610 research outputs found

    Spherical Image Processing for Immersive Visualisation and View Generation

    Get PDF
    This research presents the study of processing panoramic spherical images for immersive visualisation of real environments and generation of in-between views based on two views acquired. For visualisation based on one spherical image, the surrounding environment is modelled by a unit sphere mapped with the spherical image and the user is then allowed to navigate within the modelled scene. For visualisation based on two spherical images, a view generation algorithm is developed for modelling an indoor manmade environment and new views can be generated at an arbitrary position with respect to the existing two. This allows the scene to be modelled using multiple spherical images and the user to move smoothly from one sphere mapped image to another one by going through in-between sphere mapped images generated

    3D object reconstruction using computer vision : reconstruction and characterization applications for external human anatomical structures

    Get PDF
    Tese de doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    Homography-Based Positioning and Planar Motion Recovery

    Get PDF
    Planar motion is an important and frequently occurring situation in mobile robotics applications. This thesis concerns estimation of ego-motion and pose of a single downwards oriented camera under the assumptions of planar motion and known internal camera parameters. The so called essential matrix (or its uncalibrated counterpart, the fundamental matrix) is frequently used in computer vision applications to compute a reconstruction in 3D of the camera locations and the observed scene. However, if the observed points are expected to lie on a plane - e.g. the ground plane - this makes the determination of these matrices an ill-posed problem. Instead, methods based on homographies are better suited to this situation.One section of this thesis is concerned with the extraction of the camera pose and ego-motion from such homographies. We present both a direct SVD-based method and an iterative method, which both solve this problem. The iterative method is extended to allow simultaneous determination of the camera tilt from several homographies obeying the same planar motion model. This extension improves the robustness of the original method, and it provides consistent tilt estimates for the frames that are used for the estimation. The methods are evaluated using experiments on both real and synthetic data.Another part of the thesis deals with the problem of computing the homographies from point correspondences. By using conventional homography estimation methods for this, the resulting homography is of a too general class and is not guaranteed to be compatible with the planar motion assumption. For this reason, we enforce the planar motion model at the homography estimation stage with the help of a new homography solver using a number of polynomial constraints on the entries of the homography matrix. In addition to giving a homography of the right type, this method uses only \num{2.5} point correspondences instead of the conventional four, which is good \eg{} when used in a RANSAC framework for outlier removal

    Individual tree measurements by means of digital aerial photogrammetry

    Get PDF
    Korpela, I. 2004. Individual tree measurements by means of digital aerial photogrammetry. Silva Fennica Monographs 3. 93 p. This study explores the plausibility of the use of multi-scale, CIR aerial photographs to conduct forest inventory at the individual tree level. Multiple digitised aerial photographs are used for manual and semi-automatic 3D positioning of tree tops, for species classification, and for measurements on tree height and crown width. A new tree top positioning algorithm is presented and tested. It incorporates template matching in a 3D search space. Also, a new method is presented for tree species classification. In it, a partition of the image space according to the continuously varying image-object-sun geometry of aerial views is performed. Discernibility of trees in aerial images is studied. The measurement accuracy and overall measurability of crown width by using manual image measurements is investigated. A simulation study is used to examine the combined effects of discernibility and photogrammetric measurement errors on stand variables. The study material contained large-scale colour and CIR image material and 7708 trees from 24 fully mappe

    Distributed scene reconstruction from multiple mobile platforms

    Get PDF
    Recent research on mobile robotics has produced new designs that provide house-hold robots with omnidirectional motion. The image sensor embedded in these devices motivates the application of 3D vision techniques on them for navigation and mapping purposes. In addition to this, distributed cheapsensing systems acting as unitary entity have recently been discovered as an efficient alternative to expensive mobile equipment. In this work we present an implementation of a visual reconstruction method, structure from motion (SfM), on a low-budget, omnidirectional mobile platform, and extend this method to distributed 3D scene reconstruction with several instances of such a platform. Our approach overcomes the challenges yielded by the plaform. The unprecedented levels of noise produced by the image compression typical of the platform is processed by our feature filtering methods, which ensure suitable feature matching populations for epipolar geometry estimation by means of a strict quality-based feature selection. The robust pose estimation algorithms implemented, along with a novel feature tracking system, enable our incremental SfM approach to novelly deal with ill-conditioned inter-image configurations provoked by the omnidirectional motion. The feature tracking system developed efficiently manages the feature scarcity produced by noise and outputs quality feature tracks, which allow robust 3D mapping of a given scene even if - due to noise - their length is shorter than what it is usually assumed for performing stable 3D reconstructions. The distributed reconstruction from multiple instances of SfM is attained by applying loop-closing techniques. Our multiple reconstruction system merges individual 3D structures and resolves the global scale problem with minimal overlaps, whereas in the literature 3D mapping is obtained by overlapping stretches of sequences. The performance of this system is demonstrated in the 2-session case. The management of noise, the stability against ill-configurations and the robustness of our SfM system is validated on a number of experiments and compared with state-of-the-art approaches. Possible future research areas are also discussed

    On Deep Machine Learning for Multi-view Object Detection and Neural Scene Rendering

    Get PDF
    This thesis addresses two contemporary computer vision tasks using a set of multiple-view imagery, namely the joint use of multi-view images to improve object detection and neural scene rendering via a novel volumetric input encoding for Neural Radiance Fields (NeRF). While the former focuses on improving the accuracy of object detection, the latter contribution allows for better scene reconstruction, which ultimately can be exploited to generate novel views and perform multi-view object detection. Notwithstanding the significant advances in automatic object detection in the last decade, multi-view object detection has received little attention. For this reason, two contributions regarding multi-view object detection in the absence of explicit camera pose information are presented in this thesis. First, a multi-view epipolar filtering technique is introduced, using the distance of the detected object centre to a corresponding epipolar line as an additional probabilistic confidence. This technique removes false positives without a corresponding detection in other views, giving greater confidence to consistent detections across the views. The second contribution adds an attention-based layer, called Multi-view Vision Transformer, to the backbone of a deep machine learning object detector, effectively aggregating features from different views and creating a multi-view aware representation. The final contribution explores another application for multi-view imagery, namely novel volumetric input encoding of NeRF. The proposed method derives an analytical solution for the average value of a sinusoidal (inducing a high-frequency component) within a pyramidal frustum region, whereas previous state-of-the-art NeRF methods approximate this with a Gaussian distribution. This parameterisation obtains a better representation of regions where the Gaussian approximation is poor, allowing more accurate synthesis of distant areas and depth map estimation. Experimental evaluation is carried out across multiple established benchmark datasets to compare the proposed methods against contemporary state-of-the-art architectures such that the efficacy of the proposed methods can be both quantitively and qualitatively illustrated

    Image subpixel estimation by the evaluation of ON satellite sensor model

    Get PDF
    Mis-registration of ground control points caused by mixed pixels are the most significant error sources in remote sensing. Even though the effects of these errors on land-cover application have been so far widely investigated, no sufficient attention has been given to their impacts on satellite sensor geometry. In this paper the effect of such errors on sensor model accuracy and the possibility of using orbital epipolarity constrains of Orun & Natarajan (ON) satellite sensor model to avoid such errors are investigated

    Robust convex optimisation techniques for autonomous vehicle vision-based navigation

    Get PDF
    This thesis investigates new convex optimisation techniques for motion and pose estimation. Numerous computer vision problems can be formulated as optimisation problems. These optimisation problems are generally solved via linear techniques using the singular value decomposition or iterative methods under an L2 norm minimisation. Linear techniques have the advantage of offering a closed-form solution that is simple to implement. The quantity being minimised is, however, not geometrically or statistically meaningful. Conversely, L2 algorithms rely on iterative estimation, where a cost function is minimised using algorithms such as Levenberg-Marquardt, Gauss-Newton, gradient descent or conjugate gradient. The cost functions involved are geometrically interpretable and can statistically be optimal under an assumption of Gaussian noise. However, in addition to their sensitivity to initial conditions, these algorithms are often slow and bear a high probability of getting trapped in a local minimum or producing infeasible solutions, even for small noise levels. In light of the above, in this thesis we focus on developing new techniques for finding solutions via a convex optimisation framework that are globally optimal. Presently convex optimisation techniques in motion estimation have revealed enormous advantages. Indeed, convex optimisation ensures getting a global minimum, and the cost function is geometrically meaningful. Moreover, robust optimisation is a recent approach for optimisation under uncertain data. In recent years the need to cope with uncertain data has become especially acute, particularly where real-world applications are concerned. In such circumstances, robust optimisation aims to recover an optimal solution whose feasibility must be guaranteed for any realisation of the uncertain data. Although many researchers avoid uncertainty due to the added complexity in constructing a robust optimisation model and to lack of knowledge as to the nature of these uncertainties, and especially their propagation, in this thesis robust convex optimisation, while estimating the uncertainties at every step is investigated for the motion estimation problem. First, a solution using convex optimisation coupled to the recursive least squares (RLS) algorithm and the robust H filter is developed for motion estimation. In another solution, uncertainties and their propagation are incorporated in a robust L convex optimisation framework for monocular visual motion estimation. In this solution, robust least squares is combined with a second order cone program (SOCP). A technique to improve the accuracy and the robustness of the fundamental matrix is also investigated in this thesis. This technique uses the covariance intersection approach to fuse feature location uncertainties, which leads to more consistent motion estimates. Loop-closure detection is crucial in improving the robustness of navigation algorithms. In practice, after long navigation in an unknown environment, detecting that a vehicle is in a location it has previously visited gives the opportunity to increase the accuracy and consistency of the estimate. In this context, we have developed an efficient appearance-based method for visual loop-closure detection based on the combination of a Gaussian mixture model with the KD-tree data structure. Deploying this technique for loop-closure detection, a robust L convex posegraph optimisation solution for unmanned aerial vehicle (UAVs) monocular motion estimation is introduced as well. In the literature, most proposed solutions formulate the pose-graph optimisation as a least-squares problem by minimising a cost function using iterative methods. In this work, robust convex optimisation under the L norm is adopted, which efficiently corrects the UAV’s pose after loop-closure detection. To round out the work in this thesis, a system for cooperative monocular visual motion estimation with multiple aerial vehicles is proposed. The cooperative motion estimation employs state-of-the-art approaches for optimisation, individual motion estimation and registration. Three-view geometry algorithms in a convex optimisation framework are deployed on board the monocular vision system for each vehicle. In addition, vehicle-to-vehicle relative pose estimation is performed with a novel robust registration solution in a global optimisation framework. In parallel, and as a complementary solution for the relative pose, a robust non-linear H solution is designed as well to fuse measurements from the UAVs’ on-board inertial sensors with the visual estimates. The suggested contributions have been exhaustively evaluated over a number of real-image data experiments in the laboratory using monocular vision systems and range imaging devices. In this thesis, we propose several solutions towards the goal of robust visual motion estimation using convex optimisation. We show that the convex optimisation framework may be extended to include uncertainty information, to achieve robust and optimal solutions. We observed that convex optimisation is a practical and very appealing alternative to linear techniques and iterative methods
    • …
    corecore