem particularly interesting in the context of forest mapping,

because deforestation often takes place in regions that are affected by dominant cloud cover,

such as the Brazilian Amazon. Due to the characteristics of backscatter, SAR is especially

capable for estimating biomass and the mapping of wetlands (Saatchi et al., 2011; Evans

et al., 2013). In addition, many studies have highlighted the potential of SAR within the

context of tropical classification (Grover et al., 1999). The authors used C- and L-band

interferometry to perform land cover classification and change detection. More recently,

the utilization of time series data and multi-sensoral integration with optical data plays an

important role (Reiche et al., 2015b; Reiche et al., 2018).

TanDEM-X (TD-X) is a constellation maintained by DLR, and consists of two twin

satellites which acquire interferometric SAR images at high revisit rates and high spatial

resolution. Due to its attractive properties, in recent years various studies utilized interfer-
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ometric TerraSAR-X and TD-X data in the context of forest mapping (Karila et al., 2015;

Liesenberg et al., 2013; Schlund et al., 2013). Schlund et al. (2013) show that utilization of

bi-static SAR images can improve the classification accuracy of several vegetated classes

and forest types by up to 10 % compared to monostatic SAR. Karila et al. (2015) utilize

interferometric TD-X to derive forest inventory data such as trunk diameter, tree height, basal

area, and Magnard et al. (2016) classify trees using multi-baseline SAR using experimental

aerial Ka-band sensors. Santos et al. (2010b) use dual polarized SAR images to test different

classification methods.

Overall, with the increasing availability of interferometric SAR data over the last years,

many studies are beginning to uncover its various capabilities. The main objective of this

study is to investigate the potential multitemporal TD-X data to map different types of land

use change in the Brazilian Amazon. The specific objective of our study is the classification

of multiple CoSSC TD-X scenes, acquired over a study area in the North of federal state of

Mato Grosso, Brazil.

5.2 Data & Study area

The federal state Mato Grosso (MT) is located in central Brazil and encompasses a total area

of 900000 km2. It’s dominated by two biomes, the cerrado and, particularly in the north-west,

the Brazilian Amazon. MT experienced peak deforestation in 2005 with 12000 km2 per year

(Morton et al., 2011). This peak was followed by a strong, Amazon wide decrease in the

following years to 3000 km2 per year (Morton et al., 2011), which was discussed heavily in

literature (Nepstad et al., 2014b; Souza Jr et al., 2013). Reasons behind deforestation in MT

are traditionally cattle ranching, and more recently, cultivation of areas for soy farming.

The study area encompasses an area of about 1000 km2 and is located at the southern

edge of the Brazilian Amazon, close to the border of neighboring state Pará, and in vicinity

to the transcontinental BR-163 highway (Figure 5.1). Within the study area there are primary

forests, especially in the central, north-western and eastern parts. It is overall dominated by

agricultural areas of different succession stages. There are no closed municipal areas, but

farming along the road network.

The study area is covered by the swath of multiple CoSSC TD-X scenes from the

2012 and 2013 experimental acquisition phase. Within this phase, the baseline of multiple

acquisitions surpassed the criticial threshold, and in particular acquisitions from 2012-12-19

and 2013-10-23 are considered for the analysis. Data is acquired in StripMap mode at HH

single polarization.
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Fig. 5.1 Location and extent of the study region in central Brazil.
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InSAR is based on relating phase information of multiple comparable SAR acquisitions.

There are two principles to enable InSAR, which are along-track and across-track interferom-

etry (Moreira et al., 2013a). For both methods the acquisition of multiple images from slightly

different angles is critical. Along-track interferomtry achieves this, in the general case, by a

single sensor taking acquisitions from a revisiting orbit, albeit slightly shifted in position.

Across-track interferometry, on the other hand, requires two sensors in an offset constellation,

to gather imagery in parallel. TD-X particularly enables the latter. If acquisitions are coherent,

the phase of an interferogram illustrates phase differences between the two interferometric

images, which allows for the extraction of meaningful patterns. Coherence is a measure for

the correlation of two SAR scenes. It is particularly affected by signal to noise ratios and

even miniscule differences in surface structure between two scenes. Further problems can

arise in areas of low coherence and through repetitive phase information (Zebker et al., 1992).

These problems are in direct relation to the ground resolution and the baseline of the two

sensors. It is addressed by phase unwrapping which includes external information on the

topography and offers an estimation of signal continuity (Davidson et al., 1999).

Using Snap 5.0, interferograms are generated from the CoSSC images of the years

2012 and 2013, and layers of intensity, phase, and coherence are calculated for both dates.

Afterwards, DHM’s of relative height are derived. To correct noise in the interferogram

and to eliminate height ambiguities within the unwrapping procedure, a Goldstein Phase

filter is applied (Goldstein et al., 1998). Phase unwrapping is conducted through Snaphu

using the TOPO mode, and Minimum Cost Flow (MCF) as initial method (Hooper, 2010).

After preprocessing images for both years, two difference maps are generated for height

and intensity, respectively. These layers will be the key features within this study, as the

classification is ultimately based on detecting deforestation sites from the derived height

and intensity differences. All datasets are geocoded into UTM using Range-Doppler Terrain

Correction.

5.4 Reference Data

The particular focus of this study lies on the detection of deforestation. Beside deforestation,

different types of similar LUCC can be identified (grazing, slash and burn farming, tillage).

Delineating these processes is an important interpretation task, yet the scope of the subsequent

classification lies on the detection of deforestation. It is addressed through the labeling of

all detectable changes into seven distinct classes, using a strictly defined scheme based on
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available SAR and optical images. In total, 202 change areas could be identified, spanning

an area of 2254 ha, which we assume covers all change within the investigation period. Out

of the 202 detected changes, deforestation of primary forests contributes 51 polygons, while

deforestation of secondary forests contributes 25 polygons. The total area of deforestation

is below one quarter of all LUCC. The final data se is split in two parts, resulting in two

spatially disjointed data sets, for training and validation.

5.5 Methods

The classification is conducted through Random Forests (RF) using a total of 1,000 test

and 1,000 training pixels, which are extracted from the digitized change areas. RF are

an ensemble method based on classification trees, which are capable to address multi-

dimensional data with complex class distributions (Breiman, 2001b). In the field of remote

sensing, they are widely used for the classification of multi-temporal SAR data (e.g. Waske

et al. (2009b), Stefanski et al. (2014), and Du et al. (2015)).

For an opposing class, an additional 1,000 pixels are sampled for training and testing,

respectively. To particularly highlight the importance of separating different types of change,

a stratified sampling strategy is chosen to include 500 samples from non-deforestation areas,

and 500 samples from the remaining areas of the image.
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5.6 Results

Fig. 5.2 Summary of relevant input layers: differences in height, differences in intensity, and
digitized areas of change, respectively.

A visual comparison already underlines the advantages of deriving height differences in

comparison to intensity differences. Dark areas in Figure 5.2 indicate reduction of heights

and intensities, and especially height differences appear as characteristic rectangular shapes

indicative of deforestation. In contrast, differences in intensity are more subtle and sites of

LUCC are harder to make out using intensity difference images. Note that there is a large

number of change areas, which are not considered deforestation. Other changes include

pasture management, secondary regrowth, and degradation. These are the layers utilized for

the classification procedure to discriminate deforestation from other change and non-change

sites. Utilizing these layers, Figure 5.3 illustrates the final results of the RF classification. An

overall classification accuracy of 88 % is achieved when all difference layers are included.
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Fig. 5.3 Deforestation map of the study region.

The confusion matrix shows well balanced User Accuracies (UA) and Producer Accura-

cies (PA) between the classes (Table 5.1). Consider that sampling has not been conducted

entirely random but was stratified, and hence, a relatively high number of change sites is

included for the validation. Deforestation sites appear to be slightly underrepresented, which

is indicated by their relatively low PA of 85.6 %, while non-deforestation sites are detected

more precisely (90.2 %).
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Table 5.1 Confusion matrix for the classification. Test data was sampled over the entire extent
of the available data.

Reference

Deforested Other PA (%)

Deforested 856 144 85.6
Other 98 902 90.2
UA (%) 89.7 86.2

Overall Accuracy 87.9 %

5.7 Discussion

Utilization of difference images from two bistatic TD-X acquisitions appears well suited to

sufficiently detect sites of deforestation.

Weaknesses of the approach can be observed in the northern area of the study region,

where an overestimation of deforestation sites took place (Figure 5.3). This systematic error

is caused by a ramp, which is an artifact from the phase to height preprocessing (Simons

et al., 2007). Similar observations are made by Neelmeijer et al. (2017), who corrected

this gradient via a 2D quadratic phase model followed by an extra tilt-removal during the

alignment to an external DEM (Digital Elevation Model). For ramp removal we chose a

simple method based on an IDW interpolation (Inverted Distance Weighting). For this, we

sampled multiple bare points, which we know should not yield significant height differences,

such as road intersections or bare ground. While we were able to generally suppress the

ramp, some effects remain noticeable, especially in the north eastern part of the study area.

Additionally, the analysis is affected by interferometric height (Hoekman et al., 2001).

Interferometric height describes a displacement error caused by tree top penetration, which

has been shown to be also present at X-band. Since it is highly correlated to true tree

heights, its effects concerning the subsequent classification are minor. Still, it decreases the

interpretative value of the illustrated height differences as heights appear reduced.

Except for these, the outcome appears very homogeneous considering the speckling

characteristics of SAR, and the overall problems of utilizing short wavelength SAR for

mapping of densely vegetated areas.
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5.8 Conclusion

In this study we propose an applicable workflow for the derivation of deforestation maps

from multi-temporal across-track interferometric imagery with baselines below 300 m. The

processing can be achieved using freely available software, such as Snap, snaphu, and Python.

Height differences are particularly useful as they offer powerful features for the clas-

sification. Limitations are posed by the ramp effect as well as the ambiguities caused by

interferometric height. While the first one can be addressed using various methods, the

effects of interferometric height remain an interpretative challenge requiring further research

in the future.
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6.1 Main findings

In the following section, the aims as defined in Chapter 1 are gauged with the findings of the

conducted research from Chapters 2 to 5.

6.1.1 Chapter 2 - Discriminative MRF

Due to being less affected by clouds and the potentials of acquiring gapless time series

data, multi-temporal analysis of SAR images is promising. On the other hand, speckle is

widely considered a serious impediment for land cover analysis based on SAR, and also

multi-temporal mapping within tropical ecosystems faces challenges due to rapid changes of

the land surface. It is thus essential to develop methods that can handle these challenges.

In Chapter 2, a method is presented to utilize spatial and temporal pixel neighborhoods

to improve the outcome of probabilistic land cover classifications. Overall accuracies are

elevated by an average of 12 % through utilization of spatial neighborhoods and information

on land cover trajectories. Variance between classification accuracies of multiple scenes are

reduced, leading to more reliable outcome, and especially benefiting scenes with initially

weak classifications. Interestingly, the worst classification result before application of the

spatial-temporal MRF after application yields the highest accuracy. As a multi-temporal

setup over one dry season is considered, the study shows growth of clean pasture as well as

the decline of shrubby pasture areas between the dry season’s months June and August. The

method is particularly able to take into consideration estimates on land cover dynamics, which

are formulated in advance and used for model paramterization. The method is robust and po-

tentially transferable to multi-sensoral cases, as it is based just on probabilistic classifications

of land cover, and is hence agnostic to the underlying input of these classifications.

6.1.2 Chapter 3 - Multi-frequency SAR

The number of active earth observation SAR-satellites is rapidly growing, and data policies

of these systems increasingly permit free use of remote sensing imagery. There are hence

obvious potentials to fuse multi-frequency and multi-temporal images to enhance land cover

mapping.

As part of Chapter 3, advantages of a combined utilization of different wavelength SAR

for the purpose of tropical mapping are discussed. While at L-band it is already possible to

distinctly map primary forests, through integration of multi-frequency data a distinction of

additional vegetated classes such as pasture areas and secondary regrowth can be achieved.

Single classification of the most accurate scenes of ALOS-2, RS-2, and TS-X yield accuracies
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of 62 %, 47 %, and 58 %, respectively. A combined utilization of ALOS-2 and TS-X data

yields a 66 % accuracy, while the additional inclusion of RS-2 raises accuracies to 68 %.

Classification using the entire data set, consisting of 9 scenes in total, leads to an accuracy of

69 %.

Surprisingly, in particular TS-X appears more capable for the task than RS-2, which

operates at a longer wavelength albeit at lower spatial resolution. The combination of three

scenes to yield the highest accuracy is a combination consisting of all, an X-, C-, and L-band

acquisition, which underlines the potentials of multi-frequency applications. While the

combination of different frequencies is advisable, gains in accuracy saturate quickly as a

growing number of scenes is added.

6.1.3 Chapters 4 and 5 - Interferometric SAR

TanDEM-X is the first commercially available constellation which acquires single-pass

interferometric SAR data. Interferometry enables to derive additional structural surface infor-

mation as well as the estimation of ground heights, yet it requires a sensitive preprocessing,

which includes an interferometric coregistration, as well as phase unwrapping in order to

avoid phase shifts.

In Chapters 4 and 5 the potentials of interferometrically derived features to assist land

cover mapping in central Brazilian study sites are investigated. While Chapter 4 focuses

on the evaluation of interferometric coherence as an additional attribute for land cover

classification, Chapter 5 aims at the utilization of multiple interferometrically derived height

models to perform detection of deforestation. Chapter 4 shows an overall accuracy of 78 %

over 55 %, when interferometric coherence is included. Similarly, in the case of a texture-

based classification, interferometric coherence can raise the accuracy from 72 % to 89 %.

In Chapter 5, with the help of height information derived from interferometric images, an

overall accuracy of 88 % is achieved for the detection of deforestation sites.

6.2 Conclusion and prospects

A typical SAR classification workflow can be subdivided into several distinct stages. After

acquisition, images require preprocessing before classification and post-classificative methods

can be applied. All stages are topics of investigation in current remote sensing literature, and,

focusing on the demands of tropical land cover mapping, this work as well grazes all parts of

this processing chain. The suitability of L-band data, yet also the potentials of high resolution

imagery as offered by TS-X, as well as the benefits of multi-frequency remote sensing are
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highlighted by Chapter 3. Chapter 4 and Chapter 5 underline capabilities of interferometric

images, in particular for the separation of vegetation classes, which conventional SAR

generally struggles with. Finally, Chapter 2 utilizes probabilistic classifications and an

innovative, applicable method to link land cover information and expert knowledge to

optimize classification outcome.

Considering the growing importance of deep learning as well as the rapidly growing

number of spaceborne SAR sensors (LeCun et al., 2015; Joshi et al., 2016), the findings of

this study should be discussed with regard to these developments. The potentials of deep

neural networks for classification have been discussed in various recent articles (LeCun et al.,

2015; Schmidhuber, 2015), and some early applications have been conducted within the

remote sensing domain (Kampffmeyer et al., 2016; Romero et al., 2016; Volpi et al., 2016).

Most prominently, Convolutional Neural Nets (CNN’s) offer a very efficient way to learn,

supervisedly or unsupervisedly, spatial features from image data (Lee et al., 2009). Based on

these features, which are extracted by filters that scan for recurring, characteristical patterns,

the final layers conduct a classification to yield a probabilistic output.

Parallels hence exist to the approach undertaken in Chapter 2, and potential ways to

combine these efforts. Utilizing a CNN for classification, the integration of GLCM texture

parameters can be considered redundant as the network is able to learn superior spatial

features within its various hidden layers. Instead of a pure post-classificative definition, like

it is implemented in Chapter 2, MRF’s could instead be integrated as additional layers within

the model, in a way that model training can already respect the effect of regularization and

adapt parameters accordingly. As the applied method of message passing just introduces

multiplication by constant weight parameters, integration of such an operation would not

break the fundamental principle of being derivable through to perform backpropagation,

which underlies most current deep learning architectures. Moreover, the developed approach

in Chapter 2 to utilize pixel vicinity in multi-temporal neighborhoods can analogously be

extended to CNN’s. In the same way CNN’s are considering two spatial dimensions to

aggregate information on neighborhoods from different scales, implementation of temporal

convolution and pooling appears like an obvious extension, which is a particularly interesting

application for gapless (i.e. cloud free), i.e. SAR, remote sensing time series. With regard

to SAR, such methods are furthermore of particular interest, as they not only might assist

with the suppression of speckle effects, but might potentially be able to learn spatial patterns

directly from the speckle. Implementation of such a system would be straight-forward and

could be achieved using modern deep learning libraries.

The remaining Chapters 3 to 5 are particularly relevant with regard to future sensor

systems and the increasing amount of freely accessible data. Modern classifiers allow a
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straight-forward integration of various types of features, which can stem from multi-frequency

data, interferometry, or multi-temporal acquisitions. A growing number of operational SAR

systems therefore will directly contribute to products of higher accuracy. Still, observations of

Chapter 3 show L-band and images of high resolution to be preferable for vegetation mapping,

while observations of Chapter 4 and 5 underline the potentials attached to interferometric

analysis. Besides the large volume of SAR data, which will be gathered within the next years,

TanDEM-L is a constellation planned by DLR, that answers most of these demands, and

could truly expand the possibilities of SAR-based remote sensing in the tropics (Moreira

et al., 2015).

At a broader scope, new methods and sensors will not only contribute to increases in

accuracy, but will allow to tap on new fields of research and practical applications. For

example, within the last years, the management practice of integrated systems has gained

importance in central Brazil (Gil et al., 2015). Yet, due to the fine scale of these systems

and its intrinsic interactions of land cover types, continued quantification via SAR-based

remote sensing, at the current point, might not appear feasible. In addition, global phenomena

like forest dieback or more subtle tasks like mapping invasive species (Allen, 2009), which

require the detection of slight gradual shifts, could sufficiently be covered by better data

and more powerful methods. More than ever before, these topics can only be addressed

adequately if true syntheses between disciplines can be established, and the specialized

expertise of multiple highly specialized domains is integrated to gather new knowledge.
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