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ABSTRACT 

 

This PhD project belongs to the Computer Vision domain, more specifically, to the 

area of Three-Dimensional (3D) Vision. The 3D information of the surrounding environment 

perceived by human eyes is one of the most important kinds of information offered by sight. 

Thus, a large effort has been developed by the scientific community throughout time in the 

development of methods that make possible the acquisition of a scene (or object) using 

techniques of Computer Vision. 

In this Thesis, computational methods were developed and implemented to obtain 3D 

models of the human body from image sequences. The methods contain several stages, in 

which the image pixel information is transformed into 3D spatial coordinates. These images 

are acquired either by moving the camera or the object to be reconstructed, in order to obtain 

accurate 3D models without imposing severe restrictions, on either the movement involved or 

on the illumination conditions. 

The first method employed adopts the Stereo Vision approach, in which a depth map 

of scene objects is recovered. The second method is based on a volumetric approach for 

Shape-from-Silhouettes, which constructs a 3D shape estimate (known as Visual Hull) of an 

object using its calibrated silhouettes. The developed methodologies were assessed using 

static objects with dissimilar textures, shapes and sizes, including real human body structures. 

The Stereo Vision based method proved to perform better on objects with strong 

features, easy to extract and correctly match throughout the input image sequences. However, 

on objects with a smooth surface, with almost no colour or texture variation, an accurate 

detection and matching of strong features between image sequences was very difficult to 

attain. Consequently, the calculated epipolar geometry was incorrect, which led to disparity 

map of poor quality. 

For the second method, tests were performed using man-made objects and real human 

body parts. Generally, the method had no problem to reconstruct objects with smooth 

surfaces or with complicated morphology. The silhouettes do not need to be perfectly 

extracted due to the conservative quality of the method. However, this method puts some 

restrictions, such as backgrounds with low colour variation, suitable calibration apparatus and 

restrictions on the positions from which the images are acquired. 



 

 

  



RESUMO 

 

Esta Tese de Doutoramento insere-se na área da Visão Computacional; 

nomeadamente, no domínio da Visão Tridimensional (3D). Dados 3D sobre o meio ambiente 

é uma das mais importantes fontes de informação fornecidas pela visão humana. Assim 

sendo, tem-se assistido a um grande investimento por parte da comunidade científica, no 

desenvolvimento de metodologias computacionais para a obtenção da forma 3D de cenas (ou 

objetos) usando técnicas de Visão Computacional. 

No âmbito desta Tese, foram desenvolvidos e implementados métodos 

computacionais de construção de modelos 3D do corpo humano a partir de sequências de 

imagens. Os processos de reconstrução desenvolvidos são compostos por várias etapas, nas 

quais a informação de cada pixel das imagens é transformada em coordenadas espaciais 3D. 

As imagens são obtidas com movimento relativo entre a câmara e o objeto a reconstruir, e de 

forma a obter modelos 3D precisos, sem impor restrições severas, quer ao nível do 

movimento quer nas condições de iluminação. 

O primeiro método desenvolvido adota a estratégia de Visão Estéreo, na qual é 

recuperado um mapa de disparidade dos objetos numa cena. O segundo método é baseado 

numa versão volumétrica do método Shape-from-Silhouettes. Este método constrói uma 

forma 3D aproximada do objeto (conhecida por Envoltória Visual) usando as suas silhuetas 

previamente calibradas. Ambos os métodos desenvolvidos foram analisados e validados 

usando objetos estáticos, com diferentes texturas, formas e tamanhos, onde se incluíram 

estruturas reais do corpo humano. 

O método baseado em Visão Estéreo obteve melhores resultados em objetos com 

suficientes pontos característicos fortes, fáceis de extrair e emparelhar corretamente numa 

sequência de imagens. Contudo, nos objetos cujas superfícies apresentam transições suaves, 

ou com pouca variação de cor ou textura, a correta deteção e emparelhamento de pontos 

característicos entre imagens provou ser bastante difícil. Consequentemente, a geometria 

epipolar é incorretamente determinada, levando à obtenção de um mapa de disparidade de 

fraca qualidade. 

O segundo método foi analisado usando objetos fabricados e partes do corpo humano 

reais. Na maior parte dos casos, o método volumétrico obteve bons resultados mesmo em 



 

 

objetos sem pontos característicos fortes ou com morfologias complexas. As silhuetas obtidas 

não necessitaram de ser de elevada qualidade devido à propriedade conservativa do método 

volumétrico utilizado. No entanto, este método coloca algumas restrições, nomeadamente 

fundos com pouca variação de cor, métodos de calibração adequados e restringe as posições a 

partir das quais as imagens podem ser adquiridas. 
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  1 
1 Introduction 

In the last decades, as Computers and Imaging Devices became more powerful, 

attention is being focused on the building of high quality three-dimensional (3D) models. 3D 

models of real objects are used in a great variety of applications, ranging from cultural 

heritage, medical 3D imagery, forensic applications, architecture or entertainment. 

Although 3D models generated by computational systems have been an intensive and 

long-lasting research problem in the Graphics and Computer Vision scientific communities, 

fully automated building of 3D models is still a non-trivial task. 

The main objective of this Thesis was to address the automatic image-based 3D 

reconstruction of objects, in particular, external anatomical structures of the human body 

without severe restrictions on the image acquisition setup. 

One of the key challenges for 3D content production is to build visually realistic 

models of humans. Since the scientific field of Computer Vision is concerned with 

developing computational theories and methods for automatic extraction of useful 

information from images, it offers the opportunity to build these 3D models directly from 

real-world scenes with visual realism and accuracy, but many difficulties still to be 

overcome. 
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This Thesis presents and discusses methods for attaining the 3D shape reconstruction 

of human body parts from images. The used images can be acquired either by using several 

cameras at the same time or just one camera at different locations. 

 

1.1 Motivations and objectives 

Despite the number of successful applications for 3D reconstruction of human body 

parts, the construction of a fully automated system remains unobtainable. Main reason for the 

ill-posed problem that is visual 3D reconstruction is its inverse formulation: it tries to 

describe a 3D object projected into one or more 2D images and to reconstruct its properties, 

such as shape and texture. 

The image-based reconstruction process involves several steps, and some of these are 

not yet fully automated or reliable for the generation of accurate 3D models. Among these, 

the automated markerless estimation of the camera’s pose is one of the most attractive and 

complex research topics in Computer Vision. Nowadays, human interaction is often required, 

for manual measurements or when using markers or targets. 

Furthermore, obtaining an accurate 3D geometric human model that can be used to 

synthesise realistic novel views of an object is highly desirable in many areas, mainly in 

Medicine and Engineering, which motivates the continually searching for computational 

methods to attain such the 3D realistic models in an efficient manner. Moreover, the 

geometry of human anatomical structures is very complex and accurate 3D reconstruction is 

important for morphological studies, finite element analysis and rapid prototyping which are 

common practices in several fields. Although magnetic resonance imaging, computed 

tomography and laser scanners can be used for reconstructing biological structures, the cost 

of the equipment is fairly high and specialised technicians are required to operate the 

equipment, making such approaches limiting in terms of accessibility. 

Thus, the ultimate goals of this research were to develop, implement and compare 

methods for full 3D reconstruction of human external structures from images, addressing 

some important requirements, such as ease of use, cost effectiveness, flexibility and 

reliability, mainly in the steps concerning the camera calibration and the 3D information 

determination. Additionally, an overall automated process for the 3D shape reconstruction of 

human body parts should be attained. Hence, this Thesis carried out with the following main 

objectives: 
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1. investigate if automated markerless camera pose estimation is feasible and 

under which conditions; 

2. study the possibility of recovering complete and detailed 3D models of 

complex objects using fully automated procedures; 

3. explore which kind of (3D) information can be retrieved from acquired 

images; 

4. study the capabilities and limits of image-based methods in dealing with 

uncalibrated images; 

5. comparison between the developed and implemented 3D reconstruction 

methods, with the identification of the advantages and drawbacks of each one. 

On an initial stage of this Thesis, the stereo reconstruction method was studied in 

detail. This method is based on stereo reconstruction, in which the relative orientation of two 

images is determined by the epipolar geometry, and then the object can be reconstructed up to 

a spatial similarity transformation if the images are calibrated or up to a 3D projective 

transformation if the images are not. 

Due to the requirements and limitations of the stereo reconstruction method to address 

objects with lack of texture, on a second step of this Thesis, volumetric reconstruction 

methods were studied exhaustively. Typically, the volumetric reconstruction approaches 

assume a discrete and bounded 3D space containing the object to be reconstructed. In this 

Thesis, the initial reconstruction volume is divided into voxels and the task is to correctly 

classify the set of voxels that represent the object involved. The algorithm developed and 

implemented during this Thesis requires a set of calibrated input images, which was achieved 

by an off-line method: Zhang’s camera calibration. The algorithm also requires some 

additional classification of the pixels into background and foreground classes: image 

segmentation. 

 

1.2 Major contributions 

This Thesis sets out to solve an ill-posed problem in an effective, cost-saving and 

practical manner. Hence, it addresses the several difficulties in the development and 
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implementation of 3D human shape acquisition methods, and presents and evaluates solutions 

for such problems. 

The main contributions of this Thesis are the following: 

 development and evaluation of the 3D reconstruction method based on stereo 

vision, with analysis of its major advantages and drawbacks; 

 development and evaluation of a volumetric method for 3D reconstruction, with 

analysis of its major advantages and drawbacks; 

 new hierarchical representation of the 3D space via based on an octree data 

structure implementation, allowing for a more efficient 3D volumetric 

reconstruction, both in terms of computation time and memory space; 

 combination of silhouettes and texture information, providing for a further 

refinement of the obtained 3D model from volumetric methods, in which the 

texture information is introduced as a final consistency check for all surface 

voxels of the octree model; 

 development and implementation of new photo-consistent testing method based 

on both statistical analysis of the voxel projection and voxel visibility; 

 automatic initial bounding box determination for the volumetric reconstruction 

method, allowing for an automated visual hull computation and a faster 

approximation of the initial 3D volume with the real 3D object shape;  

 implementation of the Zhang’s method for camera calibration into two separate 

steps, allowing an independent and more accurate determination of the intrinsic 

and extrinsic parameters; 

 development of a new chessboard calibration pattern, allowing for a correct and 

automated estimation of the calibration pattern orientation; 

 revision and comparison of unsupervised image segmentation methods based on 

skin colour detection; 

 development and implementation of an image segmentation method that 

combined both skin colour and contour information, in which the skin-coloured 

regions are processed using the homogeneity property of the human external 

shapes reducing many false negative and positive skin extraction; assessment of 
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the obtained experimental results from both implemented 3D reconstruction 

methods; 

 detailed assessment of 3D models obtained using both implemented 3D 

reconstruction methods; 

 critical evaluation of the experimental results obtained using the volumetric 

method, comparing them with ground truth data when available or with 3D 

models built using a commercial laser scanner; 

 determination of some subjective (e.g. texture colour, shape) and analytical 

characteristics from a voxelized 3D model (e.g. volume, size); 

 publication of the following articles, whether in scientific journals or conferences, 

in order to disseminate the work achieved during this project: [Azevedo, 2008b], 

[Azevedo, 2008a], [Azevedo, 2009], [Azevedo, 2010]. 

 

1.3 Outline of the Thesis 

After this introduction, in Chapter 2 the existing methods for 3D reconstruction, 

particularly designed for human anatomical structures, are reviewed. This Chapter assumes 

particular importance as it presents the theoretical fundaments and framework in 3D 

reconstruction from images. An attempt was made at reporting the most important and 

promising methods available at the moment for human 3D reconstruction. 

Chapter 3 discusses the problem of camera calibration, which allows modelling the 

transformation between 3D world points onto their projections onto a 2D image plane. 

Initially, we present the general concepts on the image formation model and coordinate 

transformations imposed by a camera. Subsequently, we present some of the most commonly 

used calibration methods, by classifying them into traditional and auto-calibration methods, 

with an accent on Zhang’s calibration method, used on the developed volumetric 

reconstruction method. 

The first stereo-based reconstruction method developed in this Thesis is reported on 

Chapter 4. The main steps involved in the stereo reconstruction are: extraction and matching 

of feature points, epipolar geometry computation, rectification of the stereo image pairs and 

dense matching. These steps are described and discussed in this Chapter. Chapter 4 also 
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describes the developed volumetric-based reconstruction method. Based on Shape-From-

Silhouettes (SFS) methods, we use a multi-resolution representation of the world space based 

on octal decomposition of a 3D voxel set. Optionally, we combine visual-hull with photo-hull 

computation, allowing for the generated 3D models to be refined using photo-consistency 

tests. 

For both implemented reconstruction methods, some qualitative and quantitative 

results are presented and discussed on Chapter 6. 

Finally, Chapter 7 draws the main conclusions and discusses ideas of possible future 

works. 
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2 
2 3D Reconstruction 

2.1 Introduction 

In the 1950s, digital computers became available in research laboratories to process 

various types of data. By the mid 1950s, it was understood that computers could be used to 

process digital images. Earliest computer applications on digitized images were simple image 

processing methods, like image enhancement or image restoration [Rosenfeld, 2001]. 

First researches on Computer Vision began in the late 1960s, with images of scenes 

containing simple geometrical objects (the “blocks world”). The first PhD Thesis on this 

subject was in 1963, [Roberts, 1963]. However, it was only in the 1980s, with the Marr’s 

paradigm [Marr, 1982], that the scientific community finally started to give prominence to 

Computer Vision research. 

Computer Vision is very similar to biological vision, where visual stimuli are 

transformed into visual perception. In biological vision, human and animal visual perception 

is studied, resulting in models of how these systems operate in terms of physiological 

processes. Analogously, Computer Vision conceives artificial vision systems, which are 

implemented in software and/or hardware. Knowledge exchange between biology and 

Computer Vision has proven to be extremely fruitful for both fields [Fischler, 1987]. 
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In 3D computational reconstruction, the input data can be acquired by several means, 

such as image cameras or scanner devices. Since most 3D Computer Vision algorithms 

require considerable computational and imaging resources, there is always a trade-off 

between hardware, software, processing speed, accuracy and realism of the results. 

In the last decades, the explosive growth in computer’s processing power and memory 

storage and its continuously reducing price, has enabled the common use of 3D Computer 

Vision solutions in a variety of application fields: 

 Security systems, Fig. 2.1a: for instance, in visual surveillance (e.g. [Suresh, 

2007], [Haering, 2008], [Grabner, 2010]), to detect human actions (e.g. 

[Bouchrika, 2007], [Hofmann, 2012], [Tran, 2012]) or even for people 

identification, etc. 

 Recognition: identification of objects or features present in images, like faces 

(e.g., [Chen, 2007], [Lin, 2011], [Harvey, 2012]) or pedestrians (e.g. [Conci, 

2009], [Holley, 2009], [Lindner, 2012], [Andriluka, 2010]); 

 Industry, Fig. 2.1b: for instance, in non-destructive quality and integrity 

inspection, on-line measurements and production line control; 

 Navigation systems, Fig. 2.1c: for example, in autonomous robot navigation (e.g. 

[Do, 2005], [Mishra, 2011]), obstacle detection or traffic analysis (e.g. [Bertozzi, 

2012], [Meier, 2012]); 

 Virtual reality, Fig. 2.1d: such as to build virtual actors, objects or environments, 

and augmented/mixed reality (e.g. [Zuo, 2011], [Corral-Soto, 2012]); 

 Medical imaging, Fig. 2.1e: for example, in anthropometric studies, detection of 

tumours or other malformations, design and manufacturing of prosthetic devices 

and surgery planning (e.g. [Qiang, 2007], [Jacobs, 2011], [Wang, 2012]); 

 Architecture/archaeology, Fig. 2.1f: as for 3D architectural modelling and 

reproduction of archaeological artefacts (e.g. [Fassi, 2007], [Kleber, 2009], 

[Paliokas, 2010]). 

The available methods for 3D reconstruction of objects are usually classified into 

contact or non-contact methods [Cheng, 1998], Fig. 2.2. 
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Fig. 2.1 – Some industrial applications of 3D Computer Vision: (a) ExitSentry – airport security 
[ExitSentry, 2012]; (b) Cognitens WLS400 – industrial 3D inspection [Cognitens, 2012]; 

(c) Flexiroad – traffic analysis [Flexiroad, 2012]; (d) Virtual Iraq/Afghanistan – 
virtual reality [Virtual, 2012]; (e) ClaroNav – surgery planning 

[ClaroNav, 2012]; (f) PhotoModeler – architectural 
modelling [PhotoModeler, 2012]. 
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Fig. 2.2 – Usual classification of 3D reconstruction methods. 

 

Contact-based methods probe the object to be reconstructed through physical touch, 

Fig. 2.3. They can achieve high accuracy rates and are suitable for a wide range of 

applications. However, as these methods involve mechanical movement from one 

measurement point to the next, they collect a sparse data set from the object to be 

reconstructed making possible the unmeasured of relevant regions. Also, the act of scanning 

an object by touching can modify its shape or even originate damages, in particular, if the 

objects are soft and delicate. 

Nowadays, a 3D model can also be obtained by using non-contact optical methods, 

which are usually divided into two main groups [Seitz, 1999]: 

1. Active: methods that use the projection of some sort of energy (such as structured 

light or ultra-sounds) or motion between the object and the imaging system, Fig. 

2.4; 

2. Passive: methods that do not require energy projection or relative motion and 

work under ambient illumination. 

Most common non-contact methods use image data, range sensors or a combination 

of both. Image-based methods are widely used; in particular, for industrial applications, 

architectural objects or for precise terrain and city modelling. These methods need that 

relevant features can be identified in the input images, which sometimes is impossible due to 

occlusion cases, lack of texture or significant features on the objects’ surfaces [Grün, 2003; 

Remondino, 2006]. 
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Fig. 2.3 – Examples of contact systems used for the 3D reconstruction of objects. From left to right: 

[FaroArm, 2007], [MDX-15/20, 2007] and [Dimension, 2008]. 

 

 
Fig. 2.4 – Examples of non-contact active systems used for the 3D reconstruction of objects. 

From left to right: [LaserScanArm, 2007], [FaceSCAN3D, 2012] 
and [Cyberware, 2007]. 

 

Range sensors acquire distance measurements from a well-known reference 

coordinate system to points of the object to be reconstructed. They are very common when 

highly detailed models are required and are already used in industry (e.g., for design, quality 

control and rapid prototyping), for documentation of buildings and landscapes or for the 

recording of objects in archaeology and cultural heritage [Böhler, 2004]. However, they are 

costly (at least for now), spatially limited, most of the systems available do not provide 

colour information about the reconstructed objects and the resulting 3D models’ quality can 

be affected by the reflective characteristics of the reconstructed objects’ surfaces 

[Remondino, 2006]. Strongly reflective or translucent objects often violate assumptions 

crucial for the success of range-based scanners, requiring additional solutions to obtain the 

3D models for such problematic objects. 

Main difference between image- and range-based methods is that, when using image 

data, it is necessary to have a mathematical model to derive the object 3D coordinates, which 

can be sometimes a complex problem to solve [Remondino, 2005]. Building 3D models using 

range methods is simpler, because the range data acquired already contains the 3D 

coordinates needed for the 3D reconstruction. 
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2.2 Methods for Human 3D Reconstruction 

The 3D geometric reconstruction of the human body was initially considered  in the 

automotive and aeronautics industry, namely for ergonomic purposes [Thalmann, 1993]. 

Used models consisted of a simple articulated skeleton to define human pose, with the 

body being represented using simple geometric primitives, such as cylinders, parallelepipeds 

or spheres [Dooley, 1982]. Currently, 3D models of the human body are much more realistic 

and of great interest in a wider variety of application fields, Fig. 2.5, such as: 

 cinematographic industry: combination of photographic imagery of people with 

rendered 3D environments or background imagery (e.g. [Einarsson, 2006]), 

animated digital actors (e.g. [Alexander, 2010]) or morphing effects (e.g. 

[Andersen, 2004]); 

 clothing industry: virtual fitting (e.g. [Zuo, 2011]), or assist the garment design 

(e.g. [Liu, 2010]); 

 biomedical applications: 3D models for image-guided surgery or surgery planning 

(e.g. [Yunfeng, 2010], [Wang, 2012]), biological systems modelling (e.g. [Jumadi, 

2012]), body asymmetries (e.g. [Atkinson, 2010], [Milczarski, 2011]); 

 biomechanics: rehabilitative engineering (e.g. [Sousa, 2007], [Teodoro, 2009]), 

occupational model simulation (e.g. [Sahai, 2010]), injuries and impacts on sport 

activities (e.g. [Machado, 2009], [Carroll, 2011]). 

Human reconstruction from images is inspired by the need to provide such models 

with a photo-realistic appearance obtained from images of real people or body parts. Next 

section provides an overview of human reconstruction solutions and methods. 

 

2.2.1 Contact methods 

Contact methods mean the use of some kind of devices that are in touch with parts of 

the human body. Main disadvantage of these methods is that, because the device must be in 

touch with the skin, some deviation in the results could appear because of the mechanical 

contact. 



3D Reconstruction 

13 

 
Fig. 2.5 – Examples of nowadays 3D human models and applications 

(from [D’Apuzzo, 2012]). 

 

 
Fig. 2.6 – Three examples of anthropometric devices, from left to right: anthropometer 

(from [Lafayette, 2007]), calliper (from [NextGen, 2007]) and head tape 
measure (from [SECA, 2007]). 

 

a) Anthropometric devices 

Anthropometric devices are simple mechanical instruments still being utilized to 

measure the human body at particular regions. Some examples are the calliper, the 

anthropometer, the sliding compass or the tape measure, Fig. 2.6. Although simple and of low 

cost, with this kind of instrument it is only possible to measure the length of a cross-section 

of a limb. 

 

b) Shape tape 

A tape device is a wearable flexible ribbon with optical fibres and tensors, which can 

detect 3D bending and twisting movements, Fig. 2.7. Output signals from the tape sensors 

array can be used to build a computational 3D real-time model of a shape. The array of 

sensors obtains its position relative to a fixed origin point defined on the tape and can be used 

with static or dynamic shapes, including curves and twists [Naik, 2002]. 
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Fig. 2.7 – Examples of 3D models built using Shape Tape™ (from [ShapeTape™, 2007]). 

 

One main advantage of shape tapes is their ability to be dynamically used. In fact, a 

person does not need to be standing in a fixed position, and it is possible, for example, to 

measure the shape of a limb in different kind of positions or even in motion. 

However, to make a full body geometric model, it is required to cover the whole body 

skin with shape tapes. Thus, the more complex is the shape of the object to be reconstructed, 

more difficult it will be to reach all its specific points using the shape tape [Kalkhoven, 

2003]. 

 

c) Articulated arm digitizer 

Articulated arm digitizers are robot-looking devices, usually mounted on a relatively 

heavy base, with articulated joints that allow movement in any direction. Each joint has a 

sensor to know the associated angle; the combination of sensors throughout the arm structure 

allows it to register the position of the tip of the arm in the space. The 3D coordinates 

measured are feed via a serial interface into a computer, which builds the object 3D 

geometrical mesh, Fig. 2.8. The actual position of the tip of the external arm is computed by 

goniometry, which measures the angles between the digitizer arms at the joints. 

A problem with this type of devices is the large space that is usually required to 

operate the moving arm. It is not very easy to reach all points of the object as well, because 

sometimes they are covered or inaccessible, and therefore, cannot be reached by the probe. 

Another limitation of the articulated arm digitizer is that it can only digitize a limited volume, 

meaning they are most suited for small- to medium-sized objects, but not for large objects. 

Thus, they are usually used to build models of body parts, and not in full body 3D 

reconstruction. 
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Fig. 2.8 – From left to right: an 3D arm digitizer, capturing a human lumbar vertebra 

using a digitizer device and the spine volume rendered from the 
digitized data (adapted from [Lee, 2002]). 

 

 
Fig. 2.9 – On the left: FARO Laser ScanArm [ScanArm, 2012]. On the right, 3D bone modelling 

using the laser scanning capability of an articulated arm digitizer (from [Harris, 2011]). 

 

Another problem is that these devices must touch the object to be reconstructed, 

which, in the case of human body reconstruction, may cause deviations in the measures 

obtained because the flexibility of the tissue [Kalkhoven, 2003]. 

Main advantages of these systems are their portability, simplicity of use and, mainly, 

their good precision – they usually achieve precisions under 0.04 mm (see, for example, the 

specifications of two widely used arms, [ScanArm, 2012] and [AbsoluteArm, 2012]). 

Nowadays, several commercial articulated arms have integrated laser scanners, which 

enable hard-probe measuring of simple point variations, then laser scanning sections for 

larger volumes of data, Fig. 2.9. 
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2.2.2 Range-based methods 

As stated before, range or depth maps are a collection of distance measurements from 

a known reference coordinate system to surface points on the object to be reconstructed. 

Usually, high quality 3D models of a static human body are obtained using commercial 

scanners (range systems), that are generally expensive, but fast and accurate. Main 

contribution factors for the success of range-based methods are their precision and the wide 

variety of available software packages to process the acquired data, build the 3D models and 

determine characteristic measures. 

The 1960’s saw the introduction of new scanning technologies, which revolutionized 

the 3D human model reconstruction. Initial scanning devices were only able to capture one 

side of the body at a time, until 1985 when Magnant, [Magnant, 1985], developed a system 

that completely surrounded the body [Simmons, 2003]. The last two decades have seen 

significant improvements in scanning technologies. Several companies currently manufacture 

3D scanners (e.g. [FaceSCAN3D, 2012], [BodySCAN3D, 2012], [FastScan™, 2012], [Mega-

Capturor, 2012], [Anthroscan, 2012], among many others), each utilizing somewhat different 

scanning techniques, capturing a distinct number of data points and producing slightly 

different results. As the cost of scanning technologies begins to decline, research using 3D 

scanners is becoming more accessible to both universities and industry. 

To create a full 3D model that includes all parts of an object, the 3D scanner must first 

capture 3D scans of an object from several directions. Once all parts are captured, the next 

step is to merge the obtained 3D meshes together to form a 3D model, Fig. 2.10. There is 

some software that can merge the scans directly. However, the process of acquiring 3D scans 

and later merging and aligning them to create a polygon mesh involves time and requires 

some practice [Tocheri, 2009]. When scanning the full human body, it may occurs the case 

where the mesh alignment process needs to be achieved manually, due to strong occlusions 

on the obtained 3D meshes, Fig. 2.11. 

Another solution is to use a rotary table system (also known as turntable), which 

automates the process of performing multiple scans of an object and automatically aligns and 

merges the 3D scans together to form a 360° model. This device works with the 3D scanner 

to reduce 3D scanning and processing time. The rotary table device usually imposes size and 

weight restrictions on the object to be scanned. 
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Fig. 2.10 – On the left, two of the many 3D meshes obtained of an orthopedical boot. 

In the middle, automatic fusion result obtained using the DAVID Shapefusion 
software [DAVID, 2012]. On the left, the final 3D closed geometry 

(from [Pinto, 2011]). 

 

 
Fig. 2.11 – Manually rendered combination of frontal and back views of a swimmer (from [Tavares, 2008]). 

Several difficulties to obtain a closed 3D surface were related to the colour 
of the swim suits, which are usually very dark. 

 

Another way to automate the process of 3D scanning is to use a 3D scanner that has 

multiple scan heads (an example is the system on Fig. 2.12). Each scan head takes 3D scans 

in a different direction so the user does not need to rotate the object. This configuration is 

good for controlling multiple scan heads connected to a single computer to maximize object 

coverage. It is especially useful for scanning an object that requires a fast scanning speed 

such as scanning the human body. This option is more expensive and has a more complex 

setup. 
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Fig. 2.12 – Textured 3D model built using the structured light system MegaCapturer 

from Creaform ([Mega-Capturor, 2012]). 

 

A third way to speed up the reconstruction process is to automate the alignment of 3D 

scanned data. This process is usually called photogrammetry data alignment based on 

markers, Fig. 2.13. The markers can be placed either on the object or on the surface the object 

rests on. After scanning the object and generating a mesh, the scanner software searches for 

the markers and attempts to align them with the previous scan. There are two ways to place 

the markers: 

 direct placement over the object; 

 indirect placement on the surface where the object is placed. 

The indirect approach allows getting more details from the object because no section 

is covered by markers, and it is suitable for objects with textures were direct marker 

placement will not work. But, in order to be reliable, it requires that the object remains static 

relative to the markers. If the object needs to be moved, then the all surface were it is placed 

on must be moved as well. 

This leads to the inability to scan the object section directly in contact with the 

underlying surface without starting a new mesh in which the object is moved to a new 

position. After this, the several meshes obtained must be aligned to build the final model 

using a mesh alignment algorithm. 
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Fig. 2.13 – On the left, dental model being scanned using the structured light system HDI 3D Scanner 

from 3D3Solutions, [3D-Scanner, 2012], with markers placed on top of 
the table to facilitate the 3D scanned data alignment. 

On the right, the 3D model built. 

 

 
Fig. 2.14 – The laser scanning system Anthroscan (on the left), [Anthroscan, 2012], from 

Human-Solutions, and an obtained 3D model (on the right). 

 

Laser scanning, Fig. 2.14, and structured light, Fig. 2.12, are the range-based methods 

most widely used to build 3D models of the human body. 

Several studies can be found regarding laser scanning methods for human body 3D 

reconstruction. Many of these studies compare the manual anthropometric measures to the 

ones obtained from the acquired images (e.g., [Kovacs, 2006], [Park, 2006], [Chiari, 2008]). 

Other works develop strategies to overcome some common drawbacks in body modelling 

from images. For example, in [Brunsman, 1997], an experiment was conducted to determine 

optimal scanning positions; in [Xi, 2007], a morphable human body model was built from a 

dataset of 3D scanned surfaces, which is often a problem because of incompleteness on the 
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built surfaces and due to variances in shape, size and pose, that complicate the matching 

process between surfaces. Noisy point clouds obtained from a laser line scanner are smoothed 

and existing holes due to occlusion, bad reflectance and body movements effects are reduced 

using a spatial gray model to predict the unknown points in [Zhu, 2010]. 

Many other solutions were developed for building 3D models for specific human 

body parts, as in [Byrne, 2007], where 3D laser scanning was used to aid in the creation of a 

surgical guide, or in [Singare, 2010], where a laser scanner was used to capture the 

morphology of a human ear and reconstruct the cast digitally and then physically by rapid 

prototyping. 

Works that use structured light reconstruction methods often emphasize the relatively 

simple hardware used, reduced scanning time and the fast algorithms involved [Čarnický, 

2006]. Moreover, being based on simple light projection, structured light scanners do not 

have an inherent safety issue like laser scanners have, especially eye-safety danger. 

Most structured light systems are named white light scanners because the light coding 

system is simply based on monochromatic (mostly, white) light. Other works use more 

complex structured light methods. For example, phase shifting is a time multiplexing strategy 

by projecting periodic light patterns (e.g. [Tavares, 2008], [Pribanić, 2010], [Wang, 2011]), 

Fig. 2.15. The fringe projection is a single-frame method which can cope with dynamical 

events, but the post-processing necessary to attain accurate results can be too intensive to be 

considered interesting in real-time applications. Other systems use time-shifted colour striped 

patterns in order to obtain high-resolution models of static scenes (e.g. [Yu, 2010]). 

Several techniques for 3D scanning by structured light are currently available and 

reviewed in detail in [Geng, 2011]. 

For all range-based methods for 3D reconstruction, acquisition time depends on the 

object’s size and used hardware and software, during which the object being reconstructed 

must remain stationary. Thus, it is difficult to obtain stable results as humans always move 

slightly during the data acquisition (e.g. [Calabrese, 2007]). Other drawbacks of these 

systems are missing data points, where the laser or projected pattern is occluded, Fig. 2.11, 

and erroneous data due to specularities (e.g. [Forsyth, 2003], [Zhu, 2010]). 
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Fig. 2.15 – On the top, a phase-shifting 3D reconstruction system that uses a white light projector and 

an image camera. On the bottom, two images from a dental model with the projected 
stripes and the 3D model obtained for the same. 

 

Although not so common for human 3D reconstruction, there are others range-based 

methods. For example, time-of-flight scanners use a signal transmitter and a receiver to 

measure the time of flight of the signal during his round trip from the range sensor to the 

object surface. Time-of-flight systems are compact devices, less expensive than most 

commercial 3D scanner systems and are able to provide for real-time distance acquisition 

[Kolb, 2009]. 

A second approach for range-based methods is based on light coding, projecting a 

known infrared pattern onto the scene and determining depth based on the pattern’s 

deformation. 
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Fig. 2.16 – Microsoft Kinect sensor: a) Kinect is a device which combines an RGB camera and a 3D scanner, 

consisting of an infrared (IR) projector and an IR camera (from [Zollhöfer, 2011]); b) and c) are the 
raw data obtained from Kinect, a depth map and a colour image, 

respectively (from [Weise, 2011]). 

 

 
Fig. 2.17 – Algorithm overview of the 3D reconstruction algorithm proposed in [Tong, 2012]: a rough mesh 

template is constructed and used to deform successive frames pairwisely; then, global 
alignment is performed to distribute errors in the deformation space. 

 

A newly, and very popular, device is the Microsoft Kinect sensor [Kinect, 2012], Fig. 

2.16, which is much more inexpensive than time-of-flight sensors. Some researchers have 

tried to use Kinect as 3D scanner (e.g. [Henry, 2010], [Izadi, 2011]), but few have still used it 

to capture human full body or body parts. In [Zollhöfer, 2011] a personalized avatar is 

computed from a single RGB image and its corresponding depth map, both obtained from 

Kinect. In the work described in [Weise, 2011] the dynamics of facial expressions are 

captured and tracked in real-time and then mapped to a digital character. 

For full body 3D reconstruction, the main problem with the Kinect device is that it has 

a comparably low X/Y resolution and depth accuracy. To scan a full human shape, the device 

must be placed around 3 meters away from the person, and the resolution is relatively low. 

Nevertheless, using the information of multiple frames, as in [Cui, 2011], or using a 3D 

model of a human body, like in [Weiss, 2011], or finally by capturing data from several 

Kinect sensors, as in [Tong, 2012], final resolution can be enhanced, Fig. 2.17. 
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Fig. 2.18 – A rim and occluding contour under perspective projection: the 3D point, P, 

is constrained to be on the back-projection ray going through its image 
point, p, and the camera optical centre, O. 

 

2.2.3 Image-based methods 

Other usual 3D static human reconstruction methods are image-based. They are an 

easy, inexpensive and flexible approach, based on image measurements. The required images 

can be acquired using video or image cameras, which presently can be acquired at low cost 

and are relatively robust acquisition systems. 

 

a) Silhouette extraction 

Considering an object with a smooth surface and camera’s perspective projection, a 

silhouette, or occluding contour, is the rim’s projection onto the image plane. A rim is the 

locus of points on the object’s surface where the normal vector, n , is perpendicular to the 

viewing direction, v , Fig. 2.18. 

Silhouettes in 2D images directly reflect the 3D shape of the acquired object. 

Obtaining continuous silhouette from input images is usually a computationally simple task if 

the images are acquired in a controlled environment. However, it is a very challenging task to 

apply silhouette-based reconstruction methods in uncontrolled or outdoor environments, 

where occlusions may occur [Guan, 2007]. A 3D model is built by intersecting the visual 

cones generated by the silhouettes and the projection centres of each image, Fig. 2.19. This 

3D model is denominated visual hull [Laurentini, 1994], a locally convex over-approximation 

of the volume occupied by an object. 
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Fig. 2.19 – Visual hull defined by two different viewpoints. 

 

 
Fig. 2.20 – Silhouette-based reconstruction of a human body (from [Takahashi, 2006]). 

On the top: on the left, background image; on the middle, input image; on the right, 
segmentation result by background subtraction on the input image. 

On the bottom: 3D reconstruction from silhouette images. 

 

One important property of visual hull is the conservation constraint [Laurentini, 

1994], meaning that the actual object shape is always contained inside the visual hull. Thus, 

shape-from-silhouette methods are widely used to provide a coarse 3D shape estimate, which 

can serve as an initialization for more sophisticated 3D shape reconstruction algorithms, like 

in [Faugeras, 1999], for example. 

For the reconstruction of human 3D models, the images are usually acquired around a 

static person, Fig. 2.20. Then, image segmentation is performed in order to obtain the human 

body silhouettes. 
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Fig. 2.21 – From left to right: visual hulls of a human body, built from 

2, 4 and 6 viewpoints (adapted from [Franco, 2006]). 

 

Some examples of work on 3D human body reconstruction using silhouettes can be 

found, for example, in [Franco, 2005], [Takahashi, 2006], [Ladikos, 2008], [Zabulis, 2010], 

[Feldmann, 2010], [Monaghan, 2011] or [Kolev, 2012]. 

As aforementioned, recovering the shape of an object from silhouette images suffers 

from the limitation that the visual hull can be a very coarse approximation when there are 

only a few silhouette images available, especially for objects with complex shapes, like the 

human body, Fig. 2.21. 

Better shape estimates can be obtained if the number of distinct silhouette images is 

increased: using the across space approach, by increasing the number of physical cameras 

used, or the across time approach that increases the number of silhouettes by acquiring a 

higher number of images from each camera over time (while the object is moving) [Cheung, 

2005]. Typical across time approaches are shape from rotation (e.g.[Fitzgibbon, 1998], 

[Mendonça, 2001] and [Hernández, 2007]): placing the object to reconstruct on a turntable 

device, the motion is known in advance. 

Shape-from-silhouettes methods fall in roughly two categories: surface-based and 

volumetric methods [Kutulakos, 1997]. 

Surface-based methods compute local surface shape by establishing correspondences 

between the visual cones. They pose several difficulties, like: 

 guaranteeing the validity of curve correspondence across frames, even for simple 

object shapes, e.g. [Zhao, 1994]; 

 detecting and handling degenerated cases, like when the surface is flat or has 

creases, e.g. [Zheng, 1994]; 
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Fig. 2.22 – Relation between photo and visual hull: 

real object   photo hull   visual hull. 

 

 handling dense image sequences, because optical rays through corresponding 

curves can become coincident [Kutulakos, 1997]. 

These aforesaid difficulties usually associated to surface-based methods led to the 

development of volumetric approaches, which represent the visual hull by 3D volume 

elements (voxels or 3D pixels) rather than 2D surface patches. The first work to propose 

representing the visual hull through voxels was [Massone, 1985]. The space of interest is 

divided into discrete voxels, which are then classified into two categories: inside and outside. 

The union of all the inside voxels is an approximation of the visual hull. 

Even though volumetric reconstruction does not involve curve tracking and produces 

a global object description, they raise two additional issues: 

 the difficulty of computing volume intersections has motivated voxel-based 

representations of space shape, that limits the reconstruction accuracy to the size 

of individual voxels, e.g. [Szeliski, 1993]; 

 volumetric methods cannot recover the shape of regions that project into occluded 

contours, and consequently, are not part of the silhouette, e.g. [Cipolla, 1992]. 

Volumetric methods evolved in a way to test if each voxel belongs to the object of 

interest by using photo-consistency tests. The Space Carving reconstruction method was 

presented in [Kutulatos, 1998]. With this method, the resulting 3D model is the photo hull, 

defined as the biggest volume of voxels that is photo-consistent with all viewpoints, Fig. 

2.22. Photo-consistency is checked statistically: a voxel is considered consistent if the mean 

deviation of the pixels’ colour, which results from the voxel image projection, is under a 

predefined threshold. 
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Fig. 2.23 – Multi-view geometry: given the correspondences between pixels pi, i.e., the ones that are 

the projections of the same 3D point P, this last one can be reconstructed by intersecting the 
optical rays that pass through the camera centres and corresponding image points. 

 

b) Multi-view geometry 

Multi-view geometry consists on reconstructing the 3D shape of an object from 

correspondences on a sequence of images, acquired from different viewpoints. They are 

based on searching for the correspondence between image points to infer about the 3D 

position in a scene from the image plane locations, Fig. 2.23. Hence, these methods are also 

known as photogrammetric methods. Multi-view geometry is considered an evolution of 

stereo-based methods, where only two images were used: first, correspondences between 

points in both images were established (matching) and then their position in 3D space was 

determined by triangulation [Hartley, 1995]. An example on how this method builds a 3D 

model of the human body, can be found in [Remondino, 2004], Fig. 2.24. 

The use of off-the-shelf cameras for accurate photogrammetric applications is 

reported in several works, such as in [Chandler, 2005], where the potential of low-cost digital 

cameras for close range 3D reconstruction using feature-based matching methods is 

examined. 

Reconstruction methods based on multi-view geometry may suffer from difficulties 

on finding interest points and/or matching them along the input image sequences [Hartley, 

2004]. First, if the object to reconstruct has a smooth surface or low texture, the extraction of 

interest points may be incorrect since the local appearance is uniform within the 

neighbourhood of each candidate point. Secondly, matching correspondence cannot be 

established by just comparing local image statistics, unless the object has a Lambertian 

surface; that is, its appearance does not change with the viewpoint. Finally, occlusions in the 

scene make the correspondence between images ambiguous or even impossible. 
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Fig. 2.24 – On the top: five images from an original sequence. On the bottom: on the left, recovered camera 

positions and objects coordinates; on the middle, 3D point cloud of the human body; on the right, 
relative visualization with pixel intensity (from [Remondino, 2004]). 

 

 
Fig. 2.25 – Examples of inadequate 3D face surface reconstruction using the stereo photogrammetric system 

3dMDCranial [3dMDcranial, 2012]: poor ear coverage occurred due to the angle at which the person 
was facing relative to the camera, a) and b), due to interference from scalp hair, c) and d), 

or due to the intricacy of the human external ear, e) and f) (from [Heike, 2010]). 

 

All the difficulties aforementioned are frequently perceptible in images of humans, 

Fig. 2.25: clothing can have a lack of significant local variation in their appearance or present 

a repeated pattern, articulation of the body which leads to self-occlusions, clothing or skin 

exhibits a non-uniform view-dependent appearance and capturing hair can cause interference 

on the results obtained. 



3D Reconstruction 

29 

 
Fig. 2.26 – Breast 3D data acquired using the 3dMDTorso system 

based on random light projection [3dMDtorso, 2012]. 

 

To overcome these problems, variations to the original method have appeared. The 

most common variation is to use stereo-photogrammetry, Fig. 2.26, where the human body is 

marked with artificial fiducials (e.g. points) in order to obtain accurate matches (e.g. 

[D'Apuzzo, 2002], [Deli, 2009], [Yu, 2010], [PhotoModeler, 2012], [3dMDtorso, 2012]). 

 

2.2.4 Model-based methods 

Reconstruction methods described previously aim to deal with the general problem of 

reconstructing the arbitrary shape and appearance of an unknown object. 

In model-based methods, a model of the expected object is refined for shape recovery. 

Generically, model-based methods use a prior knowledge of the object geometry to constrain 

the shape recovery in the presence of visual ambiguities. Thus, they can reduce the influence 

of noisy, sparse or outlier data in shape estimation, providing more accurate, continuous and 

smooth 3D models than model-free methods [McInerney, 1996], Fig. 2.27. 
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Fig. 2.27 – Different results for image-based 3D reconstruction. From left to right: original image, 

3D model obtained using a visual-hull method, 3D model obtained using a 
stereo-based method and 3D model obtained using a model-based 

method (from [Starck, 2003]). 

 

Optimisation of a surface model to match image data was introduced in [Terzopoulos, 

1987]. Physically based models were presented, which can be applied to reconstruct the 

shape and motion of flexible objects from images. 

A deformable model was formulated as a continuous elastic surface that deforms 

dynamically, in order to satisfy a set of imposed shape constraints. Model deformation was 

defined as an energy minimisation task with an external energy that applies the constraints on 

model shape and an internal energy that penalises the elastic deviation in the model surface to 

regularise deformation. The drawback of the approach lies in defining the degree of 

regularisation required to define the trade-off between fidelity in fitting the constraints and 

penalising the model deformation [Thompson, 1991]. 

There has been significant research on deformable models. For example, in 

[Terzopoulos, 2011], a review of the different representations of deformable models is made, 

focusing on their applications in medical image analysis. It also reviews functional models, 

particularly realistic biomechanical models of the human face and body. A review on medical 

image segmentation using deformable models (among others) is presented and their 

applications to the female pelvic cavity 3D reconstruction are pointed out in [Ma, 2010]. In 

[Tavares, 2003], the fundaments of deformable models are presented and some application 

examples in the medical imaging field are indicated, namely in segmentation, matching, 

alignment and in reconstruction of 2D and 3D data. The work in [Moura, 2010] focus on the 

application of deformable models to provide fast 3D reconstruction of the spine that may be 

accomplished by non-expert users. 
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Fig. 2.28 – Mapping of the human bones (on the right) into a human skeleton 

(on the left) (from [Chadwick, 1989]). 

 

In general, human 3D models follow the multi-layered model approach introduced in 

[Chadwick, 1989]. The multi-layered model consists of a skeleton structure, representing the 

bones, Fig. 2.28, with successive layers of details, representing the body tissue, surface shape 

and external detail such as clothing and hair. The skeleton provides an animator with high-

level motion control, and each layer of the model is then successively deformed with the 

skeleton to produce natural-looking surface deformations. 

A variety of geometric modelling methods have been proposed to represent human 

geometry, including the polygonal mesh, e.g. [Botsch, 2010], parametric surfaces, e.g. 

[Kaiser, 2011], and implicit surfaces, e.g. [Ilic, 2006]. 

Human models have been extensively used in Computer Vision, namely for the 

problem of human motion analysis, Fig. 2.29. The visual analysis of human motion forms a 

major area of research that addresses the detection, tracking and recognition of different 

people or human actions in images. Human models are used to impose constraints on the 

geometry or motion of a person in a set of images in order to estimate the human pose. These 

models are generally specified a priori and use simplified geometric representations such as a 

stick figure, 2D contour or 3D volumetric primitives. 

There is extensive literature on human motion tracking and several surveys have been 

presented, for example, in [Moeslund, 2001], [Wang, 2003], [Moeslund, 2006], [Poppe, 

2007] and [Ji, 2010]. 
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Fig. 2.29 – Results of recovering the poses of a person performing a turning walking motion. Top row shows 

the original images and the bottom row shows the obtained 3D poses model by a 3D 
convolution human surface and skeleton models (from [Zhao, 2008]). 

 

2.3 Summary 

This Chapter summarizes usual methods for 3D reconstruction, which can be 

understood as a process that starts from the data acquisition and ends with a virtual 3D 

model. 

The 3D reconstruction of objects and/or scenes is required in many applications and 

has recently become a very important and fundamental step, especially in cultural heritage, 

biomedical applications or virtual/augmented reality. The requirements specified by many 

applications (like digital archiving or recognition) are high geometric accuracy, photo-realism 

of the results, modelling with complete details as well as automation, low costs, portability 

and flexibility of the reconstruction method. Therefore, selecting the most appropriate 

method for a given application is not always an easy task, since no single solution has been 

developed that covers all types and configurations of input data. 

The most general classification of 3D object assessment and reconstruction methods 

can be done using a contact or non-contact approaches. Contact-based methods are a manual 

process requiring a large amount of time and skill. Nowadays, the generation of a 3D model 
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is mainly achieved using non-contact systems based on light waves, in particular active or 

passive sensors. 

Active sensors provide directly the range data containing the 3D coordinates 

necessary for the mesh generation phase. Active range scanning technology has been applied 

to automatically acquire highly accurate geometric data of people. However, generally range-

based scanners can only capture a single static pose of a person. 

Passive sensors provide for images that need a mathematical model to derive the 3D 

coordinates. After the measurements, the data must be structured and a consistent polygonal 

surface generated to build a realistic representation of the modelled objects or scenes. A 

photo-realistic visualization can afterwards be generated texturing the 3D models with image 

information. 

The use of multiple cameras provides the potential for rapid building of human 

models in a variety of poses with visual realism. Current methods for image-based modelling 

of people concentrate on model-based reconstruction with a single camera and provide only 

the approximate shape and appearance of a person. Reconstruction from multiple cameras 

can provide improved geometric data and the complex view-dependent appearance of a 

person to generate more visually realistic computer graphics models. The shape and 

appearance of a person have been reconstructed from multiple views using multiple-baseline 

stereo, as well as volumetric reconstruction from image silhouettes and image colour. 
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3 
3 Camera calibration 

3.1 Introduction 

Accurate camera calibration is a prerequisite for the extraction of precise and reliable 

3D metric information from images. An image camera is usually considered intrinsically 

calibrated if the focal distance, principal point and lens distortion parameters are known. 

Complete calibration (known as pose estimation) includes the determination of the above 

intrinsic parameters together with the extrinsic parameters: translation and rotation. 

Most calibration algorithms used in 3D reconstruction are based on perspective 

projection model. This model, which is described in the next section, starts from the simplest 

camera model: the pinhole model, which can be ideally modelled as the perspective 

projection; then, it is progressively generalized through a series of gradations, with the intent 

to approach the ideal camera model towards a more real one. 

Afterwards, the fundamental algorithms considered to be the most well-known in 

literature [González, 2003; Guerchouche, 2006; Toshio, 2005] for camera calibration and 

self-calibration are described in detail, using the notation proposed in [Hartley, 2004]. 



Camera calibration 

36 

 
Fig. 3.1 – Pinhole model: point m, which belongs to the image plane π, is the 2D projection of 

3D world point M, according to the 3D Euclidean coordinate system, 
centred at optical centre C; f is the focal distance, i.e., 

the distance between π and C. 

 

3.2 Perspective projection camera model 

The pinhole model is usually considered to be the simplest image formation model. 

However, it is a sufficiently acceptable approach for many applications of Computer Vision 

[Forsyth, 2003]. 

In the pinhole model, the origin of the 3D Euclidean coordinate system is the 

camera’s centre of projection or optical centre, C . The 2D image plane or projection plane, 

π , is located at Z f , where f  is the focal distance. The line from the camera centre, 

perpendicular to the image plane, is called principal axis or principal ray. The point where the 

principal axis intersects the image plane is called the principal point, c , Fig. 3.1. 

The 3D world point ( , , )TX Y ZM , imaged by a pinhole camera, is related to its 

image point ( , , )Tx y zm  by the following equations: 
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X sXx f f
Z sZ
Y sYy f f
Z sZ


 


  


. (3.1) 

Equation (3.1) can be linearly rewritten in the matricial form as: 
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        

 

m M m M  (3.2) 

where m  and M  are the homogenous coordinates of points m  and M , respectively. The 

symbol   means equality up to a scale factor, s . P  is a 3 4  matrix commonly 

denominated camera projection matrix. 

Principal point offset 

Equation (3.2) assumed that the origin coordinates in the image plane is at the 

principal point. As it may not be always true, the principal point coordinates, ( , )x yc c , are 

introduced: 
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x

y

f c
f c
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Usually the matrix K  is defined as a 3 3  sub-matrix of P : 

 
0

K= 0
0 0 1

x

y

f c
f c

 
 
 
  

, (3.4) 

that is known as the camera intrinsic calibration matrix. 

Rotation and translation 

In general, points in 3D space are expressed in a distinct Euclidean coordinate system 

from the camera coordinate system, known as the world coordinate system. The two 

coordinate systems are related via a 3D rigid body transformation, Fig. 3.2, composed by a 

rotation and a translation: 
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Fig. 3.2 – The geometry of a linear projective camera: matrix R and vector t describe 

the orientation and position (pose) of the camera with respect 
to the new world coordinate system. 

 

 RC W M M t . (3.5) 

In Equation (3.5), ( , , )T
C C C Cx y zM  and ( , , )T

W W W Wx y zM  are the inhomogeneous 

vectors of a 3D point, in the camera and world coordinate system, respectively; R  is a 3 3  

orthonormal rotation matrix, representing the orientation of the camera coordinate system, 

and t  is a 3-vector representing the origin of the world coordinate system expressed in the 

camera coordinate system. These last two elements are also called extrinsic parameters and 

define the camera pose. 

Conversion of units 

The pinhole camera model assumes that image coordinates are in Euclidean 

coordinates, with equal scales. In the case of CCD (Charged-Coupled Device) cameras, there 

is an additional possibility of having non-square pixels. Using again the notation proposed in 

[Hartley, 2004], if the number of pixels per unit distance in terms of image coordinates are 

( , )x ym m , then the transformation from the world Euclidean coordinates to pixel coordinates 

is obtained by multiplying Equation (3.4) by diag( , ,1)x ym m , yielding: 
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
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 
 
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, (3.6) 

where αx xfm  and α y yfm  represent the camera’s focal length in pixel coordinates and 

0 x xu c m  and 0 y yv c m  represent the principal point also in pixel coordinates. 

Also, the angle between the inner vertices of a pixel may not be always equal to 90º, 

due to some optical manufacturing errors. Without loss of generality, one can assume the 

image u  axis aligned with the canonical u  axis and the image v  axis skewed by  , Fig. 3.3. 

Thus, Equation (3.6) takes the following form: 
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v
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. (3.7) 

Lens distortion 

Real camera lenses do not follow a linear model, like the one that has been assumed. 

As such, a 3D world point M , its 2D image point m  and the camera centre C  are not 

collinear, world lines are not imaged as lines, and so on. 

The most important deviation is the radial distortion, but many camera models also 

consider tangential distortion, Fig. 3.4. To overcome this problem, a correction must be 

carried out during the initial projection of the world onto the image plane. Using the notation 

proposed in [Heikkilä, 1996], radial distortion can be modelled as: 

 
( )
( )

r p

r p

x x D r
y y D r





, (3.8) 

with 2 4 2
1 2( ) ... n

nD r k r k r k r    , where 2 2
p pr x y   and ik  are the coefficients of radial 

distortion. 

Tangential distortion is due to imperfect centring of the lens. Again, using the 

notation proposed in [Heikkilä, 1996], it can be modelled as: 
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Fig. 3.3 – Representation of the skew angle, θ, of the image coordinate system 

and the coordinates of the principal point c. 

 

 
Fig. 3.4 – On the left: effects of radial distortion, where the solid line represents the image with no distortion, 

the dashed line represents the pincushion effect and the dotted line represents the barrel effect. 
On the right: effects of tangential distortion; where the solid line is the image with 

no distortion and the dashed line represents the tangential distortion. 
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with 1p  and 2p  being the coefficients of tangential distortion. 

Correcting the measured (distorted) image points, means to add the modelled 

coordinates: 

 d p r t

d p r t

x x x x
y y y y

  

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. (3.10) 

Projection matrix 

Combining all the transformations that have been presented, excepting for the lens 

distortion, leads to the following equation: 

 P K[R | ]  m M m t M , (3.11) 
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Fig. 3.5 – Some examples of calibration patterns. From left to right: 3D pattern recommended for 

the DAVID LaserScanner system, [DAVID, 2012], consisted by two planar panels 
with circular patterns; 3D pattern with printed circles used in [Heikkilä, 2000]; 

planar pattern with concentric circles used in [Ying, 2008]; most 
commonly used camera calibration pattern, the planar black 

and white chessboard pattern, used for 
example in [Qiuyu, 2012]. 

 

where P  is the 3 4  homogeneous camera projection matrix, that relates the pixel 

homogeneous coordinates, ( , ,1)Tu vm , and the world homogeneous coordinates, 

( , , ,1)Tx y zM . Matrix K  contains the camera’s intrinsic parameters and matrix R  and 

vector t  represent the camera’s extrinsic parameters. 

 

3.3 Camera calibration methods 

Usual calibration methods are applied off-line and require the use of images of a 

special calibration object (also denominated target), with well-known 3D coordinates, Fig. 

3.5. Most commonly used calibration objects are 3D or planar flat plates with a regular 

pattern marked on the surfaces; others are specifically designed when it is considered 

camera/object relative motion. 

High accuracy can be obtained with off-line camera calibration methods. However, 

they cannot cope when the camera parameters change during the normal operation (e.g., 

zooming in or out), or when trying to reconstruct a scene from a pre-acquired image sequence 

in which the camera’s model cannot be obtained, due to, for example, the inexistence of a 

calibration pattern in the acquired images. 

Calibration methods can be classified according to a number of criteria [González, 

2003], such as: 
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 Linear versus nonlinear 

o linear methods (e.g. [Abdel-Aziz, 1971], [Hall, 1982], [Ito, 1991]): they 

determine the camera parameters using linear equation systems, like the least 

squares method, [Chapra, 1988]. These methods are fast and easy to implement; 

however, they are unsuitable when good accuracy is required or when lens 

distortion needs to be modelled. 

o non-linear methods (e.g. [Tsai, 1987], [Weng, 1992], [Faugeras, 1993], 

[Heikkilä, 1997], [Zhang, 2000]): the camera’s parameters are obtained through 

iterative methods. Although slower than linear calibration methods, the advantage 

of these is that they can estimate nearly any camera model and that the accuracy 

usually increases with the number of iterations. However, they require a good 

initial estimate, which is typically obtained by using linear methods, in order to 

guarantee convergence. 

 Implicit versus explicit 

o implicit methods (e.g. [Faugeras, 1993], [Zhang, 1998], [Ahmed, 1999b]): 

implicit calibration is the process of calibrating a camera without explicitly 

computing all its physical parameters (as focal distance and camera’s optical 

centre). Generally, the transformation matrices that contain the set of all 

parameters are obtained by these methods. 

o explicit methods (e.g. [Tsai, 1987], [Heikkilä, 1997], [Batista, 1998]): with these 

calibration methods, all camera’s model parameters are obtained. 

 One single optimization versus multi-step 

o one single step (e.g. , [Faugeras, 1993], [Ahmed, 1999b]): for each cycle of the 

resolution process, all camera’s parameters are updated. 

o multi-step (e.g. [Tsai, 1987], [Weng, 1992], [Heikkilä, 1997], [Batista, 1998]): in 

each step, a distinct subset of the camera’s model parameters is obtained, using 

the estimates for those parameters previously determined; good initial estimates 

can be quickly determined assuming some simplifications on the camera’s model, 

which will be progressively improved in next optimization steps. 
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 Planar versus non-planar 

o planar (e.g. [Tsai, 1987], [Batista, 1998]): when all the 3D points of a calibration 

pattern are on the same plane; thus, the inaccuracy of the world points’ 

coordinates is reduced, since one of them is null. 

o non-planar: within this group, are methods that require to know the relation 

between the different planes (usually, it is used a dihedron, i.e., planes making an 

angle of 90º between each other – as in [Tsai, 1987], [Faugeras, 1993], [Heikkilä, 

1997] and [Ahmed, 1999b]) and methods that do not need to know the relation 

between the planes’ positions (usually, image acquisitions of the same planar 

pattern in different space positions are used, as in [Yu, 1998] and [Zhang, 1998]). 

 

3.3.1 DLT method 

The DLT – Direct Linear Transformation – was proposed in [Abdel-Aziz, 1971]. It is 

the simplest method for camera calibration, but remains a classical and very well-known 

linear calibration method. 

Usually, it is used as an initial approximation step in many iterative calibration 

methods, to obtain the camera projection matrix. It assumes a perfect projective camera and a 

set of non-planar pattern calibration points. 

The DLT method requires the knowledge on the 3D to 2D correspondences of the 

calibration points. It is based on the pinhole camera model, and it ignores the nonlinear radial 

and tangential distortion components. For each correspondence m Mi i , Equation (3.2) can 

be rewritten in terms of the cross product: 

 P m M 0i i , (3.12) 

which enables the deriving of a simple linear solution for camera projection matrix P . 

Three equations can be obtained from the left side of Equation (3.12); but, eliminating 

the unknown scale factor, each point correspondence gives origin to just two equations: 

 

1

2

3

T T T
i i i

T T T
i i i

v
u

 
   

   
   

 

p
0 M M

p 0
M 0 M

p
, (3.13) 



Camera calibration 

44 

with 

1

2
11 12 13 14 21 22 23 24 31 32 33 34

3

[ ]Tp p p p p p p p p p p p
 
 

  
 
 

p
p p

p
. 

For the n  non-planar correspondence points, the above relationship can be described 

by the system: 

 A. p 0 , (3.14) 

with 0  being a 2 1n  null vector and matrix A  obtained by stacking up the two equations 

in Equation (3.13) for each 3D to 2D point correspondence. 

System of equations (3.14) can be solved by applying the least squares regression 

method [Chapra, 1988]. Thus, it must be over-determined; that is, the number of 

equations must be higher than the number of unknowns. Since the system represents two 

equations with 12 unknowns ijp , applying these equations to 6n   non-planar known 

locations in the object space and their corresponding image points, the unknown 

transformation coefficients ijp  can be computed. 

In order to avoid a trivial solution, like 0ijp  , a proper normalization must be 

addressed. The constraint 34 1p   was used in [Abdel-Aziz, 1971]. The problem with this 

normalization is that a singularity is introduced if the correct value of 34p  is close to zero. 

Instead of 34 1p  , in [Faugeras, 1987] it was suggested to introduce the constraint 

31 32 33 1p p p   that is singularity free. 

Parameters ijp  have no physical meaning, and thus DLT can be considered an 

implicit camera calibration method. There are techniques for extracting some of the physical 

camera parameters from the projection matrix P  (e.g., [Melen, 1994]), but few are able to 

solve all the intrinsic (excluding the lens distortion) and extrinsic parameters. 

The main advantage of DLT is that it is very fast (requires only one image) and 

simple, because only linear equations need to be solved. Its drawbacks are: results are 

sensitive to errors, and it does not consider camera distortion, which may severely affect the 

accuracy of posterior measurements or reconstructions. 
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3.3.2 Tsai’s method 

Presented in [Tsai, 1986; Tsai, 1987], Tsai’s calibration method is one of the most 

referenced calibration methods in literature, and probably it was the first to include distortion 

in the camera model parameters: it considers radial distortion, modelled by a single 

coefficient. 

Tsai proposed two versions of his calibration method: a single view algorithm and an 

adaptation to be used with multiple views of the calibration pattern. Tsai’s method is an 

explicit two-step approach: 

 First, it tries to obtain estimates of as many camera’s parameters as possible using 

a linear least squares method. In this initial step, constraints between parameters 

are not enforced, and what is minimized is not the error in the image plane, but a 

quantity that simplifies the analysis and leads to linear equations. This does not 

affect the calibration result, since these estimated parameter values are used only 

as starting values for the second and final optimization step. 

 Secondly, the remainder parameters are obtained using a non-linear optimization 

method that finds the best fit between the observed image points and those 

predicted from the target model. Parameters estimated in the first step are refined 

in this process. 

Tsai’s method provides different versions for planar and non-planar calibration 

patterns. Accurate planar targets are easier to make and maintain than 3D targets, but limit 

calibration in ways that will become apparent. Since Tsai uses a distinct camera model than 

the one presented in section 3.2, its differences are briefly described in the following. 

Tsai’s camera model 

In [Tsai, 1986; Tsai, 1987], the transformation from 3D world coordinates into 

camera coordinates is based on a Radial Alignment Constraint (RAC), Fig. 3.6. 

According to this model, only radial distortion is taken into consideration and a 

correction is due, after the perspective transformation (Equation (3.1)), such that: 
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, (3.15) 
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Fig. 3.6 – Tsai’s camera model, which includes perspective projection 

and radial distortion. 

 

where ( , )D D Dx ym  are the distorted image coordinates on the image plane, π , and factors 

xD  and yD  are given by: 
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with 2 2
D Dr x y   and 1k  as the first term of the radial distortion. 

The transformation from real (distorted) image coordinates, Dm , to computer (pixel) 

image coordinates,  ,P u vm , is given by: 
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, (3.17) 

where xs  is the horizontal scale factor and ' '( , )x yd d  are the pixels’ dimensions (in mm). In 

typical CCD or CMOS (Complementary Metal Oxide Semiconductor) cameras, the frame 

grabber sampling of the initially sensor signal is different for the horizontal and vertical 

directions. The sampling in the horizontal direction is typically not equal to the spacing of 
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sensor cells, and is not known accurately. In general, the horizontal spacing between pixels in 

the sampled image does not correspond to the horizontal spacing between cells in the image 

sensor. In contrast, the sampling is controlled in vertical direction by the spacing of rows of 

sensor cells. Some digital cameras avoid this problem, but many cameras, particularly 

cheaper ones, do not. In those cases, the ratio of picture cell size in the horizontal and in the 

vertical direction is not known a priori from the dimensions of the sensor cells and needs to 

be determined. Therefore, the extra scaling parameter, xs , needs to be recovered as part of the 

camera calibration process. 

First step – non-planar pattern 

All pattern points’ coordinates in pixels ( , )u v  are converted into Euclidean 

coordinates ( , )D Dx y , using Equation (3.17) and assuming that there is no lens distortion. In 

this step, it is considered that 1xs   and that 0 0( , )u v  are equal to the geometrical image 

centre. 

Given the calculated image coordinates ( , )D Dx y  and corresponding world 

coordinates ( , , )W W W Wx y zM , the following linear system can be built, still considering the 

camera distortion null: 
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  

, (3.18) 

where ijr  and it  are the elements of the rotation matrix R  and translation vector t , 

respectively. 

Since the equations in (3.18) are homogeneous, there is an unknown scale factor 

associated to the solution of above system. One way to convert them into inhomogeneous is 

to set one unknown equal to one; for example, 2 1t  . If the number of points n  is superior to 

seven, this system of equations can be solved by applying a simple least squares regression 

method [Chapra, 1988]. 



Camera calibration 

48 

After obtaining a solution for the eight unknowns of system (3.18) (seven unknowns, 

plus the one that was set equal to one), the correct scale factor, the proportion factor xs , all 

elements of the rotation matrix ijr  and the first two elements of translation vector t  can be 

found by noting that rotation matrix R  is orthonormal. 

First step – planar pattern 

With a planar pattern with 0Wz  , the system of equations (3.18) is re-arranged: 
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. (3.19) 

As in the non-planar case, there is an unknown scale factor because the equations are 

homogeneous. So, one solution is to set one unknown to one; for example, 2 1t  . 

Once again, after obtaining a solution for the six unknowns of system (3.19) (five 

unknowns, plus the one set equal to one), the correct scale factor, all elements of the rotation 

matrix ijr  and the first two elements of translation vector t  can be determined by noting that 

rotation matrix R  is orthonormal. 

Second step 

The focal distance f  and the translation along z , 3t , are determined from the 

following linear equation system: 

 
3

[ ]C D r D

f
y y z y

t
 

  
 

, (3.20) 

with 21 22 23 2C W W Wy r x r y r z t     and 31 32 33r W W Wz r x r y r z   . This system can be solved 

by applying a least squares regression method [Chapra, 1988]. 

Since accuracy improves with the depth range of pattern points, if a planar pattern is 

used, it means that it must not be parallel to the image plane. 
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At this point, all elements of rotation matrix, R , and translation vector, t , are 

estimated, as well as the focal distance, f . In order to find the first coefficient for radial 

distortion, 1k , and to refine the values for f  and 3t , a non-linear optimization is processed by 

using, for example, the Levenberg-Marquardt algorithm [Moré, 1977], in equation: 

 ' ' 2 21 22 23 2
1

31 32 33 3

W W W
y y

W W W

r x r y r z td v d vk r f
r x r y r z t

  
 

  
, (3.21) 

where 1 ' 2 ' 2( ) ( )x x yr s d u d v  . 

Main advantage of this method is that it includes a coefficient for the radial distortion 

and simple equation systems of easy resolution. Its drawbacks are that parameters determined 

in the first step are not refined in the second. Thus, matrix R  and parameters 1t , 2t  and xs  

will contain the error introduced by discarding the distortion effect in the first linear step. 

Another disadvantage of the Tsai’s calibration method is that the radial component of the 

image points are discarded completely and only the perpendicular components are used. As a 

consequence, the RAC constraint is very sensitive to noise, especially when the angle 

between the optical axis and the calibration plane is small. According to [Batista, 1998], the 

angle of incidence between the optical axis of the camera and the calibration plane must be at 

least 30 degrees when a coplanar set of control points is used. 

 

3.3.3 Zhang’s method 

Described in [Zhang, 1998; Zhang, 2000], Zhang’s calibration method performs in 

two-steps: first, an analytic solution to solve the camera’s intrinsic and extrinsic parameters is 

proposed, and then the best approximation using a minimization method is obtained. 

In contrast with the Tsai’s method, Zhang’s method requires at least three different 

views of a planar calibration pattern. However, only two images are necessary, if some 

intrinsic parameters are known. Lens distortion is modelled using two radial coefficients. It is 

an implicit method, i.e., an intrinsic matrix is obtained whose elements are functions of the 

camera’s intrinsic parameters. 
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First step 

Projection matrix P  is calculated from each one of the n  images used. First, an initial 

estimate is obtained using a linear approach, except for that z-coordinate of world points is 

zero. Let’s denote the thi  column of the rotation matrix R by ir . From Equation (3.11), one 

has: 

 1 2 3 1 2K[ ] K[ ]
0

1
1

X
X

Y
Y

 
  
   
  
    

 

m r r r t r r t . (3.22) 

Therefore, a world model point, M , and its image coordinates, m , are related by a 

3 3  homography matrix, H : 

 Hm M , (3.23) 

with 1 2H K[ ] r r t . 

Given that the columns of the rotation matrix are orthonormal, the following 

constraints can be derived: 
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h h
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. (3.24) 

Because a homography has 8 degrees of freedom and there are 6 extrinsic parameters 

(3 for the rotation and 3 for the translation), only 2 constraints on the intrinsic parameters can 

be obtained. It should be noted that the symmetric matrix 1K KT- -  actually describes the 

image of the absolute conic B  [Faugeras, 1992a]: 
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  

T
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- - . (3.25) 

Since matrix B  is symmetric, only six elements need to be determined. Converting this 

matrix into a 6D vector 11 12 22 13 23 33[ ]TB B B B B Bb  and considering ih as the thi

column of the homography matrix H , one has: 

 BT
i j ijh h v b , (3.26) 
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where 1 1 1 2 2 1 2 2 3 1 1 3 3 2 2 3 3 3[ ]ij i j i j i j i j i j i j i j i j i jh h h h h h h h h h h h h h h h h h   v . Therefore, 

the two fundamental constraints (3.24) can be rewritten as two homogeneous equations in b : 

 12

11 22

0
( )

v
v v

 
 

 
b . (3.27) 

Thus, for n  images of the calibration pattern, the n  equivalent equations can be 

stacked into a system in the form: 

 V 0b , (3.28) 

where V is a 2 6n  matrix. Because this system has 6 unknowns, 3n   is enough to obtain a 

unique solution, defined up to a scale factor. However, imposing the skewless constraint

90º 0s    , the system can be solved with 2n  . The solution to system (3.28) is well 

known as the eigenvector of TV V  associated with the smallest eigenvalue and can be found, 

for example, via SVD (Singular Value Decomposition) of Q  [Golub, 1983]. 

From matrix B , the intrinsic parameters and the scale factor s  can be computed: 
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 (3.29) 

Once matrix K is known, the extrinsic parameters for each image are computed using: 
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 (3.30) 

where 1 11 K 1 K   1 2h h . 

Second step 

All camera’s parameters are refined using an optimization procedure that minimizes 

the geometric image error; i.e., the distance between the n  2D image points, im , and their 
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projections onto the image, using all obtained calibration parameters, i.e. the intrinsic, 

extrinsic and distortion coefficients, and the 3D world calibration points, iM . This is a non-

linear problem, that can be solved using a Levenberg-Marquardt algorithm [Moré, 1977] to 

refine matrix P , by minimizing: 

 2

1

ˆ
n

i i
i

 m m , (3.31) 

with im  the real image coordinates of all pattern points and 

 1
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1ˆ
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i i
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p M
m

p M p M
, (3.32) 

where 1 11 12 13[ ]Tp p pp , 2 21 22 23[ ]Tp p pp  and 3 31 32 33[ ]Tp p pp . 

Finally, initial estimates of the first two coefficients of radial distortion, 1 2( , )k k , 

are calculated using a least squares method [Chapra, 1988], solving the following 

equations for each image point: 
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, (3.33) 

with 2 2 2( ) /C C Cr x y z  , ( , )d du v  the distorted (real) pixel coordinates and ( , )p pu v  the ideal 

pixel coordinates calculated using the previously determined camera’s parameters. 

This method differs from others, because it corrects the camera distortion before the 

points are projected onto the image plane; i.e., its coordinates are not affected by focal 

distance. Thus, the obtained radial distortion coefficients are not comparable to the ones 

obtained from other calibration methods. 

 

3.3.4 Heikkilä’s method 

Presented in [Heikkilä, 1996; Heikkilä, 1997], Heikkilä’s method is composed by four 

steps, and compensates for radial and tangential distortion by using circular features. 

Therefore, Heikkilä’s method uses a non-planar calibration pattern with circles as control 

points. 
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First step 

It uses the DLT calibration method, described in Section 3.3.1, to obtain an initial 

approximation for the camera’s extrinsic parameters, focal distance and principal point. 

The camera’s model is the same as in Tsai’s method (Fig. 3.6). The physical 

parameters, from the encountered solution for vector p  (Equation (3.14)), are extracted by 

using QR decomposition [Melen, 1994]: 

 1 1P V B FRT   , (3.34) 

where R  and T  are the rotation and translation matrices, respectively, and   is a scaling 

factor. Matrices V , B  and F  contain the intrinsic parameters: principal point 0 0( , )u v , focal 

distance f  and coefficients for linear distortion 1 2( , )b b : 
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. (3.35) 

The linear distortion correction is used to compensate for the orthogonality errors of 

the image coordinate axes, which are very close to null for CCD cameras. 

Second step 

An iterative non-linear method adjusts the previously obtained parameters and 

determines the remaining ones: the proportion factor and radial and tangential distortion 

coefficients. To do so, a Levenberg-Marquardt algorithm [Moré, 1977] is used to minimize 

the following function: 
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where ( , )i iu v  are the real image coordinates and ˆ ˆ( , )i iu v  the estimated coordinates using the 

calculated parameters, for all n  points. 

In this method, the camera’s intrinsic matrix K  is slightly different from the one 

presented in Section 3.2: 
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where ( , )u vD D  are the coefficients needed to change from metric units to pixels and us  is a 

scale factor. 

Third step 

In this step, a process to correct asymmetric projection distortion is applied. Thus, 

perspective projection distorts the shape of the circular features in the image plane depending 

on the angle and displacement between the object surface and the image plane. 

This method corrects the image coordinates of the circle centres ( , )i iU V  using the 

following equation: 

 , 0,

, 0,

( )
( )

i i u u c i i

i i v c i i

U U D s u u
V V D v v

   

  
, (3.38) 

where ( , )c cu v  are the image coordinates of the ellipse centre, since the usual image 

projection of a circle is an ellipse, and 0 0( , )u v  the estimated projection of the circle centre 

using the previously calculated parameters. 

Fourth step 

This final step focuses on the back-projection problem. Image correction is performed 

by using a new implicit model that interpolates the correct image points based on the physical 

camera’s parameters derived from previous steps. 

 

3.3.5 Methods based on Neural Networks 

Artificial neural networks have been commonly used to solve some Computer Vision 

problems, such as static stereo, computation of optical flow, image restoration and object 

recognition [Zhou, 1992]. 

Neural networks are parallel information processing systems consisting of a number 

of simple neurons (also called nodes or units), which are organized in layers that are 

connected by links. The artificial neural networks imitate the highly interconnected structures 

of the brain and the nervous system of animals and humans whereby the neurons correspond 

to the brain cells, and the links are equivalent to the axons in biology [Dieterle, 2003]. 
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The existent literature on camera calibration using neural networks is quite extensive, 

with some of the earliest works dating back to the early 1990s (e.g., [Wen, 1991], [Lynch, 

1992], [Choi, 1994]). These methods used neural networks to learn the mapping from 3D 

world to 2D images without specifying the camera’s model, e.g. [Lynch, 1992], or as an 

additional stage to improve the performance of other existing methods, e.g. [Wen, 1991] and 

[Choi, 1994]. In [Ahmed, 1999b] the term neurocalibration was proposed not only to learn 

the mapping from 3D points to 2D image pixels but also to extract the projection matrix and 

camera’s parameters. 

Ahmed’s method 

In [Ahmed, 1999a], a method was presented that goes beyond the previous ones by 

having a neural network to specify the camera’s intrinsic and extrinsic parameters. A priori, 

the camera’s distortion is not considered. It does not require an initial approximation of the 

camera’s parameters; however, in [Ahmed, 1999b], the experimental results are based on an 

initial approximation obtained using a linear method to accelerate the calibration process. 

Ahmed’s calibration method trains a two-layer feedforward neural network, Fig. 3.7. 

The network intends to obtain the projection matrix, which transforms the 3D pattern 

calibration points (inputs) into image pixel coordinates (outputs). Two weight matrices, V  

and W , are associated to each layer. Matrix V  (first level) relates to the extrinsic parameters 

and W  to the intrinsic parameters (output level): 
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For any input pattern point i  (1 i N  ), the input vector is formed as 

[ 1]T
i i i iX Y ZM . The hidden neuron j  from the first level produces the output: 
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where i  is the number of input coordinates M . The output neuron k  is given by: 
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Fig. 3.7 – Ahmed’s neurocalibration network, with a 4-4-3 topology: four inputs (three neurons plus one 

augmented fixed at 1), four neurons in the hidden layer (three plus one dummy) and three outputs. 

 

where ˆ ˆ ˆ[ ]T
i i i io u v w  are the image projections homogeneous coordinates, with ŵ  a scale 

factor. All points have a distinct factor  , that is initially set equal to 1 (one). The weights of 

the network jlV  and kjW  are initialized at random values in the range [-1:1]. 

The network weights and i  are updated according to a gradient descent rule applied 

to the following error measure equation: 

 2 2 2
1 2 3

1
( ) ( ) ( 1)

N

i i i i i i i i
i

E o u o v o


         . (3.42) 

For simplicity of the network learning phase, input and output coordinates must be 

normalized. Therefore, 2D and 3D points must be divided by their norm, 1 2 and s s , 

respectively. After training the network, the projection matrix P  can be obtained using: 

 1 2P S WVS , (3.43) 

with 1 1 1
1 1 1 2 2 2 2S diag( , ,1) and S diag( , , ,1)s s s s s    . 

Moreover, to go beyond just obtaining the projection matrix P , each network weight 

is mapped to one camera’s parameter. First, some elements of intrinsic matrix W  have 

values zero or one; therefore, the corresponding weights kjW  are set accordingly and are not 

allowed to update during network learning. Second, the neuronal net is trained using the 
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orthogonality constraint of the rotation matrix and by minimizing the disparity of each point 

image projection; thus, the error measure per input as additional terms and is set as: 

 2tot D orthE E E  , (3.44) 

with   a small positive weighting factor, 
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where ( , )i iu v  are the desired 2D pixel coordinates of the input point pattern and: 
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where a  is a constant that accounts for any scaling in V  weights (initially should be 1). 

Major advantages of this method are its simplicity and the relaxation of the requirement 

of a good initial starting point, which is common to other non-linear optimization techniques 

(e.g., Levenberg-Marquardt’s algorithm). Another advantage is that the proposed network can 

be used for single- or multi-image calibration [Ahmed, 1999a] and can be easily modified for 

zoom-lenses camera calibration [Ahmed, 2000]. 

Major drawbacks are the use of a 3D calibration pattern and the fact that lens distortion 

parameters are entirely discarded. 

 

3.4 Self-calibration methods 

In Computer Vision, the term self-calibration or auto-calibration is used when no 

pattern is employed in the calibration procedure. Thus, camera’s parameters are recovered 

from a set of images, using only constraints on the referred parameters or on the scene 

acquired. 

Since usual calibration methods do not allow an on-line camera calibration and 

assume that internal parameters of the camera are constant during image acquisition, self-

calibration methods appeared as more versatile and efficient than the previous ones [Hartley, 

2004]. 

In general, two types of constraints are applied: relative motion between scene and 

camera and/or constraints on the camera’s intrinsic parameters. 
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 Relative motion 

o General (e.g. [Triggs, 1997]): these methods allow for any kind of camera 

or scene motions; thus, they are usually used for cameras placed in mobile 

platforms, like robots. They can be problematic with certain critical motion 

sequences [Sturm, 1997a] in which the motion of the camera is not 

generally sufficient to allow for recovering the calibration parameters and 

an ambiguity remains in the 3D reconstruction. 

o Pure rotation (e.g. [Hartley, 1994], [Stein, 1995], [Agapito, 1998], 

[Fitzgibbon, 1998], [Liu, 2000], [Hassanpour, 2004]): generally used in 

video-vigilance cameras, these methods assume that the relative motion 

between scene and used camera is described by rotations about a single 

fixed axis. 

o Pure translation (e.g. [Jang, 1996], [Ruf, 1998]): assuming camera’s 

displacement along a straight line, equations for calibration can be greatly 

simplified. 

o Planar motion (e.g. [Li, 2004], [Espuny, 2007]): images are acquired by a 

camera which can rotate about a fixed axis and can move in any direction 

orthogonal to that axis; used, for example, in cameras mounted on vehicles 

moving on planar surfaces. 

 Intrinsic parameters 

o Fixed (e.g. [Faugeras, 1992b], [Hartley, 1993], [Pollefeys, 1996], 

[Heyden, 1996], [Triggs, 1997], [Fitzgibbon, 1998], [Espuny, 2007]): the 

majority of self-calibration methods described in the Computer Vision 

literature treat intrinsic camera’s parameters as constant but unknown. 

o Variable (e.g. [Heyden, 1997], [Agapito, 1998], [Pollefeys, 1998], [Li, 

2004]): usually, only the effect of zoom variation is addressed in these 

methods, since they assume that zoom variation changes the focal distance. 
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Fig. 3.8 – The absolute conic Ω, a particular conic in the plane at infinity П∞, 

and its image projections, ωi and ωj.(from [Hemayed, 2003]). 

 

3.4.1 General motion 

Fixed intrinsic parameters 

These self-calibration methods allow for any kind of camera’s motion, keeping the 

intrinsic parameters constant. They were the first to appear [Hartley, 2004] and are based on 

the replacement of the known calibration object by an abstract one, the absolute conic, Fig. 

3.8. 

The absolute conic,  , is a particular conic in the plane at infinity, which is invariant 

to transformations in the 3D space; that is, if two images are acquired at different camera 

positions and its internal parameters stay constant, the image of the absolute conic will be the 

same in both image planes. 

The image of the absolute conic,  , is related to the camera’s intrinsic matrix, K , 

by the following equation: 

 1K KT  

  . (3.47) 

With  , the intrinsic matrix, K , can then be extracted using, for example, Cholesky 

decomposition [Golub, 1983]. 
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The Kruppa equations relate the epipolar geometry (or the fundamental matrix) to the 

image of the absolute conic, 
. Each point p , belonging to the image of the absolute conic 

in the second image, satisfies: 

 1K K 0T T T 

   p p 0 p p . (3.48) 

Fig. 3.8 shows two planes tangent to the absolute conic   passing through the two 

camera centres, iC  and jC . Thus, those planes intersect the image planes at two pairs of 

epipolar lines, which are tangent to the image of the absolute conic. This fact is better 

expressed with the aid of duality: conics are self-dual objects, i.e., the envelope of lines 

tangent to a conic is also a conic, known as the dual conic, *
, defined as: 

 *KK 0T T T  l l 0 l l , (3.49) 

where l  is the line tangent to  . This implies that for a point q  on any of the tangents to 

  in the second image holds the constraint: 

 2 2( ) KK ( ) 0T T T  e q e q , (3.50) 

where 2e  is the epipolar point on the second image. The epipolar line FTq , corresponding to 

q  in the first image, is also tangent to  . Thus, the invariance of   under rigid 

transformations yields: 

 (F ) KK (F ) 0T T T T T q q . (3.51) 

Combining the Equations (3.50) and (3.51), the following can be obtained: 

 * * *
2 2 2 2F F [ ] [ ] [ ] [ ]T T T

       e e e e     , (3.52) 

where   is an arbitrary nonzero scale factor and  2 
e  is the anti-symmetric matrix of vector 

2e . Citing [Lourakis, 1999], Equation (3.52) can be explained as: “the Kruppa equations 

express the constraint that epipolar lines in the second image, that correspond to epipolar 

lines of the first image that are tangent to  , are also tangent to   and vice versa”. 

Since *F FT
 is a symmetric matrix, Equation (3.52) corresponds to the following 

equations, obtained by eliminating  : 
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, (3.53) 

where Fij  is the fundamental matrix between images i  and j . There are only two 

independent equations among the set of six in Equation (3.53), which are the second order 

polynomials of *
. When using the Kruppa equations, given in Equation (3.53), for self-

calibration, it is common to start by estimating *
 and then the intrinsic matrix K  can be 

extracted using Cholesky decomposition [Golub, 1983], as referred before. 

Computing the camera’s extrinsic parameters has two classical solutions, both based 

on the fundamental matrix that was calculated during the estimation of the intrinsic 

parameters. A direct factorization approach uses the essential matrix, E , obtained from: 

 E K FKT . (3.54) 

Then, finding the rotation matrix R  and translation vector t  has well known 

solutions, which are explained in [Hartley, 1992]. 

An alternative approach is to directly use the error function that has been employed in 

the determination of the fundamental matrix: 

 2( K EK )T
i i

i

 m m , (3.55) 

where ( , )i im m  are the matching points between a pair of images and E [ ] R t . 

First algorithms that use the Kruppa equations can be found in [Maybank, 1992] and 

[Faugeras, 1992a]. In these works, point correspondences from at least three different 

viewpoints are required. 

In [Luong, 1997], a global method is used, which refines the camera’s parameters 

using a non-linear minimization, highly reducing the calibration error. 

In [Zeller, 1996], an image video sequence was used and therefore, it is considered a 

generalization to a large number of images of the method developed in [Faugeras, 1992a]. 

Robustness was improved with statistical tools, such as robust model fitting and covariance 

matrices. 
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The first method to use the SVD of the fundamental matrix [Golub, 1983], which 

leads to a particularly simple form of the Kruppa equations, was presented in [Lourakis, 

1999]. Apart from the fundamental matrix itself, no other quantities that can be extracted 

from it (e.g. the epipoles) are needed. Since an accurate estimation of the epipoles is difficult 

in the presence of noise and/or degenerated camera motions, this method proved to be 

simpler and more efficient. The camera’s parameters were recovered by a non-linear 

optimization, using a classical Levenberg-Marquardt algorithm [Moré, 1977]. 

Some other methods use a stratified approach: they use the projection matrices, 

obtained from the fundamental matrix, to determine a projective reconstruction and then 

transform it to an Euclidean reconstruction (in some cases an affine reconstruction is obtained 

in between). 

In [Hartley, 1993], the presented method can be applied to a sequence of images, from 

which camera calibration is determined from matching points. Then, the scene is 

reconstructed, relative to the placement of one of the images used as reference, up to an 

unknown scaling. 

Modulus constraint was used in [Pollefeys, 1996] to obtain an affine reconstruction 

from at least four different viewpoints. Compared with [Hartley, 1993], it has the advantage 

that the non-linear optimization only takes place in a three dimensional parameter space, 

which means that it always converges to the optimal solution. 

Later, in [Pollefeys, 1997], the infinite homography property is used as a restriction to 

get the plane at infinity for each image pair. It is more robust because it does not consider 

only one image as reference and also reduces the minimal necessary images to three. 

In [Heyden, 1996], the calibration process is simplified because it proceeds directly 

towards an Euclidean reconstruction and, again, only three images are needed. 

Another method was proposed in [Triggs, 1997], that also achieves an Euclidean 

structure right after the projective one, but uses the absolute quadric, equivalent to the 

traditional absolute conic but simpler to use. 
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Fig. 3.9 – Change of the extrinsic and intrinsic camera’s parameters with lens settings 

from camera plane C Cx z  to 
0 0C Cx z  (from [Willson, 1994]). 

 

Variable intrinsic parameters 

These self-calibration methods allow for any kind of camera motion and also model 

the variation of the intrinsic parameters, during the image sequence acquisition. This 

generally happens when the camera has the auto-zoom and/or auto-focus capacities enabled. 

Therefore, the image-formation process is an adjustable function of the lens control settings, 

and thus the terms in the camera models must also be variable, Fig. 3.9. 

In [Willson, 1994], the influence of zoom and focus in the camera’s model parameters 

was studied. It was concluded that both focal distance and principal point are affected by 

zoom and focus variation. Thus, the following methodology was proposed: first, a 

conventional fixed camera model is calibrated at a number of settings spanning the desired 

range of lens settings; then, variation of the fixed model parameters is characterized, by 

alternately setting polynomials to individual parameters. The resulting adjustable camera 

model can interpolate between the original sampled lens settings to produce, for any lens 

setting, a set of values for the parameters in the fixed camera model. In [Heyden, 1997; 

Heyden, 1998], an iterative method was presented, based on bundle adjustment techniques. It 

only requires the camera motion to be sufficiently general; thus, pure translational or 

rotational movements lead to failure in the proposed method. The work presented in 

[Lourakis, 2000] is an adaptation of the method introduced in [Lourakis, 1999], where the 

SVD of the fundamental matrix [Golub, 1983] is used to simplify the Kruppa equations, in 
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the case of variable intrinsic camera parameters. These are recovered through a non-linear 

minimization scheme, assuming perfect orthogonality and square pixels. In [Pollefeys, 

1996b], a stratified approach was used, which went from a projective through affine to metric 

reconstruction. Like in previous works, the modulus constraint was used. For practical 

purposes and in order to get a good initialization, the first two images must be acquired using 

a pure translation motion. Later, in [Pollefeys, 1999], an iterative method was developed that 

explores the absolute quadric. Depending on camera intrinsic parameter constraints set, it 

gives the minimum number of images necessary to perform self-calibration, assuming only 

the absence of skew. This method also detects critical motion sequences [Sturm, 1997a]. In 

[Hartley, 1992], a non-iterative method was developed. Based on the properties of the 

essential matrix, it determines the focal length and external camera parameters of two 

cameras, assuming all other internal camera parameters are known. An essential matrix is 

obtained from the fundamental matrix by a transformation involving the intrinsic parameters 

of the pair of cameras associated with the two input images. Thus, constraints on the essential 

matrix can be translated into constraints on the intrinsic parameters of the pair of cameras. 

Later, in [Hartley, 1999], the previous method to self-calibrate a camera was adapted to a 

sequence of images. Equations are simplified, because square pixels and the principal point 

were considered as the image centre. In [Mendonça, 1999], the method developed in 

[Hartley, 1992] was extended to the case of multiple varying intrinsic parameters and larger 

image sequences. In [Sturm, 1997b], it was considered that the principal point position 

depends on the camera’s zoom. A pre-calibration of the camera was proposed, with the intent 

to model the inter-dependence of the intrinsic parameters, concretely between the principal 

point and pixel scale factors. Thus, self-calibration came down to the estimation of only one 

intrinsic parameter. This method exploited the latter fact and did not need an initialization of 

the intrinsic parameters. 

 

3.4.2 Pure rotation 

These self-calibration methods are applied to cameras that undergo pure rotations, like 

in many surveillance systems and in the broadcast of sport events. Having null translation 

allows eliminating the three parameters of the translation vector t  and, thus, the calibration is 

simplified, Fig. 3.10. 
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Fig. 3.10 – Pure camera rotation in turn of the Y-axis. 

 

Sometimes a problem arises when translation is not assured to be null; due to 

camera’s mechanical issues, the rotation axis does not contain the optical centre or, when 

zoom is applied, a displacement of the optical centre occurs [Hayman, 2002]. 

Fixed intrinsic parameters 

Some self-calibration methods of this group assume that the rotation angle, between 

consecutive images, is known. Some examples are the methods proposed in [Du, 1993], 

[Stein, 1993; Stein, 1995], [Viéville, 1994] and [McLauchlan, 1996]. 

In [Stein, 1993], a self-calibration method was developed using pairs of images where 

the camera has rotated around a constant axis of rotation. Given an initial estimate of the 

camera’s intrinsic parameters, the angle and axis of rotation, results are refined by 

minimizing the sum of squared distances between the feature points in the second image and 

those computed from the first image. 
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Computation of the points assumes a pure rotation around an axis ( , , )x y zW w w w , 

through an angle of -  degrees. Given a world point ( , , )X Y ZP  expressed in the camera 

coordinate system, its coordinates after one rotation step are given by: 

 =R [cos I sin Q (1 cos ) ]TWW    P P P   , (3.56) 

where I  is the identity matrix and matrix Q  is defined as: 

 
0

Q 0
0

z y

z x

y x

w w
w w
w w

 
 

  
  

. (3.57) 

Similarly to Equation (3.13), point ( , , )X Y Z   P  is projected as point ( , )u v  p  in 

the image plane: 
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. (3.58) 

Without loss of generality, the rotation can be considered around the Y-axis; thus, 

(0,1,0)W   and the rotation matrix becomes: 

 
cos 0 sin

R 0 1 0
sin 0 cos

 

 

 
 


 
  

. (3.59) 

Combining Equations (3.58) and (3.59), yields: 

 

cos sin
sin cos

sin cos

x fu f
x f

yv f
x f


 

 

 
 

 

 

 

. (3.60) 

A major disadvantage is that this method requires knowing the radial distortion 

parameters, and errors in these parameters can cause errors in the estimates of the focal length 

and of principal point. 

The other group of methods does not require the knowledge of the rotation angle. The 

first proposed was the one described in [Hartley, 1994]. This method requires at least three 

images, but two are sufficient if some assumptions about the intrinsic parameters can be 
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made, like considering the skew 0xs  , or that the camera has square pixels, i.e., u vk k . For 

convenience, the coordinate axes are chosen to be aligned with the 0-th image projection 

centre, so that 0R I . Thus, for all other images, the projection matrix Pj  can be written in 

the following form: 

 1P KR Kj j
 . (3.61) 

Since the rotation matrix obeys to R R T , the previous equation can be re-arranged 

into: 

 (KK )P P (KK )T T T
j j
  . (3.62) 

With sufficiently views and theirs corresponding matrices Pj , Equation (3.61) can be 

used to solve for the entries of matrix KKT . It is a non-iterative algorithm that uses the 

Cholesky decomposition [Golub, 1983] to extract the intrinsic parameters from KKT . This 

method was further improved in [Hartley, 1997]. 

Variable intrinsic parameters 

The works described in [Agapito, 1998] and [Seo, 1998; Seo, 1999] can be included 

in this group. Iterative methods have been developed, based on the infinite homography 

constraint, obtained from image matches. This constraint relates the unknown calibration 

matrices to the computed inter-image homographies. For the optimization process, the first 

work uses the Levenberg-Marquardt algorithm [Moré, 1977], and the second uses the 

Kanatani’s method [Kanatani, 2000]. Both considered that the principal point and aspect ratio 

were fixed and that the image axes were orthogonal. 

Later, the same authors have developed linear versions of their methods, [Agapito, 

1999] and [Seo, 2001]. In [Agapito, 1999], zero skew, square pixels, known pixel aspect ratio 

and known principal point were assumed. It was based on the absolute conic and required at 

least two images. 

The method developed in [Seo, 2001] also needed a minimum of two images and the 

knowledge of the principal point. Later, a complete method was developed in [Agapito, 

2001], decomposed into three steps: a first initial approximation given by the linear method 

[Agapito, 1999]; the iterative method [Agapito, 1998]; and a final parameter refinement, by 
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minimizing geometric errors, using MLE (Maximum Likelihood Estimation) and MAP 

(Maximum a Posteriori Estimation). 

In [Agapito, 2001], the negative effect of radial distortion in the self-calibration 

process was also studied and some possible solutions to overcome it were pointed out. 

 

3.4.3 Pure translation 

Pure translational motion means that there are no rotations involved and allows for 

linear calibration methods. 

Linear constraints are derived by means of planar homographies between images. 

Assuming that ( , ,1)Tu vm  and ( , ,1)Tu v  m  are the homogeneous coordinates of two 

corresponding points in two images, they are related by: 

 Hs  m m , (3.63) 

where s  is an unknown scale factor, and H  is 3 3  homography matrix induced by the 

epipolar plane,   [Hartley, 2004], Fig. 3.11. It can be shown that the homography between 

the two images can be expressed as: 

 1 1H (KRK K K )
Tn

   
t
d

, (3.64) 

with   an unknown scale factor, Tn  the unit vector perpendicular to plane   and d  the 

distance from the origin of the world coordinates system to  . If the camera undergoes a 

pure translation motion, then the homography becomes: 

 1H (I K K )
Tn

  
t
d

. (3.65) 

Considering two camera planar orthonormal translations, 1t  and 2t , the relation 

between the homographies for both translations are derived from previous equation, leading 

to the constraint: 

 1 1 2
1 1 2 2 1 1 2 22(H I)K K (H I)T T Tn n    t t 0

d
 

  . (3.66) 
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Fig. 3.11 – Epipolar geometry: the epipolar plane П is formed by 3D point M and both cameras’ centres C. 

The plane intersects both cameras’ image planes, where it forms the epipolar lines (in blue). 
Points e

L
 and e

R
 are the epipoles. 

 

In order to uniquely obtain 1K KT   up to a scale factor, at least 5 sets of two planar 

orthogonal translations or 2 sets of three mutually orthogonal motions are acquired. 

In this group, we can include the work described in [Ma, 1996], which was shown that 

if the camera’s intrinsic parameters are known a priori, the camera’s pose can be solved using 

three translational motions. If the intrinsic parameters are unknown, then two sequences, each 

consisting of three mutual orthogonal translations, are necessary to determine the camera’s 

intrinsic and extrinsic parameters. The method developed in [Yang, 1998] requires four 

sequences of two orthogonal planar translations. Both methods assumed orthogonal pixels. 

This restriction was avoided in [Li, 2002]; however, it was necessary to use the scene planar 

information and to acquire at least five sequences of two orthogonal motions. 

 

3.4.4 Planar motion 

Another restriction on the camera’s motion is to assume planar motion, i.e. the camera 

can move in any direction contained in a plane and can rotate about an axis perpendicular to 

that plane. An example of this kind of motion is when the camera is mounted on a vehicle 

moving on a planar surface. 

Some works on camera self-calibration based on planar motion were described, for 

example, in [Beardsley, 1995] and [Armstrong, 1996b]. 
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Fig. 3.12 – Converting 2D image points into 1D image points in the image plane is equivalent 

to a projective projection from the image plane to the trifocal line, with the vanishing 
point of the rotation axis as the projection centre (from [Faugeras, 2000]). 

 

More recently, in [Faugeras, 2000], the non-linear problem of self-calibration of a 

camera undergoing planar motions is simplified to a linear one. This approach is based on the 

concept that, given planar motion, the camera trifocal plane, i.e. the plane through the 

projection centres, is coincident with the motion plane where the camera is moving on. 

Therefore, the image location of the motion plane is the same as the trifocal line which could 

be determined from fundamental matrices [Armstrong, 1996b], Fig. 3.12. Thus, the 2D 

images of a camera undergoing any planar motion reduce to 1D images by projecting the 2D 

image points onto the trifocal line. A 1D camera is represented by a 2 3  projection matrix 

P , which can be decomposed into: 

 P K[R | ] t , (3.67) 

where t  is a 2 1  translation vector, R  is a 2 2  rotation matrix: 

 
cos sin

R
sin cos

 
  

 

 

 
, (3.68) 

and K  represents the two camera intrinsic parameters: 

 0K
0 1
f u 

  
 

. (3.69) 

For three views from a camera undergoing planar motion, with fixed intrinsic 

parameters, there are four fixed points, three of which are collinear, Fig. 3.13: 
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Fig. 3.13 – Fixed image entities for planar motion: (a) For two views, the imaged screw axis is a line of fixed 

points in the image and the horizon is a fixed line under the motion, where the epipoles lie. 
(b) Relation between the fixed lines obtained pairwise for three images under planar 

motion; the image horizon lines for each pair are coincident, and the imaged 
screw axes for each pair intersect in the vanishing point of rotation; 
all the epipoles lie on the horizon line (from [Armstrong, 1996a]). 

 

1. the vanishing point of the rotation (or screw) axes, v ; 

2. two complex points, the images of the two circular points, i  and j , on the 

horizon line; 

3. a third point on the horizon line and peculiar to the image triplet, x . 

The relationship between the image of the circular points, i , and the internal 

parameters of the 1D camera follows directly by projecting one of the circular points 

( ,1,0)TI i by the 2 3  camera’s projection matrix P : 

 0i
1

i u if
e  

 
  

 
, (3.70) 

with 1i   . It clearly appears that the real part of the projective coordinates’ ratio of the 

image of the circular point i  is the position of the principal point 0u  and the imaginary part is 

the focal length f . 

This approach avoids the unstable convergence of Kruppa equations. However, it also 

brings some new problems to be solved, like the detection of planar motions and robust 

estimation of the 1D trifocal tensors under noise, which is magnified by the projection from 

2D image points to 1D image points. 
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Fig. 3.14 – Turntable motion: the red spheres are the camera projection centres and the point XS is the 

intersection of the horizontal plane containing the projection centres, 
with the rotation axis LS (from [Fitzgibbon, 1998]). 

 

a) Single axis or turntable motion 

One special case inside the ordinary planar motion is the single axis motion or circular 

motion. This particular motion can be described as set of rotations about a single, fixed screw 

axis, with zero translation along the same screw axis. 

The most common case where this motion occurs when a static camera is viewing an 

object placed on a turntable device, Fig. 3.14. Some works that use this special motion for 

camera self-calibration can be seen, for example, in [Fitzgibbon, 1998], [Jiang, 2004], 

[Fremont, 2004] and [Zhang, 2006]. 

The image invariants under this kind of motion are derived from the ones explained 

before and presented in Fig. 3.13. The horizontal plane, h , containing the projection 

centres, is orthonormal to the rotation axis, LS , Fig. 3.14. The image of h  is the horizon or 

vanishing line, hl . The image of the rotation axis, LS , is the line sl . Let the plane defined by 

the image camera centre and the rotation axis be s . 

Consider three orthogonal directions xN , yN  and zN , given by the normal direction 

of s , the Y-axis, and x yN N , respectively. These three directions will have vanishing 

points xv , yv  and zv , respectively. Since sl  is also the image of s , xv  and sl  form a 

pole-polar relationship with respect to the image of the absolute conic [Faugeras, 1992a]. By 

construction, xN  is parallel to h , and zN  is parallel to both h  and s . Hence, xv  must 

lie on hl  and zv  is given by the intersection of hl  and sl . 
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Fig. 3.15 – On the left: turntable motion around the Y-axis. On the right: 

2D image invariants under turntable motion (from [Zhang, 2005]). 

 

The pair of imaged circular points i  and j  must also lie on hl , hence h  l i j . If the 

camera intrinsic parameters are kept constant, then all the mentioned image entities will be 

fixed, Fig. 3.15. The fundamental matrix relating any two images acquired by turntable 

motion can be explicitly parameterized in terms of the image invariants [Fitzgibbon, 1998; 

Mendonça, 2001], and is given by: 

 F( ) [ ] tan ( )
2

T T
x s h h sk  v l l l l

 , (3.71) 

where   is the angle between the two views and k  an unknown scalar. The terms in 

Equation (3.71) are in homogeneous coordinates and therefore, the term k  is necessary to 

account for the different scales used in the representations. The scalar k  is unknown but 

fixed for any angle   and cannot be obtained from two images alone. 

In Equation (3.71), the only variable is tan 2k  . This parameter can be found by 

using a triplet of images, with relative angles ij . Let 1 12tan 2k  , 2 23tan 2k   and 

3 13tan 2k  . Since 13 12 23    , the fixed scalar k  can be obtained using: 

 1 2 3

3 1 2

k   

  


 
. (3.72) 

Then, the rotation angles between each pair of images are determined by dividing   by k . 
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3.5 Summary 

Camera calibration is a process to determine the relationship between a given 3D 

coordinate system (world coordinates) and a 2D coordinate system on the image plane (pixel 

coordinates). More specifically, it is to determine the camera’s model involved in the 

transformation from the 3D world to the 2D image acquired by the camera. 

In this Chapter, the classical pinhole camera model was described. In reality, real 

image cameras are much more complicated devices, and if they are used in the 3D 

reconstruction process, a proper calibration procedure should be used in order to achieve 

accurate results. 

Considerable research has been done in this field. As an indication of that, several 

camera calibration methods have been suggested. An explanation of the most known classic 

and auto calibration methods was given in this Chapter, pointing out some of their drawbacks 

and specificities. 

The camera calibration literature does not pay much attention to the errors originating 

in the calibration process. Some of the errors are caused by the insufficient parameters of the 

cameras’ models, and others are due to some external factors. The commonly used cameras’ 

models compensate for only radial and tangential lens distortions. As such, the models do not 

address the effect of the light intensity, wavelength, focus, iris or electrical distortions. Also, 

some external factors, like outliers in the measured data, inaccurate calibration targets, and 

asymmetric feature projection, can cause bias in the parameters estimated. These sources of 

errors should therefore be identified through other means and actions for preventing their 

influence on the accuracy of the 3D reconstructions should be made. 
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4 
4 Developed methodologies for 3D reconstruction 

4.1 Introduction 

This Thesis refers to the Computer Vision field; namely, to the 3D Reconstruction. 

There have been considerable efforts made by the scientific community, mainly in the recent 

decades, in developing computational methodologies for obtaining the 3D shape of real 

objects, from acquired images of the same ones. 

During the work developed in the scope of this Thesis, two methodologies that are 

commonly used in 3D reconstruction were addressed: Stereo Reconstruction and Volumetric 

Reconstruction. The central topic of this Thesis was to consider methodologies that allow 

obtaining the 3D models of objects, without imposing several restrictions on the relative 

motion between the camera used and the object to be reconstructed. They were also 

developed with the purpose of being of reduced cost, accurate, portable and easy-to-use. 

Stereo reconstruction requires at least two perspective views of the object of interest. 

These views may be acquired simultaneously as in a stereo rig, or acquired sequentially, for 

example, by a camera moving relatively to the object. On the other hand, starting with a set of 
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correctly calibrated images, the volumetric based method reconstructs the 3D shape of an 

object, as well as achieves the coloration of the reconstructed 3D geometrical model. 

 

4.2 Stereo-based reconstruction 

The depth of an object’s point along the corresponding projection ray is not directly 

accessible in a single image. With at least two images, depth can be determined through 

triangulation [Hartley, 1995]. This is the reason why most animals have two eyes or why 

autonomous robots are equipped with a stereo image system or acquire images associated to 

two distinct views when they have just one camera. 

In the present case, it was pretended not to impose any kind of restrictions to the 

involved movement. So, starting with two uncalibrated images from an object, the goal was 

to extract the relative movement between the camera viewpoints, and finally to obtain the 3D 

geometry of the object involved. The following sections describe in detail each step of the 

developed stereo reconstruction methodology, Fig. 4.1. 

 

4.2.1 Feature point detection and matching 

Image feature points (or strong points) are those who have a strong 2D component 

over the imaged object. 

Feature points reflect relevant discrepancies between their intensity values and those 

of their neighbours. Usually, they represent visible vertices of the correspondent object. 

For this first step, it was employed an intensity-based algorithm that computes a 

measure to indicate the presence of an interest point directly from the greyscale image values. 

On a greyscale image, the gradient covariance matrix A  averages derivatives of the image I  

in a window W  around a pixel point ( , )u v : 

 

2

2

I ( I)( I)

( I)( I) I

u u v
W W

u v v
W W

   
 


   
  

 

 
A , (4.1) 
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Fig. 4.1 – Methodology for 3D reconstruction based on stereo vision. 

 

 
Fig. 4.2 – Original colour image (on the left), the correspondent horizontal derivative u  

(on the middle) and vertical derivative v  (on the right). 

 

where u  and v  are the right and left derivatives, Fig. 4.2. Here, the image derivatives are 

calculated using the Sobel operator, with an aperture size of 3, which combines Gaussian 

smoothing and differentiation. Therefore, the result is more robust to the presence of noise. 

If covariance matrix A  is of rank two, meaning that both of its eigenvalues, 1λ  and 

2λ , are large, an interest point is detected. A matrix of rank one indicates an edge and rank 

zero a homogeneous region. 

In [Harris, 1988], a weight function was used to determine the feature points: 

 det( ) (tr( ))R k A A , (4.2) 

where 2 2 2
1 2det( ) λ λ ( ) ( ) ( )u v u v      A  and 2 2

1 2tr( ) λ λ ( ) ( )u v     A . Local maxima 

of R  are the feature point locations in the original image, Fig. 4.3. It was also ensured that all 

feature points are distanced enough one from another by considering some Euclidean 

distance, so features too close to other stronger features were removed. 
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Fig. 4.3 – Colour representation of the Harris’s weight function: 

warmer colours for higher values (Equation (4.2)). 

 

The matching process associates 2D points among sequential images, which are the 

projections of the same 3D object’s point. Automatic detection of matching points between 

two images can be achieved using one cross-correlation method. These methods use small 

image windows from a first image as templates for matching in the subsequent images 

[Gonzalez, 1987].  

In this Thesis, the Lucas-Kanade (LK) algorithm [Bouguet, 1999], which is one of the 

most popular methods for tracking features in Computer Vision, was used to match the 

object’s image points. 

Consider point ( , )u vm  in image I . The goal of the LK algorithm is to find its 

matching point ( , )u vu d v d     m m d  in image J , with vector d  known as optical 

flow at m , Fig. 4.4. This vector d  is the one that minimizes the following residual function: 

 2ε( ) (I( , ) J( , ))
u v

u v
w w

u v u d v d    d , (4.3) 

with ( , )u vw ww  the search window size. Perfect matching results means  ε 0d . 
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Fig. 4.4 – Matching points between two images by neighbourhood analysis 

of their feature points. 

 

 
Fig. 4.5 – Coarse to fine 3-level pyramidal image resolution. 

 

The LK algorithm uses a multi-resolution (pyramidal) approach, from coarse to fine 

image resolution, Fig. 4.5, to successfully handle relatively large displacements between the 

images. It assumes that, since vector d  is small, Equation (4.3) can be minimized into the 

following system of two equations: 

 
t

1

t

I( , )I ( , )
A

I( , )I ( , )

u i i i i
w

v i i i i
w

u v u v

u v u v


 
 


 
  




d , (4.4) 

where A  is the matrix described in Equation (4.1) and tI ( , ) I( , ) J( , )u v u v u v  . 

 

4.2.2 Epipolar geometry 

Epipolar geometry determines a pairwise relative orientation and allows for rejection 

of false matches (or outliers). When the interior orientation parameters of both images are the 
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same, it mathematically expresses itself by the fundamental matrix, F , a projective singular 

correlation between two images [Faugeras, 1992a]. 

In epipolar geometry, Fm  and F m  describe the epipolar lines on which the 

corresponding points m  and m , respectively, must lie on the other image, Fig. 4.6: 

 F
F



 

l m
l m

, (4.5) 

with ( , ,1)Tu vm  and ( , ,1)Tu v  m  the homogeneous image coordinates of corresponding 

points in a stereo image pair, respectively. This means that for all pairs of corresponding 

points, the epipolar geometry holds that: 

 F 0 m m . (4.6) 

Given at least eight matching points, Equation (4.6) can be used to obtain a set of 

linear equations of the form: 

 A 0f , (4.7) 

with f  the column vectorization of matrix F  and each row of matrix A  is vector 

[ 1]uu uv u vu vv v u v      . The fundamental matrix F  is defined only up to an 

unknown scale. For this reason, and to avoid the trivial solution f 0 , the additional 

constraint 33 0F   is adopted. 

The SVD algorithm solves the equation system (4.7). If rank of matrix A  is smaller 

than 8, then there are multiple solutions for fundamental matrix F , i.e., the corresponding 

points lie on a plane. 

It is trivial to reconstruct the fundamental matrix F  from the solution vector f . 

However, in the presence of noise, this matrix will not satisfy the rank-2 constraint. This 

means that there will not be real epipoles through which all epipolar lines pass. A solution to 

this problem is to obtain F  as the closest rank-2 approximation of the solution coming out of 

the linear equations. With this new constraint, only seven corresponding points are necessary. 

The described 8- and 7-point algorithms to compute the fundamental matrix assume 

that the matching points are accurate, i.e., the algorithms only accounting for some expected 

noise and they cannot cope with outliers. 
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Fig. 4.6 – On the top, the epipolar lines (green lines) for a stereo image pair, on which the 

corresponding points must lie (green dots). On the bottom, the epipole as the point 
intersection of an epipolar line set. Both axes are in pixels units. 

 

Thus, more robust methods of estimation are required. In general, the RANSAC 

(RANdom Sampling Consensus) algorithm [Fischler, 1981] achieves a robust estimation of 

the epipolar geometry. RANSAC is an iterative method to estimate matrix F  from a pair of 

sets of observed image points that can contain outliers. It is also a non-deterministic approach 

in the sense that it produces a reasonable result only with a certain probability. 

The RANSAC algorithm is summarized in Table 4.1. The algorithm terminates when 

the probability of finding a better ranked consensus set drops below a certain threshold. 

 

4.2.3 Rectification 

Rectification is the act of projecting two stereo images onto a common plane, such 

that pairs of conjugate epipolar lines, which are derived from the fundamental matrix, 

become collinear and parallel to the horizontal image axis, Fig. 4.7. 
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Fig. 4.7 – Rectified image pair: resampled images in which 

the epipolar lines run parallel with the image u-axis. 

 

Performing this step simplifies the posterior process of dense matching, because the 

search problem is reduced to 1D, since there is no vertical disparity. 

As the fundamental matrix is the essential matrix modified by the camera calibration 

parameters [Hartley, 2004], it is possible to rectify a stereo image pair into a common image 

space given enough knowledge of the camera parameters: 

 H K RKnew old , (4.8) 

where Kold  and Knew  are the intrinsic parameters of the “old” and “new” camera, 

respectively, and R  is the rotation that is applied to the “old” camera in order to rectify it. 

This is denominated as calibrated (Euclidean) rectification. Geometrically, rectification is 

achieved by a suitable rotation of both image planes. Unfortunately, no knowledge of the 

camera parameters exists in the uncalibrated case. Essentially, the only information that is 

available must be obtained from the images themselves. However, if epipolar lines are to be 

transformed to lines parallel with the image horizontal axis, then the epipoles should be 

mapped to infinity, i.e., to the particular infinite point (1,0,0)T . This leaves some degree of 

freedom to compute a projective transformation, H . If an inappropriate homography H  is 

chosen, severe projective image distortion can take place [Hartley, 1998]. 

A few competing rectification methods are present in the literature (e.g. [Zhang, 

1995], [Loop, 1999], [Isgrò, 1999]). In this Thesis, the method described in [Fusiello, 2008] 

was adopted, since it aims to achieve a good approximation to the calibrated epipolar 

rectification, that is referred as a quasi-Euclidean rectification. 
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Table 4.1 – Outline of the RANSAC algorithm. 

RANSAC Algorithm 

Step 1: Randomly select the 7 points required to determine the model 
parameters 

Step 2: Solve for the parameters of the model using the 7-point algorithm 

Step 3: Determine how many points from the set of all points fit with a 
predefined tolerance  

Step 4: If the fraction of the number of inliers over the total number points in 
the set exceeds a predefined threshold, re-estimate the model 
parameters using all the identified inliers and terminate; otherwise, 
repeat steps 1 through 4 (maximum of N times). 

 

Assuming the knowledge of the fundamental matrix F and matching points im  and 

im , most rectification methods exploit the fact that the fundamental matrix of a pair of 

rectified images has a very special form: 

 
0 0 0

F 0 0 1
0 1 0

 
 

 
 
  

. (4.9) 

Let HR  and HL  be the unknown rectifying homographies. The transformed matching 

points must satisfy the epipolar geometry of a rectified image pair: 

 (H ) F(H ) 0T
R i L i m m . (4.10) 

 The fundamental matrix F  between the image pair can be described as: 

 F H FHT
R L . (4.11) 

 The approach proposed in [Fusiello, 2008], is to minimize the Sampson error 

[Hartley, 2004]; i.e. to minimize a first order approximation of the geometric reprojection 

error: 
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


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m m

m m m
. (4.12) 

Homographies HR  and HL  are forced to have the same structure as in the calibrated 

case. Each homography depends on five intrinsic plus three, concerning the rotation involved, 

unknown parameters. 
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The intrinsic parameters are reduced by making some suitable guesses: they remain 

unchanged during rectification, are equal for both images, have no skew, the principal point 

is in the image centre, and the aspect ratio is equal to one: 

 
0 2

K K 0 2
0 0 1

R L

f w
f h

 
 

 
 
  

. (4.13) 

The only remaining unknown is the focal length f . Combining Equations (4.8) and (4.11), 

the minimization of Equation (4.12) can be carried using a Levenberg-Marquardt algorithm 

and starting with all the unknown parameters set equal to zero. 

 

4.2.4 Disparity map 

In a stereo system, the 3D information of a scene can be represented by the disparity 

between stereo images. This step is also known as dense matching, where the matching is 

performed addressing as many pixels as possible. It is a necessary step as the goal is to 

recover the detailed geometry of an object. 

It should be noted that without a significant amount of extra information and 

calculations, it is generally impossible to ascertain an exact depth measurement, but rather 

“planes” of depth can be isolated, which means to localize which parts of the scene are at 

relatively close depth level. Thus, a disparity map codifies the distances between object and 

camera: closer points have maximal disparity (usually 255 - white) and farther points get zero 

disparity (0 - black). For short, a disparity map gives perception of discontinuity in terms of 

depth, which is known as 2.5D reconstruction. 

A comprehensive overview on dense stereo matching can be found in [Scharstein, 

2002], [Lazaros, 2008], [Szeliski, 2010], among many others. In this Thesis, it the segment-

based approach described in [Klaus, 2006] was addressed. This approach performs on four 

consecutive steps: 

1. regions of homogeneous colour or intensity values are located using a colour 

segmentation method; 

2. a local window-based matching method is used to determine the disparities of 

reliable points; 
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Fig. 4.8 – On the left, reference image, i.e. rectified left image of the stereo pair. On the right, 

colour representation of regions with homogeneous greyscale values. 

 

3. a plane fitting technique is applied to obtain disparity planes that are considered as 

a label set;  

4. finally, an optimal disparity plane assignment, based on optimal labelling, is 

approximated using belief propagation. 

The first step is to decompose the left image, which is taken as reference, into regions 

of homogeneous colour or greyscale, Fig. 4.8. To accomplish this step, the mean-shift 

analysis approach described in [Comaniciu, 2002] was adopted. This approach assumes that 

disparity values vary smoothly in low-texture regions and that depth discontinuities only 

occur on region boundaries. It should be noted that over-segmentation is preferred, since it 

helps to meet the assumption in practice. 

For the second step, in which local matching is performed, a self-adapting 

dissimilarity measure was used. It combines the SAD (Sum of Absolute intensity Difference) 

and SGRAD (Sum of GRadient Absolute Difference) cost functions: 

 
( , ) ( , )

( , ) ( , ) ( , ) ( , )
u v

SAD L i i R i i i
w

SGRAD u L i i u R i i i v L i i v R i i i
w w

C I u v I u d v

C I u v I u d v I u v I u d v

  

       



 
, (4.14) 

with LI  being the left image of the stereo pair which is the one taken as reference, RI  the left 

image, w  a 3 3  square window surrounding point ( , )i iu v , uw  a surrounding window 

without the rightmost column, vw  a surrounding window without the leftmost column and d  

the optical flow between the stereo image pair. 
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Fig. 4.9 – Visual hull defined by projecting the calibrated silhouettes together 

(from [Corazza, 2006]). 

 

An optimal weighting ω  between SADC  and SGRADC  is determined by maximizing the 

number of reliable correspondences that are filtered out by applying a cross-checking test, 

i.e., by comparing left-to-right and right-to-left disparity maps, and by choosing the disparity 

with the lowest matching cost: 

 (1 ω) ωSAD SGRADC C C   . (4.15) 

A set of disparity planes is derived using reliable correspondences. This third step is 

achieved by applying a robust plane fitting method, and a final refinement step is performed 

by applying a belief propagation optimization method [Felzenszwalb, 2006]. 

 

4.3 Volumetric-based reconstruction 

For the 3D reconstruction of smooth objects, volumetric-based methods for 3D 

reconstruction have been quite popular for some time [Seitz, 1997]. These methods are based 

on SFS (Shape-From-Silhouettes) reconstruction methods: intersecting the visual cones 

generated by the silhouettes and the projection centres of each image, it is possible to 

determine a 3D model, Fig. 4.9. This 3D model is denominated as visual hull [Laurentini, 

1994], a locally convex over-approximation of the volume occupied by the object under 

reconstruction. 

Major two advantages of volumetric reconstruction using silhouettes are: 
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 it handles 3D shape reconstruction from arbitrarily placed cameras successfully; 

 since no constraints on the camera positions are imposed, the solution is a global 

reconstruction, eliminating the need of partial reconstructions and merges. 

Moreover, as photo-consistency is integrated into the volumetric method, the solution 

volume provides the tightest possible bound of the original object that can be computed from 

the given views. 

In the following, a summary of the standard volumetric reconstruction method theory 

is presented. 

Assume an object in the 3D space with an unknown volume shape O  and a set of 

{1,..., }i k  perspective projection silhouettes, iS , obtained respectively from a set of known 

locations, iC . This means that it is assumed that the camera(s) is (are) calibrated with 

3 2P () :i    the perspective projection function of viewpoint i . In other words, 

P ( )im M  are the image points of a 3D point M  in space in the thi  image. 

A volume A  is said to exactly explain all silhouettes iS  if and only if its projection 

onto the thi  image exactly coincides with iS , i.e., P ( )i iA S . If there exists at least one non-

empty volume which explains the silhouette images exactly, the set of silhouette images is 

said to be consistent. Normally, a set of silhouette images obtained from an object is 

consistent, unless there are camera calibration errors or silhouette image noise. 

A visual hull is therefore defined as the intersection of all the visual cones, Fig. 4.10, 

each formed by projecting the silhouette image iS  into the 3D space through the camera 

centre iC . Generally, for a consistent set of silhouette images iS , there is an infinite number 

of volumes, including the object O  itself, that exactly explain the silhouettes. 

A second definition for visual hull is that it is the largest possible volume that 

explains iS . Though abstract, this second definition implicitly expresses one of the useful 

properties of the visual hull: it provides an upper bound on the object which forms the 

silhouettes. The upper bound given by the visual hull gets tighter if we increase the number 

of distinct silhouette images. Therefore, the accuracy of the reconstruction obtained depends 

on the number of images used, the positions of each viewpoint considered, the precision of 

the camera calibration and the complexity of the object’s shape [Mundermann, 2005]. 
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Fig. 4.10 – Silhouette reconstruction based on voxel carving when two cameras 

with optical centres O1 and O2 are used. 

 

 
Fig. 4.11 – Developed volumetric reconstruction methodology. 

 

Asymptotically, if we have every possible silhouette images of a convex object, the 

visual hull is exactly equal to the object. If the object is not convex, the previous is not 

guaranteed. 

Volumetric methods represent the 3D space model O  by using voxels, which are 

regular volumetric structures also known as 3D pixels. The space of interest is divided into 

N N N   discrete voxels nv , with 3{1,..., }n N , that are then classified into two categories: 

inside and outside. If a particular voxel does not belong to the object, it is set as outside; 

whereas, voxels within the object remain as inside and can additionally be coloured. The 

union of all the inside voxels is an approximation of the visual hull. Table 4.2 presents an 

overview of the volumetric method described above for the visual hull computation. 

Fig. 4.11 presents the general structure of the developed volumetric method, which 

includes three major steps: visual hull estimation, voxel visibility computation and photo-

consistency estimation. 



Developed methodologies for 3D reconstruction 

89 

Table 4.2 – Outline of the standard voxel-based volumetric reconstruction 
method based on silhouettes. 

Volumetric visual hull computation algorithm 

Divide the space of interest into N N N   voxels nv . 

Initialize all the 3N  voxels as inside voxels. 

For 1n   to 3N  do 

For 1i   to k  do 

Project nv  into the thi  image plane, using the projection function 

Pi ; 

If the projected area P ( )i nv  lies completely outside iS , then nv  is 
outside. 

The visual hull is the union of all inside voxels. 

 

To the best of our knowledge, the implemented methodology is the first to include 

photo-consistency testing into an octree-based volumetric reconstruction method. 

The following sub-sections describe the steps of the novel algorithm, pointing out the 

main differences relatively to the standard voxel-based volumetric methods. 

 

4.3.1 Image acquisition 

In the volumetric methodology developed, two image sequences should be acquired: 

 a first one, acquired moving a planar calibration pattern freely in 3D space; 

 for the second sequence, the object to be reconstructed is placed above or in front 

of the calibration pattern, and the images are acquired by moving the camera 

freely in space. 

The necessity to acquire two image sequences was due to the fact that the calibration 

pattern is partially occluded by the object of interest. Although the calibration algorithm 

works even if the pattern is not completely visible, it may occur that the size of the object 

comparatively to the calibration pattern is such that the number of pattern points available for 

calibration is small, which will lead to an increase in the calibration error. 
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Fig. 4.12 – Planar calibration pattern used in this Thesis to perform the camera calibration 

using Zhang’s method (Section 3.3.3). 

 

No restrictions are made on the number of images acquired. The only constraint is to 

fully observe the calibration pattern on all acquired images and to keep the camera’s intrinsic 

parameters unchanged during the acquisition process, i.e., the zoom and focus should remain 

constant. 

The calibration pattern is an adaptation of the classical chessboard by adding four 

coloured circles, Fig. 4.12. The classical black and white chessboard was improved by adding 

four coloured circles in its extremities, for correct detection of the pattern orientation in an 

image set captured from multiple, unconstrained positions, as is demonstrated next. 

 

4.3.2 Camera calibration 

The camera used is calibrated in order to find the transformation that maps the 3D 

world in the associated 2D image space. The calibration procedure developed was based on 

Zhang’s algorithm [Zhang, 2000] (see Section 3.3.3). The camera’s intrinsic (focal length and 

principal point) and distortion parameters (radial and tangential) are obtained from the first 

image sequence. Then, using the second image sequence, the extrinsic parameters (3D 

rotation and translation) associated with each viewpoint considered in the reconstruction 

process are determined. 

To recover the calibration parameters for all images, Zhang’s method sets the world 

coordinates on one of the four outer vertices of the chessboard pattern and requires the 

knowledge of the remainder world coordinates, WX  and WY , for all visible vertices of the 

pattern’s squares; .i.e. the calibration pattern is on the world plane 0WZ  . 
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Fig. 4.13 – On the top: four images of the chessboard calibration pattern used, acquired by performing a 

full rotation around it with the camera. On the bottom: 3D representation of the camera’s poses, 
obtained without using the pattern’s circles as reference (on the right) and obtained by using 

the pattern’s circles as reference (on the left); for both graphs, the calibration pattern is 
represented as a green grid and the green pyramids are the 

camera’s poses for each acquired image. 

 

Automatic and robust algorithms are available to detect and match chessboard 

vertices used as calibration points (e.g., [Shu, 2003], [Wang, 2010]). However, they 

commonly fail when the pattern is partially occluded or at steep angles between pattern and 

image planes. Moreover, it is impossible to distinguish the origin of the world coordinate 

system on images with the calibration pattern suffering 180º rotations around the z-axis 

(turned upside-down). For example, when using images of a pattern rotating on a turntable 

device, the camera calibration returns a set of projection matrices that describe a semi-circle 

in the 3D space, Fig. 4.13. 

The manual identification of the points in a chessboard pattern is monotonous and can 

be unreliable. Some solutions currently available make use of self-identifying markers, with 

some or all squares represented in binary code (e.g. [Fiala, 2004], [Atcheson, 2010], 

[Grochulla, 2011]), or using a coloured pattern (e.g. [Nowakowski, 2009]). 

In this Thesis, the choice of an appropriate calibration object was a compromise 

between the calibration accuracy and the manufacturing complexity of the target itself. Planar 
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calibration targets are by far the most used both in experimental and industrial setups in 

virtue of their ease of construction. 

It was equally important to select an appropriate feature pattern for the detection of 

the reference points. Usual choices are symmetric markers such as circular points (e.g. 

[Heikkilä, 2000]) or chessboards. Both these marker types have shown to be detectable with 

high sub-pixel accuracy, but the chessboard pattern deals better with the misplacement error 

introduced by radial distortion [Mallon, 2007]. 

Therefore, the chessboard pattern was chosen because of its simple geometry, proven 

good results and has features which are easy to detect and order. As such, the new algorithm 

developed to extract the chessboard vertices on the second image sequence includes the 

following steps: 

1. image binarization, Fig. 4.14: in order to convert from colour to binary images an 

adaptive thresholding is applied, by computing an average of a window around 

each pixel: 

 
1,  if ( , ) avg ( ( , ))

( , )
0,  otherwise

wI u v I u v
B u v


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

. (4.16) 

The size of the window, w , was chosen to be approximately 10%  of the 

minimum imaged square area. The adaptive threshold is useful when, relatively to 

the general intensity gradient, there are strong illumination or reflectance 

gradients. 

2. squares segmentation: image dilation, using a 3 3  structuring element, is 

performed to properly separate the chessboard squares, Fig. 4.15; 

3. retrieval of the pattern squares and circles, Fig. 4.16: all image contours are 

retrieved and polygonized; first, non-convex, inner contours and contours with too 

small or too big areas are rejected; from the remaining, circles are chosen if they 

have more than 4 sides and its centre colour belongs to one of the four coloured 

pattern circles; finally, the non-quadrangles are rejected, which are those with 

more than 4 sides or which are more rectangular than square; 

4. finding square neighbours: due to image dilation, pattern squares were detached, 

originating four vertices for each square; in order to remove duplicates, connected 

vertices are detected and their average pixel location is retrieved; 
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Fig. 4.14 – Original image (on the left) and the correspondent binary image 

obtained using an adaptive thresholding (on the right). 

 

 
Fig. 4.15 – On the top: original binary image and a close-up to observe some squares that share 

the same vertex. On the bottom: dilated binary image and a close-up 
to confirm the good segmentation between adjacent squares. 

 

5. vertex location refinement: taking two points, one is the found vertex, q , and the 

other is a nearby pixel, p , the dot product of the gradient at p  and the vector 

q p  is computed. If the nearby pixel p  is on a flat region or over an edge, the 

dot product is always zero, Fig. 4.17. A linear system is formed, by stacking 

several equations of the dot product for different locations of p , which can be 

solved in order of q . One example result can be seen in Fig. 4.18. 
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Fig. 4.16 – On the left: result of the square vertices (the red dots) and circles’ centre detection 

(the white crosses). On the right: close-up of a region in which vertices of 
adjacent squares were detected twice. 

 

 
Fig. 4.17 – Finding vertices to sub-pixel accuracy: (a) the image area around the point p is uniform 

and so its gradient is 0 (zero); (b) the gradient at the edge is orthogonal to the vector q-p 
along the edge; in either case, the dot product between the gradient at p 

and the vector q-p is 0 (zero) (from [Bradski, 2008]). 

 

To match the chessboard vertices between images, p and p , in the second sequence, 

the 4 circle centres are used to determine the homography matrix, H , which relates both 

images. Images of points on a plane are related to corresponding image points in a second 

view by a projective transform (homography) [Hartley, 2004]: 

 H p p . (4.17) 

With the homography and the chessboard vertices from the previous image, all image 

vertices from the next image in the sequence are estimated, using Equation (4.17). 
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Fig. 4.18 – Final result of the pattern vertices detection (the red circles). 

 

Vertices are matched with the previous image if the distance between estimated and 

founded vertices is inferior to 20 pixels, Fig. 4.19. 

Having all images with chessboard vertices correctly ordered and matched, the 

camera calibration is a straightforward process. The first image sequence provides the 

camera’s intrinsic parameters and for the second sequence, with the object to be reconstructed 

on the calibration plate, the camera’s extrinsic parameters, i.e. camera’s pose, are computed 

for each image. 

To verify the calibration results’ accuracy, 3D coordinates of the chessboard pattern 

were reprojected and the average and standard deviations (in pixels) were calculated. Another 

way to verify the quality of the camera calibration results was to graphically represent the 

viewpoints considered in the second image acquisition process, considering the world 

coordinate system fixed on the first vertex of the chessboard pattern. 

 

4.3.3 Image segmentation 

To obtain the object silhouettes from the input images, image segmentation is 

performed. This step is required to build the visual hull. Also, since the calibration pattern 

used is imaged with the object to be reconstructed, if not segmented it will not be considered 

has scene background and, consequently, will be reconstructed as if it was part of the object 

of interest. 
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Fig. 4.19 – On the top: green crosses (on the left) represent vertices’ locations from last image of the 

first sequence and red crosses (on the right) are the estimated chessboard vertices, 
using calculated homography. On the bottom: final result, with the 

found chessboard vertices correctly ordered. 

 

Since the main goal of this Thesis concerns the 3D reconstruction of human body 

parts, a skin detection method was developed for the segmentation process. Skin detection 

can be defined as the process of selecting which pixels of a given image correspond to human 

skin. 

It may be naively considered that skin detection is a trivial task as the human visual 

system can easily detect and differentiate skin surfaces; however, it is not easy to train a 

computer to do so. 
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Fig. 4.20 – From left to right: original image, and greyscale images 

correspondent to the R, G and B channels. 

 

 
Fig. 4.21 – From left to right: original image, and greyscale images 

correspondent to Y, Cr and Cb channels. 

 

The inspiration to use skin colour analysis for initial classification of an image into 

foreground and background regions stems from a number of simple but powerful 

characteristics of skin colour. Under certain lighting conditions, colour is orientation 

invariant. The major difference between skin tones is regarding the intensity, e.g. due to 

varying lighting conditions and different human races [Menser, 2000]. Also, the colour of 

human skin is different from the colour of most other natural objects. 

One important factor that should be considered while building a statistical model for 

skin is the choice of a colour space. Several colour spaces have been proposed in the 

literature for skin detection applications. 

The RGB (Red-Green-Blue) is the default colour space for most available image 

formats, Fig. 4.20. However, high correlation between channels and mixing of chrominance 

and luminance data make RGB a not very favourable choice for colour analysis. Any other 

colour space can be obtained from a linear or non-linear transformation from RGB space. 

Here, the YCbCr (Luminance, Blue-difference chrominance and Red-difference 

chrominance) orthogonal colour space was used, Fig. 4.21. Segmentation of skin coloured 

regions becomes robust if only the chrominance component is used in analysis. Therefore, the 

variations of the luminance component are eliminated as much as possible by choosing the 

CbCr plane (chrominance components) of the YCbCr colour space to build the model. 

Research has shown that skin colour is clustered in a small region of the chrominance space 

[Jones, 2002]. The orthogonal colour spaces reduce the redundancy present in RGB colour 

channels and represent the colour with statistically almost independent components. 
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Fig. 4.22 – On the left: non-linear transformation of the YCbCr colour space (blue dots represent the 

reproducible colour in a monitor, and the red dots are the skin colour samples). On the right, is a 
2D projection, in which the elliptical skin model is overlaid on the skin cluster 

(from [Hsu, 2002]). For both graphics, the axis units represent possible 
colour values for individual pixels in a monitor (0-255). 

 

The transformation simplicity and explicit separation of chrominance (Cr and Cb) and 

luminance (Y) components, make these spaces an even more favourable choice for skin 

detection: 
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Then, the image pixels are compared against an elliptical cluster model for skin tones, 

Fig. 4.22: 
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where xc , yc , θ , 
xce , 

yce , a  and b  are parameters evaluated from training samples of skin 

patches [Hsu, 2002]. When a pixel chromaticity, channels rC  and bC , leads to a pair of 

values x  and y  that is inside the ellipse, 1R  , then this colour corresponds to the skin 

colour, Fig. 4.23. 
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Fig. 4.23 – Original image (on the left) and its pixel classification accordingly to the adopted 

elliptical model (on the right). 
 

 
Fig. 4.24 – Skin colour segmentation using the elliptical model adopted (on the left) 

and selection of the biggest contour (on the right). 

 

Some results of this model are shown in Fig. 4.24, where one can observe some false-

positive background pixels, in the mouth and eyebrow areas. These are eliminated by finding 

the contour with the biggest area, since it was assumed that the imaging system is acquiring 

one person, i.e. a single fully-connected object. 

 

4.3.4 Volumetric reconstruction 

Combining the image sequence and associated silhouette images, together with the 

parameters found by the calibration procedure, the objects’ models were built using two 

volumetric methodologies: one only based on silhouettes, and a second one that combines 

silhouettes and photo-consistency criterion. The two methodologies allowed for the 

evaluation of the influence on the 3D reconstruction accuracy of some of the algorithms’ 

parameters, such as the type of projection used for the voxels (rectangular or accurate), the 

initial volume size defined and the effect of the colour information. 
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Volumetric approaches for silhouette-based reconstruction are quite robust, somewhat 

easy to implement and guarantee results proportional to the chosen resolution. Further, they 

can be accelerated using dedicated graphics hardware (e.g., [Hasenfratz, 2004]). 

 

a) Voxel projection 

Volumetric structure from silhouettes is generally based on voxel classification: a 

voxel remains part of the estimated shape if it lies inside the visual hull. There are two 

choices available for the classification process: 

 voxel classification is performed in the 3D space: the silhouettes are each back-

projected as a cone, and each voxel is tested to see if it lies inside of these cones; 

 voxel classification is performed in the images: each voxel is projected into each 

image to determine if it lies inside the silhouette. 

It is generally more efficient to perform 2D boolean operations on shapes, and thus 

the second approach was chosen. 

The simplest voxel projection onto an image plane (footprint) is a single point, Fig. 

4.25a. Here, only the center of the voxel is projected, which leads to some problems such as: 

the rounding operation used to identify the pixel and artifacts on the 3D reconstruction due to 

the excessive simplification of the projection. 

The accurate footprint of a voxel has to consider its cubic shape. All 8 cube vertices 

are projected into the image plane, and the footprint is its convex hull, Fig. 4.25b. 

To determine the 2D convex hull from a given set of points, a variant of the Graham 

Scan algorithm introduced in [Andrew, 1979] was used, also known as Andrew’s Monotone 

Chain Algorithm. It is a ( log )O n n  algorithm to construct a convex hull given a set of n  

unsorted 2D points. It does so by first sorting the image points lexicographically (first by u-

coordinate, and in case of a tie, by v-coordinate), and then constructing the upper and lower 

hulls of the points. An upper hull is the part of the convex hull that is visible from above the 

line segment defined by the two points containing the rightmost and the leftmost X 

coordinates, respectively. On the other hand, the lower hull is the remaining part of the 

convex hull. It runs from its rightmost point to the leftmost point in counter clockwise order, 

for both upper and lower hulls. Once the two hull chains have been found, the final convex 

hull is the union of both upper and lower hulls. 
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Fig. 4.25 – Techniques for the image projection of the voxels. 

 

 
Fig. 4.26 – Voxel’s vertices indexation for footprint determination. 

 

Usually, a voxel is a regular cube. However, a parallelepiped voxel was implemented, 

i.e., not all sides of the voxel are required to have the same size, Fig. 4.26. This improvement 

of the classical voxel shaped reconstructions allowed for an unconstrained determination of 

the initial volume. The voxel vertices’ coordinates are defined as follows: 

 vertex 1: [X, Y, Z]; 

 vertex 2: [X, Y + Ysize, Z]; 

 vertex 3: [X+ Xsize, Y, Z]; 

 vertex 4: [X+ Xsize, Y + Ysize, Z]; 

 vertex 5: [X, Y, Z + Zsize]; 
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Fig. 4.27 – Comparison of the visual hull reconstruction times using the same parameters and regarding the 

same object, and only varying the image scan processing during the voxel classification process. 

 

 vertex 6: [X, Y + Ysize, Z + Zsize]; 

 vertex 7: [X+ Xsize, Y, Z + Zsize]; 

 vertex 8: [X+ Xsize, Y + Ysize, Z + Zsize]. 

The eight vertices are back-projected onto all acquired images and the projected 

vertices are inputs for the Monotone Chain Algorithm, which returns an either 4- or 6-sided 

footprint polygon for each image, like a regular cubic-shaped voxel does, which is 

subsequently filled using image contour filling. Afterwards, 2D pixel comparisons are 

performed between the voxel footprint and the correspondent silhouette image. 

Since this is one of the steps that contributes more to the overall processing time of a 

volumetric reconstruction method - the other is the computation of the voxel’s visibility -, it 

is important to reduce the amount of comparisons, Fig. 4.27. An improvement contribution 

achieved in this Thesis is the approach developed to perform such comparisons using a 

rectangle defined by the minimum and maximum values of the u- and v- pixel coordinates of 

the voxels’ footprints. This option revealed to be effective, since the projection of a voxel is a 

convex polygon; therefore, it is only necessary to track the right and left edges from the top to 

the bottom of the correspondent polygon. 

A more computationally attractive technique to approximate the accurate footprint is 

to use the bounding rectangle that can be computed as the bounding box of the projections of 

the eight vertices of a voxel, Fig. 4.25c. 
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Fig. 4.28 – Comparison of the visual hull reconstruction times for the same object, but varying 

the voxel projection method: exact versus rectangular and using the improved image scan 
processing during the voxel classification process. 

 

With the bounding box defined, a 4-sided footprint polygon is determined, which does 

not need to be filled neither requires comparisons with the silhouette. One must just search 

over the silhouette within a ROI (Region Of Interest) defined by the 4-sided footprint, and so 

decrease the computational effort of the reconstruction algorithm, Fig. 4.28. 

 

b) Visual hull computation 

In this Thesis, the visual hull is computed following an octree structure. The concept 

of octrees was introduced in [Chien, 1984]. 3D octrees are hierarchical structures, based on a 

recursive subdivision of the 3D space into eight octants, also known as voxels, which are 

usually regular cubes, Fig. 4.29. With an octree, cubes can be recursively subdivided until a 

desired resolution is reached. Starting from an initial resolution, each parent voxel is divided 

into eight child voxels. The procedure is repeated until the desired resolution level L  is 

obtained. Octrees are a computationally efficient way to represent objects in the 3D space; 

especially, if the objects are highly coupled, as in the case of the human body. 

The multi-resolution volumetric reconstruction starts with a coarse resolution (8 

voxels) of the 3D voxel space, 0D , delimitating a parallelepiped volume containing the object 

of interest. Octree decomposition is performed on voxels classified as ambiguous. Voxel 

classification is done using the following criteria: 
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Fig. 4.29 – 3D octree as a hierarchical data structure, used to represent volumes in 3D space. 

On the right: voxel octal decomposition. On the left: octree data structure 
as a tree structure with allocation of voxel identifiers. 

 

 inside: if all voxel footprints project inside the image silhouettes; 

 outside: if at least one voxel footprint projects outside an image silhouette; 

 ambiguous: neither of the above. 

The first model 0M  is obtained by estimating the visual hull of the initial set of 

voxels, 0D . At each resolution level i , with 1i  , a new set of voxels iD  is obtained by 

octree decomposition, containing 18i iq q    voxels, with 1iq   the number of voxels in model 

1iM  . Only voxels classified as ambiguous are decomposed. The number of iterations L  is 

defined by the user according to the desired resolution and precision of the final reconstructed 

model. A model iM  is obtained by estimating the visual hull of iD , consisting on the union 

of all voxels classified as inside or ambiguous. 

As stated before, the voxels are parallelepipeds; therefore, each decomposition 

produces eight equally shaped sub-parallelepipeds. Each node (voxel) in the octree stores not 

only an identifier, but also the X-, Y-, Z- sizes, the 3D coordinates of its first vertex and its 

classification (inside, outside or ambiguous). 
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Table 4.3 – Outline of the developed octree-based volumetric 
reconstruction using silhouettes. 

Developed octree-based reconstruction algorithm 

Initialize the octree’s root node as a cube that completely encloses the object to 
be reconstructed; 

Subdivide octree into 8 sub-voxels and classify them as inside; 

For level 1i   to L  do: 

     For all voxels in level i , iv  

          For all images kI  

Project the 8 vertices of iv  into the thk  image plane, using Pk ; 

Determine the iv  footprint; 

If iv  footprint lies completely outside silhouette kS  

Classify iv  as outside; 

Break the inner for-loop; 

Else if iv  footprint lies partially inside silhouette kS  

Classify iv  as ambiguous; 

          Subdivide all voxels iv  classified as ambiguous; 

The visual hull is the union of all inside and ambiguous voxels. 

 

Data representation of the octree is a tree structure, left on Fig. 4.29. All searches on 

the octree data structure are recursive and stored in a level-list for faster access. An octree can 

be searched for all voxels in a particular level, for all ambiguous voxels or for all non-outside 

voxels (ambiguous or inside) of the octree. 

The overall algorithm developed for visual computation using an octree data structure 

and silhouette-based reconstruction is summarized in Table 4.3. 

 

c) Initial bounding volume estimation 

As previously stated, the visual hull computation with an octree requires a 3D 

bounding volume as a root node, delimitating a parallelepiped containing the object of 

interest. 
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Fig. 4.30 – Initial bounding volume definition as an AABB, provided as the root node for the 

developed octree-based visual hull computation. 

 

In this Thesis, the initial bounding parallelepiped is aligned with the 3D world axis 

coordinates, which makes it an AABB (Axis Aligned Bounding Box), a volume definition 

known in Computer Graphics. It is defined as the parallelepiped having the minimum volume 

that still includes the object being reconstructed. 

Since the main goal of the developed 3D reconstruction methods was for them to be 

as automated as possible, it was important to automatically determine the position and size of 

the initial AABB. 

A minimum bounding volume can be computed by optimization methods for each of 

the six variables defining the AABB: 

 
min max

( , , ) : min max
min max

X X

Y Y

Z Z

X
AABB X Y X Y

Z

  
 

   
   

, (4.20) 

where minX , maxX , minY , maxY , minZ  and maxZ  are the minimum and maximum 3D 

world coordinates of the AABB, Fig. 4.30. Given a set of image silhouettes, iS , and the 

projection matrices, Pi , 4i  inequations are defined: 
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Fig. 4.31 – Back-projection of two silhouette bounding rectangles, from 2D image coordinates into the 

3D world coordinates (red and green polygons). The back-projected box defines the 
boundaries of the object AABB (blue doted cube). 
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, (4.21) 

with min
iu , max

iu , min
iv  and max

iv  as the 2D pixel coordinates of the silhouette bounding 

rectangle, Fig. 4.31, and pi
mn  the matrix elements of projection matrix Pi . 

Hence, the automatic computation of a minimum axis aligned bounding volume can 

be generalized as how to calculate the maximum and minimum ( , , )X Y Z  world coordinates 

under 4i  constraints. Currently proposed solutions involve iterative methods, such as the 

Levenberg-Marquardt optimizer or genetic algorithms, as proposed in [Thormählen, 2008] 

and [Song, 2009], respectively. Other solutions determine the bounding boxes through 

rotations about three vanishing points defined by the scene [Rudek, 2005], by exploiting the 

central axis if the camera performs a circular motion around the object [Yilmaz, 2002], or 

even estimating the base edges from a single image of objects placed on the world ground 

plane [Jung, 2009]. 

Since in the developed reconstruction method, the object is placed directly on top of 

the calibration pattern, Equation (4.21) is relaxed because maxZ  is known to be equal to 0 
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(zero). Therefore, the projections Pi  are reduced from 3 4  matrices into 3 3  square 

matrices, Pi , as proved by Equation (3.22): 

 1 2P =K[ ]i i i
i r r t . (4.22) 

Consequently, variables minX , maxX , minY  and maxY  can be derived non-

iteratively using the left and right lower vertices of the silhouettes’ bounding rectangles, 

min min[ , ]i i
L Lu v and min min[ , ]i i

R Ru v , respectively: 
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. (4.23) 

With the thi  camera’s optical centre coordinates, for the thi silhouette image, one 

obtains: 

 1Ri i iCC  t . (4.24) 

The variable maxZ  is determined by min( )i
ZCC , with i

ZCC  the Z world coordinate of the 

optical centre of camera i . However, since the camera’s relative motion around the object is 

unknown, one must verify if the projection of the computed value for maxZ  does, in fact, 

include all image silhouettes. This can occur on higher objects, where the camera’s optical 

centres are below a virtual 3D plane passing by the object’s highest 3D position. The 

computed AABB must be therefore back-projected using Pi  and if any silhouette is above the 

projected AABB, variable maxZ  is increased by a factor of 10%. This process iterates until 

the image projection of the AABB fully encloses all silhouettes. It was found that with a 

factor of 10%, the process stops after not more than 7 iterations, for the 3D reconstructions 

obtained in this Thesis. 

On the other hand, unnecessary octree refinements should also be avoided in case the 

image acquisition is performed from a relatively high viewpoint. Like in the previous case, 

only the variable maxZ  is changed: it is decreased by a factor of 10%, until its back-

projection collides with any of the silhouettes. 
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Equation (4.23) and, in some cases also Equation (4.24), returns an over-

approximation of the AABB, but it is faster and simpler to compute when comparing with 

other iterative methods. If provided, the object’s real measures are introduced on the octree 

data structure root node, and some calculated values for the AABB determined on this step 

can be overruled. 

 

d) Voxel visibility 

Finally, all voxels from final model lM  are colourized. For realistic and accurate 

model texture, voxels visibility must be estimated. Moreover, if the photo-consistency option 

is included in the 3D reconstruction, accurate voxel footprints can only be correctly 

determined if the visibility of a certain voxel, regarding its position in the octree and the 

image plane, is available. 

A number of methods have been proposed to solve the visibility problem for 

volumetric reconstruction methods. The fundamental problem is that of discerning which 

voxels of the octree are occluded by others in the view of a particular camera. This typically 

requires a search over the all voxels of the 3D reconstructed model. It is usually solved by 

making multiple plane-sweep passes, using each time only the cameras lying in front of the 

plane, and iterating until convergence. 

Voxel visibility consists on computing the views from which each voxel is visible, 

and it is achieved by taking into account the occlusions with the other voxels, and the 

distance in 3D space between the considered voxel’ and the camera’ centres. A voxel colour 

is the RGB average of all its visible projections. 

In order to determine if a voxel is visible from a certain camera’s viewpoint, first, a 

unique ID is assigned to each voxel on the octree. Then visibility maps are constructed for all 

images used on the reconstruction process. A visibility map contains a voxel ID for every 

pixel in the corresponding image. Voxel visibility starts by building a visibility map structure 

with invalid voxel IDs: for example, a matrix filled with zeros. Then, the Euclidean distance 

is stored for every pair voxel/image. Closer voxels are first rendered into the visibility map, 

and valid voxel IDs are never over-written. Thus, after a set of voxels have been rendered, 

some pixels will contain the ID of the closest voxel that projects onto it. 
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Table 4.4 – Outline of the developed voxel visibility algorithm. 

Voxel Visibility 

Search for all voxels iv  in the Visual Hull classified as ambiguous or inside; 

For all images kI do:   

 Sort all iv  by its distance to the image optical centre 

 Initialize visibility map kVIS  with zeros; 

 For all iv  do: 

  Compute voxel footprint on kI ; 

  Update kVIS  using iv  ID; 

  Add RGB pixel information into iv  colour; 

  Increase iv  number of pixels where it is visible; 

For all iv  do: 

 Compute iv  colour average.  

 

Once valid visibility maps have been computed for the images, it is then possible to 

compute the set of all pixels from which the voxel is visible: for each pixel in the visibility 

map, if the value equals the voxel's ID, then the pixel is added to the set of pixels from which 

the voxel projects. 

The voxel visibility algorithm developed and implemented in this Thesis is outlined in 

Table 4.4. 

 

e) Photo-consistency estimation 

If a photo-consistency option is included, all voxels from final model lM  are tested 

using the footprints from images where they are visible. A voxel is said to be photo-

consistent if its footprints have the same or similar colour. 

Since this is the most demanding algorithm, in terms of computational time, it was 

decided to incorporate it as a last refinement step of the previously computed visual hull. 

Thus, unnecessary voxel visibility determination steps and hierarchical thresholds for the 

consistency estimation were prevented. 
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The original consistency check for voxel colouring was introduced in [Seitz, 1997]. In 

line with the assumption adopted in this Thesis, they assumed approximately Lambertian 

objects, i.e., objects containing only matte surfaces. As such, a set of voxels S  is photo-

consistent with images 1,..., NI I  if, for every voxel V S  and image pixels iIp  and jIq : 

 ( ) ( ) ( , ) ( , ) ( , )i jV S S colour I colour I colour V S    p q p q . (4.24) 

This means that, if a voxel V  is not fully occluded in image iI , its projection will 

overlap a nonempty set of image pixels, πi . Without noise or quantization effects, a 

consistent voxel should project to a set of pixels with identical colour values for all images 

where V  is visible. The main statement in [Seitz, 1997] was that to account for some image 

noise, and so voxel consistency is determined using the standard deviation σV  of the colour 

values of all the pixels a voxel projects to: 
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with k  the number of images from where the voxel is visible, ic  the pixel value for one of 

the RGB image colour channels and c  the average colour for one of the RGB channel for all 

images. A pixel is said to be photo-consistent if: 

 ,σ  and 0V c T k  , (4.26) 

for all colour channels, with T  a predefined threshold value. 

A major problem with this consistency check is that there is no optimal threshold: 

areas with little texture are reconstructed best with a low threshold, while areas that are 

highly textured or with sharp edges need very high threshold values. Worse, during the visual 

hull computation, the visibility maps are not set correctly, and the errors are propagated along 

the rays from the camera’s optical centres through the incorrectly classified voxel. If the 

threshold is set to low, some voxels are wrongly removed in areas with high variation or 

belonging to an edge; on the other hand, if the threshold is set high, small colour variations 

are ignored, resulting in cusping in the areas with low variation – cusping is a distortion in 

which a surface in the reconstruction is warped toward the cameras, relative to the actual 

surface. 
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Fig. 4.32 – Voxel photo-consistency check: a) the voxel represents a homogeneous region, 

for which both σ  and σ  are small; on a textured region, b), or on an edge, c), 
both σ  and σ  are high; d) when the voxel is outside the object, 

σ  is high but σ  is small. 

 

The solution is to use an adaptive colour threshold as introduced in [Slabaugh, 2002]. 

This adaptive consistency check calculates the standard deviation over all pixels in the 

individual images where a voxel projects. These standard deviations are averaged, resulting 

in the mean standard deviation per image, σV . The overall deviation, σV , is now determined 

taking into account σV : 

 1 2σ σV VT T  , (4.27) 

with 1T  and 2T  being predefined threshold values. If there are very high standard deviations 

in all images, which may be caused by an edge or high texture variations, then the overall 

threshold is increased, preventing false voxel removals, Fig. 4.32. 

In [Slabaugh, 2002], all RGB colour channels are combined into a single standard 

deviation: 

 2 2 2 2 2 2

1

1σ ( )
k

V i i i
i

R G B R G B
k 

      . (4.28) 
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Table 4.5 – Outline of the developed voxel consistency check algorithm. 

Voxel Consistency 

Set all leaf voxels V in the Visual Hull as consistent; 

For N iterations do:   

 NoChanges = TRUE 

 For every voxel V do: 

 Find the set S of images where V is visible; 

 If S>1 and V as a consistent colour 

  Assign V the average colour of all pixels in S; 

 Else 

  NoChanges = FALSE; 

  Remove V from Visual Hull; 

 If NoChanges = TRUE 

  Quit loop. 

 

However, for accuracy purposes, in this Thesis a decision was made to use the 

original definition of standard deviation and to keep the analysis of the colour channels 

separated. Thus, a voxel V  is said to be photo-consistent if: 

 , 1 , 2σ σV colour V colourT T  , (4.29) 

where colour  is one of the considered colour channels. This criterion compares the photo-

consistency individually for all three colour channels, which in turn provides for a more 

accurate decision about the voxel classification as inside or outside the reconstructed volume. 

To optimize the photo-consistency testing, a minimum allowable percentage of image 

pixels in the voxel’s footprint was ensured. To perform that, at least 20% of the non-occluded 

image pixels projection would have to correspond to the complete footprint of a voxel. 

In addition, a voxel is tested for photo-consistency if the number of images from 

where it is visible is higher than 1 (one). Both conditions not only reduce the noise from 

calibration data but also allow some tolerance to erroneous segmentation. 

The voxel consistency algorithm developed and implemented in this Thesis is 

summarized in Table 4.5. When the visibility maps computation is finished, the voxel’s 

photo-consistency is calculated using Equation (4.29). If it is found to be inconsistent, it is set 

to outside, which in turn may change underlying voxels’ visibility status. Thus, the visibility 
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map computation and photo-consistency calculation of the entire 3D model only stops when 

all those voxels that remain are projected into consistent colours in the images from which 

they are visible. 

 

4.3.5 3D model assessment 

To evaluate the developed and implemented volumetric reconstruction methodology, 

some analysis on the obtained 3D models was performed. Comparison of some geometrical 

measures between real objects and the reconstructed 3D models are the first analysis to be 

performed when assessing the validity of a reconstruction method. However, an extensive 

evaluation must be carried out for a complete validation of the reconstruction accuracy and 

precision. 

Following sections describe in detail the analysis performed on the obtained 3D 

models. 

 

a) Geometrical measures 

From the voxelized 3D models obtained, some geometrical measures can be 

determined, such as: 

 height, length and width; 

 volume and surface; 

 specific measures using mesh processing software (e.g., [Meshlab, 2012], 

[Paraview, 2012], [MiniMagics, 2012], among others). 

In the algorithm developed for surface extraction all 2D faces that are used by only 

one 3D voxel, i.e. boundary faces, are extracted. Therefore, it is necessary to previously 

decompose all octree’s voxels in order for them to have the same (smallest) size. 

 

b) Reprojection error 

The reprojection error is another useful measure for evaluating the results of 

reconstructions, as well as a measure of colour consistency. In order to perform an objective 

evaluation of the reprojection error, the obtained 3D model is projected (rendered) on images 
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that are not used in the reconstruction process. Further on, these images will be called 

evaluation images. Rendering is performed using the camera information that is obtained 

from the calibration step. 

A common distance, between evaluation and rendered images, is the square of 

differences per RGB colour component: 

 2
α

1

1α { , , }, ( )
N

i i
i

R G B E Ie Ir
N 

    , (4.30) 

with Ie  as the evaluation images, Ir  the rendered images and N  the number of pixels on 

both images. Since [0,255]E , a normalized criterion can be computed as the percentage of 

colour similarity between evaluation and rendered images: 

 α( )100 1
255E

avg Ep  
  

 
. (4.31) 

 

c) Hausdorff distance 

Another way to assess a reconstructed 3D model is to compare it with another 3D 

model of the same object obtained using another reconstruction method. 

Having two discrete 3D surfaces of the same object, a useful tool to measure distances 

between the two surfaces is the Hausdorff distance [Aspert, 2002]. This distance, or metric, is 

a mathematical construct to measure how far two meshes are from each other. To understand 

this metric, let’s define the distance ( , )d Sp  between a point p  belonging to a surface S  and 

a surface S   as: 

 ( , ) min
S

d S
 

  
p

p p p . (4.32) 

From Equation (4.32), the one-sided Hausdorff distance from surface S  to S   is given as: 

 ( , ) max ( , )
S

d S S d S


 
p

p . (4.33) 

Since ( , ) ( , )d S S d S S  , Fig. 4.33, the Hausdorff distance is computed as: 

 , max[ ( , ), ( , )]s sd d S S d S S
  . (4.34) 

The point-to-surface distance defined in Equation (4.32) can be used to define a mean error, 

md : 
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Fig. 4.33 – The one-sided Hausdorff distance from surface S  to S  , ( , )d S S , is considerable 

smaller than ( , )d S S , since in this case ( , ) ( , )d S d S Α B . Thus, a small one-sided 
distance does not imply a small distortion (from [Aspert, 2002]). 

 

 
1( , ) ( , )m

S

d S S d S dS
S



  
p

p , (4.35) 

where S  is the area of S . From this, the root mean square rmsed  follows as: 

 21( , ) ( , )rmse
S

d S S d S dS
S



  
p

p . (4.36) 

 

d) Polygonal smoothing 

The generated 3D model from the volumetric method developed is composed by 

voxels. Therefore, its surface patches and edges are always aligned with the world coordinate 

system, which produces a jagged surface. A straightforward approach to overcome this is to 

smooth the polygonized surface. The simplest smoothing algorithm that satisfies the linear 

complexity, required for large datasets, is the Laplacian smoothing [Taubin, 2000]. 

The Laplacian smoothing proceeds as follows. For each mesh vertex, its coordinates 

are moved according to a weighted average of its connected vertices. A relaxation factor is 

available to control the amount of displacement of the vertex. When the process is repeated 

for each vertex, a single iteration is completed. 

There are some variables used to control the execution of the Laplacian smoothing 

algorithm. The convergence variable limits the maximum motion of any vertex point. It is 

expressed as a fraction of the length of the diagonal of the bounding box of the mesh. If the 

maximum point motion during a smoothing iteration is less than the convergence value, the 
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smoothing operation terminates. The number of iterations is the maximum number of 

smoothing passes. More iterations produce higher smoothing. 

A problem with Laplacian smoothing is shrinkage. When a large number of Laplacian 

smoothing steps are iteratively performed, the shape undergoes substantial deformations, 

eventually converging to the centroid of the original data. 

 

4.4 Summary 

During this Thesis, two image-based methods for 3D object reconstruction were 

developed and implemented: Stereo Reconstruction and Volumetric Reconstruction. The main 

goal was to obtain the 3D shape of human external surfaces, without imposing severe restrictions 

on the relative motion between the used camera and the object to be reconstructed. In both the 

reconstruction of a rigid object with Lambertian surfaces was assumed. 

The first 3D reconstruction method was based on stereoscopic vision. It requires two 

perspective views of the object to reconstruct, usually named stereo pair. So, starting with two 

images of an object, the epipolar geometry, which is denoted by the fundamental matrix, is 

extracted and finally, a disparity map of the object is obtained. 

For the second 3D reconstruction method, two sets of images are required. Combined sets 

allow for a more accurate camera calibration and pose estimation when the object to be 

reconstructed partially occludes the calibration pattern. Developed calibration pattern is an 

adaptation of the usual planar black and white chessboard. The modifications introduced on the 

pattern allowed for a correct orientation, when the camera’s or object’s relative motion is not 

known a priori. 

Then, using the acquired images, obtained silhouettes and calculated camera calibration 

data, a 3D multi-resolution model is reconstructed and colorized. A 3D octree data structure was 

included in order to achieve faster computational times. 

The typical square shape of a 3D voxel is relaxed, which avoids unnecessary carving 

steps and adapts the initial bounding box to the real 3D shape of the object. This initial bounding 

volume is automatically determined from correspondent silhouettes and projection matrices; 

instead, the voxel footprint is not determined over the entire silhouette. The voxel’s eight vertices 

are back-project onto the image plane and its boundary rectangle imposes the minimum and 

maximum values for the pixel comparisons against the silhouette information. 
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Colour consistency may be applied to refine the obtained models for objects with 

significant texture information. It is not only determined by statistical photogrammetric analysis, 

but it also takes into account the voxel visibility on each individual image. 

Finally, subjective and analytical characteristics can be obtained to analyze the resultant 

3D model, to assess the reconstruction accuracy if a ground-truth is available or even to compare 

results with other methods. 
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5 
5 Experimental results and Discussion 

5.1 Introduction 

This Chapter presents the results of the developed 3D reconstruction methods as their 

discussion. As stated in previous Chapter, the work developed in this Thesis followed two main 

methodologies: Stereo and Volumetric based reconstruction methodologies. 

Therefore, the first group of results presented were obtained using the stereo-based 

reconstruction methodology, described in Section 4.2. Then, follows the results obtained using 

the volumetric-based reconstruction methodology, described in Section 4.3. 

For all the presented experimental results, the same digital camera was used: a 

CANON EOS 400D, with an image sensor of 22.214.8 mm2, approximately 10.1M 

effective pixels and a maximum resolution of 38882592 pixels. The used lens was a 

CANON EF-S, allowing for focal distances ranging from 18 to 55 mm. 

The developed 3D reconstruction methods were ran on a 32-bit desktop computer 

with an Intel Pentium 3GHz processor, 2GB of RAM and a Nvidia GeForce 7800 GT 

graphics card. 



Experimental results and Discussion 

120 

 
Fig. 5.1 – Green crosses represent the feature points found using the Harris detector. 

From left to right, the quality threshold was increased by a factor of 10. 

 

 
Fig. 5.2 – Green crosses represent the feature points found using the Harris detector. 

From left to right, the minimal distance was equal 1, 50 and 100, respectively. 

 

5.2 Stereo-based reconstruction results 

To test the stereo-based reconstruction methodology, two images of the same object 

were used. Both were acquired on a simple black background, and with a resolution of 

774 515  pixels. 

 

5.2.1 Rubik cube 

First tests were concerning a Rubik cube. This object has a straightforward topology, 

with flat orthogonal surfaces, whose vertices can be easily detected in each image and simply 

matched in the stereo image pair. 

 

Feature points extraction 

Fig. 5.1 and Fig. 5.2 present some results obtained using the Harris detector (Section 

4.2.1). On the first figure, the influence of the accepted quality for the image features was 

compared. The quality was measured as the threshold for the minimal eigenvalue of the 

derivative covariation matrix for every pixel (Equation (4.1)). A careful decision on the 

quality threshold must be performed, since a very low threshold allows for false-positive 
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features and, on the other hand, a high threshold discards features on image areas with low 

contrast, Fig. 5.1. On the other hand, in the images on Fig. 5.2, the minimal possible 

Euclidean distance between the returned vertices was varied. This value can be inferred 

directly from the acquired image, by measuring the minimal distance between potential 

feature points. 

 

Feature points matching 

Using the best feature point detection results on the first stereo image, next step was 

to find the matches on the second stereo image. For that, the LK method, described in Section 

4.2.1, was used and tested, by varying the search window size and the pyramid level. 

Fig. 5.3 shows the results obtained from varying the pyramid level, ranging from 1 to 

3. The accuracy was improved by increasing the number of pyramids; however, for a large 

number (higher than 8), no matches were successfully found. 

Fig. 5.4 shows different matching results obtained by varying the search window size. 

Again, a compromise must be made, because small windows can be the source of false 

matches, and large windows cause some points not to be matched. 

Since the Rubik cube presents flat surfaces, with strong colour variations, obviously 

few wrong matches were detected. 

 

Epipolar geometry computation 

To determine the epipolar geometry for the stereo image pairs, the RANSAC 

algorithm, described in Section 4.2.2 and summarized on Table 4.1, was used. 

RANSAC improves the previous matching results, classifying them into inliers and 

outliers, Fig. 5.5. This matching refinement is performed through the determination of the 

epipolar geometry, Fig. 5.6. 

In each image, the direction of the camera associated to the other image may be 

inferred from the intersection of the pencil of epipolar lines. In this case, both epipoles lie 

outside of the visible image. 



Experimental results and Discussion 

122 

 
Fig. 5.3 – Matching results using the LK method. Cyan dots represent the supposed matches and cyan 

lines represent the connection with the other stereo image point match. From top to bottom: 
1, 2 and 3 pyramid levels were adopted, respectively. 

 

Image rectification 

With the epipolar geometry computed, the image pair was rectified using the method 

described in Section 4.2.3. Obtained results can be observed in Fig. 5.7. 

Image distortion is proportional to the slope variation of the epipolar lines. This 

means that close epipoles to the image centre originate highly distorted rectification images. 

From the results, one can observe that rectified left image is more distorted than the right one. 
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Fig. 5.4 – Matching results using the LK method. Cyan dots represent the supposed matches 

and cyan lines represent the connection with the other stereo image point match. 
From top to bottom, the window size was equal to 2, 10 and 30, respectively. 

 

Dense matching 

The dense matching resulted for the Rubik cube is shown in Fig. 5.8. This result was 

obtained using the method described in Section 4.2.4. Fusing the rectified images from the 

two viewpoints and exploiting the disparity between them, allowed a stronger sense of depth. 

However, since the image acquisition system was not calibrated, there is a projective 

ambiguity in the reconstruction achieved. 
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Fig. 5.5 – On the top: matching results using the LK method. On the bottom: matching results 

improved by using the RANSAC algorithm. 

 

 
Fig. 5.6 – Epipolar lines (the green lines) for the inlier matches (the green dots). 

 

 
Fig. 5.7 – Rectified image pair for the Rubik cube object. 
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Fig. 5.8 – Disparity map for the Rubik cube object: higher (lighter) disparity values mean closer points, and 

lower (darker) disparity mean farther points. The image scale range displayed was adjusted to the 
minimum and maximum values of the disparity map, which were 1 and 49, respectively. 

 

 
Fig. 5.9 – On the left: green crosses represent the feature points found on the left image using the Harris 
detector. In the middle and on the right: matching results using the LK method. Cyan dots represent the 

supposed matches, and cyan lines represent the connection with the other stereo image point match. 

 

5.2.2 Plastic baby toy 

Next tests were performed using a plastic baby toy that has a smooth surface and 

complicated shape. Unlike the Rubik cube, few strong colour or texture variations could be 

found. 

 

Feature points extraction and matching 

Fig. 5.9 shows the result of the feature points’ extraction and matching obtained for 

the second test object. 
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Fig. 5.10 – On the top: matching results improved by the RANSAC algorithm. 

On the bottom: epipolar lines for the inlier matches. 

 

Since the plastic baby toy presents a smooth surface, obviously many wrong matches 

were detected. In low textured areas, local maxima of Harris weight function R  are the point 

located on the boundary between object and background. This induces wrong matches 

between the image pair. 

 

Epipolar geometry computation 

Since many wrong matches were detected, consequently, the determined epipolar 

geometry was incorrectly estimated. Fig. 5.10 shows the results obtained. 

 

Image rectification and dense matching 

Fig. 5.11 shows the rectification result for the baby toy object. As with the Rubik 

cube, distortion of the rectified images was proportional to the slope variation of the epipolar 

lines. 

In comparison with the Rubik cube, the result of the dense matching was of worst 

quality, Fig. 5.12. 
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Fig. 5.11 – Rectified image pair for the plastic baby toy object. 

 

 
Fig. 5.12 – Disparity map obtained for the plastic baby toy object: higher (lighter) disparity values mean 

closer points and lower (darker) disparity mean farther points. The image scale range displayed 
was adjusted to the minimum and maximum values of the disparity map, 

which were 10 and 100, respectively. 
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Fig. 5.13 – On the top: 3 of the 6 images obtained by approximating the camera towards the calibration pattern, 

while maintaining the camera’s centre with a constant X coordinate. On the middle: 3 of the 
6 images obtained by approximating the camera towards the calibration pattern, while 

maintaining the camera’s centre with a constant X coordinate. On the bottom: 3 
of the 4 images acquired by increasing the defocus. 

 

5.3 Volumetric-based reconstruction results 

To test the volumetric-based reconstruction methodology, two image sequences were 

used, as explained in Section 4.3.1. 

 

5.3.1 Rubik cube 

The first experimental test was performed using the same Rubik cube used in Section 

5.2.1. Initially, 10 images of the chessboard calibration pattern were acquired. Then, some 

extra images were acquired for the second sequence, in order to evaluate some conditions of 

the image acquisition process for a successful calibration, Fig. 5.13: 6 images were obtained 

by decreasing the Z coordinate of the camera’s centre with a constant X coordinate, 6 more 

were obtained by decreasing the Z coordinate of the camera’s centre with a constant Y 

coordinate, and 4 images were acquired by decreasing the focus. 
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Fig. 5.14 – Top and bottom: three examples of the first and second image sequence, 

respectively, acquired for the Rubik cube. 

Table 5.1 – Camera’s intrinsic parameters obtained 
for the Rubik cube object. 

Intrinsic Parameters 

Focal distance 
(pixel-related unit) 

xf  2108.124 

yf  2093.228 

Principal point 
(pixel) 

xc  980.476 

yc  595.073 

Radial distortion coefficients 
1k  -0.10253 

2k  0.08663 

Tangential distortion coefficients 1p  -0.00122 

2p  -0.00143 

 

Finally, the Rubik cube was placed over the calibration pattern and more 11 images 

were acquired, Fig. 5.14. 

All images were acquired on a simple black background with a resolution of 

1936 1288  pixels. 

 

Camera calibration 

For 10 images of the first sequence, the 280 ( 20 14 ) chessboard vertices were 

successfully extracted and matched. Table 5.1 shows the camera’s intrinsic parameters 

obtained using this first set of images. 
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Fig. 5.15 – From left to right: 4 of the 6 original images obtained by approximating the camera towards 

the calibration pattern, while maintaining the camera’s centre with a constant X coordinate; 
results obtained after pattern circles (brighter masks) and squares detection (medium 

gray masks); and final calibration inner vertices (green crosses) detected 
and used for camera’s pose estimation. 

 

The camera’s extrinsic parameters, i.e. camera’s poses, were impossible to determine 

for some images of the extra set of images of the first sequence. For example, on the image 

from the set obtained by keeping the camera’s optical centre X world coordinate, the blue 

circle of the calibration pattern was not successfully detected, Fig. 5.15. The camera’s angle 

is defined as the line of sight when viewed from the side; in this case the angle between the 

line of sight and the calibration pattern. With this definition, it was observed that for an angle 

less than 35 degrees, the camera could not be calibrated, mainly due to failure in the detection 

of the four circles. 
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Fig. 5.16 – From left to right: 4 of the 6 original images obtained by approximating the camera towards 

the calibration pattern, while maintaining the camera’s centre with a constant Y coordinate; 
results obtained after pattern circles (brighter masks) and squares detection (medium 

gray masks); and final calibration inner vertices (green crosses) detected 
and used for camera’s pose estimation. 

 

On the other hand, for all images obtained by keeping the Y world coordinate of the 

camera’s optical centre, all pattern circles were successfully detected, Fig. 5.16. Similarly to 

the previous set of images, the smallest angle between the calibration pattern and the 

camera’s centre was of 32 degrees. However, since on this set the calibration pattern was 

more centred on the image plane, the developed pattern detection method was able to 

effectively extract the four circles and some of the chessboard vertices. 

For 2 of the 4 images acquired by decreasing the focus, the 4 circles were not 

successfully detected, Fig. 5.17. With decreasing the focus, image processing techniques used 

to extract chessboard vertices and coloured circles start to fail, due to the blending of pixel 

information amongst neighbours. 
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Fig. 5.17 – From left to right: original images obtained by decreasing the camera’s focus, results 

after pattern circles (brighter masks) and squares detection (medium gray masks) 
and final calibration inner vertices detected and used for camera’s 

pose estimation (green crosses). 

 

Based on these results, one can conclude that even if the calibration pattern is fully 

observed in the image, not all viewpoints allow for camera’s pose estimation; namely, those 

where the calibration pattern features suffer from strong distortion and down-sizing due to 

image projection. Also, a good camera focus is fundamental for a correct detection of the 

pattern’s circles and vertices and, since the calibration method adopted assumes fixed 

intrinsic parameters, the distance between the different viewpoints and the calibration pattern 

should not change very much. 

Finally, all circles and chessboard vertices were successfully extracted and matched 

among the last 11 images of the second sequence (the ones with the Rubik cube placed over 

the calibration pattern). 
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Fig. 5.18 – 3D representation of the camera’s extrinsic parameters obtained with the second image sequence 

of the Rubik cube object. World 3D axes (in red) are located on the bottom-left vertex of the 
chessboard (the green grid). In both graphics, the scale is in mm. 

 

Although the cube has red, green and blue surface blocks, these were not mistakenly 

confused with the calibration pattern circles. This was achieved by eliminating image 

contours with less than 5 vertices, when searching for the pattern circles. 

In Fig. 5.18 a graphical 3D representation of the camera’s extrinsic parameters 

obtained for the 11 images of the second image sequence can be observed. Average 

reprojection error for the second image sequence was of (0.1967, 0.4964)avge   mm and with 

a standard deviation of (0.1614, 0.3784)stde   mm. 

 

Image segmentation 

Since the test object does not have a surface colour similar to the human skin, 

automation using image processing techniques was difficult to implement due to the 

similarity between object and calibration pattern, and so the segmentation was done semi-

automatically. 

First, edge detection was performed using a Sobel approximation to the derivative, 

followed by image dilation to join line segments, with a 5-pixels length cross as the 

structuring element, and then a manual flood-filling of the holes of the Rubik cube imaged 

patches, Fig. 5.19. The flood-fill operation changes connected background pixels, i.e. black 

pixels, to foreground pixels, i.e. white pixels, starting from the points specified manually. The 

boundary of the fill operation is 4-connected. 
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Fig. 5.19 – From left to right and from top to bottom: original image; result after edge detection followed 

by dilation; connected regions obtained by manually hole flood-filling; and the final silhouette 
determined by selecting the region with the biggest area. 

 

Finally, since the flood-filling operation sometimes missed image parts containing the 

Rubik cube, all closed contours were extracted, and the correct silhouette was obtained by 

selecting the contour with the biggest area and again, filling its holes. 

 

Volumetric-based reconstruction 

As explained in Section 4.3.4, combining the original and segmented images and the 

calibration results, 3D models could be obtained through the previously described 

volumetric-based method. 

From image analysis alone, one can infer some of the values for the initial bounding 

box and compare them with the ones obtained from the method proposed in Section 4.3.4, 

Table 5.2. For the X- and Y- coordinates, the determined values were close to the real ones, 

Fig. 5.20. The calculation of maxZ  took five iterations in order the decrease the initial value 

determined using Equation (4.24), Fig. 5.21. 
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Fig. 5.20 – On the top: back-projection of calculated silhouette bounding box (blue rectangle) 

with the bottom vertices marked with blue circles. On the bottom: back-projection 
of the computed initial bounding volume. 

 

 
Fig. 5.21 – From left to right, from top to bottom: six back-projections (blue parallelepiped) on one 

of the acquired images. A total of seven iterations was required for the initial bounding 
volume computation of the Rubik cube object, by decreasing the 

maximum height of the volume. 

 

Fig. 5.22 demonstrates the evolution of the visual hull computation for different levels 

of the volumetric reconstruction, using the inferred initial bounding values presented in Table 

5.2. 

After a few iterations, the 3D model can be considered a good approximation of the 

real object, excepting the cusping effect, which becomes more evident as the voxels are 

carved away. 
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Table 5.2 – Initial bounding volume measures 
for the Rubik cube object (in mm). 

 Inferred from images 
(number of pattern squares 

times square’s size) 

Automatically computed 
(using the method described 

in Section 4.3.4) 

minX  8 x 25 = 200 177 

maxX  11 x 25 = 275 298 

minY  5 x 25 = 125 100 

maxY  8 x 25 = 200 222 

maxZ  75 (same size as X and Y) 115 

 

 
Fig. 5.22 – Visual hull computation of the Rubik cube object: from left to right and from top to bottom, 

evolution of the 3D visual hull from level 1 to 6, respectively. The blue lines are the wireframe 
representation of individual voxels (gray squares). 

 

Fig. 5.23 shows a cropped 3D octree-based model, built adopting 5 levels. The voxels 

classified as inside on early levels are not sub-divided, saving both processing time and 

memory usage. 



Experimental results and Discussion 

137 

 
Fig. 5.23 – Visualization of the 3D octree data, with 5 levels, representing the computed visual hull. 

A plane perpendicular to the world Y-axis, on the left, and to the Z-axis, on the right, 
was used to crop a 3D model of Rubik cube object. All voxels with the same 

size belong to equal level of the octree data structure. 

 

Fig. 5.24 and Fig. 5.25 shows two sets of the reconstruction results for the Rubik cube 

using the volumetric-based method using only silhouettes and with the automatically 

computed initial bounding values presented in Table 5.2. The sets differ on the projection 

criterion of the voxels: rectangular or exact (see Fig. 4.25). 

The finer resolution models obtained from both voxel projection criteria were very 

similar. However, with exact projection, the visual hull was faster to approximate the real 

object’s shape, as can be realized when comparing the rectangular projection, Fig. 5.24, with 

the exact projection, Fig. 5.25. 

Fig. 5.26 shows two graphs comparing the time required on the two sets of 

reconstructions of the Rubik cube presented in Fig. 5.24 and Fig. 5.25, as well as the final 

number of voxels that constitute the volumetric 3D models built. On the left panel of this 

figure, the relation between the total amount of computational time required to reconstruct a 

3D model of the Rubik cube, using rectangular and exact projections, and the number of 

iterations is depicted. On the right panel, the total number of voxels belonging to a 3D model, 

using rectangular and exact projections, is also compared for the different number of 

reconstruction levels considered. 
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Fig. 5.24 – 3D models obtained for the Rubik cube object using rectangular voxel projection. 

From top to bottom and from left to right: the octree refinement level was 
sequentially increased from 2 to 6 levels, respectively. 
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Fig. 5.25 – 3D models obtained for the Rubik cube object using exact voxel projection. 

From top to bottom and from left to right: the octree refinement level was 
sequentially increased from 2 to 6 levels, respectively. 
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Fig. 5.26 – On the left: total amount of time required to reconstruct the Rubik cube, using rectangular and exact 

projections. On the right: number of voxels of the reconstruct 3D models for the Rubik cube 
using rectangular and exact projections. 

 

On the left panel of Fig. 5.26, if a trendline was drawn for both reconstruction types, 

the best approximation would be traduced by an exponential line. In fact, the reconstruction 

time grew exponentially with the octrees final level L, because the maximum number of 

voxels is 8L, as confirmed by the right panel. However, this is not the only factor that 

contributes for the higher time taken by the reconstructions using exact footprints. Another 

reason is the smaller computational effort required to compute the voxels’ image footprints 

for the rectangular case: 

 for an exact footprint, it is necessary to fill the footprint polygon and then 

compare it with the silhouette; 

 for a rectangular footprint, the search is performed directly over the silhouette 

within the ROI defined by the 4-sided rectangular footprint’s polygon. 

Analysing the graph on the left panel of Fig. 5.27, it can be noticeable that 

determining the voxels’ colour of the final 3D models can take around 20% of the total 

reconstruction time when using rectangular projection, but, when using exact projection, it is 

increased to around 80% of the total reconstruction time. This difference is explained by the 

considerable inferior number of footprints determined when computing the visual hull than 

when it is being coloured. Since the colour determination for the final visual hull needs more 

computations of footprints, its influence in the exact projection case becomes more influent 

on the overall processing time. 
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Fig. 5.27 – For both graphics, the column bars represent the percentage of time spent on the two 

major steps of the developed volumetric reconstruction method using only silhouettes: 
visual hull computation and voxel colouring. On the left, the graph reflects the 

times using rectangular projection to determine a voxel’s footprint, 
and on the right, the graph reflects the times 

using exact projection. 

 

The computational time difference is even more important when using the photo-

consistency option, because in this case, the voxel visibility must be computed every time a 

voxel is considered inconsistent and removed from the final 3D model. 

In order to evaluate the influence of the camera calibration method on the 3D 

reconstruction accuracy, two new 3D models of the Rubik were built: one using the original 

camera’s parameters and a second one with the parameters obtained by disregarding the step 

of calibration pattern’s vertices refinement with sub-pixel precision. For the Rubik cube 

object, the maximum deviation of the vertices’ location was about 1.5 pixels, Fig. 5.28. 

In terms of the overall reprojection error, it increases without the sub-pixel 

refinement. The values obtained with the sub-pixel refinement for the average and standard 

deviation of the reprojection errors were equal to (0.1967, 0.4964)avge   pixels and 

(0.1614, 0.3784)stde   pixels, respectively. Without the refinement step, the new values 

obtained where of (0.3529, 0.5567)avge   and (0.2662, 0.4207)stde  , respectively. When 

comparing the calibration results obtained in both cases, there was no surprise when the 3D 

models built were very similar. For an objective comparison, the one-sided Hausdorff 

distance, from accurate to less-accurate, was computed. 
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Fig. 5.28 – Pixel deviation between the vertices founded with and without sub-pixel precision during the 

calibration procedure for the Rubik cube object (different colours represent distinct images). 

 

 
Fig. 5.29 – Two viewpoints of the Hausdorff distance computed between the 3D models of the Rubik cube 

built with and without sub-pixel precision of the pattern vertices’ detection during 
the camera calibration procedure. 

 

Fig. 5.29 shows two views of the computed Hausdorff distance with the distance 

values colourized into a RGB colourmap: since that it is a red-green-blue map, then red is 

min and blue is max. As such, in this case, red means zero distance and blue higher distance. 
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Table 5.3 – Hausdorff distance statistics between the 3D models of the Rubik cube 
built with and without sub-pixel precision of the pattern vertices’ detection 

during the camera calibration procedure. 

Hausdorff distance (mm) 

min 0.000000 

max 2.343994 

mean 0.045885 

RMS 0.270126 

 

 
Fig. 5.30 – 3D representation of the camera’s extrinsic parameters obtained with accurate (in red) 

and erroneous (in blue) pattern vertices detection. Coloured spheres represent the 
camera’s centres. The world 3D axes are located on the bottom-left vertex 

of the chessboard (both in cyan). 

 

Table 5.3 presents statistics concerning the computed Hausdorff distance. Considering 

a bounding box of the 3D models as reference, it can be observed that the average Hausdorff 

distance error is about 0.03% of its diagonal, which is very low. 

For a further analysis on the influence of the calibration results in the 3D 

reconstruction accuracy, a second experience was made. A random noise of +/- 5 pixels was 

added to all pattern vertices detected, and, from the corrupted vertices’ coordinates, the 

camera’s intrinsic and extrinsic parameters were computed. Fig. 5.30 allows the comparison 

of the camera’s extrinsic parameters obtained for the second image sequence. 

Again, a new 3D model was built, using the same parameters as before. Fig. 5.31 

shows two views of the computed Hausdorff distance, with the distance values colourized 

into a RGB colourmap, and Table 5.4 presents some statistics of the computed Hausdorff 

distance. 
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Fig. 5.31 – Two viewpoints of the Hausdorff distance computed between the 3D models of the Rubik cube 

built with and without random noise introduction after the pattern vertices’ detection during 
the camera calibration procedure. 

Table 5.4 – Hausdorff distance statistics between the 3D models of the Rubik cube 
built with and without random noise introduction after the pattern vertices’ 

detection during the camera calibration procedure. 

Hausdorff distance (mm) 

min 0.000000 

max 4.059804 

mean 0.516281 

RMS 0.998691 

 

Again, considering a bounding box of the 3D models as reference, it can be observed 

that the average Hausdorff distance error was about 0.4% of its diagonal, which 

approximately 10 times the previous value. Due to the configuration of the used setup, where 

the calibration pattern defines the XY world plane, errors induced by a defective calibration 

will mostly induce worst reconstructions on the upper part of the reconstructed objects, Fig. 

5.32. 

Another 3D model of the Rubik cube object was built, this time to compare the results 

obtained when the photo-consistency tests are used to evaluate the model’s voxels. Since the 

cube has a highly textured surface, some experiments were performed in order to evaluate if 

the initial 3D model built only using silhouettes could be refined. 
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Fig. 5.32 – Wireframe representation of the 3D models built for the Rubik cube built with (in blue) and without 
(in red) random noise introduction after the pattern vertices’ detection using the camera calibration procedure. 

 

 
Fig. 5.33 – Two viewpoints (by column) of the 3D models textured with colour variance: darker colour mean 

lower variance. On the left, the variance is computed as the standard deviation over all image pixels from 
which a certain voxel is visible; on the right, the variance is computed as the mean standard 

deviation per image from which a certain voxel is visible. 

 

On Fig. 5.33 the influence of texture for reconstruction methods based on photo-

consistency is depicted. Using a standard consistency check, along with outside voxels, also 

voxels belonging to highly textured areas would be considered inconsistent. 
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Fig. 5.34 – From left to right, and from top to bottom: 3D model reconstruction evolution of the Rubik cube 

using the volumetric reconstruction method based on photo-consistency with the following parameters: 
number of iterations equal to 7; exact voxel projection; photo-consistency thresholds T1 = T2 = 5. 

The voxels on the topmost surface have their edges highlighted in blue 
for better visualization. 

 

Fig. 5.34 shows some of the reconstruction results for the same object using the 

volumetric method based on silhouettes and photo-consistency. For this set, accurate voxel 

projection was adopted, and the threshold values were defined as 1 2 5T T   (see Equation 

(4.29)), as these values were the ones that led to the best results in the experiments 

conducted. 
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Fig. 5.35 – Wireframe representation of the obtained 3D models for the Rubik cube object 

using just silhouettes (on the left) and using also photo-consistency tests (on the right). 

 

 
Fig. 5.36 – On the left: original top view of the Rubik cube object. On the middle: reconstructed 3D model 

based only on silhouettes. On the right: reconstructed 3D model based 
on silhouettes and photo-consistency. 

 

Due to the removal of 1742 voxels from the initial 3D model composed by 6912 

voxels, the total volume was decreased by 16%. Fig. 5.35 highlights the voxels edges for both 

3D models built using only silhouettes and with photo-consistency testing for better 

evaluation of the voxel carving. Even using so low thresholds, not all of the top voxels were 

removed; however, it was possible to observe that this happened because the colours almost 

match with the real Rubik cube, Fig. 5.36. 
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Fig. 5.37 – Evolution of the number of voxels on the reconstructed 3D model for the Rubik cube during 

the photo-consistency test iterations. Most of the voxel carving was done with the 
first four iterations of the photo-consistency test algorithm. 

 

Fig. 5.37 despites a problem with the adopted photo-consistency test algorithm: 

although the first few iterations of the algorithm removed a large number of voxels, as it 

evolves, much of the surface voxels were found to be photo-consistent and were not removed. 

The result was that the already photo-consistent voxels were unnecessarily tested again on the 

subsequent iterations. 

 

3D model assessment 

Fig. 5.38 shows two graphs comparing some measures of the obtained 3D models and 

the real object, the Rubik cube. 

With good calibration and reasonable silhouettes, volumetric-based methods are 

demonstrated to be conservative, i.e., voxels belonging to the actual object are never 

removed. The volume of the obtained 3D models drops very fast, achieving a suitable 

approximation after 6 iterations on the octree decomposition. It is slowed by the height (Z 

coordinate) because of the cusping effect of the visual hull. 

Fig. 5.39 shows the result of applying a smoothing Laplacian filter to the obtained 

surface of the reconstructed 3D model. Fig. 5.40 shows the vertices displacements, which are 

much higher on stiffer edges. 
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Fig. 5.38 – Measurements comparison between reconstructed 3D models and real Rubik cube (accurately 

measured using a calliper). On the right panel, it is possible to observe the cusping effect of the 
visual hull, which causes the height of Rubik cube to never approximate to its real value. 

 

 
Fig. 5.39 – On the left: original 3D model surface obtained for the Rubik cube object. On the right: 3D model 

smoothed by performing 100 iterations of the Laplacian smoothing filter (voxel colour 
was removed for an easier visualization). 

 

 
Fig. 5.40 – Zoom of the 3D models presented in Fig. 5.39, 

highlighting the polygonal meshes (blue lines). 
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Fig. 5.41 – Example of two images of the first (on the top) and second image sequence 

(on the bottom) acquired for the baby toy object. 

 

5.3.2 Plastic baby toy 

The test results discussed hereby were performed using the same plastic baby toy 

address in Section 5.2.2. 

First image sequence consisted on 8 images of the chessboard calibration pattern. For 

the second image sequence, 11 images were acquired with the plastic baby toy positioned on 

top of the chessboard pattern and moving the camera around the plastic toy, Fig. 5.41. 

All images were acquired on a simple black background and with a resolution of 

1936 1288  pixels. 

 

Image segmentation 

Since the object has a surface colour similar to the human skin, the segmentation 

results were good, Fig. 5.42. The worst results obtained were due to the effects of directional 

lighting and shadowing effects, Fig. 5.43. 
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Fig. 5.42 – Original images of the plastic baby toy (on the left) and silhouettes obtained 

(on the right) through skin colour segmentation. 

 

 
Fig. 5.43 – Effects of shadows in the image segmentation process based on skin colour: 

original image (on the top) and the correspondent silhouette image (on the bottom). 
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Fig. 5.44 – Combination of the acquired image with its silhouette image in order to facilitate 

the detection of the coloured calibration circles. 
 

Table 5.5 – Camera’s intrinsic parameters obtained 
for the plastic baby toy object. 

Intrinsic Parameters 

Focal distance 
(pixel-based unit) 

xf  1924.234 

yf  1908.741 

Principal point 
(pixel) 

xc  980.247 

yc  631.398 

Radial distortion coefficients 1k  -0.11948 

2k  0.00691 

Tangential distortion coefficients 1p  0.00703 

2p  -0.00236 

 

Camera calibration 

In all images of the first sequence, the 280 ( 20 14 ) chessboard vertices were 

successfully extracted and matched. Table 5.5 shows the camera’s intrinsic parameters 

obtained from this image sequence. 

Since the object to be reconstructed had some superficial areas with colours close to 

red or pink, those areas could be confused with the red or pink calibration circles. A simple 

solution was to allow the calibration procedure to remove the object of interest from the 

images using also the silhouettes, whenever these were available, Fig. 5.44. 

The four outer circles were not successfully detected in 2 of the 11 acquired images 

for the second sequence due to the projection distortion introduced by a small angle between 

the camera’s line of sight and the calibration pattern. Therefore, those images were not 

considered for the next steps for 3D reconstruction. 
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Fig. 5.45 – 3D representation of the camera’s extrinsic parameters obtained with the second image sequence 

of the plastic baby toy object. World 3D axes (in red) are located on the bottom-left vertex 
of the chessboard (the green grid). In both graphics, the scale is in mm. 

 

A graphical 3D representation of the camera’s extrinsic parameters, i.e., the camera’s 

pose, obtained for each of the 9 remainder images can be observed in Fig. 5.45. Average 

reprojection error for the second image sequence was of (1.5527, 1.8262)avge   pixels and 

with a standard deviation of (2.2757, 2.0522)stde   pixels. 

When compared to the Rubik cube object, the increase in the reprojection error for the 

Y-axis was because the images were acquired from viewpoints not equality distanced from 

one another in the 3D space. 

 

Volumetric reconstruction 

The determined initial bounding box provided the following results for the octree root 

node 3D coordinates: 

 min 170X  ; max 320X  ; 

 min 50Y  ; max 204Y  ; 

 min 0Z  ; max 149Z  . 

The final value obtained for maxZ  required five iterations to decrease its initial value, 

determined by the calibration parameters using Equation (4.24), Fig. 5.46. 
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Fig. 5.46 – From left to right, from top to bottom: back-projections of the five necessary iterations 

to estimate the initial bounding volume for the baby toy object 
by decreasing the maximum height of the volume. 

 

 
Fig. 5.47 – Four different views of the obtained 3D models for the baby toy object using the volumetric 

reconstruction method (parameters: number of iterations equal to 7; only silhouettes): using 
rectangular voxel projection (on the top) and using exact 

voxel projection (on the bottom). 

 

The obtained results were confirmed not only by the object’s real measures, but also 

from the measures of the 3D reconstructed model of the baby toy started with an initial voxel 

volume of 300 200 200   mm3, Fig. 5.47: 

 min 171.09X  ; max 297.65X  ; 

 min 101.56Y  ; max 190.62Y  ; 

 min 0Z  ; max 148.44Z  . 
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Fig. 5.48 – Surface points of the 3D model obtained for the baby toy object 

clipped by a plane normal to the world Y-axis. 

 

Fig. 5.47 shows four viewpoints of the two 3D reconstructed models using the 

volumetric method only based on silhouettes, differing on the used projection criterion of the 

voxels: rectangular and exact. The 3D visual hull built with the rectangular projection was 

composed by a total of 54985 voxels and required a processing time of 14 minutes and 7 

seconds. On the other hand, the visual hull reconstructed by using exact projection was 

composed by a total of 42078 voxels and required a processing time of 17 min and 38 

seconds. Fig. 5.49 compares the evolution of the visual hull for both projection criteria. 

From the 9 images calibrated, only 6 were used to build the 3D models, and the 

remaining were used to validate the results obtained using photo-consistency, whose results 

are discussed later. Some voxels of the reconstructed 3D models are coloured black because 

they were not visible from any of the acquired images. However, they belong to the 3D 

model, has can be seen in Fig. 5.48. 

The surface in Fig. 5.48 was constructed from the 3D model built with exact 

projection, by subdividing all voxels from lower levels on the octree data structure: the initial 

42078 were subdivided into 106429 equal sized voxels, which in turn only the surface faces 

are maintained and then converted into a polygonal mesh with a total of 59064 triangles. 
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Fig. 5.49 – The 3D models obtained for the baby toy object, using rectangular (left) and exact (right) voxel 

projection. From top to bottom: octree refinement level of 2, 4 and 6 levels, respectively. 
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Fig. 5.50 – Total amount of time required to build the visual hull of the baby toy object 

using rectangular and exact projections. 

 

 
Fig. 5.51 – Measurements performed on the reconstructed 

3D models of the plastic baby toy. 

 

3D model assessment 

Fig. 5.50 show one graph regarding the computational time required to determine the 

visual hull for the plastic baby toy, using different levels of refinement. In order to build a 

textured 3D model with 6 levels of refinement, an extra 51 seconds were required when using 

rectangular projection, and an extra 34 minutes and 25 seconds if the voxels’ footprints are 

determined with exact projection. Again, the reconstruction time increased exponentially with 

the octrees final level L . 

Fig. 5.51 shows two graphs that allow the comparison among measures of the 

obtained 3D models for the plastic baby toy. Again, the volume of the obtained 3D models 

dropped very fast. However, the boundaries of the 3D model dropped even faster and remain 

almost constant after 4 iterations. 
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Fig. 5.52 – Images used in the rendering process: evaluation images (on the left) 

and rendered images (on the right). 

 

The 3 images calibrated, but not included in the reconstruction process, were used to 

validate shape and texture of the obtained results, by back-projecting the 3D model built with 

exact projection and with 7 levels of refinement into their image planes. 

Fig. 5.52 presents the three evaluation and rendered images used for the baby toy 

object. Qualitatively, it is noticeable that the resulting reconstructed 3D models offer a good 

visual quality. 

For an objective evaluation of the 3D reconstruction, Table 5.6 summarizes the 

calculated reprojection errors and colour similarity for the three evaluation images. 
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Table 5.6 – Reprojection error and colour similarity between the obtained 
3D model for the plastic baby toy object and rendered images. 

Image 
Reprojection error 

[0-255] 
Colour similarity 

(%) 

Top of 
Fig. 5.52 

RE  10.0772 

96.15% GE  9.3953 

BE
 9.9518 

Middle of 
Fig. 5.52 

RE  8.6237 

96.58% GE  8.2579 

BE
 9.2552 

Bottom of 
Fig. 5.52 

RE  13.0438 

95.22% GE  11.3998 

BE
 12.1312 

 

5.3.3 Human hand model 

These test results were performed using a human hand model manufactured by rapid 

prototyping. 

The first image sequence consisted on 27 images of the chessboard calibration 

pattern. For the second image sequence, 12 images were acquired with the hand model 

positioned on top of the chessboard pattern and moving the camera around them. All images 

were acquired on a simple black background and with an image resolution of 1936 1288  
pixels. 

The image segmentation was successfully performed by thresholding the images’ blue 

channel, Fig. 5.53. Human skin segmentation was not performed on this case because: 

1) the hand model was sprayed with a white powder, so its surface was not similar to 

the human skin; 

2) the red squares of the chessboard pattern could be mistaken with skin colour. 

 

Camera calibration 

In all images of the first sequence, the 77 (11 7 ) chessboard vertices were 

successfully extracted and matched. Table 5.7 shows the camera’s intrinsic parameters 

obtained from this sequence. 
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Fig. 5.53 – On the top and on the middle: three examples of the first and second image sequence 
acquired for the hand model object. On the bottom: obtained silhouettes for the middle images. 

 
Table 5.7 – Camera’s intrinsic parameters obtained 

for the human hand model object. 

Intrinsic Parameters 

Focal distance 
(pixel-based unit) 

xf  2910.295 

yf  2923.991 

Principal point 
(pixel) 

xc  952.978 

yc  633.967 

Radial distortion coefficients 1k  -0.11820 

2k  1.31027 

Tangential distortion coefficients 
1p  -0.00681 

2p  -0.00041 

 

A graphical 3D representation of the camera’s extrinsic parameters can be observed in 

Fig. 5.54. For the corresponding image sequence, the average reprojection error was of 

(0.2009, 0.5422)avge   pixels, with a standard deviation of (0.6428, 0.6406)stde   pixels. 
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Fig. 5.54 – 3D representation of the camera’s extrinsic parameters obtained with the second image sequence 

of the human hand model object. World 3D axes (in red) are located on the bottom-left vertex 
of the chessboard (the green grid). In both graphics, the scale is in cm. 

 

 
Fig. 5.55 – From left to right: back-projection (blue parallelepiped) of three of a total of five iterations, required 

to determine the initial bounding volume for the human hand model object, by decreasing 
the maximum height of the volume. 

 

Volumetric reconstruction 

In the 3D reconstruction of the human hand model were used 8 images from the 12 

images acquired: images number 1, 3, 4, 6, 7, 8, 10 and 11 in Fig. 5.54. The four images, 

used to validate the results obtained using photo-consistency, whose results are discussed on 

the next section, were selected in a way that allows the XY distance between each other to be 

as high as possible, meaning that they could observe the hand model from four very different 

viewpoints. 

The computation of the initial bounding box 3D coordinates required five iterations to 

decrease the initial value for the maximum height of the volume, Fig. 5.55, retrieving in the 

end the following results: 

 min 1X  ; max 18X  ; 

 min 0Y  ; max 10Y  ; 
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Fig. 5.56 – Two different views of the obtained 3D model for the human hand model using the volumetric 

reconstruction method and the following parameters: number of iterations equal to 8, 
only silhouettes and exact voxel projection. 

 

 min 0Z  ; max 22Z  . 

The obtained results are confirmed not only by the object’s real measures, but also 

from the measures of a 3D reconstructed model of the human hand model started with an 

initial voxel volume of 20 20 20   cm3, Fig. 5.56: 

 min 1.56X  ; max 17.11X  ; 

 min 2.42Y  ; max 7.66Y  ; 

 min 0Z  ; max 17.89Z  . 

Fig. 5.56 shows two viewpoints of the 3D reconstructed model using the volumetric 

method only based on silhouettes and exact voxel projection. The reconstruction was 

completed after 8 iterations, and included a total of 150862 voxels. 

The second reconstruction started with an initial voxel volume of 200 100 200   

mm3. When the initial volume is nearer to the real bounding volume, for the same refinement 

level of the octree, the reconstructed 3D model volume is closer to the real one. However, the 

required reconstruction time increased, Fig. 5.57, since the number of voxels is higher in the 

second reconstruction. 
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Fig. 5.57 – On the left: volume comparison between the reconstructed 3D models and the real human hand 

model. On the right: the total amount of time required to reconstruct the human hand models using 
exact projection. In both graphs, the reconstructions differ on the initial voxel volume. 

 
Table 5.8 – Measures obtained from the real and reconstructed hand model. 

Measures Real model 
Reconstructed 

model 

Volume (mm
3
) 316848 353235 

Width (mm) 159 156 

Length (mm) 54.6 52.3 

Height (mm) 182 179 

 

3D model assessment 

The hand model was manufactured by a rapid prototyping technique, and its real 

measures could be directly obtained from the correspondent stereolithography CAD 

(Computer-Aided Design) file. Therefore, a ground-truth was provided and an accurate 

validation of the obtained 3D models was possible. Table 5.8 compares some measures 

calculated from the original model and the reconstructed one, Fig. 5.56. Again, the 

conservative characteristic of the volumetric-based reconstruction methods were evident, 

since all the measures determined from the 3D model were higher than the real hand model. 

Nevertheless, those measures were close to the real ones. 

Besides the quantitative evaluation of the reconstructed visual hull, some qualitative 

and also qualitative evaluations were performed on the coloured 3D model. Fig. 5.58 presents 

the four original images and resultant rendered images concerning the hand model object. 
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Fig. 5.58 – Images used in the rendering process: original images (on the left) 

and resultant rendered images (on the right). 
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Table 5.9 – Reprojection error and colour similarity between the 
obtained 3D model for the human hand model object 

and the associated rendered images. 

Image 
Reprojection error 

[0-255] 
Colour similarity 

(%) 

1st (top) 
of Fig. 5.58 

RE  19.5984 

91.30 GE  22.7542 

BE
 24.2335

 

2nd of 
Fig. 5.58 

RE  17.1741 

91.77 GE  22.1718 

BE
 23.6245

 

3rd of 
Fig. 5.58 

RE  17.3320 

91.97 GE  21.6240 

BE
 22.4733 

4th (bottom)  
of Fig. 5.58 

RE  13.5695 
94.38 GE  14.3874 

BE
 15.0390 

 

Qualitatively, it can be noticeable that the resulting reconstructed 3D models offer a 

good visual quality. However, if the evaluation images were also considered in the 

reconstruction process, some errors of the obtained 3D model would be avoided; namely, an 

enhanced reconstruction could be obtained between the fingers, and better colour attributions 

could be attained, Fig. 5.59. 

For an objective evaluation of the 3D reconstruction obtained, Table 5.9 summarizes 

the calculated reprojection errors and colour similarity relatively to the original images used. 

Since the real 3D model, from which the hand object was built, was available, the two one-

sided Hausdorff distances - from real to reconstructed 3D models and vice-versa - were 

computed. Fig. 5.60 shows two views of the Hausdorff distance from the real to reconstructed 

3D models. In his figure, the distance values are colourized according to a RGB colourmap: 

red represents the minimum and blue the maximum values. As such, in this case, red means 

low distance (lower error) and blue high distance (higher error). 

Fig. 5.61 shows the same two views for Hausdorff distance from reconstructed to real 

3D models. Since the reconstructed model as substantial fewer points, the image is more 

scattered, but yet visible. Even so, the two measures are not perfectly symmetric, given that 

the results depend on what mesh was set as sample, Table 5.10. 
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Fig. 5.59 – Three different views of the obtained 3D model for the human hand model when: 

not all acquired images were used (on the left) and all acquired images 
were used (on the right) in the reconstruction process. 



Experimental results and Discussion 

167 

 
Fig. 5.60 – Two views of the Hausdorff one-side distance from real (with a total of 438516 points) 

to reconstructed model: red means lower distance and blue higher distance. 

 

 
Fig. 5.61 – Two views of the Hausdorff one-side distance from reconstructed (with a total of 

98581 points) to real model: red means lower distance and blue higher distance. 
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Fig. 5.62 – Original images of the plastic torso model (on the top) 

and obtained silhouettes (on the bottom). 

 
Table 5.10 – Computed Hausdorff distances between the real and obtained 3D models 

for the human hand model object (in mm). 

Hausdorff 
distance 

Real → Reconstructed Reconstructed → Real 

min 0.000001 0.000029 

max 8.969360 9.641207 

mean 1.247338 1.432365 

RMS 1.966115 2.025856 

 

It can also be observed that the higher errors were found on the frontal middle area 

and, obviously, where the reconstructed model mismatches the real one: around the fingers 

and on the bottom of the hand object. The middle area errors were due to the concavity of the 

object that was not correctly rendered by the reconstruction method. 

 

5.3.4 Human torso model 

These test results were performed using a plastic human torso model. First image 

sequence consisted on 16 images of the chessboard calibration pattern. For the second image 

sequence, 12 images were acquired with the torso model positioned on top of the chessboard 

pattern and moving the camera around the torso model. All images were acquired with a 

resolution of 1296 1936  pixels, Fig. 5.62. 
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Table 5.11 – Camera’s intrinsic parameters obtained 
for the human torso model object. 

Intrinsic Parameters 

Focal distance 
(pixel-related unit) 

xf  3017.509 

yf  3025.834 

Principal point 
(pixel) 

xc  618.206 

yc  1045.190 

Radial distortion coefficients 1k  -0.0882 

2k  0.2849 

Tangential distortion coefficients 1p  0.0054 

2p  -0.0015 

 

The torso model as uniform colour, as so its silhouettes were easily extracted using 

the developed algorithm of skin colour segmentation. However, semi-manual segmentation 

was also required since some regions of the background were mistaken as skin. The same 

segmentation steps, used for the Rubik cube object, were followed: edge detection using the 

Sobel method, followed by image dilation to join line segments and then a flood-filling of the 

holes. Some results can be observed on Fig. 5.62. 

 

Camera calibration 

In all images of the first sequence, the 150 (15 10 ) chessboard vertices were 

successfully extracted and matched. Table 5.11 shows the camera’s intrinsic parameters 

obtained from this sequence. 

With the second image sequence, the camera’s extrinsic parameters were determined 

and the graphical 3D representation that can be observed in Fig. 5.63 was built. For the 

referred sequence, the average reprojection error was of (0.1068, 0.4788)avge   pixels, with a 

standard deviation of (0.1562, 0.3959)stde   pixels. 

 

Volumetric reconstruction 

The computation of the initial bounding box 3D coordinates required two iterations to 

increase the initial value for the maximum height of the volume, Fig. 5.64, leading at the end 

to the following results, in cm: 
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Fig. 5.63 – 3D representation of the camera’s extrinsic parameters obtained with the second image sequence 

of the plastic torso model object. World 3D axes (red) are located on the bottom-left vertex 
of the chessboard (green grid). In both graphics, the scale is in cm. 

 

 
Fig. 5.64 – From left to right: back-projection (blue parallelepiped) of the initial calculated 

bounding volume for the human torso model and after two iterations by increasing 
the maximum height of the volume. 

 

 min 5X   ; max 36X  ; 

 min 6Y   ; max 28Y  ; 

 min 0Z  ; max 65Z  . 

The obtained results were confirmed not only using the real measures of the human 

torso model, but also from the measures of a 3D reconstructed model started with an initial 

voxel volume of 40 40 70   cm3, Fig. 5.65: 



Experimental results and Discussion 

171 

 min 9.37X  ; max 31.62X  ; 

 min 12.50Y  ; max 20.31Y  ; 

 min 0Z  ; max 60.70Z  . 

Fig. 5.65 shows six viewpoints of the 3D reconstructed model for the plastic torso 

model, using the volumetric method only based on silhouettes, and voxel footprint 

determined using exact projection. 

Since the torso has a reflective surface, the colour attribution of the bottom voxels of 

the model was highly affected by the black and white squares of the calibration pattern. As all 

images were acquired from a high viewpoint, the 3D model was worst reconstructed in the 

lower part of the object. 

 

3D model assessment 

Fig. 5.66 shows the original reconstructed 3D model and the one obtained after 

applying the Laplacian smooth filter. From this figure it can be clearly verified how the 

results were improved by the smoothing operation. This is especially true for objects with 

smoother surfaces, like this one. 

To obtain a reference 3D model of the torso object, a commercial laser scanner, model 

Handyscan from DeltaCad [Handyscan, 2011], was used. This device is a handheld laser 

scanner with a volumetric accuracy up to 0.05 mm. Fig. 5.67 allows the comparison between 

the frontal view of the obtained 3D model points using the volumetric-based reconstruction 

method and the laser scanner. 

In order to analyze, both qualitatively as quantitatively, the difference between both 

3D models, the Hausdorff distance from the scanned to our model was computed, Fig. 5.68. 

Again, the distance values are colourized into a RGB colourmap: red meaning lower distance 

(better), and blue higher distance (worst). As with the hand model, concave areas had larger 

errors: middle chest and back. Also, higher errors were observed in the lower part of the 

torso, due to the high plane from where the images were acquired. The highest error distance 

was of 53.6 mm, and the mean error and standard deviation were equal to 4.98 mm and 6.53 

mm, respectively. 
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Fig. 5.65 – Six different views of the obtained 3D model for the human torso model 

using the volumetric-based reconstruction method and the following parameters: 
number of iterations equal to 7, only silhouettes and exact voxel projection. 
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Fig. 5.66 – Original 3D model surface obtained for the human torso model object using the volumetric-based 
reconstruction method (on the left) and after 500 iterations of the Laplacian smoothing filter (on the right). 

 

 
Fig. 5.67 – 3D model points obtained for the human torso model object using the volumetric-based 

reconstruction method (on the left, 40810 points) and using the Handyscan 
laser scanner (on the right, 65603 points). 
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Fig. 5.68 – Colour visualization of the Hausdorff one-side distance from the 3D model built using 

a laser scanner to the reconstructed 3D model obtained by the volumetric-based method 
(four views, red means lower distance (better) and blue higher distance (worst)). 
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Fig. 5.69 – Three examples of the first (on the top) and second image sequence 

(on the bottom) acquired for the human foot object. 

 

5.3.5 Human foot 

These test results were performed using a real human foot. 

The first image sequence consisted on 7 images of the chessboard calibration pattern, 

and for the second image sequence, 14 images were acquired with the foot positioned on top 

of the chessboard pattern and moving the camera around it, Fig. 5.69. All images were 

acquired with a resolution of 1936 1288  pixels. 

 

Camera calibration 

In all images of the first sequence, the 280 ( 20 14 ) chessboard vertices were 

successfully extracted and matched. Table 5.12 shows the camera’s intrinsic parameters 

obtained from the first image sequence. 

A graphical 3D representation of the camera’s extrinsic parameters can be observed in 

Fig. 5.70. For the same image sequence, the average reprojection error was of 

(0.1663, 0.4868)avge   pixels, with a standard deviation of (0.2001, 0.4134)stde   pixels. 

Like with the baby toy object, the increase in the reprojection error for the Y-axis, 

when compared to the other objects, is due to the lack of homogeneity of dispersion from 

where the images were acquired. 
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Table 5.12 – Camera’s intrinsic parameters obtained 
for the human foot object. 

Intrinsic Parameters 

Focal distance 
(pixel related unit) 

xf  2338.420 

yf  2345.132 

Principal point 
(in pixel) 

xc  975.463 

yc  692.281 

Radial distortion coefficients 1k  -0.1754 

2k  1.4218 

Tangential distortion coefficients 1p  0.0059 

2p  -0.0020 

 

 
Fig. 5.70 – 3D representation of the camera’s extrinsic parameters obtained with the second image sequence 

of the human foot object. World 3D axes (in red) are located on the bottom-left vertex 
of the chessboard (the green grid). In both graphics, the scale is in mm. 

 

Image segmentation 

The silhouette images were obtained using the algorithm developed of skin colour 

segmentation and the results were good, but not perfect, Fig. 5.71. However, the volumetric-

based reconstruction compensates the defective silhouette extraction because only voxels that 

lie inside all silhouette images remain in the final 3D model. 

The worst results observed were due to the shadows originated by the human foot in 

regions where it is closer the chessboard pattern, Fig. 5.72. 



Experimental results and Discussion 

177 

 
Fig. 5.71 – Original images of the human foot (on the left) and the silhouettes obtained 

(on the right) using the algorithm of skin colour segmentation. 

 

Volumetric-based reconstruction 

The computation of the initial bounding box 3D coordinates required four iterations to 

decrease the initial value for the maximum height of the volume, leading to the following 

results, in mm: 

 min 170X  ; max 319X  ; 

 min 25Y  ; max 286Y  ; 

 min 0Z  ; max 290Z  . 
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Fig. 5.72 – Effects of shadows in the image segmentation based on skin colour: 

original (on the top) and obtained silhouette images (on the bottom). 

 

The obtained results were evaluated using the measures of a 3D reconstructed model 

started with an initial voxel volume of 300 300 300   mm3, Fig. 5.73: 

 min 201.56X  ; max 297.66X  ; 

 min 63.28Y  ; max 196.87Y  ; 

 min 0Z  ; max 255.47Z  . 

Fig. 5.73 shows six viewpoints of the 3D reconstructed model for the human foot 

using the volumetric method only based on silhouettes, and with the voxel footprint 

determined by exact projection. 
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Fig. 5.73 – Six different views of the obtained 3D model for a real human foot using the 

volumetric-based reconstruction method with the following parameters: number 
of iterations equal to 7, only silhouettes and exact voxel projection. 
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Fig. 5.74 – Surface points (in grey) of the 3D model obtained for the human foot object, 

clipped by a plane normal to the Y-axis and overlapped with 
the corresponding 3D volume voxels (in red). 

 

Some voxels had the colour black because they were not visible in any of the acquired 

images. However, they do belong to the 3D model, as can be confirmed in Fig. 5.74. The 3D 

visual hull built with the rectangular projection was composed by a total of 40414 voxels and 

required a processing time of 12 minutes and 57 seconds. On the other hand, the visual hull 

reconstructed by using exact projection was composed by a total of 30375 voxels and 

required 17 min and 13 seconds. 

 

3D model assessment 

Fig. 5.75 compares the measures obtained from the real foot with the ones calculated 

from the reconstructed 3D model. Again, the conservative characteristic of the volumetric-

based reconstruction method were evident. Nevertheless, the values were close. Fig. 5.76 

shows the original reconstructed 3D model and the one obtained after applying the Laplacian 

smooth filter. As discussed before, it can be clearly verified how the results could be 

improved with the smoothing operation, which is especially true for objects with smoother 

surfaces, like this one. 
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Fig. 5.75 – Measurements obtained from the reconstructed 

3D models and from the real human foot. 

 

 
Fig. 5.76 – Original 3D model surface obtained for the human foot object (on the left) 

and smoothed 3D model obtained after 1000 iterations of the 
Laplacian smoothing filter (on the right). 
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Fig. 5.77 – Original images of the human face (on the top) and silhouettes (on the bottom) 

obtained using the developed algorithm of skin colour segmentation 

 

5.3.6 Human face 

Image acquisition and segmentation 

These test results were performed using a real human face. The first image sequence 

consisted on 6 images of the chessboard calibration pattern. For the second image sequence, 

14 images were acquired with the subject’s face positioned on top of the chessboard pattern 

and moving the camera around it, Fig. 5.77. All images were acquired with a resolution of 

1936 1288  pixels. 

The silhouette images were obtained using the developed algorithm of skin colour 

segmentation and, again, the results were good, but not perfect, as the subject’s eyebrows 

were not successfully extracted in all images in which they were in the face’s rim on the 

image, Fig. 5.77. 

As the volumetric-based reconstruction not compensates for those cases of bad 

silhouettes, since it takes only one image in which the voxel projects outside the silhouette to 

be classified as outside, the solution was to manually include the eyebrows on the silhouettes. 

 

Camera calibration 

The 280 ( 20 40 ) chessboard vertices were successfully extracted and matched in all 

images of the first sequence. Table 5.13 shows the camera’s intrinsic parameters obtained. 
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Fig. 5.78 – 3D representation of the camera’s extrinsic parameters obtained with the second image sequence 

of the human face object. World 3D axes (in red) are located on the bottom-left vertex 
of the chessboard (the green grid). In both graphics the scale is in mm. 

 
Table 5.13 – Camera’s intrinsic parameters 

obtained for the human face. 

Intrinsic Parameters 

Focal distance 
(pixel related unit) 

xf  2719.303 

yf  2717.580 

Principal point 
(in pixel) 

xc  981.531 

yc  687.485 

Radial distortion coefficients 
1k  -0.1270 

2k  0.9481 

Tangential distortion coefficients 
1p  0.0065 

2p  -0.0031 

 

From the 14 images acquired for the second sequence, 4 images were discarded as the 

four outer circles from the calibration pattern were not fully detected in those images. 

A graphical 3D representation of the camera’s extrinsic parameters for the images of 

the second sequence can be observed in Fig. 5.78. The average reprojection error was of 

(0.8320, 1.0893)avge   pixels, with a standard deviation of (0.7093, 0.9060)stde   pixels. 
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Volumetric-based reconstruction 

The computation of the initial bounding box 3D coordinates required five iterations to 

decrease the initial value for the maximum height of the volume, leading to the following 

results, in mm: 

 min 146X  ; max 528X  ; 

 min 37Y  ; max 478Y  ; 

 min 0Z  ; max 282Z  . 

The obtained results were evaluated using the measures of a 3D reconstructed model 

started with an initial voxel volume of 400 400 400   mm3, Fig. 5.79: 

 min 162.50X  ; max 356.25X  ; 

 min 81.25Y  ; max 362.5Y  ; 

 min 0Z  ; max 268.75Z  . 

The 3D model reconstruction was performed using all the acquired images. Fig. 5.79 

shows four viewpoints of the 3D reconstructed model for the human face using the 

volumetric method only based on silhouettes and with the voxel footprint determined by 

exact projection. 

Clearly, the volumetric-based method failed to reconstruct the human face, making 

even more evident the importance of the viewpoints from which the images used were 

acquired. 

To remove the cusping effect on the centre of the face, images acquired covering all 

subject’s head or at least some acquired from its profile would be necessary. This was 

impossible, due to the requirement of full visibility of the calibration pattern in the images 

necessary for camera calibration. A possible solution to overcome this problem could be a 

calibrated multi-camera system to acquire the necessary images for the developed 

volumetric-based reconstruction. Also, the deformation of the reconstructed 3D model caused 

wrong voxel colouration, Fig. 5.80. 

The obtained results gave emphasis to the idea that the visual hull is dependent both 

on the number and position of the viewpoints. In order to try to improve the 3D model, the 

face’s colour information was included on a second reconstruction attempt, by including 

photo-consistency tests into the reconstruction process. 
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Fig. 5.79 – Four different views of the obtained 3D model for a real human face 

using the volumetric reconstruction method with the following parameters: 
number of iterations equal to 7, only silhouettes 

and exact voxel projection. 

 

Fig. 5.81 allows the comparison between the previous 3D model against the one 

obtained by using silhouettes and photo-consistency. In this case, the used threshold values 

were 1 10T   and 2 5T   (see Equation (4.29)). It was decided to maintain a lower threshold 

on the average standard deviation, since the face has lower colour variation. Even so, not 

significant improvements were achieved, since only 2367 voxels were removed from the 

initial volume that was composed by a total of 49042 voxels, which means a voxel removal 

around 5%. 
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Fig. 5.80 – Three examples of the rendering results: original or evaluation images 

(on the left) and rendered images (on the right). 

 

 
Fig. 5.81 – 3D models built using only silhouettes (on the left) and built using silhouettes 

and photo-consistency, with the thresholds 1 10T   and 2 5T  (on the right). 
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Fig. 5.82 – Original images of the human hand (on the top) and silhouettes images 

obtained using the developed algorithm of skin colour 
segmentation (on the bottom). 

 

5.3.7 Human hand 

Image acquisition 

These test results were performed using a real human hand. 

The first image sequence consisted on 9 images of the chessboard calibration pattern. 

On the other hand, for the second image sequence, 16 images were acquired with the hand 

positioned on top of the chessboard pattern and moving the camera around the hand, Fig. 

5.82. All images were acquired with a resolution of 1936 1288  pixels. 

 

Image segmentation 

The silhouette images were obtained using the algorithm developed of skin colour 

segmentation, Fig. 5.82; again, the results were good, but not perfect, Fig. 5.83. The worst 

results were due to shadowing effects and similarity of the background with the skin. 

However, the volumetric-based reconstruction compensates for those bad silhouettes, 

because only voxels that lie inside all silhouette images remain in the final reconstructed 3D 

model. 
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Fig. 5.83 – Effects of shadows in the image segmentation based on skin colour: 

original (on the top) and obtained silhouette images (on the bottom). 

 

Camera calibration 

In all images of the first sequence, the 280 ( 20 14 ) chessboard vertices were 

successfully extracted and matched, and the camera’s intrinsic parameters were obtained 

Table 5.14. 

A graphical 3D representation of the camera’s extrinsic parameters for the 10 images 

of the second image sequence, used in the 3D reconstruction process, can be observed in Fig. 

5.84. The remaining 6 images were not calibrated because the four outer circles of the 

calibration pattern were not successfully detected. 

For the referred images, the average reprojection error was of (0.1842, 0.6130)avge   

pixels, with a standard deviation of (0.1649, 0.5561)stde   pixels. 
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Table 5.14 – Camera’s intrinsic parameters obtained 
for the human hand object. 

Intrinsic Parameters 

Focal distance 
(pixel related unit) 

xf  2279.309 

yf  2295.194 

Principal point 
(in pixel) 

xc  973.221 

yc  706.056 

Radial distortion coefficients 1k  -0.0747 

2k  0.0033 

Tangential distortion coefficients 1p  -0.0008 

2p  -0.0020 

 

 
Fig. 5.84 – 3D representation of the camera’s extrinsic parameters obtained for the 10 images of the second 

sequence of the human hand object used in the 3D reconstruction. World 3D axes (in red) are located 
on the bottom-left vertex of the chessboard (the green grid). In both graphics the scale is in mm. 

 

Volumetric-based reconstruction 

The computation of the initial bounding box 3D coordinates required seven iterations 

to decrease the initial value for the maximum height of the volume, leading to the following 

results, in mm: 

 min 102X   ; max 402X  ; 

 min 48Y   ; max 301Y  ; 

 min 0Z  ; max 114Z  . 
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Fig. 5.85 – On the left: example of one image where one of the two lower vertices (blue circles) of the hand 
silhouette’s bounding rectangle (blue rectangle) is outside the 3D world coordinates (in red). On the right: 

back-projection of the initial bounding box (blue parallelepiped), where the real X- and Y- 
vertices’ coordinates are far from the real object. 

 

Because part of the person’s arm was segmented along with the hand, Fig. 5.85, the 

initial bounding volume was not the minimum bounding volume possible. However, the 

requirement for a successful 3D volumetric reconstruction is that the octree’s initial volume 

must contain the real object, which was attained. 

The 3D model reconstruction was performed using 10 calibrated images of the 16 

acquired. Fig. 5.86 shows five viewpoints of the 3D reconstructed model for the human hand 

using the volumetric method only based on silhouettes and considering voxel footprint 

determined using exact projection. 

Some voxels of the model built were coloured black because they were not visible in 

the acquired images; however, they do belong to the model, as can be seen in Fig. 5.87. 

 

3D model assessment 

Using the 6 uncalibrated images, the reprojection error of the reconstructed 3D model 

was computed. This was performed by calibrating these images with manual detection of the 

pattern’s circles. 

Fig. 5.88 presents the six evaluation and rendered images used for the human hand. 

Qualitatively, it is noticeable that the resulting reconstructed 3D models offer a good visual 

quality. The worst reconstructed part of the hand was the palm, since it had a concave shape. 

However, if the evaluation images were also used for reconstruction purposes, some errors of 

the obtained 3D model would be corrected; namely, a better reconstruction would result in 

between the fingers. 
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Fig. 5.86 – Five different views of the obtained 3D model for a real human hand, 

using the volumetric reconstruction method, with the following parameters: 
number of iterations equal to 7, only silhouettes and exact voxel projection. 

 

The calculated reprojection errors and colour similarity measures relatively to the 

considered evaluation images were computed, Table 5.15, for an objective evaluation of the 

3D reconstruction. 

Fig. 5.89 allows the comparison between the original reconstructed model and the 

smoothed models. From this figure, one can realize the improvement attained by the 

smoothing, but also perceived that some shrinkage of the models occurred; however, the 3D 

shape of the hand was not significantly deformed. 
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Fig. 5.87 – Original 3D model obtained for the human hand object (on the left) and surface edges (in blue) 

overlapped with the correspondent 3D volume voxels (in red) (on the right). 

Table 5.15 – Reprojection error and colour similarity between the obtained 3D model for 
the real human hand and the rendered images. 

Image Reprojection error [0-255] Colour similarity (%) 

1st (top) 
of Fig. 5.88 

RE  15.1928 

94.19 GE  14.3798 

BE
 14.8957

 

2nd of 
Fig. 5.88 

RE  25.5393 

90.33 GE  24.2380 

BE
 24.1892

 

3rd of 
Fig. 5.88 

RE  21.3753 

91.49 GE  21.3563 

BE
 22.3950 

4th of 
Fig. 5.88 

RE  26.1948 

89.85 GE  25.5189 

BE
 25.9139 

5th of 
Fig. 5.88 

RE  26.2720 

89.81 GE  25.5788 

BE
 26.0748 

6th (bottom) 
of Fig. 5.88 

RE  22.9882 
90.84 GE  23.0794 

BE
 24.0168 
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Fig. 5.88 – Images used in the rendering process for the real human hand: 

evaluation (on the left) and rendered images (on the right). 
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Fig. 5.89 – Original 3D model surface obtained for the human hand object (on the left) 

and 3D model smoothed by applying 1000 iterations of the 
Laplacian smoothing filter (on the right). 

 

5.4 Summary 

In this Chapter, experimental results, obtained with two methods for 3D object 

reconstruction – Stereo-based Reconstruction and Volumetric-based Reconstruction - were 

presented and discussed. Since the main goal of this Thesis was to develop, implement and 

compare methodologies to obtain the 3D shape of objects without imposing severe restrictions on 

the image acquisition process, all images were acquired with a simple black background and 

under normal indoor lighting conditions. 

The first method addressed is based on stereoscopic vision and requires two perspective 

views of the object to be reconstructed. As such, starting with two uncalibrated images of an 
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object, usually known as stereo image pair, the epipolar geometry, specified by the 

fundamental matrix, was extracted and, finally, a disparity map of the object could be 

obtained. 

The stereo-based reconstruction method was tested with two real objects: a Rubik 

cube and a plastic baby toy. For the first one, which has surfaces with strong features, a good 

disparity map was obtained. However, since the baby toy presented a smooth surface, with 

almost no colour or texture variation, the detection and matching of strong features between 

the stereo image pair were very difficult. Consequently, the epipolar geometry calculated was 

incorrect, which led to a poor disparity map. 

The 3D stereo-based reconstruction was stopped at the disparity map computation, 

due to the results obtained for smooth, low-textured objects. However, it should be pointed 

out that an upgrade from projective to a metric reconstruction could pass by adding some 

additional information on the cameras, e.g. translational motion, or scene, like parallel lines 

or orthogonal planes. 

For the volumetric-based reconstruction, the tests started with static objects: a Rubik 

cube, a plastic baby toy and some human body part models, mainly a hand and a torso. Then, the 

developed volumetric-based method was tested with real human body parts: a foot, a head and a 

hand. Using silhouette and camera calibration data, 3D multi-resolution models were obtained 

and colourized for each test object. Colour consistency was applied to refine the obtained models 

for objects with significant texture information, like the Rubik cube. Finally, subjective and 

analytical characteristics were obtained to evaluate the 3D models built. 

The performed camera calibration method was found to be very precise, with 

reprojection errors around 10-4 pixels. This is even more important since accurate calibration 

is an essential requirement for exact volumetric reconstruction, since errors on the camera’s 

parameters will reflect on errors on the built 3D models, especially on areas that are more 

separated from the calibration pattern. 

Generally, the volumetric-based reconstruction method was able to successfully 

reconstruct objects with smooth surfaces or with complicated morphology, like a human 

hand. For most of the tested objects, the 3D models effectively reconstructed and the 

calculated measures were very close to original ones. However, this method revealed some 

restrictions, such as a background with low colour variation and a suitable calibration 

apparatus. Also, since the acquired images were used both for calibration and reconstruction 
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purposes, limitations on the camera’s viewpoints should be addressed: both object and 

calibration pattern must be visible in all acquired images. Imposing these restrictions could 

lead to insufficient viewpoints for the successfully reconstruction of the object, and 

consequently, to poorly reconstructed 3D models, like in the case of the human head. In the 

experiments, it was also verified that the silhouettes did not need to be perfect, as some errors 

could be overcome if there were adequate viewpoints to compensate such errors. 
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6 
6 Conclusions and Future work 

6.1 Conclusions 

The final goal of this Thesis was to develop, implement and evaluate computational 

methods to build accurate 3D models of external human body parts. Thus, initially, the 

existing methods for 3D reconstruction, particularly designed for human anatomical 

structures, were reviewed. This assumed particular importance as it presents the current 

theoretical fundaments and frameworks for the 3D reconstruction from images. 

Afterwards, the problem of camera calibration, which allows knowing the 

transformation between 3D world points onto their projections on 2D image planes, was 

addressed. Initially, general concepts about image formation and coordinate transformations 

were introduced. Subsequently, the most commonly used calibration methods were described, 

and classified into traditional and auto-calibration methods. 

Afterwards, two image-based methods for the 3D reconstruction of static objects from 

images were developed, implemented and evaluated. 

The first method is based on stereo vision and involves the following: 

 identify strong features in the input images; 
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 find the matching of strong features detected between the two input images; 

 estimate the epipolar geometry involved between the two input images; 

 rectify one of the input images based on the epipolar geometry found; 

 establish the dense matching between the rectified images and compute the 

disparity map. 

Briefly, from the experimental results obtained, it can be affirmed that the stereo 

vision based method produces good results when applied to objects with strong features, such 

as texture or edges, straightforwardly detected in the input images, which are consequently 

easy to extract and correctly match. As observed from the experimental tests presented and 

discussed in the previous chapter, the results of lowest quality results were related to features 

that were wrong extracted and/or matched. These errors were then conveyed to the next steps, 

decreasing the quality of the calculated epipolar geometry to an inappropriate level, which led 

to a disparity map of poor quality. Thus, with objects having smooth surfaces, with almost no 

colour or texture variations, the accurate detection and matching of strong features between 

the input images are very difficult to achieve and consequently, the 3D models built will be 

of low quality. 

The second 3D reconstruction method developed, implemented and evaluated is based 

on silhouette reconstruction trough volume, or space, carving, and integrates the following 

steps: 

 calibration of the camera used in order to obtain global coordinates - this step is 

also needed in the first reconstruction method addressed, if global coordinates are 

needed, or the coordinates will be affected by a global scale factor as well as by 

the distortions imposed by the optical system of the image acquisition system; 

 segmentation of the input images; 

 computation of the visual hull; 

 and, optionally, photo hull determination. 

In the volumetric-based reconstruction solution developed, two sets of images are 

required. A first set is acquired using a chessboard calibration pattern and used in the camera 

intrinsic calibration, i.e. to find the camera’s internal parameters. Then, placing the object to 
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be reconstructed on the same calibration pattern, the second image set is acquired and used in 

the camera extrinsic calibration, i.e. to find the camera’s pose (orientation and location). 

In order to allow the correct estimation of the pattern orientation, the traditional 

chessboard pattern was modified by adding four coloured circles on its four outer vertices. 

This modification was required due to the symmetry of the classical chessboard pattern. As 

such, the 3D spatial orientation of the new calibration pattern could be correctly found, and 

the camera calibration procedure was totally automated. 

The main restriction of the camera calibration method implemented, is that the 

calibration pattern must be entirely visible in all acquired images. Apart from this, the images 

can be acquired by moving freely the camera. 

For better image segmentation results, a simple black background was used, but this is 

not a constraint. When the object to be reconstructed had a skin-like colour surface, the 

segmentation algorithm developed and based on skin colour produced good results. 

The visual hull computation combines both calibration and silhouette information to 

build the 3D models. The developed carving process starts with an initial box containing the 

object to be reconstructed and uses an octree data structure to store and refine the voxels 

belonging to the 3D model under building. The initial bounding box is automatically 

established from the calibration parameters and silhouette information. The octree structure 

adopted store voxels with flexible width, length and height, meaning that they are not 

constrained to being cubes as in the traditional volumetric-based methods. During the 3D 

reconstruction process, voxels’ footprint calculations address the fact that they are convex 

polygons, which avoids comparisons over the entire silhouettes. 

Finally, the voxel visibility is established allowing for a correct voxels’ colour 

computation (texture). Due to its conservative properties, the visual hull may not successfully 

carve some parts of the original object, especially its concavities. If there is enough surface 

colour variation, a final photo-consistency test can improve the obtained 3D model. However, 

the consistency test is highly dependent on the reflectivity of the objects surface and amount 

of visual information available. 

For the second reconstruction approach, tests included man-made objects and real 

human body parts. Generally, the volumetric-based approach had no difficulty to reconstruct 

objects with smooth surfaces or with complicated shapes and topologies. Silhouettes do not 

need to be perfectly extracted due to the conservative property of the volumetric-based 
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approach. However, this method has some restrictions, such as backgrounds with low colour 

variation to be easily segmented, suitable calibration procedures and limited viewpoints at 

which the images could be acquired. 

The developed volumetric-based method is a very good solution when a full 3D 

model is required. It is fast when low resolutions are demanded; meaning that it is suitable in 

applications that require a coarse but reliable approximation of the objects’ shape, e.g. in gait 

analysis and human posture classification. The method does not require any special 

knowledge about 3D vision algorithms, since it is a fully automated method. Furthermore, it 

does not require a posterior mesh registration, which is one of the most common drawbacks 

of other 2.5D reconstruction methods, like the stereo-based ones. 

The developed volumetric-based method provides better results for objects with sizes 

proportional to the calibration pattern used. When the objects are too big, the calibration 

pattern is further away from the image plane and not so accurate results could be obtained. 

On the other hand, for very small objects, since the camera must completely acquire the 

calibration pattern, the object can be further away from the image plane and important pixel 

information could be lost in the reconstruction process. However, if the object’s and 

calibration pattern’s sizes are well balanced, the camera’s poses are not so restricted and 

more silhouette and pixel information can be used in the reconstruction process. 

Our final conclusions are about the type of human external structures to be 

reconstructed and the suitability of the two computational methods developed for their 

reconstruction. Human limbs (arms, hands, legs or feet) or a full person body can be 

successfully reconstructed using the volumetric-based method. The 3D reconstruction of a 

face is better achieved using the stereo-based method, because: 1) faces have good imaged 

features than can be tracked on a small baseline camera motion and, 2) if the volumetric-

based method is used, then a calibration pattern needs to be placed on the back of the face, 

which puts severe constrains on the camera viewpoints. One can extrapolate these 

conclusions for a wider range of objects: both methods assume static objects with lambertian 

surfaces. The stereo-based method is more suitable for highly textured objects and with small 

baseline motions involved and the volumetric-based method performs more accurately for 

objects without or reduced texture information and with wide baseline motions. Also, if an 

object has relevant texture information, then the volumetric-based reconstruction can be 

considerably improved by adopting a photo-consistency testing into the obtained 3D visual 



Conclusions and Future work 

201 

hull. In fact, this consistency criterion turns this method more suitable for a wider range of 

situations and/or objects. 

 

6.2 Future work 

Although the volumetric-based method implemented originated experimental results 

that were quite satisfactory and promising, it can be improved in different aspects. 

The camera calibration procedure can be improved by using self-identifying markers 

(e.g. [Fiala, 2004], [Atcheson, 2010]). This would remove the need to segment the calibration 

pattern based on its colour, providing a more robust process, and would eliminate the 

constraint of having to visualize the full calibration pattern on every viewpoint at which the 

images are acquired. 

Another improvement in the camera calibration procedure could be the elimination of 

the calibration pattern, by implementing an auto-calibration method that uses the information 

relative to a specific motion (e.g. turntable motion, [Zhang, 1995], [Fitzgibbon, 1998], 

[Gibson, 1998], [Liu, 2000]) or by using a relatively small amount of markers strategically 

placed on or around the object. 

Whilst the adopted multi-resolution approach reduce the computation time and 

provides more accurate 3D models, mainly in complex regions of the object’s surface, the 

resulting computation times (from some minutes to a few hours) can still be prohibitive in 

many possible applications. However, if the models do not need to include the texture 

information, only a few minutes are necessary for a truthful 3D reconstruction. During the 3D 

reconstruction process using the volumetric-based method, the voxel footprint and visibility 

computations are the most time consuming steps. Therefore, an effort should be made to 

decrease these computation times, using other solutions to estimate the voxels’ visibility and 

photo-consistency, such as the solutions proposed in [Guerchouche, 2008] or [Wong, 2010]. 

Other possible approaches are to perform the texture analysis on the extracted surface patches 

of the voxelized octree or to build a texture mapped model instead of mapping the visual hull 

onto the images. 

Most of the voxel-based 3D reconstructions perform in non-real time. The camera 

calibration, silhouette extraction, visual hull determination and voxel colouring slow down 

the entire computational process. However, a decrease in the volumetric reconstruction time 
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can be achieved, either by using optimized processes (e.g., [Sainz, 2002], [Li, 2003]), by 

adopting dedicated hardware for image processing or graphical computation (e.g. [Sharp, 

2008], [Feldmann, 2010], [Gobron, 2010]), or by employing a mixture of pipelined and 

parallel computer system architecture (e.g. [Hasenfratz, 2004]). If the goal is human body 

reconstruction, processing time can be improved by including prior knowledge about human 

body shape (e.g. [Mikić, 2001], [Starck, 2005], [Feldmann, 2010]). 

Fusing active range sensors with passive intensity images can facilitate the building of 

completed and of high-resolution 3D models, since the combination of active and passive 

techniques may compensate the weakness of each technique. For example, the integration of 

laser scanning and photogrammetric techniques has a great potential in several mapping 

applications, by increasing the accuracy, level of automation and robustness (e.g. [Beraldin, 

2004], [Rönnholm, 2007], [Huhle, 2010], [Izadi, 2011]). Based on this idea of hybrid 

methodologies, the visual hull reconstruction combined with stereo feature matching had 

already proven to attain results of good quality (e.g. [Starck, 2007]). 

With the possibility of decreasing the 3D reconstruction computational time, the 

building of 3D models for deformable or non-static objects is a natural evolution step. For 

example, the reconstructing and updating of the 3D shape of a moving person is an ongoing 

topic of research; especially, with the objective of creating 3D models of people that 

accurately reflect their time-varying shape and appearance (e.g. [Vedula, 2000], [Aans, 

2002], [Dewaele, 2004], [Starck, 2009], [Feldmann, 2010], etc.). 
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