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Abstract
Planar motion is an important and frequently occurring situation in mo-
bile robotics applications. This thesis concerns estimation of ego-motion
and pose of a single downwards oriented camera under the assumptions of
planar motion and known internal camera parameters. The so called essen-
tial matrix (or its uncalibrated counterpart, the fundamental matrix) is fre-
quently used in computer vision applications to compute a reconstruction
in 3D of the camera locations and the observed scene. However, if the ob-
served points are expected to lie on a plane – e.g. the ground plane – this
makes the determination of these matrices an ill-posed problem. Instead,
methods based on homographies are better suited to this situation.

One section of this thesis is concerned with the extraction of the camera
pose and ego-motion from such homographies. We present both a direct
SVD-based method and an iterative method, which both solve this prob-
lem. The iterative method is extended to allow simultaneous determination
of the camera tilt from several homographies obeying the same planar mo-
tion model. This extension improves the robustness of the original method,
and it provides consistent tilt estimates for the frames that are used for the
estimation. The methods are evaluated using experiments on both real and
synthetic data.

Another part of the thesis deals with the problem of computing the
homographies from point correspondences. By using conventional homo-
graphy estimation methods for this, the resulting homography is of a too
general class and is not guaranteed to be compatible with the planar motion
assumption. For this reason, we enforce the planar motion model at the ho-
mography estimation stage with the help of a new homography solver using
a number of polynomial constraints on the entries of the homography mat-
rix. In addition to giving a homography of the right type, this method uses
only 2.5 point correspondences instead of the conventional four, which is
good e.g. when used in a RANSAC framework for outlier removal.
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Popular Science Summary
The introduction of the robotic arm in the early 1960s was an important
step towards automation of industry. Much of the noisy, dangerous, and
repetitious labour at assembly lines and blast furnaces could now be per-
formed by a robotic operator instead of a human. The robots were very
often individually calibrated and programmed each to perform their spe-
cific task – tasks which were now performed faster than ever, and without
risking fatigue or injuries.

However, despite the increased productivity, the improved safety, and
the standardised output, the robots lacked crucial skills which the earlier
human operators possessed in great measure – flexibility and adaptability.
In contrast to their human counterparts, the robots were highly stationary
and fixated to their workspace, often bolted to the floor or at best moving
along short rails, and even minor changes to their task specification required
a complete reprogramming and thus time offline.

Over the past half century, efforts to endow robots with flexibility and
adaptability have been major themes in robotics research. The work in this
thesis is a part of those efforts, and deals with an important sub-problem
called Simultaneous Localisation and Mapping (SLAM). Algorithms for the
SLAM problem use data which the robot acquire from its sensors (sonar,
laser range finders, cameras, wheel encoders, …) to determine and keep
track of the surrounding environment. In other words, the robot has to
create a model of its surroundings (the mapping part), and use it to de-
termine its own position (the localisation part) relative to the model. This
type of algorithms is necessary in order to enable mobile robots to move
autonomously – that is, without a human operator actively controlling the
robot.

Only in the last two or three decades have cameras become a realistic
choice of sensor to use for robotic navigation. There are three major reasons
for this. First, digital cameras have become available, and they have gone
through a revolution in terms of both reduced price and improved quality.
Secondly, computing power has continued to double approximately every
second year, as predicted by the celebrated Moore’s law. Thirdly, during
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(a) Original image. (b) Transformed image.

Figure 1: Two images of the same planar object are related through a projective

transformation called a homography. Here, image (b) is a synthetic view gener-

ated from image (a) by applying a suitable homography transformation.

this time, there were many milestone advances in computer vision, which
provided practical methods for inferring geometry from images.

In this thesis I have considered the case of a camera mounted rigidly
onto a mobile robot platform that moves across a planar floor, and directed
in such a way that the images mainly contain the floor. By keeping track
of how certain observed points move in the images as the robot moves over
the floor, it is possible to deduce how the robot has moved.

If the observed points on the floor plane are visible in two different
images, their coordinates in the the two images are related through a trans-
formation called a homography (see Figure 1). A homography between two
images can be determined in a standard way from at least four pairs of cor-
responding points in the two images. One part of my work is concerned
with extracting motion information from such homographies, and this is
done by deriving a mathematical expression for the homography in terms
of a number of motion parameters, and then solving for the parameters.
My conclusion for this part is that the parameters can be determined re-
liably and efficiently, and that therefore the robot motion can be inferred
from the floor images.
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Homographies constitute a very general class of transformations, and
by using the conventional method of finding the homography, one is not
guaranteed to find a homography that actually is compatible with the as-
sumptions one has made – planar camera motion and constant tilt (rigidly
mounted camera). One part of this thesis considers the problem of finding
a homography with those additional assumptions met. The way I solved
this problem was to formulate those assumptions as so called polynomial
constraints, and then using those polynomial constraints when devising a
new method for finding a homography. My findings for this part of the
work are that it is possible to find a homography which is compatible with
the assumptions of planar motion and constant tilt, and that this can be
done using only three pairs of corresponding points (compared to four, in
the standard method).
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Chapter 1

Matrices and Estimation

This chapter includes background material from linear algebra and estim-
ation theory that is needed in the later chapters. In Section 1.1 we dis-
cuss various matrix related results, notably the singular value decomposition.
Section 1.2 contains a brief introduction to non-linear least-squares estim-
ation, and discusses the RANSAC framework for outlier removal.

1.1 Matrix Results and Notation
A great many mathematical results, models, and methods are best expressed
in terms of matrices. A matrix formulation often invites the application of
results and methods from some of the most well-developed areas of math-
ematics, notably linear algebra and operator theory, and this can be incred-
ibly helpful in the analysis at hand. Furthermore, when it comes to imple-
mentation in software, the numerical aspects of matrix computations are
generally well understood (Golub and Van Loan, 1996; Trefethen and Bau,
1997), and high quality implementations of many fundamental ‘building
block’ algorithms are available through LAPACK (Anderson et al., 1999).

In this thesis, matrices are typically written as boldface Roman or Greek
letters, where capital letters denote matrices which (may or do) have more
than one column, and where miniscule letters denote vectors (i.e. column
matrices). Exceptions to these guiding principles do occur, but the reader
should be able to deduce the correct meaning from the context without
too much effort. When the correct size can be inferred from the context,
identity matrices are written as I , and zero matrices are written as 0 . In the

1



CHAPTER 1. MATRICES AND ESTIMATION

most ambiguous cases, there might be a subscript indicating the intended
size. In block matrices, zero blocks are sometimes left blank, as this better
highlights the structure of the non-zero parts. Unless stated otherwise, ‖·‖
refers to the Euclidean norm (for vectors) or the operator norm induced by
the Euclidean norm (for matrices).

1.1.1 The Singular Value Decomposition
In this section we shall introduce and discuss one of the most useful matrix
decompositions, namely the singular value decomposition (SVD). The theor-
etical and practical importance of this decomposition cannot be sufficiently
emphasised, and we cannot possibly give a full discussion of its properties
and applications here. The SVD is defined through the following existence
theorem.

Theorem 1.1 (Singular Value Decomposition). Let A ∈ Rm×n , and denote
p = min(m, n) . Then there exist orthogonal U ∈ Rm×m and V ∈ Rn×n , and
a uniquely determined diagonal matrix Σ ∈ Rm×n whose diagonal entries are
the singular values σ1 ≥ . . . ≥ σp ≥ 0 , such that

A = UΣVT. (1.1)

Any such decomposition of A is a singular value decomposition (SVD). If
the singular values are distinct, the first p columns in U and V are uniquely
determined up to a sign ambiguity.

Quite often this theorem is stated for complex matrices, in which case
U and V should be unitary rather than orthogonal. The matrices in this
thesis are almost exclusively real-valued, however, and for this reason, the
above formulation is better suited to our purposes than the more general
complex version.

It can also be good to know that there is a so called reduced SVD, which
is often used in practice due to it being cheaper to compute in many cases.
In the reduced SVD, Σ is a square matrix of order p , and U and V are
matrices of sizes m× p and n× p , respectively, with orthonormal columns.
Most of the theory concerning the ‘full’ SVD can easily be translated to the
reduced case.

2



1.1. MATRIX RESULTS AND NOTATION

While Theorem 1.1 guarantees the existence of an SVD, it is not imme-
diately clear how one practically can compute an SVD of a matrix. We will
not cover any such method here, but we take great comfort in the know-
ledge that there exist efficient and reliable methods for this purpose (Golub
and Van Loan, 1996; Trefethen and Bau, 1997).

Proofs of Theorem 1.1 can be found throughout the literature, e.g. in
Horn and Johnson (1991), Golub and Van Loan (1996), and Trefethen
and Bau (1997). Before discussing some useful properties of the SVD,
we sententiously remark that while ‘the SVD’ can be used to refer to the
decomposition in general, using the definite article and referring to ‘the’
SVD of a particular matrix should generally be avoided unless it is clear
which one of the many possible SVDs is intended.

One very important observation is the following.

Theorem 1.2. Let A = UΣVT be an SVD of A ∈ Rm×n and let uk
and vk denote column k in U and V , respectively. If σr is the smallest non-
zero singular value, then {u1, . . . , ur} is an orthonormal basis for the range
(column space) of A and {vr+1, . . . , vn} is an orthonormal basis for the null
space of A . Consequently, r = rankA is precisely the number of non-zero
singular values.

Proof. First, note that the columns in U and V are orthonormal by defin-
ition. Now, by inspection,

Ax = UΣVTx =
[
σ1u1 . . . σrur 0 . . . 0

]
VTx, (1.2)

which means that Ax is a linear combination of the r first (i.e. leftmost)
columns in U . This gives rankA = r , and subsequently the null space
must have dimension n − r . But the n − r vectors vr+1, . . . , vn must lie
in the null space, since

A = UΣVT = U
[
σ1v1 . . . σrvr 0 . . . 0

]T
, (1.3)

and since they are orthonormal, this concludes the proof.

3



CHAPTER 1. MATRICES AND ESTIMATION

Low-Rank and Null Space Approximation

As we saw in Theorem 1.2, the singular value decomposition is an example
of a rank-revealing matrix factorisation. The rank of a given matrix is not a
continuous function of the entries, and this makes the numerical computa-
tion of the rank a very ill-conditioned problem. However, it can be shown
that the singular values depend continuously on the entries, and one can
then define the effective rank to be the number of singular values which are
significantly different from zero. The effective rank is in general much less
sensitive, and it can be determined reliably by computing an SVD. With all
this said, the terminological distinction between the rank and the effective
rank is not always strictly maintained outside the courtroom.

The SVD is not only useful for computing the (effective) rank of a mat-
rix; it is also a potent device for approximating a given matrix by another
matrix of lower rank, i.e. assigning a particular (lower) rank to a matrix.
More precisely, we have the following theorem.

Theorem 1.3 (Low-Rank Approximation). Suppose the rank of A ∈ Rm×n

is equal to r and let A = UΣVT be an SVD of A . Then, for any 0 ≤ ν < r
it holds that the (unique) solution to the optimisation problem

minimise
X

‖X− A‖

subject to rankX ≤ ν
(1.4)

is given by Aν = UΣνVT, where Σν is obtained from Σ by replacing the r−ν
smallest non-zero entries with zero.

Proof. Suppose there exists some X with rankX ≤ ν such that

‖X− A‖ < ‖Aν − A‖ = ‖Σν−Σ‖ = σν+1. (1.5)

The null space of X must have dimension n− ν , and for any x in this null
space we have

‖Ax‖ = ‖(A− X )x‖ ≤ ‖A− X ‖ ‖x‖ < σν+1‖x‖. (1.6)

But for any x in the (ν+1)-dimensional subspace spanned by the first ν+1
columns of V we have ‖Ax‖ ≥ σν+1‖x‖ . This is clearly a contradiction,
and we are impelled to the conclusion that there can be no such X .

4



1.1. MATRIX RESULTS AND NOTATION

A low-rank approximation is particularly useful when the matrix entries
are formed from some kind of measurements, and the underlying mathem-
atical model dictates a particular matrix rank ν . Measurement inaccuracies,
or noise, will often increase the rank of such a matrix. Loosely speaking, a
low-rank approximation reveals the principal directions u1, . . . , uν of the
underlying data and projects the data on the subspace spanned by these
directions, thereby achieving in effect a noise suppression.

In the same fashion, and equally important, Theorem 1.2 and The-
orem 1.3 can be combined to give the best (in the Euclidean norm) ap-
proximation of the null space of a matrix. This can be used for finding
non-trivial solutions to homogeneous systems of equations, sometimes re-
ferred to as homogeneous least-squares problems (Inkilä, 2005). This method
of approximating the null space will be used frequently in the chapters
ahead.

Linear Least-Squares and Pseudo-Inverse

Suppose A ∈ Rm×n and b ∈ Rm . A fundamental problem in linear algebra
is the (linear) least-squares (LS) problem

minimise
x

‖b− Ax‖2. (1.7)

In many cases least-squares problems arise directly out of linear model
equations, e.g. Kirchhoff’s circuit laws in electrical engineering and New-
ton’s laws of motion in classical mechanics. In other cases they are used as
approximations to non-linear problems, which we will see an example of
in our discussion of the Levenberg-Marquardt method in Section 1.2.1.

Before trying to solve the problem (1.7), we note that the existence of a
minimiser is guaranteed since Rn is complete and the norm is continuous
and bounded from below. There may, however, be more than one minim-
iser, and we are interested in finding them all.

Now suppose A = UΣVT is an SVD of A , and suppose rankA = r .
Since U is orthogonal, it does not affect the norm, and we have

‖b− Ax‖2 =
∥∥UTb︸︷︷︸

=c

−Σ VTx︸︷︷︸
=y

∥∥2
=

r∑
j=1

(cj − σj yj)2 +
m∑

j=r+1

c2
j . (1.8)
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This expression is clearly minimised when y =
( c1
σ1
, . . . , cr

σr
, sr+1, . . . , sm

)
for some arbitrary sr+1, . . . , sm which parametrise the minimiser. Now let
S be the diagonal n×m matrix with σ−1

1 , . . . , σ−1
r as its non-zero diagonal

entries, and let vk denote column k in V . The solutions to the least-squares
problem (1.7) may then be written as

x = Vy = VSUTb+ sr+1vr+1 + . . .+ smvm. (1.9)

As we saw earlier in Theorem 1.2, the vectors vr+1, . . . , vm span the
null space of A , and it is of course not surprising that we can add any
linear combination of them without influencing ‖b − Ax‖2 . The matrix
VSUT that showed up in the solution is important.

Definition 1.1. Let A = UΣVT be an SVD of A ∈ Rm×n . Let r be
the number of non-zero singular values, and let S be the diagonal n × m
matrix with σ−1

1 , . . . , σ−1
r as its first r diagonal entries and with all other

entries equal to zero. The matrix A+ = VSUT is called the (Moore-Penrose)
pseudo-inverse of A .

A few remarks concerning A+ are in order. First, any SVD of A will
give the same A+ , i.e. A+ is uniquely determined by A . Secondly, if A
is square and invertible in the usual sense, then A+ coincides with the
usual inverse. Thirdly, as we just saw, x = A+b solves the least-squares
problem (1.7), and it is the smallest such solution (in the Euclidean norm).
Finally, it turns out that Σ+ = S , and thus it is common to write the
pseudo-inverse as A+ = VΣ+UT without any reference to S .

We conclude this section by providing two alternative expressions for
the pseudo-inverse, which hold on the condition that A has full rank. In
this case we have

A+ =

{
(ATA)−1AT when m ≥ n,
AT(AAT)−1 when m ≤ n.

(1.10)

The verification of these is left as an easy exercise for the reader.

6



1.1. MATRIX RESULTS AND NOTATION

1.1.2 Block Matrices and Special Structure
When working with problems formulated in terms of matrices, there is
sometimes some special structure present that can be used – often to great
effect – e.g. in the analysis of a problem, to reduce the computational bur-
den of an algorithm, or to simplify its implementation. While there are
no sharp and clear criteria for what falls in the category of special structure,
the following (sometimes overlapping) situations are typical examples:

• Sparsity. A sparse matrix is a matrix where most entries are zero. If a
matrix is known to be sparse, and the sparsity pattern (i.e. where the
possible non-zero entries are) is known, then many entries can safely
be ignored. For instance, inverting a non-singular diagonal matrix of
size n × n requires O(n) operations, compared to O(n3) for a full
matrix of the same size.

• Block structure. Some blocks in a matrix may be known to span or
be orthogonal to certain subspaces (cf. the proof of Theorem 1.2), be
known to be identical, be known to be factorisable in a particular
way, etc. Knowledge of such block structure often enables a higher
abstraction level, and can e.g. make an implementation in code easier
to write and read.

• Parametrisation. A parametrisation of an object often provides useful
insights. For example, there are various results, e.g. Theorem 1.4, that
can be applied to matrices which can be written as sums where the
terms have certain properties.

The aim of this section is to serve as a kind of rogues’ gallery, contain-
ing some notation and useful facts for working with the situations above.
The first such useful fact, which is readily verified by simply multiplying
the relevant matrices together, is the Sherman-Morrison-Woodbury formula
(Golub and Van Loan, 1996).

Theorem 1.4 (Sherman-Morrison-Woodbury formula). If the matrices A
and I + CTA−1B are invertible, then A + BCT is also invertible and its

7



CHAPTER 1. MATRICES AND ESTIMATION

inverse is given by

(A+ BCT )−1 = A−1 − A−1B(I+ CTA−1B)−1CTA−1. (1.11)

A much-appreciated consequence of this is that if A is of order n and
easy to invert (or the inverse has already been computed), and B and C
are n × k with k � n , then applying the Sherman-Morrison-Woodbury
formula allows (A+BCT )−1 to be computed in O(n2) operations instead
of O(n3) . In this thesis, however, where most of the square matrices are
very small, considerations of time complexity are not the motivating factor
for this theorem; instead, it is the invertibility condition and the explicit
formula for the inverse that we are after.

Another useful result gives an expression for the inverse of a symmetric
block matrix. Assuming all the occurring inverses exist, we have[

A B
BT C

]−1

=

[
S−1 −S−1BC−1

−C−1BTS−1 C−1 + C−1BTS−1BC−1

]
, (1.12)

where S = A − BC−1BT is the so called Schur complement (Boyd and
Vandenberghe, 2004). Block inversion is a powerful tool when solving e.g.
normal equations in least-squares problems (see Section 1.2.1), in particu-
lar when the variables can be partitioned into a group which occurs in all
equations and a group where each variable only occurs in a small number
of equations. This is typically the case in bundle adjustment in computer
vision (Triggs et al., 1999).

A familiar concept in three-dimensional vector geometry is the cross
product, which is a neat supplement to the inner product when it comes to
expressing relations of orthogonality or parallelism. For any vector a ∈ R3

the mapping z 7→ a× z is linear, and can thus be expressed as z 7→
[
a
]
×z ,

with the cross product matrix defined as

[
a
]
× =

∂
∂z

(a× z) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (1.13)

The cross product matrix is skew-symmetric, i.e.
[
a
]
×
T
= −

[
a
]
× , and has

rank two except when a = 0 . Additionally, any skew-symmetric matrix of
order three is clearly a cross product matrix.

8



1.1. MATRIX RESULTS AND NOTATION

If R(ϕ) is a 3× 3 rotation matrix, which performs a rotation an angle
ϕ around a fixed rotation axis, then

RRT = I⇒ dR
dϕ

RT + R
dRT

dϕ
= 0. (1.14)

This shows that dR
dϕR

T is skew-symmetric, i.e. there is some v for which

dR
dϕ

RT =
[
v
]
× ⇔

dR
dϕ

=
[
v
]
×R⇔ R(ϕ) = exp

(
ϕ
[
v
]
×

)
. (1.15)

Furthermore, v must be the rotation axis, since it is an eigenvector to

exp
(
ϕ
[
v
]
×

)
= I+ ϕ

[
v
]
× +

ϕ2

2
[
v
]
×
2
+ . . . (1.16)

with corresponding eigenvalue one. This characterisation of 3D rotations
is known as the exponential map, and is closely related to Rodrigues’ formula
(which is discussed in Section 2.2).

The vectorisation operation, or column stacking, is defined as

vecA =
[
a11 · · · am1 a12 · · · am2 · · · a1n · · · amn

]T
, (1.17)

and the Kronecker product is defined as

A⊗ B =

a11B · · · a1nB
... . . . ...

am1B · · · amnB

 . (1.18)

The interplay between these two operations is discussed in considerable
detail in Horn and Johnson (1991), but one particular result which we
shall find useful is the following.

Lemma 1.1. For matrices A , B , and C of compatible sizes, it holds that

vec(ABC) = (CT⊗ A) vecB. (1.19)

9
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If we know the size of A , e.g. A ∈ Rm×n , then the vectorisation opera-
tion is invertible, and we can define

vec−1
m×n a = ((vec In)T ⊗ Im)(In ⊗ a). (1.20)

For any positive integers m and n it then holds that

a = vec(vec−1
m×n a), ∀a ∈ Rmn, (1.21)

and
A = vec−1

m×n(vecA), ∀A ∈ Rm×n. (1.22)

1.1.3 A Note on Differentiation
Differential calculus with vector-valued functions which depend on a vector
x ∈ Rn is conceptually straightforward, but requires attention to details
such as what to transpose and in which order various objects should ap-
pear. Most differentiation in this thesis can be reduced to the application
of two familiar results, namely the product rule

∂
∂x

(uTv) = uT
∂v
∂x

+ vT
∂u
∂x
, (1.23)

which holds whenever both u and v are differentiable functions from Rn

to Rm , and the chain rule

∂w
∂x

=
∂w
∂z

∂z
∂x
, (1.24)

where z : Rn → Rp and w : Rp → Rm are differentiable.

1.2 Parameter Estimation
One problem which arises time and again in mathematics and its applic-
ations is that of tuning a set of parameters detailing some mathematical
model in such a way that they ‘best’ explain a set of measurements. Here

10



1.2. PARAMETER ESTIMATION

we shall assume that the perhaps most important part – namely, the se-
lection of a suitable model class – has already been done, and that we thus
have a model which states that y ∈ Rm depends on x ∈ Rn as

y = φ(x;β). (1.25)

The function φ is determined by the model class, and is parametrised by
the parameter vector β ∈ Rp . Given some data {(xj, yj)}Nj=1 , the goal is
to find a parameter vector β which makes the model (1.25) agree as well
as possible with the provided data.

Occasionally it is possible to find one or more parameter vectors β for
which yj = φ(xj;β) exactly for all j = 1, . . . ,N , but in many practical
cases one has to tolerate some discrepancies, or residuals,

rj(β) = yj − φ(xj;β), j = 1, . . . ,N. (1.26)

The presence of such discrepancies does not in itself indicate an inadequacy
of the selected model, but may often rather be attributed to inaccurate
measurements, so called outliers (i.e. measurements which are simply in-
compatible with the model or which are mislabelled – the samples which
are not outliers are called inliers), or to the influence of phenomena which
are difficult or even impossible to account for in any kind of model. In fact,
if one manages to find a β which makes all the residuals zero, this could
potentially be a symptom either of so called overfitting (i.e. a too general
model with too many degrees of freedom) or of a too small data sample
(Bishop, 2006), and one should then carefully review the modelling step
before proceeding to draw any conclusion.

A natural desire, however, is to have as small discrepancies as one can
possibly manage without suffering from overfitting. To this end, it is often
useful to try to minimise (with regards to β ) some kind of cost function,
which produces a scalar measure of the size of the residuals rj . All the
residuals are often collected in a residual vector

ρ(β) =

r1(β)...
rN(β)

 . (1.27)

11
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The prototypical, and most influential cost function by far, is the sum
of squared errors,

ELS(β) = ρ(β)Tρ(β) =
N∑
j=1

∥∥rj(β)∥∥2
, (1.28)

famously pioneered in the early 19th century by Legendre (1805) and
Gauß, and which gives rise to a so called (non-linear) least-squares (LS)
problem. While this cost function is blessed with surprisingly many good
properties, its Achilles’ heel is no doubt its extreme sensitivity to outliers.
Indeed, even a single outlier may in some cases render the optimal β use-
less, and it is therefore common that the use of this cost function is preceded
by an outlier removal scheme such as RANSAC (see Section 1.2.2).

In addition to the sum of squared errors, there are many other cost
functions with different properties to choose from. Several of the most
important ones are given an in-depth treatment in well-known reference
works on optimisation, e.g. Boyd and Vandenberghe (2004), and discuss-
ing them here would be an unwarranted digression. Instead, let us briefly
look at a useful method for minimising ELS .

1.2.1 Non-Linear Least-Squares
Let us assume that φ is (continuously) differentiable with respect to β at
each data point xj . The cost function ELS is non-convex for most choices
of φ , and because of this one cannot reasonably expect to find a global min-
imum even when it is guaranteed to exist. However, one can make success-
ive convex approximations of ELS , and by minimising these one hopefully
comes close to a good local minimum of ELS . Convex quadratic approxim-
ations readily suggest themselves for this purpose, as they are both easy to
compute and easy to minimise (there is even a closed-form expression for
the minimum).

A linearisation of the residuals around a point βk gives, for small ∆ ,

ρ(βk +∆) ≈ ρ(βk) + J(βk)∆, (1.29)

12
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where J is the Jacobian

J(βk) =
∂ρ
∂β

=


∂r1
∂β
...

∂rN
∂β

 , (1.30)

with all the derivatives evaluated at βk . By simply setting ρ(βk +∆) = 0
in (1.29), the step ∆k given by

∆k = −J(βk)
+ρ(βk) (1.31)

should hopefully make the residuals smaller, and thus give a lower value of
the cost function ELS . This choice of ∆k is called a Gauß-Newton step, and
the method of starting at some initial point β0 and computing successive
points as βk+1 = βk + ∆k using (1.31) is known as the Gauß-Newton
method. To ensure that the method terminates in finite time, and thus
becomes an algorithm (Knuth, 1997), it is in practice always used with
one or more stopping criteria (e.g. too small step size, too many iterations,
etc.). We do not cover those here.

Another instructive way of deriving the Gauß-Newton step is to replace
the residuals in ELS with the linearisation in (1.29) and consider the result-
ing quadratic function Qk(∆) ≈ ELS(βk+∆) . This gives us the following
convex quadratic

Qk(∆) = ρ(βk)
Tρ(βk) + 2ρ(βk)

TJ(βk)∆+∆TJ(βk)
TJ(βk)∆. (1.32)

A minimum of Qk is clearly attained when ∂Qk
∂∆ = 0 , i.e. when ∆ satisfies

the normal equations

J(βk)
Tρ(βk) + J(βk)

TJ(βk)∆ = 0. (1.33)

A minimiser of Qk can thus be obtained as

∆k = arg min
∆

Qk(∆) = −
(
J(βk)

TJ(βk)
)+J(βk)

Tρ(βk), (1.34)

which can be verified to be equal to the step in (1.31).
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One problem with the Gauß-Newton method is that the ∆k computed
from (1.31) or (1.34) might be so large that it lies outside the region where
Qk is a reasonable approximation of ELS . In order to still go in the right
direction, but not go too far, Levenberg proposed augmenting the nor-
mal equations by replacing J(βk)

TJ(βk) with J(βk)
TJ(βk) + λkI for some

damping parameter λk ≥ 0 (Levenberg, 1944), and this was subsequently
refined by Marquardt (1963) to instead use the augmented normal equa-
tions

J(βk)
Tρ(βk) +

(
J(βk)

TJ(βk) + λkΛk
)
∆ = 0, (1.35)

where Λk is diagonal and has the same diagonal entries as J(βk)
TJ(βk) .

The solution to the augmented normal equations now depends on the
damping parameter λk as

∆k(λk) = −
(
J(βk)

TJ(βk) + λkΛk
)+J(βk)

Tρ(βk), (1.36)

and one wants to find a λk such that ELS
(
βk + ∆k(λk)

)
< ELS(βk) . It

can be shown that this can always be done (as long as βk is not a local
minimum) by choosing λk very large, but this means taking a very small
step towards the minimum, and a small λk is thus preferable. Usually, in
practice, some kind of heuristic approach is used to choose the value of the
damping parameter at each iteration.

This ‘damped’ version of the Gauß-Newton method is known as the
Levenberg-Marquardt method for non-linear least-squares problems, and is
outlined in Algorithm 1.1. The method can be thought of as an interpol-
ation between the Gauß-Newton method and the steepest descent method
(Boyd and Vandenberghe, 2004). Much more thorough treatments of the
Levenberg-Marquardt method, particularly addressing computer vision ap-
plications and with considerations of various implementation aspects, can
be found in Triggs et al. (1999) and to some extent in Hartley and Zisser-
man (2004).

1.2.2 Robust Estimation using RANSAC
As already mentioned, the cost function (1.28) is very sensitive to outliers.
Unless the outliers are removed, the minimisation of ELS will try to decrease
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Input: ELS of the form (1.28) and an initial point β0
Output: β∗ (hopefully) close to a minimum of ELS
1: k← 0
2: while stopping criteria not reached do
3: Compute J(βk)

TJ(βk) , Λk , and J(βk)
Tρ(βk)

4: Define ∆k(λk) according to (1.36)
5: Choose λk such that ELS

(
βk +∆k(λk)

)
< ELS(βk)

6: βk+1 ← βk +∆k(λk)
7: k← k+ 1
8: β∗ ← βk

Algorithm 1.1: The Levenberg-Marquardt method for non-linear least-squares

problems works by using linearised residuals and solving augmented normal

equations of the form (1.35). If λk = 0 for all k , the method is identical to the

Gauß-Newton method, and if λk is very large, the method becomes similar to

the steepest descent method (Boyd and Vandenberghe, 2004).

a large residual corresponding to an outlier at the expense of increasing
(maybe even by a large measure) many of the smaller ones, which means
that such bad samples have an unduly large influence on the estimated
parameters β . A much better estimate of β can often be obtained if one
manages to identify such bad samples and exclude them from ELS .

Fischler and Bolles proposed a framework called RANdom SAmple Con-
sensus (RANSAC) for identifying and eliminating the outliers (Fischler and
Bolles, 1981). Their idea was to fit the model to a small random subset of
the data, and save the samples which do not disagree too much in a so called
consensus set. By repeating this many times, and then fitting the model to
the largest consensus set found so far, one can hopefully eliminate the out-
liers. The general procedure of RANSAC is shown in Algorithm 1.2.

Intuitively, if a subset of the data is chosen which only contains true
inliers, most of the other true inliers should not deviate much from the
estimated model, and they should therefore end up in the consensus set. If,
on the other hand, some of the selected samples are not true inliers, then
this will cause a poor model to be fitted and only a small number of samples
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Input: Model y = φ(x;β) , data {(xj, yj)}Nj=1 , threshold τ , iterations K
Output: β fitted to the largest set of inliers
1: Cbest ← 
2: for k = 1, . . . ,K do
3: Select a small random subset of the data
4: Fit the model to the selected subset (estimate β )
5: Ck ←

{
(x, y) ∈ {(xj, yj)}Nj=1 |

∥∥y− φ(x;β)∥∥ < τ
}

6: if |Ck| > |Cbest| then
7: Cbest ← Ck

8: Estimate β from Cbest

Algorithm 1.2: The RANSAC framework is useful when estimating model para-

meters from noisy or corrupted data. The key idea is to repeatedly fit the model

to a small subset and count how many samples belong to the consensus set,

i.e. the set of samples which support the fitted model. This procedure hopefully

finds a model which a large part of the data supports, and then as a final step

the model is fitted to the largest consensus set found.

will – more or less ‘by accident’ – belong to the consensus set.
It is necessary to somehow determine the threshold τ deciding if a

sample should belong to the consensus set or not, as well as the number of
iterations K to run. In some situations it is possible to adaptively determine
suitable values for τ and K (Hartley and Zisserman, 2004). Good auto-
matic determination of τ is not straightforward, however, and instead one
often uses some prior knowledge of how large errors one should expect. A
commonly used method for determining K is to choose a desired success
probability p and guess an inlier ratio w . In case the actual inlier ratio is at
least w , then the probability of selecting a subset of size s containing only
inliers will be at least p if one runs

K =
⌈ ln(1− p)
ln(1− w s)

⌉
(1.37)

iterations (Fischler and Bolles, 1981), where dxe denotes the smallest in-
teger greater than or equal to x .
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If one uses the smallest possible value of s , which of course depends on
the model one tries to estimate, the probability of selecting a ‘clean’ subset
is clearly maximised, and this s also gives the smallest K according to (1.37).
Note that while the smallest possible s is a popular choice which works well
in many instances, there are cases (especially when the data are very noisy)
when larger-than-minimal subsets yield larger consensus sets, as explained
in Pham et al. (2014) and Pham (2014).
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Chapter 2

Camera Modelling

The main goal of this chapter is to introduce the pinhole perspective cam-
era model, which we will discuss in Section 2.3. The pinhole perspective
camera is best expressed using homogeneous coordinates, and we introduce
these together with some additional projective geometry background in
Section 2.1. Here we also define the important concept of a homography
(projective transformation), and we find in Section 2.2.2 that rigid motions
constitute a special class among the homographies. Section 2.4 briefly dis-
cusses the problem of finding corresponding points in two images, and acts
as a bridge to the two-view material in Chapter 3.

2.1 Projective Geometry Background
The problems considered within this thesis, like many other problems in
computer vision, are concerned with describing geometry. The most con-
venient and natural geometric framework to use when working with com-
puter vision problems is the framework of so called projective geometry.
While projective geometry is an interesting and fascinating field in and
of itself, the purpose of this very brief introduction is mainly to provide
sufficient background for working with homogeneous coordinates and to
give a basic understanding of the concept of a homography.

2.1.1 Projective Spaces and Homogeneous Coordinates
We start by defining the fundamental structure where projective geometry
takes place.
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(a) (b)

∞

0

1−1
−i

i

(c)

Figure 2.1: Some examples of projective spaces. Figure (a) shows a finite pro-

jective space generated by Z2
2 consisting of three points and one line. Figure (b)

shows the much celebrated Fano plane which is generated by Z3
2 and consists

of seven points and seven lines. Figure (c) tries to illustrate the Riemann sphere,

which is generated by C2 and consists of infinitely many points and one line

(the extended complex line C ∪ {∞} ).

Definition 2.1. Let V � {0} be a vector space. The set of one-dimensional
subspaces of V (i.e. lines through the origin) is called the projective space of
dimension dimV− 1 generated by V (Shafarevich, 2013; Tevelev, 2005).

The elements of a projective space are usually referred to as points, re-
gardless of how well they can be interpreted as actual geometrical points.
One family of projective spaces where the geometrical interpretation is es-
pecially good, however, is the family of real projective spaces RPn generated
by Rn+1 . This is a consequence of RPn being able to capture much of the
structure present in the n-dimensional extended Euclidean space, that is, a
Euclidean space extended with an ideal point (a point at infinity) in every
direction. In computer vision (and in computer graphics), the 3D world,
or scene, is usually modelled as RP3 , and the image is modelled as RP2 .
There are countless additional examples of projective spaces, for instance
the ones shown in Figure 2.1. While the discussion in this section is kept
quite general, we are in the end essentially interested in RP2 and RP3 .

A line through the origin of V can be represented by any of its direction
vectors, and the coordinates of such direction vectors may thus be used to
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identify the points in a projective space. This coordinate representation,
called homogeneous coordinates, was pioneered by Möbius (1827) and has
established itself as a natural framework for performing computations in
projective spaces. In the following we will assume that all projective points
are represented using homogeneous coordinates. In the specific case of the
extended Euclidean spaces, an ‘ordinary’ point x will have homogeneous
coordinates (λx, λ) for any λ 6= 0, whereas the ideal point in the direction
v will have homogeneous coordinates (λv, 0) for any λ 6= 0.

In ordinary Euclidean geometry, and in the extended Euclidean spaces,
it is well known that two distinct points uniquely determine a line. This
is an important property, which we want to have in projective spaces as
well. Two distinct points in a projective space are identified with two non-
parallel lines through the origin of V , and since these will always span a
unique two-dimensional subspace in V , a suitable definition of a line in a
projective space would be the following:

Definition 2.2. Let P be the projective space generated by a vector space V
with dimV ≥ 2 . A two-dimensional subspace of V is called a line in P.

A useful consequence which follows immediately from this definition
is that a line through two points x1 and x2 in a projective space consists
precisely of all points which may be written as non-zero linear combinations
of x1 and x2 . The reader is encouraged to verify this for the examples in
Figure 2.1 by introducing homogeneous coordinates there.

In the extended Euclidean plane (i.e. the two-dimensional extended
Euclidean space) there exists a line containing all the ideal points, and no
other point. This line is called the ideal line or the line at infinity.

In the same way as we defined points and lines, one could of course ima-
gine defining additional geometrical objects corresponding to subspaces of
higher dimensions. For some reason, however, it appears that such con-
structions are rarely considered in general. The typical exception, where
such an object is considered, is the following.

Definition 2.3. Let P be the projective space generated by a vector space V
with finite dimension n ≥ 3 . A subspace of V with dimension n−1 is called
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a hyperplane in P. (When n = 3 , a hyperplane is the same as a line, and
when n = 4 it is simply called a plane.)

Similarly to the ideal line in the extended Euclidean plane, there is an
ideal plane or plane at infinity in the three-dimensional extended Euclidean
space. The same construction can of course be used to define an ideal hy-
perplane in any extended Euclidean space of higher dimension.

Any particular subspace of dimension n− 1 is orthogonal to a unique
one-dimensional subspace, and this gives a canonical bijection between
points and hyperplanes in projective spaces. Using this bijection allows us
to represent a hyperplane as a point π , and the fact that a point x belongs
to the hyperplane can then be expressed as

πTx = 0. (2.1)

These remarks form the essence of the so called duality principle, which
is a very important concept in projective geometry (Busemann and Kelly,
1953). The duality principle states that for any projective theorem concern-
ing points and hyperplanes, there is a dual theorem which can be obtained
via the substitution scheme

point ↔ hyperplane
lies on ↔ contains

and correction of any grammatical awkwardness this may result in.
In the remainder of this thesis we will not go much beyond the above

remarks when it comes to the duality principle. We will, however, benefit
greatly from the algebraic description of a hyperplane (2.1).

2.1.2 Projective Cameras and Homographies
The developments in the previous section were made entirely in terms of
the subspaces of a vector space V . Suppose W and V are vector spaces, and
consider a mapping T from W to V which preserves the subspace structure
(i.e. W is mapped onto V and every subspace in W is mapped onto some
subspace in V). Then the mapping T gives rise to a corresponding mapping
from the projective space generated by W to the one generated by V .
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Any surjective linear transformation from W to V will preserve the sub-
space structure. This fact serves as inspiration for the following definition.

Definition 2.4. Let T be a surjective linear transformation which maps a
vector space W � {0} onto another vector space V. Then T is a projection
from the projective space generated by W to the one generated by V. If T
is also injective, T is called a homography between the two projective spaces.
If dimW = 1 + dimV, then T is called a projective camera.

In particular, homographies from RPn to itself are non-singular square
matrices of order n + 1, and projective cameras from RPn to RPn−1 are
precisely the (n+ 1)× n matrices of rank n . Note also that there may be
points in a projective space for which a particular projection is undefined.
This situation cannot occur for homographies, and for projective cameras
it only occurs for a single point.

Theorem 2.1. For any projective camera, there is precisely one point for which
the mapping is undefined.

Proof. Since T is surjective and dimW = 1+dimV , T must have a unique
one-dimensional null space. The point represented by this null space would
be mapped to 0 , which does not represent a projective point.

Definition 2.5. The point in Theorem 2.1 for which the projective camera
mapping is undefined is called the camera centre.

From the definition of a projective camera, we know that it projects the
whole space onto a hyperplane. This hyperplane is called the image plane.

2.1.3 The Direct Linear Transformation
In this section we will look at the important question of how to find a planar
homography which maps certain given points in RP2 to certain other ones,
in the cases when this is indeed possible. Suppose, therefore, that we want
to find a homography which maps xj = (xj, yj, zj) to x̂j = (x̂j, ŷj, ẑj) for
j = 1, . . . ,N . This means that we are looking for a non-singular 3 × 3
matrix H for which

x̂j ∼ Hxj, j = 1, . . . ,N. (2.2)
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Now, the proportionality constraints (2.2) are equivalent to saying that
all the cross products x̂j ×Hxj should be zero, which can be expressed for
each one of them as

x̂j ×Hxj = 0⇔
[
x̂j
]
×Hxj = 0⇔([

x̂j
]
×⊗ xTj

)
vec(HT) = 0,

(2.3)

or more explicitly  0 −ẑjxTj ŷj x
T
j

ẑjxTj 0 −x̂jxTj
−ŷj xTj x̂jxTj 0

h1
h2
h3

 = 0, (2.4)

where hT1 , hT2 , and hT3 are the rows of H . This is called a (redundant)Direct
Linear Transformation constraint (DLT constraint).

Since the DLT constraints for the correspondences xj ↔ x̂j should
hold simultaneously, one can form a joint DLT system

[
x̂1
]
×⊗ xT1
...[

x̂N
]
×⊗ xTN


h1
h2
h3

 = 0, (2.5)

which contains all the DLT constraints at once.
The trivial solution to this system, H = 0 , is clearly singular, so we

are looking for a non-zero H in the null space of the coefficient matrix.
Because of the cross product matrices, the rank of the coefficient matrix is
at most min(2N, 9) , which means that as long as N ≤ 4 there is certainly
an H which maps all the xj to the x̂j . Four points also determine the
homography uniquely unless three of them are collinear, in which case they
will produce linearly dependent DLT constraints. That four is the smallest
number of point correspondences needed to determine the homography
has been known since at least the late 19th century (Sturm, 1869).

If N > 4 it is in general not possible to find a homography which maps
all the points as desired, but one which approximately accomplishes this can
sometimes still be obtained as a least-squares solution to the DLT system.
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Since the concept of distance is not applicable in projective geometry, the
least-squares solution obtained in this way is not ‘geometrically optimal’ as
would be the case in Euclidean geometry. We postpone the discussion of
the so called geometric error to Chapter 8.

2.2 Geometric Transformations
Taking a step back to the more familiar Euclidean geometry for a moment,
we will in this section consider some frequently occurring geometric trans-
formations in R2 and R3 .

2.2.1 Parametrising Rotations
For planar rotations, there is almost only one parametrisation that is ever
used,1 and the discussion of this case can be kept conveniently short. A
rotation in R2 an angle ϕ is achieved by multiplication with the rotation
matrix

R(ϕ) =
[
cosϕ − sinϕ
sinϕ cosϕ

]
. (2.6)

It can be shown that all orthogonal matrices in R2×2 with determinant
equal to one can be written in this way for some angle ϕ .

Rotations in 3D are decidedly more complicated, and there are many
ways to parametrise them. One possibility is to perform a sequence of 2D
rotations around the three coordinate axes. It turns out that at most three
such rotations are necessary to describe any rotation, and the three angles
used in the process are the so called Tait-Bryan angles (α, β, γ) . We will
write a rotation matrix parametrised by Tait-Bryan angles as

R(α, β, γ) = Rx(α)Ry(β)Rz(γ), (2.7)

where the Rx , Ry , and Rz are rotations about the coordinate axis indicated

1Occasionally, planar rotations are parametrised as complex numbers of the form eiϕ .
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by the subscript. For instance, with this notation we have

Rz(γ) =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 . (2.8)

For Tait-Bryan angles we have the following result.

Lemma 2.1. Let R be a 3 × 3 rotation matrix. Then there exist triplets of
angles, (α, β, γ) , such that

R(α, β, γ) = Rx(α)Ry(β)Rz(γ). (2.9)

Furthermore, if the angles are restricted to [0, 2π) , there exist exactly two such
triplets.

Proof. The existence of such a triplet follows from a QR decomposition of
the rotation using Given’s rotations (Golub and Van Loan, 1996). Such a
process will produce Rx(α) , Ry(β) and Rz(γ) , which satisfy (2.9). Since

R(α, β, γ) = Rx(α)Ry(β)Rz(γ)

= Rx(α + π)Rx(π)Ry(β)Rz(π)Rz(γ + π)

= Rx(α + π)Ry(π − β)Rz(γ + π)

= R(α+ π, π − β, γ + π),

(2.10)

we see that there are at least two possible decompositions.
To show that there are no other possible decompositions, let us consider

two such decompositions of R ,

R(α, β, γ) = Rx(α)Ry(β)Rz(γ) = Rx(α̃)Ry(β̃)Rz(γ̃). (2.11)

Then
Rx(α− α̃︸ ︷︷ ︸

=α̂

)Ry(β) = Ry(β̃)Rz(γ̃ − γ︸ ︷︷ ︸
=γ̂

). (2.12)

Writing both sides out explicitly, we have

Rx(α̂)Ry(β) =

 cos β 0 sin β
sin α̂ sin β cos α̂ − sin α̂ cos β
− cos α̂ sin β sin α̂ cos α̂ cos β

 (2.13)
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and

Ry(β̃)Rz(γ̂) =

 cos β̃ cos γ̂ − cos β̃ sin γ̂ sin β̃
sin γ̂ cos γ̂ 0

− sin β̃ cos γ̂ sin β̃ sin γ̂ cos β̃

 . (2.14)

Next, we consider the two possibilities cos β 6= 0 and cos β = 0.
Suppose cos β 6= 0. Then it follows that sin α̂ = sin γ̂ = 0 and

cos α̂ = cos γ̂ = ±1. This gives two possible decompositions; one where
cos β = cos β̃ (when sin α̂ = 1), and one where cos β = − cos β̃ (when
sin α̂ = −1).

Now, suppose instead that cos β = 0. Then it follows that cos β̃ = 0,
sin β = sin β̃ = ±1, and cos α̂ = cos γ̂ . We again get two possible
decompositions; one where sin α̂ = sin γ̂ (when sin β = 1), and one
where sin α̂ = − sin γ̂ (when sin β = −1).

Another popular choice for parametrising 3D rotations is the so called
Rodrigues’ formula, which gives a very intuitive axis-angle representation of
a rotation matrix. This representation can be obtained geometrically, as we
will see shortly, or by grouping the terms in the exponential map (1.16).

Theorem 2.2 (Rodrigues’ formula). Let v be some fixed unit vector in R3 ,
and let R be the matrix whose action results in a rotation an angle ϕ about v .
Then

R = I+ sinϕ
[
v
]
× + (1− cosϕ)

[
v
]
×
2
. (2.15)

Proof. See Figure 2.2 for an illustration of the geometrical situation. If x
and v are parallel, then x is unchanged by the rotation, which immediately
agrees with the expression (2.15) for the rotation matrix. If x and v are
not parallel, recall the projection theorem, which allows us to write x as

x = x‖ + x⊥, (2.16)

where x‖ is parallel to v , and x⊥ is perpendicular to v . The parallel part,
x‖ = (vTx)v , will remain unchanged by the rotation. Note also that x⊥
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v

x

x‖

x⊥

v× x⊥

Rx⊥

Rx

ϕ

v× (v× x⊥)

Figure 2.2: When rotating x about v , one may consider the parts x‖ and x⊥
separately. The part x‖ is parallel to v and is unaffected by the rotation. The

part x⊥ is perpendicular to v , and turns in the plane orthogonal to v .

and v×x⊥ will have the same length and will make up an orthogonal basis
in the plane orthogonal to v . It follows that

Rx⊥ = cosϕ x⊥ + sinϕ (v× x⊥)
= − cosϕ (v× (v× x⊥)) + sinϕ (v× x⊥)
= − cosϕ (v× (v× x)) + sinϕ (v× x).

(2.17)

This means that
Rx = Rx‖ + Rx⊥

= (vTx)v− cosϕ (v× (v× x)) + sinϕ (v× x)
= x+ sinϕ (v× x) + (1− cosϕ)(v× (v× x)).

(2.18)

The matrix R is readily extracted from this description.

Finally, there is the option to parametrise rotations with the help of qua-
ternions. These also provide an intuitive axis-angle representation (Szeliski,
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2011; Terzakis et al., 2012), and are generally a good choice of representa-
tion for rotations. The main reason why we have not used this representa-
tion is that the planar motion model, which we will investigate in detail in
Chapter 4, turned out to be easier expressed using Tait-Bryan angles.

2.2.2 Transformation Groups

Suppose x is a vector in R2 or R3 . A rigid transformation consists of a
rotation and a translation, and is a transformation of the form

y = Rx+ t, (2.19)

where R is a rotation matrix.
It can easily be verified that the composition of two rigid transforma-

tions is also a rigid transformation and that every rigid transformation is
invertible (with the inverse also being a rigid transformation). The rigid
transformation with R = I and t = 0 leaves x unmodified, and there-
fore acts as an identity transformation. By showing associativity, one can
actually conclude that under composition the rigid transformations consti-
tute a (non-abelian) group (Hungerford, 1997).

An easy method for doing this, and which is useful in other situations
as well, is to make use of homogeneous coordinates. Indeed,

y = Rx+ t ⇔
[
y
1

]
=

[
R t
0 1

] [
x
1

]
, (2.20)

which means that the rigid transformation can be cast as a matrix multi-
plication, and these are known to be associative.

It also immediately follows that the rigid transformations are a spe-
cial class of homographies, and constitute a subgroup among the group
of homographies. In fact, there is a hierarchy of common transformations,
which is shown in Table 2.1. We will not go into the details of these trans-
formations here.
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Table 2.1: Hierarchy of transformations. Each of the transformation groups

contains, as subgroups, the transformations listed below it.

Transformation Matrix

Projective H, detH 6= 0

Affine
[
A t
0 1

]
, detA 6= 0

Similarity
[
sQ t
0 1

]
, QTQ = I, s 6= 0

Rigid
[
R t
0 1

]
, RTR = I, detR = 1

2.3 Physical Camera Modelling
In this section we shall briefly describe the classic pinhole perspective cam-
era model, which, as we will find, can be cast as a special case of the pro-
jective cameras introduced in Section 2.1.2. We will also discuss the Brown-
Conrady model for handling lens distortion. A much more detailed discus-
sion of these topics may be found in Hartley and Zisserman (2004) and
Szeliski (2011).

2.3.1 The Pinhole Perspective Camera
Intuition about the geometrical situation may be invoked from the ideal-
ised physical model of image formation shown in Figure 2.3. Introduce an
orthonormal coordinate system in which the focal point, or camera centre,
of the camera is at the origin, and in which the image sensor lies in the
plane z = −f . Suppose an object in front of the camera emits or reflects
light, which passes through the focal point and falls onto the sensor, cre-
ating an inverted (horizontally as well as vertically flipped) image of the
object. Mathematically restoring the image to a non-inverted one is equi-
valent to moving the image sensor to the front of the camera, at z = f
(which we shall call the image plane). The line which is perpendicular to
the image plane and passes through the camera centre (here the z-axis) is
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z

(X,Y,Z )

z = f

x

y
( f X/Z, f Y/Z, f )

z = −f

Figure 2.3: An idealised model of the image formation process. Light is emitted

from the object and passes through the focal point, giving rise to an inverted

image on the plane z = −f . Mathematically, it is more convenient to instead

consider the non-inverted virtual image in front of the camera, on the image

plane z = f .

termed the optical axis, and the image point where it intersects the image
plane is called the principal point.

By considering similar triangles, one finds that the scene point (X,Y,Z )
is projected onto the image plane at ( f X/Z, f Y/Z, f ) . Clearly, the third
coordinate of any point in the image plane will always be f , and we can
omit this third coordinate without running the risk of information loss.
Thus the camera induces a mapping from scene points (X,Y,Z ) to image
points, which we can write as

(X,Y,Z ) 7−→ ( f X/Z, f Y/Z ). (2.21)

By expressing both the scene points and the image points using homogen-
eous coordinates, introduced in Section 2.1.1, the camera mapping (2.21)
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may be written neatly in matrix form as

f Xf Y
Z

 =

 f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 . (2.22)

The 3 × 4 matrix which defines the mapping has a column rank of three,
which makes it qualify as a projective camera from RP3 to RP2 .

For the purpose of many algorithms which operate on images, it is
more natural to work with pixel coordinates instead of the abstract image
coordinates used in the mapping (2.21). Changing to pixel coordinates
entails scaling the x-coordinate with a factor σx and the y-coordinate with
a factor σy (if the pixels are square, these factors should be very close in
magnitude), and moving the origin to one of the corners (usually the upper
left corner). Introducing fx = σx f and fy = σy f , the mapping to pixels is
given by {

x = fx X/Z+ cx,
y = fyY/Z+ cy,

(2.23)

where (cx, cy) are the pixel coordinates of the principal point. The camera
mapping to pixel coordinates becomes2

xZyZ
Z

 =

fx 0 cx 0
0 fy cy 0
0 0 1 0



X
Y
Z
1

 = K
[
I 0

] 
X
Y
Z
1

 , (2.24)

where the camera calibration matrix

K =

fx 0 cx
0 fy cy
0 0 1

 (2.25)

2Sometimes it is also necessary to introduce a skew parameter, accounting for non-
rectangular pixels. We do not model this here.
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contains the intrinsic parameters of the camera (the principal point (cx, cy)
and the focal lengths fx and fy ), can be factored out on the left.

We often want to work with a global coordinate system which is not
necessarily aligned with the camera coordinate frame. Supposing the cam-
era has coordinates t = (tx, ty, tz) in this global coordinate frame and is
rotated by the rotation matrix R , the camera projection matrix is found to
be

P = KR
[
I −t

]
. (2.26)

2.3.2 Lens Distortion
A very small aperture, as in the idealised pinhole camera, gives very sharp
images, but a major drawback is that only a very small amount of light
can reach the sensor. For this reason, most cameras are built with larger
apertures to capture more light from the scene, and this light is brought
closer to focus using optical lenses.

Unfortunately, optical lenses introduce a number of new challenges.
For example, light takes different paths through the lenses depending on
its wavelength, and this gives rise to a prism-like effect called chromatic
aberration. Quality camera manufacturers put much effort into designing
their optics in such a way as to reduce the chromatic aberration, and as end
users of a good camera we are usually spared much of the suffering which
chromatic aberration causes.

Optical lenses also introduce geometric distortions, in particular radial
distortion, which cause straight lines in the scene to show up as curved
lines in the image, as illustrated in Figure 2.4. These distortions are left to
the end user to either accept or compensate for. One may use the Brown-
Conrady model (Brown, 1971) to describe these non-linearities analytically
and to determine a non-linear coordinate transformation which counters
the distortions.

For a camera with principal point at 0 , the Brown-Conrady model
states that a point which under pinhole projection would have ended up at
x will instead, because of lens distortions, end up at a point x̂ given by the

33



CHAPTER 2. CAMERA MODELLING

(a) Image with radial distortion. (b) Undistorted image.

Figure 2.4: Lens distortion can manifest itself in a number of ways, e.g. the

barrel distortion shown in (a), and makes the projection disobey the pinhole

camera model. If a distortion model is estimated, the image can be ‘undistorted’,

and the resulting undistorted image can then be used together with the pinhole

camera model.

expression

x̂ = γr(r)x︸ ︷︷ ︸
radial term

+ γt(r)
(
r2I+ 2xxT

) [τ2
τ1

]
︸ ︷︷ ︸

tangential term

, (2.27)

where r = ‖x‖ , τ1 and τ2 are some constants, and where γr(r) and γt(r)
are even functions with γr(0) = γt(0) = 1. For many common lenses
the most severe distortion is taken care of by the radial term, and a low
order polynomial as γr(r) often gives a sufficiently good model. Common
choices are thus γt(r) = 1 or γt(r) = 0 and

γr(r) = 1 + κ1r2 + κ2r4 + κ3r6. (2.28)

To determine the distortion parameters (κ1, κ2, κ3, τ1, τ2) one may
use several images of a known calibration object such as the chequerboard
shown in Figure 2.4. If one computes the image of the calibration object
using pure pinhole projection, one may then apply the coordinate trans-
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form (2.27) and use non-linear optimisation to tune the parameters until
the virtual images agree well with the observed ones.

The BSD licensed library OpenCV includes algorithms for estimating
the parameters as well as transforming images and coordinates according
to the Brown-Conrady model (Itseez, Inc., 2017). Similar functionality
also ships as an integrated toolbox of Matlab® since release 2013b (The
MathWorks, Inc., 2013). In addition to the distortion parameters, these
systems also estimate the principal point and the focal lengths fx and fy .

2.4 Establishing Point Correspondences
Many algorithms for multiple view geometry estimation assume that one
has access to a number of point correspondences, i.e. points in different
views which (are thought to) correspond to the same point in 3D. In ad-
dition to manual marking of point correspondences, which is a very time-
consuming and tiresome endeavour,3 there are algorithms which automate
the process of finding such correspondences. As can be seen in Figure 2.5,
which shows an example of such automatic association, one often obtains
many spurious matches in addition to the valid ones. These algorithms
typically address some (or all) of the three sub-problems:

1. Interest point detection. This problem concerns the detection of points
with sufficiently distinct local appearance. Edges and corners, as well
as points in highly textured areas, often provide useful interest points.

2. Descriptor extraction. For each of the interest points, it is necessary to
extract a descriptor which describes the local appearance. In addition
to being distinctive, it is often desired that the descriptor should be
robust to transformations such as scaling and rotation.

3. Matching the descriptors. This is the problem of matching descriptors
for interest points in different views. Solutions to this often rely on
introducing a metric on the set of descriptors, in addition to using

3Having spent approximately 70 hours during the winter 2003–2004 doing precisely
this, the author can back this claim with great confidence.
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Figure 2.5: Automatically detected and matched feature points in two images

of Wernigerode town hall. While many of the points are correctly associated, a

large number of the matches are incorrect. RANSAC can be used here to remove

most of the spurious matches.

some pruning technique to reduce the number of comparisons that
need to be performed.

One of the, to this date, most successful methods to establish point cor-
respondences is the Scale-Invariant Feature Transform (SIFT) proposed by
Lowe (2004), which addresses all three sub-problems above. The interest
point detection works by convolving resampled and smoothed versions of
the image with a difference of Gaußians and using the local extrema as can-
didates (removing the ones with low contrast and the ones on edges). The
descriptor consists of histograms over the direction of the image gradient,
computed from small sub-regions around the interest point.

Another popular method is to use Speeded-Up Robust Features (SURF),
introduced by Bay, Tuytelaars and Van Gool (2006) and which primar-
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ily deal with the first two sub-problems in the list above. SURF makes
heavy use of integral images and look-up tables, both for the interest point
detector and the descriptor extraction, and is claimed to be several times
faster than SIFT.

The last decade has seen the introduction of a myriad of different de-
tectors, descriptors, and matching algorithms (all with catchy acronyms,
of course). Recent studies, in which some of the most popular such al-
gorithms are compared, seem to agree that it is difficult to find a clear
winner among the available combinations (Gauglitz, Höllerer and Turk,
2011; Hartmann, Klüssendorf and Maehle, 2013), but there appears to
be a consensus that SIFT still performs quite favourably compared to its
competitors except perhaps in terms of computational cost. Implementa-
tions of many of theses algorithms are available in OpenCV (Itseez, Inc.,
2017) and in the Computer Vision System Toolbox™ for Matlab® (The
MathWorks, Inc., 2013).
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Chapter 3

Two-View Geometry Background

This chapter covers some background theory on two-view geometry. In
particular, we will consider the setup consisting of two projective cam-
eras P and P̂ from RP3 to RP2 . This means that P and P̂ both will
be matrices of size 3 × 4 and with rank three. The main motivation is of
course that we seek deeper understanding of the pinhole perspective camera
from Section 2.3.1, but we will first consider the more general projective
cameras introduced in Section 2.1.2.

3.1 Epipolar Geometry
We begin this section by introducing the following two important concepts:

Definition 3.1. The image in one view of the other camera centre is called an
epipole. A plane containing both camera centres is called an epipolar plane.

The line joining two different camera centres C and Ĉ is called the
baseline of the pair, and the epipole in each of the views is the image point
where the baseline intersects the image plane. Together with the two cam-
era centres, a scene point X outside the baseline defines an epipolar plane
containing these three points. This geometric situation, which is illustrated
in Figure 3.1, is called epipolar geometry and is central to understanding
two-view geometry.

Suppose X is imaged as x in the first view. The line through C and X
clearly lies in the epipolar plane, and intersects the first image plane at x .
The image of this line in the second view, which is given by the intersection
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C e

x

Ĉê

x̂

X

Figure 3.1: Illustration of epipolar geometry. Two cameras P and P̂ with

camera centres C and Ĉ observe a scene point X . The epipolar plane contains

X and the two camera centres.

of the epipolar plane and the second image plane, is the so called epipolar
line corresponding to x . This line consists of all ŷ for which l̂Tŷ = 0, and
in particular it contains x̂ ∼ P̂X . Correspondingly, an image point x̂ in
the second view gives rise to an epipolar line lTy = 0 in the first view.

3.1.1 The Fundamental Matrix
Let us now investigate the algebraic nature of the mapping from the image
point x to its corresponding epipolar line l̂ in the other view. We know
that the epipolar line l̂ is the image in the second view of the scene line
through C and X . This line clearly contains C and P+x . Projecting these
two points into the second view gives{

l̂TP̂C = 0

l̂TP̂P+x = 0
⇔ l̂ ∼ ê× P̂P+x =

[
ê
]
×P̂P

+x. (3.1)

The (unique up to scale) matrix F =
[
ê
]
×P̂P

+ is called the fundamental
matrix associated with the ordered pair {P, P̂} , and was introduced simul-
taneously and independently by Faugeras (1992) and Hartley (1992). Be-
cause of the cross product matrix involved, it follows that rank F = 2.
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Consequently, F is not a homography, even though it does represent a
linear transformation of homogeneous coordinates.

For any point ŷ on the epipolar line, we have 0 = l̂Tŷ = ŷTFx . In
particular, this holds for ŷ = x̂ , resulting in the epipolar constraint

x̂TFx = 0 (3.2)

that corresponding points x↔ x̂ must satisfy. If we now consider the epi-
polar line in the first view, corresponding to x̂ , it follows from the epipolar
constraint that l ∼ FTx̂ . On the other hand, a similar derivation as above
results in l ∼

[
e
]
×PP̂

+ . Together, these facts show the following result.

Theorem 3.1. If F is the fundamental matrix associated with the ordered pair
{P, P̂} , then FT is the fundamental matrix associated with {P̂,P} . Further-
more, e spans the right null space and ê spans the left null space of F .

From the discussion above we know that two camera matrices unam-
biguously determine a fundamental matrix. The fundamental matrix, how-
ever does not unambiguously determine the two camera matrices. In fact,
the fundamental matrix is invariant to projective transformations of RP3 ,
so that {P, P̂} and {PW, P̂W } define the same fundamental matrix for
any invertible 4× 4 matrix W (Hartley and Zisserman, 2004).

For a general 3×4 matrix P of rank three, an SVD will be of the form

P = U

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0

VT = U

σ1 0 0
0 σ2 0
0 0 σ3

1 0 0 0
0 1 0 0
0 0 1 0

VT.

(3.3)
Thus, we have [

I 0
]
= diag

( 1
σ1
,

1
σ2
,

1
σ3

)
UTPV, (3.4)

which shows that it is always possible to bring one of the cameras to the
form

[
I 0

]
by projective transformations of the scene and one of the im-

age planes. For this reason, one may without loss of generality always as-
sume that the two camera matrices are of the form

P =
[
I 0

]
and P̂ =

[
A b

]
. (3.5)
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If we restrict ourselves to cameras of the form (3.5), then a valid choice
can be computed from the fundamental matrix as A =

[
ê
]
×F and b = ê

(Luong and Viéville, 1996). The camera matrices can then be used together
with the point correspondences x ↔ x̂ to triangulate the location of the
scene points Xj . That the scene points and camera centres can be recovered
uniquely up to a projective transformation is the essence of the so called
projective reconstruction theorem (Hartley and Zisserman, 2004).

3.1.2 Computing the Fundamental Matrix
The epipolar constraint (3.2) is linear in the elements of F . Lemma 1.1
allows us to express the epipolar constraint as

(x⊗ x̂)T vec F = 0. (3.6)

Analogously to the way we formed the DLT system (2.5) in Section 2.1.3,
we can then stack a number of epipolar constraints into a system(x1 ⊗ x̂1)

T

...
(xN ⊗ x̂N)T

 vec F = 0. (3.7)

If at least eight point correspondences are used, and unless the points are in
certain degenerate configurations, the rank of the coefficient matrix in (3.7)
will be at least eight.

The eight-point algorithm works by forming (3.7) for eight point cor-
respondences, followed by computing a vector f that spans the null space.
Typically, the matrix vec−1

3×3 f has rank three and therefore is not a valid
fundamental matrix, but this is remedied by using Theorem 1.3 to obtain
an approximation with the correct rank. The eight-point algorithm com-
putes precisely one fundamental matrix, it is easy to implement, and if the
inlier ratio is suitably large it performs exceptionally well if appropriate care
is taken to numerical preconditioning (Hartley, 1997).

While the eight-point algorithm works well in many cases, it uses more
point correspondences than necessary, and in the presence of a large propor-
tion of outliers this increases the number of necessary RANSAC iterations
considerably (see Section 1.2.2).
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Input: Point correspondences xj ↔ x̂j for j = 1, . . . , 7.
Output: A set F containing up to three possible fundamental matrices
1: Create the matrix

M =

(x1 ⊗ x̂1)
T

...
(x7 ⊗ x̂7)

T


2: Find non-parallel f1 and f2 in the null space of M (e.g. using SVD)
3: F1 ← vec−1

3×3 f1
4: F2 ← vec−1

3×3 f2
5: F ← 
6: if det F2 = 0 then
7: F ← {F2}
8: for each s ∈ R that solves det(F1 + sF2) = 0 do
9: F ← F ∪ {F1 + sF2}

Algorithm 3.1: The seven-point algorithm computes a fundamental matrix com-

patible with the epipolar geometry from seven point correspondences.

By enforcing the rank-2 constraint at an earlier stage than is done in the
eight-point algorithm, it is possible to use only seven point correspondences
to determine the fundamental matrix. If only seven correspondences are
used to form the system (3.7), there will in general be a two-dimensional
null space spanned by f1 and f2 . In this null space there should be (up to
scale) at least one element representing a true fundamental matrix. If we
form F1 = vec−1

3×3 f1 and F2 = vec−1
3×3 f2 , then all possible fundamental

matrices are either of the form F = F2 or the form F = F1 + sF2 . The
former case is easily checked, and in the latter case all possibilities are found
by solving det(F1 + sF2) = 0. This procedure is called the seven-point
algorithm (Hartley, 1994), and is shown in Algorithm 3.1.

Interestingly, Sturm (1869) studied and solved a problem concerning
the determination of projective conic sections from seven point correspond-
ences, which later turned out to be equivalent to computing the funda-
mental matrix (Sturm, 2011).
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The seven-point algorithm is a good illustration of a very powerful
technique, namely that of using non-linear constraints to find the ‘right’
element(s) in a null space computed from a number of linear constraints.
This technique has successfully been used to solve numerous problems in
computer vision, e.g. simultaneous estimation of a homography and ra-
dial distortion (Kúkelová et al., 2015), optimal three-view triangulation
(Stewénius, Schaffalitzky and Nistér, 2005), and various methods for es-
timation of the essential matrix (see Section 3.1.3), to name only a few.
We will use this technique again in Chapter 7 to enforce the planar motion
model from Chapter 4 in a homography estimation method.

3.1.3 The Essential Matrix
Epipolar geometry in the calibrated case, i.e. for the pinhole perspective
camera model, has been studied for a much longer time than for the uncal-
ibrated case of general projective cameras. In the calibrated case, the funda-
mental matrix is instead called the essential matrix, which was introduced
by Longuet-Higgins (1981). The fact that five point correspondences de-
termine the relative pose in the calibrated case has been known for at least
a hundred years (Kruppa, 1913), but despite this, it is only in recent years
that useful methods to compute it have been presented. From its inception,
the so called five-point algorithm has become a mainstream method for do-
ing two-view reconstruction of general scenes in the calibrated case (Li and
Hartley, 2006; Nistér, 2004; Stewénius, Engels and Nistér, 2006).

3.2 Planes and Homographies
The discussion thus far in this chapter has not made any specific assump-
tions on the scene points, except that they should not lie on the baseline.
One type of structure that occurs frequently in man-made environments is
that of a plane, and a frequent assumption is thus that some (or all) of the
scene points should lie on a plane. For this specific situation we have the
following result.
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Theorem 3.2. Assume P =
[
I 0

]
and P̂ =

[
A b

]
are projective cameras,

and let π = (ν, d ) be a plane which does not contain any of the camera
centres. If X is a point on the plane and projects into the two views as x ∼ PX
and x̂ ∼ P̂X , then

x̂ ∼
(
A− bνT/d

)
x, (3.8)

and the matrix H = A− bνT/d is a homography.

Proof. Since π does not contain the camera centres, d cannot be zero, and
thus we may without loss of generality assume that d = 1. From the image
in the first view, x ∼ PX , we see that X ∼ (x, ξ) for some ξ . But X lies on
the plane π , which gives ξ = −νTx . The projection of X into the second
view will be

x̂ ∼ P̂X ∼ Ax+ bξ = Ax− bνTx =
(
A− bνT )x. (3.9)

The only thing that remains is to show that A− bνT is a homography,
i.e. that it is invertible. The rank of A can be either two or three. We
consider these two cases separately.

If rankA = 3, the second camera centre will be Ĉ = (−A−1b, 1) , and
since this does not lie on π it follows that

0 6= πTĈ = 1− νTA−1b, (3.10)

and then the Sherman-Morrison-Woodbury formula (Theorem 1.4) guar-
antees that A− bνT is invertible.

If rankA = 2, then b cannot be in the range of A , which means that

Ax 6= λb (3.11)

for all x and non-zero scalars λ . We will show that the equation(
A− bνT )x = 0 (3.12)

only has the trivial solution x = 0 . Clearly, there is no solution x for which
νTx 6= 0, as that would mean that Ax = (νTx)b . But νTx = 0 is also
impossible, as x then would have to span the one-dimensional null space
of A , and (x, 0) would in that case be the camera centre of P̂ .
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Theorem 3.2 shows that any scene plane π induces a homography map-
ping between two views, as long as the camera centres do not lie on π . This
establishes a very important link between scene planes and homographies,
and together with the next result, it gives insight into an important degen-
eracy for the problem of computing the fundamental matrix from point
correspondences.

Theorem 3.3. If all point correspondences xj ↔ x̂j are related by a homo-
graphy, there are infinitely many possible fundamental matrices satisfying their
epipolar constraints.

Proof. First, we note that for any v ∈ R3 it holds that

xTj (v× xj) = 0⇔ xTj
[
v
]
×xj = 0⇔ (xj ⊗ xj)T vec

[
v
]
× = 0, (3.13)

and therefore

rank

(x1 ⊗ x1)
T

...
(xN ⊗ xN)T

 ≤ 6. (3.14)

Now, since all the correspondences are related by a homography, i.e.
x̂j ∼ Hxj for all j , the epipolar constraints yield

x̂Tj Fxj = 0⇔ xTj H
TFxj = 0⇔ (xj ⊗ xj)T vec(HTF ) = 0. (3.15)

It follows that there is a three-dimensional family of fundamental matrices
F which are compatible with all the epipolar constraints.

This result is crucial, because it means that we cannot estimate the fun-
damental matrix from point correspondences if the scene is planar. For
the applications described in this thesis, where the scene is expected to be
planar, it means that methods based on the fundamental matrix or the es-
sential matrix are bound to fail, and that a homography based approach is
more promising.

The case that HTF is skew-symmetric, which suggests itself from the
proof of Theorem 3.3, is particularly important. If H is a homography and
F is a fundamental matrix, and if

HTF+ FTH = 0, (3.16)
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then H and F are said to be compatible. A homography is compatible with
a fundamental matrix if and only if there exists a scene plane which induces
H in the epipolar geometry defined by F (Hartley and Zisserman, 2004;
Luong and Viéville, 1996).
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Chapter 4

SLAM and Planar Motion

This first part of this chapter introduces the so called SLAM problem for
robot navigation, and gives a brief overview of some of the existing ap-
proaches. In the sections which follow this literature review, we look at the
specific case of planar robot motion, and derive a camera motion model and
homography parametrisation that will be used in the subsequent chapters.

4.1 Simultaneous Localisation and Mapping
One of the long-standing efforts in robotics research has been the devel-
opment of algorithms which enable robots, such as the Fraunhofer IPA
rob@work platform (Fraunhofer IPA, 2012) in Figure 4.1, to navigate and
move autonomously in an unknown environment. The range of applic-
ations of such algorithms is extensive and includes e.g. flexible assembly
lines, robotic vacuum cleaners, logistics applications, search and rescue op-
erations, planetary exploration, and many, many more.

A common framework that has proven successful for for this class of
algorithms is Simultaneous Localisation andMapping (SLAM), in which the
robot makes use of various sensors (e.g. laser range finders, cameras, wheel
encoders, sonar, …) to map the surrounding environment and at the same
time position itself within this map (Durrant-Whyte and Bailey, 2006a,b).
The type of map that is created in this process is highly dependent on what
sensors are being used and what the intended application is, and can range
from sparse clouds of feature points to dense and detailed textured 3D
models.
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Figure 4.1: The Fraunhofer IPA rob@work (base platform) is an example of a

mobile robot whose autonomy can be enhanced by SLAM algorithms. Some of

the experimental data used in this thesis were obtained from a camera that was

mounted onto this robot. Image courtesy of Björn Olofsson and Martin Karlsson.

4.1.1 A Brief History of Visual SLAM
Much of the early work on SLAM focused on laser range finders and wheel
encoders, and how to employ statistical estimation and filtering techniques
to determine ego-motion from such data. Only in the last two or three
decades have cameras become a realistic choice of sensor to use for robotic
navigation. There are three major reasons for this. First, digital cameras
have become available, and they have gone through a revolution in terms
of both reduced price and improved quality. Secondly, computing power
has continued to double approximately every second year, as predicted by
the famous Moore’s law. Thirdly, during this time, there were many mile-
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stone advances in computer vision, which provided practical methods for
inferring geometry from images.

The probabilistic viewpoint from the early approaches has proven to be
useful for camera based SLAM as well, and has stood the test of time from
its early adoption by Durrant-Whyte (1987) and Harris and Pike (1988)
through to more recent methods such as the MonoSLAM system by Dav-
ison et al. (2007) and the ORB-SLAM system by Mur-Artal, Montiel and
Tardós (2015). Many methods use (extended) Kalman filters and particle
filters to model the uncertainty, to combine data from different sensors, and
in some cases to incorporate a kinematic motion model (Berntorp, 2014;
Gustafsson, 2012).

Durrant-Whyte (1987) used observations of geometric features from a
calibrated stereo rig, and the uncertainty of each observation was modelled
as a multivariate Gaußian which was updated using a Kalman filter. A
similar Kalman filter based method was presented for the monocular case
by Harris and Pike (1988), and was evaluated on a sequence of 16 images.
The state update to the Kalman filter was in this case obtained using non-
linear minimisation of the Mahalanobis distances between the observed
and the reprojected points, thus reducing the relative influence of features
with large spatial uncertainty.

Davison (2003) combined Kalman filter based feature covariance mod-
elling with a kinematic model to create a real-time camera-based SLAM
system. The system requires a known calibration object to initialise, but is
after this initialisation able to cope well with unconstrained 3D camera mo-
tion. The system uses features consisting of small image patches together
with their spatial uncertainty as determined by the Kalman filter. Mono-
SLAM is an extension of this work, and adds estimated surface normals to
the feature patches, along with other small improvements (Davison et al.,
2007).

4.1.2 Countering the Accumulation of Error
The accumulation of error (or propagation of uncertainty, or other similar
terms) is an important phenomenon which inevitably occurs when the po-
sitions of new uncertain observations are related to previous such uncertain
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positions. In the context of SLAM this means that the uncertainty of the
current position of the robot typically grows over time and can become ar-
bitrarily large, if one starts from a known initial position. Equivalently, if
one instead uses the current position as reference point, it means that the
quality of older observations decays as time progresses.

For the purpose of e.g. collision avoidance, it is obvious that having an
accurate estimate of the robot position relative to the current observations
is to be preferred to having a very inaccurate position estimate relative to
some old observations. Because of this, too old and uncertain landmarks
are in many cases deemed worthless, and they are thus pruned from the
map. This is especially true for so called odometry methods, which are based
on ‘dead reckoning’, and use only fairly recent observations.

There are a number of different strategies available to mitigate (or in
some cases eliminate) this unlimited error accumulation. One such idea is
to try to reduce the uncertainty of the older landmarks by detecting them
again, if the robot returns to that particular area of the map. This is the so
called loop closure problem, where the goal is to join spatially close but tem-
porally distant areas of the map. Being able to detect loops in the trajectory
typically allows a drastic reduction in the accumulated positioning error, as
demonstrated by e.g. Newman and Ho (2005) and Jones and Soatto (2011).
However, if the loops are allowed to be of arbitrary length, the storage of,
and comparison against, an increasingly large map becomes inhibiting both
in terms of storage and computation time.

Another strategy that can sometimes be used to limit the uncertainty
is to supplement the observations with measurements made relative to a
global fixed point. Such measurements can be practically realised in a num-
ber of ways, e.g. by using a global navigation satellite system such as GPS
or Galileo, but a common problem with such beacon based solutions is the
requirement of supporting infrastructure around the robot. In the particu-
lar case of global navigation satellite systems, it should be noted that they
do not work well indoors or on other planets, and they are not a panacea
for autonomous navigation systems.

Still another scheme for countering the accumulation of error becomes
available when the robot motion is known to be constrained in some way.
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z = z0

Camera
FOV

Figure 4.2: As this autonomous car drives around on reasonably flat roads, the

camera (and other potential sensors not seen in the above image) will remain at

a constant height above the ground plane and will thus undergo planar motion.

We shall discuss a frequently occurring constrained motion, namely planar
motion, in the next section.

4.2 Planar Motion
In mobile robotics applications the cameras and other sensors are frequently
mounted rigidly onto a mobile platform, which means that they will remain
at a constant height above the ground. The ground can typically be assumed
to be at least locally planar, and the motion of the robot is then constrained
to a plane parallel to the ground (or the floor, in indoor scenarios). By
considering methods which explicitly assume planar motion, the vertical
positioning error of the attached sensors can automatically be bounded over
arbitrarily long motion sequences.

An early method which explicitly used the planar motion assumption
was presented by Ortín and Montiel (2001), who considered a forward-
oriented camera mounted onto a robot. In their parametrisation, the cam-
era was assumed to be mounted with the y-axis vertical and the motion was
assumed to occur in the xz-plane. By assuming unit length translations of
the form t = (sinα, 0, cosα) , the essential matrix could be assumed to be
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of the simple form

E =

 0 − cosα 0
cos(ϕ− α) 0 sin(ϕ− α)

0 sinα 0

 . (4.1)

This parametrisation allowed the two motion parameters α and ϕ to be
determined using three point correspondences and a linear method, or us-
ing two correspondences and a non-linear method. Since the translations
were assumed to be of unit length, the method used a varying global scale,
and was thus susceptible to scale drift.

Essentially the same motion parametrisation, together with an addi-
tional nonholonomic constraint based on the assumption that the local
motion is a circular motion, was used by Scaramuzza (2011a,b). The ad-
ditional nonholonomic constraint enabled local motion estimation to be
performed using only one point correspondence, which allowed for an im-
pressively efficient outlier removal scheme based on histogram voting. The
proposed method demonstrated good results on relatively long motion se-
quences captured from a camera mounted onto a car. Though the nonholo-
nomic constraint might be valid for the autonomous car in Figure 4.2, it is
not valid for the robot in Figure 4.1 since it has omnidirectional wheels.

In contrast to the two methods mentioned above, Liang and Pears
(2002) considered a camera viewing the floor, which allowed the motion
to be parametrised by an inter-image homography essentially identical to
the one that will be described in Section 4.4. A useful contribution of
this paper is the realisation that the eigenvalues of the homography H are
{s, se iϕ, se−iϕ} , where ϕ is the rotation angle around the vertical axis and
s 6= 0 is an arbitrary scalar, and they additionally showed how the sign of
the angle could be determined.

The approach proposed by Hajjdiab and Laganière (2004) also uses im-
ages of the floor to compute the robot motion. The idea in this method
is to first transform the image to an overhead view, i.e. a synthetic view
as seen straight from above (similar to Figure 4.4), and then use norm-
alised cross-correlation to determine the translation t and rotation angle
ϕ around the vertical axis. The transformation to the overhead view was
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achieved by undoing a one-angle camera tilt, which was estimated initially
and subsequently refined for the following images.

Another planar slam system using dense matching, and which is demon-
strated to perform well under many different conditions, is described in Zi-
enkiewicz and Davison (2015). The camera pose and motion are determ-
ined through a non-linear optimisation of the intensity differences, using
the Huber cost function (Huber, 1964) to limit the influence of out-of-
plane objects. Since the full camera pose is computed during the registra-
tion of the images, no effort has to be made in order to mount the camera
in a particular way. The authors also provide a highly efficient GPU-based
implementation which allows the system to run in real-time with a high
frame rate.

The method described in Wadenbäck and Heyden (2013, 2014a), and
which will be discussed in detail in Chapter 6, uses an iterative technique to
recover both the full camera orientation and the translation vector from a
homography induced by the floor plane. The idea in Hajjdiab and Lagan-
ière (2004) to consider the overhead view is applied in Wadenbäck et al.
(2017), but here feature points are used instead of the normalised cross cor-
relation, and the camera tilt is determined in the same way as in the earlier
work by Wadenbäck and Heyden (2013, 2014a).

4.3 Camera Parametrisation
After this short review of planar SLAM methods, let us now turn to the
problem of parametrising the camera motion under the planar motion as-
sumptions above. Out of convenience, our choice of coordinate system will
be such that the camera motion occurs in the plane z = 0 and the ground
plane has the equation z = 1, as illustrated in Figure 4.3. This choice
is not a restriction of the general case, since the global scale cannot be re-
covered from images alone. Also, we note that the transformation between
the camera coordinate frame and the coordinate system of the actual robot
may be found by solving the hand-eye calibration problem (Horaud and Dor-
naika, 1995; Tsai and Lenz, 1989), which, however important, is outside
the scope of our considerations here.
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z = 1
Floor Plane

Plane Normal Optical Axis

z = 0

Camera Centre

Figure 4.3: The camera moves freely in the plane z = 0 , and can rotate about

the normal of the plane, but the angle to the plane normal (tilt) is held constant.

We will assume that the camera has been calibrated in terms of lens dis-
tortion (see Section 2.3.2), so that the simple perspective projection model
in Section 2.3.1 holds. Additionally, the internal camera parameters are
assumed to be known, which allows us to normalise all image coordinates
by applying K−1 to them.

We know from Section 2.3.1 that the camera position and orientation
can be expressed in terms of a rotation matrix R and a translation vector
t = (tx, ty, tz) . We choose to parametrise the rotation matrix using Tait-
Bryan angles (ψ, θ, ϕ) , as explained in Section 2.2. With the assumptions
of planar motion and a rigidly mounted camera imposed, the two angles
ψ and θ will be constant, and tz = 0. The camera projection matrix
associated with an image taken at a position t = (tx, ty, 0) and rotated an
angle ϕ about the floor normal n = (0, 0, 1) will be

P = R(ψ, θ, ϕ)
[
I −t

]
= RψθRz(ϕ)

[
I −t

]
, (4.2)

where Rψθ = R(ψ, θ, 0) encodes the camera tilt and Rz(ϕ) is the rotation
about the ground plane normal (i.e. the z-axis).

In summary, a calibrated camera obeying the planar motion model can
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(a) Original image. (b) Rectified image.

Figure 4.4: A typical image taken by a camera under the conditions described in

this thesis is shown in (a). A rectified version, as if seen straight from above, can

be seen in (b). Measurements such as distances, angles, and areas are rendered

useless in (a) because of the perspective effects. In (b), these are all valid con-

cepts.

be parametrised using a vector

η = (ψ, θ, ϕ, tx, ty). (4.3)

The presence of a tilt Rψθ means that the image does not correspond to
a rectangular area of the floor, but an irregular quadrilateral, as illustrated
in Figure 4.4.

4.4 The Inter-Image Homography
We now derive an expression for the inter-image homography between two
images taken at different locations in the geometrical situation described in
Section 4.3. Without loss of generality, we assume that one of the cameras
has its centre at the origin, and we thus write the camera projection matrices
for the two images as {

P = Rψθ
[
I 0

]
,

P̂ = RψθRz(ϕ)
[
I −t

]
.

(4.4)
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The inter-image homography between P and P̂ induced by the ground
plane z = 1 can be obtained in a number of different ways, e.g. by adapting
Theorem 3.2 (or, equivalently, Corollary 5.1). Here, we shall derive it by
simply projecting a point X = (x, y, 1, 1) in the floor plane into the two
images, and in this way obtain the homography matrix.

The projection of X = (x, y, 1, 1) into the first image will be

x ∼ PX = Rψθ

xy
1

 , (4.5)

and the projection into the second one will be

x̂ ∼ P̂X = RψθRz(ϕ)

1 0 −tx
0 1 −ty
0 0 1

xy
1

 . (4.6)

From (4.5) and (4.6) it follows that the homography between the two im-
ages can be written as

H = sRψθRz(ϕ)TRT
ψθ, (4.7)

for any s 6= 0 and with

T =

1 0 −tx
0 1 −ty
0 0 1

 = I− tnT. (4.8)

By ensuring s = 1 we have a unique representation (this may be achieved
since detH = s3 ). The parametrisation (4.7) gives the homography matrix
in terms of physical parameters that are easily interpreted, and it is this
parametrisation that will be used in the subsequent chapters.

Without surprise, we note that the homography (4.7) has a structure
which allows it to be decomposed as the transformation RT

ψθ to the over-
head view followed by a 2D rigid body motion

Rz(ϕ)T =

cosϕ − sinϕ t̂x
sinϕ cosϕ t̂y

0 0 1

 (4.9)
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t

ϕ

Figure 4.5: Illustration of the two-dimensional rigid body motion in the over-

head view. The motion of the platform is described by a displacement t and a

rotation an angle ϕ around the plane normal.

in the plane z = 0, and finally a transformation Rψθ back from the over-
head view. By using the simpler one-angle tilt Rx(ψ) instead of Rψθ we
would obtain the same decomposition into the overhead view transform-
ation and 2D motion as Hajjdiab and Laganière (2004). Figure 4.5 illus-
trates the rigid motion in the overhead view.
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Chapter 5

Homography Decomposition

This chapter is concerned with the recovery of the motion parameters for
a homography representing planar camera motion. We start by discussing
the general homography decomposition problem and reviewing the major
methods for solving it. In Section 5.2 we derive in detail one such method
which was introduced in Wadenbäck, Åström and Heyden (2016).

5.1 The Homography Decomposition Problem
We saw in Theorem 3.2 that a plane visible in the views of two projective
cameras P =

[
I 0

]
and P̂ =

[
A b

]
induces a homography between

the two views, and that this homography always can be parametrised as
H = A − bνT , where π = (ν, 1) represents the plane. If we only know
the homography H , it would be very useful if the two camera poses and
the inducing plane could somehow be extracted from the homography. If
we are happy with any such configuration that is compatible with H , then
we are in for good news, as almost any choice of b and ν will make the
matrix A = H+ bνT invertible, and thus give a valid decomposition of H
(it can readily be verified that it satisfies (3.16) for F =

[
b
]
×A , and hence

is compatible with the resulting epipolar geometry). If, on the other hand,
we had hoped to retrieve ‘the actual configuration’, we must sadly accept
the fact that this cannot be accomplished without additional information
or requirements. This negative result is one of the concluding remarks in
Zhang and Hanson (1996).

In the particular case of two calibrated views, i.e. A is a rotation matrix,
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it turns out that there are only a finite number of possible directions for b
and ν (there is of course still a scaling ambiguity, which allows us to scale
b a factor λ and ν a factor λ−1 ). An adaptation of Theorem 3.2 to this
calibrated case gives the following.

Corollary 5.1. (Homography Decomposition) For two calibrated views with
camera matrices P =

[
I 0

]
and P̂ = R

[
I −t

]
the scene plane π = (n, d )

induces a homography of the form

H = R+ RtnT/d (5.1)

between the two views. The problem of recovering the possible configurations is
known as the homography decomposition problem.

The homography decomposition problem was first solved by Faugeras
and Lustman (1988), and they proved that the decomposition problem
has eight different solutions except in some special cases (e.g. if H is a
pure rotation then at least one of b and ν are zero, and the other one is
entirely arbitrary). Their proof of the number of solutions is constructive
and exhaustively considers all cases, and thus it also provides a practical
method to find the solutions (when possible).

The decomposition method proposed by Faugeras and Lustman (1988)
uses a singular value decomposition H = UΣVT to transform the problem
to an equivalent problem with a diagonal homography matrix Σ . This
transformed problem can be solved analytically, and then a transformation
of the obtained solutions back to the original problem using U and V gives
the sought configurations.

Out of the eight mathematical solutions, only two are in fact physic-
ally possible, and it is shown in the paper that the impossible ones can
be discarded if one has access to a number of point correspondences that
are mapped by the homography between the two views. This is done by
requiring e.g. that all the viewed scene points are in front of both cameras.

Another similar decomposition approach, based on the consideration
of a spectral decomposition HTH = VΛVT , was proposed by Zhang and
Hanson (1996). Their method gives a slightly simpler handling of the spe-
cial cases compared to Faugeras and Lustman (1988), and is also claimed
to be computationally cheaper.
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5.2. SVD-BASED RECOVERY METHOD

A more recent method, which gives the decomposition as explicit for-
mulae in terms of the entries of the homography matrix, was proposed in
Malis and Vargas (2007). In addition to reviewing the two earlier meth-
ods and providing a slightly clearer exposition of the method in Zhang and
Hanson (1996), this report shows that the constraint

d+ nTt > 0 (5.2)

can be used to eliminate four of the six impossible solutions. This constraint
is just as valid irrespective of which of the decomposition methods is used.

Unaware, at the time, of the report by Malis and Vargas (2007) and
the constraint (5.2), Wadenbäck, Åström and Heyden (2016) included as
an auxiliary result, and an extension of the findings in Wadenbäck and
Heyden (2014b), another SVD-based decomposition method which only
results in four decompositions. While in hindsight this method does not
offer any significant improvement over a combination of e.g. the method
by Zhang and Hanson (1996) and the constraint (5.2), it expresses the de-
composition more accessibly in terms of the generating motion parameters
η = (ψ, θ, ϕ, tx, ty) from Section 4.3. We describe this method in detail
in the next section.

5.2 SVD-Based Recovery Method
We next turn to the problem of recovering the generating parameter vector
η from a given homography of the form (4.7), i.e.

H = sRψθRz(ϕ)TRT
ψθ, (5.3)

and normalised so that detH = 1.
Denote τ = ‖t ‖ =

√
tx2 + ty2 . With tx = τ cosα and ty = τ sinα ,

the upper triangular matrix T in (5.3) may be written1 0 −τ cosα
0 1 −τ sinα
0 0 1

 = Rz(α)

1 0 −τ
0 1 0
0 0 1


︸ ︷︷ ︸

T̂

RT
z (α). (5.4)
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Since Rψθ and Rz(ϕ) are orthogonal matrices, H , T̂ , and T must all have
the same singular values, and they are found to satisfy

σ2
1 = 1 +

τ 2

2
+
τ

2
√

4 + τ 2,

σ2
2 = 1,

σ2
3 = 1 +

τ 2

2
− τ

2
√

4 + τ 2.

(5.5)

Solving for τ in terms of σ1 gives (σ2
1 − 1)2 = [. . .] = τ 2σ2

1 , so that

τ 2 =
(σ2

1 − 1)2

σ2
1

=
(
σ1 −

1
σ1

)2
, (5.6)

and since σ1σ3 = 1 this gives

τ = σ1 − σ3. (5.7)

Essentially the same idea was used in Wadenbäck and Heyden (2014b) to
recover τ , but expressed in a slightly more complicated way in terms of the
condition number. A generalisation of the result (5.7) may be found in the
note by Wadenbäck (2015).

Since eigenvalues are invariant under similarity transformations, i.e.
transformations A = S−1BS , the eigenvalues of H are the same as those of
Rz(ϕ)T , and they will be 1 and e±iϕ . This result is due to Liang and Pears
(2002), as mentioned earlier in Section 4.2. This allows us to compute (up
to a sign ambiguity) the planar rotation as

ϕ = ± arccos
( trH− 1

2

)
. (5.8)

Now let Σ = diag(σ1, σ2, σ3) and suppose T̂ = ÛΣV̂T is an SVD of T̂
with det Û = det V̂ = 1, then

T = Rz(α)ÛΣV̂TRz
T(α) (5.9)
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5.2. SVD-BASED RECOVERY METHOD

Table 5.1: The four ambiguity cases for the parameters. Out of these four cases,

in fact only Case A and Case D are physically possible.

Case A Case B Case C Case D
ψ ψ + π ψ + π ψ
θ π − θ −θ θ − π
ϕ ϕ −ϕ −ϕ
tx −tx −tx tx
ty −ty ty −ty

will be an SVD of T . Let H = UΣVT be an SVD of H , then we must
have {

UD1 = RψθRz(ϕ)Rz(α)Û,

VD2 = RψθRz(α)V̂,
(5.10)

where D1 and D2 are diagonal matrices with ±1 on their diagonal entries
(column-flipping matrices). Since Û and V̂ were chosen with positive de-
terminant, it follows that D1 and D2 have an even number of negative
diagonal entries. This gives four possibilities for D2 (one with all entries
equal to one, and three where two entries are minus one).

Using the second equation in (5.10) together with the fact that

Rψθ =

 cos θ 0 sin θ
sinψ sin θ cosψ − sinψ cos θ
− cosψ sin θ sinψ cosψ cos θ

 , (5.11)

we see that element (1, 2) in the matrix VD2V̂TRz
T(α) should be zero. For

each of the four choices of D2 , this gives two solutions for α . We use
these solutions in the first condition of (5.10) to determine which of the
four choices of D1 work. It is now possible to use (5.11) to recover ψ and
θ from VD2V̂TRz

T(α) .
The parameters η = (ψ, θ, ϕ, tx, ty) are not uniquely determined by

the homography H . The four possibilities are shown in Table 5.1. Out of
these, only two are in fact physically possible.

The numerical accuracy of this decomposition method was evaluated in
Wadenbäck, Åström and Heyden (2016), and it was found that the generat-
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ing parameters could be recovered up to full floating point precision, thus
making it comparable with the other homography decomposition meth-
ods.
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Chapter 6

Iterative Motion Recovery

In this chapter we shall describe the iterative scheme which was introduced
in Wadenbäck and Heyden (2013) and extended in Wadenbäck and Hey-
den (2014a). The goal of these methods was the same as that of the SVD-
based direct method in Section 5.2, i.e. to recover the generating parameter
vector η = (ψ, θ, ϕ, tx, ty) from a given homography of the form

H = sRψθRz(ϕ)TRT
ψθ, (6.1)

with

T =

1 0 −tx
0 1 −ty
0 0 1

 . (6.2)

This is the familiar inter-image homography from Section 4.4, which obeys
the planar motion assumption.

In comparison with the homography decomposition methods studied
in Chapter 5, the iterative approaches described here are undeniably slower,
but they have the significant advantage that they do not produce any phys-
ically impossible solutions, and they only produce one solution. Addition-
ally, the extension in Wadenbäck and Heyden (2014a) allows the constant
angles ψ and θ to be determined from any number of such homographies
simultaneously.

The underlying idea of the iterative method is that we wish to undo the
tilt and consider the rigid transformation in the overhead view, similarly
to Hajjdiab and Laganière (2004). This is done by first determining the
tilt Rψθ , and then extracting the rotation and translation from the rigid
motion Rz(ϕ)T .
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CHAPTER 6. ITERATIVE MOTION RECOVERY

6.1 Eliminating ϕ and t
The first step, therefore, is to eliminate the dependence on ϕ and t , and
try to obtain equations in ψ and θ only. Separating the tilt angles ψ and
θ from the rigid transformations parameters t and ϕ in (4.7), we get

RT
ψθHRψθ = sRz(ϕ)T. (6.3)

Here, one notes that Rz(ϕ) can be eliminated by multiplying with the
transpose from the left on both sides. This results in the relation

RT
ψθMRψθ = s2TTT, (6.4)

with a symmetric matrix

M =

m11 m12 m13
m12 m22 m23
m13 m23 m33

 = HTH. (6.5)

Since both sides of (6.4) are symmetric matrices, one obtains six unique
equations. Let L = RT

ψθMRψθ and R = s2TTT be the left and right hand
sides of (6.4), respectively. Evaluating R , one obtains

R = s2

 1 0 −tx
0 1 −ty
−tx −ty 1 + t2x + t2y

 . (6.6)

As described in Section 2.2.1, Rψθ = R(ψ, θ, 0) is a rotation of θ
around the y-axis followed by a rotation of ψ around the x-axis. Direct
multiplication of the rotation matrices allows us to evaluate L , and one
finds that L is a fourth degree polynomial expression in cosψ , sinψ , cos θ
and sin θ .

Noting that R11 , R12 and R22 are independent of t , the equations
for ψ and θ become {

L11 − L22 = 0,
L12 = 0.

(6.7)
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6.2 Iterative Scheme
The system (6.7) is a system of complicated equations, but instead of trying
to solve (6.7) for both ψ and θ at the same time, we will iteratively altern-
ate between solving for one angle, with the other held fixed. This reduces
the problem of solving a fourth degree trigonometric equation, so that we
instead iterate and solve a second degree equation in each iteration.

Before explaining in detail how these equations are solved, we first out-
line in Algorithm 6.1 the iterative scheme which produces an approxima-
tion to Rψθ . Since

Rψθ = R(ψ, θ, 0) =

 cos θ 0 sin θ
sinψ sin θ cosψ − sinψ cos θ
− cosψ sin θ sinψ cosψ cos θ

 , (6.8)

it is easy to compute ψ and θ from this approximation.

Input: An inter-image homography H
Output: An approximation R ∗

ψθ of Rψθ
1: M̂← HTH
2: θ0 ← 0
3: R← Ry(θ0)
4: for j = 1, . . . ,N do
5: M̂← Ry(θj−1)

TM̂Ry(θj−1)
6: Solve for ψj

7: M̂← Rx(ψj)
TM̂Rx(ψj)

8: Solve for θj
9: R← RRx(ψj)Ry(θj)

10: R ∗
ψθ ← R

Algorithm 6.1: Iteratively approximate Rψθ . The steps on line 6 and line 8

are detailed in Sections 6.2.1 and 6.2.2. Since we ‘embed’ into M̂ the current

approximation, we may assume that the fixed angle is zero when solving for the

free one.
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6.2.1 Solving for ψ
Since cosψ and sinψ cannot both be zero, (6.7) is equivalent to

L11 − L22 = 0,
cos(ψ)L12 = 0,
sin(ψ)L12 = 0.

(6.9)

By letting M̂ = Ry(θ)
TMRy(θ) this can be written in matrix form asm̂11 − m̂22 −2m̂23 m̂11 − m̂33

m̂12 m̂13 0
0 m̂12 m̂13

 cos2 ψ
cosψ sinψ

sin2 ψ

 = 0. (6.10)

This means that (cos2 ψ, cosψ sinψ, sin2 ψ) lies in the null space of the
coefficient matrix in (6.10). Due to measurement noise, this matrix will
have full rank, so we determine the approximate null space using the SVD.

Provided the approximate null space direction v = (v1, v2, v3) , one
obtains ψ as

ψ =
1
2

arcsin
2v2

v1 + v3
. (6.11)

6.2.2 Solving for θ
Now θ can be found in much a similar way as ψ was found. For very
small angles, Rx(ψ)Ry(θ) should have approximately the same effect on
the camera as Ry(θ)Rx(ψ) , since they are both close to the identity matrix.
Examination of the matrices confirms this for small angles.

Therefore, if M̂ = Rx(ψ)
TMRx(ψ) , then (6.7) is equivalent to
L11 − L22 = 0,
cos(θ)L12 = 0,
sin(θ)L12 = 0,

(6.12)

which can be written in matrix form asm̂11 − m̂22 −2m̂13 m̂33 − m̂22
m̂12 −m̂23 0
0 m̂12 −m̂23

 cos2 θ
cos θ sin θ

sin2 θ

 = 0. (6.13)
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In the same way as for ψ in Section 6.2.1, the null space direction vector
v can be used to recover θ as

θ =
1
2

arcsin
2v2

v1 + v3
. (6.14)

For this whole tilt estimation method to succeed, it is assumed that the
translation vector t is not zero, otherwise the tilt angles ψ and θ cannot
be computed in this way. If indeed t is zero, the homography matrix will
be a scalar multiple of an orthogonal matrix, and this case is thus easily and
efficiently detected by a separate check. This situation arises in practice,
since the robot may at times stop during the motion, e.g. to await new
commands or to avoid collision with obstacles.

6.3 Experiments
We include in this section the experiments that were conducted and repor-
ted in Wadenbäck and Heyden (2013).

6.3.1 Random Homographies
In the first experiment, fifty homographies of the form (6.1) were generated
with random values for η = (ψ, θ, ϕ, tx, ty) . The true angles and their
corresponding estimates obtained by the iterative procedure is shown in
Figure 6.1. The correct angles are recovered in almost all cases, but when
the method fails, it fails dramatically.

6.3.2 Path Reconstruction
A simple path estimation technique was also tried in Wadenbäck and Hey-
den (2013) for both synthetic and real data. The QR decomposition was
used to determine the translation and planar rotation from the rigid motion
Rz(ϕ)T , after estimating the tilt as described in Section 6.2. In the simu-
lation, noise of the magnitude corresponding to a few pixels was added to
the points used to estimate the homographies. Results for this experiment
are shown in Figure 6.2 and Figure 6.3.
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Figure 6.1: True and estimated values for ψ , θ and ϕ for fifty randomly gener-

ated homographies. As can be seen, the estimation works well in most instances.
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Figure 6.2: We see that the estimated values of ψ and θ are, on average, close

to the true values. Since ψ and θ are constant, temporal filtering could have

been used to get better estimates over time.
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Figure 6.3: The simulated and the estimated paths. Procrustes analysis has

been carried out to align the path curves for easy comparison.
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Figure 6.4: True and estimated paths for the robot experiment. At the lower

part of the plot some erroneous estimates are made, which results in the estim-

ated path being deflected away. This would be handled by a more refined path

estimation method.

This simple path estimation was tried on real data as well. These data
were recorded by a camera mounted onto an industrial robot arm which
provided gold standard position estimates for evaluative comparison. The
resulting reconstruction can be seen in Figure 6.4. For comparison, we have
additionally estimated the non constant angle ϕ using a method based on
conjugate rotations, see Liang and Pears (2002) for details. This method
computes ϕ from the eigenvalues of the homography without estimating
the tilt. Figure 6.5 shows this estimate compared to our estimate and the
true value (as measured by the robot). Both methods perform well, and
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Figure 6.5: The upper plot shows the difference in orientation between consec-

utive images, and the lower plot shows the angular error. The plots show that

our estimates of ϕ and the eigenvalue-based estimates of ϕ are both close to

the truth (robot measurements).

typically give angular errors on the order of 0.5°, however tilt estimation
followed by QR decomposition has a slightly favourable performance com-
pared to the method based on the eigenvalues.

6.4 Tilt Estimation from Several Homographies
Since the camera is thought to be rigidly mounted, the tilt angles ψ and
θ will be the same for all homographies arising from the camera motion.
The iterative method from Section 6.2 can be extended, as was done in
Wadenbäck and Heyden (2014a), to determine ψ and θ from several ho-
mographies simultaneously.
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Suppose therefore that we have at our disposal a number of homograph-
ies of the form (6.1), that is,

Hj = sjRψθRz(ϕj)TjRT
ψθ, j = 1, . . .N, (6.15)

and want to recover their generating parameters ηj = (ψ, θ, ϕj, t
( j)
x , t( j)y ) .

As observed in Section 6.2, the products RT
ψθMjRψθ , where

Mj =

m
( j)
11 m( j)

12 m( j)
13

m( j)
12 m( j)

22 m( j)
23

m( j)
13 m( j)

23 m( j)
33

 = HT
j Hj, (6.16)

are all independent of ϕj .
From each product RT

ψθMjRψθ we will get equations of the form (6.10)
and (6.13), where we denote the coefficient matrices

Ψj =

m̂
( j)
11 − m̂( j)

22 −2m̂( j)
23 m̂( j)

11 − m̂( j)
33

m̂( j)
12 m̂( j)

13 0
0 m̂( j)

12 m̂( j)
13

 (6.17)

and

Θj =

m̂
( j)
11 − m̂( j)

22 −2m̂( j)
13 m̂( j)

33 − m̂( j)
22

m̂( j)
12 −m̂( j)

23 0
0 m̂( j)

12 −m̂( j)
23

 . (6.18)

Since all the Ψj should have a common null space defining ψ , we find it
as the one-dimensional null space approximation of

Ψ =

Ψ1
...
ΨN

 , (6.19)

and similarly for obtaining θ from the null space approximation of

Θ =

Θ1
...

ΘN

 . (6.20)
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Figure 6.6: The tilt estimation reached convergence after about 15-20 frames

(roughly 2 s of motion). Since the tilt estimation problem is ill-conditioned for

very small translations, using fewer than five images did not give reasonable

estimates with the frame rate and velocity used in the experiment.

6.5 Initial Tilt Calibration
In Wadenbäck et al. (2017), the method from Section 6.4 was used to per-
form an initial tilt calibration to establish the transformation RT

ψθ to the
overhead view. After this, there was no need to compute the homographies
any more, as the point correspondences were used immediately to determ-
ine the rigid motion using RANSAC together with a method by Arun,
Huang and Blostein (1987). The experiments were run on the Fraunhofer
IPA rob@work in Figure 4.1, and the resulting tilt calibration is shown in
Figure 6.6. The estimate stabilised after approximately 2 s of fairly slow
motion.

6.5.1 Rigid Motion Estimation
Suppose x̂j ↔ xj , j = 1, . . . ,N are point correspondences between the
first and second image. These must satisfy

x̂j ∼ Hxj ⇔ RT
ψθx̂j ∼ Rz(ϕ)TRT

ψθxj. (6.21)

After the tilt has been determined using the method in Section 6.4, we
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consider Rψθ to be known. Introducing

yj ∼ RT
ψθxj and ŷj ∼ RT

ψθx̂j, (6.22)

and using the representation with last coordinate equal to one, (6.21) be-
comes a planar rigid body motion in terms of zj = Πyj and ẑj = Π ŷj .
Here Π denotes an orthogonal projection onto the first two coordinates,
i.e.

Π =

[
1 0 0
0 1 0

]
. (6.23)

If all point correspondences are correct, i.e. no outliers are present, this may
be solved directly in a least-squares sense using an adaptation to 2D of the
method presented in Arun, Huang and Blostein (1987). The 2D version
of this problem is well-posed if at least two point correspondences are used,
and the solution gives an estimate of ϕ and t .

The least-squares solution to the rigid body motion problem presented
in Arun, Huang and Blostein (1987) works by decoupling the translation
and the rotation involved. It is shown that by forming

qj = zj −
1
N

N∑
k=1

zk and q̂j = ẑj −
1
N

N∑
k=1

ẑk, (6.24)

the optimal rotation matrix is VUT , where M = UΣVT is a singular value
decomposition of

M =
N∑
j=1

qjq̂Tj . (6.25)

The optimal estimate t2D of the 2D translation vector will then be

t2D =
( 1
N

N∑
k=1

ẑk
)
− VUT

( 1
N

N∑
k=1

zk
)
, (6.26)

and finally we get t = (t2D, 0) .
This method for recovering the rigid motion was used in a RANSAC

loop for random pairs of point correspondences, and at the final step the
same method was used for all the found inliers in the consensus set.
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Figure 6.7: Gold standard and estimated positions for the positioning experi-

ment. The gold standard measurements were obtained using a highly accurate

optical tracking system.

6.5.2 Evaluation against Gold Standard
Among the positioning experiments presented in Wadenbäck et al. (2017)
were a few evaluations against a highly accurate optical tracking system of
model K600 from Nikon Metrology (Nikon Corporation 2011), which
served as gold standard. This K600 system provides an absolute accuracy
of less than 100 µm, and was sampled at the rate 250 Hz. We include
here the positioning results for the ‘parallel parking’ dataset, which can be
viewed in Figure 6.7. The relative positioning error, i.e. positioning error
in relation to travelled distance, was found to be on the order of 2 % as
shown in Figure 6.8.
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Figure 6.8: Relative estimation error, formed by dividing the absolute error with

the travelled distance.

6.5.3 Evaluation on a Slightly Longer Sequence
Wadenbäck et al. (2017) also contained experiments on a slightly longer
motion sequence, shaped approximately as an ellipse, with a total length
of about 5.75 m and in which the robot made a full turn. The trajectory
was formed such that the images at the starting position and the final po-
sition were overlapping. Due to range and workspace limitations in the
Nikon system, there is no gold standard data for this experiment. Instead,
the images from the starting position and the final position were used to
determine the true final position, which was then compared to the final
positions estimated by integrating the estimates along the trajectory. This
is a meaningful comparison to make, since the accumulated error from the
many homographies along the trajectory should be much larger than the
error from just one homography.

The result from this experiment is shown in Figure 6.9 and Figure 6.10.
The positioning error in the final position, as determined by comparing
the first and final image as explained above, was found to be 0.71 % of the
travelled distance.
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Figure 6.9: Estimated trajectory for the longer robot motion.
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Chapter 7

Compatible Homographies

In Chapter 5 and Chapter 6 we discussed a number of methods for recov-
ering the motion parameters from an estimated homography, both with
and without the assumption of the planar motion model from Chapter 4.
The inter-image homography (4.7) is of a very specific form and has only
five degrees of freedom, in contrast to a general planar homography which
has eight degrees of freedom. If one uses a general homography estima-
tion algorithm to estimate the inter-image homographies, one will almost
certainly obtain a homography which is not of the form (4.7).

In this chapter, therefore, we investigate what can be done in order
to enforce the planar motion model already at the homography estima-
tion stage. We will thus start with a number of point correspondences
xj = (xj, yj, 1) ↔ (x̂j, ŷj, 1) = x̂j , and our goal is to be able to compute a
homography matrix H from these correspondences, in such a way that H
actually obeys the planar motion model. It is found that the elements of
the inter-image homography from Section 4.4,

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 = sRψθRz(ϕ)TRT
ψθ, (7.1)

satisfy a number of polynomial constraints, in addition to the DLT con-
straints (2.4). We will show how these additional constraints are enforced
by a special homography solver introduced by Wadenbäck, Åström and
Heyden (2016).

Before discussing this special solver, some additional theory must be
covered.
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CHAPTER 7. COMPATIBLE HOMOGRAPHIES

7.1 Multivariate Polynomials
Multivariate polynomials, and systems of multivariate polynomials, are the
focus of algebraic geometry. We will not develop the theory of this field,
which is neatly laid out in the delightful introduction by Cox, Little and
O’Shea (2007), but we will nonetheless have to introduce a fair amount of
terminology and explain our notation.

Let z = (z1, . . . , zn) be a vector of indeterminates and let α ∈ Nn .
Using multi-index notation, i.e. zα = zα1

1 · · · zαn
n , we define a multivari-

ate monomial to be an expression of the form cαzα for some coefficient
cα , and by the degree of the monomial we mean |α| = α1 + . . . + αn .
A multivariate polynomial f (z) can now be defined to be a finite sum of
multivariate monomials, i.e. an expression of the form

f (z) =
∑
|α|≤r

cαzα. (7.2)

The set of all polynomials in z with complex coefficients is the polynomial
ring C[z] . The degree of a polynomial is defined to be the highest degree
found among its monomials.

A polynomial f (z) can also be conveniently expressed as

f (z) = cTZ(z) (7.3)

using a monomial vector

Z(z) =
[
zα1 · · · zαK

]T (7.4)

and a coefficient vector c = (cα1 , . . . , cαK) . These vectors are not uniquely
determined by the polynomial, since their elements may be permuted freely
with no effect. However, if one decides on amonomial ordering (Cox, Little
and O’Shea, 2007) according to which the elements of Z(z) should be
sorted, and what monomials should be included (with coefficient zero if
necessary), then the vectors are in fact unique. Henceforth, we shall assume
that this is done.
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A polynomial equation in z can be written as

cTZ(z) = 0, (7.5)

and similarly, a system of polynomial equations is written as

CZ(z) = 0, (7.6)

with a coefficient matrix C .
The solution set of a system of polynomial equations, which can be a

remarkably complicated geometric object, is called an affine variety. View-
ing the same system algebraically, it generates a so called ideal, I , in the
polynomial ring C[z] . As already mentioned, the study of these objects and
structures is carried out in the field of algebraic geometry. Specialised com-
puter algebra systems, e.g. Macaulay2 (Grayson, Stillman and Eisenbud,
2015), have emerged to facilitate investigations in this field.

7.1.1 Solving Equations Using the Action Matrix
If a system of polynomial equations of the form (7.6) has a finite number of
solutions, say k solutions, then the quotient space C[z]/I is isomorphic
to Ck (Cox, Little and O’Shea, 2007). Working in C[z]/I , this means
that the linear map f (z) 7→ p(z)f (z) , for any fixed element p(z) , can
be expressed as a square matrix of order k , which is called the action mat-
rix for the action polynomial p(z) . This is done with respect to a basis of
monomials in C[z]/I , which may be collected in a monomial vector B .

If one succeeds in computing the action matrix for a polynomial p(z) ,
then – remarkably – the eigenvectors to the action matrix will be precisely
the monomial vector B evaluated at the k solutions of the equation system
(Byröd, 2010). This can be thought of as a generalisation to the multivariate
case of the companion matrix method (Trefethen and Bau, 1997) for solving
univariate polynomial equations.

Practical methods for computing action matrices are given a thorough
treatment by Byröd (2010) and Kúkelová (2013). These methods are non-
trivial endeavours which require particular care to preserve numerical sta-
bility, and we can only hope to convey the key ideas and must gloss over
many of the intricacies.
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Let us consider a system of equations of the form (7.6) that we wish to
solve. The first step to take is to choose the action polynomial p(z) that will
be used (this is usually taken to be just one of the variables, e.g. p(z) = z1 ).

Next, one determines the so called permissible set, P , which is the set
of all monomials in Z(z) whose image after multiplication with p(z) is
a constant factor of some element in Z(z) . It is among the polynomials
in the permissible set that we will later select a basis B . The reducible set
R is the set of monomials which are not in P , but whose image after the
multiplication is a polynomial multiple of some element in P . Finally, the
excessive set E contains all the monomials in Z(z) which are neither in P
nor R .

By rearranging the system of equations, it can now be written as

[
CE CR CP

] ZE
ZR
ZP

 = 0, (7.7)

where ZE are the excessive monomials, ZR are the reducible monomials,
and ZP are the permissible ones. By performing some form of Gaußian
elimination to eliminate the excessive and reducible variables the system
can be brought to the formU

(1)
E C (1)

R C (1)
P

U (2)
R C (2)

P
C (3)
P


ZE
ZR
ZP

 = 0, (7.8)

where U (1)
E and U (2)

R are upper triangular. Since we are not interested
in the excessive variables, we continue by considering only the lower right
block [

U (2)
R C (2)

P
C (3)
P

] [
ZR
ZP

]
= 0. (7.9)

With some luck, it should now be possible to find k linearly independent
columns in C (3)

P which will correspond to the basis B .
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Another rearrangement of the system, followed by another Gaußian
elimination, gives the equivalent system[

U (2)
R C (2)

P\B C (2)
B

U (3)
P\B C (3)

B

] ZR
ZP\B
ZB

 = 0. (7.10)

If it is possible at this point to perform a successful back-substitution, which
expresses ZR and ZP\B in terms of ZB , then it is possible to form the
action matrix by multiplying the elements in B with p(z) . The result of
each such multiplication will by definition be among the reducible or the
permissible monomials, and thanks to the back-substitution we have a way
of expressing it as a linear combination of elements in B .

One key result in Byröd (2010) is that it is sufficient that the monomial
vector B is a spanning set rather than an actual basis. This means that it is
not necessary to have exactly k rows in CP3 . By being able to choose ` > k
monomials in B , one trades the inconvenience of adding false solutions for
some additional freedom in how to compute an `× ` action matrix. This
additional freedom can be used wisely to improve the numerical aspects of
the method (Byröd, 2010; Byröd, Josephson and Åström, 2009).

7.2 Finding Constraints on H
After this theoretical exposé, let us return to the problem of finding polyno-
mial constraints on the elements of the inter-image homography (7.1). We
know from Section 2.1.3 that the homography H must obey (redundant)
DLT constraints of the form 0 −xTj ŷj x

T
j

xTj 0 −x̂jxTj
−ŷj xTj x̂jxTj 0

h1
h2
h3

 = 0, (7.11)

where h1 , h2 , and h3 are the rows of H , and where we have used the fact
that zj = ẑj = 1. Since the first two rows in (7.11) are linearly independent,
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and since the whole system has rank two, we will in the following work with
the equivalent (reduced) DLT constraint

[
0 −xTj ŷj x

T
j

xTj 0 −x̂jxTj

]h1
h2
h3

 = 0. (7.12)

We will now investigate polynomial constraints which the homography
matrix entries must satisfy in addition to the linear constraints (7.12).

7.2.1 Analytical Derivation of Constraints
If we introduce intermediate parameters

(cψ, sψ, cθ, sθ, cϕ, sϕ) = (cosψ, sinψ, cos θ, sin θ, cosϕ, sinϕ), (7.13)

then the affine variety defined by the polynomial equations
c2ψ + s2ψ − 1 = 0,
c2θ + s2θ − 1 = 0,
c2ϕ + s2ϕ − 1 = 0,

(7.14)

is the parameter space. Multiplying the matrices on the right hand side
in (7.1) together, it is clear that each hij will be a polynomial in s , tx and
ty , and the sines and cosines of the three angles ψ , θ , and ϕ . This means
that the set of possible homography matrices of the form (7.1) is the im-
age under a polynomial map of an affine variety (Cox, Little and O’Shea,
2007). The Tarski-Seidenberg theorem guarantees that this image will be
a so called semi-algebraic set, i.e. a set defined by a finite number of poly-
nomial equations and polynomial inequalities (van den Dries, 1986). We
will try to find the polynomial equations, and ignore the the potential poly-
nomial inequalities.

There are a number of approaches that can be used to try to find poly-
nomial constraints on the homography matrix. If an affine variety is given
through a parametrisation, the problem of finding equations which define
the same variety is a case of the implicitisation problem. One method to
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try to solve the implicitisation problem for the set of planar motion ho-
mographies would be to use Gröbner basis computations to eliminate the
generating parameters (Cox, Little and O’Shea, 2007), which could result
in a number of equations containing only the hij .

While we have unsuccessfully attempted this route using Maple (Water-
loo Maple Inc., 2016), it cannot be ruled out that this approach potentially
could provide insights if done with enough skill, care, and patience. There
is also an elimination technique based on the so called resultant, but this
method is impractical because it inflates the degree of the polynomials ex-
cessively, and we have therefore not tried it on the present problem.

7.2.2 Numerical Derivation of Constraints
Another approach is to use the fact that we easily can generate random
instances of inter-image homographies (7.1).

If there exist polynomial constraints on the elements of H , then they
should be of the form (7.6). Each instance Hj we generate gives a number
of linear equations which the coefficient matrix must satisfy. By randomly
generating sufficiently many, say N , inter-image homographies, we can
find the coefficient matrix by computing the left null space of the matrix[

Z(H1) · · · Z(HN)
]
. (7.15)

In order to use this idea, we need to decide what monomials we want
to include in Z(H ) . We observe that since the homography matrix is only
determined up to the scalar multiple s , any polynomial constraint on the
matrix entries must be homogeneous, i.e. contain only monomials of the
same degree. This leads us to consider Z(H ) consisting of all monomial
of a given degree r .

For r ≤ 3 we did not obtain any non-trivial left null space of the
matrix (7.15), whereas for r = 4 we obtained eleven linearly independent
coefficient vectors, which were assembled to form a coefficient matrix C .
After bringing this coefficient matrix to reduced row echelon form, the coef-
ficients were very close to being integer. Rounding them to integers, we
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obtained eleven polynomial constraints
g1(H ) = 0,

...
g11(H ) = 0,

(7.16)

with integer coefficients. These constraints were successfully confirmed
symbolically using the parametrisation (7.1). To give the reader a flavour
of what the discovered constraints look like, we write one of them out ex-
plicitly:

g1(H ) = h2
11h12h13 + h2

11h22h32 + h2
11h23h33 − h11h21h12h32

− h11h21h13h33 − h11h31h12h22 − h11h31h13h23 + h11h2
12h23

− h11h2
22h23 − h11h22h32h33 − h11h22h23h33 + h11h32h2

13

− h11h32h2
33 + h2

21h12h13 + h21h31h2
12 + h21h31h2

13

+ h21h2
12h13 + 2h21h12h22h23 + h21h12h32h33

+ h21h12h23h33 + h21h2
22h13 + h21h32h13h23 + h2

31h12h13

+ h31h12h32h23 + h31h12h2
13 + h31h12h2

33 + h31h22h32h13

+ h31h22h13h23 + 2h31h32h13h33 + h2
12h22h23 + h2

12h23h33

− h12h22h13h33 + h12h32h13h23 + h3
22h23 + h22h2

32h23

+ h22h32h2
13 + 2h22h32h2

23 + 2h2
32h23h33 + h32h2

13h33

+ h32h2
23h33 + h32h3

33.
(7.17)

7.3 The Homography Solver
We will now apply the technique of combining linear and non-linear con-
straints mentioned in Section 3.1.2. Suppose for that purpose that we have
three point correspondences. This allows us to form a DLT system (2.5)
consisting of three DLT constraints (7.12), and by removing e.g. the last
row we have 2.5 DLT constraints left in the DLT system. This DLT system
should have a four-dimensional null space, which allows us to parametrise
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the homography as

H(z) = H0 + z1H1 + z2H2 + z3H3, (7.18)

where the Hk are basis vectors for the null space, reshaped as 3×3 matrices.
Inserting this parametrisation H(z) into the eleven polynomial con-

straints, i.e. forming fj(z) = gj(H(z)) , gives eleven new polynomial equa-
tions 

f1(z) = 0,
...

f11(z) = 0,

(7.19)

of degree four in the three unknowns z = (z1, z2, z3) . All of these involve
all 35 =

(7
4

)
possible monomials up to degree four.

From results obtained in the symbolic investigations of this system of
equations, which we have postponed to Section 7.4.2, it turns out that
before we can solve the system using the method from Section 7.1.1, we
need to have more linearly independent equations in the system. This can
be achieved by augmenting the system with the additional equations

z1 fj(z) = 0,
z2 fj(z) = 0,
z3 fj(z) = 0,

(7.20)

for 1 ≤ j ≤ 11, resulting in 44 equations in 56 monomials. This expanded
system is used for constructing the action matrix.

As we shall see in Section 7.4.2 there are fourteen solutions in general,
which means that we need to select at least that many monomials as a basis
(or spanning set) for the action matrix method. We obtained best results
using a basis of 25 monomials, using column pivoting to improve numer-
ical stability (Byröd, Josephson and Åström, 2008). This resulted in an
efficient and numerically stable reduction of the problem to an eigenvalue
problem of size 25×25. Using eigenvalue decomposition we obtain 25 pu-
tative solutions, and those that are real and fulfil the original equations are
considered to be valid. The resulting homography solver is the 2.5-point
solver introduced in Wadenbäck, Åström and Heyden (2016).

91



CHAPTER 7. COMPATIBLE HOMOGRAPHIES

7.4 Investigation of the Constraints
We now turn to the investigation of the constraints (7.16) and (7.19). The
investigations in Section 7.4.2 were reported in Wadenbäck, Åström and
Heyden (2016), but the results in Section 7.4.1 had to be omitted due to
space limitations.

7.4.1 Investigation of the Tangent Space
The constraints (7.16) on the elements of H are clearly necessary for a ho-
mography of the form (7.1), but we have not shown that they are sufficient.
While the investigations in this section will not amount to proving that this
is the case, we will argue that they are for all practical purposes sufficient.

We begin by noting that if η = (ψ, θ, ϕ, tx, ty) and

H(η, s) = sRψθRz(ϕ)

1 0 −tx
0 1 −ty
0 0 1

RT
ψθ, (7.21)

then (η, s) 7→ vec(H(η, s)) is a parametrisation of an object in R9 whose
dimension (at most points) cannot be greater than six.

The columns of the Jacobian of this parametrisation, evaluated at some
point (η0, s0) , will span the tangent space at (η0, s0) . This means that the
rank of the Jacobian is the dimension of the parametrised object at the
point of evaluation. The results of evaluating this Jacobian for 100 000
random parameter values and computing the corresponding tangent space
dimension is shown in Figure 7.1 (the dimension was in every single case
found the be equal to 6).

Similarly, we know that the gradients ∇gj of the constraints (7.16),
evaluated at (η0, s0) , should lie in the normal space. If they span the whole
of the normal space, this means that close to (η0, s0) the constraints gj(H )
are in fact sufficient to describe the parametrised object. We have computed
the dimension of the linear hull of the gradients at the same 100 000 ran-
dom parameter values as above, and the result can be seen in Figure 7.1. In
almost all cases, the gradients spanned the entire three-dimensional normal
space, and in no single instance was the dimension lower than three.
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Figure 7.1: Histogram over the numerically computed dimensions of the normal

space, tangent space, and the total space for 100 000 random parameter values.

The dimension of the tangent space was computed as the rank of the Jacobian.

The dimension of the normal space was computed as the rank of a matrix with

the gradients as columns.

Since it is not theoretically possible that the sum of the dimensions of
the normal space and the tangent space are more than nine in this case,
the results in Figure 7.1 might be surprising, as they seem to indicate oth-
erwise. The most likely explanation of this apparent discrepancy is that
numerical effects in a few cases have resulted in a too large efficient rank
(recall Section 1.1.1). This suspicion has in fact been confirmed for a small
number of the cases where the dimension of the normal space was reported
to be greater than three, by seeing that three of the singular values were
much larger than the other ones.

7.4.2 Symbolic Investigation Using Macaulay2
As briefly mentioned at the very beginning of Section 7.1.1, the action mat-
rix method assumes that there are finitely many solutions to the problem.
There are several methods that can be used to determine if a system of poly-
nomial equations has a finite number of solutions, and also in some cases to
determine the number of solutions. One method is based on the so called
mixed volume (Bernshtein, 1975). The mixed volume gives you the num-
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ber of solutions for r equations in r unknowns under the assumption that
all coefficients of the polynomial equations are generic. This is often not
the case for geometric problems in computer vision, where there typically
are many connections and dependencies among the coefficients.

Another method is to study the dimensionality and degree of the ideal
I . This can often be efficiently calculated assuming coefficients in Zp using
algebraic geometry tools such as Macaulay2 (Grayson, Stillman and Eisen-
bud, 2015) or Maple (Waterloo Maple Inc., 2016). This, however, requires
that one generates one or several instances of the problem so that the sys-
tem has integer coefficients. This makes it possible to capture dependencies
between the coefficients and usually gives the relevant multiplicity of solu-
tions. If the coefficients of the polynomials are given as inexact floating
point numbers, however, cancellations might not be detected or might be
erroneously detected in the elimination and an incorrect dimensionality
might be reported. To investigate the constraints (7.19) symbolically, we
thus need to be able to generate homographies of the form (7.1) with an
exact representation, e.g. using integers.

Integer versions of the problem can be created using random rotations
involving Pythagorean triples, e.g. so that (sinϕ, cosϕ) = (3/5, 4/5) . By
multiplying the homography matrix by the integer denominators involved,
one obtains an integer homography matrix of the correct type. Then the
points for the first image are chosen as random integer points in homo-
geneous coordinates x . The homogeneous coordinates of the points in the
second camera are then x̂ = Hx , which then also become integer. The
DLT-constraints (7.12) will all be integer, so it is possible to compute an
integer basis for the null space, and these basis vectors can be reshaped to
3 × 3 integer matrices H0 , H1 , H2 , H3 . Finally since the constraints on
H have integer coefficients the eleven fourth order constraints are integer
for these specifically generated problems.

The constraints (7.19) were studied using Macaulay2 (Grayson, Still-
man and Eisenbud, 2015) in Wadenbäck, Åström and Heyden (2016) for
such integer instances of the problem. The resulting ideal has dimension
zero (which means that the solution set consists of isolated points) and de-
gree fourteen. Thus there are in general fourteen solutions to the problem.
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Figure 7.2: Logarithmic histogram over the residual vector ‖g(H )‖ for ho-

mographies obtained through conventional estimation, synthetically generated

homographies, and for homographies estimated using the 2.5-point method for

a real planar motion dataset. Homographies estimated using the 2.5-point solver

satisfy the polynomial constraints found in Section 7.2.2 better than do the con-

ventionally estimated homographies.

7.5 Further Numerical Experiments
From the method we used in Section 7.2.2 to derive the constraints (7.16),
we already know that synthetically generated homographies should satisfy
the constraints. It was claimed in the beginning of the chapter that homo-
graphies from a real dataset, if they are estimated using conventional homo-
graphy estimation methods, will not be of the correct type. This claim can
be substantiated by evaluating ‖g(H )‖ , where g = (g1, . . . , g11) , for con-
ventionally estimated homographies from a real dataset and comparing it to
the same norm for both homographies estimated using the 2.5-point solver
in Section 7.3 and synthetically generated homographies. Figure 7.2 shows
that on a real dataset the conventionally generated homographies do not sat-
isfy the constraints, and thus do not obey the planar motion model. As seen
in the same figure, the homographies obtained using the polynomial 2.5-
point method have significantly smaller residuals. Although not demon-
strated here, the homographies obtained using the 2.5-point method are in
fact so close to satisfying the constraints that their residuals typically can be
brought down to the same magnitude as the synthetically generated homo-
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Figure 7.3: Logarithmic histogram over
∥∥H − H̃

∥∥
F , where H is the true

homography and H̃ the estimated one. The homography is recovered accurately

except in a small number of failure cases.

graphies in only one or two iterations with the Newton-Raphson method
(Bishop, 2006).

7.5.1 Numerical Accuracy
In order to evaluate the numerical accuracy of the 2.5-point homography
solver we described in Section 7.3, we have generated 3000 random ho-
mographies of the form (7.1), along with three point correspondences for
each one of these. The polynomial 2.5-point solver was then used on each
triplet of correspondences for the purpose of estimating their correspond-
ing homography. Figure 7.3 shows a histogram over the logarithm of the
Frobenius norm of the errors

∥∥H−H̃∥∥
F , where H is the true homography

and H̃ is the best estimated one. Here, all homographies are scaled to
have their determinant equal to one, to eliminate the influence of the scalar
factor ambiguity. From this histogram it is clear that the solver succeeds
in finding the correct solution within a small numerical tolerance in most
cases, but in a small percentage of the cases the correct solution is not found.
This proportion of failure cases does not pose a problem for the usability
of the solver, as it will generally be used in a RANSAC loop, and then
hopefully a correct homography will be estimated in another iteration.
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Figure 7.4: The error
∥∥H − H̃

∥∥
F for different noise levels σN for both the

polynomial 2.5-point solver and the DLT. We find that the 2.5-point method

performs better than the DLT for all σN in the experiment.

7.5.2 Noise Sensitivity
For the purpose of investigating the noise sensitivity of the solver, random
homographies H and point correspondences x ↔ x̂ were generated as in
Section 7.5.1. The coordinates for x were drawn from a Gaußian distribu-
tion with zero mean and unit variance, and x̂ was computed as x̂ = Hx and
normalised so that the coordinates again had close to unit variance. After
this, the coordinates in x and x̂ were contaminated by Gaußian noise with
standard deviation σN . Next, a homography H̃ was estimated from these
contaminated points using both the polynomial 2.5-point solver and the
DLT (using four correspondences), and normalised to have determinant
equal to one. Figure 7.4 shows

∥∥H − H̃
∥∥
F for different noise levels σN ,

and we observe that the homographies are more accurately recovered using
the 2.5-point solver than using the DLT.

The point correspondences which were not used to estimate the homo-
graphy were mapped through the estimated homography, and the repro-
jection errors were studied. The distribution of the mean errors is shown
in Figure 7.5. In this case, the 2.5-point method and the DLT have com-
parable reprojection errors, and only for low noise levels does the 2.5-point
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Figure 7.5: Distribution of the mean reprojection error for different noise levels

σN for both the proposed 2.5-point solver and the DLT, where the distance

is taken in the Euclidean representation of the points. We observe that the

methods perform similarly, with a slight advantage for the 2.5-point method for

the lower noise levels.

solver give slightly smaller ones. This is somewhat surprising, since the
DLT determines more parameters than the underlying data actually have,
and one might have expected a more pronounced effect of the over-fitting.
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Chapter 8

Minimising the Reprojection Error

In Chapter 7 we explained in detail the polynomial 2.5-point homography
solver that was introduced in Wadenbäck, Åström and Heyden (2016).
This homography solver was able to use 2.5 point correspondences to com-
pute a homography that was guaranteed to be compatible with the planar
motion model from Chapter 4.

Solvers such as the 2.5-point solver or the DLT, which use as few cor-
respondences as possible to estimate their corresponding model, are called
minimal solvers. These are frequently used together with the RANSAC
framework from Section 1.2.2, since the probability of selecting only true
inliers is greater for a smaller sample size. After the largest consensus set has
been found, one should fit the model to the entire consensus set, and since
the 2.5-point method only works for 2.5 correspondences we need to take
a different approach for this final step. Here we describe how to minimise
the reprojection errors for the largest consensus set.

8.1 Geometric Error
At the end of Section 2.1.3, we mentioned that the least-squares solution
obtained from an overdetermined DLT system did not correspond to min-
imising a geometrically sensible error function. A more reasonable cost
function to minimise would be the geometric reprojection error,

E(H, x1, . . . , xN, x̂1, . . . , x̂N) =
N∑
j=1

G(x∗j , xj) + G(x̂∗j , x̂j), (8.1)
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subject to the constraint that H maps xj exactly to x̂j , and where

G( y, z) =
∥∥∥ y
eT3 y
− z

eT3 z

∥∥∥2
, e3 =

[
0 0 1

]T
. (8.2)

Here x∗j ↔ x̂∗j are the provided correspondences, which we may not be able
to satisfy all at once, and xj ↔ x̂j are geometrically corrected versions of the
correspondences. The geometric reprojection error measures the squared
pixel distance between each point and its geometrically corrected counter-
part, and is meaningful when the cameras are calibrated (i.e. K is known
and the lens distortion model has been compensated for).

Minimising the geometric error (8.1) is a difficult constrained optim-
isation problem which has in total 4N+ 8 degrees of freedom, due to the
eight degrees of freedom inherent to the homography matrix and the 4N
independent parameters describing the points. We will not go into the de-
tails of how this optimisation problem is solved for a general planar homo-
graphy. Further details for that problem are found e.g. in Kanatani (1998)
and in Hartley and Zisserman (2004), and ready-to-run implementations
are available e.g. in OpenCV (Itseez, Inc., 2017).

Algorithms in computer vision which minimise some kind of repro-
jection error are often referred to as bundle adjustment (Triggs et al., 1999).

8.2 Planar Motion Bundle Adjustment
We are going to consider the minimisation of the geometric error (8.1)
for a homography of the form (4.7). As already mentioned, this is a con-
strained optimisation problem, and we have not discussed how such prob-
lems are solved. Fortunately, we can exploit the camera parametrisation
from Section 4.3 to reformulate the optimisation problem as an uncon-
strained optimisation problem, which we can solve using the Levenberg-
Marquardt method from Section 1.2.1.

Suppose, then, that we have the two cameras{
P = Rψθ

[
I 0

]
,

P̂ = RψθRz(ϕ)
[
I −t

]
,

(8.3)
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according to the planar motion model, and that we have a number of scene
points Xj which lie in the floor plane. Since only the first two coordinates
in Xj can vary, it will be convenient to let ξj be these first two coordinates.
Now let pTk and p̂k

T be row k in P and P̂ , respectively. Let πk be the first
two coordinates of pk , and define π̂k correspondingly. We also introduce
Ψ = vec(PT ) and Ψ̂ = vec(P̂T ) . Define Ξ = (ξ1, . . . , ξN) and let
β = (η,Ξ) , where as usual η = (ψ, θ, ϕ, tx, ty) is the motion parameter
vector.

After defining all this notation, we will consider the reprojection er-
ror for a single point in each of the cameras. This can be written using
the function G from (8.2) as G(x∗j ,PXj) = ‖rj(β)‖2 in camera P and
G(x̂∗j , P̂Xj) = ‖r̂j(β)‖2 in camera P̂ , where

rj(β) =
[
x∗j − xj
y∗j − yj

]
=

[
x∗j
y∗j

]
− 1

XT
j p3

[
XT
j p1

XT
j p2

]
,

r̂j(β) =
[
x̂∗j − x̂j
ŷ∗j − ŷj

]
=

[
x̂∗j
ŷ∗j

]
− 1

XT
j p̂3

[
XT
j p̂1

XT
j p̂2

]
.

(8.4)

The overall cost function that will be minimised is

E(β) =
N∑
j=1

‖rj(β)‖2 + ‖r̂j(β)‖2, (8.5)

and with the residuals defined in (8.4), the Jacobian will have the overall
structure

J(β) =



∂r1
∂η

∂r1
∂ξ1... . . .

∂rN
∂η

∂rN
∂ξN

∂r̂1
∂η

∂r̂1
∂ξ1... . . .

∂r̂N
∂η

∂r̂N
∂ξN


. (8.6)

If we are able to compute all the non-zero blocks in this Jacobian, then we
are ready to implement the minimisation using Algorithm 1.1.
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8.2.1 Computing the Derivatives

We first compute the two derivative blocks ∂rj
∂η and ∂r̂j

∂η . These are easiest to
compute via the chain rule, i.e.

∂rj
∂η

=
∂rj
∂Ψ

∂Ψ
∂η

,

∂r̂j
∂η

=
∂r̂j
∂Ψ̂

∂Ψ̂
∂η

.

(8.7)

The derivatives ∂Ψ
∂η and ∂Ψ̂

∂η are complicated, but thankfully they can be
computed symbolically using a computer algebra system such as Maple
(Waterloo Maple Inc., 2016).

Through careful and patient application of the differentiation results in
Section 1.1.3, one finds that

∂rj
∂Ψ

=

[
−XT

j p3 0 XT
j p1

0 −XT
j p3 XT

j p2

]
⊗

XT
j

(XT
j p3)2

,

∂r̂j
∂Ψ̂

=

[
−XT

j p̂3 0 XT
j p̂1

0 −XT
j p̂3 XT

j p̂2

]
⊗

XT
j

(XT
j p̂3)

2 .

(8.8)

Similar careful differentiation as in the previous step shows that
∂rj
∂ξj

=
1

( pT3Xj)2

[
pT1Xjπ

T
3 − pT3Xjπ

T
1

pT2Xjπ
T
3 − pT3Xjπ

T
2

]
,

∂r̂j
∂ξj

=
1

( p̂T3Xj)2

[
p̂T1Xjπ̂

T
3 − p̂T3Xjπ̂

T
1

p̂T2Xjπ̂
T
3 − p̂T3Xjπ̂

T
2

]
.

(8.9)

We now have expressions for all the non-zero blocks in the Jacobian (8.6).
As a consequence of the structure (8.6) of the Jacobian, it can be verified

that J(β)TJ(β) has the ‘arrow’ structure

J(β)TJ(β) =


× × · · · ×
× ×
... . . .
× ×

 , (8.10)
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and this structure is clearly preserved when adding a diagonal matrix to
J(β)TJ(β) . This structure is well suited for block inversion using the Schur
complement, as mentioned in Section 1.1.2, and is supposedly detected
automatically if done in Matlab. Exploiting this structure speeds up the
computations immensely, especially if N is large.

8.2.2 Choice of Initial Point
The Levenberg-Marquardt method requires an initial point β0 = (η0,Ξ0)
from which to start iterating. While the Levenberg-Marquardt method
is less sensitive to the choice of initial point than e.g. the Gauß-Newton
method, an initial point far away from the minimum will typically result
in slower convergence and perhaps also a worse minimum.

In many cases, the set of point correspondences to which we will ap-
ply the bundle adjustment will be taken as a consensus set generated by
using RANSAC with the 2.5-point solver from Chapter 7. The 2.5-point
solver gives a homography from which the generating parameters can be
determined using the SVD-based recovery method from Section 5.2, and
this gives a suitable choice of η0 . An easy method for initialising the vari-
ables in Ξ consists of using η0 to compute the transformation RT

ψθ to the
overhead view in Figure 4.4(b) and apply it to the points x∗j to get Ξ0 .
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Chapter 9

Closing Words

As we have seen in this thesis, solutions for camera-based SLAM draw
on theory and techniques from a wide range of areas, such as parameter
estimation (Chapter 1), projective geometry and multiple view geometry
(Chapter 2 and Chapter 3), and algebraic geometry (Chapter 7). Each of
these areas has an extensive and steadily growing body of literature, and
there definitely still remain many results and methods from these fields to
be applied, as well as a host of interesting problems to be investigated.

The approach and attitude in this thesis have generally been close to the
odometry methods, in that the focus has been on the local frame-to-frame
motion estimation rather than on improving global consistency by focusing
on the mapping part of SLAM. While it has been demonstrated in this
thesis and the underlying papers that the presented methods succeed at
estimating the motion, in order to actually make a fully working and useful
SLAM system, the mapping part should also be considered to some extent.

The extension of the iterative method for recovering the parameter
vector η , which was discussed in Section 6.4, enabled us to use more than
one homography to compute the tilt angles ψ and θ . It would be very
useful to have a non-iterative method – similar to the SVD-based method
in Section 5.2 – which could also be used on several homographies simul-
taneously.

Planar motion is a common and very useful assumption in mobile ro-
botics, because, as we explained in Chapter 4, it can be used to bound the
vertical positioning error over time and prevent scale drift. These benefits,
however, come at the cost of complexity. For example, the 2.5-point solver
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from Chapter 7, that was used to enforce the planar motion model at the
homography estimation stage, is significantly more complex than the con-
ventional methods for homography estimation.

In typical indoor environments, there are additional planar surfaces
which could be used for robot navigation, even though the robot is not
travelling parallel to all of them. To each such planar surface, there would
be an associated inter-image homography, and they would all have to be
compatible with the same epipolar geometry. An interesting direction of
future investigations would be to find methods for determining such ho-
mographies. This problem has already been studied to some extent, e.g.
in Zuliani, Kenney and Manjunath (2005), but it is only lately that the
joint consistency requirement has been given much attention (Szpak, Cho-
jnacki and van den Hengel, 2015), and there remains much to be done in
this area.
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