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Abstract

Recent research on mobile robotics has produced new designs that provide

house-hold robots with omnidirectional motion. The image sensor embedded

in these devices motivates the application of 3D vision techniques on them

for navigation and mapping purposes. In addition to this, distributed cheap-

sensing systems acting as unitary entity have recently been discovered as an

efficient alternative to expensive mobile equipment.

In this work we present an implementation of a visual reconstruction method,

structure from motion (SfM), on a low-budget, omnidirectional mobile plat-

form, and extend this method to distributed 3D scene reconstruction with

several instances of such a platform.

Our approach overcomes the challenges yielded by the plaform. The un-

precedented levels of noise produced by the image compression typical of

the platform is processed by our feature filtering methods, which ensure

suitable feature matching populations for epipolar geometry estimation by

means of a strict quality-based feature selection. The robust pose estima-

tion algorithms implemented, along with a novel feature tracking system,

enable our incremental SfM approach to novelly deal with ill-conditioned

inter-image configurations provoked by the omnidirectional motion. The

feature tracking system developed efficiently manages the feature scarcity

produced by noise and outputs quality feature tracks, which allow robust

3D mapping of a given scene even if - due to noise - their length is shorter

than what it is usually assumed for performing stable 3D reconstructions.

The distributed reconstruction from multiple instances of SfM is attained

by applying loop-closing techniques. Our multiple reconstruction system

merges individual 3D structures and resolves the global scale problem with



minimal overlaps, whereas in the literature 3D mapping is obtained by over-

lapping stretches of sequences. The performance of this system is demon-

strated in the 2-session case.

The management of noise, the stability against ill-configurations and the

robustness of our SfM system is validated on a number of experiments and

compared with state-of-the-art approaches. Possible future research areas

are also discussed.
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Chapter 1

Introduction

This thesis addresses research challenges within the domain of robotic visual sensing in

specific relation to 3D perception of an environment by one or more robotic platforms.

1.1 Robotics and 3D Vision

Robotics is used in a vast number of fields: industry, military and medicine represent

just a small example of the increasing importance that robots are gaining in many

aspects of our society. Indeed, robots have recently found their way into the domestic

world. As time goes by, more mobile robots are affordable by household budgets,

thanks to increasing returns to scale and simpler designs. Alongside the integration of

robotics into our domestic environment we additionally see that research in the area of

computer vision has been introduced into this domestic sphere as the primary sensing

mechanism for such types of robot. Finally, distributed cheap-sensing systems acting

as unitary entity have recently been discovered as an efficient alternative to expensive

mobile equipment.

By applying mathematical and computational algorithms computer vision extracts in-

formation out of images. The range of knowledge that can be retrieved with computer

vision is wide, but in this work we will focus on 3D vision. 3D vision is a part of

computer vision that tackles the extraction of 3D information from a scene covered by

a given set of input images. It also provides information about the relative location

of each image within the sequence. Robotics can take advantage of this technique for
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Figure 1.1: A 3D reconstruction model attained with computer vision. Source: Olsson
et al. (2010).

mapping and navigation purposes (Nister et al. (2004)). We intend to employ these

techniques in a distributed fashion.

The mathematical substratum of 3D vision methods is projective geometry, which stud-

ies the geometric properties which are preserved under projective transformations. The

use of projective geometry started in the Renaissance (14th - 17th centuries), when

painters learned how to depict scenes using the laws of perspective, such as vanishing

points. Later on, in the era of computers, projective geometry has been employed for

rendering real or synthetic scenes or objects in a large variety of applications.

3D vision researchers take the theory of projective geometry in the opposite direction.

Instead of projecting a given 3D scene on a 2D image, the postulates of projective

geometry are applied to a sequence of images in combination with statistical inference

methods and other algorithms from image processing in order to obtain information

about where each image was taken, relatively to each other, and about the 3D structure

of the scene. This is the inception of the discipline multiple view geometry (MVG),

which studies the geometric projective relationships between multiple views of a common

environment (Hartley and Zisserman (2004)). Appendix A describes the necessary

background in MVG and projective geometry to understand the algorithms used by

this work. Fig 1.1 shows the 3D reconstruction of a scene performed out of images with

MVG techniques, along with the estimations of the locations where each picture was

taken.

2
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Multiple view geometry finds in mobile robots a most proper field of application, and

with the increasing use of mobile robots in so many areas, the methods offered by

MVG have become of common use in robotics. Indeed, often robots are used in haz-

ardous and inaccessible environments, such as a mine, a pipe or a chamber filled with

toxic gas. These premises have boosted the development of mobile and autonomous

robots, in order to perform those tasks with precision and without risk to human life.

Whereas fixed robots are widespread in industry, mobile robots are still maturing their

techniques, mainly because it is very difficult for a mobile robot to maintain a reliable

estimation of its location within an unknown (or even known) scene while transiting

it. MVG techniques not only allow to create a 3D map of the environment transited,

but also provide the relative location of the mobile robot as it moves around. There-

fore, researchers have shown great interest in 3D vision applied to mobile robotics as a

primary method to perform visual navigation.

Inside the area of mobile robotics, multiple robot systems and swarm systems have

recently been also attracting research work (Jeong and Lee (2013); Kim et al. (2010);

Radke (2008)). Based on relatively simple rules that each individual has to abide by,

the synergetic aggregation of individual robots into a unified group results in complex

and nearly inteligent behaviours. Examples of this are present in nature: Many insects,

birds and fish take advantage of this mechanism. Given how expensive a fully-equipped

mobile robot is, a great deal of research is devoted to develop distributed systems so

that it is possible for groups of affordable, commercially available robots accomplish

tasks that otherwise would need a high-technologically developed and expensive single

robot.

Distributed systems of robots where each one is equipped with a sensor, such as GPS,

infrared, ultra-sound sensors or even wireless signal receptor can take advantage of the

information gathered by each individual (Chang and Wu (2013); Otsuka et al. (2013);

Wendel et al. (2012)). By bringing together the sensor information along with other

parameters (location, time, etc.) into a common pool and taking into account the uncer-

tainty involved in the problem, a distributed robotic system (DRS) can extract accurate

and robust knowledge about the environment. We will implement this paradigm to ex-

plore the application of 3D vision on the field of distributed sensing, since little work

has been done in this regard and its explotation can provide results comparable to other

3
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Figure 1.2: Photo tourism allows to reconstruct monuments out of images taken in the
Internet. Source: Snavely et al. (2006).

much more expensive systems like LIDAR, stereo rigs or depth cameras like Microsoft

Kinect (Guan (2006); Zhang (2012)).

This work addresses the problem of obtaining 3D reconstruction and motion informa-

tion from images streamed from a group of low-budget mobile robots, with the aid of 3D

vision techniques. There are mainly two methodologies in 3D vision to obtain the struc-

ture and camera information from a set of input images: structure from motion (SfM)

and visual simultaneous localisation and mapping (VSLAM). This work implements

SfM, and here an overview on VSLAM is given in Chapter 2 for completeness.

1.2 Structure From Motion

The core of this work is based on a well-established research area, Structure from Motion

(SfM), which finds its foundations in the works of Longuet-Higgins (1981). SfM is an

interdisciplinary technique, combining computer vision and projective geometry, that

has attracted significant attention from researchers over the past 25 years (Hartley

(1997); Hartley and Zisserman (2004); Horn (1990)). Furthermore, the SfM realisation

requires a comprehensive knowledge of advanced linear algebra, due to the geometry

involved in the overall process.

As said above, the SfM technique essentially performs the reverse process of image

formation: out of a scene projected on 2D images SfM extracts 3D maps of the real

scene and the relative positions of those images with respect to each other. In the

last decade, thanks to a few significant breakthroughs and hardware improvements,

this field has experienced a renaissance and its applications have proliferated in many

aspects of image processing. To name a few, augmented reality, hand-eye calibration,
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Figure 1.3: Dense reconstruction by Newcombe et al. (2011). Top: Overview of the scene.
Bottom Left: four patch local 3D maps stitched into the global reference. Right: the final
reconstruction.

remote sensing and image organisation / browsing are examples where SfM is used (Wei

et al. (2013)).

Many applications have been found for SfM in the last ten years, and impressive results

have been achieved in visual reconstruction. Using the Internet as source of images,

it is easy to find databases with thousands of images of monuments such as The Eiffel

Tower, the Coliseum or the Big Ben. Snavely et al. (2006) present a system called Photo

Tourism based on SfM which takes large sets of pictures from Internet photo sharing

sites and automatically estimates each photo’s location, as well as a global 3D model of

the scene. Fig 1.2 shows the Coliseum reconstructed with this software.

Current research is oriented towards the management of large datasets, and Photo

Tourism is an example of this. This effort is especially interesting to mobile robotics,

for the autonomy and reliability of a mobile robot is directly related with the amount

of images that it can handle. Cummins and Newman (2011) works with databases

of millions of images in an appearance-based automobile navigation system capable of

finding loop-closures over a range of 1000 kilometres of transited roads. In the field

of reconstruction, Klingner et al. (2013) makes use of the formalisms of SfM to align
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Figure 1.4: Artificial lens blur by Yu and Gallup (2014). Left: one of several input
photos. Middle: Depth map. Right: Photo with lens blur.

the camera poses of billions of images taken by the contemporary street view service of

Google.

SfM has also been applied over video sequences and images from hand-held cameras.

Newcombe et al. (2011), by means of GPU hardware, developed a robust system (called

DTAM) which creates in real time dense reconstruction of a scene covered by a hand-

held camera, as shown in Fig 1.3. An impressive result with mobile cameras is the work

presented by Yu and Gallup (2014). By just taking as input images the different shots

taken by a smartphone, whose different locations are only given by accidental motion

of the hand, this work manages to extract the depth of the scene and with it the 3D

reconstruction. This result is applied to relocate at will the focus in the image and to

create synthetic parallaxes. In Fig 1.4 an example of this work is shown.

In the area of robotics the achievements of 3D vision have been remarkable too. 3D

vision techniques have been used in the NASA Mars exploration rover mission, where

the rover Opportunity performs SfM in order to obtain visual reconstruction models

of its environment and for navigation (Maimone et al. (2007)). Based on the work

of DTAM, Forster et al. (2014) implements a visual odometry algorithm which runs

in real time on embedded systems. This algorithm has successfully been deployed on

unmanned aerial vehicles with excellent results.

There have been numerous works on collaborative systems. Werfel et al. (2014) pre-

sented a group of termite robots which can build a construction without any human

help, by following simple rules, in a similar manner as termites behave. Collabora-
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tion between heterogeneous groups of robots has been shown in Mathews et al. (2012),

where flying drones communicate with a swarm of ground robots in order to perform

difficult tasks. Flight formation and coordination with groups of nano-quadrotors has

been achieved by the GRASP Lab, from University of Pennsylvania. Working collabo-

ratively, these drones can pick up and carry heavy weights or create structures.

More specifically in SfM, this method has attracted a significant number of prior studies

over the past years (e.g., Snavely et al. (2008a); Torr et al. (1998); Wai Yin Leung

(2006)). Indeed, SfM is finding its place in many applications (Wei et al. (2013)).

SfM replaces other scanning real-world object techniques, like laser scanning. SfM has

largely been applied to augmented reality and for animation purposes (Jebara et al.

(1999)). Many feature films use SfM when performing special effects and introducing

fictitious characters to the scene (Haley-Hermiz et al. (2012)). In many computer vision

algorithms, SfM is used as useful intermediate component. For example, in Brostow

et al. (2008) segmentation and recognition tasks are developed based on SfM and Torr

et al. (1998) uses SfM to guide the feature matching in a video sequence. Projects in

computer-human interaction and information encoding have found SfM appropriate for

their applications, as SfM helps track face gestures or movements and gives compressed

data of a scene through 3D points.

Of all the uses that can be found for SfM, perhaps the most suitable and naturally

applied is robotics. Out of the three main necessary competences for a mobile robot to

navigate in a given environment, which are:

1. Self-localisation: to know where it is relatively to its surrounding environment,

without the aid of neither active nor active external elements (sources of signal,

beacons, landmarks, etc).

2. Map-building and its interpretation: to know where the objects in the surrounding

environment are with respect to itself, which facilitates to estimate the permitted

areas for transiting.

3. Path planning: to estimate the optimal path to move from one point to another,

in a given environment.

SfM facilitates greatly the achievement of the first two, regardless the type of scene

(either outdoors or indoors), and provides an excellent framework to perform the third
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Figure 1.5: The mobile robot Rovio. Right image from Dang and Hundal (2011).

competence, path planning. The self-localisation given by SfM not only locates the

robot within a frame of reference, but it also places the robot with its orientation. The

map built as a result of the visual reconstruction model created by SfM is a 3D map,

so the obstacle-avoidance skill is largely facilitated, as opposed to 2D maps. Moreover,

SfM does not require to alter the environment in any way, as it does not need artificial

landmarks such as beacons, nor it needs prior information about the scene.

Another advantage of SfM is that this technique does not use any special or expensive

sensor. Just an embedded camera is necessary. The minimal requirements of hardware

from SfM make it really convenient for mobile platforms, since one of the issues encoun-

tered in the design and manufacturing of mobile robots is their cost. In this work we

have chosen a low-budget platform for our implementation of SfM. The reason for this

is two-fold: first, low-budget robots are being considered for environmental exploration

in a distributed fashion; second, this is an opportunity of bringing high technology

research algorithms to off-the-shelf mobile robots.

Specifically, the chosen platform evaluated here is the low-budget omnidirectional Wow-

Wee Rovio mobile robot (shown in Fig. 1.5) which consists of a wireless network con-

nected low-cost mobile device. Rovio has been designed to be commanded over the

Internet and be used for surveillance tasks and as a camera web. The low cost sensor

on board possesses its own specific problems with regard to noise characteristics for the

task feature identification and matching and this challenge will form part of this work.

We will examine the details of this subject in Chapter 3.

We have applied SfM for image-based 3D modelling and autonomous navigation of low-

budget mobile robots. Therefore, our work is based on a state of the art technique
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which is actively used by the scientific community. While this work copes with specific

problems and issues provided by the poor quality of the sensors used and the particular

characteristics of the mobile platform, the knowledge of SfM technique and its related

fields acquired during this work enables us to address a wide range of areas of image

processing in future works.

1.3 Objectives and Research Question

The goal of this work is to achieve a 3D understanding of a given scene by using

the image sensors of a group of low-budget mobile robots. This is attained with the

implementation of a well known but complex method in computer vision, Structure

from Motion (SfM), on a small group of commercial mobile robots (WowWee Rovio).

This work, where the particular characteristics of a collaborative system are used to

optimise the SfM task, has not yet been addressed, as highlighted by recent surveys in

the area (Radke (2008)).

The research question that set out this work is two-fold. Firstly, we consider the imple-

mentation of SfM on low-budget, omnidirectional mobile platforms, and the challenges

that this type of platform entails: low quality imagery, inter-image ill-configurations. Is

it possible to obtain reliable visual odometry of a low-cost, omnidirectional robot, and

obtain 3D maps of the scene while it transits along? Secondly, we explore the adap-

tation of recent work in SfM supported by real-time robust feature point extraction

techniques for distributed 3D scene understanding - that is, if multiple robots all see

different isolated parts of a given environment and we know approximately where the

robots may be relative to each other (with known uncertainty) then collectively can we

try to reconstruct the global scene in 3D as they transit in an intersecting search pattern

through the environment. This work aims towards the realisation of multi-entity SfM

and will combine aspects of image mosaiking, robot motion estimation and multi-robot

3D reconstruction.

The main challenge of this work resides on the chosen platform, which is a low-budget,

omnidirectional platform. An omnidirectional (also addressed as holonomic) robot plat-

form has as many actuators as degrees of freedom. In the case of a wheeled robot, which

has three degrees of freedom (two normal directions and rotation angle), a robot needs

three actuators to be holonomic. Specifically in our work this configuration is achieved
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Figure 1.6: Left: omni-wheel detail; Right: possible motion directions for the omnidirec-
tional robot platform.

by three independently commanded wheels, which are able to move almost friction-less

along the perpendicular direction to their axis of displacement. This paradigm is rep-

resented by the omni wheels (Fig. 1.6). The manoeuvrability provided by this design

allows an omnidirectional robot to turn on the spot and move sideways or diagonally

while keeping its orientation (Fig. 1.6). Such omnidirectional platform often offers key

manoeuvrability characteristics which has recently boosted research on mobile naviga-

tion in complex environments.

Under omnidirectional configuration (Fig. 1.5), abrupt changes in robot orientation

provoke rapid changes in the camera field of view. This creates frequent difficult epipolar

configurations when transiting a given scene. In addition, the low quality of the image

sensor and the wireless streaming compression reduces the amount of features detected

in the images, and increases their measurement noise.

Sequential Structure from Motion (SfM) techniques have been applied to obtaining

robust 3D mapping and self-localisation on mobile robots (Maohai et al. (2006); Ortin

and Montiel (2001); Royer et al. (2007)). However, in the case of an omnidirectional

robot the facts here discussed (small baseline distance, high measurement noise and

feature sparsity) complicate the extraction of the epipolar geometry between image

pairs (Jebara et al. (1999); Shakernia et al. (2003); Szeliski and Kang (1994); Vidal and

Oliensis (2002)) and render the navigation task challenging.

The first goal of this work, therefore, is to achieve a robust and stable SfM method

capable of locating the camera poses and extract as dense as possible 3D information

of the scene out of low resolution and noisy images. In addition, this algorithm should
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be able to deal with the unique ill-conditioned configurations created by the movement

typical of such a holonomic robot.

As an extension of the singular case, SfM applied on a single mobile platform, the

eventual co-issue of this work arises:- how to combine the structure recovered by multiple

deployed mobile robots within a common environment and merge this information so

that the 3D model of the whole environment is obtained. This requires an efficient

solution to the challenge of recognising a previous visited areas, called in the literature

review loop-closing (Cummins and Newman (2011); Zhang et al. (2010)).

Specifically, the key contributions of this work can be listed as follows:-

• We have overcome the problem of noise created by the low quality of the image

sensor and the JPEG compression imposed on the imagery by wireless stream-

ing. JPEG-compression has only been treated in the context of SfM by Torr and

Zisserman (1997). By implementing a sequence of filters, our system copes with

levels of noise not found in the literature (Gang and Reinhard (2005); Ruiz et al.

(2006)).

• We have developed an incremental SfM pipeline (Hartley and Zisserman (2004))

capable of retrieving the relative camera poses under omnidirectional conditions,

which lead to ill-conditioned situations (Vidal and Oliensis (2002)). SfM has not

been performed on omnidirectional platforms before (Bonin-Font et al. (2008);

Fraundorfer and Scaramuzza (2012); Scaramuzza and Fraundorfer (2011)).

• We have developed a novel feature tracking system that manages the scarcity

produced by noise and outputs quality feature tracks, which allows a stable 3D

mapping of a given scene. Our feature tracking system generalises the work of Ro-

hith et al. (2013) to any type of scenario.

• We have attained distributed reconstructions from multiple instances of the SfM

system developed, by applying loop-closing techniques (Cummins and Newman

(2011)). This is demonstrated on the 2-session case.

• We have developed a multiple reconstruction system that merges individual 3D

structures and resolves the global scale problem with minimal overlaps. Our

results extend the work of Zhang et al. (2010) which requires overlaps between

stretches of sequences. This is demonstrated on the 2-session case.
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The SfM system described in Chapter 3 comprises the contents of Cavestany et al.

(2015), which will be published in the proceedings of the international conference of

image processing of 2015 (ICIP). We plan to expose the multiple reconstruction system

in a subsequent paper.

1.4 Approach Overview

Since this work has two parts clearly distinguished: SfM on a single platform and 3D

reconstruction on multiple platforms, we apply two different methodologies for each

section of this work:

Single SfM

The approach taken on the retrieval of 3D structure and camera motion of a single mobile

platform follows a classical pipeline of a SfM system (see Fig. 3.1), with the addition

of a preprocessing of the imagery prior to the matching process step. Subsequently

the epipolar geometry is estimated by means of state-of-the-art minimisation methods

and resection over the last camera is performed. Here we novelly develop a feature

tracking system to make to most of the scarcity of features that this problem poses.

The triangulation step is refined via the application of Bundle Adjustment. Finally,

semi-dense 3D reconstruction is attained by using commonplace rendering methods.

Multiple Reconstruction

The methodology followed in the estimation of a global 3D map out of 3D structures

retrieved by multiple instances of the mobile platform of study is based on minimal loop-

closures. More specifically, the loop-closing problem is addressed by an implementation

of FAB-MAP (Cummins and Newman (2011)). Once the loop-closures between different

sequences are found a global 3D structure and the relative pose of all the cameras

involved are calculated by Bundle Adjustment.

1.5 Thesis Outline

This thesis is divided in two main Sections: SfM on a single mobile robot and collabo-

rative SfM. In order to familiarise the reader with the terminology used in this thesis,
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Appendix A explains the core elements of the SfM method and the general algorithm

that should be followed to attain 3D reconstruction and the relative camera poses of a

given sequence of pictures. Chapter 2 goes through the state of the art on 3D recon-

struction. All the current techniques used to perform are discussed, as well as different

approaches that researches have taken to achieve visual navigation. Additionally, the

present contributions towards distributed 3D perception are described. The specific SfM

algorithm implemented for a single mobile and omnidirectional platform is explained

in detail in Chapter 3. Here the main obstacles encountered on an omnidirectional,

low-budget mobile robot are highlighted, and the various implementations proposed are

described. Chapter 4 goes into the collaborative multi platform task; now the main

concern is to match pictures from different sequences, so that these sequences can be

linked and their 3D maps merged. The technique used to close the loops between se-

quences is explained here. Since we have developed a new system for the application

of SfM on mobile robots, it is necessary to validate it and compare it with established

methods. This evaluation is carried out in Chapter 5, where also an error analysis is

shown. The conclusions drawn from this work and the research areas that remain open

in this field are discussed in Chapter 6.
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Chapter 2

Literature Review

This work addresses the problem of obtaining 3D reconstruction and motion information

from images streamed from a mobile robot. Therefore, it involves two fields of research:

robotics and multiple view geometry (MVG). MVG provides tools and methods from

which robotic research can take advantage for navigation purposes. Likewise, robotics

offers a suitable platform for 3D computer vision research to obtain 3D maps of a scene.

There are mainly two methodologies to obtain the structure and camera information

from a set of input images: structure from motion (SfM) and visual simultaneous local-

isation and mapping (VSLAM). Here we give an overview of both of them and present

the contributions from the fields of robotics and MVG most relevant for this work.

VSLAM combines the method known as simultaneous localisation and mapping (SLAM),

introduced by Smith and Cheeseman (1986) with projective geometry techniques. SLAM

is a method extensively used in robotics as it is devised to solve the fundamental robotic

problem of navigation and self-localisation. SLAM aims to answer for a mobile robot

two questions: What does the world look like? and Where am I? This is achieved by

updating the state of the robot by the perception of its own odometry and of land-

marks of a scene, which are used for alternately update the location of the robot and

a map of the surroundings. The updating step is performed through the application

of the Kalman Filter (KF). KF is an algorithm that produces a statistically optimal

estimates of the state of a given system. KF works with the current and previous es-

timate of a series of measurements. Firstly the current estimate is predicted with the

information of the previous estimate (priori estimate), and then the current estimate

is updated with the information of the last measurement (posteriori estimate). KF is
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mostly implemented in its non-linear versions, such as Extended Kalman filter (EKF)

or the recent Unscented Kalman filter (Wan and Merwe (2001)).

The landmarks used in SLAM can be obtained by a range of sensors, such as LIDAR,

GPS, sonar sensors or depth cameras. VSLAM uses instead a camera as a main sen-

sor. Therefore, the landmarks obtained in VSLAM are feature points identified in

images taken by the camera, which are easy to track through a sequence of pictures.

MonoSLAM (Davison (2003); Davison et al. (2007)) is one of the first reported inves-

tigations on monocular VSLAM to achieve real time camera pose estimations and 2D

mapping. Subsequent research has tried to reduce the complexity of the problem while

increasing the density of scene mapping. Mouragnon et al. (2006a) implement a local

minimisation of the structure by using Bundle Adjustment (BA) techniques on a mobile

robot, where the matching selection of the features is realised with SIMD hardware.

Strasdat et al. (2010) shows a detailed analysis of the relative merits of SLAM approach

and BA - expressed in key-frame selection basis - in terms of accuracy and computational

cost. This work demonstrates that when the tracking cost is included BA outperforms

SLAM in general.

VSLAM is strongly related with SfM. The mapping step can be deployed by a SfM

technique. This approach suffers of an important issue, and it is that the accuracy

depends heavily on the baseline distance. Tomono (2005) addresses this problem by

selecting an appropriate baseline based on criteria for the trade-off between the baseline

distance and the number of feature points visible in the images.

VSLAM does not handle as efficiently as SfM image features in 3D space. Since in

this work the management of features is crucial, SfM has been implemented in order to

obtain 3D reconstruction models and as a solution of the navigation problem in robotics.

This chapter addresses the literature review of the SfM process by breaking it down

into the different methods that it is composed of. Firstly the contributions on the

characteristic points of this work -mobile robotics and noise- are reviewed, so the most

relevant works on SfM regarding these fields are revised. Secondly, the main steps of

the SfM process are reviewed: feature detection and correspondence matching, feature

tracking, motion recovery, triangulation and Bundle Adjustment (BA). We have showed

different approaches currently present in the research community for each algorithm,

emphasizing those more relevant for our work, i.e. those which deal with noise, ill-

configurations or have sparse feature populations. In order to provide a good picture
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of the state of the art of certain methods, in some sections the historical evolution of

the approaches for a given algorithm has been explained. Finally, recent research on

collaborative robots, with special attention to those works which present significant

advances towards distributed reconstruction, is also reviewed.

2.1 Robotics and SfM

One of the essential tasks that a mobile robot needs to accomplish in order to interact

with its environment and perform activities is autonomous navigation. Many paradigms

have been proposed to solve the navigation problem, and many types of sensors have

been deployed for this purpose, ranging from inertial sensors to time-of-flight cameras,

including laser, infra-red, sonar, GPS, etc (Lobo et al. (1998)). Sensors for Dead-

Reckoning have also been used. However, the extereoceptive sensor which has been

proven most convenient for mobile navigation is the monocular camera (DeSouza and

Kak (2002)). A camera provides great amount of information, it is available to all

budgets and easy to integrate in a robot.

Within visual navigation many approaches have been presented to solve the navigation

problem, ranging from reactive techniques based on qualitative characteristics extrac-

tion and appearance-based localisation to ground plane detection and visual sonar. For

example, by handling several thousand features Castle et al. (2008) generate multiple

maps for navigation, from which wearable cameras can select the correct local map

and localise themselves, in a Augmented Reality (AR) context. SLAM has also been

proposed to localise a mobile robot within an environment. However, the implemen-

tation of SfM solves simultaneously the self-localisation problem and the map-building

requirement, and offers a natural platform to accomplish the path-planning goal. Since

autonomous navigation can be defined as the ability of a mobile robot to know at once

where it is in an environment, what is the layout of such environment and which path

should it take to arrive at a target point, SfM appears as the most suitable available

method to solve autonomous mobile navigation. It is for this reason that early on in the

mobile robotics era researchers turned to SfM and SLAM in order to find a competent

autonomous navigation solution.

Nevertheless, when it comes to actually reconstruct through SfM, many issues need to

be addressed. Occluded features, non-smooth motion between frames, blurred pictures
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and ambiguous patterns in images make difficult the SfM implementation on mobile

robots. Chang and Hebert (2002) tries to overcome these setbacks by using sampling-

based representation on feature tracking. Another way to get around the complications

at matching is to make use of optical flow. This is a very convenient approach, since

the baselines between images on a moving robot are small. Kawanishi et al. (2009)

proposes a feature flow model for obtaining matches from separate positions, whereas

Pietzsch (2004) uses optical flow to compute the motion.

In this work we introduce a robust SfM procedure for the autonomous navigation of

a commercial low-budget robot, equipped with a monocular webcam. The main prob-

lems tackled are sparse matching populations produced by the great variance of the

noise present in the images and the ill-conditioned configurations provoked by the ma-

noeuvrability of the omnidirectional platform chosen. We intend to lessen the hardware

requirements that navigation methods currently impose on mobile robots by introduc-

ing robust and light noise filters and robust tracking systems, as well as noise-proof

epipolar geometry estimation methods.

2.1.1 Low-Budget Robots

The purpose of this work is to enable robust autonomous navigation on low-budget

robots by devising new methods which overcome their image quality, rough odometry

and motion limitations and allow the implementation of SfM on them. Mobile robots are

already present in many areas (from everyday fields like health care, remote presence

to specific fields like search and rescue and ocean data collection). Yet recently a

plethora of low-budget household mobile robots have appeared in society. The range of

applications where home robots are finding a niche is becoming countless. Pool-cleaning

robots, vacuum cleaners, scrubbing robots, gutter wipers, the list of household robots

keeps increasing as days go by.

Mobile robots with a more social purpose have also been introduced in the household

sphere (Denning et al. (2009)).

The platform chosen for this work is the mobile robot platform Rovio, shown in Fig. 1.5.

Rovio is a significantly sophisticated mobile platform manufactured by WowWee that

has been designed to be controlled over the Internet and can be used as a mobile web-

cam. Rovio specifications are described in detail in Chapter 3. Rovio’s capabilities have

been considered for performing planning motion, by processing detected landmarks on
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Figure 2.1: Sequences made up of orbital motion, rotation about parallel axes and arbi-
trary translation and planar motion make unfeasible to obtain Euclidean reconstructions
from uncalibrated images. Source: Sturm (1997).

a Support Vector Machine (Dang and Hundal (2011)). Fladung and Mwaura (2011)

attach a laser pointer to a Rovio robot to create a 2D map with supervised learning

techniques. The retractile arm of the Rovio has been used in Buente et al. (2011) as

a non-simultaneous stereo rig in order to achieve a primitive self-localisation and 2D

mapping performance.

In a more advanced scope, a visual based navigation algorithm is presented in Begum

et al. (2010). Begum et al. make use of checkpoints to elaborate a path from a start

configuration to a goal configuration while enabling Rovio to avoid obstacles. Rovio

is also considered by Karnad et al. as a mobile tele-immersion platform to be used in

shared tele-presence meetings (Karnad and Isler (2010)).

2.1.2 Omnidirectional Robots

One of the advantages of our platform - which constitutes, at the same time, one of the

challenges of this work - is its mobility. It has been mentioned in Chapter 1 that Rovio is

a holonomic robot platform. This paradigm is represented by the omni wheels (Fig. 1.6).

Such omnidirectional platform often offers key manoeuvrability characteristics with a

wide range of application domains.

The manoeuvrability offered by this design allows an omni-directional robot to turn

on the spot and move sideways or diagonally while keeping the same orientation. This

manoeuvrability allows the platform to change abruptly directions and to take sequences

of pictures of a scene in a sideways motion. These are desired features of a mobile

platform when reconstructing a scene in a distributed manner. On the other hand,
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under omnidirectional configuration abrupt changes in robot orientation provoke rapid

changes in the camera field of view. This creates degenerate epipolar configurations

when transiting a given scene. In fact, even if the baseline distances are carefully

selected, away from ill-conditioned configurations, the sequences of pictures that an

omnidirectional platform can take fall in the set critical motion sequences, as Sturm

demonstrated Sturm (1997), and therefore lead to inherent ambiguities in uncalibrated

Euclidean reconstruction. These types of sequences are shown in Fig. 2.1.

The advent of omni wheels have drawn the attention of researchers towards omnidirec-

tional mobile platforms. Since this is a recent paradigm in robotics, a number of design

prototypes have been proposed. Several wheel configurations have been tested (Ren

and Ma (2013); Rojas and Förster (2006); Safar et al. (2013)) and different types of

holonomic-enabling wheels tried out (Chamberland et al. (2010); Udengaard and Iag-

nemma (2008); Ueno et al. (2009); Ye et al. (2011)). The work presented in Liu et al.

(2010) shows in detail the engineering design process for an omnidirectional mobile

robot of 4 omni wheels. The design includes a mechanical base, a digital signal process-

ing microcontroller-based control system and the analysis of omnidirectional motions.

Interestingly, the work of Liu et al. (2010) shows that preferential directions exist, ac-

cording to wheel configuration, along which the platform finds least friction. One of

the main challenges when operating with holonomic robots is the adequate modelling

of their dynamics so as to establish a stable control system. A motion analysis of three

and 4 wheel omnidirectional mobile platforms is performed in Oliveira et al. (2009),

and a model determined. Udengaard and Iagnemma (2008) studies the dynamics of an

omnidirectional robot on rough terrains.

The motion model problem is not trivial as a good model should account for the slippage

of the omni wheels. Almeida et al. (2013) characterises the wheel friction and slipping

in a differential wheel configuration, and proposes a hierarchical traction control archi-

tecture. Williams et al. (2002) studies the omnidirectional mobile robot dynamic slip

motion and test the dynamic model derived. Nevertheless, due to frequent slippage the

odometry provided by holonomic robots is specially rough. This is shown in Zou et al.

(2011), where the accumulation of error along different paths taken by an omnidirec-

tional robot is analysed.

Later in Chapter 3 the odometry provided by our platform is considered to establish a

minimum bounding box within which the estimation of a camera pose should fall. The
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kinematic model applied over the odometry information follows the principles stated in

Ashmore and Barnes (2002). This work uses in the estimation of the kinematics of a

three wheel omni-drive mobile platform the concept of induced velocity. The induced

velocity of an omni wheel comprises the slippage present in the motion. Therefore

Ashmore and Barnes (2002) derives a concise and linear model of the movement which

also explains friction sources.

Despite the interest with robotics motion research (DeSouza and Kak (2002); Strasdat

et al. (2010)), several challenges remain for computer vision based SfM from an om-

nidirectional platform (Fig. 1.5). Here we explore the use of such platform for SfM.

Since a crucial aspect of the mobile robot considered is that it is a cheap, affordable

by household economies, the quality of its sensors are often limited. The first point

reviewed therefore is the research on noise, since this is a problem present in this work

throughout all the steps of the SfM process.

2.2 Image Noise

One of the main problems that this work has encountered is the levels of noise associated

with low cost sensors that are typical of omnidirectional platforms. Since our source

of information is imagery, any image noise becomes ubiquitous in all the phases of the

process. Therefore filters against noise have been devised along all the steps of the work.

In the literature noise is taken as a factor against which methods should be tested to

demonstrate their robustness (Ruiz et al. (2006)), but little research has been found

that addresses the issue of noise all over their work-flow. Furthermore, the uncertainty

considered is usually a Gaussian with σ 6 1 pixels. In a theoretical and abstract

scope, Hartley and Zisserman (2004) copes with noisy measurements explicitly and

robust, noise-proof algorithms are described all along their work. Nevertheless, the

algorithms shown in Hartley and Zisserman (2004) can not overcome the noisy matching

populations that our system produces, and methods need to be devised to reduce the

noise to tolerable levels. Thomas and Oliensis (1999) treats the consequences of noisy

images on an incremental SfM implementation by estimating the motion error. The

motion error is seen as a cause of correlation in the 3D points of the structure. Therefore,

by estimating the correlation between 3D world points, Thomas et al. retrieves the

error on the estimation of camera poses. The motion error is subsequently added in
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a Kalman Filter, along with the image error. Onessis et al. measure the error by

means of covariances, which does not represent uncertainty for SfM universally. In

particular, this representation is not valid in situations when the correspondence noise

is relatively large with respect to camera baselines (Chang and Hebert (2002)). This

is the case of most of inter-image configurations in our sequences. Another approach

to noise is to take advantage of special features usually present in the scene such as

lines and planes. Gang and Reinhard (2005) stabilise the estimation of the exterior

orientation by applying prior knowledge on collinear and coplanar points of the scene

to reduce noise. However, this approach does not deal with noise as such, but it applies

instead some understanding from the scene to the matching population in order to

attain robust estimations. Chang and Hebert (2002) convert the tracking problem and

the SfM estimation into a particle filter approach. They create sampled representations

of measurements uncertainty (both in tracking measurements and SfM measurements)

on a series generated over time, and use this paradigm to propagate SfM uncertainty

over a discrete period of time. While this jointly representation of measurements and

noise facilitates the tracking of features through occlusions and it is robust against

non-smooth motion between frames and presence of noise, it is hardly extendible to a

distributed system, where various mobile platforms may share the view of a 3D point.

Noise is also an obstacle that pre-processing algorithms encounter. In order to ho-

mogenise shadows and bright parts in a picture of a given scene, Upcroft et al. (2014)

uses the proposed illuminant invariant by Ratnasingam and Collins (2010) and RGB

images to perform image classification of urban scenes despite challenging variations in

lighting conditions. However, this method is quite sensitive if a single RGB channel

is over-exposed or under-exposed. This can result in noisy images after the transform

especially if compression artifacts are present, like in the case of JPEG compression

(Solomon and Breckon (2011)).

The system developed in this work deals with noise in scalable and manageable way.

Strict and light filters are devised to overcome the problems of both spuriousness and

sparseness of feature matches, and a robust tracking system has been developed for the

specific inter-image configurations encountered. Here, in this unexplored case, noisy

matches are efficiently trimmed, and the scarcity of surviving feature matches is man-

aged by a novel feature filtering tracking method.
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Noise affects principally to the extraction of features, the base of the whole SfM process.

In next section the state of the art feature detectors and extractors are reviewed.

2.3 Image Features

The first step in any method which intends to relate different images of the same scene is

to find points corresponding to the same world point. These points should have special

characteristics as they should be recognisable across different perspective, scaling and

lighting changes. It is for this reason why they are called key-points or image features.

Image features must be easy to track in a sequence of images, and with this purpose

multi-dimensional invariant norms have been devised to describe them uniquely under

as many transformations as possible.

In SfM image features are the main source of information that the method takes as

input. Corresponding features are used to recover the motion between images, and these

very same features are later on back-projected in 3D space with the information of the

recovered motion to estimate the 3D point that originated them. It is therefore crucial

that features detected in images are of the best quality, since both motion and structure

recovery rely on them (and structure doubly). Provided that image information is not

readily accessible due to noise presence, it is paramount to apply the most suitable

feature detectors and feature descriptors under the conditions of our problem. Here we

give an overview of the current algorithms for feature detection and extraction in robot

navigation.

2.3.1 Feature Detectors and Descriptors

The robust detection of characteristic features is an important issue in computer vision.

Many algorithms rely on the extraction of robust key-points. Therefore, many efforts

have been made to develop efficient and powerful methods that identify points unam-

biguously. These key-points must be easy to identify in images of the same object taken

from different points of view, different lighting conditions and even different cameras.

The Fig. 2.2 shows two images of the Eiffel Tower taken from different locations and

aspects. It is noticeable that, apart from the fact that lighting conditions have changed,

the Eiffel Tower appears to be rotated, scaled and even distorted, this given by per-

spective laws. We say that it has undergone a projective transformation. If we want

23



2. LITERATURE REVIEW

Figure 2.2: Two pictures of Eiffel Tower (left pair), taken under two different perspectives.
A good feature detector must find those characteristic points that are distinctly recognisable
in both images (right pair). A good feature extractor should define norms with invariant
metrics in projective transformations.

to find matches in these two images, we must not only provide suitable key-points, but

also give a description of them in such a way that all the aforementioned changes will

not modify their characterisation. Therefore, along with every key-point a descriptor

is defined. A good feature detector should find special points from each image of Fig.

2.2, with unique descriptors of them, so that it will be possible to robustly identify the

same points of the tower in both images.

Schmidt et al. (2013) evaluate the most currently relevant feature detectors and descrip-

tors in the literature in the context of robot navigation. Here we extend this survey, by

widening the range of feature detectors selected and incorporating more recent feature

detectors. The strategies followed to detect and retain salient points are explained, as

well as the constraints they are subject to. This review will help understand what is

the most appropriate method to apply in the context of this work.

Harris and Stephens (1988) proposed a method to extract key-points using Hessian

matrices and their eigenvalues, which provided some consistency under rotation. Later

on, Shi and Tomasi (1994) found that even better results were obtained by simplifying

the criteria of corner selection.

Based on these works Lowe Lowe (2004) implemented Scale Invariant Feature Transform

(SIFT), a method to find key-points in an image that was invariant to the scale, and

intended to be invariant to affine transformation as well. Also, SIFT is invariant to

moderate changes in lighting conditions, which is very convenient in many real world

computer vision problems. The output of this method is, for each feature, not only
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the location and orientation of it, but also a scale in relation to where it was found

and additionally a multidimensional descriptor (regularly 128) that tries to describe

uniquely the feature point through derivatives. SIFT is a really effective method to

localise many prominent features and it provides accurate descriptors to match them

with features from other images. The main flaw of SIFT is the computation time. In

order to be scale invariant, a number of Gaussian convolutions over different scales of

the image are done, along with other computations, which make it impossible to apply

SIFT to a streaming video at greater than 10 fps, on commodity hardware.

By contrast, Matas et al. (2004) presented Maximally Stable Extremal Regions (MSER).

This work uses extremal regions for wide-baseline stereo matching problem, so instead

of finding key-points it detects blobs in images. An extremal region is a set closed

under projective transformations and monotonic transformations. MSER presents a

near linear complexity in the construction of detectors and a computation speed near

frame rate, and it was designed to be affine invariant. MSER also provides descriptors,

which are also scale invariant. MSER algorithm extracts from an image I a number of

co-variant regions, Maximally Stable Extremal Regions. These regions are characterised

as stably connected components of some level sets of the image I. In less formal words,

MSER can be seen as a method based on thresholding. If we classify an image according

to the intensity values of its pixels, we could create a sequence of n images S = {It}t=nt=0

where n is the range of intensity values that a pixel can take. It is an image in which all

the pixels whose intensity values are above a threshold t are white and black otherwise.

If we went through the sequence S we would start with a white image, and see appear

black regions in It as t increases, with these regions growing and merging until the whole

image would be black. In this analogy, an extremal region is a connected component of

a thresholded image. The set of all connected components of all frames of the sequence

S is the set of all Maximally Stable Extremal Regions. Even though MSER is really

stable and extensively used, it does not work well with images where motion blur is

present.

Bay et al. (2006) developed a method for detection and descriptors extraction called

Speeded-Up Robust Features (SURF), which aimed at overcoming the main setback of

SIFT. SURF is significantly both faster and simpler, and suitable for real-time processes

- computational workload. Although its performance does not reach the standards of

SIFT, it is usually sufficient for matching tasks (Mikolajczyk and Schmid (2005); Miksik
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and Mikolajczyk (2012)). The quickest feature detector in the literature is the method

Features from Accelerated Segment Test (FAST) by Rosten and Drummond (2006).

Based on a simple brightness test on a circle of pixels around a candidate corner, it

offers very good results with small image transformations.

The feature detector developed by Agrawal et al. (2008) coined as CenSure, was specif-

ically designed for visual odometry on mobile platforms. CenSure is a Scale-invariant

centre-surround detector. It uses a bi-level approximation of the Laplacian of Gaus-

sians (LoG) filter, where the circular mask of LoG is replaced by an approximation that

allows to preserve rotational invariance. STAR, a commonplace implementation of Cen-

sure, uses a mask that consists of two squares rotated 45 degrees between each other.

Calonder et al. (2010) introduced a feature descriptor, Binary Robust Independent El-

ementary Features (BRIEF). BRIEF was designed for resource-constraint applications,

and it provides excellent results coupled with FAST, when processing speed is a concern.

BRIEF introduces binary strings as feature descriptors. It applies intensity comparisons

on sets of location pairs (x, y) of smoothed image patches. These intensity comparisons

are then arranged in binary strings, so that Hamming distance1 can be used on them

to match the descriptors created.

In 2011 Rublee et al. (2011) proposed Oriented Fast and Rotated BRIEF (ORB) as

an alternative to SIFT and SURF. It is a fusion of FAST key-point and BRIEF de-

scriptor, where some steps have been enhanced. ORB applies Harris corner measure on

FAST keypoints, along with a pyramidal approach to produce multiscale-features. The

orientation, needed for a feature to be rotation invariant, is given by the vector from

the feature to the intensity weighted centroid of a considered patch. The descriptor

is formed out of BRIEF descriptors, by “steering” BRIEF descriptors according to a

rotation defined by the orientation of the key-point. ORB is a good choice in low-power

devices such as smartphones. In this same year Leutenegger et al. (2011) presented

Binary Robust Invariant Scalable Keypoints (BRISK). BRISK is a feature detector and

descriptor extractor based on FAST. BRISK enables scale invariance by analysing the

surrounding pixels of the upper and lower octave layers. The descriptor is a 512 bit

binary, and it is computed with the weighted Gaussian average over a selected pattern

of points near the key-point, equally spaced on concentric circles with the key-point
1The Hamming distance between two arrays of the same length is the number of elements at which

the corresponging values are different.
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feature. In a similar manner as BRISK descriptor, Fast REtinA Keypoint (FREAK),

developed in 2012 by Alahi et al. (2012), applies a sampling pattern upon the key-point,

but the pattern formed by these Gaussian averages is biologically inspired by the retinal

pattern in the eye. The pixels being averaged overlap, and are much more concentrated

near the key-point.

Amongst these features detectors and descriptors, BRIEF and ORB clearly outperform

the rest when there is little in-plane rotation. FREAK on the contrary presents lower

accuracy than the others. The SURF descriptor, on the other hand, it is the most

influenced by the type of feature detector used. STAR provides good results but it

requires a relatively feature-rich environment.

The last feature detector and descriptor with a significant relevance is KAZE, created

by Alcantarilla et al. (2012). KAZE is a multi-scale detector and descriptor which

works in a non-linear scale space. KAZE uses non-linear diffusion filtering, gradient-

dependent equations introduced by Alcantarilla et al. (2012) to reduce the diffusion at

the location of edges. This filtering encourages smoothing within a region instead of

smoothing across boundaries. Since there are no analytical solutions for the partial

differential equations involved in non-linear diffusion filtering, the Additive Operator

Splitting numerical methods are used as approximation. Although more expensive to

compute than SURF due to the construction of the non-linear space, KAZE outperforms

the state of the art techniques both in detection and description. This computational

burden was fixed by Accelerated KAZE (AKAZE) (Alcantarilla et al. (2013)) by using

new numerical methods called Fast Explicit diffusion in the feature detection process.

In addition, AKAZE comes with a new descriptor, Modified-Local Difference Binary,

based on the same principle as BRIEF, but making the grid sub-sampling function of

the scale of the feature.

Alternatively to point features lines and edgelets can be used for matching, or along

with image features. Lines provide additional information such as planar and orthogonal

constraints. The key disadvantage is that they are more difficult to match and track

(to start with, they can be more easily occluded). In addition, the extremes of a line

segment might not be present in the image.

The abundance of types and variations of feature detectors and descriptors is justified

provided the amount of algorithms in image processing that base their performance on

image features. Within the scope of this work, image features will be used as matching
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candidates in the step described in next section, the correspondence problem. This step

crucially feeds all the subroutines the SfM method. It is therefore a principal concern

that image features detected are numerous as well as unique.

2.4 The Correspondence Problem

The correspondence problem consists of identifying, in two different images of the same

scene, a set of homologous points. The elements of this set, formed of pairs of points -

each point of a pair from one of the two images - are called matches. The correspon-

dence problem is extensively addressed in 3D vision and even other disciplines. Stitching

panoramas, motion estimation, face tracking, video stabilisation and object recognition,

to name a few, are examples of applications that make use of correspondence match-

ing (Szeliski (2011)). Correspondence matching is also the basis of the particle image

velocimetry measurement technique, which is nowadays widely used to quantitatively

measure fluid motion (Santiago et al. (1998)). Generally speaking, matching correspon-

dences becomes necessary when an automatic process intends to establish some rela-

tionship over images of a set. The only prior information that feature matching requires

to be implemented is that the images considered should show different perspectives of

the same environment.

Appendix A describes the SfM method as a geometric derivation of the epipolar rela-

tionship between two images. This relationship emerges when both images see the same

feature of the 3D world. Therefore, finding correspondences in two frames constitutes

the base of the SfM algorithm. It is worth noting that the matching population built

up in this step represents in this work the whole source of information with which the

SfM system will have to deal in order to attain the camera pose estimation and struc-

ture information from a sequence of images. For these reasons the adaptation of the

correspondence problem to the SfM process of this work is paramount.

2.4.1 Feature Matching

The correspondence problem is addressed differently according to the overlap between

images, relative pose and size of the sequence. If the image sensor is a stereo-camera, and

the pair has been rectified, the search for matching is done along the rows of the images.

In the case of multiple image batch mosaiking, a common strategy is to attempt to detect

28



2.4 The Correspondence Problem

overlapping images using exhaustive matching of image pairs. In robot navigation the

images usually are presented sequentially, so the approach should be different. If the

motion between consecutive frames is small with respect to the overlap, optical flow

is usually applied Szeliski (2005). Optical flow is the motion pattern generated on an

observer by objects in the scene due to the motion of the observer across the scene.

Techniques that extract this flow between images perform pixel-based matching (also

called direct methods), i.e. look for similarities between pixels of images. A suitable error

metric to compare images with each other must be chosen in pixel-to-pixel matching,

like normalised cross-correlation (NCC) or sum of squared differences (SSD). Once this

has been established, a suitable search technique must be devised. The naïve approach

is to do a full search (block matching), but more optimal strategies have been introduced

to speed up, refine and account for more pronounced changes between images rather

than only translational motion.

Optical flow can be divided into two types: dense and sparse. The former performs

a per-pixel tracking throughout the whole image, and is computationally consuming,

albeit it achieves accurate results. A good example of dense optical flow is Farnebäck

(2003). In contrast, sparse optical flow focuses on special key-points that are easy to

track and likely to be found on the second image. Sparse optical flow techniques are

usually faster than their dense counterparts. One notable sparse technique is that of

Kanade-Lucas (KL) (Lucas and Kanade (1981)). KL relies only on local information

that is derived from some small window surrounding each of the points of interest.

This approach makes KL both computationally efficient and robust. KL is usually

applied with the feature detector developed by Shi and Tomasi (1994), and then becomes

Kanade-Lucas-Tomasi (KLT) tracker (see Section 2.5). Optical flow is a good choice on

image sequences where we expect to find a match for a given feature point in its near

surroundings and motion between images is small. However it has its own shortcomings

that need to be tackled, like the aperture problem (Fraundorfer and Scaramuzza (2012);

Szeliski (2005)). Optical flow is not suitable for visual odometry applications due to the

quick accumulation of motion error.

As opposed to pixel-based matching methods there are feature-based methods. Two

major approaches exist in this group. In image sequences where the expected locations

of feature points can be reasonably well predicted it is convenient the implementation

of detect then track matching methods. This type of methods compares patches using a
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translational model between neighbouring frames, and suits best certain motion video

sequences. Features are initialised in a single image and then looked for their matchings

in next image. However, features tracked along large image sequences suffer great

changes. In this case, and also where baseline distances are comparatively big, the most

convenient approach is detect then match. This approach consists of finding features in

images separately and then match them based on local appearance similarity (given by

the descriptors). It is in this case where the feature detectors described in Section 2.3

gain relevance, since the transformations undergone by images are greater, and affine

invariant feature detectors are necessary (Fraundorfer and Scaramuzza (2012)).

Feature matching tries to find matches among the image features extracted in two

images, using some error metrics on their associated descriptors. Typically the error

metric is the Euclidean distances L1 or L2, but NCC and SSD are equally suitable here.

L1 and L2 are the common choice when the descriptors in use are SIFT or SURF. For

binary string based descriptors like ORB, BRIEF or BRISK the Hamming norm should

be used, given the nature of these descriptors. The simplest way to accomplish this task

is to search, for every feature of the first image, throughout the whole set of features of

the second image. To avoid having several features in the second image matched with

one feature from the first one, a cross-matching can be done (Zhao and Gao (2006)).

The set of matches will then be made up by corresponding features that mutually have

each other as best match. However, when there is a shortage of features (due to image

noise, not enough overlapping, etc) this technique rules out too many good features. In

Section 3.4 we explain other methods to ensure good inter-image matching.

Another mechanism to enforce correct matches, alongside cross-matching, is the distance-

ratio test proposed by Lowe (2004). Lowe computes the probability of a correct match

as the ratio of the first nearest match of one feature to the second nearest match. All

the matches with ratio bigger than a threshold are rejected. Lowe’s distance ratio test

seeks for unique matches.

The main and obvious disadvantage of brute force matching is that its computational

cost grows quadratically with the number of features. To keep matching times low,

supervised matching search can be done if there are available other sources of informa-

tion, like motion models. A structure and motion model will predict, under a constant

velocity model, a region where a match for a given feature should be found. Motion
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models are usually generated from other sensors, like wheel odometry, inertial measure-

ment unit (IMU), laser or GPS (Maimone et al. (2007)). If structure information is not

available, images can still be registered, in a similar manner as in a calibrated stereo

rig, and then the search for matches can be done along the epipolar lines.

Many robot mobile platforms have the image sensor as the only extereoceptive sensor.

The computational burden imposed by linear search can still be circumvented by using

indexing schemes for matching in high dimensional spaces, such as series of 1D binary

searches, hash tables or k-dimensional (kd) trees. A widely used library which collects

multi-dimensional search algorithms is the Fast Library for Approximate Nearest Neigh-

bour (FLANN), by Muja and Lowe (2009). FLANN can cope with a multidimensional

set of points efficiently, by means of creating multidimensional query tree structures

according to the characteristics of the query set. There are a number of proposals for

tree structures. Arya et al. (1994) developed kd spaces, which build tree structures by

splitting the nodes at the median values. With randomised kd trees the approximation

of nearest neighbour to the query point is improved by searching simultaneously across

a number of randomised trees. Hierarchical k-means tree, included in Muja and Lowe

(2009), has every inner node split in k-ways. K-means clustering is then used to classify

the data subset at each node. In addition, FLANN can create tree structures as a com-

bination of these three types, or even automatically tune the tree structure indexing to

offer the best performance for the dataset provided. Finally, it is also possible to create

an index using multi-probe Locality Sensitive Hashing (LSH) Lv et al. (2007).

For the sake of completeness it should be mentioned that there also are in the literature

correspondence-free methods (Makadia et al. (2007)). These methods use the whole

set of pixels in an image to estimate the relative motion by means of a Harmonic

Fourier transform. This approach works very well with low-texture images but it is too

expensive in computational terms. Moreover, the extracted motion is not as accurate

as with feature-based methods.

The correspondence problem is an open problem in computer vision. Not only there

are not exact solutions computationally affordable for feature matching, but also there

are a number of unresolved issues that appear when matching images. Examples are:

ambiguities created by different instances of a same category, occlusion management

and poor-textured surfaces.
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Figure 2.3: In this example of linear regression, where the dotted lines show the margins
within which a point is considered inlier with respect to a given model, the minimal model
given by the points c−d has many fewer inliers than the minimal model a−b, which means
that the minimal model a−b will probably be a good model estimation for the whole set of
points, and that the point c will most likely be an outlier. Source: Hartley and Zisserman
(2004).

2.4.2 Robust Estimation of Epipolar Geometry

The estimation of the epipolar geometry, as it has been exposed in Section A.4, is a

difficult task. The estimation of the fundamental matrix is severely affected as soon as

outliers are present in the sample. It is therefore of supreme importance to arrive at the

epipolar estimation stage with an outlier-less set of matches. Unfortunately, and despite

all the measures taken to avoid mismatches, after the matching step a significant part of

corresponding features are still outliers (in this work, an average of 25%). Image noise,

scene occlusions, image blur, light changes and projective transformations not accounted

for by image descriptors corrupt the matching process, and permit mismatches to make

their way through to the epipolar estimation phase.

Robust algorithms have been devised to cope with sets populated by outliers. The

purpose of these algorithms is two-fold: a) effectively remove present outliers, and

b) estimate the sought model for the set considered. If the proportion of outliers is

small, there is a family of methods which can detect them and rule them out. As an

example, case deletion deletes outliers detected and then fits a model to the remaining

data. However, in presence of a significant part of outliers random sample consensus

(RANSAC) (Fischler and Bolles (1981)) has been established as the standard.

RANSAC is a hypothesis-and-verify algorithm. It applies iteratively a voting system on

the correlation model estimated with a minimal subset randomly taken from the global

subset. In each iteration, the minimal model is checked against the rest of the set and
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a number of inliers for that model is established, according to some distance threshold.

The intuition behind the algorithm is that models estimated from inliers will agree with

more elements of the set than models estimated with outliers (see Fig. 2.3). In a classic

SfM problem the correlation model to find is a 9×9 matrix (either F or E) and the error

metrics used to measure the fitness of a model to the global set is the distance between

a feature and the epipolar line generated by its match. This distance is measured by

means of the epipolar equation (see Eq. A.4.21), which is usually evaluated with the

Sampson distance (first-order approximation) (Sampson (1982)). Other error metrics

have been proposed, such as the directional error (Oliensis (2002)). The directional

error is the angle created by a ray from the epipole passing through a given feature and

the epipolar line.

Since its appearance in 1981, RANSAC has been improved with variants that intend

to be more robust against outliers, minimise the number of iterations and acquire more

accurate models. PROSAC (Progressive Sample Consensus) (Chum and Matas (2005))

assumes that better match scores are correlated with correct matches, so it orders the

tentative correspondences according to this criterion. As a result random samples are

initially added from the most “confident” matches, thereby speeding up the process of

finding a statistically likely good set of inliers.

Torr and Zisserman (2000) proposed to maximise the log likelihood of the model rather

than the number of inliers. This work defines the probability density function of the

noise perturbed data for a given true correspondence, and uses it as a starting point

to build up a new robust estimation method, MLESAC. MLESAC is based on MSAC

(Torr and Zisserman (1997)) which gives a score to inliers as to how well they fit the

data, by means of using a simple M-estimator. Preemptive RANSAC (Nistér (2005))

extends this approach. It also selects the hypothesis generated according to their log

likelihood but uses pre-emptive scoring of hypotheses to narrow the search of the best

fit. In addition, and for real time requirements, the iterations are fixed.

In 2010 McIlroy et al. (2010) presented DESAC, a deterministic scheme for selecting

samples. DESAC works in a similar manner to PROSAC, but it also combines ambiguity

and performance of previous hypotheses to estimate the probability that a match is

correct, and then uses this probability to favour better matches in the estimate of models

with minimal sub-sets. In short, DESAC focuses on matches with more probability of

being inliers.
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Raguram et al. (2009) presented uncertainty RANSAC, which incorporates feature un-

certainty. This method performs a pre-selection of putative matches by testing hypoth-

esis with a likelihood ratio and checking the covariance matrix of the hypothesis.

sample size Proportion of outliers ε

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Table 2.1: Number of samples necessary to ensure, with a probability p = 0.99, that at
least one sample has no outliers for a given size of sammple, s, and proportion of outliers,
ε. Source: Hartley and Zisserman (2004).

A critical point in RANSAC-like algorithms is the number of parameters necessary to

estimate the transformation model between the corresponding features. It has been

discussed in Section A.4.3 that an over-parametrisation not only is harmless in the esti-

mation of the geometry between images, but also it usually provides extra advantages,

like better fitness in presence of noise. Therefore the measured support would more ac-

curately reflect the true support. However, in robust estimation in presence of outliers

the benefits of over-parametrisation are overweighed by using a minimal point set as a

model, since the computational cost grows exponentially with the number of parameters

of the model, as Table 2.1 shows.

There are alternatives to RANSAC to robustly estimate models in presence of noise.

Instead of scoring a model instantiated from a minimal set by the number of points

which agree with the model within a threshold, one could score the model by the

median of distances to all the instances of the set. The model which scores the least

median is selected. This method is the Least Median of Squares (LMS), Rousseeuw

(1984). Conveniently, LMS does not need prior information about the proportion of

outliers in the sample, and no settings of thresholds is required. On the other hand,

LMS can not cope with more than 50% of outliers, because the least median would be

to an outlier.
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In the case of study here the characteristics of the image sequences studied make es-

pecially difficult to attain a robust estimation of the geometry between images. The

unusual presence of noise produces a high score of outliers in the putative correspon-

dences, and even correct matches can be seen as outliers by good models due to noise.

In addition, matches populations are limited by the VGA resolution of images, which

forces baselines to be narrow. It is shown in Section 3.1.2 that narrow baselines create

ill-configurations, where the estimation of the epipolar geometry is even more unstable

than in normal circumstances. We are facing therefore an already unstable problem

accentuated by the imposed geometry between frames where the scarce input is highly

corrupted by noise. In Chapter 3 the filters implemented at this stage are described in

detail. These filters guarantee that only the best inliers are selected as input to estimate

the relative pose between frames.

Since the bottle-neck of the problem is the number of features to be tracked, one of

the key contributions of this work is the development of a novel feature-tracking system

which makes the most of the few survival matches of the severe filters implemented for

outlier removal. In next section tracking methods proposed in the literature for sparse

matching populations are reviewed.

2.5 Feature Tracking

Feature tracking is the extension problem to finding corresponding features between

images. As the name suggests, it consists of tracking a set of features found in an image

along a sequence. Feature tracking makes especial sense with sequential algorithms,

where it is reasonable to expect that a feature observed in an image will still be present

in the next image of the sequence. Unordered set of images require different techniques

to figure out in which images a given feature is seen, like loop-closing (see Section 4.2.1).

Feature tracking is paramount in SfM schemes, for ulterior methods in the SfM pipeline

(such as the triangulation procedure and the Bundle Adjustment (BA) method, see

Sections 2.7 and 2.8) rely their stability on the number of views projected by each 3D

point on the image sequence.

The strategy for feature tracking depends on how the correspondence problem has been

approached, but in any case feature tracking normally emerges as a result of a concate-

nation of matching consecutive pairs of images. If a feature xi of an image It is coupled
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when matching the pair {It−1, It}, and subsequently it is found a correspondence for

xi when matching the pair {It, It+1}, a track for the feature xi is then created, and it

will be maintained as long as consecutive matches are found for xi. The first feature

trackers were of the type KLT, implemented by Shi and Tomasi (1994), in the context

of optical flow, but correspondence errors tend to be large with this technique. Rohith

et al. (2013) improved the tracking accuracy by discriminating the features in structured

images. This work first establishes the geometry between a pair of images with the aid

of fast and easily detectable KLT-based features, and then searches for slower and more

difficult to track features. The latter features are described with coefficients extracted

from the epipolar geometry. Therefore Rohith et al. (2013) grounds its feature tracking

system on heterogeneous features and camera geometry based descriptors.

In the last years different formulations to KLT tracker have been introduced. Jin et al.

(2003) intend to process the two steps of SfM (feature correspondence and 3-dimensional

reconstruction) in one closed loop by matching regions, using photometric deformation

models. These regions are defined by the area and normal of planar patches. Jin

et al. (2003) estimate the structure and motion via an EKF of the state of a dynamical

system. This dynamical system is defined by the normal vectors of matched planar

regions, the homographies existent between them and certain factors that account for

changes in brightness and contrast in the scene. Jin et al. (2003) claim to integrate

visual information in space as well as in time, by using a finitely parametrisable class

of geometric and photometric models for the scene. Other approaches exist, like fuzzy

logic implementation for noise removal, or to consider feature tracking as a concave

programming problem (Maciel and Costeira (2003)). Concave programming is a special

case of the general constrained optimisation problem

max
x∈X

f (x)

subject to g (x) ≤ 0
(2.1)

in which the objective function f is concave and the constraint functions gj are convex.

Global Localisation (GL) scheme can be seen as an alternative to the feature registration

problem. GL involves an offline process for space abstraction using features and an

online step for feature matching. Dong et al. (2009) represents a good example of this

technique. In a parallel-computing scheme, this work constructs an optimal set of
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selected keyframes which intend to cover the entire space and at the same time minimise

the content redundancy.

If the scope of feature trackers is confined to consecutive images results are inefficient,

as occlusions or disruptions in the feature tracks remain neglected. Indistinctive struc-

tures, present noise and large image distortion provoke that tracks are split down into

several shorter tracks, which affects the stability of the process and creates redundant

3D points in the structure. With appropriate filters for structure redundancy this is not

an issue when the number of tracked features is large enough. However, if the matching

population is scarce this deficiency develops into a serious obstacle for the reconstruc-

tion. This is one of the reasons that have led this work to generate as many quality

feature tracks as possible, as it will be shown in Sections 3.4 and 3.6.

Matched features are the source of data that SfM methods take as input in order to

extract the relative motion between frames. By relating objects in the world through

their projections on different images it is possible to recover the motion between them.

2.6 Motion Recovery

Motion recovery is the first step in the actual SfM method. It consists of the extraction

of the relative motion existent between two images of the same scene. As mentioned

in Section A.5, it is important to be aware that motion can only be recovered up to

scale. Motion between images is usually recovered through homologue features (hence

previous sections), although other alternatives exist for feature matching. Firstly state-

of-the-art algorithms to achieve real-time motion tracking (and structure recovery) are

described as a reference.

In Section A.4 it is explained how the essential matrix E can be extracted if enough

matching features in two images are detected. E represents the algebraic form of the

epipolar geometry created by the two images considered, and it encodes the relative

motion between them. In this section current techniques for epipolar geometry and

motion extraction from images are reviewed. We then focus our attention on the specific

circumstances of our case of study - i.e. motion recovery on mobile robots, and therefore

in a sequential procedure. Ill-configurations and noisy and sparse match populations

have also been revised. The planar case is studied, provided its relevance on wheeled

mobile platforms.
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Feature tracking, motion and structure recovery are strongly related, so it is not possible

to talk about one without mentioning the other, and inevitable references to structure

estimation will be done in this section. Nevertheless, structure recovery will still be

discussed in subsequent parts of this chapter.

2.6.1 SfM in Real Time

The state of the art in SfM can arguably be identified with real-time camera tracking and

dense reconstruction on domestic hardware. One of the first works that attained real-

time SfM was Mouragnon et al. (2009), who designed a method for motion estimation

and 3D reconstruction from a video input. This work describes a whole SfM pipeline on

a generic camera. Local Bundle Adjustment, in combination with a suitable key-frame

selection, is introduced, which speeds up considerably the optimisation process. The

generalisation of the model is achieved by the Pless equation, which is nothing else than

the epipolar equation applied to lines which are expressed in Plücker coordinates2. In

mainly structured scenes, Pollefeys et al. (2007) presented a real-time system which

obtained ground-based dense 3D models of urban environments with a stereo-camera.

This work focuses their effort on leveraging the redundancy of data to obtain consensus

results. The large illumination variations are taken into account by using auto-exposure,

and the feature tracking algorithm is adapted to track gain changes across the images.

Klein and Murray (2007) (PTAM) supposed a significant step forward in terms of on-

line camera tracking with a hand-held camera and commodity hardware. This work

estimates the camera pose in a AR workspace while producing detailed maps with

thousands of landmarks which can be tracked at frame-rate. This is attained by split-

ting tracking and mapping into two separate tasks, processing in parallel threads the

camera motion and a 3D map of point features. Klein and Murray (2007) base their

approach on dense maps of FAST features over a reasonably textured scene.

PTAM performs feature-based camera tracking and as such it has to overcome solid

problems typical of point-based systems, such as rotations, occlusions or blurring. Dense

reconstruction, when available, avoids all those problems, and with greater accuracy

and robustness. This is the paradigm that Newcombe et al. (2011) (DTAM) has taken.

DTAM relies on dense, every pixel methods. A textured depth map is generated by the

minimisation of a global energy functional in a non-convex optimisation framework. In
2Plücker coordinates are the six homogeneous coordinates of a line in projective 3D space.
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an interleaved fashion, camera motion is tracked at frame-rate by whole image alignment

against the dense texture model. This allows DTAM to keep in place the tracking of the

camera even at very high speed of motion. DTAM makes extensive use of GPU hard-

ware, which makes it unsuitable for on-board computers. Engel et al. (2013) decreases

the computational demand by representing as a Gaussian probability distribution the

inverse depth of each pixel with a minimum image gradient, and then propagating that

information over time.

In a similar fashion as DTAM, Forster et al. (2014) (SVO) present a semi-direct monoc-

ular visual odometry algorithm which works at pixel level, implemented on a Micro-

Aerial-Vehicle (MAV) with impressive results. SVO can process 55 fps on a onboard

embedded computer and more than 300 fps on a consumer laptop. SVO uses a prob-

abilistic mapping method to explicitly model outlier measurements in 3D point esti-

mation. The direct method used to track camera motion is based on pixel intensities,

saving much time computation, since the feature detection and extraction phases are

avoided.

However outstanding are the results for SfM provided by direct methods, they relay on

certain assumptions which are not always applicable. Direct methods mainly confide

their robustness in high frame-rate and small baselines, so that some flavour of optical

flow in VGA resolution can be run on the sequence. Despite all their advantages, Direct

methods simply can not be employed in certain cases, such as omnidirectional motion

with low-quality image sensors (see Section 2.1). The amount of noise that we deal with

in this work prevents us from these approaches. Other circumstances might be situations

where images are separated by wide baselines, high image resolution constraints or even

computational requirements by other threads.

In next sections we review the process of motion recovery, stressing those elements more

relevant to our case of study.

2.6.2 Epipolar Geometry

Epipolar geometry extraction is a mature field in image processing. Since its intro-

duction by Longuet-Higgins (1981), it attracted the interest of many researchers, who

refined the estimation methods and spread the paradigms for epipolar geometry extrac-

tion. Epipolar geometry has been studied in all types of images (high and low resolution,

near-planar images, feature-less images, etc.) and types of cameras (central panoramic,
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eye-fish, affine cameras, etc). It has been studied over a pair of images, giving rise to

the framework described in Appendix A, but also over three images, which produces

the trifocal tensor, and even over four images, with the quadrifocal tensor (Hartley

and Zisserman (2004)). Epipolar relationships have been produced from a range of

common entities between images: points, lines, planes or surfaces can be arguments to

the epipolar equation x′TEx = 0. A plethora of techniques has been proposed for a

robust estimation of E, where each one suits different configurations between images.

An extensive review on epipolar geometry and the robust extraction of the fundamental

matrix can be found in Zhang (1998).

Robust techniques for inter-image motion extraction received great attention by the 3D

vision community in the 1990’s, and the feature-based case seemed to be settled with the

refinement of the 8-point algorithm by Hartley (1997) and the employment of non-linear

minimisation methods to SfM. Hartley proposed a normalisation over the matching pop-

ulation which drastically decreases the condition number3, and the enforcement of the

singularity of F by applying SVD. The 8-point algorithm usually serves as bootstrap-

ping for subsequent iterative methods of optimisation. New approaches have appeared

later on for rank-2 parametrisation, like those that employ Householder transformations

(Wenzel and rainer Grigat (2005)).

This work follows loosely the procedure indicated by the 8-point algorithm, and then

refines the results according to a version of the algebraic error minimisation algorithm

given by Hartley (1998).

There have been presented in the literature a number of techniques for extracting the

relative motion {R, t} from E. The SVD technique was imposed thanks to its slightly

superior stability and the development of computationally efficient linear algebra li-

braries. The properties of E which lead to this technique are elucidated in Huang and

Faugeras (1989). However, other techniques have been proposed. Horn (1990) expressed

the baseline and orientation in a pair-wise configuration by means of the trace and the

matrix of cofactors of E, so that:-

ttT = 1
2Trace

(
EET

)
I− EET

(t · t) R = Cofactors (E)T − [t]x E
(2.2)

3The condition number measures the sensitivity of the output of a given function to changes in
the input arguments. The condition number of a matrix can be expressed by the ratio between the
maximal and minimal singular values of the matrix.
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Horn was rivalling in use with SVD techniques until early in last decade. Other methods

address the extraction of the motion directly from points correspondences and apply

alternative techniques such as Semidefinite Programming (SDP) relaxations. Specific

methods for particular cases have arisen as well, along with the problem of ending up

in a local minimum. Chesi et al. (2002) propose a convex approach for the fundamental

matrix estimation, so that the global minima is always found.

Within the literature there are many proposed optimisation algorithms for this problem

and a survey can be found in Ma et al. (2001). The minimisation can be aimed at the

algebraic error given by the fundamental matrix, or at the geometric distance between

the points reprojected and the epipolar lines, of which are notable the gold standard

and Sampson methods (Hartley and Zisserman (2004)). Ma et al. (2001) present an

optimisation method based on the minimisation of the reprojection error4 by means

of differentiating the rotation and translation matrices and using for minimisation the

Newton algorithm (Spang (1962)). Han (2005) tries to improve the Newton method,

exploiting the Hessian matrix, and providing a new criterion to choose the step size

during the optimisation procedure.

Torr and Zisserman (1997) is of special interest for us since Torr et al. analyse the effect

of noise created by JPEG compression on the estimation of the epipolar geometry over a

set of error metrics. They state that a compression beyond 85% does not permit correct

estimations of the fundamental matrix. The dynamics of the JPEG compression will be

described in detail in Chapter 3, but suffice here to say that JPEG compression is a lossy

compression, where always information is lost, even though the quality factor used for

compression is Q = 100. A compression of 85% is achieved by setting a quality factor

Q = 30. A further compression produces a dominating tiling effect in the image space,

creating too many spurious features. It should be noted that the biggest decrease of

information occurs from Q = 100 to Q = 70. The work presented by Torr and Zisserman

(1997) is, to the best of our knowledge, the only work that treats JPEG-compressed

imagery in the context of epipolar geometry recovery. The quality factor Q of our

imagery is 100, which does not prevent images from having high levels of noise, since

the quality of the CMOS image sensor used (see Section 3.1.1) produces also artifacts

4The reprojection error is the distance between the projection on the image of a 3D point recon-
structed and the feature which originated that point.
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(with variance of σ ∼ 10, see Section 3.1.1). The nature and behaviour of the noise

present in this work will be described in detailed in Section 3.1.1.

The work presented here shows how the epipolar relationship is estimated up to inter-

pixel error and features successfully tracked with JPEG compressions.

Continuous Case and Motion Field

Another approach to motion recovery is to assume that the camera moves continu-

ously, so that there is just a differential distance between images. This assumption is

reasonable in the case of very closely spaced views. Baumela et al. (2000) computes

the epipolar geometry by means of differential matrices. SfM is tackled successfully

in Kahl (2001) under the continuous case. Here Kahl applies a Maximum a Posteri-

ori (MAP) estimator to SfM, in order to get smooth constrains and deal with critical

camera motions and local minima.

Motion recovery follows a different paradigm in the case of direct methods. Since this

approach is employed with small baselines (of magnitudes of pixels) these techniques

work instead with the motion field, which can be defined as an ideal representation of

3D motion as it is projected onto a camera image. The motion field v in a point P of

the image is given by the camera motion V and the depth Z of the real world points

with respect to the cameras, yielding:-

v =
ZV − VzP

Z2
(2.3)

In this work we focus on a feature-based, sparse matching procedure to recover the

motion of cameras, and the epipolar geometry is exploited on this purpose. Therefore

such dense motion fields do not belong to the scope of this work and we will not delve

into it further. The reader is directed to Szeliski (2011).

2.6.3 SfM on Robots and Navigation

The study and application of SfM methods in this work is oriented towards auto-

localisation, navigation and 3D mapping of a scene by a low-budget omnidirectional

mobile platform. The technique leading to navigation skills performed with solely vi-

sual information is referred to as Visual Odometry (VO). The research presented by

Fraundorfer and Scaramuzza (2012); Scaramuzza and Fraundorfer (2011) develop a
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documented and complete description of VO process. A current, classical implemen-

tation of VO based on SfM on standard CPU hardware is described in detail in Silva

et al. (2012).

The term VO was coined by Nister et al. (2004), and it offers an enhancement over the

unreliable traditional odometry given by wheel encoders. Due to the characteristics of

this work only feature-based VO techniques are applicable here, and we will focus on

them.

Nister et al. (2004) presented a whole system for near real-time ego-motion recovery of

a mobile platform equipped with different types of camera rigs, emphasizing in stereo

rigs. In the single case, Nistér et al. introduced the concept of firewall by which views of

3D points of images placed before a given firewall are not triangulated along with views

from the other side of the firewall. This simple technique prevents the system from fatal

divergences in camera poses that may provoke instabilities and spurious observations.

This is because relative camera estimation starts afresh after a firewall is set. However

desirable this trick is, it implies the splitting down of many feature tracks, which is a

significant lack of efficiency. Our work presents a system stable against spurious views

and where features are tracked to their maximum extent which, as opposed in Nister

et al. (2004), provides stability to camera motion and structure estimation.

Implementations of VO that intend to outperform conventional odometry must be run

in real-time. One possible strategy to work around the intensive computational load

demanded by SfM subroutines is to provide the robot with offline maps of the environ-

ment. This is the approach taken by Royer et al. (2007). The robot undergoes first

through a learning step, in which it is manually guided along a path so that offline 3D

map of the scene is built as a batch. With this prior information the robot is capable

of self-localising in real time. Davison and Kita (2001) investigate sequential methods

for real-time mobile navigation. These approaches should form a representation of the

“state” of the system with the information available at present, i.e. the current and

previous images. Davison and Kita (2001) explain how this necessarily leads to uncer-

tainty in the measurements, which is usually tackled with Bayesian and propagation

algorithms. Another problem that sequential methods encounter is the size of the state,

i.e. the number of features to track and triangulate. The size of the state increases

as images are processed by the system, and at some point the computational burden

will prevent the system from keeping up to date. Therefore real-time VO systems need
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to bound the state size with mechanisms like a firewall, aforementioned. MonoSLAM

simply limits the system to 100 features. The drift problem is also a serious issue in au-

tonomous navigation. Systems which simultaneously build maps and calculate motion

over long sequences commonly fall into the motion drift. The motion drift is made up of

consistent errors in the estimated position of the camera relative to a world coordinate

frame which lead to equivalent errors in estimated feature positions.

Mouragnon et al. (2006a) show an incremental VO algorithm which simultaneously

minimises the camera poses and the 3D structure over a fixed number of frames, (Local

Bundle Adjustment, LBA) starting with the most recent one. This way Mouragnon

et al. (2006a) keep the pose uncertainty and the size of the system within computational

limits. Their experiments show relatively long sequences with a low drift, which suggests

how adequate LBA is in this context. Our implementation of the Bundle Adjustment

technique is inspired in this idea (Section 3.8.2).

Batch SfM vs Sequential SfM

Once we know how to retrieve the epipolar geometry, the next step is to determine how

are we going to process the images, either as they arrive from a video stream or as a

complete set. The algorithms which process the images as they are received are called

sequential techniques, whilst those that treat the sequence as a whole, batch techniques.

Batch techniques usually provide better results, although it is clear that they must be

run offline, on a closed group of images. Moons (2008) and Wai Yin Leung (2006)

provide a complete explanation of the whole process. Snavely et al. (2008a) represents

the “batch technique” philosophy taken to the maximum extent, for it receives as input

uncalibrated random images from the Internet. Snavely et al. (2008a) present a multi-

view stereo algorithm that deals with different lighting, scale and clutter as it tries to

optimise the matching stage.

Snavely et al. (2008b) create a skeletal subset with selected images, by estimating the

accuracy of two frame reconstructions and a graph algorithm. Subsequently the rest of

images are added to the subset.

One important issue in batch techniques is the number of images. It usually requires

a large amount of images to get reliable structure results. This problem has also been

addressed in the literature where we see Saxena et al. (2007) reconstruct a given en-

vironment with few images by inferring the 3D position of blocks in the image (super
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pixels) and using a Markov Random Field (MRF). Agarwal et al. (2006) provide a new

method to reconstruct a scene based on few images. This method looks for a global

optimisation of the SfM, in a scalable fashion.

Sequential techniques usually require non linear and recursive methods, but they have

the advantage of working on an open stream. Therefore, they permit on-line imple-

mentation, as we would like our method to be for a robot transiting the environment.

The first step is to consider a sequential method as a repetition of the two frames case.

This is the line of Lee et al. (2008) and Zucchelli (2002). They recover SfM from a pair

of images using optical flow. Zhang (1995), in turn, uses correlation and relaxation

methods, with a robust technique (the Least Median of Squares, LMS) to discard false

matches, in order to obtain the epipolar geometry of two images. Once the two-frame

case is mastered, we can try to make the most of all the information given by previous

images, and this approach gives rise to recursive algorithms. In the same way, Beards-

ley and Torr (1996) updates the structure recursively. Butterfield (1997), in turn, deals

with the drift problem, which is a common issue in large sequences.

There are certain inter-image configurations where SfM methods become highly unsta-

ble. These situations, named as ill-configurations, should be tackled when performing

visual mobile navigation.

2.6.4 Ill-Configurations

There are two types of singular cases wherein the fundamental matrix is determined by

a two-parameter family of solutions: a) all the 3D points detected are coplanar and b)

the motion is a pure rotation.

If the correspondences belong to a plane then their views are related by a homography

(see Section A.3) and therefore x′i = Hxi. In this situation the epipolar equation

yields x′TFx = x′T
(
FH−1

)
x′ = 0, which is true if FH−1 is skew-symmetric. Therefore

the solution for F is any matrix of the form F = SH, where S is skew-symmetric, and

can be expressed by a column vector t (see Appendix B.1, Eq. B.1.1). t can take any

value, which leads to a two-parameter family of solutions for F (one degree of freedom

is irrelevant as F is homogeneous and thus up to scale).

If there is no translation between images the epipolar geometry is not defined, since

the camera centres are coincident and there is no epipole. In this case the two images
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are related by a homography, and like in a) there will be a two-parameter family of

solutions for F.

It is important to be aware of these cases, because configurations “close” to degeneracies

- i.e. with small baselines or near-planar scenes - will create numerically ill-conditioned

estimations. Moreover, small baselines are likely to occur in a sequence of images

streamed by a robot transiting a scene. Key-frame selection is therefore compulsory in

VO. Likewise, scenes purely made up of walls or planar surfaces should be avoided.

There is research that copes with this problem. Torr et al. (1998) thoroughly study it,

and offer workarounds for these situations. In case b) maintaining correspondences is

proposed as alleviation of the problem, so the computation of camera poses is done once

translation of the platform is resumed. Their method uses homographies to solve the

robust estimation of the correspondence problem. Eun and G. (2007) manage to attain

dense reconstruction of near-planar surfaces by a succession of three BA runs combined

with 2D registration and a plane + parallax representation.

In our case of study we cannot afford to allow wide baselines between frames. The

noisy nature of the images streamed by the platform considered prevents SfM with wide

baselines because that would lead to insufficient number of matches. Scarce matching

populations would have a severe impact in the epipolar geometry estimation, which

would not be able to outrun the noise. With this conundrum, we have been forced

to work with small baselines which will result in ill-conditioned equation systems. The

method and approach devised to obtain robust estimations in this situations is described

in Chapter 3.

One possible approach towards small baselines is to avoid altogether the extraction of

the relative motion through the fundamental matrix and make the most of the charac-

teristics of the problem. For small translations, it is possible to accurately recover the

rotations by direct computation, and also the translation recovery is insensitive to first-

order rotation errors. This is the approach taken by Oliensis (1999) in a multi-frame

SfM algorithm. A remarkable achievement in this context is Yu and Gallup (2014).

Under the assumptions of small motion, this work extracts dense reconstruction out of

a short video taken by an user who intends to hold the camera still. The small displace-

ments produced by accidental motions of the photographer provide enough baseline for

them to acquire dense depth maps.
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We have not made special assumptions on the motion as our approach intends to be

general. Instead we have devised robust filters against noise in matching populations in

order to ensure stable motion retrieval.

2.6.5 Resection

This section has discussed hitherto how to retrieve the relative pose between two cam-

eras with matched feature points. However, as it has been discussed in Section A.5,

the relative pose estimation is not enough when working with sequences of images. It

is necessary to express all the camera poses with respect to a global frame of reference.

This problem is called Global Pose Estimation (GPE) or the Perspective-n-Point (PnP)

problem. Since the methods that address this question ultimately estimate the extrin-

sic parameters of each camera, PnP is sometimes identified with Exterior Orientation

(EO). EO is the problem of calibrating the camera of a mobile robot when the intrinsic

parameters are known. The process of placing a camera in the global frame of reference

is called resection. Section A.5.1 describes the linear method for resectioning cameras.

EO is an old problem in robotics. The methods developed in this area can be classi-

fied in 3 groups: a) approximate methods, b) point-based methods and c) projective

methods. The approximate methods are based on linear algorithms and can be used

when no great accuracy is needed. Examples of approximate methods are the Direct

Linear Transformation (DLT), formally presented by Abdel-Aziz and Karara (1971),

and methods which implement coordinate and spacial transformations. For single im-

age resection the Church’s method can be used. Fiore (2001) solves the EO problem by

using orthogonal decompositions to isolate the depths of the points, so the problem is

reduced to an absolute orientation with scale problem, which is solved by SVD. Point-

based methods take advantage of geometric properties of points and lines in the image,

such as collinearity, coplanarity and coangularity. Finally, projective methods make use

of the projective geometry that derives from the mapping from the 3D world to the 2D

image plane.

Within the group of projective methods we can differentiate between iterative and non-

iterative methods. The former obtain excellent results, which come at the price of

extensive computation. The gold standard algorithm minimises the reprojection error

(see Section A.7.1) iteratively by applying Levenberg-Marquardt (LM) optimisation.
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Here the algorithm is bootstrapped with DLT and a previous normalisation is carried

out, in a similar manner as explained in Section A.4.3.

There are non-iterative PnP methods that achieve very good results in a closed man-

ner. Gao et al. (2003) implements Wu-Ritt’s zero decomposition algorithm, which gives

a complete triangular decomposition for the PnP equation system. Gao et al. (2003)

additionally provides criteria to know the number of solutions of the PnP problem. The

work of Gao et al. (2003) combines the analytical algorithm and this criteria to produce

a new algorithm, CASSC (Complete Analytical Solution with the assistance of Solution

Classification), which is claimed to give robust camera pose estimations. Another non-

iterative solution is Lepetit et al. (2009). This solution is especially attractive because

not only are its results precise, but in addition its computational complexity grows lin-

early with n. In addition, this algorithm is capable of working with both planar and

non-planar configurations. The n 3D points are expressed as a weighted sum of four

virtual control points. Subsequently the coordinates of these points are estimated in

the camera reference and expressed as weighted sum of the eigenvectors of a 12 × 12

matrix. The weights are obtained by solving a constant number of quadratic equations.

2.7 Structure Triangulation

The second step of SfM is the estimation of the structure, as it requires the knowledge

of the camera poses of the sequence. Based on the mapping from 3D world to the 2D

image plane (Eq. A.2.13), triangulation techniques extract the 3D position of the points

corresponding to inter-image matched features.

As its name indicates, the triangulation method obtains the position of a 3D point X

from the rays that join it with the centres C of each camera that sees it. These rays,

which intersect with the image planes at the matched features, create a triangle where

all the sides are known and the only unknown vertex is X.

The oldest and most basic triangulation method is the mid-point method, as mentioned

by Hartley and Sturm (1997); Kanatani et al. (2008). Ideally the rays coming from each

camera centre intersect at X, but due to image measurement noise in practice this is

usually not the case. In the mid-point method the point triangulation is estimated

as the midpoint of the shortest line segment connecting both rays, i.e. the common

perpendicular line.
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The mid-point method can only be applied over a pair of images, and it is neither affine

invariant nor projective invariant, since perpendicularity and distance ratios are not

preserved by these transformations. Therefore the use of this method is discouraged.

A popular approach to this problem is the Linear Triangulation or DLT. This method

has been described in detail in Section A.6. DLT establishes a linear system of equations

from the relationship x ∼ PX, where the symbol “∼ ” indicates that this relationship

is true up to scale. By expressing the former expression in a vectorial equation, a linear

system AX = 0 is created for every camera over which X is projected.

The equation AX = 0 is a Linear Least Squares problem, and it can be solved by SVD.

If the vector X is taken in its homogeneous form, i.e. X = (x, y, z, k)T , k ∈ R, then
the resolution method is called Linear Eigen Triangulation (Linear-Eigen). However,

if we fix k = 1 the linear system is solved using inhomogeneous coordinates and the

method becomes Linear Least Squares (Linear-LS).

None of the aforementioned methods is projective invariant, although Linear-LS is affine

invariant, since the last row of an affine transformation is (0, 0, 0, 1)T (see Sec. A.3).

On the other hand, Linear-LS assumes that the 3D point X is not at infinity, which

might not be the case (points at the horizon or vanishing points are at infinity). This

is an issue when performing projective reconstruction. These two methods are widely

discussed by Hartley and Sturm (1997).

Both methods Linear-Eigen and Linear-LS minimise ‖Ax‖ which has no geometric

meaning. What should be minimised instead is the reprojection error (see Section A.7.1).

Hartley and Sturm (1997) propose an iterative method that minimises the L2 norm of

the reprojection error, which provides the Maximum Likelihood Estimate (MLE) solu-

tion. This method does not only improve the results given by the linear methods but

also is invariant to projective transformations.

Hartley and Sturm (1997) introduced a close solution when only two cameras are in-

volved. If the noise follows a Gaussian model, this triangulation method is then provably

optimal. This method implies to find the roots of a 6-degree polynomial. In this stereo

context, Kanatani et al. (2008) argue that this polynomial method has two singulari-

ties in the epipoles, and present an iterative method based on the epipolar error, which

claim to be just as precise and equally costly.

In case that multiple cameras view the pointX LM can be applied, as well as the Samp-

son approximation, whose results are not as accurate but come with less computation
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weight.

Practically all the methods described here have been tested in this work. The iterative

methods were discarded due to their computational burden. Both the close form and

Kanatani method find a set of matches which minimise the L2 distance to the real

matches and exactly satisfy the epipolar constraint, but under the assumption that the

fundamental matrix F is correct. This work refines the camera poses as new images

are received by the system, and given the noise present is not wise to substitute the

matches detected by fictitious matches which fulfil x′TFx = 0, where F usually does

not fully describe the actual relative motion. In addition, the polynomial and Kanatani

method are designed for the two view case.

The triangulation method present in the working version is Linear-Eigen, since it is

light, allows triangulation from multiple cameras and can be refined as new images

are received by the system. Linear-Eigen method has also been easily adjusted to the

new feature tracking system devised in this work, so we deem it as the most suitable

triangulation method for this system.

2.8 Bundle Adjustment

Bundle Adjustment (BA) is the process by which the results obtained in the SfM method

are further refined. Due to noise, inter-image configurations, point singularities and

other geometric noise, the camera poses and structure at this stage usually are only close

approximations of the true values and can be greatly improved. It is not uncommon

that the whole SfM phase serves as a mere initialisation of BA.

As outlined in Appendix A, BA simultaneously minimises both camera poses and struc-

ture through a cost function defined by the reprojection error. There has been much

research in BA in the look-out of simple and efficient formulation of BA, since it is a

key step in 3D reconstruction and one of the bottle necks when real-time reconstruction

is intended. Moreover, owing to the characteristics of the BA problem, the matrices

involved in this algorithm are sparse, so great computation time and memory can be

saved when the sparseness of this method is properly tackled.

Triggs et al. (2000) offer an extent and profound study of the most relevant aspects to

take into account when implementing BA. The choice of the cost function affects the

efficiency of the problem but also the robustness of the optimisation. Many practical
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estimators have been proposed, like Maximum Likelihood (ML), Maximum a Posteriori

(MAP) and explicit Bayesian model averaging. The most stable metrics are based on

the whole population of views (inliers and outliers), since they allow for the presence

of mismatches. The vectorial space of the structure should be chosen according to the

nature of the problem. Generally speaking, homogeneous coordinates provide better

results, since in projective geometry infinity is just another place, which can be smoothly

visited by the points during the optimisation process. However, when working with

homogeneous coordinates the cost function must ensure gauge invariance, i.e the choice

of the coordinate system must not affect the geometry of the structure and camera poses

configuration.

Special attention should be given to the parameterisation of camera rotation matrices,

so that singularities and regions of uneven coverage are avoided. A common choice is

the use of quaternions subject to ‖q2‖ = 1. The quaternions are a 4-coordinate number

system that extends the complex numbers, with special characteristics which make them

an excellent choice to parametrise camera rotations (see Section 3.8.1).

BA is the problem of optimising a metric estimator. The parameter space that the

estimator uses may be non-linear, so an approximate local model must be defined to

linearise the displacements δx. The art of a robust optimisation relays largely on the

choice of the local model, its minimisation, to make sure that the estimate improves over

iterations and the criteria for stopping the iterations. A common local model employed

is the Taylor series, in its linear (first order methods) and quadratic (second order)

versions. The quadratic version involves the use of the gradient vector and the Hessian

matrix. Depending on how the local model is formulated the resulting method is the

Newton’s method, which approximates the local model to the cost function in the sur-

roundings of the minimum point; the Gradient method, which stops the approximation

of the cost function at the first derivative of the Taylor series (the gradient vector), or

the Levenberg-Marquardt method, which falls in between the former two, as described

in Section A.7.

Quality control is an important issue in BA. Diagnostic tests should be used to detect

outliers and evaluate the accuracy and reliability of the estimations. Triggs et al. (2000)

provide different mechanisms for outlier identification, techniques for acquiring the data

and methods for achieving reliability in the results.
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Since in each update computation is roughly quadratic in the size of the state vector,

it is necessary to limit it. In this sense, the algebraic manipulation of the matrices

involved in BA should make the most of the inherent sparseness of the problem in order

to bound the number of operations. Cholesky and LDL decomposition of matrices are

examples of matrix algebra applied to BA. These decompositions are mostly used when

computing matrix inverses. In terms of implementation, BA algorithms take advantage

of software libraries designed to efficiently handle memory, fast variable ordering and

customised sparse systems solving.5

For this purpose the Schur complement and the reduced system that derives from it is

used at the update step. The Schur complement is a matrix made up with blocks of the

matrix A in the system AX = 0 which permits the reduction of the system so that the

unknowns can be easily computed by Gaussian elimination. Moreover, the Schur com-

plement allows ignoring selected unknowns during the update. This is also useful when

one is interested in updating only the camera poses or only the structure. Another way

of simplifying the system is to change the system coordinates so that the transformed

Hessian meets certain conditions (such as having the eigenvalues well differentiated)

and permits faster operations. This transformation is called preconditioning.

Working on these premisses researchers have been able to optimise and perfect the BA

algorithm. Jeong et al. (2010) order the cameras in such a way that allows efficient

handling of the amount of blocks that are filled in during the LDL block factorization,

and uses block-based preconditioning conjugate Gradient on the reduced camera system.

Jeong et al. (2010) claimed to have attained the fastest BA system at the time.

Schur complement greatly simplifies the system, but when working with large sequence

of images (an order of thousands), the Schur complement trick is not capable of over-

coming the complexity of the problem and fails. By using conjugate Gradients at the

Newton step and preconditioners to evaluate its performance, Agarwal et al. (2010) ob-

tain a system that, unlike the Schur complement, scales to larger sequences. In order to

deal efficiently with large sequences too, Sibley et al. (2009) derive a relative objective

function for BA. With the goal set on attaining really large scale simultaneous localisa-

tion and mapping algorithm that operates incrementally in constant time, Sibley et al.

(2009) work with a metric-space defined by a connected Riemannian manifold. With a

global coordinate frame, BA becomes expensive, mostly at loop-closures, when all the
5As an example, BLAS3 is a C++ library developed to specifically meet these requirements.
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parameters need to be adjusted. However, with this approach the MLE is constant in

time. Since the manifold is a metric space, and distance between points can be com-

puted, it is possible to plan algorithms which are commonly defined over graphs in the

first place. In addition, since the manifold is locally Euclidean, it is possible to apply al-

gorithms which require local metrics, like obstacle avoidance. The BA system proposed

is therefore locally Euclidean and globally topological, where the frames of reference are

connected by the Riemannian manifold. The work of Sibley et al. (2009) is therefore an

adaptive relative formulation that can be viewed as continuous sub-mapping approach.

Another formulation which tries to minimise the BA algorithm is the differentiation of

two different minimisation systems: a global one, responsible for the drifting problem

and loop-closures, and a system defined in the surroundings of the last frame in the se-

quence. This is the approach taken by Holmes et al. (2009), that represents landmarks

and camera poses in relative frames and remove temporarily certain measurements,

so that BA can be split into a local BA with most recent cameras and landmarks,

with a fixed computation time, and a global BA with all the keyframes, in cubic time,

like a standard BA. This produces three important outcomes: a) the local BA allows

exploratory map-building to keep pace with camera pose tracking, b) it produces sta-

tistically consistent results and c) any update in positions from the global adjustment

are immediately incorporated in the local BA. The aforementioned works: Mouragnon

et al. (2006a) and Mouragnon et al. (2009) set out a similar layout in their BA systems.

This work has been inspired by this philosophy in the implementation of BA.

Yet another technique used in the simplification of BA is the elimination of parameters

from the problem. Zhang et al. (2006) propose a BA system which does not involve

solving for the camera orientations. They eliminate the camera orientation parameters

by algebraic manipulation, and then formulate a rotation matrix free cost function for

BA, which makes the system more robust since does not depend on rotation matrix

disturbances. In this context, Rodríguez (2013) proposes GEA (Global Epipolar Ad-

justment), a high-performance structureless BA correction method based on algebraic

epipolar constraints. Thanks to the algebraic nature of the cost introduced, it can be

very efficiently optimised, in most cases decreasing into a fraction the time required by

BA to obtain the global minimum.

In a context closer to the scope of the present work, Engels et al. (2006) show how BA

can be used as a component of a real-time camera tracking system. It describes how a
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significant part of BA can be done every time a new frame is added. Working on long

sequences, they quantify the failure rate, and demonstrate that BA decreases the rate

of gross failures in such a way that decreases the frequency of total failure of the camera

tracking.

Regarding software implementations of BA, there are two efficient examples in the

literature: Sparse Bundle Adjustment (SBA, by Lourakis and Argyros (2009)) and

Sparse Sparse Bundle Adjustment (sSBA, by Konolige (2010)). SBA focuses on a flexible

API and looks for efficient performance. It exploits the sparseness common in SfM

problems, by splitting the normal matrix into different camera and structure blocks

and implementing the sparse Schur complement. sSBA incorporates advances in direct

sparse Cholesky solvers, giving as a result a faster BA implementation. However, SBA

is easier to integrate in the code and permits the use of customised camera “drivers”, as

well as the optimisation of uncalibrated images.

2.9 Collaborative Perception

Over the last 15 years a great interest about Multi Robot Systems (MRS) and camera

networks has grown amongst researchers. As a result, different paradigms have risen

according to the approach of each MRS with regard to aspects as communication,

hierarchy of decisions, social behaviour and collaboration. A good taxonomy on MRS

can be found on Iocchi et al. (2001). Many issues and possibilities have been opened as

the research went ahead. Zhu and Yang (2010) analyse several dimensions of network

robot systems, such as robotic sensor networks, swarm intelligence and cooperation

amongst robots. Since the robots are acting within a group, they have to reach an

agreement about what is to be done next. This consensus problem has been tackled in

many ways; Ren et al. (2005) deeply survey the most relevant approaches. Also, many

algorithms that are well known on a singular camera become really complex, and with

multiple possible solutions, when they are applied to a group. Radke (2008) takes an

extensive look in the literature and describes how these algorithms evolve under the

distributed system. Some topics of our interest are handled, although the vast majority

of them are applied from the static perspective. When our work started, there was no

work that had attempted to reconstruct a scene through a team of mobile robots with

the aid of image sensors. This statement is supported by Radke (2008).
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2.9.1 Distributed Reconstruction and Localisation

The feature that characterises the implementation of a collaborative system over a

single system is that a strategy needs to be defined when several platforms interact

with the environment. For a system of robots to reconstruct cooperatively a given

scene an appropriate decision making algorithm must be defined. Whether the decision

should be done in a voting or horizontal system or in a hierarchical configuration should

be determined according to the requirements of the problem and specifications of the

platforms.

A good example of this question is Chang and Wu (2013) who propose a decision

making technique to enhance signal detection and indoor mobile robot positioning for

a global positioning satellite system (GNSS) receiver. In a context of mobile robot

networks, Zavlanos et al. (2011) provide a theoretical framework for controlling graph

connectivity. In order to maximise the mathematical connectivity of a network, Zavlanos

et al. (2011) make use of algebraic tools which range from convex optimisation to a

subgradient-descent algorithm. Multirobot rendezvous, flocking and formation control

are also discussed.

2D-Mapping scenes collaboratively has been approached in many ways. Özkucur and

Akin (2010) develop multi-robot map merging for navigation purposes. They implement

a SLAM algorithm based on a particle filter (EKF-SLAM) and extend it to fast-SLAM.

The optimal parameter set is searched by evolutionary strategies. A cohesive litera-

ture review about multi-robot systems is done, where they tackle the problem of the

initial position, the usage of heuristics and the transformation from one robot loca-

tion to another. Dias et al. (2013) introduce a cooperative perception framework for

multi-robot real-time 3D high dynamic target estimation in outdoor scenarios. A de-

centralised cooperative perception layer is obtained. They use epipolar constraints for

feature matching, feature searching and detection for image processing of robots with

low computational power. This framework can be integrated in a Decentralised Data

Fusion (DDF) multi-target tracking approach to reduce uncertainty propagation, in the

context of data association problem and track initialisation issues. An interesting exam-

ple of collaborative perception is the work of Palacios-García et al. (2011). They create

a system where the robots can learn from the others; from the SIFT descriptors of
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objects and their silhouette, the robots learn representations of objects in the environ-

ment. Collaborative tasks involved in this algorithm are: strategies for coordination and

communication, exploration, mapping and deployment, sensing, surveillance and mon-

itoring. The decision making is realised in a decentralised manner. Kim et al. (2010),

based on iSAM, give a relative formulation of the relationship between multiple pose

graphs. iSAM, developed by Kaess et al. (2007), is an incremental smoothing and map-

ping approach for SLAM based on fast incremental matrix factorisation. iSAM provides

efficient algorithms to access the estimation uncertainties which enable data association.

Kim et al. (2010) extend iSAM for multi-robot mapping based on multiple pose graphs,

by using a relative formulation of the relationships between multiple pose graphs. This

approach avoids the initialisation problem and is more efficient than global formulation.

Data association and loop closing is facilitated through iSAM. Kim et al. (2010) rely on

direct encounters (the robots see each other), as opposed to indirect encounters or loop-

closures (a robot sees part of the scene already seen by the other one). Additionally, it

works with anchors, which are used to put the camera poses in a global frame when an

encounter occurs. This work highlights crucial problems in multi-robot mapping, such

as consistency, computational efficiency and communication requirements. Guan (2006)

addresses three important problems of cooperative 3D vision: reconstruction, motion

planning and multiple robot collaboration. Guan locates each robot with feature-based

localization and probability framework. Regarding motion planning, collision is avoided

between robots and efficient paths are designed for further exploration. The environ-

ment modeling is done with passive sensors (stereo cameras) and active sensors (LRS,

LIDAR). The information provided by these sensors is then merged. This may be done

by registering two different models up to affine transformation based on some paramet-

ric models and then use Iterative Closest Point (ICP) method. The localisation of each

individual robot is attained through SLAM. Multiple robot localisation is attained by

means of encounters between robots. Basically, Guan (2006) works with individual un-

certainties, and these uncertainties are transferred between robots when an encounter

occurs, with the aid of Monte Carlo Localisation. This approach has some limitations.

Knowledge about where the other robots are not present can be extracted if a robot sees

a scene without any encounter, and Guan does not make use of this information. The

system described assumes that robots are marked appropriately, and the collaboration

is passive. Finally, the scheduled path is not changed to help localisation.
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Recently the collaborative approach has been used for reconstructing 3D environments.

In combination with GPS information, Wendel et al. (2012) merge by alignment 3D

dense reconstructions from several UAV into one single map, in a framework tailored

for façades and urban scenes. Likewise, Reid et al. (2013) create a multi-robot system

designed to navigate, explore and map large-scale urban environments.

Regarding cooperative localisation, a system made up of multiple robots offers different

ways to localise each robot with respect to the other robots and ultimately with respect

to a global, fixed frame of reference. Breitenmoser et al. (2011) performs relative lo-

calisation of mobile devices (quadrotors) by using the monocular vision of the devices

and a module which targets markers in the scene. In essence, the target is identified

in the image and subsequently the robot position. Working with a fixed distributed

network of non-overlapping cameras, Anjum (2011) localises the camera by using tra-

jectory estimation of an object moving around, with a kalman filter. Multiple cameras

are then located with an automated camera calibration algorithm. Kato et al. (1999)

make use of omnidirectional vision robots to develop a method to identify themselves.

This method consists of a Distributed Robotic System (DRS), and it is built on the

assumption that many large-scale tasks are done better with multiple, simple robots

rather than one single, sophisticated machine. Kato et al. (1999) emphasise the im-

portance of the communication between robots, when doing tasks collaboratively. The

localisation implemented is relative: each robot locates itself with respect to the society

of robots, and for this reason each robot should be readily identified in the environment.

A traditional approach in navigation to locate a mobile object is the technique Dead

Reckoning (DR), which consists of calculating the current position of the mobile plat-

form from previously determined position, and advancing that position based upon

speed and course. DR has a significant setback, as it is subject to cumulative errors.

Kurazume et al. (1994) propose, as opposed to DR, a method by which a group of

robots splits into two and each half serves as landmark to the other alternatively.

2.9.2 Different Configurations

The multiple approach has been implemented on diverse setups of platforms. Jeong

and Lee (2013) present inchBot, a novel swarm micro-robotic platform, endorsed with

stackable hardware and omni-directional motion enabled by flexible spoke wheels. Fol-

lowing the policy stated by Kato et al. (1999), a cooperative search approach of a robot
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swarm is presented by Tang and Eberhard (2013). They design a model of the robots

with omni-wheels and develop an algorithm based on the behaviour of flight of birds.

A group of robots can take advantage of wireless communication. Otsuka et al. (2013)

establish an algorithm for wireless communication between a group of low computational

power robots (which imitate insect behaviour), which happen to be omnidirectional and

with a similar design to the ones used in this work. The concept of always connected

cloud computing can also be used to perform the computational work which is common

to a group of mobile devices, leaving the individual updates, much less expensive, to

each robot. This is the approach taken by Riazuelo et al. (2014). Taking as a starting

point PTAM (Klein and Murray (2007)), the map optimisation phase of the SLAM

algorithm is carried out in the cloud, so all the requirements that each platform needs

is internet connection. The structure seen by each robot is automatically estimated

by their RGB-D cameras. The centralised system provides storage for the map and

individual maps that can be used by other robots. This configuration allows a robot to

fuse its map with the one in the database.

Since image overlapping is very likely to happen in a team of cameras, feature matching

finds a new dimension in a distributed system. According to their data, Ermis et al.

(2010) manage to develop a correspondence matching system based upon activity fea-

tures with better results than SIFT. Regarding tracking, Wang et al. (2010) present

a camera network which is able to track mobile objects, by performing a hierarchy of

events.

Camera calibration has also been tackled in distributed systems. Kassebaum et al.

(2010) estimate the projection matrices of a group of cameras by means of a 3D target

of known geometry. The cameras share information to locate themselves within only

one coordinate frame. Lobaton et al. (2010), in turn, present a simple representation

of an ad hoc camera network that captures topological information about the scene

covered, without prior knowledge of each camera location.

2.10 Summary

This chapter has reviewed the state of the art methods that involve all the steps of the

SfM process. We have found limitations in the fields of concern of this work, and in this

work we propose methods to address them. Specifically:
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2.10 Summary

1. We have seen that research on omnidirectional robots (Oliveira et al. (2009))

addresses dynamic modelling, but to the best of our knowledge no 3D Vision

technique has been applied on this platform. We extend the research on 3D vision

on mobile platforms, by developing a SfM system on a holonomic robot.

2. Noise is usually used to measure the robustness of a method, and few works

try to deal with it within the process (Chang and Hebert (2002); Hartley and

Zisserman (2004)), but either do not assume so much noise as in this work or

apply methods that are not applicable on distributed reconstruction. We bridge

this gap by the integration in a distributed system robust and light-weighted noise

filters. Therefore SfM systems that handle noise (Chang and Hebert (2002)) are

here extended, since we develop a more general framework that can be used for

distributed reconstruction, capable of coping with higher level of noise. This work

can also be seen as an extension of Thomas and Oliensis (1999); Vidal and Oliensis

(2002) altogether, since the issues of noise and ill-configurations are treated here

as a whole.

3. In terms of feature tracking, the feature tracker KLT has recently been improved

(Rohith et al. (2013)), but assuming prior information on the imagery. VO tech-

niques use either direct methods (Forster et al. (2014); Newcombe et al. (2011))

to deal with small baselines -inviable with noisy images- or split down the feature

tracks (Nister et al. (2004)) to keep computation affordable, which would make

the 3D reconstruction unstable. These limitations are addressed in this work

with the implementation of a novel feature tracking method with specific filters

that manages the scarcity of feature tracks so a stable 3D reconstruction is at-

tained. Our system makes no assumptions on the imagery, deals with high levels

of noise (σ ∼ 10) and intends to make the most of the feature tracks generated.

In particular, the feature tracking system presented by Rohith et al. (2013) is here

generalised to any type of scenario.

4. Regarding distributed reconstruction, there are contemporary investigations which

obtain 3D scene visualisations from groups of robots or sequences, but even these

works are supported by external tools like the Cloud or RGB-D cameras (Ri-

azuelo et al. (2014)) or rely on long overlaps over sequences, with an expensive
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matching method (Zhang et al. (2010)). This system is easily extended to perform

distributed reconstruction without the support of external sensors, and requires

minimal loop-closures between individual reconstructions to merge them into a

global 3D structure. We specifically improve the technique used by Zhang et al.

(2010), as our implementation of the loop-closing system (FAB-MAP) does not

need long stretches of sequences overlapped and can merge individual reconstruc-

tions with minimal common views.

60



Chapter 3

Structure from Motion on a Single
Platform

This chapter describes how Structure from Motion (SfM) is achieved from images

streamed by a low-budget mobile platform. From the compressed images transmitted

via wireless to the surface rendering of the reconstruction, the methods and algorithms

devised to overcome the difficulties encountered are described in detail as a complete

pipeline.

First of all, the platform chosen for our experiments is presented and its specifications

described. The special characteristics of this mobile robot (omnidirectional, cheap,

wireless communication) make it a very good candidate for our research, but these

characteristics come with important caveats, such as ill-conditioned inter-image config-

urations and ever present noise in images.

Once the streamed images are received, the images are preprocessed, in order to alle-

viate the effect of noise. In the matching section the filters implemented to ensure a

good population of matches are described. Following the matching step, the method

implemented to extract the epipolar geometry in ill-conditioned inter-image configura-

tions and with noisy and sparse matches is explained. Subsequently the sparsity of the

matching population is dealt with by a novel tracking system, specifically designed for

this work. In the triangulation and Bundle Adjustment steps we describe the specific

arrangements undertaken here. The flowchart of the SfM process applied on a given

image In is shown in Fig. 3.1.

Finally the post-process, which maximises the population of the point cloud, and the
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

Figure 3.1: Flowchart of the SfM process implemented on a low-budget mobile platform.
After a first stage of image preprocessing and feature detection, a recursive matching and
feature tracking process take place, wherein the epipolar geometry of In is extracted. Sub-
sequently the second part of SfM is executed, where the 3D points are estimated (Triangu-
lation) and the camera motion and structure simultaneously refined (Bundle Adjustment,
B.A). On a different thread a global scope B.A. is run.

surface rendering, where 3D filters are applied to smooth the reconstruction, are de-

scribed.

To properly comprehend all the methods and filters introduced in this chapter first it

is necessary to understand the low-cost platform of choice.

3.1 The Platform: Rovio

The experiments carried out in this work have been done on the mobile platform Rovio,

introduced in Fig. 1.5. Rovio is a commercial mobile widget manufactured by WowWee

that has been designed to be controlled over the Internet and can be used as a mobile

webcam.
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3.1 The Platform: Rovio

Figure 3.2: Rovio features. The webcam is placed at the tip of the articulated arm.
Source: WowWee.

Fig. 3.2 illustrates the main features of Rovio, which are stereotypical for low-cost

robots of this class. Provided with Wi-Fi connectivity (802.11b, 802.11g), Rovio is also

equipped with an articulated arm. On the tip of the arm a VGA (640 × 480) camera

is placed. In this work the arm has been used in the position shown in Fig. 3.2 since

it provides the biggest field of view of all the possible positions of the arm. Rovio

is wheeled so that its movement is stable. Moreover its three wheels are arranged in

radial axes and each wheel actually includes 10 smaller wheels on its hub, which allow

the robot to go any direction and adopt any aspect on the plane with just one turn (see

Fig. 1.6). Regarding our research the most important feature is the wireless streaming

of images as it makes the platform suitable for a sequential SfM application and enables

it to move around freely without the impediment that a cable would create. In addition

Rovio has an up facing True Track sensor designed to allow it to estimate its position

of a given enclosed environment from a specific base station. On the front there is an

Infra-Red (IR) sensor usable for basic obstacle avoidance.

The choice of these robots is suitable as well as challenging. It is suitable given the

configuration and features of the Rovio as a low-cost platform. On the other hand, it is

also challenging as a standard SfM usually requires good quality images and accurate

measurements of the robot movement, both of which the platform lacks.

In face of the reconstruction of the environment by using such a mobile platform, several
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

Figure 3.3: A blurred image delivered by Rovio.

issues arise. First of all, the odometry supported by Rovio is not reliable. When moving

sideways, given the holonomic nature of Rovio, it is likely to skid and have inadvertent

changes of orientation. This effect is pronounced by the instability of the torque given

by the motors at low speed motion. The odometry provided by the wheel encoders

results therefore useless for accurate navigation purposes. Nevertheless, in Section 3.5

the use of the wheel encoders as a support for motion estimation is discussed.

In addition, if the wireless signal is poor the streaming video becomes unsteady. Bad

image delivery combined with movement irregularities causes images received to be

blurred, mostly when Rovio turns. Fig. 3.3 is an example of a blurred image produced

by these factors. In order to avoid images out of focus the reception of the imagery

occurs when the platform is in stationary position.

The omnidirectional configuration of the platform allows it to perform rotational motion

in the plane around a central axis, with negligible displacement. This characteristic,

typical of omnidirectional platforms, produces that the distance between consecutive

images (called baseline, see Section A.4) may be small with respect to the field of view

of the image, which results in a case of near-degeneracy, as explained in Section 2.6.4.

These inter-image ill-configurations render the extraction of the epipolar geometry un-

stable. Special filters and methods have been devised in Section 3.5 to robustly retrieve

the relative motion between images.

Finally, the quality of images streamed by this platform is very poor. Since Rovio

is a low cost platform, the image sensor is cheap and prone to noise and saturation.
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3.1 The Platform: Rovio

Figure 3.4: Software environment. The Rovio communicates with the desktop via libcurl
requests. Source: partially from Wikipedia (2015b).

Additionally, in order to allow the wireless streaming of images, JPEG compression 1 is

applied to them. Due to the low quality of the image sensor and this severe compression

that images undergo, the images received by the system have high levels of noise. This

noise has become a great obstacle throughout all the steps of our SfM process. Many

methods described in this chapter have been developed to overcome the problem of

noise.

Software environment

The robot Rovio can be given an IP address to which a PC can connect either over

a WLAN network or via the Internet. All the instructions that the Rovio receives,

as well as the packages that it sends, are encapsulated by modules of libcurl (libcurl

(2011)), a free and easy-to-use client-side URL transfer library. Libcurl is widely used

between clients and servers in the Internet. The libcurl commands may be sent through

the API offered by the manufacturer, which is an actual website hosted by the Rovio.

Alternatively, in order for researchers to integrate the communication with Rovio in their

framework, a C++ API has been developed (Breckon (2011)) that allows the developer to

integrate remote commands to the Rovio. Fig. 3.4 shows a scheme of the communication

Rovio - PC desktop.

Our work uses the API Breckon (2011) to configure the Rovio and its camera, as well

as for receiving the images that are processed by our system.

Despite these challenges, the Rovio platform remains true to the challenges of imple-

menting high-end sensing capabilities, such as SfM on a low-cost platform within a

domestic or explorer robotic context. We address each in turn.

1The JPEG compression of the images treated in this work follow the JPEG standards, not to be
mistaken for JPEG-LS or JPEG 2000
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

Figure 3.5: Mosquito effect in an image from the platform. On the zoomed in left-side
photo the mosquito effect is noticeable around the edge of the chair and boxes.

3.1.1 Noise

Noise has been one of the main issues in this work. Since the input data for the system

are the images streamed by the mobile platform, and more specifically the image features

detected (Section 3.4), all the methods of the SfM process are exposed to its effects.

It is important therefore to understand the origin and nature of noise that we have

addressed.

The first cause of noise, apart from the quality of the CMOS sensor used by the camera

of the Rovio, is the way images are delivered to our system. As it is described in Sec-

tion 3.1 our system receives the images from the platform via wireless streaming. This

configuration has many advantages when operating with omnidirectional mobile plat-

forms, but it comes with an important shortcoming: the images are JPEG-compressed

due to the lack of bandwidth provided by the wireless connection.

JPEG is a commonly used method of lossy compression for digital images. In essence,

the compression algorithm transforms the image into a frequency domain by means

of the discrete cosine transform, and then quantizates it. The quantization of the

image produces loss of information and thus it may introduce severe artifacts such as

block boundaries effects near contrasting edges (especially curves and corners). Over

a sequence of images these types of artifacts are referred to as mosquito noise as the

resulting spurious dots, which change over time, resemble mosquitoes swarming around

the object (see Fig. 3.5). Mosquito noise has been the main source of noise in our images,

being the level of estimated noise σ ∼ 10; that is, given a pixel with colour value x,
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3.1 The Platform: Rovio

the JPEG-compression colour value of the same pixel is given by a gaussian centred in

x and with σ ∼ 10.† As a comparison, we have tested a cheap webcam (model 10X

SUPP), which can be found in any domestic workstation. The level of noise produced

by this webcam is of σ = 4.3.‡ It is therefore clear that noise impacts significantly on

this work.

The first step to reduce noise in images is to reduce the artifacts created by JPEG

compression with image filtering. In Section 3.3 the method chosen to alleviate the

effect of noise is introduced.

Even though the effect of noise is present throughout the whole process, its impact

is most noticeable at the matching step, where image features from different frames

are paired. We have reduced the effect of noise by removing noisy matches during the

matching process by using restrictive filters. As a result, sparse matching populations

are generated. In addition, the low signal-to-noise ratio typical of narrow baselines

configurations is pronounced by the presence of noise. Due to this, the retrieval of the

epipolar geometry becomes a challenge. These problems have led our work towards the

development of a novel tracking system, described in Section 3.6.

3.1.2 Small Baselines

A small relative motion between two images is a double-edged sword. On the one hand,

the big overlapping between the two images facilitates large populations of feature

matches. This seems convenient since it will be seen that our system suffers from a

shortage of matching features. On the other hand, small distance configurations between

images leads to a very poorly conditioned SfM problem. In sequences of images with

shortage of features, a trade-off in the baselines should be found between the number of

tracking feature points to detect and a suitable inter-image distance to ensure a stable

relative motion estimation.

We have addressed the problem of small baselines by implementing a robust algorithm

for epipolar geometry estimation (Section 3.5), capable of dealing with ill-configurations,

†A given pixel may take a value x ∈ [0, 255] in each of the three channels R, G, B.
‡Noise estimation is a research field on its own. We have estimated the noise by taking large series

of pictures of a flat, single-coloured surface in disperse light conditions and measuring the variation in
colour of a region of the image. This variation has been computed by averaging the histograms of pixel
values across the set of images. Other procedures for noise estimation can be found in Liu et al. (2006).
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

and developing a novel feature tracking system (Section 3.6) which optimises the noise-

free features found in the images.

Now that the main challenges of the mobile platform chosen for this work have been

introduced, the steps to estimate the 3D structure and motion from this platform under

these conditions are described in detail.

3.2 Camera Calibration

Following the guidelines given in Appendix A, the first step to consider when performing

3D vision is the calibration of the camera.

Camera calibration is the process of estimating the parameters of a given camera model.

In this case we have parametrised the pin-hole camera model (see Section A.2) by ap-

plying image processing methods to images taken by the camera in study. A full camera

calibration entails the estimation of the optics of the camera and its pose (orientation

and translation) with respect to a fixed coordinated frame. Here only the inner charac-

teristics of the image sensor are tackled, as the estimation of the camera pose is one of

the outputs of SfM method and will be studied in depth in Section 3.5.

The projection of rays of light on the image plane is performed through a physical

device with a given configuration which should be modeled. In addition, the transducers

employed by the sensor image to capture the light distort the light itself. It is therefore

necessary, in order to achieve a faithful projection of the world on the image plane, to

correct the distortions introduced by the optics and characterise the configuration of

the sensor (Hartley and Zisserman (2004)).

The two main optical aberrations which distort the image are radial distortion and

tangential distortion. Radial distortion is caused by spherical lenses, much cheaper to

manufacture than the ideal parabolic lenses. On pixels away from the centre of the

image the non-parabolic behaviour of a spherical lens is more noticeable and creates

the barrel effect. Tangential distortions arise from the assembly process of the camera

as a whole. Manufacturing defects result in the tangential plane of the lens not being

exactly parallel to the imaging plane. Both radial and tangential distortions can be

corrected by mapping the pixel grid according to Taylor series (Brown (1971); Fryer

and Brown (1986)). Fortunately, the platform used in our experiments has integrated
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Figure 3.6: Checkerboad “Tsai grid” used for camera calibration.

firmware which corrects the distortions created by the image sensor2. Therefore the

images received by our system are distortion-free.

The configuration of the camera in our case can thus be simplified to retrieving the

distance between the camera centre and the image plane (focal length) and the coordi-

nate frame within which pixels are referenced (the image centre, i.e. the intersection of

the optical axis with the image plane, see Fig A.2). The parameters that contain this

information are called intrinsic parameters. The intrinsic parameters are encoded by

the intrinsic matrix K, whose derivation is explained in Section A.2.

In the literature many techniques are present which aim to calibrate the intrinsic pa-

rameters of a camera. It is possible, if the plane at infinity has been identified, to

perform auto-calibration over a sequence of an unknown scene of more than 3 images,

by extracting the Image of the Absolute Conic (IAC) (Hartley and Zisserman (2004))

which is fixed under similarity transformation. However, although various methods

have been proposed for this, it remains quite a difficult problem, since the identification

of the plane at infinity itself is a complex task. Faugeras et al. (1992) developed an

algorithm for self-calibration which makes use of Kruppa equations in order to link the

epipolar transformation to the IAC. Armstrong et al. (1996) propose a self-calibration

method for the planar case, which takes advantage of the fixed identities under pro-

jective transformations. A Bayesian approach for self-calibration is presented by Qian

(2004).

2The image sensor integrated is an OmniVision OV7670/OV7171 CMOS
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

Nevertheless, a more practical approach prevails for sequences of images taken by one

camera with constant intrinsic configuration (mainly not variable focal length). This

approach implies the use of a calibration object of known geometry over which a cal-

ibration algorithm is deployed. Fig. 3.6 shows this calibration object, which follows

a checkerboard pattern (“Tsai grid”), designed to obtain the corners positions of the

imaged squares with high accuracy. The results provided by such methods have been

proven to be accurate and reliable, and since it is only necessary to carry out the cali-

bration process once in a camera lifetime (provided its focal length is constant), this is

the most used approach for intrinsic camera calibration.

The first algorithms for calibration rigs were based on the Direct Linear Transforma-

tion (DLT) method (Abdel-Aziz and Karara (1971)). DLT is a non-iterative algebraic

method for solving homogeneous linear systems3. We have followed Zhang’s technique

(Zhang (2000)) to calibrate our system. Out of a sequence of images arbitrarily taken

of the calibration rig, Zhang implements a closed-form solution for the homography

between the corners of the squares in the Tsai grid plane and their corresponding views

in the image plane (see Fig. 3.6). This solution is further refined with a Maximum

Likelihood Estimation (MLE) of the views of corners of the chessboard plane over the

sequence.

In this work a given sequence of images is always taken by the same camera with fixed

optics configuration. Therefore all the methods employed in the SfM pipeline work in

normalised coordinates (see Section A.2.2). By embedding the characteristics of the

camera in the image coordinates we achieve three goals:

• The methods here exposed are valid for any type of camera.

• Many matrix calculations are simplified since the intrinsic matrix K has already

been accounted for in the normalised coordinates.

• The epipolar geometry is now defined by the essential matrix E, which has two less

degrees of freedom than the fundamental matrix F and therefore its estimation is

less prone to diverge.

The calibration of the camera enables the Euclidean reconstruction of the structure. In

the following sections the methods that form the system that obtains 3D reconstruction
3In Appendix A we have used DLT algorithm for solving different steps of SfM in ideal conditions,

where the procedure of this algorithm has been explained in detail.
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and camera motion information out of images released by the platform are described.

The first measure to undertake is the alleviation of the noise. This is performed as

soon as an image is received by the system, and we have named it as the stage of

preprocessing.

3.3 Image Reception and Preprocessing

Section 2.6.3 classifies the types of SfM in batch SfM and sequential (also called in-

cremental) SfM. This work has implemented sequential SfM, that is, the images are

processed as they are received by the system and are not reordered within the sequence.

Therefore we consider, at any given time, the most recent image received In of the

overall sequence.

The first task to tackle when an image In is received is to decrease the level of noise while

maintaining the texture of the objects in the image. An efficient inexpensive method to

perform feature preserving noise reduction on each image received is bilateral filtering

(Tomasi and Manduchi (1998)). Others filters based on blur effect were considered

before bilateral filtering, but the good results given by the latter convinced us of its

use. Other filters more sophisticated can be tested (anisotropic diffussion, non-local

means, wavelet transforms, etc) to optimise the refinement of the input images. method

smooths images while preserving edges, by means of non-linear combination of nearby

image values. It takes into account geometric closeness and photometric similarity, and

it employs a weighting system in both colour range and distance domains, with no

phantom colours produced.

There are 3 parameters that can be set in the bilateral filtering method: the diameter

around each pixel that is used during filtering (d), the range in the colour space in which

two spatially close pixels will be smoothed into a semi-equal colour (σc), and the area

of influence between two pixels with a similar colour (σs). These parameters should

be tuned, as a great area of influence of the filtering method will flatten the surfaces,

eliminating noise, but also preventing subsequent methods from detecting feature points.

Fig. 3.7 shows the effect of bilateral filtering with the settings used in this system.

To quantify the effect on the level of noise of bilateral filtering is not straightforward.

The measurement of noise according to the method described in Section 3.1.1 reveals a

decrease of the level of noise of less than 10%, with the settings of the working system.
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

Figure 3.7: Bilateral filtering. The image has been filtered with settings d = 3, σc = 50
and σs = 50. Compare with Fig. 3.5 to appreciate the results.

This is because the effect of bilateral filtering is mainly noticeable in images rich in

features (different colours and edges). An indirect way to evaluate the effect of bilateral

filtering is to see how it affects the number of feature points and matches detected

during the matching step4.

Fig. 3.8 shows the number of SURF features in a raw image and in a filtered image.

Even though more features are detected in the raw images (blue points), the quality of

the features in the filtered image is higher and therefore more features remain after the

feature selection taken in the matching step (red points). In addition, in the filtered

case the remaining features have better quality, so they are better tracked, giving as a

result a significant difference in the numbers of the point cloud with respect the non-

filtered images, as it appears in Table 3.1, where the overall results over the visionlab

sequence, in terms of projections and 3D points, are shown. A more greedy bilateral

filtering would suppose a further decrement on number and quality of features detected.

Depending on the type of sequence (how featured the scene is, type of path taken by the

platform), the reconstruction of the scene may fail if bilateral filtering is not applied.

The optimal settings of the parameters of the bilateral filtering method are dependent

on the feature detector used.

The preprocessing of the images is a first measure taken to tackle the problem of noise.

However, more filters, which will trim the still noisy features, are necessary to be de-

4All the evaluations performed in this chapter are done over a sequence of 55 images where the
platform transits through a vision laboratory in approximately straight direction (visionlab sequence).
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Figure 3.8: Effect of bilateral filtering over feature detection. The blue points are the
initial feature points detected and the red points are the feature points that pass the filters
in the matching stage. The feature detector used here is SURF (Bay et al. (2006)). 4927
feature points are initially detected in the raw image (left), whereas only 4328 are detected
in the filtered image (right). However, only 354 go through the matching selection process
in the raw image and 382 in the filtered image.

With bilateral
filtering

No bilateral
filtering

overall projections 100777 41057

overall 3D points 24393 13654

Table 3.1: Effects on the results of applying bilateral filtering. The final projections and
3D points for raw images and filtered images are shown. (SURF features).

ployed in order to ensure a successful application of SfM on this work. These filters are

applied during the stage of feature detection and matching.

3.4 Matching Process

This section explains how the feature matching is performed within our framework.

Firstly the algorithm followed to match a received image In with the rest of the sequence

is described. Subsequently we explain the matching filters deployed to overcome the

problem of noisy features. Finally the actual feature detectors and matchers considered

for this work are introduced and evaluated.
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3.4.1 Recursive Matching Process

Given the sequential nature of this system the matching process is performed pairwise

between In and previous images In−i of the sequence, with i increasing until either

the match population found in the pair {In−i, In} , i = k, is below a given threshold

τm or the value i is greater than a parameter τl, both set empirically. We denote this

recursive matching by the expression D = {In−i, In}i=ki=1 , 1 ≤ k ≤ n. Fig. 3.1 shows

graphically how the recursive matching process works. Note that sequential SfM is,

under same conditions, quicker than batch SfM because there is no need to look for an

image with overlapping field of view - the assumption being that the nth image overlaps

to the (n − 1)th image. This procedure assumes that the platform is too far from the

places where the frames Ij , j < n− k were taken and there is no loop-closure in a given

sequence. The feature tracking system presented in Section 3.6 is designed to work

optimally with this recursive algorithm for matching images.

In order for the recursive matching to work, the feature matching between frames should

not be contaminated by noisy features. We have devised specific filters that rule out

spurious feature correspondences and mismatches.

3.4.2 Spurious Matches Trimming

Three filters have been deployed to rule out noisy correspondences and mismatches,

low-quality matches and multiple matching to a single feature. These filters select the

matches according to their quality. We assess the quality of a match between two

features a and b by the L2 difference of their descriptors, denoted by δab.

The main characteristic of the filters applied over the features detected over others

present in the literature (Hartley and Zisserman (2004)) is two-fold: a) their simplicity

in computation, which makes them have little overhead, and b) their capability of

actually trimming the matches populations of spurious features. Spurious features are

a critical factor in this work given the high level of noise that is faced. Therefore noise

is treated in this work in two phases: in the denoising of the raw image (see Section

3.3) and in the filtering of the matches populations found.

In the first filter only unique matches are considered. The uniqueness of a match is

defined by the ratio δab/δac, where b is the closest matching feature to a, and c is the

second closest matching feature, based on the L2 difference of the descriptors. This
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Figure 3.9: The histogram of the δab distribution is typically a gaussian curve. The
parameter τκ establishes the limit for selected matches.

filter was devised by Lowe (2004) and it has been proven to be very efficient in the

identification of good matches. The set of matching features created for each pair

{In−i, In} that pass this filter is denoted by S(n−i)n.

The second filter selects the best matches of the set S(n−i)n. This selection is accom-

plished by taking certain percentile rank, τκ of the score on δab population over S(n−i)n.

We assume the noise to be Gaussian, so the histogram of the δab population of matches

of S(n−i)n will typically form a Gaussian curve, shown in Fig. 3.9. The orange area

represents the percentile rank τκ. All matches of S(n−i)n whose distance δab is greater

than τκ ·µ (where µ is the average value for the histogram) are discarded. The value τκ
is set empirically.

To understand the dynamics of this filter the concept of error of correspondence should

be introduced. Fig. 3.11 shows the projection of a 3D point X̂ to two images at x̂

and x̂′. The corresponding image points x̂, x̂′ fulfill the epipolar geometry, as opposed

to the measured points x, x′. The distances d, d′ represent the effect of noise, which

makes the feature detectors to deviate from the perfect match, due to pixel colour values

variation. In absence of noise the measurements x, x′ would form a perfect match, but

if the displacement created by noise is too large they become unsuitable for the epipolar

geometry estimation and should therefore be ruled out. By selecting the percentile

rank τκ of the score on δab we establish a correlation between noise in feature space and

physical displacement in image space.

Fig. 3.10 shows the trimming effect on the set of corresponding features of the filters

applied over these sets. Many real matches between features are discarded due to their

low quality.
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Figure 3.10: Trimming effect of the noise filters on the set of corresponding features. The
first row shows in blue 4396 features detected out of which 1069 matches were selected by
Lowe’s filter, drawn in green. These matches make up the set S(n−i)n. The middle row
shows in orange the set S ′(n−i)n, 446 matches selected by the percentile filter superimposed
over Lowe’s matches. The last row shows in red 340 inliers matches found by RANSAC,
which compose the set S ′′(n−i)n.
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Figure 3.11: Error correspondence on the projection of a 3D point X̂. Source: Hartley
and Zisserman (2004).

Finally, we enforce one-to-one feature matching between image pairs. This combination

of filters counteracts the effect of noise on the feature matching process, but additionally

results in a significantly sparse set of feature matches S ′(n−i)n from which we then have

to perform standard SfM for point-based structure.

3.4.3 Feature Detection and Matching

The SfM algorithm relies its success on finding homologous points across a sequence of

images, as Section 2.3 explains. In Section 2.3 a review on the most relevant feature

detectors and descriptors is performed. We have evaluated the most appropriate feature

detectors for this work, namely SURF (Bay et al. (2006)), SIFT (Lowe (2004)) and ORB

(Rublee et al. (2011)). The method developed by Shi and Tomasi (1994) provides good

corners to track, but not descriptors for them; MSER is designed for the stereo case, and

does not work well with motion blur. The detectors CenSure (Agrawal et al. (2008)) and

FAST (Rosten and Drummond (2006)), even though they are quick and light detectors,

generate key-points with weak descriptors, provided the noisy characteristics of the

images. Optical flow has some restrictions such as its sensitivity to changes in light

conditions and to noise. Moreover, it only performs well with small variations of the

field of view. These feature detectors were down selected with the criteria given by

Schmidt et al. (2013).

Table 3.2 shows a comparison of the detectors evaluated across the filters applied and

RANSAC (described in Section 3.5) over the matches between In and In−1. SIFT is the

most robust, but it comes at the price of computational time. SURF has been revealed
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

Descriptors FLANN Lowe Percentile RANSAC

SIFT 6829.87 1289.69 467.22 358.72
SURF 4303.46 950.78 411.46 306.57
ORB 3717.07 578.56 201.56 157.22

Table 3.2: Comparison between feature detectors and descriptors. Each column shows
the number of matches that are present after each filter. The values are the average of
matches between In and In−1 over the visionlab sequence.

as the best balance between lightness and performance. The performance of ORB is

much lower in terms of number of matches and quality, which results in half the quantity

of surviving matches after RANSAC with respect to SURF. These differences become

more apparent when the matches over the set
{
S(n−i)n

}i=k
i=1

are taken in consideration.

Amongst all the feature matchers introduced in Section 2.4.1 we have found to perform

best the FLANN implementation of kd-randomised trees, in terms of performance and

efficiency. Three different multidimensional query tree structures have been tested: a

brute force, a hierarchical k-means tree and the chosen kd-randomised tree. Table 3.3

shows the performance in terms of matches for each implementation. Although the

results are very similar, the kd-randomised tree structure gives slightly better results

and takes shorter to compute. Table 3.4 shows the time spent by each FLANN imple-

mentation. Section 5.2.2 studies in detail the computation time spent in the matching

process.

FLANN Lowe Percentile RANSAC

Randomised kd-trees 4303.46 950.78 411.46 306.57
Hierarchical k-means 4303.46 946.35 407.59 304.19

Brute force 4303.46 939.94 403.54 301.33

Table 3.3: Evaluation on the matching performance of the main multidimensional query
tree structures from FLANN. The table shows average values from the visionlab sequence.

Computational time (ms)
kd-randomised 185

hierarchical k-means 760
brute force 1197

Table 3.4: Computational times taken by each FLANN implementation on a given pair
of images from sequence visionlab.
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3.5 Relative Pose Estimation

The outcome of the matching process is a set S ′(n−i)n whose matches have been trimmed

in order to get a matching set as clean of noise as possible. However, some mismatches

may have passed all the filters. These mismatches, outliers in the population of S ′(n−i)n
are dealt with by RANSAC (see Section 2.4.2) during the matching process of the

camera In with respect to the camera In−i, i = 1 · · · k.

3.5 Relative Pose Estimation

RANSAC (Section 2.4.2) is the last method used to trim spurious matches and at

the same time it gives an estimate of the essential matrix (although this estimate is

not used). For every pair of images {In−i, In}i=ki=1 RANSAC is applied. Subsequent

methods used for the relative pose estimation are extremely sensitive to outliers so it is

paramount that RANSAC rules out any remaining outlier in S ′(n−i)n. The parametrising

model to which RANSAC tries to fit the population of S ′(n−i)n is the essential matrix.

Table 3.2 shows that around 20% of the matches that arrive to this stage are ruled out

by RANSAC. The metric used to evaluate how a match x↔ x′ agrees with the model is

the epipolar distance, that is the distance from x to the epipolar line generated by Ex′

and vice versa (see Section A.4.1). The resulting matching set cropped by RANSAC

becomes S ′′(n−i)n.

As pointed out in Appendix A the estimation of the epipolar geometry is initialised

by the 8-point algorithm (Hartley (1997)) applied over the set S ′′(n−i)n. The essential

matrix given by this method is still far from an acceptable result. The quality of a

given normalised5 essential matrix is evaluated by estimating the algebraic error that it

produces, with the epipolar Eq. A.4.216.

It can be argued that the odometry of the wheels of the omnidirectional platform may

serve as a support for the estimation of the epipolar geometry, and indeed an odome-

try system based on Ashmore and Barnes (2002) has been developed to be used as a

bounding box of the initial estimation of the relative motion of In with respect to In−1.

However, the wheel odometry proved unreliable and was taken out of the final system.
5Since the essential matrix is a homogeneous matrix, the values of its elements are up to scale.

Therefore we normalise them by making their L2 norm unitary. This normalisation allows us to
compare different essential matrices.

6Generally speaking, it is better to evaluate the geometric epipolar error (Ma et al. (2001); Sampson
(1982)), but when working with calibrated cameras the algebraic error provides a good metric and it
is faster to compute.
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

A typical algebraic error from the 8-point algorithm is in the range [10−2, 100] pixel per

match. However, in order to extract the motion accurately it is necessary to obtain

errors of order no greater than v 10−2. The minimisation of the epipolar error is

attained by the implementation of the algebraic minimisation algorithm (Hartley and

Zisserman (2004)).

The algebraic minimisation algorithm

The 8-point algorithm needs to convert the estimate E′ into a singular matrix in order

to enforce the singularity constraint, by using SVD (see Section A.4.4). Numerically

however this procedure is suboptimal, since each element of E has different importance

on the epipolar constraint. An alternative solution is to find the targeted singular matrix

E directly and then project it onto the essential space Θ. This is done by the algebraic

minimisation algorithm. This algorithm is only applied to the pair of images In and

In−1, as shown in the flowchart of Fig. 3.1.

Let A be the coefficients matrix introduced in Section A.4.3. The 8-point algorithm

finds a matrix Ē′ subject to ‖Ē′‖ = 1 which minimises ‖AĒ′‖ (Ē′ is the stacked column

vector of E′). We are now interested in a singular matrix E subject to ‖Ē‖ = 1 which

minimises ‖AĒ‖. This is not possible to achieve by linear methods, since the constraint

det(E) = 0 is cubic. Nevertheless this problem can be solved iteratively with a simple

algorithm.

It is known that any singular 3×3 matrix can be expressed as E = M[e]x, with M being

a non-singular matrix and [e]x the skew-symmetric matrix created from the epipole in

the first image. Assuming that the epipole e is known, the expression E = M[e]x can

be converted into Ē = GM̄ where M̄ contains the matrix M in row-major order, and the

matrix G is as follows:-

G =

 [e]x
[e]x

[e]x

 (3.1)

Since Ē = GM̄, now the minimisation problem consists of finding a matrix GM̄ subject

to ‖GM̄‖ = 1 which minimises ‖AGM̄‖. This is a constraint least-squares minimisation

problem and can be solved by applying SVD (Hartley and Zisserman (2004)). Note

that the solution to this problem is, by definition, a singular matrix.

80



3.6 Feature Tracking System

This algorithm establishes a mapping e 7→ AĒ, where AĒ = ε is the algebraic error.

Therefore, starting from the left epipole of the estimate E′ given by the 8-point al-

gorithm, we can iterate to find the final E that minimises the algebraic error. The

optimisation of this step can be done by the Levenberg-Marquardt (L-M) method (see

Section A.7.2).

To summarise, the algebraic minimisation method splits the optimisation into two parts:

the first one finds the singular matrix E that minimises AGM̄ given the epipole e and

the second part iterates the value of e so as to minimise ‖ε‖. In our implementation the

L-M converges in one or two iterations and the whole optimisation problem usually does

not require more than two iterations. Note that here the L-M method only optimises

three parameters (the coordinates of e) but still the algebraic error for all the matches

of the set S ′′(n−i)n is minimised.

The algebraic error given by the optimised matrix E falls in the range [10−5, 10−2]. The

last steps in the estimation of the relative pose are the projection of E onto Θ and the

extraction of R and t, as explained in Sections A.4.4 and A.4.5. The matrices R and t

will be further refined in subsequent methods.

The algebraic minimisation algorithm ensures a robust estimation of the relative camera

pose of In with respect to In−1. This estimate is done within the recursive matching

process which generates the sets
{
S ′′(n−i)n

}i=k
i=1

, 1 ≤ k ≤ n (see Fig. 3.1). These sets of

matching features are now examined and added to the feature tracking system.

3.6 Feature Tracking System

A key problem implicit in all SfM approaches is the feature registration problem, where

multiple pair-wise feature correspondences must be merged into a single multiple-view

feature tracking, or bundle of features for a given 3D point X. This situation is shown

in Fig. A.7. In Section 2.5 it is emphasized how many works struggle with occlusions

and noisy features, and are unable to form feature tracks with non-consecutive matches.

The main problem that both batch and sequential methods have is that, when recon-

structing long sequences of images, the reconstruction is based on tracking features

along consecutive images. Due to noise, occlusions etc. the method can lose track of

a feature and if later the same feature is found, the algorithm takes it as a different

one, giving as a result that the same feature provides two different 3D points. This is
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

Figure 3.12: Merging of two features in a bundle. When a feature is matched to another
feature which is already associated to a 3D point, the structure bundle automatically links
it to this 3D point.

a penalising factor on the drift problem. Zhang et al. (2010) deal with the problem of

non consecutive matches along long sequences, with excellent results.

Here, in this unexplored case, where noisy matches have been efficiently trimmed previ-

ously, the scarcity of surviving feature matches is managed by a novel feature filtering

tracking method. This implementation is achieved by an efficient management of the

bundles created. A bundle can be defined as a structure which links a given 3D point

X with its multiple views in several images. In addition, uncertainty is addressed by

conservative thresholds. Another crucial role that our feature tracking system accom-

plishes is to obtain feature tracks of enough length and quality between In and previous

images so that it is possible to estimate the global pose of In with respect to a common

frame of reference (see Section A.5).

The rationale behind this feature tracking system is to offer an efficient tracking system

when doing recursive matching. If tracks were generated by simply pairwise matching,

many potential tracks would be discontinued and therefore lost. Even with recursive

matching all the matches generated should be conveniently managed in order to exploit

the correspondences.

The input of this algorithm is the sets
{
S ′′(n−i)n

}i=k
i=1

, 1 ≤ k ≤ n. Each match from

S ′′(n−i)n is added to the population which will generate the 3D structure, and then it is

linked to a 3D point according to certain filters and criteria exposed in this section.

We have devised this novel feature tracking system with three goals in mind:
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3.6 Feature Tracking System

Figure 3.13: The bundles red and black have corresponding features which have been
matched (red feature on the left image with black feature on the right image). Filter f1
checks first whether the black bundle has a feature too on the left image, and in case
affirmative, whether this feature is actually the same one as the red feature. f2 checks
whether the 3D point of both bundles are close enough to be considered the same one.

• It should be efficient, that is, it should maximise the length of good quality feature

tracks.

• It should be robust, that is, any mismatched track must be avoided.

• It should be dynamic, that is, it should automatically perform 3D merging between

existing bundles.

Bundles

Three main computational operations should be enabled when efficiently tracking matches

over a sequence:-

1. Direct access to X referenced from any feature in its bundle and vice versa,

2. Addition of new features to a track and

3. Merging of existent bundles.

In our tracking method we novelly devise bundles as structures similar to linked lists,

inspired in Brzeszcz and Breckon (2010) which allows us to efficiently perform these

tasks. The nodes of this type of list are linked not to the next node of the list but

to the “head” of the list, which contains information about the 3D point. Therefore,

when a new feature is added to the bundle of X, this specific implementation of bundle

will automatically link it to X and through X to the rest of features of the bundle.

Fig. 3.12 shows a diagram as to how the merging of two features is done.
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

Figure 3.14: Case 1: two bundle-less features are matched. In this case a bundle is
created for them.

Feature tracking system filters

Given the sparsity of the 3D point cloud produced by our matching filters it is necessary

to properly manage the addition of features to a bundle and the merging between

bundles, in order to create sufficient duration feature tracks. This is handled by two

filter checks.

The first filter f1 checks whether two bundles have both features in common images.

If this is the case, then a further check is done to verify that the features from both

bundles are actually the same. If the filter f1 is not passed, the features involved are

not added to the structure.

For example, if a feature ma from image Ia is matched with a feature mb from image

Ib, f1 checks whether the bundle associated to mb has already a feature from image Ia.

The analogue check is done with the bundle associated to ma. When this is the case

it compares the values of the coordinates of the features involved to establish whether

they are truly the same feature. If they happen to be different, the bundles to which

ma and mb are removed from the structure population according to the cases generated

by Table 3.5. Otherwise their bundles are merged according to Table 3.5.

This filter ensures that a bundle is linked to one feature per image. Fig. 3.13 shows

graphically the mechanism of this filter.

The second filter f2 compares whether two 3D points pi and pj are close enough to be

considered the same 3D point. For each axis ı ∈ {x, y, z} we define δı = ‖pıi− pıj‖ , and
µı = mean

{
pıi, p

ı
j

}
. The filter f2 checks that δı < k · µı. If this is the case they are

assumed to be the same 3D point. The value of k is set empirically. This is illustrated

in Fig. 3.13 as well.
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3.6 Feature Tracking System

Figure 3.15: Case 2: Addition of a feature to a bundle through a match.

Since the feature tracking system is run within the recursive matching process, the N

possible cases that arise when the set S ′′(n−i)n is analysed are multiple. Any feature

in a match can be bundle-less (or empty), linked to a bundle which has not been

reconstructed yet (so it has no 3D point) or linked to a bundle of a reconstructed 3D

point. Therefore six possible cases arise, represented in Table 3.5.

Cases Feature from image In−i Feature from image In
Empty No 3D Yes 3D Empty No 3D Yes 3D

1 X X
2 X X
3 X X
4 X X
5 X X
6 X X

Table 3.5: Possible situations between features when processed by the feature tracking
system. “Empty” means that the feature has not been added to any bundle yet. “No 3D”
means that the feature belongs to a bundle which has not been reconstructed yet. “Yes
3D” means that the feature is linked to a reconstructed bundle.

The actions taken in every case are:

Case 1: A brand new 3D point {0, 0, 0} (whose actual value will be estimated in the tri-

angulation step, Section 3.7) and its bundle are created and added to the structure
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

Figure 3.16: Case 3: Merging of two existent bundles (red and black) via a match (shown
in green).

population. At this point the bundle is composed of the two matching features.

In Fig. 3.14 this case is shown.

Cases 2-5: Here filter f1 is applied. In case of success the bundle-less feature (in

cases 2 and 3), or the 3D point-less feature (in cases 4 and 5) is added to the

another bundle. Otherwise, the new feature is discarded. These cases are shown

in Fig. 3.15.

Cases 6: Apart from applying filter f1, additionally, the filter f2 is applied. If the pair

of bundles passes this last filter, they are merged into one bundle. The resulting 3D

point is estimated as a weighted average between the two 3D points of the original

bundles. The weights are the number of times that each bundle has undergone

the triangulation step. In other words, the weighting factors when merging two

bundles are the number of views that a bundle has minus one, since each time a

view is added to a given bundle, its corresponding 3D point is estimated again

by triangulation. Therefore, this weighting sum assumes that the position of a

3D point will be more fixed and likely the longer that its bundle is. Fig. 3.16

illustrates this case.

The matches which fail to pass filter f1 are taken out of the set of matches S ′′(n−i)n.

As a result, the feature tracking system also rules out matches which would potentially

destabilise the reconstruction of the 3D structure and the refinement of the cameras.

However, those matches that do not pass filter f2 are not discarded, since we assume
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3.7 Global Pose Estimation and Structure

that these cases are mismatches between features which belong to healthy bundles. The

set of matching features which come out of the feature tracking system becomes now

S ′′′(n−i)n.

The specific creation and management of the structure of bundle, along with the filters

associated to it, allows us to obtain precise camera poses and a reliable point cloud

out of sparse matches populations (in our experiments, at this stage an average image

has 755 views of 3D points, with 3.56 projections per 3D point). Fig. 3.17 shows the

histogram of feature tracks of the visionlab sequence, at this stage (blue line) and at

the stage of post-process (red line, see Section 3.9). Note that nearly 60% of the feature

tracks have no more than 4 features.

Through specific filters and a novel noise resilient feature tracking method, we have

developed a novel feature tracking system which handles the inter-bundle relationships

via robust and light filters. Over the structure population increased with the matches

from the sets
{
S ′′′(n−i)n

}i=k
i=1

, now it is possible to place the camera poses with respect

to the global reference frame, and update the 3D structure.

3.7 Global Pose Estimation and Structure

This is the last step of the SfM process as such. Here the global pose estimation of the

camera In is estimated and the 3D structure updated with the incorporation of the set

of bundles from
{
S ′′′(n−i)n

}i=k
i=1

.

3.7.1 Resection

The introduction of the sets
{
S ′′′(n−i)n

}i=k
i=1

increases the structure population and

widens the range of the bundles. With this new information the scale of the cam-

era pose of In, n ≥ 3, is adjusted to be coherent with the rest of the sequence. This

refinement is performed with the resection method proposed in Lepetit et al. (2009). As

it has been explained in Section 2.6.5, this non-iterative solution has a computational

complexity which grows linearly with n.

Here, as in recovering the 3D structure, the use of bundles ease the implementation

greatly. The resection of the camera In is done if there are enough features from the

set S ′′′(n−1)n which have been reconstructed (see Section A.5). Since at this stage the

set S ′′′(n−1)n has not been reconstructed yet (the reconstruction is the next step of
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

Figure 3.17: Histogram of feature track lengths over the visionlab sequence. The Post-
process step is explained in Section 3.9.

the SfM pipeline), it will only be possible to apply resection if we find a subset of

features q(n−1)n ∈ S ′′′(n−1)n that in turn belong to the set S ′′′(n−2)(n−1). Since the set

S ′′′(n−2)(n−1) was reconstructed when the image In−1 was received by the system, it

yields that the subset q(n−1)n is made up of reconstructed features (see Section A.5).

This subset is easily found by searching in S ′′′(n−1)n for features linked to reconstructed

bundles. In the visionlab sequence the set q(n−1)n contains in average 335.06 views. It

has been observed empirically that the minimum size of q(n−1)n for the resection method

to give accurate results is of 20 elements.

In the case that there are less than 3 features in the subset q(n−1)n, (shortage of matches

can be caused by a feature-less part of the scene, a sharp turn of the robot which changes

abruptly the field of view, etc.) it is assumed that the module of tn is the same as the

module of tn−1. This will be corrected at the BA phase. It should be noted that this

situation is rare to occur in our experiments.

With the camera In located in the same coordinate frame as the rest of the sequence,

now it is possible to apply triangulation to the population of 3D points (or bundles).

3.7.2 3D Structure

Once the global camera poses have been calculated the triangulation process over the

updated point cloud takes place, where the new 3D points are estimated and those

whose bundles have been increased are recomputed.
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3.8 Bundle Adjustment

The triangulation method followed here is the same as described in Section A.6, that is,

a variant of the Direct Linear Transformation (DLT) method (Abdel-Aziz and Karara

(1971)), called Linear-Eigen method (see Section 2.7). Linear-Eigen is applied as an

initial estimate that will be refined during BA. In addition to the advantages mentioned

in Section 2.7, this method generalises very easily if the 3D point is seen by more than

two views. This property conveniently suits our approach, since we then can make use

of the structure of bundles to fill in the matrix A of Eq. A.6.51 very rapidly, by just

looking up the views linked to a given bundle.

3.8 Bundle Adjustment

The last stage of the 3D reconstruction involves the application of Bundle Adjustment

(BA), where camera poses and 3D points are simultaneously optimised by minimising

the reprojection error function cost. This work runs the implementation of Lourakis

and Argyros (2009) (SBA) which efficiently applies L-M minimization method (see

Section A.7.2) by exploiting the sparseness of the SfM problem. In Section A.7.2 it

is explained how the damped version of the normal equations (these are the equations

that result from minimising the cost function A.7.54) gives to L-M method its stability

and rapidness. The normal equations, however, are greatly sparse, due to the lack

of interaction between parameters for different 3D points and cameras. SBA designs

and develops a customised variant of the L-M algorithm which takes into account the

pattern of zeroes in the normal equations by not making operations on zero elements.

Here again the implementation of bundles as structures to store the 3D points and their

views result of great advantage. Amongst other structures, the array vij from Eq. A.7.54

is filled in very quickly thanks to the internal design of bundles.

3.8.1 Quaternions

In Section 2.8 it is emphasized the importance of the parametrisation of camera rotation

matrices. SBA employs quaternions. In mathematics, the quaternions are a number

system that extends the complex numbers. They can be represented as the sum of a

scalar and a vector, and it is mainly this feature that makes quaternions commonly used

in geometry to express rotations and changes of reference, as a quaternion can confine

the same information as a rotation matrix with 4 values instead of 9, the number of
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

elements of the rotation matrix. Their use saves computation time and memory, as well

as the need to handle singular points and angles, as is required when using Euler angles.

3.8.2 Local and Global BA

We employ BA in two scopes, locally and globally, as Mouragnon et al. (2006b) and En-

gels et al. (2006) propose. The local BA is conducted within the process pipeline, as

a last refining step on the new camera In and 3D points . The global BA is executed

in a different thread to the sequential pipeline over the whole point cloud and the last

n cameras poses (see Fig. 3.1). The parameter n is set empirically. Every m images

processed by the system the global BA considers all the cameras of the sequence in the

optimisation. The consequences of the interaction between the main thread and the

global BA thread is shown in Section 5.2.2, when evaluating computation times taken

by each stage of the SfM process.

When the first two cameras of the sequence are optimised a cheirality test (Hartley and

Zisserman (2004)) is done over the 3D point cloud and the camera poses, to check that

no point is behind its camera. This test has already been done during the extraction

of the matrices R and t (see Section A.4.5), but if only two cameras are reconstructed

the BA method may have inverted the orientation of the camera poses with respect to

the 3D point cloud, since at this stage there are not enough restrictions to force the 3D

points to be in front of the cameras.

After both pair-wise BA and global BA, the 3D structure undergoes a filter based on

reprojection error (see Section A.7.1). Each 3D point is reprojected on the camera plane

of its views; if the distance from the projection to the measurement of the view is larger

than a threshold τr, the 3D point is taken out of the reconstructed point cloud. τr is

set empirically. This filter guarantees that the 3D structure is clean of outliers, which

is essential in order to refine the camera poses.

After all the images of the sequence have been processed, BA is applied over the whole

point cloud and camera poses as one last refinement.

3.9 Final Scene Recovery

The combination of limited camera resolution, image noise and small baselines inherent

within the use of an omnidirectional mobile platform forces our core SfM method to be
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3.9 Final Scene Recovery

highly selective over the quality of matches. This produces a sparse scene reconstruction

resulting in a sparse 3D point cloud of scene surfaces compared to traditional SfM

approaches (Mouragnon et al. (2006b)).

Descriptors FLANN Lowe Percentile RANSAC

SIFT 6705.69 2196.16 1945.96 1555.18
SURF 4225.22 1637.35 1348.65 998.73

Table 3.6: Surviving matches after each filter during the post-process stage

In order to provide a dense surface reconstruction (e.g. as shown in Fig. 3.19) a variant of

the SfM pipeline is run as a data post-process. This variant makes use of the estimated

camera poses and the previously extracted features. Since the motion is fixed, there

is no inherent risk in now including noisy matches, and we can relax the thresholds of

the match quality filters. Particularly, τu is more benign and there is no selection over

the score on δab. In addition, the thresholds imposed on RANSAC are more relaxed as

well. Furthermore, in this stage there is no pair-wise BA, and the global BA method

only acts over the 3D structure, leaving the camera poses intact. The flowchart of the

post-processing of an image In is shown in Fig. 3.18.

Figure 3.18: Flowchart of the post-processing of image In.
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This arrangement produces a point cloud whose population is increased up to over 200%

in terms of recovered 3D scene surface points (See Fig. 3.17). Note that 4,303 features

are extracted by SURF from an average image, and the final point cloud has 1,675 views

per image, which gives 38% of efficiency over the total features extracted per image.

Table 3.6 shows the analogous results to Table 3.2 for SURF and SIFT descriptors in

the post-process phase. In comparison with Table 3.2 the number of matches generated

now is much larger. The values in Table 3.6 are the average of matches between In

and In−1 over the visionlab sequence. The increase on the number of matches that

pass each filter is notable. Obviously, many more features and 3D points are eventually

discarded by the feature tracking system (which maintains the level of filtering), but

the final results are still as much as twice the density of 3D point population before the

post-process stage. These results are shown in Table 3.7, where the feature detector

used is SURF. The matches deleted by f1 in Table 3.7 account for the trimming realised

by the feature tracking method.

% deleted
by f1

3D points
deleted by
reproj. error

Overall
3D points

Overall
projections
of 3D points

SfM process 15.49 3563 11982 40623
Post-process 33.06 15558 24393 100777

Table 3.7: Comparison between the results after SfM process and after post-processing
the matches.

3.9.1 Surface Rendering

It is possible to render surface reconstructions out of the point cloud given by our SfM

process. Here the 3D structure is cropped and filtered by applying two filters: a radius

outlier removal method and a k-nearest neighbour distance filter. These statistical tech-

niques are present in Rusu and Cousins (2011). In order to render the reconstruction,

normals are estimated and smoothed based on Moving Least Squares (MLS) surface

reconstruction method (Alexa et al. (2003)). Subsequently the structure is further tri-

angulated and surfaces reconstructed using a Poisson method (Kazhdan et al. (2006)).

An example of the results of these methods is shown in Fig. 3.19. A sample of the

visionlab sequence is shown in Fig. 5.1.
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3.10 Summary

Figure 3.19: The 3D reconstruction of the visionlab sequence, rendered.

3.10 Summary

In this chapter the methods employed to realise SfM on a low-budget omnidirectional

mobile platform have been explained. This is to the best of our knowledge the first time

that SfM method is successfully applied on a omnidirectional platform.

The first measure taken has been to reduce the high level of noise produced by the JPEG

compression that wireless streaming imposes over the images. This is done sequentially

by applying bilateral filtering and selecting the corresponding points between images

according to strict filters, which harshly trim of outliers the feature matching population.

We mainly use Lowe’s ratio (Lowe (2004)) and a novelly devised filter, percentile filter,

which selects certain percentile rank τκ of the score on δab over a set of corresponding

features. This combination of filters allows us to treat levels of noise of σ ∼ 10. The

level of noise that researchers usually process is σ ∼ 2 (Ruiz et al. (2006); Thomas and

Oliensis (1999)). Moreover, our filtering methods enables the system to deal with inter-

image ill-configurations provoked by the omnidirectional nature of the mobile platform

chosen.

With feature matches free of outliers it is possible to retrieve the epipolar geometry,

although it is still necessary to implement robust estimation, in order to be robust
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3. STRUCTURE FROM MOTION ON A SINGLE PLATFORM

against ill-configurations potentially created by the omnidirectional idiosyncrasy of the

mobile platform. Therefore a robust epipolar geometry estimation algorithm has been

implemented.

The shortage of matches originated at the filtering stage would result in too short

feature tracks along the sequence, so a novel feature tracking method has been developed

to make the most of the surviving matches. This method creates feature tracks of

length and quality good enough to ensure the global pose estimation of the cameras

and the stable estimate of the 3D structure. All this is achieved thanks to the use of

bundles, specifically devised structures similar to dynamic lists which allow an efficient

management of the 3D points and the views on which they are projected. Even though

the majority of tracks (60%) are 3 or 4 images long, they are precise enough as to

obtain stable 3D reconstructions. This result supports the hypothesis that out of sparse

matching populations our feature tracking system effectively creates feature tracks of

good quality, since it is usually assumed that feature tracks must be at least of 4 images

long (Chang and Hebert (2002); Zhang et al. (2010)). We understand that this feature

tracking system, in combination with the noise filters implemented, extends the state

of the art on SfM on mobile platforms.

As a final step of the 3D reconstruction Bundle Adjustment (BA) is implemented, in

two scopes: pair-wise BA when a given image is processed and global BA over the

sequence in a different thread.

Once the camera poses have been accurately estimated, in a post-process phase the 3D

structure is enlarged by running the matching process with much more relaxed filters.

Optionally the point cloud can be treated in order to obtain a rendered surface.

The SfM process on a single mobile platform is the algorithmic core over which the 3D

reconstruction on a group of mobile platforms is built up. Next chapter describes how

this multiple reconstruction has been attained.
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Chapter 4

Structure from Motion across
Multiple Platforms

In this chapter the problem of distributed reconstruction over omnidirectional mobile

platforms is tackled, and a system capable of retrieving the 3D global map of a scene

transited by r robots is presented.

First the strategy employed in this work to solve this problem is introduced, emphasiz-

ing the main challenges usually encountered here by the researchers. The implementa-

tion of this strategy, based on distributed matching (more specifically, loop-closing) is

subsequently described. Special highlight deserves the algorithm used for finding loop

closures, FAB-MAP (Cummins and Newman (2011)).

The overlaps between different reconstructions found during the loop-closing stage

should be conveniently managed, using organically the methods presented in Chap-

ter 3 to deal with the problems inherent to the platform used (noise, ill-configurations,

see Section 3.4). On a higher layer of computation, once an overlap is found, the merging

of multiple reconstructions - performed as they are built up - into one global structure

is explained, along with the particular distributed approach for the BA algorithm.

Every Multi Robot System (MRS) needs a defined strategy which will condition the

behaviour or pattern in the motion of the mobile platforms as well as the interactions

between themselves. The strategy of this work can be outlined with two terms: it is

designed to be simple as well as general. In addition, the approach taken in our system

can be applied at no price on single sequences where the platform revisits parts of a

scene, generating loop-closures.
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4. STRUCTURE FROM MOTION ACROSS MULTIPLE PLATFORMS

4.1 Multiple Structure from Motion: our Approach

There are mainly two problems that should be addressed when performing SfM from

multiple platforms: the initial position problem and map merging.

The first problem ultimately consists of allocating a common reference frame for all the

platforms involved, in order to establish the motion of each robot relative to the rest of

robots and make possible to transform from one robot location to another, as highlighted

by Breitenmoser et al. (2011). This problem means to overcome the constraint imposed

over the first camera of being at origin (see Section A.5). This constraint is unimportant

for a single SfM process but can only be applied to one instance in multiple SfM. The

naïve approach is to know exactly where each robot starts moving, but this is unfeasible.

Each individual should somehow share some information about its whereabouts - in a

global or common reference - with the rest of the group. This is usually attained by

direct encounters (Kato et al. (1999); Kurazume et al. (1994)) although loop-closing

could be used for this purpose. Anjum (2011) makes use of Kalman filters in order to

keep track of the global trajectory of each robot. The work of Anjum (2011) shows

that the main challenge here is the adequate management of uncertainty, produced by

the propagation of error that occurs when distributed estimates are calculated from

multiple single measurements.

Fig. 4.1 shows a result by Kim et al. (2010), where collaborative simultaneous locali-

sation and mapping (SLAM) is achieved by means of direct encounters. Based on in-

cremental smoothing and mapping (iSAM1), a pose graph representation of the SLAM

problem, Kim et al. (2010) obtains global 2D maps out of individual implementations

of SLAM. Fig. 4.1 shows this result: superimposed on the layout map of the explored

environment, the 2D maps generated by two different mobile platforms (a ground robot

and a quadrotor) are drawn in blue and red, respectively. The green lines indicate the

occurrence of direct encounters.

The second problem, map merging, is closely related to the first problem. Here a method

should be devised to merge the maps from each individual robot. In Section 2.9 three

techniques are mentioned: iterative closest point (ICP)2, distributed feature matching

1iSAM, developed by Kaess et al. (2007), is an incremental smoothing and mapping approach for
SLAM based on fast incremental matrix factorisation.

2ICP performs point cloud registration by iteratively revising the transformation necessary to adjust
two different point clouds.
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Figure 4.1: 2D mapping from direct encounters between a wheeled robot and a quadrotor.
In blue the 2D map created by the wheeled robot, in red the 2D map created by the
quadrotor. The green lines show where the encounters occurred. This result is from Kim
et al. (2010).

and loop-closing. Here the main problem is to rescale all the individual 3D maps into

one single scale. This only can be done if the camera poses are referenced in the same

frame of coordinates. Further, collaborative reconstruction has challenges inherent to

the multi-agent idiosyncrasy of the problem: uncertainty management, decision making,

coordination, communication, motion planning, etc (Riazuelo et al. (2014); Wendel et al.

(2012)).

The distributed system developed in this work offers a solution to the problems of

the initial position and map merging, in a way which intends to be simple as well

as general. The research work on collaborative mapping is mostly based on SLAM

approaches (or related methods, such as iSAM) and direct encounters. Our algorithm

achieves global camera positioning and map merging by finding loop-closures between

sequences taken from different robots, or the same robot in different moments. Our

algorithm is simple as it is based on common feature matches between reconstructions,
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4. STRUCTURE FROM MOTION ACROSS MULTIPLE PLATFORMS

Figure 4.2: A general scenario of multiple reconstruction. Here r = 4. There are 6
overlaps (A-F), each one involving 2 or 3 different sessions.

and the addition of camera poses from different structures is efficiently handled during

the Bundle Adjustment (BA) stage. On the other hand it is general since it does not

rely on encounters. This means that it can be applied to any kind of mobile platform.

In addition, it is valid for both multi-robot and multi-session reconstructions. In this

work we study the multi-session case, which means that an experiment in the multiple

case is, in practical terms, a sequence of single experiments. Therefore the deployment

of the Rovio follows the same manner as in Chapter 3 in all aspects.

4.2 Multiple Reconstruction

Even though the system which performs multiple SfM is based on the SfM process

described in Chapter 3, which treats images sequentially, here we take a different pro-

cedure. To begin with, the sequence taken by each robot is stored as a different ses-

sion. Therefore a set S = {Ii}i=ri=1 is defined in multiple reconstruction, where each

session is composed of ni images, Ii = {Iq}q=ni

q=1 , and the total number of images is

m = n1 + n2 + · · · + nr. Fig. 4.2 shows a general layout of a multiple reconstruction

system. It is important to remark here that all the sessions share the same storage

variable for the 3D structure.

First of all, the images of all the sessions are preprocessed and their features

and descriptors are extracted, in parallel mode according to the number r of sessions.
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4.2 Multiple Reconstruction

Figure 4.3: Example of loop-closure. When a loop-closure is produced the drift of the
whole loop (left image) can be corrected and the mapping is shown correctly (right image).
This result is from Kaess and Dellaert (2005).

The preprocessing is performed by means of the bilateral filtering method (Section 3.3)

.

Before each session is processed, it is necessary for every session to share some infor-

mation with the others so that it will be possible during the processing of each session

to establish a common reference frame for all the sessions. This is achieved by finding

loop-closures (or overlaps) across sessions.

4.2.1 Loop Closing

Loop closing is the problem of finding in a sequence, giving a query image, the image

which overlaps best with it. Loop closing is applied mainly in the context of SLAM,

when a robot revisits an area already transited. In this situation the robot should:- 1)

realise that it has already been there, 2) find the image that corresponds to the first

transition so that it can be matched to the image of the second transition and the old

landmarks can be recognised back in view. These two steps are necessary or the camera

position will not be estimated correctly, and the drift problem, inherent to the SLAM

technique, will not be solved. The difficulty in finding a loop-closure comes from the

increase of uncertainty as the robot goes through a large loop and the inconsistency

created in the extended kalman filter (EKF) due to linearisation errors. Fig. 4.3 shows

an example of the effects of a loop-closure on the camera pose estimations of a large

loop taken by a mobile platform.

The loop closing problem is still considered an open problem, even though much research
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Figure 4.4: A false loop-closure assigned by FAB-MAP, described in Section 4.2.2.
Source: Cummins and Newman (2011).

has been devoted to this in recent years. It is considered an open problem because there

are cases where the most robust algorithms fail, as it is shown in Fig. 4.4. The challenge

lies in the difficulty of identifying a given scene under different lighting conditions (and

atmospheric elements when outdoors) and perspectives, and to differentiate the key

features of a scene from objects which are accidental or temporary.

In the scope of SLAM, Latif et al. (2013) present a consensus-based approach to robustly

place recognition over time. It can correct wrong loop-closures, works in an incremental

fashion and handles multi-session. Lepetit and Fua (2006) developed a key-point-based

approach, which formulates wide-baseline matching between keypoint of query images

and model images (training set). By formulating the problem as a classification problem,

and implementing the solution with randomised trees, Lepetit and Fua (2006) achieve

a big run-time computational reduction. Williams et al. (2011) devise the relocalisation

method, by which the camera poses are relocalised relative to the map structure of the

scene. This method extends the image classifier given by Lepetit and Fua (2006) to a

system that learns the appearance of a given image patch at each map feature. These

learned landmarks enable the relocalisation of a camera in case of failure tracking or a

loop closure, while preserving the map integrity.
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4.2 Multiple Reconstruction

Figure 4.5: A result from Zhang et al. (2010). Note that different sessions need to overlap
along a stretch of images so that feature tracks can be matched.

Another solution for loop-closing is to establish global descriptors. Shvarts (2013) pro-

poses the use of GIST, a global descriptor based on the amplitude spectrum of the

Fourier transform of an image, as a way to perform loop-closing and identify similar

images in a database. Shvarts (2013) implements a method that compares the global

descriptors of big databases in a multi-stage filtration procedure. Subsequently Shvarts

(2013) introduces a new algorithm for merging maps based on neural networks.

There are investigations that have proposed methodologies to perform non-consecutive

matching, which can be seen as a variant of loop-closing. Zhang et al. (2010) address

the non-consecutive feature point tracking problem and propose an effective method to

match interrupted tracks when performing SfM. The domain of Zhang et al. (2010) is

on sequences of VGA images. It addresses the consecutive matching by selecting puta-

tive correspondences with Lowe’s ratio (see Section 2.4.1) and applying a constrained

spatial search with planar motion segmentation. This is realised by estimating sev-

eral homographies between pairs of images and then rectifying them according to these

transformations. This two-pass approach multiplies the number of long feature tracks.

The matching between non-consecutive images is done in two steps. Firstly, a matching

matrix for all the images of the sequence is computed. In order to generate the match-

ing matrix a vocabulary tree of feature tracks descriptors is constructed for fast image

indexing. Subsequently a hierarchical K-means approach is applied on the vocabulary

tree to cluster the feature tracks of the sequence. The values of the matching matrix are

the measurements of the overlapping confidence based on the feature track descriptors

similarity cast by the clustering of the vocabulary tree. In the second step rectangular

regions containing the brightest (which denote most overlapping confidence) pixels in

the matching matrix are used for detecting overlapped subsequences. Therefore Zhang

et al. (2010) can track features from multiple videos with overlapping subsequences.
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Figure 4.6: By capturing characteristic regions of objects, a vocabulary of bags-of-words
(BOW) is generated. Source: Anon. (2015)

However attractive the results of Zhang et al. (2010) are, their loop-closing method

relies on overlapping subsequences of images, rather than images themselves, since the

matching entity used in the loop-closure step is feature tracks. If two sequences of

images have only few scattered overlapping images, like in Fig. 4.2, they will not produce

similar feature tracks and the multiple reconstruction will not be possible. Our method

is capable of merging different 3D reconstructions with a minimal number of overlaps,

even a single overlap (see Chapter 5). Fig. 4.5 shows how different sessions overlap

along subsequences.

The method which has demonstrated to be best fitted to address the loop-closing

method, according to this criteria, and for large sequences of datasets, is Fast-Appearance

Based MAPping (FAB-MAP) method, by Cummins and Newman (2011), which is able

to operate with hundreds of thousands of images. We have addressed the loop-closing

problem with FAB-MAP.

4.2.2 FAB-MAP

FAB-MAP is a system developed for appearance-based place recognition. FAB-MAP

compares images of locations that have already been visited against new images, and

outputs the probability that the new image is a location re-visited, as well as an estimate

of the probability of being at a new, not visited location. The only input of FAB-MAP is

the camera images. This system has been devised as a “appearance-only SLAM”, so that
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4.2 Multiple Reconstruction

Figure 4.7: A summary of the 67 categories of the data-set used as training set. Source:
Quattoni and Torralba (2009).

a map can be built up taking as a reference the loop-closures found by FAB-MAP. This

system has been tested on a data-set of more than 1000 km of road and over 103.000

omnidirectional images, at a frame rate of 2Hz (Cummins and Newman (2011)).

FAB-MAP works with Bags Of Words (BOW) and therefore it requires a vocabulary

created from a data-set of training data. A BOW is a sparse vector of occurrence counts

of a given vocabulary of local image features, created from a training data-set. Given a

query image, this image can be quantized using BOWs from the vocabulary and then

identified with a category present in the vocabulary. Each category is associated to

a certain histogram profile produced by the BOWs. Fig. 4.6 illustrates this process:

each picture (bust of a lady, a bicycle and a violin) is decomposed in local image

features and these features matched to a given vocabulary of features. Then for every

image a histogram is created with the number of occurrences. This histogram provides

information as to which category each image belongs, as shown in Fig. 4.6. In FAB-MAP

each image of a sequence defines a category itself. When a new image is received, SURF

features are extracted. These features are then segmented according to the vocabulary,

which produces visual words. This vocabulary is built up by clustering all the features

from the training data-set. The Voronoi regions3 of the cluster centres establish the set

of features that will be associated to a visual word.

BOW tend to be related to themselves. For example, the BOW corresponding to a

drawer will normally appear along with a BOW of a table. These dependencies be-

tween BOWs are captured by a tree-structured Bayesian network, using the Chow-Liu

algorithm (Chow and Liu (2006)).

3In a given area where there is a set of scattered points, the Voronoi region of a given point is the
area where the distance to this point is shorter than to any other.
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The estimation whether a query image is a new location or whether it belongs to a

scene already seen by the system (and the determination of the scene) is performed in

FAB-MAP by applying a conditional Bayesian rule to the BOWs that the query image

generates and the BOWs of the rest of the previously observed system. The mapping

created by FAB-MAP can be seen therefore as a recursive Bayes estimation system.

In order to deal with data-sets of thousands of images FAB-MAP makes use of inverse

term weighting and geometric verification. Given a sequence of images (each one has

originated a number of BOWs), inverted index is the number of images that a BOW

appears in. The geometric verification consists of verifying a rough geometric transfor-

mation between the new observation and the images that result with most probability

of being loop-closures. This verification is done via RANSAC.

This work has used the OpenCV ( Bradski (2000)) implementation of FAB-MAP, open-

FABMAP (Glover et al. (2012)). Therefore, a vocabulary of BOWs and a Chow-Liu

tree have been built up based on OpenCV methods. Our implementation differs from

OpenCV implementation in that the steps of cluster centres creation and estimation

are parallelised with Threading Building Blocks (TBB)4, in order to save computation

time during the training phase.

The choice of the training set is important. It should contain images similar to those

of the sequences to reconstruct but not from the same scene5. In order to cover all the

possible scenarios the training set chosen for our system was taken from an extensive

database developed by MIT with 67 categories and more than 15.000 images, used

for indoor scene recognition (Quattoni and Torralba (2009)). Fig. 4.7 shows the 67

categories of the data-set. We have created two training sets out of the MIT data-set:

training-set.5M and training-set.10M, with BOWs from 300 and 600 images respectively,

taken homogeneously from the MIT data-set.

The output given by our implementation is a multiple array T, with three levels of

depth. This array contains, for every image Iiq of every session Ii, an array of images

Liq = {Is}s=m−ni
s=1 ) with which Iiq overlaps. Note that a given image may have overlaps

with several images from different sessions. However, in practice T will be largely

sparse. For example, in Fig. 4.2 the maximum number of overlaps per session is 4.

4TBB is a C++ template library which simplifies the implementations of applications running in
parallel. See https://www.threadingbuildingblocks.org/

5See Cummins and Newman (2008) and https://code.google.com/p/openfabmap/wiki/Usage
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4.2 Multiple Reconstruction

Figure 4.8: Precision and recall explained graphically. From Walber (2015).

These overlaps will be used in multiple reconstruction to establish the loop-closures

and merge 3D maps from reconstructions of several mobile platforms. An example of

loop-closure produced in our experiments is shown in Fig. 4.9.

Since Glover et al. (2012) is applied sequentially on the sessions, the overlaps will be

made between images Is from session Ii with images Iq from session Ij , j < i. The

overlaps are in this direction because posterior sessions are queried against previous

sessions, which have already been processed by Glover et al. (2012). We are interested

in the overlaps happening in the opposite direction, in order to meet the common

reference requirement. Section 4.3 shows that, after a camera pose from image Iq from

session Ij is estimated, it is checked whether it has overlaps Is from sessions Ii that

have not been reconstructed yet (j < i), so that Is can be estimated in the same frame

of reference as Iq. In this case Is will become a seed for the reconstruction of session

Ii. In order to obtain this configuration after the execution of Glover et al. (2012) the

matrix of overlaps is inverted.

The detection of loop-closures is usually evaluated by means of two metrics: precision

and recall, which are usually represented in graphs as precision vs recall. These terms

can be defined as:-

• Precision It refers to the fraction of relevant instances that have been retrieved

(True Positives, TP) over the subset of retrieved samples (True Positives and
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False Positives, FP). It can be expressed with the ratio:-

precision =
TP

TP + FP
(4.1)

• Recall It refers to the fraction of relevant instances that have been retrieved (TP)

over the subset of relevant instances (True Positives) and False Negatives, FN).

It can be expressed with the ratio:-

recall =
TP

TP + FN
(4.2)

Precision is a measure of the quality of a system in retrieving instances of the target

class (loop-closures in our case) and recall is a measure of the quantity of instances of

the target class that have been retrieved over the subset of relevant instances. Fig. 4.8

shows graphically these two concepts applied on a set of elements.

The graph precision vs recall shows how accuracy decreases when more images are

retrieved by the system. The number of images retrieved (TP + FN) is regulated by

a threshold, τl. We have evaluated our implementation of Glover et al. (2012) on two

experiments, each of a different kind: engineRoom and turntable2 sequences. Fig. 5.17

and Fig. 5.26 show respectively a sample of each sequence. These two experiments have

been described and studied in detail in Chapter 5. The sequence engineRoom consists

of two sessions of 75 and 72 images respectively, with 10 overlaps between them. In the

sequence turntable2 the platform turns around a pile of objects, drawing two perfect

circles. Each lap consists of 95 images. Table 4.1 shows the indices of precision and

recall for these two experiments.

Precision Recall

engine room 1 0.1
turntable 0.90 0.89

Table 4.1: Precision and recall indices for engineRoom and turntable2 sequences.

It is crucial in multiple reconstruction that the loop-closures detected are not false

positives, because a false positive can make the 3D reconstruction unstable. Nevertheless

a wrong overlapping between sessions can be ruled out during the matching and pose
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Figure 4.9: Example of loop-closure between two images taken in different sessions from
the platform used.

estimation processes, but this is not desirable. For this reason the parameters that

govern the behaviour of Glover et al. (2012) are set in this case very conservatively.

The result is apparent in Table 4.1. The precision in the engineRoom sequence is the

unit (no false positives), but it comes at the price of a low recall.

Another case is a mobile platform which revisits areas of an environment in a single

sequence. Here there is no need of estimating the camera pose of the overlap Is (it will

be estimated as in the single case), so the matrix of overlaps is not inverted. Therefore

the overlaps in this case happen to have previously been estimated. In Section 4.5 it will

be explained that overlaps between images of the same session produce new matches

(and bundles), but no camera pose is estimated when processing them. Moreover, in this

case overlaps are most likely to happen in sub-sequences, so that a subset of consecutive

images are matched against another subset of also consecutive images. As a consequence

of this the precision here is lower, whereas the recall is significantly higher, as Table 4.1

shows.

Our implementation of Glover et al. (2012) is executed after the feature descriptors

have been extracted from all the sessions Ii, 1 ≤ i ≤ r. After the loop-closing phase all

the overlaps between different sessions have been found and each session is processed

roughly following the pipeline described in Chapter 3, but with alterations in order to

take into account the overlaps, as algorithms 1 and 2 describe.
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Figure 4.10: Session 1 is always fixed, with the first camera at origin and with no
rotation. (top left). However, it is not possible to allocate session i (bottom left) unless an
overlapping is found and the sessions bound together (right).

4.3 Overlap Management

With the feature vectors extracted from all the sessions and the overlaps between ses-

sions found, each session is now executed in a similar manner as in the single SfM process

(see Chapter 3). The main variation we introduce here is the position Ih, 1 ≤ h ≤ ni

within the sequence of images Ii =
{
Iiq
}q=ni

q=1
where the SfM processing of each session

will start.

A sequence of images Ii has to be allocated within a global reference frame in order to be

reconstructed (see Section A.5). In the case of a single session (r = 1), this is naturally

fixed by imposing the camera pose of the first image I11 to be at origin with no rotation.

However in the multi-session case this requirement becomes apparent, since in general

each mobile robot will start to move around a scene in a different location. Therefore it

is not possible to assign to the first camera of each session Ii the origin location, if all

the sessions are to be allocated in the same coordinate frame. It is therefore necessary

to find an alternative way to place the camera poses of session Ii with respect to at least

one of the j previous sessions, 1 ≤ j < i. This is precisely the problem that overlaps

are used for in this work. Fig. 4.10 illustrates this situation.

Owing to the global coordinate frame issue, the algorithm for multiple reconstruction
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devised here distinguishes between the session I1 and the sessions Ii, 1 < i ≤ r.

Algorithm 1 Process of session I1

Require: set of images I1 = {Iq}q=n1

q=1

Ensure: 3D reconstruction of I1, overlaps L1
q reconstructed.

for all Iq ∈ I1 do
if Iq > 1 then
Iq ← recursive matching against set D = {Iq−k · · · Iq−1}
Iq ← epipolar geometry, resection, triangulation, BA
add Iq to D

check T(1, q) for loop-closures → L1
q = {Is}s=vs=1, 1 ≤ v ≤ m− n1

for all Is ∈ L1
q do

Is ← recursive matching against set D
Is ← epipolar geometry, resection, triangulation, BA

end for
else
I1 ← origin

end if
end for

4.3.1 Session I1

The first session is reconstructed normally, setting the first camera I11 in the origin,

without loss of generality. For each camera I1q of session I1, q > 1, the SfM process now

takes place.

The main difference to the execution of SfM between the singular case and the multiple

case comes from the methods that are run at a time. The preprocessing and feature

extraction steps have already been applied, so now I1q goes through the remaining

methods of the SfM pipeline (see Fig. 3.1). The multiple reconstruction implementation

makes use of a shared library built from the methods of the singular case, and an

appropriate structure of inherited classes is devised. As a result, matching process,

relative and global pose estimation, triangulation and local BA (how global BA has

been executed here will be discussed in next section), are run by the very same methods

as in the single SfM process.

After the application of SfM on I1q , I1q is added to the set D of reconstructed images,

and the element (1, q) of T is looked up to check whether I1q has overlaps with ulterior

sessions Ii, 1 < i ≤ r. In the general case I1q will have an array of overlaps L1
q = {Is}s=vs=1,
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1 ≤ v ≤ m−n1 (although usually v � m−n1). In this case, each overlap Is is processed

and matched against the set D, so that the recursive matching is performed now on

the set
{
I1q−k, Is

}k=t
k=0

. Iq−t will be the image with which Is has less matches than a

threshold τm (see Section 3.4). Hence epipolar geometry of Is is estimated with respect

to I1q , common bundles are generated between Is and session I1, and Is is resected with

reference to I1, as shown in Alg. 1. Overall, the camera pose of Is is defined with respect

to the global coordinate frame of session I1. Once Is has been fixed in relation to I1,

the next element of L1
q is processed in exactly the same way, being matched against the

set D. This algorithm has been written in pseudocode in Alg. 1.

The reconstructions of the overlaps L1
q in the session I1 allow posterior sessions to

allocate their camera poses in a unique coordinate frame, so that a global 3D structure

out of multiple sessions can be obtained.

4.3.2 Session Ii, i > 1

The difference in the execution of I1 with Ii, 1 < i ≤ r resides on which image of the

sequence is taken as the “first camera”, that is, which image will fix the coordinate frame

of the sequence. The image Iih from sequence Ii with the smallest index whose camera

pose has already been estimated (by means of a loop-closure with Ijq from sequence Ij ,

j < i.) will be appointed as the starting point to process the sequence Ii.

Since the “starting point” in session Ii is Iih, now the SfM process should be run in two

sequences:
{
Iih+1 · · · Iini

}
and

{
Ii1 · · · Iih−1

}
. The second sequence will be addressed in

reverse order.

Along with the global reference frame problem, there is the scale issue. In order for

the 3D structure from Ii to be coherent with the rest of sessions, it does not suffice to

locate a camera Iih of Ii with respect to its overlap Ijq from a previous sequence. With

solely that information the rest of the cameras of Ii will be placed in general with an

arbitrary scale, rendering the multiple reconstruction infeasible, and BA methods would

not be able to produce coherent structures out of point clouds with different scale. It

is therefore necessary to fix the scale of Ii according to prior sequences.

As discussed in Sections A.5 and 3.7 a camera pose is integrated with the rest of camera

poses of a given sequence by resection. In multiple reconstruction we solve the problem

of the scale by applying this technique as well. This can be done by just looking up, out

of the set of matches from the pair
{
Ijq , Iih

}
, those which belong to bundles that have
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4.3 Overlap Management

Algorithm 2 Process of session Ii, 1 < i ≤ r
Require: set of images Ii = {Iq}q=ni

q=1

Ensure: 3D reconstruction of Ii, overlaps Liq reconstructed.
for all Iq ∈ Ii do
if Iiq→estimated then
Iih ← Iiq
break
{The flag estimated indicates whether an image has been reconstructed.}

else
continue

end if
end for
for all {Iq, q > h} ∈ Ii do
Iiq ← recursive matching against set D =

{
Iiq−k · · · Iiq−1

}
Iiq ← epipolar geometry, resection, triangulation, BA
add Iiq to D

check T(i, q) for loop-closures → Liq = {Is}s=vs=1, 1 ≤ v ≤ m− ni
for all Is ∈ Liq do
Is ← recursive matching against set D
Is ← epipolar geometry, resection, triangulation, BA

end for
end for
for all {Iq, q < h} ∈ Ii do
Iiq ← recursive matching against set D′ =

{
Iiq+1 · · · Iiq+k

}
Iiq ← epipolar geometry, resection, triangulation, BA
add Iiq to D′

check T(i, q) for loop-closures → Liq = {Is}s=vs=1, 1 ≤ v ≤ m− ni
for all Is ∈ Liq do
Is ← recursive matching against set D′

Is ← epipolar geometry, resection, triangulation, BA
end for

end for
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already been reconstructed (see Section 3.7). However, in order to maximise the link

between Ii and Ij , Iih is recursively matched to the images
{
Ijq−k

}k=t
k=0

until the matches

between Iih and Ijq−t are less than a threshold τm.

The sequence is reconstructed sequentially, with the first camera being Iih. Analogously

to the procedure in the first session, after Iiq has been processed the element (i, q) of T

is looked up in the search for overlaps with Iiq. In case affirmative the overlaps Liq are

treated in the same manner as in Section 4.3.1.

It may occur that session Ii has more images Ih′ , h′ > h, already reconstructed from

overlaps with previous sessions other than Iih. In this case the epipolar geometry and

resection of Ih′ is skipped during the SfM process.

After the image Iini
has been processed, there remains to be reconstructed the images{

Ii1, · · · Iih−1
}
.

Reverse Reconstruction

The set of images
{
Ii1, · · · Iih−1

}
are reconstructed in the same manner as the rest of the

sequence, with the only qualification that they are processed in reverse order, starting in

Iih−1 and finishing in Ii1. Now the set of reconstructed images D is built up backwards,

and the recursive matching set is
{
Iiq, I

i
q+k

}k=t
k=1

, with 1 ≤ q < h and 1 ≤ t < ni. As

always in multiple reconstruction, when Iiq has been reconstructed the element (i, q) of

T is looked up in the search for overlaps with Iiq. The Alg. 2 describes the steps followed

to reconstruct session Ii.

Overlaps management is an integral part of the multiple reconstruction system devel-

oped in this work. Another aspect important in this system is how BA has been applied

over multiple sessions, which creates a significant difference between the singular case

and the multiple case. The correct application of BA in the multiple case is paramount

not only to optimise the structure and camera motion, but also to enable the optimisa-

tion of all the sessions and the overlaps between them.

4.3.3 Distributed Bundle Adjustment

The BA methods are the pool where the reconstruction of all sessions are merged, along

with all the cameras. This merging is possible thanks to the overlaps, which provide a

link between sessions and allow BA to find a coherent scale for the whole set.

112



4.4 Post-Process

Figure 4.11: When an overlap is found (idq ↔ ids), BA methods add to the optimisation
set {s− q} fictitious images, in order for BA to be able to operate over the overlap. The
actual {s− q} images will be added in later on. This operation does not affect neither the
efficiency nor the optimisation of the real images added to BA.

In a similar way as in the singular case, here we apply pair-wise BA every time an image

is processed (either an image Iiq from a given sequence or an overlap Is) and equally, in

a different thread, a local BA after each image is processed. Every m images processed,

a global BA is executed.

Specifically in the multiple case, every session stores their 3D point structure in the

same global storage reference, which is in turn taken by the BA methods as input.

Regarding the camera poses, the BA methods address all the cameras by a global

index, with no distinction for the session a camera comes from. The camera poses are

added sequentially to BA as they are processed, so when an overlap with global index

ids is added for optimisation to the stack of camera poses, where the last added camera

has a global index idq, {s− q} cameras are added before Ids, without penalising the

optimisation process of BA. This situation is shown in Fig. 4.11.

After each application of BA a reprojection error-based filter is run on the whole struc-

ture. In addition, a global BA is executed on the whole set before the post-process

step.

4.4 Post-Process

In a similar way to the singular case, after all the sessions have been processed, a

post-process step is performed. The post-process pipeline follows the same flowchart as

depicted in Fig. 3.18, with the qualification introduced by the overlaps between sessions.

Therefore, for a given Iiq from sequence Ii, the post-process phase is first run on all its
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overlaps Liq and subsequently on Iiq, as part of the sequence Ii. Alg. 3 describes the

algorithm performed in post-process.

Algorithm 3 Post-Process of session Ii, 1 ≤ i ≤ r
Require: set of reconstructed images Ii = {Iq}q=ni

q=1

Ensure: Semi dense 3D reconstruction of Ii and overlaps Liq.
for all Iq ∈ Ii do
check T(i, q) for loop-closures → Liq = {Is}s=vs=1, 1 ≤ v ≤ m− ni
for all Is ∈ Liq do

Is ← recursive matching against set D =
{
Iiq−k · · · Iiq−1

}
Is ← triangulation, BA

end for
Iiq ← recursive matching against set D =

{
Iiq−k · · · Iiq−1

}
Iiq ← triangulation, BA

end for

In contrast with the application of BA in multiple reconstruction, and since the cameras

are fixed during this phase, now a different BA instance is created for every session,

which will only optimise the structure of that session. Still the whole 3D structure will

be shared by each and every session.

The specific implementation of the BA methods and the management of overlaps that is

taken in our distributed reconstruction system produces enables our system to address

single cases where the platform transits already visited areas.

4.5 The Case r = 1

The main difference that a loop-closure between frames of the different sessions (multi-

ple case) has with respect to a loop-closure between frames of the same session (single

case) is that in the single case the overlaps are always images that have already been

reconstructed, since in this case the matrix of overlaps has not been inverted (see Sec-

tion 4.2.2). Therefore, if Iq (whose camera pose is known) has an overlap with Is, s < q,

which has previously been reconstructed, there is no camera pose to be estimated. Fur-

thermore, since Is has already been estimated, it has been added to the BA methods

and should not be added again. In this case the overlap is used to link Is and Iq by

means of the matches between them, so that when Global BA is run their camera poses

will be refined further, and any drift will be corrected.
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The only action to take here, therefore, is to ensure that the overlap Is is not added

neither to the pair BA nor to the Global BA methods if Is belongs to the same session

as Iq. Note that this measurement is transparent for the multiple reconstruction case.

In Chapter 5 we have evaluated this case on the turntable2 sequence.

4.6 Summary

This chapter has described in detail how distributed scene understanding has been

achieved in this work.

After a general review on different techniques for realising multiple reconstruction, we

justify the use of loop-closing techniques as a simple approach that at the same time

intends to be general. Different works that make use of loop-closing are revised and the

technique of our choice, FAB-MAP, is thoroughly explained.

Our implementation of FAB-MAP, Glover et al. (2012), outputs for every image of every

session covered by each mobile robot, whether there is an overlap with any image of

other posterior session. The system exposed here manages these overlaps in order to link

the sessions together and enable 3D map merging, which is effectively done by the BA

methods especially arranged for this purpose. Our approach enables the reconstruction

of singular sequences where the platform transits areas already visited.

Once all the camera poses of all sessions have accurately been estimated and a sparse

3D structure obtained, each session goes through a post-process phase that, similarly

to the post-process of Chapter 3, multiplies the number of features.

The distributed system developed in this work from multiple instances goes beyond the

state of the art work in multi-session reconstruction. Specifically, the presented system

extends the work of Zhang et al. (2010), which requires overlaps between stretches of

sequences, whereas we attain 3D merging with minimal overlapping between sessions.

In chapter 5 we show that our system resolves the scale problem between sessions with

only one overlap so that they can be referenced with respect to a global coordinate

frame.

The performance and results of our implementation of multiple reconstruction, along

with the results of our single SfM system will be discussed in Chapter 5.
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Chapter 5

Performance Evaluation

This chapter evaluates the performance of the system devised in this work. First the

methodology for the evaluation of the system is described. Subsequently the SfM process

developed here is tested in both the singular and multiple cases.

With respect to the single reconstruction, results from experiments in different environ-

ments are shown, and the evaluation methodology is applied in these experiments. In

addition, the performance of our system is compared with other state of the art systems,

especially on the points where we believe have been improved by our work.

This system has also been validated by employing it on the reconstruction of known

benchmark data-sets and by comparing it with state of the art software. Additionally,

ground-truth validation has been carried out.

The distributed reconstruction system is also assessed. The visual 3D reconstruction

and camera poses from multiple reconstruction experiments are shown, and the quality

of our implementation of FAB-MAP on finding loop-closures evaluated.

In addition to multiple sessions, the distributed SfM system developed in this work can

also be applied to a single mobile robot which revisits part of a scene. An experiment

of this kind is discussed to show the performance of the multiple reconstruction system

in these cases.

The first step for evaluating a given system is the definition of a methodology. This

methodology should be clearly designed in order to provide some objective metrics that

could be reproduced when assessing other systems for fair comparison.
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5.1 Methodology for Evaluation

The adequate definition of the methodology for evaluation of a system is important be-

cause it needs to assess correctly the parameters that a given work optimises. Beardsley

and Torr (1996) introduces several statistics and metrics to evaluate and compare SfM

systems, focusing on the trifocal sensor. In the context of BA algorithms, Triggs et al.

(2000) devotes a section to quality control, and offers various methods to evaluate the

internal and external reliability of a BA method, how to analyse the sensitivity of a

system and how to perform model selection tests.

This work develops a SfM system on mobile robots with special characteristics (noisy

images, challenging feature tracking, omnidirectional motion) which creates specific

challenges on the fields of correspondence matching, feature tracking and epipolar ge-

ometry estimation. All these aspects are closely related. First we will establish how

to evaluate our system globally, and then each of the aforementioned fields will be

addressed.

A SfM system is assessed by checking the accuracy of the camera poses estimated with

respect to a ground-truth. If the motion estimation is correct, and a good triangulation

method is used (see Section 2.7) the 3D reconstruction will be reliable. However, the

ground-truth of a given data-set in not always readily available, and alternative methods

should be found1. The most common method to jointly assess both motion and structure

estimates is by measuring the reprojection error given by the 3D reconstruction on the

camera poses. The derivation of the reprojection error is given in Section A.7.1.

In the evaluation of our results we have used the Root Mean Square (RMS) of the

reprojection error over the whole SfM system. The RMS of a set of values is the

square root of the arithmetic mean of the squares of these values. In Appendix A the

reprojection error given by a 3D pointXj over the view xij is defined in the Eq. A.7.52.

Expressing the Euclidean distance in mathematical terms, Eq. A.7.52 yields:-

εij =

√
(xij − xij)2 +

(
yij − yij

)2 (5.1)

Therefore, the RMS applied on the reprojection error over the whole 3D structure,

1We have evaluated our system against ground-truth in Section 5.2.5.
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introduced in Eq. A.7.53, yields:-

RMS =

√√√√√ j=n∑
j=0

i=m∑
i=0

vij
(
(xij − xij)2 + (yij − yij)2

)
2l

(5.2)

where

l =

j=n∑
j=0

i=m∑
i=0

vij (5.3)

Eq. 5.3 accounts for the sum of all the projections on the set of m cameras from each of

the n 3D points of the structure. As described in Section A.7.1, vij denotes the binary

variables that equal 1 if the jth 3D point is visible in image i and 0 otherwise.

For the sake of clarity we have normalised Eq. 5.2 so the measurement evaluated here

is:-

RMSN = 1000× RMS (5.4)

The reprojection error explains how well the 3D structure fits with the camera poses

estimated. Usually, the combined information of the reprojection error, the number

of 3D points, the total number of views or projections, and a visual inspection of the

point cloud and camera poses are good enough to assess qualitatively how good a 3D

reconstruction is. The number of 3D points deleted during the filtering process is

valuable if we are interested in assessing the filtering performance of the algorithm.

However, it is possible that a poorly estimated reconstruction gives a low reprojection

error if the feature tracks are short enough. In fact, a 3D point reconstructed with

only 2 views will always give 0 reprojection error. This statement can be gathered from

Section A.6.1 and specifically from Eq. A.6.50. Indeed, if n = 2, the linear system

given in Eq. A.6.51 is a square system of independent equations so it is determinate

compatible and therefore with a unique exact solution, regardless the accuracy of the

2 camera poses that form the linear system. Hence the 3D point X, exact solution

of Eq. A.6.51, will always cast null reprojection error, but its 2 views will be taken

into account in the denominator of Eq. 5.2, artificially modifying downwards the total

reprojection error of a given 3D structure. For this reason the reprojection error of all
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the data-sets in this chapter has been evaluated taking into account only 3D points

whose bundles have more than 3 views, n > 3.

Conversely, a 3D reconstruction with a large proportion of long feature tracks and low

reprojection error is likely to be accurate, since only good camera poses will throw low

reprojection error over multiple views of a given 3D point.

In presence of noise, the global reprojection error does not suffice as a measurement of

the quality of a SfM system. Very well localised cameras can throw a high reprojection

error if the views are contaminated with noise. Our evaluation takes this aspect into

account and comparative analyses of 3D points and their projections, along with the

camera pose produced by our SfM system have been studied and discussed.

It should be noted that for a given choice of parameters of our SfM system and machine

precision the results yielded by our implementation does not vary with different execu-

tions, both in the single case and the multiple case. Therefore, we have not shown the

variance of the different results shown in this chapter since it is null. This conclusion is

plausible since there is not random operation during the workflow of our SfM system.

We have observed that the optimal setup of parameters is practically invariant to the

type of experiment or machine, and therefore we have deemed unnecessary to perform

a quantitative sensitivity analysis.

We also evaluate the performance of our feature tracking system. This has been done

in a similar way as with noise, but a study on feature track lengths and feature track

histograms has been performed in Section 3.6, and compared the results given by our

system and state of the art systems.

The implementations chosen for comparison are Changchang (2011) and AgiSoft (2014),

two state of the art implementations. AgiSoft (2014) is a commercial package (version

1.1.0) from AgiSoft LLC, used in other research works (Verhoeven (2011); Verhoeven

et al. (2012)). The software Changchang (2011) is a renowned GUI application for 3D

reconstruction using SfM (Changchang (2013); Changchang et al. (2011)).

Additionally, we can evaluate our system with clean, noise-free data-sets, so that it

can be compared against Changchang (2011) and AgiSoft (2014) by observing their

performance on bench-mark data-sets. This has been done in Section 5.2.4.

One important element in the evaluation of our noise filters and feature tracking system

are histograms of feature tracks, so the number of bundles with different amount of

views can be visualised. This type of histograms is a measurement of the efficiency
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of the feature tracking system of a given SfM process. In addition, it indicates the

robustness of a system against noise.

One of the claims of this work is its robustness against ill-configurations created by

the omni-directional motion of the mobile platforms studied. This is evaluated by

conducting experiments with critical motions, such as sideways and diagonal motion

(pipeline sequence), rotations around a point placed in front of the robot (turntable

sequence) and near-pure rotations (pipeline sequence).

Multiple Reconstruction

In the evaluation of the multiple reconstruction performed by our system we have eval-

uated the RMS of the reprojection error and confirmed that loop-closings detected are

correct. Generally speaking, we have followed the methodology for results evaluation

described in contemporary works in this field (Kim et al. (2010); Özkucur and Akin

(2010); Reid et al. (2013); Riazuelo et al. (2014), where the merged reconstructions are

visualised.

Now that the methodology for the evaluation has been established the results of our

system will be shown.

5.2 Single Case

This section discusses the results achieved in the sequential SfM process described in

Chapter 3. First we evaluate the 3D reconstructions given by our system. The validation

of our system is then done by comparing it with Changchang (2011) and AgiSoft (2014).

Afterwards the performance of our SfM process is evaluated in benchmark data-sets and

compared with Changchang (2011) and AgiSoft (2014). Finally the robustness of our

system against ill-configurations is shown, in comparison with Changchang (2011) and

AgiSoft (2014), along with a ground-truth validation.

Since this work has been applied on low-budget mobile platforms, the experiments

conducted are an important aspect of it. Here we show 4 experiments from different

environments. These experiments are intended to cover enough scenarios as to properly

evaluate the performance of our implementation.
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Figure 5.1: Four experiments conducted. From left to right, samples of visionlab,
turntable, industrialArea and pipeline sequences.
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(a) Camera poses and point cloud of the vi-
sionlab sequence.

(b) Camera poses and point cloud of the
turntable sequence. The top picture shows
that the circle created by the cameras is per-
fectly planar.

(c) Camera poses and point cloud of the in-
dustrialArea sequence.

(d) Camera poses and point cloud of the
pipeline sequence. The top picture shows a
side point of view, where the planar nature
of the motion is highlighted.

Figure 5.2: Camera poses and 3D structures of the four sequences pipeline, turntable,
visionlab and industrialArea.
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5.2.1 Experiments

In order to validate the SfM system developed in this work we considered the evaluation

of four characteristic experiments. We have chosen four because we reckon that with

these experiments the most representative types of motion of the Rovio are covered. The

results yielded by these experiments allow us to measure the efficiency and performance

of our system. Specifically, these experiments are: a transition over a laboratory of

vision, a turntable sequence, a motion along an industrial area, and another one along

a pipeline system. Fig. 5.1 shows a sample of each sequence.

The first experiment, visionlab, is composed of 55 images. Here the robot takes an

approximately straight path until it reaches the wall of the laboratory.

The second experiment, turntable, is a sequence of 87 images taken in circle around

several objects piled up in the centre of the circle. Here the platform realises motions

that only omnidirectional robots can perform, i.e. it moves sideways and rotates around

the centre of the scene at the same time.

The third experiment, industrialArea, has been taken in an area dominated by indus-

trialised items. It is made up of 98 images. The robot takes a slight curve as it goes

forward passing along different elements.

The fourth experiment, pipeline, has been made in an environment plenty of tubes and

cylindrical elements. The platform describes a long path where the platform realises

various omni-directional motions. The sequence takes 88 images. This sequence contains

the most challenging types of motion. The platform moves diagonally, laterally (while

keeping the orientation of the camera), performs rotations while moving forward, realises

abrupt changes of directions, etc. Most of these manoeuvres create ill-configurations

(see Section 2.6.4). We tackle this aspect of the reconstructions in Section 5.2.5.

All these experiments have been conducted using SURF detectors and descriptors.

The experiments have been run on an Intel i5 -3317U at 1.7GHz, 4 GB RAM. As a first

result, Fig. 5.2 shows the camera poses and 3D structure of each sequence.

5.2.2 Evaluation of the System

This section evaluates the SfM process over the 4 sequences exposed in Section 5.2.1.

Here we evaluate the performance of our system according to the methodology described

in Section 5.1.
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Figure 5.3: Structure information on the data-sets referenced

Fig. 5.3 shows statistical information about the data-sets referenced. Note that the

sequences where the robot moves predominantly forward (visionlab and industrialArea)

the acquisition ratio of 3D points (Fig. 5.3a) is higher than the sequences where the

robot moves mainly sideways (pipeline and turntable), since in the former the field of

view changes more gradually. In all cases it is noticeable that the acquisition rate is

mainly linear.

Similar behaviour is observed in Fig. 5.3b, where the average projections are stabilised at

higher rate in the sequences visionlab and industrialArea than in the sequences pipeline

and turntable. In fact, Fig. 5.3b can be seen as a sort of derivative of Fig. 5.3a with

respect to the views.

One way to measure the accuracy of the 3D structure is to evaluate how many 3D points

are discarded by the reprojection error filters (see Section 3.8.2). This measurement is

shown in Fig. 5.4a. The evolution of the reprojection error per view with the number

of views is shown in Fig. 5.4b. Again we observe a similar pattern as in Fig. 5.3. The

reason for this is that in lateral motion the camera poses are more rigidly fixed since the

configuration of the cameras generates less uncertainty during the triangulation step,

as shown in Fig. 5.6. More precise camera poses only result in better computed 3D

structure and therefore less outliers and reprojection error.

The type of motion in each sequence also explains the different behaviour of the data

from Fig. 5.3 and Fig. 5.4. In a lateral motion the epipolar lines tend to be horizontal,
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Figure 5.4: Statistical information on the data-sets referenced

Figure 5.5: Epipolar lines in visionlab (left) and turntable (right) sequences.
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as the epipoles are placed far away from the images, as shown on the right image

of Fig. 5.5. In a forward motion, on the other hand, the epipoles are usually in the

image and the epipolar lines create rays passing through the epipoles. This is shown

on the left image of Fig. 5.5. The different configurations of the epipolar lines affect

the matching selection process (during RANSAC). This can be seen with the help of

Fig. 5.5. The distance between a given feature and its corresponding epipolar line (the

epipolar distance) varies differently with the orientation of the epipolar line, according

to the type of motion. In a forward motion (see Fig. 5.5, left) a slight variation in

an epipolar line (which ultimately means a rotation around the epipole) can provoke

a great increase in the epipolar distance if the feature is far enough from the epipole.

This phenomenon does not occur in lateral motions, where the epipoles are usually

far away from the image (see Fig. 5.5, right). An epipolar line will hardly change its

orientation if it turns around an epipole. This produces more stable reconstructions on

sequences with lateral motion and consequently less reprojection error. Additionally,

the precision of the triangulation method is more sensitive to forward camera motion

than lateral camera motion, as Fig. 5.6 shows.

Figure 5.6: The error in the measurement of a view affects differently in the uncertainty
area of the 3D point reconstruction, depending on the length of the baseline, and this in
turn affects the reprojection error. Source: Hartley and Zisserman (2004).

Post-Process

The effect of post-processing the 3D structure obtained during the SfM process has

already been discussed in Section 3.9. Here we delve into it in more detail, and offer a

comparison between the results given by the SfM process and the post-process in the

visionlab and turntable sequences. These sequences have been chosen as representative

127



5. PERFORMANCE EVALUATION

Figure 5.7: Comparison between SfM process and post-process performance on the vi-
sionlab and turntable sequences.

of experiments where the platform performs a mainly straight motion (visionlab) and a

lateral motion (turntable).

The post-process that is implemented in our system affects primarily to the number of

matching features that are generated. Since now all the matching filters are relaxed,

many more matching features are populated across images, and as consequence more

feature tracks and 3D points are generated. However, in order to maintain the quality

of the reconstructed structure, the reprojection error filters are as strict as during the

SfM process, which produces as a result the removal of many more 3D points and a

slight increase of the total reprojection error. Fig. 5.7 shows a comparison between

the two phases. The behaviour of the data is similar to Fig. 5.4 and Fig. 5.3. One

interesting point to note is that in the visionlab sequence the reprojection error in the

post-process phase evolves logarithmically, since now the camera poses are fixed and

the only source of error are noisy points. We can see signs of this algorithmic pattern

in the reprojection error of the SfM process, although it presents local peaks of high

reprojection error since at this stage camera poses are simultaneously been optimised

along with the structure. The peaks appear when at some point the configuration of the

camera poses are suboptimal. The reprojection error in the turntable sequence tends to
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be more constant, but the phenomenon of the peaks can still be appreciated.

Figure 5.8: Comparison of feature track histograms between the SfM process and the
post-process in the visionlab and turntable sequences.

Fig. 5.8 shows how feature track lengths have been increased at the post-process phase.

The number of bundles with less than 5 views is tripled after post-process. This ratio

increases on bundles that contain more views.

Fig. 5.8 also serves to illustrate the effect of noise on the system. Due to noise, the

majority of bundles (and therefore the majority of 3D points) have short feature tracks.

Table 5.1 shows the percentage of projections of the whole 3D structure covered by

bundles with different length, differentiating between bundles with no more than four

views and bundles with more than four views.

% of views seen by bundles over the total number of views

bundles of 2, 3 or 4 views bundles of more than 4 views

visionlab turntable visionlab turntable
SfM process 82.14 94.95 17.86 5.05
Post-process 75.53 89.18 24.47 10.81

Table 5.1: Percentage of views seen by bundles on visionlab and turntable sequence. More
than 75% of the total projections of the 3D structures are covered by bundles with length
no superior to 4 views.

It is clear from Table 5.1 how the type of motion taken by the platform affects the

reconstruction outcome. The proportion of bundles with more than 4 views in the

visionlab sequence is roughly three times as big as in the turntable sequence, given the

straight path taken in visionlab, which creates bigger overlaps between images.
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The fact that our system manages to obtain 3D reconstructions with low reprojection

error shows the effectiveness of the feature tracker system devised. We manage to obtain

matches which, even though most of them create short feature tracks, are of sufficient

quality as to generate accurate 3D structures and camera poses. It is clear that longer

feature tracks produce higher precision in 3D points locations, and in standard imagery

is easy to find 4 or 5 views per 3D point. In the visionlab sequence an average 3D point

is seen by 3.53 views after the SfM process and by 4.12 after post-processing.

Fig. 5.9 shows graphically the difference between the 3D structure of visionlab sequence

before the application of post-processing and afterwards.

Figure 5.9: Graphical comparison on the visionlab sequence between the point cloud
before applying post-process (left) and afterwards (right)

Computation Times

Computation times in SfM is an important aspect to consider. Fig. 5.10 shows the

computational times in each of the steps for the SfM process and for the post-process

phases (see Fig. 3.1 and Fig. 3.18), on the visionlab sequence.

In terms of computation the SfM process is mainly dominated by the recursive matching

process (within which the feature tracking system is run) and, to a lesser extent, BA.

This is mainly due to the noise presence in the sequence, which forces a big optimisa-

tion effort to both feature tracking system and BA algorithms. In addition, given the

recursive nature of the feature tracking system, the execution time of the matching step

tends to increase linearly with the number of cameras. As an average, the combination

of steps given by receiving the image, preprocessing, feature detection and description

(with the noise filters within), reprojection error filters, resection and triangulation con-

tribute with 17.7% of execution time of an image. As average, it takes 7 seconds to
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Figure 5.10: Computational times in SfM process (left) and post-process (right) phases.
The term “Main” is the aggregation of all the steps of the process.

process an image. There are peaks of times scattered along the sequence (the most

prominent at image 49) but they are caused by the stop criteria of the BA methods

rather than a bad camera pose estimate (this specifically happens at image 49). There

are four criteria for SBA to stop an optimisation (Lourakis and Argyros (2009)):-

• The magnitude of the gradient takes a value smaller than a given threshold ε1;

• The relative variation of the solution is smaller than a threshold which involves a

parameter ε2;

• The value of the residual (x− x) drops below a threshold ε3;

• The relative reduction in the value of the residual drops below threshold ε4;

• The algorithm iterates a given number of times.

These parameters are set to very conservative values in these experiments. The number

of maximum iterations set for pair-wise BA optimisation is 1000, and the thresholds

are set up to precision machine2. If, for example, the iteration parameter is lowered to

100 then computation times are noticeably decreased without compromising accuracy

in many cases. This is precisely the case in image 49, where the BA algorithm keeps

iterating for more than 50 seconds. The other parameters ε1, ε2, ε3 and ε4 can be

adjusted to achieve lower times according to each sequence.

In the graph for the SfM process phase in Fig. 5.10 there is a term, “waiting GBA” which

occasionally reaches significant values over the total spent time. This term reflects the
2This configuration has been chosen because in this work the criterion of robustness and precision

of the system has prevailed over computation time optimisation.
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interaction between the main thread and the thread of the global BA (see Section. 3.8.2).

Since both threads access the same data (3D points and camera poses), the thread for

the global BA that was triggered when image In was processed should be finished before

the feature tracking method of image In+1 process starts, as this method works with

bundles, which are linked to 3D points. Depending on the necessity of refining the 3D

structure and camera poses, sometimes the process of image In+1 may have to wait for

global BA to finish in order to resume the process execution. As with the local BA

algorithm, the parameters for the global BA on these experiments are very conservative

and can be optimised if an improvement on computation times is required.

The computation times for the global BA thread are shown in Fig. 5.11. It can be

appreciated that it follows the same patten as the term “waiting GBA” in Fig. 5.10 (left).

Data acquisition time (copying the data from the main thread) and data extraction time

(pouring the data on the main thread) are negligible compared with the BA process.

In average the global BA thread takes 1.6 seconds to optimise each image.
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Figure 5.11: Computational times in the global BA thread. Here “Main” practically
collides with “Global BA process”.

Since in the post-process camera poses are fixed, the evolution of the times needed for

the process of each image is much smoother than in SfM process, where the evolution is

irregular as the cameras are to be refined. This smooth evolution is shown in Fig. 5.10

(right). Now there are many more features to process and the time not used in find-

ing features and refining the cameras is spent in matching recursively and refining the

position of the 3D points generated. Here again the main contributing steps are match-

ing and BA. An average image is processed in 7.6 seconds in this phase. Overall, the

visionlab sequence was processed in 13 minutes and 26 seconds.
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Figure 5.12: 3D surface of the object placed in the centre around which the platform in
turntable sequence revolves.

The matching step ratio slightly drops towards the end of the sequence, both in SfM

process and post-process stages. The reason for this behaviour is that the platform is

approaching the wall of the laboratory and no new feature points are detected.

Rendered Surfaces Reconstructions

The number of 3D points detected during post-process enables the rendering of surface

reconstructions. We have obtained these 3D reconstructed surfaces by the application

of commonplace statistical methods, as described in Section 3.9.1. Here we show results

from turntable and industrialArea sequences which, along with Fig. 3.19, help visualise

how the reconstructed surfaces are obtained.

As a comparison with the rendered 3D surface of the turntable sequence, Fig. 5.13 shows

the point cloud generated by the post-process phase.

Fig. 5.12 and Fig. 5.14 show the 3D surface for the turntable and industrialArea se-

quences, respectively. In Fig. 5.12, despite the texture of the objects being fine-grained,

the smoothing surface and rendering algorithms (specifically, Poisson method, by Kazh-

dan et al. (2006)) applied on the structure do not differentiate between objects and

tend to create a unified surface out of the structure. In addition, edges and corners are

smoothed, which makes the 3D visualisation lose sharpness. Despite these limitations,

surface rendering is a useful tool for 3D Mapping, as it can be appreciated in Fig. 5.14.
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The key features of the scene are clearly identifiable, and the 3D map is smooth enough

to make possible for the robot to establish paths in the environment.

Different aspects of the performance of our system have been discussed in this section.

We can now evaluate it with respect to state of the art systems present in the literature,

so a more complete evaluation is performed.

Figure 5.13: Point cloud of the turntable sequence

5.2.3 Comparison with State of the Art Systems

This section validates the system devised. This validation is performed by comparing,

according to Section 5.1, our results with results given by Changchang (2011) and

AgiSoft (2014). The datasets chosen for this validation are visionlab and turntable,

since each one represents a type of motion: forward and sideways, respectively.

The evaluation system that calculates the reprojection error has been taken from the

library QVision (Rodríguez López et al. (2012)), which is capable of reading formats

of 3D reconstructions files used by SBA (which our system generates), bundler (from

Snavely et al. (2006)) and the extension for recontruction files that Changchang (2011)

and AgiSoft (2014) produce as output. By using Rodríguez López et al. (2012) we

ensure a fair evaluation of the reprojection error for all the systems.

Table 5.2 compares the final reprojection error, the total projections and the total 3D

points generated by each of the systems evaluated.

3The reprojection error given by our evaluation system on the bundler file produced by AgiSoft
(2014) is 40.57, but we have reasons to assume that this is due to a bad configuration of the bundler file
generated by AgiSoft (2014). Therefore we have optimised with SBA the structure given by AgiSoft
(2014) to eliminate the effect of the bundler file, giving as a result 1.32.
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Figure 5.14: 3D surface of the area covered by the platform in the industrialArea se-
quence.

sequence visionlab

Method Final
reproj. error

Total
Projections

Total
3D points

3D points
Deleted

Our SfM process 1.64 98888 23865 15481

Changchang (2011) 3.75 24370 2643 no inform.

AgiSoft (2014) 1.323 20325 6273 no inform.

Table 5.2: Comparison of results between our system, Changchang (2011) and AgiSoft
(2014) on the data-set visionlab.

Even though our system gives a slightly greater reprojection error than AgiSoft (2014),

it outperforms AgiSoft (2014) in terms of 3D points found and projections (i.e. the

quantity of 3D scene information recovered given the same scene image samples as

input). Changchang (2011) performs poorly in this sequence, as its reprojection error

shows. Moreover, Fig. 5.15 shows that its cameras are not well aligned, being the first

ones very distant between each other. This inter-camera distance is decreased as the

sequence goes on.

Table 5.3 shows the ratio of projections with respect to the number of points and cameras

in each system. It is usually a sign of good quality matches when a reconstruction is
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Figure 5.15: Camera poses and point cloud generated by Changchang (2011) (left) and
AgiSoft (2014) (right) on the data-set visionlab

attained with a few projections per point (Chang and Hebert (2002); Zhang et al.

(2010)), because if there is no need of many cameras viewing a point in order to fix it

with a low reprojection error, it means that the selected features are precise and free

of noise. AgiSoft (2014) manages to obtain a lower reprojection error, but our system

finds many more projections per camera. Changchang (2011), however, finds twice as

many projections per point with high reprojection error, which leads us to assume that

Changchang (2011) does not have any strategy for feature filtering.

System projections/point projections/camera

Our SfM process 4.14 1797
Changchang (2011) 9.22 443

AgiSoft (2014) 3.24 369

Table 5.3: Ratios regarding the projections generated on visionlab sequence.

Table. 5.4 shows the comparison between the systems evaluated on the data-set turntable.

Here Changchang (2011) and AgiSoft (2014) outperform our system in terms of accu-

racy of the structure with respect to the cameras. However, our system still finds many

more features and points, providing twice as many as the others. In Section. 5.2.5 we

show how the camera poses estimated by our system adjust to the ground-truth value.

As with the visionlab sequence, Table 5.5 compares indices relative to the number of

projections found by each system. Here we can see why the reprojection error given by

4Similarly to Table. 5.2, this value is obtained by optimising the structure with SBA. Our evaluation
system gives an initial reprojection error of 24.86.
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sequence turntable

Method Final
reproj. error

Total
Projections

Total
3D points

3D points
Deleted

Our SfM process 1.34 130070 44701 14422

Changchang (2011) 0.77 77703 18988 no inform.

AgiSoft (2014) 1.164 77191 21824 no inform.

Table 5.4: Comparison of results between our system, Changchang (2011) and AgiSoft
(2014) on the data-set turntable.

our system is higher, provided the low ratio of projections per point. The better results

obtained here by Changchang (2011) suggest that Changchang (2011) deals better with

image configurations similar to stereo configurations.

System projections/point projections/camera
Our SfM process 2.91 1495

Changchang (2011) 4.09 893
AgiSoft (2014) 3.53 887

Table 5.5: Ratios regarding the projections generated on turntable sequence.

The results in the other sequences are similar: Changchang (2011) is the system with

most projections per point, our system detects most projections per camera, with the

reprojection error of all the systems being of the same order (Table 5.6). It should be

noted that the reprojection error tends to increase with the number of 3D points. The

reprojection error given by our system before the post-process phase (and therefore

when the camera poses are already fixed) is lower than the reprojection error given

by Changchang (2011) and AgiSoft (2014), as shown in Table 5.65. In the sequences

visionlab and industrialArea the projections and 3D points obtained by our system

before post-process already double the results from Changchang (2011) and AgiSoft

(2014). In the sequences pipeline and turntable our system before post-process has

found as many as the other systems, but with much less number of projections. This

indicates how well our system behaves when the platform performs a forward move,

which is the usual motion taken by a mobile robot.
5Here we have followed the procedure of previous tables for the estimation of the reprojection error

thrown by AgiSoft (2014).
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Reprojection Error

System visionlab turntable industrialArea pipeline

Before post-process 1.02 0.62 0.98 0.79
After post-process 1.64 1.34 1.62 1.57

Changchang (2011) 3.75 0.77 1.14 1.36
AgiSoft (2014) 1.32 1.16 1.60 1.53

Table 5.6: Comparison of the reprojection error given by our system and the state of the
art systems on the sequences studied.

This section has compared our system with state of the art systems on data-sets taken

by the mobile platform of study. For a complete comparative, it is adequate to validate

our system on popular benchmarks present in the literature.

5.2.4 Validation against Benchmark Data-Sets

This section shows the performance of our system on a benchmark present in the liter-

ature. The data-set chosen is Leuven castle (Pollefeys (2004)), a sequence of 28 images,

where the camera describes a sideways motion around this castle.

Table 5.7 shows the performance of the systems tested. The pattern followed is the

same as with the sequences of the mobile platform used.

System 3D points Projections Reproj. Error

Our SfM process (Sections 3.2 - 3.8) 17660 55305 0.40
Our post-process (Section 3.9) 37032 152888 0.83
Changchang (2011)6 13015 85720 0.43
AgiSoft (2014) 1990 16547 0.29

Table 5.7: Comparison of our system and state of the art systems on the Leuven castle
data-set.

Fig. 5.16 shows the reconstructions obtained by our system, Changchang (2011) and

AgiSoft (2014).

Up this point the validation of our system has relied in the quality of the structure.

However, a very important aspect in SfM applied to mobile robots is the positioning

of the camera poses. Therefore, an evaluation and comparison with respect to ground-

truth is necessary to properly validate our system.
6Changchang (2011) only can align 25 cameras in this sequence.
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Figure 5.16: Reconstruction of Leuven Castle made by our system (left), Changchang
(2011) (centre) and AgiSoft (2014) (right).

Figure 5.17: Samples of the engineRoom0 (first row) and engineRoom1 (second row)
data-sets.

5.2.5 Evaluation against Ground-Truth

This section compares the accuracy obtained on the camera poses by our system with

the ground-truth, and in one experiment we compare it along with the motion given

by Changchang (2011) and AgiSoft (2014). In addition, the robustness of our sys-

tem against omnidirectional motions is shown and compared to the response of other

systems.

The sequences used for ground-truth validation are called engineRoom0 and engine-

Room1. These sequences are taken in the engine display room of the Whittle building

of Cranfield University. The sequence engineRoom0 is made up of 75 images, in which

the robot describes an ’S’ going in between of two turbine engines. The sequence en-

gineRoom1 has 72 images, and the path described is similar, taken along a different

area of the room. Fig. 5.17 shows some samples taken from these sequences.

The ground-truth was set by labeling on the floor the points where the robot should

take the pictures, and measuring the coordinates (x, y) of each point. In this regard,

the precision of the ground-truth can be assumed to be within 1 cm.

Fig. 5.18 shows the camera poses of our system7, Changchang (2011), AgiSoft (2014) and

7In these sequences, the feature detector and descriptor used is SIFT.
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the ground-truth on both sessions. Changchang (2011) only is able to reconstruct the

cameras [12− 75] of engineRoom0 and the cameras [18− 62] of engineRoom1. Fig. 5.18

shows the estimated tracks on the plane X − Y . The differences of the systems tested

with the ground-truth on the planes X − Z and Y − Z are negligible.
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Figure 5.18: Comparison of the systems evaluated with ground-truth on the data-
sets engineRoom0 (left) and engineRoom1 (right). Note that on sequence engineRoom1
Changchang (2011) is not included, due to the lack of cameras reconstructed by this system.

In engineRoom0 all the systems (except for Changchang (2011), which does not re-

construct the 11 first cameras) keep a precise odometry until the second curve of the

sequence, where they diverge. Fig. 5.19 shows a detail of the sequence.

It can be noticed that in sequence engineRoom0 our system outperforms AgiSoft (2014).

Changchang (2011) adjusts better to the ground-truth but it is not capable of recon-

structing the 11 first cameras. However, in sequence engineRoom1 AgiSoft (2014) ad-

justs to the ground-truth more faithfully than our system, which enlarges the scale of

the inter-camera distances.

We have also validated the turntable sequence against ground-truth. This experiment

was taken in a similar way as the engineRoom sequences. A perfect circle was created

with the aid of a string and labels were stuck along the perimeter, where the platform

was placed when taking pictures. Therefore, the shape of the loop drawn by the camera

poses should be compared with an ideal circle. This comparison is shown in Fig 5.20,

where the ground-truth circle is in red.

The optimisation of our system for omnidirectional motion has been shown along this

chapter with the discussed results, specifically in Section 5.2.3. One sequence where the

robustness of our system is demonstrated specially is pipeline, in which the platform
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Figure 5.19: Detail of the comparison with Ground-Truth on engineRoom0 sequence.

Figure 5.20: Validation of turntable sequence against ground-truth

realises various motions typical of omnidirectional robots. Fig. 5.21 shows two sub-

sequences of the pipeline sequence. It can be appreciated in the sub-sequence on the

left that the robot moves forward as it changes its orientation. Changchang (2011) can

not reconstruct these camera poses within its reconstruction model. AgiSoft (2014)

does locate correctly the cameras, but with a less dense 3D structure. On the right

sub-sequence of Fig. 5.21 the platform performs a rotation as it moves sideways, and

then it changes abruptly of direction. Here Changchang (2011) estimates the camera

poses, but again with less 3D points.

For comparison purposes the camera poses reconstructed by Changchang (2011) and Ag-

iSoft (2014) in the pipeline sequence are respectively shown in Fig. 5.22a and 5.22b.

Note that in Fig. 5.22a the first 8 cameras of the sequence have not been reconstructed.
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Figure 5.21: Omnidirectional motions in pipeline sequence.

(a) Camera poses reconstructed
by Changchang (2011) in the pipeline
sequence.

(b) Camera poses reconstructed
by AgiSoft (2014) in the pipeline
sequence.

Figure 5.22: Camera poses reconstructed by state of the art softwares in the pipeline
sequence.

Compare the results of Fig. 5.22 with Fig. 5.2d.

The single case has been evaluated and validated in this section. With these results we

can now show how multiple reconstruction is performed by our system.

5.3 Multiple Case

This section evaluates the results achieved in the multiple reconstruction system de-

scribed in Chapter 4. This is done by showing the 3D information and camera poses

estimated by our multiple reconstruction system on two experiments8. These exper-

iments are the engineRoom sequence (described in Section 5.2.5) and an experiment
8In these experiments the feature detector used has been SIFT, as it is possible to take advantage

of the parallelisation of the feature detection step (see Section 4.2).
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conducted on the same scenario as the turntable sequence, where the robot completes

two laps around the objects piled up in the centre. This last experiment will serve

as a validation of our system for processing single reconstructions where the platform

revisits areas, generating loop-closures.

Apart from showing the merged reconstructions, the estimated loop-closures are com-

pared to the actual ones, and the RMS of the reprojection error for each experiment,

along with other data concerning the 3D visual reconstruction, are shown. A validation

against ground-truth is performed in the case of the engineRoom sequence.

5.3.1 Multi-Session Evaluation

The real overlaps between sequences engineRoom0 and engineRoom1, the detected over-

lap and the matched correspondences found with the overlap detected (by means of

recursive matching) are shown in Table 5.8. These matched correspondences will be all

the common information between sessions that our multiple reconstruction system will

have in order to find a global reference frame and a global scale for the 3D structures

and the camera poses of the two sessions of the experiment.

Real
Overlaps

Detected
Overlaps

Matches found by
recursive matching

engineRoom0 [70-75]
[74-76]

[74-76] = 73
[73-76] = 63
[72-76] = 40
[71-76] = 17engineRoom1 [76-86]

Table 5.8: Real overlaps between engineRoom0 and engineRoom1, and detected overlaps.
The matched correspondences found with the overlap [74-76] by recursive matching are also
shown.

Fig. 5.23 shows the 3D maps generated by each session in the engine display room, and

Fig. 5.24 shows the merged 3D map and camera poses of these sessions.

In Fig. 5.23 we can appreciate that each session is reconstructed with different scales.

In Fig. 5.24 both sessions have practically the same scale. Our multiple reconstruction

system resolves the problem of the scale with only one overlap, which generates barely

one hundred common 3D points between both sessions (see Table 5.8). The proportion

of common 3D points with respect to the total number of reconstructed 3D points
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(more than 200.000, see Table 5.9) is negligible, and shows how efficiently the overlaps

are managed by our system.

Figure 5.23: camera poses and 3D structure of the engineRoom0 and engineRoom1
sequences.

Fig. 5.25 compares the ground-truth camera poses by the estimated ones. Although

towards the end of the second session the scale is not maintained and the distances

between cameras are greater, the adjustment to the ground-truth is faithful in the rest

of the sequence. The second session accumulates the drift created in the first session,

but the distance between the reconstructed sessions are the same as in the ground-truth.

The behaviour of the camera poses at the end of the second sequence can be explained

by the dynamics of the recursive matching. The camera poses of the second session

keep the scale of the first session so long as they have some bundle in common with

the overlapping camera (in this case, the image 76) during the SfM process. Recursive

matching connects the bundles of the image 76 with the subsequent images of session 2

up to the image 90 (image 90 is located in the middle of the first turn). Therefore, from

image 90 on, images lose gradually their connection with the overlap, which produces a

change in the scale in the last images of session 2. Note that the scale s2 that minimises

the reprojection error in session 2 is different to the optimal scale s1 in session 1, and

therefore camera poses in session 2 tend naturally to s2 owing to the effect of BA

methods, if there is no constraint present.

Table 5.9 shows the reprojection error given by each sequence separately and by the

merged map, along with other statistics of the 3D reconstructions.
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Figure 5.24: Camera poses and 3D structure of the merged sessions. Since all the cameras
are joined by a line, there is a line joining the last camera of the first session and the first
camera of the second session
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Figure 5.25: Comparison between ground-truth and our results in the merged camera
poses of the engineRoom experiment.
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Projections 3D points 3D points
Deleted

Reproj.
Error.

engineRoom0 362756 104379 57957 1.57
engineRoom1 155809 45449 no inform. 1.18

engineRoom merged 688.798 209918 117614 1.52

Table 5.9: 3D structure statistics given by the sequences of the engine display room and
of the merged map of them.

Figure 5.26: Camera poses in the sequence turntable2.

5.3.2 Loop-Closings in Single Sessions

The multiple reconstruction system devised in this work can also be used for finding

loop-closures in single sessions, as described in Section 4.5. We have proved this by

doing an experiment on the same scenario as in the turntable sequence. Here the robot

realises two complete laps around the objects in the centre, so that multiple loop-closures

happen along the 189 images of the data-set.

Similarly to the engineRoom sequences, in this experiment every point where the robot

should take a picture was labeled on the floor, according to a circular perimeter. There-

fore the 94 images of the second lap should overlap with 94 images from the first lap.

Our system detects correctly 84 overlaps, incorrectly 8 and fails to assign an overlap on

2 images.

In Fig. 5.26 the estimated camera poses and part of the 3D structure are shown. The
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second lap is superimposed over the first lap, as it is expected to happen.
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Figure 5.27: Loop closing evaluation in the case r = 1.

Fig. 5.27 shows the adjustment of the camera poses on the second lap (in red) to the

camera poses in the first lap (green). Ideally, each camera from the second lap should

collide with its corresponding camera from the first lap, since the images in the second

lap were taken on the same spots as in the first. Note that the first camera of the first

lap is at (0, 0) (next to the first camera of the second lap) and that the second lap has

94 cameras, leading one camera of the first lap unmatched.

5.4 Summary

This chapter has evaluated and validated the performance of our system. A methodology

of evaluation has been established so that the results can be reproduced and our system

can be fairly compared with other softwares.

The single case has been studied over four experiments which intend to cover a range

of scenarios and types of motion. Different indices to measure the quality of the recon-

structions have been discussed. These indices show how our SfM system overcomes the

problem of high noise on JPEG images (Torr and Zisserman (1997)). The performance

of the filters devised and the feature tracking system developed is apparent when our

system is compared with state of the art softwares (AgiSoft (2014); Changchang (2011)).

With similar levels of reprojection error, our system obtains better results in terms of

3D structure and projections.
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The capability of our system to process ill-configurations created by omnidirectional

motion is shown throughout the evaluation of the four experiments exposed. Never-

theless we have shown details of estimated camera poses that specifically correspond to

omnidirectional motions.

The reliability of our system on estimating camera poses (and therefore performing

visual odometry) has been validated by comparing our results against ground-truth

data-sets. In addition, a study on the contribution of the post-process phase, as well as

the computational times taken by each stage have been done.

The management of loop-closures found by our multiple reconstruction system has also

been evaluated with two representative experiments. We have shown the efficiency

of our system in merging different 3D maps and sequences of cameras with minimal

overlaps. This result contrasts with the methodology of Zhang et al. (2010), which

needs sub-sets of sequences to merge different sequences. Here we show a comparable

multiple achievement using lesser constraints on the formulation of the input image set

from multiple concurrent robots within the environment against the prior work of Zhang

et al. (2010).
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Chapter 6

Conclusions

In this chapter the summary and conclusions of this work are detailed. We first list the

our contributions and then highlight future developments that can extend the present

work.

6.1 Contributions

House-hold mobile devices can take advantage of 3D vision techniques for their nav-

igation and mapping. We believe we have made a contribution towards this goal by

completing the two research questions stated in Chapter 1: the development of a SfM

system over low-cost omnidirectional motion robot and its extension to a multiple in-

stances in order to obtain distributed 3D reconstruction.

A full SfM process system for low-budget omnidirectional platforms

The first research question, which challenges the accomplishment of SfM on low-quality

imagery and inter-image ill-configurations, has been answered with the development

and implementation of a SfM pipeline on a low-cost omnidirectional platform.

We have developed a full SfM system which deals with the main problems derived from a

low-cost omnidirectional robot: all possible types of motions are covered, including those

which generate pathological epipolar configurations. Low quality sensors are handled

by addressing the noise created by them and the resulting scarce matching populations.

More specifically, the achievements of our single SfM system can be summarised in three

aspects: ill configurations, noise and Scarce matching populations.
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Ill configurations:- The omnidirectional nature of the platform chosen for our experi-

ments may produce pathological inter-image configurations, which are aggravated by

the ever present noise. This imposes ill-conditioned problems for the estimation of the

epipolar geometry (Vidal and Oliensis (2002)) which, in combination with the noise

filters and the feature tracking system, is overcome by robust estimators of the relative

pose between consecutive images and a efficient application of BA techniques. SfM

has not been performed on omnidirectional platforms before (Bonin-Font et al. (2008);

Fraundorfer and Scaramuzza (2012); Scaramuzza and Fraundorfer (2011)).

Noise:- Noisy sequences, produced by the inevitable JPEG compression that occurs on

the wireless streaming of the images are addressed with light but efficient filters, which

cope with levels of noise not found before in the literature (Gang and Reinhard (2005);

Ruiz et al. (2006); Torr and Zisserman (1997)).

Scarce matching populations:- The scarcity of features generated by ruling out noisy

corresponding points is coped with by a novel feature tracking system, which handles

the sparse populations of matches and any remaining noise by an efficient management

of the bundles of features that every 3D point creates. This feature tracking systems is

integrated in an incremental SfM pipeline (Hartley and Zisserman (2004)), and gener-

alises the work of Rohith et al. (2013) to any type of scenario.

A multi-session reconstruction system

We extend this SfM system for group of robots by means of an efficient use of the

loop-closures created between. With this distributed system we address the second

research question, which seeks to attain collaboratively 3D reconstructions from multiple

platforms transiting a given scene.

The distributed reconstruction system devised merges the individual 3D maps of each

robot into a single one by means of finding the loop-closures between the scenes viewed

by each robot (Cummins and Newman (2011)). In terms of multiple reconstruction,

our system resolves the global scale problem with minimal overlaps. This is obtained

thanks to the common bundles created between different sessions when matching the

loop-closures. With these bundles we are able to transmit the scale of a session into

another, which leads to a global scale throughout all the sessions. We demonstrate

the performance of this system in the two-session case. This result extends the work
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of Zhang et al. (2010) which requires overlaps between stretches of sequences. Our

multiple reconstruction system shows comparable results by using lesser constraints on

the formulation of the input image set from multiple concurrent platforms within the

environment against the prior work of Zhang et al. (2010).

6.2 Future Work

In this section we revise the aspects where we believe the present work can be extended

and improved.

Improvement the of feature tracking system

The feature tracking system developed in this work can be improved further to be more

tolerant to noise. If the filter f1, described in Section 3.6, detects in an image two

different features belonging to the same bundle, it deletes the bundles involved. It

would be more optimal if it only removed the features detected. In addition, if the

filter f1 had a threshold to allow two features which are close enough to be assumed the

same, it would account better for noisy measurements, and the feature tracking system

would be more robust against noise.

Blur detection for Key-frame selection

Due to the specific motion of the robot and lags that may be produced in the wireless

network, a significant amount of images streamed by the platform are blurred or are

incomplete. Blur detection (an open problem in image processing, see Koik and Ibrahim

(2013)) can be applied to the streamed images in order to rule out faulty images and

apply SfM directly over the streaming video.

SfM in real time

As described in Section 2.6, there exist methods which attain real time reconstructions,

most of them based on GPU hardware (Forster et al. (2014); Klein and Murray (2007);

Newcombe et al. (2011)). This work has not been optimised for real time requirements,

and we believe that GPU could be used to speed up processes, such as matching and

feature tracking. Additionally, a more profound study of the multi-thread configuration
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of this system will help to achieve a more concurrent efficiency between the main thread

and the global BA thread.

Wheel odometry and wireless signal

Although the wheel odometry realised by the platform is highly unreliable, it is possible

to extract some information out of it if an appropriate Kalman filter is applied to it

(Wan and Merwe (2001)). This could be used for fixing a bounding box on the possible

locations of a given camera, saving computation time to the optimisation methods.

Equally, the Rovio can provide a rough measurement of the signal of the wireless present

in a given place. We could take advantage of the present literature on this field (Herrero

and Martínez (2011)) in order to ease the camera pose estimation.

Distributed reconstruction

The multiple reconstruction performed in this work can be extended in many ways.

To begin with, multi-robot reconstruction can be effectively achieved by implementing

direct encounters recognition (Kato et al. (1999); Kim et al. (2010); Kurazume et al.

(1994)). This can again be performed by applying FABMAP (Cummins and Newman

(2011)) on the platforms or another machine learning technique. In addition, our system

can easily be extended to enable loop-closures within a given session (i.e. any robot of a

group can revisit areas of the scene, and the system process those loop-closures within

the multiple reconstruction system).

Furthermore, collaborative strategies can be developed to optimise the area covered by

each robot(Zavlanos et al. (2011)) . There are many aspects in this field to be tackled:

decision planning, motion planning, the consensus problem, communication between

robots (Kato et al. (1999); Ren et al. (2005); Zhu and Yang (2010)), etc.
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Appendix A

Structure from Motion - a
Geometric Overview

This appendix defines a nomenclature for the Structure from Motion (SfM) method and

provides a general overview of the SfM process. In addition, a background in projective

geometry is given, since knowledge in this field is mandatory when working in 3D Vision.

Homogeneous coordinates, necessary to operate in projective geometry, are introduced

first. Secondly, the capture of the 3D world in an image is explained by developing

the concepts of pinhole camera model and camera matrix. When the model of the

camera is known, normalised coordinates can be used, so that the algebraic structures

implemented in this work are transparent to the type of camera deployed. The core of

the appendix is reached at the explanation of the epipolar geometry, crucial for a full

understanding of the SfM method.

The epipolar geometry is produced by the specific geometric configuration created be-

tween two images viewing the same portion of a scene. This inter-image configuration

will be studied in detail throughout this appendix. This particular geometry allows us to

extract the fundamental matrix, which encodes the camera motion information between

two images and the intrinsic characteristics of the camera. If the intrinsic configuration

of the camera is known, the essential matrix can be extracted and with it the relative

motion between two cameras. A linear solution for the estimation of the relative motion

in ideal conditions is presented. This method will give insights as to what challenges are

encountered in real robot navigation situations. This estimation of the relative motion

highlights the scaling limitation of the SfM method. This is addressed as the problem
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A. STRUCTURE FROM MOTION - A GEOMETRIC OVERVIEW

Figure A.1: The pinhole camera. Source: Wikipedia (2015c).

of the scale, which is solved by applying resection. Once the motion in a sequence of

cameras has been retrieved the structure can be reconstructed by triangulation. Finally

Bundle Adjustment, a non-linear method which simultaneously refines the estimation

of the camera poses and structure, is introduced.

In order to fully explain the SfM process we first need to introduce some basic concepts

which are applied in projective geometry, such as homogeneous coordinates.

A.1 Homogeneous Coordinates

Projective geometry makes use of homogeneous coordinates, which we define as follows.

Given a vector x ∈ Rn the homogeneous vector of x is a vector x̃ ∈ Rn+1 whose first n

coordinates x̃i are proportional to the coordinates xi of x, x̃i = kxi, i = 0 . . . n, k ∈ R.

The last coordinate of x̃ is the scalar k. More specifically, if n = 2, the homogeneous

point x̃ of a Cartesian point x = (x, y) is defined with the coordinates (x̃, ỹ, z̃) =

(xk, yk, k), k ∈ R. This relationship can be expressed in a matrix form as:-

k

 x
y
1

 =

 x̃
ỹ
z̃

 (A.1.1)

Note that even though x̃ ∈ R3, it only has two degrees of freedom, since the third is

fixed by k, which is arbitrary. Homogeneous coordinates have the advantage that formu-

lae involving them are often simpler than their Cartesian (also called inhomogeneous)

counterparts. The use of them and its implementation is convenient in computer vision,
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A.1 Homogeneous Coordinates

for it allows to combine common operations such as translation, rotation, scaling and

perspective projection in a concise and ordered manner.

As an example, let us consider a rigid body represented by the vector X = (x, y, z)T .

If we apply an Euclidean transformation to X, this transformation will be given by a

rotation matrix R and a translation t. In inhomogeneous coordinates, this rotation and

translation on X would be expressed by a column vector X′:-

X′ = RX + t (A.1.2)

However if we add the homogeneous coordinate to X so that X̃ = (x, y, z, 1)T then we

have:-

X′ = [R | t] X̃ (A.1.3)

where [R | t] is a matrix created with the columns of R plus the column vector t.

The homogeneous representation allows to set linear systems and develop algebraic

algorithms in a neat manner which otherwise would be cumbersome to address.

Additionally, and not less importantly, the coordinates of points at infinity can be

represented by using homogeneous coordinates. There is no Cartesian equivalence for

the homogeneous triplet (x̃, ỹ, 0); these points are the points at infinity. Therefore,

homogeneous notation allows us to work seamlessly with points located at infinity.

This is a necessary property in projective geometry, because often entities at infinity

are projectively mapped to a finite point. Examples of these entities are the horizon or

the vanishing points, which adopt a measurable value when projected to an image.

Likewise column vectors and following Eq. A.1.1, in matrix algebra homogeneity affects

the scale of the matrix elements. Therefore two homogeneous matrices A and B are

equivalent if A = kB, k ∈ R. In a similar way to column vectors, this up to scale equiv-

alence drops one degree of freedom in the elements of a matrix. Hence a homogeneous

matrix n× n has n× n− 1 degrees of freedom, since the scalar k is unimportant.

Homogeneous coordinates are used when modelling the projection of the 3D world on

to an image. This process is called camera calibration.
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Figure A.2: The geometric camera model. The principal optical axis z intersects the
image plane at the principal point p. The projection x of X on the image plane is done
by joining X and C. Source: Hartley and Zisserman (2004).

A.2 Camera Calibration

When it comes to recovering the 3D structure of objects from images taken by a camera,

the first question that emerges is: What information about the world is in an image and

how is it kept? To answer this we need to define a model of the camera. Most planar

projections in cameras can be modelled by the pinhole camera model.

The pinhole camera model

As shown in Fig. A.1, the pinhole camera model assumes that light arrives to the camera

through a pinhole (also called focus) and is projected on the image plane. The distance

between the pinhole and the image plane is the focal length, f . The pinhole camera

model is the best common camera model used to represent the projection of the world

into a camera image (Faugeras (1993)). For the sake of clarity, and without loss of

generality, the geometric model places the image plane before the focus, as Fig. A.2

illustrates. The pinhole camera model is essentially represented by the intrinsic matrix

which represents the projection from the 3D world to the 2D image plane.

A.2.1 The Intrinsic Matrix

We will derive the configuration of the intrinsic matrix with the aid of Fig. A.2. Let

O in Fig. A.2 be the coordinate frame and p the intersection of z−axis with the image

plane. The point X has coordinates (X,Y, Z) with respect to O. The point x is the

projection of X on the image plane, and it has (x, y) as image coordinates with respect
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A.2 Camera Calibration

to p. The point C is the origin of O, and it is also called in the literature centre of

projection (COP). From Fig. A.2 is easily deducible that:-

x = f
X

Z
, y = f

Y

Z
(A.2.4)

However, digital cameras usually present the origin of coordinates at the upper-left

corner. Also, the focal length varies for each axis, yielding to f1 for the x−axis and f2
for the y−axis. Therefore, the correct transformation from world coordinates to image

coordinates must be expressed as:-

x = f1
X

Z
+ x0, y = f2

Y

Z
+ y0 (A.2.5)

where (x0, y0) are the coordinates of the point p with respect to a coordinate frame with

origin at the upper-left corner of the image. Eq. A.2.5 can be expressed in homogeneous

coordinates as:-

Z

 x
y
1

 =

 f1 0 x0
0 f2 y0
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0



X
Y
Z
1

 (A.2.6)

LetO′ be another world coordinate frame, with origin at some pointC′. The translation

from C to C′ is expressed by the column vector t, and the rotation from the initial

coordinate frame O to O′ is represented by the rotation matrix R. The same point as

above X has coordinates (X ′, Y ′, Z ′) with respect to O′, and the relationship between

both coordinate frames is:-


X
Y
Z
1

 =

[
R t
0T 1

]
X ′

Y ′

Z ′

1

 (A.2.7)

where 0 denotes a null 3-vector. Therefore, the transformation of a point from any

coordinate frame into image coordinates has the form:-

Z

 x
y
1

 =

 f1 0 x0
0 f2 y0
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

[ R t
0T 1

]
X ′

Y ′

Z ′

1

 (A.2.8)
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We denote:-

K =

 f1 s x0
0 f2 y0
0 0 1

 (A.2.9)

where the element k12 = s is called skew. This parameter, s is zero in most of the cam-

eras, although it may be significant in case there is a skewing of the pixel elements in the

camera array, so that the x−axis and y−axis of the image plane are not perpendicular.

This is admittedly very unlikely to happen.

Eq. A.2.8 can be written more concisely:-

Z

 x
y
1

 = K [R | t]X′ (A.2.10)

where X′ denotes the homogeneous coordinates of the point X under O′ frame coor-

dinates. The matrix K [R | t] is usually called projection matrix.

The upper-triangular matrix K is called the intrinsic matrix, as it accounts for the

specific optics of the camera1, the intrinsic parameters. The matrices R and t contain

the extrinsic parameters i.e. the information regarding the exterior orientation of the

camera with respect to a global coordinate frame. In the literature, the process of

estimating the extrinsic and intrinsic parameters of a camera is usually denominated as

camera calibration (Ma et al. (2003)).

The camera model, in the form of the intrinsic matrix, allows us to define the normalised

coordinates, which will simplify the equations employed.

A.2.2 Normalised Coordinates

Given the homogeneous image point x = (x, y, 1) in Fig. A.2 we define the normalised

coordinates2 x̄ as the homogeneous coordinates given by:-

x̄ = K−1x (A.2.11)

1Except for the radial and tangential distortions introduced by the lens of the image sensor, which
are addressed in Chapter 3.

2In the literature they are also denoted as retinal coordinates.
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Figure A.3: The central projection between planes π and π′ is produced by projecting
along rays through a common point O (the centre of projection, COP). Source: Hartley
and Zisserman (2004).

The normalised coordinates and the homogeneous image coordinates would coincide if

the intrinsic matrix of the camera was the identity matrix, I. The normalised coordi-

nates is a convenient transformation that allows us to express points in the image with

respect to the frame coordinate of its corresponding camera. Additionally, the algebraic

constructions created with normalised coordinates are transparent to the type of camera

used.

Since in this work the intrinsic parameters of the image sensor remain constant for each

robot (the focal length is constant over image sequences), the normalised coordinates

will be used instead of image coordinates unless stated otherwise. In fact, we can

simplify further Eq. A.2.10 which leads to the definition of the camera matrix.

A.2.3 The Camera Matrix

Eq. A.2.11 combined with Eq. A.2.10 yields:-

x̄ = [R | t]X′ (A.2.12)

We introduce now the camera matrix P = [R | t] so that Eq. A.2.12 becomes:-

x̄ = PX′ (A.2.13)

Throughout this work we will be using Eq. A.2.13 for denoting camera poses. Eq. A.2.13

encodes all the algebraic transformations that take place from a 3D world point to its

projection on an image, as the optics of the camera have been taken into account by
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the normalised coordinates x̄. For convenience, from now on we will refer to normalised

coordinates as x unless said otherwise.

Both homogeneous and normalised coordinates, along with the intrinsic and the camera

matrices K and P, are constructions employed in projective geometry and multiple view

geometry, and more specifically, in the SfM problem. Homogeneous matrices are used

to define the epipolar geometry between two images, and K and P play a central role

in the reconstruction of a scene. In the following sections (Sections A.4 to A.6) the

resolution of a general SfM is derived with the help of the concepts introduced here.

A.3 Homographies

The derivation of the epipolar geometry between two images involves the understanding

of homography, an algebraic transformation often used in projective geometry. In this

section the concept of homography is introduced, along with a succinct classification of

homographies and a brief discussion of each type.

In projective geometry, a homography is defined as a transformation mapping usually

referred to as projections. Here we will describe homographies as projections between

two sets of points lying on planes, but their properties are easily translatable to sets of

3D points or other algebraic structures.

Let X = {xi}, X′ = {x′i}, i = 0 . . . n be two sets of homogeneous 2D points. We can

freely assume that each set lies on a different plane in the 3D space (see Fig. A.3). A

homogeneous non singular 3 × 3 matrix H is a homography between X and X′ if and

only if x′i = Hxi ∀ i ∈ {0 . . . n}. In geometric terms, H is projecting X into X′. There

are four main groups of homographies according to the geometric properties which are

preserved under transformation in each case (Hartley and Zisserman (2004)):-

1. Projective transformations (or projectivities) preserve collinearity, intersections,

tangency and order of contact. In a projectivity neither angles nor parallel lines are

preserved. To put it in simple terms, a general quadrilateral would be a projective

transformation of a square. A projectivity HP has 8 degrees of freedom (dof): the

8 ratios of the elements of HP, since scale is unimportant in a homogeneous matrix.

HP =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 (A.3.14)
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dof : {h11 : h12 : h13 : h21 : h22 : h23 : h31 : h32 : h33}

2. Affine transformations preserve in addition parallel lines and ratio of areas. The

affine transformation of a square would be a rhombus. The last row of an affine

transformation HA is (0, 0, 1) and therefore it has 6 degrees of freedom. The last

column of HA (tx, ty, 1)T accounts for the translation between the two sets of

points.

HA =

 h11 h12 tx
h21 h22 ty
0 0 1

 (A.3.15)

dof : {h11 : h12 : h21 : h22 : tx : ty}

3. Similarities preserve additionally angles and ratio of lengths. The similarity trans-

formation of a square would be another square in a different pose and scale. In

addition to the last row (0, 0, 1) fixed, in a similarity HS the upper left 2× 2 sub-

matrix is a planar rotation matrix multiplied by a scalar k. Since in 2D a rotation

is defined by an angle of rotation θ, HS has thus 4 degrees of freedom, accounted

for θ, k and the two parameters of the translation vector.

HS =

 k cosθ −k sinθ tx
k sinθ k cosθ ty

0 0 1

 (A.3.16)

dof : {k : θ : tx : ty}

4. Euclidean transformations also preserve length and area. The euclidean transfor-

mation of a square would be the same square rotated. In an euclidean transfor-

mation HE there is no scale between sets (k = 1) so HE has 3 degrees of freedom:

θ, tx and ty.

HE =

 cosθ −sinθ tx
sinθ cosθ ty

0 0 1

 (A.3.17)

dof : {θ : tx : ty}

Every transformation down the list is a subset or specialisation of the previous one.

Therefore each type of homography preserves all of the geometric properties from those
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Figure A.4: The epipolar geometry. The camera centres C and C ′, and the point X lie
on the same plane π. Source: Hartley and Zisserman (2004).

preceding it, in addition to the characteristics specifically preserved by the transforma-

tion itself. On the other hand it is demonstrated that a given transformation can be

decomposed as a product of its specialisations (Hartley and Zisserman (2004)).

A remark regarding the matrices introduced in Section A.2 is in order here, so that the

geometric transformation that each matrix signifies may be understood better. Note

that the camera matrix P in Eq. A.2.13 represents an Euclidean transformation in a

three dimensional space, with rotation R and translation t. The intrinsic matrix K in

turn can be thought of as a planar affine transformation. The affine transformation

performed by K would be the combination of a translation by a vector (x0, y0)
T , a 2D

scaling by the scalars fx, fy and a shear s. It is said above that the combination of

specialised homographies can explain more general geometric transformations, and Eq.

A.2.10 is an example of this. Eq. A.2.10 shows that the effects of R, t and K altogether

produce a projective transformation, as indeed it is the projection of an object from the

3D world onto the 2D plane of an image.

In each group of homographies there are special cases which have received particular

attention from researchers (Hartley and Zisserman (2004)). For example, the projection

depicted in Fig. A.3 is called central projection and it is a type of projectivity. A central

projection is generated when the mapping between two planes is determined by lines

concurrent to a central point O. This type of projection will be specifically employed

in Section A.4.1.

Homographies are extensively applied in multiple view geometry. In this work homogra-
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A.4 The Epipolar Geometry

Figure A.5: The projection x is transferred to x′ through the homography Hπ. The pro-
jection y′

π of Yπ lies on the epipolar line l′. Source: partially from Hartley and Zisserman
(2004).

phies are used as an algebraic tool to express the geometric transformations undergone

in the case of two images viewing the same scene, referred to as epipolar geometry.

A.4 The Epipolar Geometry

As its name indicates, the SfM method retrieves 3D structure out of the motion of a

camera transiting a given scene. We focus first on the simple case of two images, which

can be seen as two pictures of the same scene taken by a camera as it is displaced (see

Fig. A.4). The first step of the method is to extract the camera pose of each image of

the pair. This is achieved by applying the algebraic equations and properties yielded

by the particular configuration between these two images, called epipolar geometry. In

this section these equations are derived and their implications discussed.

Fig A.4 illustrates the layout of this problem with the point X being projected into

two images at the image coordinates x and x′. Since x and x′ are corresponding views

on different images of the same 3D world point X it is said that they form a point

correspondence. Section 3.4 elaborates the concept of correspondence in detail.

The specific characteristics of this configuration define the epipolar geometry between

two images. To describe the problem in algebraic terms a camera frame is placed for

each image. In Fig. A.4 the origins of each camera frame are placed on C and C′. The

z−axis of each coordinate system is orthogonal to its image plane.

The epipolar geometry consists of the relationships which arise from the COPs C and

C′, the pointX and its projections x and x′, being all these entities coplanar: Fig. A.4
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shows that X, C and C′ create a triangle. x′ and x are located on two sides of this

triangle, and the remaining side is the baseline i.e. the line C′C. The intersection of

the baseline with each image is called epipole. In Fig. A.4 the epipoles are referred to

as e and e′. The lines l and l′ that connect the epipoles with the projections of X

are called epipolar lines, and the plane π that contains the triangle ĈXC′ is named

the epipolar plane. Note that the projection on the left image of every point contained

by the ray XC′ falls on the epipolar line l = ex, and vice versa. In fact, any point

belonging to the plane π projected into the images will fall on the epipolar lines l and

l′.

This particular geometric configuration allows us to determine an algebraic relationship

between the two images, and to express it in the form of a homogeneous matrix. This

matrix is called the fundamental matrix.

A.4.1 The Fundamental Matrix

We will define the fundamental matrix with the aid of an auxiliary plane, as shown

in Fig. A.5. The only condition imposed upon the auxiliary plane π is that none of

the COPs C or C′ can belong to π. Let w = {xi,x′i}, i = 0 . . . n be a set of 2D

point pairs in both images that correspond to the projections of the set of world points

W = {Xi}, i = 0 . . . n. The set w is a group of corresponding features. An element

{xi, x′i} of w is called point correspondence. W is the set of 3D points simultaneously

seen by the two images.

Let {x, x′} any pair of corresponding homogeneous 2D points of the set w andX ∈W

the inhomogeneous 3D point seen by this pair. Since x and x′ are connected through

X, we can say that x is transferred to x′ via the plane π (Fig. A.5). Algebraically

this transfer is justified as follows. Since X belongs to the plane π it is possible to

see the coordinates of X as the homogeneous 2D coordinates with respect to some 2D

coordinate frame of π. We can therefore treat X as a homogeneous 2D point which

belongs to π. The projection from plane π to the left image is a central projection

(see Fig. A.3), and therefore there is a 2D homography H which relates X and x,

such that x = HX. Similarly, there is a 2D homography H′ which relates X and x′,

such that x′ = H′X. Hence there is a 2D homography Hπ mapping x to x′ since
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x′ = H′X = H′H−1x:-

x′ = Hπx (A.4.18)

where Hπ = H′H−1.

Following a vectorial representation of a line (see Appendix B, Eq. B.2.5) the epipolar

line l′ in Fig. A.5 can be expressed as the cross product of the two points e′ and x′, for

both belong to l′. Therefore:-

l′ = e′ × x′ =
[
e′
]
x
x′ (A.4.19)

where [e′]x denotes the skew-symmetric matrix derived from the column vector e′ =

(e′1, e
′
2, e
′
3)
T (Appendix B.1). The application of the Eq. A.4.18 to this result yields:-

l′ =
[
e′
]
x

Hπx = Fx (A.4.20)

where F = [e′]x Hπ is called the fundamental matrix. Proceeding analogously with the

left epipolar line l = e × x = [e]x x, and x = H−1π x
′ yields l = [e]x H−1π x

′. One may

verify that [e]x H−1π = FT and therefore l = FTx′.

Eq. A.4.20 holds for the whole set W . To demonstrate this, let Y ∈W be a inhomo-

geneous 3D point which does not lay on the plane π. For the sake of clarity in Fig. A.5

the projection of Y lies on the same epipolar lines as X, but this argument also applies

if points projecting to different epipolar lines are picked.

Even though Y is not on the plane π the line joining C and Y will intersect the plane

π at the point Yπ (see Fig. A.5). Note that y′π lies on the epipolar line l′ since Yπ also

belongs to the epipolar plane defined by ĈXC′. Eq. A.4.18 becomes y′π = Hπy, where

y and y′π are the projections of Yπ on the left and right images respectively. Since y′π
lies on l′ we can write l′ = e′ × y′π = [e′]x y

′
π and subsequently l′ = [e′]x Hπy = Fy.

Note that in Eq. A.4.20 F maps points from one image to epipolar lines in the another.

Since [e′]x has rank 2 and Hπ has rank 3, F has rank 2. Therefore det (F) = 0. Also,

since F is derived from a projectivity, F is a homogeneous matrix, and it has an overall

scaling. Hence F has 7 degrees of freedom, accounted for by the 8 ratios between the

elements of F minus one degree of freedom fixed by the equation det(F) = 0.

The most important feature of F is that it correlates point correspondences {x, x′} via
the epipolar equation.
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The Epipolar Equation

Since x′ is on l′, we can write x′T l′ = 0 (see Appendix B, Eq. B.2.5), which with Eq.

A.4.20 leads to:-

x′
T

Fx = 0 (A.4.21)

Eq. A.4.21 is the epipolar equation, and it allows us to relate two corresponding images

without reference to their camera matrices. F is used when working with uncalibrated

images (intrinsic matrix K unknown), and its application on SfM leads to a projec-

tive reconstruction i.e. a 3D reconstruction where neither angles nor parallel lines are

preserved and the scene appears distorted.

Since e′ belongs to all the epipolar lines l′i, i = 0 . . . n we can write e′T l′i = 0, i = 0 . . . n.

According to Eq. A.4.21, we thus have e′TFxi = 0 for all xi, i = 0 . . . n. It follows that

e′TF = 0, i.e. e′ is the left null-vector of F. Likewise Fe = 0 and e is the right-null

vector of F.

Eq. A.4.21 is mostly used to estimate F, by means of known point correspondences (this

process is described in next section), and to estimate the accuracy of a given F′ over a

set of point correspondences, by calculating how close to 0 the product x′TF′x is. This

product is usually called epipolar error.

F as correlation between points and lines

The relationship created by F is weak and unstable. As it has already been highlighted,

F projects a point from one image to a epipolar line that contains its correspondence in

the other image, i.e l′ = Fx and l = FTx′. In order for these equivalences to hold it is

only necessary that x and x′ belong to l and l′ respectively. This condition was used

in the discussion of the epipolar relationships induced by y′π.

To illustrate this idea, let us consider two different pairs of correspondences
{
x1, x

′
1

}
and

{
x2, x

′
2

}
which lie on the same epipolar lines i.e. xi ∈ l, i = 1, 2 and x′i ∈

l′, i = 1, 2. Therefore we have (x′1)T l′ = (x′1)TFx2 = 0, since x2 belongs to l and thus

l′ = Fx2. Similarly, (x′2)TFx1 = 0.

These results show that F will not “notice” one point from another so long as the points

lie on the same epipolar line. This means that the operation l = Fx can not be inverted

and it is a consequence of F not being of full rank (F it is not invertible). This has
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serious implications when estimating F from corresponding points, for every feature

corresponding error along the epipolar line is not penalised. Therefore, the estimation

of F is an ill-conditioned problem. This is a major issue when estimating the epipolar

geometry and robust filters and non-linear minimisation algorithms are required as soon

as noise appears in the images. Specifically, noise has been one of the main obstacles to

achieve SfM in this work. Section 2.2 explains how the type of noise that this work has

addressed is produced, and shows that significant research has been devoted to minimise

the effect of noise in the estimation of F. In Chapter 3 the algorithms devised in this

work to overcome the problem of noise are described, so that the state of the art works

(Chang and Hebert (2002); Thomas and Oliensis (1999); Vidal and Oliensis (2002)) are

extended to cope with the levels of noise encountered in this case.

The irreversibility in the estimation of F makes its recovery from image correspondences

a difficult task. At the same time, it is the very kernel of the whole SfM process, so it

has brought about many studies about its characteristics and ways of estimation (Zhang

(1998)). Many of the methods reviewed in Section 2.6.2 try to propose rapid and robust

solutions to work around the weak relationship created by F.

The weak relationship established by F can be narrowed down if the intrinsic parameters

of the cameras are known. In this case (where the two images of study are calibrated)

the matrix which governs the epipolar geometry is the essential matrix.

A.4.2 The Essential Matrix

We have established an algebraic relationship between two uncalibrated images viewing

the same scene, by means of the existent projective relationship between them. However

it is still possible to establish a more narrow relationship between frames, provided that

we know the mathematical projection model of the camera. This relationship will be

expressed by a matrix similar to the fundamental matrix, called essential matrix.

Let us redefine the points x and x′ as the normalised coordinates of X with respect

to the camera frames C and C ′ respectively. Let the respective camera matrices of

the cameras in Fig. A.5 be P = [I | 0] and P′ = [R | t]. The rotation matrix R is

the rotation from the right camera to the left camera, and the translation column

vector t is the translation from the right camera to the left camera, coincident with the

baseline C′C. Since x and x′ are the views corresponding to X and are expressed in

terms of their camera frames, according to Eq. A.2.13 it follows x = PX = X and

191



A. STRUCTURE FROM MOTION - A GEOMETRIC OVERVIEW

Figure A.6: Geometrically the triple scalar product can be expressed as a · (b × c).
Consequently the scalar product is the signed volume of the parallelepiped created by the
vectors a, b and c. The cross-product (b× c) represents the base of the parallelepiped and
a represents the height of the parallelepiped. If the three vectors happen to be coplanar
the height of the parallelepiped is zero and so is the triple scalar product. Source: partially
from Wikipedia (2015a).

x′ = P′X = [R | t]X = [R | t]x. Therefore x and x′ are related by a rigid-body

transformation in the following way (as illustrated in Fig. A.5):

x′ = Rx+ t (A.4.22)

Taking the cross product of both sides with t (see Appendix B.1, Eq. B.1.3) in order to

eliminate it on the right hand side yields:-

[t]xx
′ = [t]xRx (A.4.23)

The dot product of both sides with x′ leaves:-

x′
T
[t]xx

′ = x′
T
[t]xRx = 0 (A.4.24)

The expression x′T [t]xRx can be seen as a scalar triple product between vectors x′, t

and Rx (see Appendix B, Eq. B.1.3). The triple scalar product represents the signed

volume of the parallelepiped created by three vectors, as shown in Fig. A.6. In this

case, the vectors considered x′, t and Rx are coplanar, as it is easily deducible from

Eq. A.4.22. The co-planarity of x′, t and Rx leads Eq. A.4.24 to equal zero, as the

parallelogram defined by them would be flat and have no volume (see Fig. A.6). Another

way to justify this equality is that as [t]x is skew-symmetric, it returns 0 when pre- and
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post- multiplied by a column vector (see Appendix B, Eq. B.1.4), in this case x′, as it

happens on the left side of Eq. A.4.24.

Therefore the epipolar geometry can be expressed again in normalised coordinates:-

x′
T

Ex = 0 (A.4.25)

where the matrix

E = [t]xR (A.4.26)

is the essential matrix. Note the similarity between Eq. A.4.25 and Eq. A.4.21. It

is possible to relate the fundamental matrix F and the essential matrix E by means

of Eq. A.2.11. Applying the relationship between normalised coordinates and image

coordinates to Eq. A.4.21 yields:-

x′
T

KTFKx = 0 (A.4.27)

which gives:-

E = KTFK (A.4.28)

In fact, E can be thought of as a fundamental matrix of a camera whose intrinsic matrix

is the identity matrix, I.

The essential matrix has the same properties as F, and it also satisfies the additional

condition that its two singular values 3 are equal, (the third one being 0 as E is singular).

E has 5 degrees of freedom ( 3 for R plus 3 for t minus the scaling factor).

The essential matrix can be computed when the intrinsic parameters of the camera

are known. Its computation enables the Euclidean reconstruction of a scene, i.e. a

reconstruction where right angles and parallel lines are preserved. The estimation of

the essential matrix, which solves the epipolar geometry of two overlapping images,

can be performed via the epipolar equation if enough number of point correspondences

between the two images are known.

3The singular values of a real matrix A are the square roots of the eigenvalues of the product ATA.
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A.4.3 Estimation of the Epipolar Geometry

A linear method for the extraction of the epipolar geometry is presented here. This

method is explained for the estimation of E, but it can be equally applied for obtaining

F.

Eq. A.4.25 is the starting point of the estimation of E. In order to estimate E we

make use of the feature correspondences between two images: given a set of n ho-

mogeneous image correspondences {xi,x′i} , i = 0 . . . n, where xi = (xi, yi, 1)T and

x′i = (x′i, y
′
i, 1)T , the element-wise version of Eq. A.4.25 is expressed as:-

xix
′
ie11 + yix

′
ie12 + x′ie13 +

xiy
′
ie21 + yiy

′
ie22 + y′ie23 +

xie31 + yie32 + e33 = 0
(A.4.29)

for i = 0 . . . n. The unknowns eij are the elements of E. Therefore, we set out a linear

system AĒ = 0 with a n×9 coefficient matrix A and a 9×1 column vector of unknowns

Ē. A is made up of the coefficients of eij in Eq. A.4.29, and Ē is the stacked column

vector of E. Since E is homogeneous (the scale is not significant) and we need to avoid

the trivial solution given by the null 9 × 1 column vector, we can impose on E to be

unitary, ‖Ē‖ = 1. Therefore we are interested in the unitary subset of the null space of

A. It is proven that the solution for AĒ = 0 subject to ‖Ē‖ = 1 is obtained by applying

Singular Value Decomposition (SVD) to A: if A = UΣVT then the solution Ē is the

last column of V (Hartley and Zisserman (2004)).

It is noticeable in Eq. A.4.29 that some coefficients of eij are product of two coordinate

values whereas others are just one coordinate (or even the identity). For comparable

noise in correspondence measurements the terms that are products of two measurements

have their noise amplified. This causes that points with large coordinates have greater

influence that others that are closer to the image centre.

To avoid this behaviour Hartley (1997) proposes a normalisation of the set of corre-

spondences by scaling and translating the sample so that the mean of the distribution

of correspondences becomes 0 and the variance is unity. Hence the new distributions of

the coordinates of {xi} , i = 0 . . . n are:-

x̃i = s (xi − µx) , ỹi = s (yi − µy) (A.4.30)
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where
∑

i x̃i =
∑

i ỹi = 0 and
∑

i x̃
2
i +

∑
i ỹ

2
i = 2n. The global variance s is estimated

as:-

s =

√
2sxsy√
s2x + s2y

(A.4.31)

These transformations also apply to the coordinates of {x′i} i = 0 . . . n.

Once the normalised essential matrix Ẽ is computed, E can be recovered as E = T′T ẼT,

where x̃i = Txi, x̃′i = T′x′i.

Since E has 5 degrees of freedom, one may think that it is only necessary to have 5 good

pairs of correspondences in order to set out a linear system and recover E. There exist

algorithms that manage to estimate E out of only 5 pairs of correspondences (Nister

(2004)). In fact, the five-point solver can extract the epipolar information also from

planar scenes, although it is common in the literature to apply the same algorithms

for estimating E as for F, which requires at least 7 corresponding points between the

images, like in Philip (1998). However, the most popular linear method for extracting

F out of correspondences is the 8-point algorithm developed by Hartley (1997). The

8-point algorithm has become the linear method of reference for computing the epipolar

geometry. Indeed, its computational simplicity and the stability of its results make of

the 8-point algorithm the usual choice for the initialisation of non-linear minimisation

algorithms. The 8-point algorithm follows the steps described here for the estimation

of F.

The minimum number of points required by an algorithm depends on the parametri-

sation of the problem, i.e how many parameters should be used to model the epipolar

geometry. An over-parametrization is customarily advisable, mainly when non-linear

methods are further applied (see Section A.7). There are two reasons for this. Firstly, a

non-linear minimisation algorithm will “realise” that there is no need to move along re-

dundant directions, thus it is not necessary to use a minimal parametrisation. Secondly,

it is found experimentally that the cost function surface of an optimisation algorithm

will be more complicated if a minimal parametrisation is employed, making the minimal

parametrisation not recommendable.

In this work the 8-point method has been used as first estimation of the essential matrix,

given its algorithmic and computational advantages, and provided the convenience of

over-parametrisation over minimal parametrisation.
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A.4.4 The Essential Space

The 8-point algorithm was devised for the estimation of F. If we apply it for recovering

E we need to ensure that the third property of the essential matrix is fulfilled, i.e. its two

non-zero singular values are equal (see Section A.4.2). Every 3× 3 singular matrix that

fulfils this property belongs to the space of essential matrices (called essential space, Θ).

The 8-point algorithm provides a singular and homogeneous matrix E′, whose singular

values {α1, α2, 0} may be such that α1 6= α2. Equally, if we apply SVD to E′ we have

that in general E′ = U′Σ′V′T , with U′ and V′ being orthogonal, but not orthonormal.

We must find a matrix E ∈ Θ which minimises ‖E−E′‖. This is achieved by defining:-

Σ = diag {1, 1, 0} (A.4.32)

and

U = (−1) ·U′, V = (−1) ·V′ (A.4.33)

in case that det(U′) = −1 or det(V′) = −1, respectively. Tsai and Huang (1984) proved

that the matrix E = UΣVT minimises the Frobenius norm of E− E′, as required.

Eqs. A.4.32 and A.4.33 are called altogether projection on to the essential space Θ.

A.4.5 Extraction of R and t

Given Eq. A.4.26 and the specific characteristics of skew-symmetric and rotation matri-

ces it is proven that there are two rotation matrices and two translation matrices whose

four possible combinations fulfil Eq. A.4.26 (Hartley and Zisserman (2004); Ma et al.

(2003); Szeliski (2011)). Although there are 4 possible mathematical solutions only one

of them is physically plausible. This solution corresponds to the pair (R, t) that place

the camera in front of the 3D point cloud.

R and t are extracted out of E as follows. In Section A.4.4 we obtained an essential

matrix E which satisfies:-

E = UΣVT (A.4.34)

The matrix t is the left-null space of E and it is expressed, up to scale, as:-
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t = ±

 U13

U23

U33

 (A.4.35)

R is derived from A.4.34 as follows:-

R = UWTVT or R = UWVT (A.4.36)

where W represents the 90◦ degrees rotation matrix:-

W =

 0 −1 0
1 0 0
0 0 1

 (A.4.37)

Considerations on the estimation of the essential matrix

Finding a solution of Eq. A.4.25 for E is difficult because E is a correlation, that is,

it projectively maps points to lines, and as such it has no inverse mapping. As it is

mentioned in Section A.4.1, small errors in the corresponding points produce big errors

when extracting E that diverge when projecting E on to Θ and computing R and t. In

the reconstruction step R and t will be applied to the former correspondences, subse-

quently increasing the displacements. In addition, since the estimation of the epipolar

geometry relies on Eq. A.4.29, it is necessary a minimum number of inter-image point

correspondences to ensure the stability of the method. These and other problems (there

are special inter-image configurations where it is not possible to retrieve the motion be-

tween images; these cases are called degeneracies, and are tackled in Section 2.6.4)

provoke that in presence of noisy and sparse sets of inter-image correspondences and

with narrow baselines this problem becomes a challenge. Significant part of the present

work has been devoted to find robust algorithms which overcome the instability of Eq.

A.4.25 under the conditions just described.

With the retrieval of the relative motion (R and t) between two images the core of

the SfM process is attained. The next step is to extend the pair case to a sequence of

images. The main obstacle of this step is provided by the homogeneous character of the

essential matrix. This issue is addressed in this work as the problem of the scale.
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A.5 Sequential SfM: the Problem of the Scale.

In Section A.4 the epipolar geometry between two images is studied and the motion

from one image to another is attained, up to scale. Note that this scaling factor affects

the translation t. This makes sense, as it is not possible to establish from the view of

an object in an image whether the object is r metres high and it is s metres away from

the camera, or whether the object is kr metres high and it is ks metres away from the

camera for a given scalar factor k. This is not really a problem when applying SfM over

a pair of images, but it becomes a notable challenge as soon as we intend to deploy SfM

on multiple views.

Let us consider a global frame of reference O and a set of images Sm = {Ii} , i = 0 . . .m

with their corresponding frames of references Oi, where Oi is the frame of reference of

Ii. A homogeneous 3D point X of O will thus be expressed as Xi with respect to Oi.

Certainly, if we estimate the epipolar geometry between Oi and Oj then Eq. A.4.22

relates Oi with Oj and we can write:-

Xi = RijXj + tij or xi = Rijxj + tij (A.5.38)

where xi and xj are the normalised coordinates associated to Xi and Xj , respectively

(see Section A.4.2). Rij is the rotation from the frame of reference Oi to the frame of

reference Oj . Likewise, tij is the translation from the frame of reference Oi to the frame

of reference Oj . In Eq. A.5.38 the translation tij is up to scale, and for convenience we

set ‖tij‖ = 1. Since we are performing sequential SfM, in our work j = i− 1, and Eq.

A.5.38 becomes:-

xi = Ri(i−1)x(i−1) + ti(i−1) (A.5.39)

Note that Eq. A.5.39 transforms a point x(i−1) of the frame of reference O(i−1) to a

point xi of the frame of referenceOi, with a translation ti(i−1) subject to ‖ti(i−1)‖ = 1.

However the 3D reconstruction of the scene covered by Sm requires that all the camera

matrices Pi = [Ri | ti] , i = 0 . . .m must be defined with respect to the global frame of

reference O. Therefore we need to express Oi with respect to O. Our problem resides

in that there is not straightforward conversion from Oi to O due to the loss of scaling
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information in the pair-wise extraction of the epipolar geometry, as described in Section

A.4. A clear description of the problem can be found in Mouragnon et al. (2006a)

To show this we set without loss of generality the motion of the first image I0 of the

set Sm with respect to the global frame of reference O as R0 = I, t0 = 0 and by the

definition of a camera matrix (Eq. A.2.13) we have x0 = P0X = X, and therefore:-

x0 = X (A.5.40)

Eq. A.5.39 establishes for i = 1 that x1 = R10x0 + t10, ‖t10‖ = 1 and we can write:-

x1 = R1X + t1 (A.5.41)

where R1 = R10 and t1 = t10, ‖t1‖ = 1, is the motion of image I1 with respect to the

global frame of reference O. Following this reasoning, if we set i = 2 in Eq. A.5.39 it

yields x2 = R21x1 + t21, ‖t21‖ = 1 and one is inclined to write:-

x2 = R21R1X + R21t1 + t21 (A.5.42)

which would lead to a definition of the motion of image I2 with respect to the global

frame of reference O.:-

x2 = R2X + t2 (A.5.43)

where R2 = R21R1, t2 = R21t1 + t21. Whereas this transformation holds for R2, it

does not for t2, as we have forced ‖t1‖ = ‖t10‖ = 1 and ‖t21‖ = 1 but in general

‖t10‖ 6= ‖t21‖ (the distance between the first and the second camera is in general not

the same as the distance between the second and the third camera). We therefore need

to find a mechanism that allows us to define t2 with respect to O so that we can locate

a point x2 in the global frame of reference O. This is achieved by taking as reference

the 3D reconstructed points seen by the image I2.

Let q1 = {xi} , i = 0 . . . n1 be the set of points seen simultaneously by images I0 and

I1. It has been demonstrated that up to an overall scale it is possible to define the

camera matrices of the first two images, P0 = [R0 | t0] , P1 = [R1 | t1]. Therefore q1
can be reconstructed, since the camera matrices related to the set q1 are known (the

reconstruction step is explained in Section A.6.1). Let q2 = {xj} , j = 0 . . . n2 be the

set of points seen simultaneously by images I1 and I2 and q12 = {xk} , k = 0 . . . n12
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the intersection between q1 and q2. The 3D points Xk, k = 0 . . . n12 associated to the

normalised image points xk, k = 0 . . . n12 have been reconstructed and are expressed in

terms of the global frame of reference O. Hence Xk, k = 0 . . . n12 carry the information

regarding the global scale. Since the points Xk, k = 0 . . . n12 are seen by the image I2

we can apply on them the Eq. A.2.13 to fix the translation of the camera matrix P2 up

to a global scale.

Here a crucial note should be done: in order to fix a given image Ii in a global coordinate

frame O, Ii must have enough common corresponding points with the image Ii−2. This

constraint has been difficult to meet in this work, as the filters devised to rule out noise

would significantly trim the sets of corresponding features between images. Chapter 3

tackles this problem, and describes the novel feature tracking system developed to work

around the lack of corresponding features.

The method outlined here, which in short estimates the camera matrix of an image Ii

out of 3D reconstructed points seen by Ii is called resection (Hartley and Zisserman

(2004)).

A.5.1 Resection

Resection is the method by which the camera matrix of an image is fixed within a global

frame of reference. Many algorithms are proposed for resectioning cameras (see Section

2.8), and most of them involve iterative minimisation methods. Here the linear method,

also named Direct Linear Transformation (DLT, introduced by Abdel-Aziz and Karara

(1971)) is described to set out the approach of the problem. This method is usually

taken as initialisation of further iterative methods.

Given a number of point correspondences Xi ←→ xi, i = 0 . . . n between homogeneous

3D points Xi and their correlative 2D normalised image points xi, Eq. A.2.13 can be

expressed in terms of the vector cross product as xi×PXi = 0. We can set up a linear

system by breaking down this cross product. If pj is the row j of P, we can write:-

PXi =

 pT1Xi

pT2Xi

pT3Xi

 (A.5.44)
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and:-

xi × PXi =

 yip
T
3Xi − zipT2Xi

zip
T
1Xi − xipT3Xi

xip
T
2Xi − yipT1Xi

 = 0 (A.5.45)

Since pTjXi = XT
i pj , this can be rewritten as a linear system:-

 0T −ziXT
i yiX

T
i

ziX
T
i 0T −xiXT

i

−yiXT
i xiX

T
i 0T

 p1p2
p3

 = 0 (A.5.46)

The 3 rows of the coefficient matrix are linearly dependent, so we may reduce the system

to:-

[
0T −ziXT

i yiX
T
i

ziX
T
i 0T −xiXT

i

] p1p2
p3

 = 0 (A.5.47)

This system is of the form AP̄ = 0 where A is a 2n× 12 matrix and each pi a 4-vector.

The vectors pi, i = 0 . . . 3 make up P̄, the stacked column vector of P. Like in Section

A.4.3, it is necessary to normalise the data to obtain a robust estimation of P̄. The

solution for Eq. A.5.47 is achieved in a similar manner as Eq. A.4.29.

Resection enables the definition of all the camera poses of a given sequence with respect

to a single coordinate frame. Now it is possible to use the knowledge of the motion

between cameras to obtain a 3D mapping of a scene covered by a sequence of cameras.

A.6 Reconstruction

Once the camera poses have been extracted, the second phase of SfM takes place and the

structure is recovered. With the knowledge of Pi = [Ri | ti] , i = 0 . . .m of a sequence of

images Sm = {Ii} , i = 0 . . .m and with the projections xi, i = 0 . . . n of the 3D points

Xi, i = 0 . . . n over such sequence we can establish a simple linear system of equations

and extract the depth Z of each 3D point. This problem is called triangulation. The

image points xi, i = 0 . . . n represent the projection rays from Xi, i = 0 . . . n to the

cameras Ii, i = 0 . . .m. As shown in Fig. A.7, the lines from the COPs through the

image points xi, i = 0 . . . n to the 3D points Xi, i = 0 . . . n create a set of triangles
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A. STRUCTURE FROM MOTION - A GEOMETRIC OVERVIEW

Figure A.7: The triangulation problem. Points in the 3D world are simultaneously seen
in various positions of a moving camera, generating 2D views on the image sequence, which
can be triangulated.

throughout the sequence. If two or more cameras view a 3D point X then it is possible

to triangulate X, obtaining as a result its depth Z.

As with resection method, much research has been done on different approaches for

the triangulation method (Section 2.7). Here the linear method (DLT) in a noise-free

configuration is derived, so as to provide a framework for Chapters 3 and 4.

A.6.1 Triangulation

Fig. A.7 depicts the problem graphically between multiple camera positions. As ex-

plained in Section A.2, P relates the 3D world coordinates of a point with the coordi-

nates of its projection in an image.

Let x = (x̃, ỹ, z̃) be a homogeneous point in an image and X =
(
X̃, Ỹ , Z̃, W̃

)
its

corresponding homogeneous world point such that:-

x = PX (A.6.48)

Let pi be the row i of P. Taking into account the relationship given by Eq. A.1.1 for

both x and X, we can rewrite Eq. A.6.48 and break it down per image coordinates:-

x = x̃
z̃ = p1·X

p3·X
y = ỹ

z̃ = p2·X
p3·X

(A.6.49)
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This can be reorganised as:-

(xp3 − p1)X = 0
(yp3 − p2)X = 0

(A.6.50)

Therefore each view of a 3D point provides two equations for the estimation of X.

Given n > 2 views of a 3D point over a sequence of images we can then set up a linear

system for each 3D point X:-

AX = 0 (A.6.51)

where A is a 2n×4 matrix andX is a 4×1 column vector. SinceX is homogeneous we

are interested in the unitary subset of the null space of A, and it is found by applying

SVD to A.

Although the SfM method as such finishes with the reconstruction of the scene, the

results obtained are usually suboptimal and it is common to carry out one last step to

jointly refine the estimations of the 3D points Xi, i = 0 . . . n and the camera poses Pi.

This step is performed by applying the bundle adjustment (BA) method.

A.7 Bundle Adjustment

Bundle adjustment (BA) reduces to the minimisation of the total reprojection error

between the image locations of observed and predicted image points (Madsen et al.

(2004)). The name of this method refers to the bundles of light rays originating from

each 3D feature and converging on each camera’s optical centre (see Fig. A.7). If the

image error is zero-mean Gaussian, it is proven that BA is the Maximum Likelihood

Estimator of the 3D reconstruction and camera poses sought.

Before introducing BA we should first define the variable that will be minimised, the

reprojection error.

A.7.1 Reprojection Error

BA needs to measure how different a estimated set of camera poses and structure is

from the ideal solution. The metrics for this is given by the reprojection error.

Given a cloud of 3D points Tn = {Xj} , j = 0 . . . n, a set of camera matrices Sm =

{Pi} , i = 0 . . .m where Pi is the camera matrix of image i and a set of views Bmn =
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{xij} , i = 0 . . .m, j = 0 . . . n, we define the reprojection error shed by Xj over xij as

the Euclidean distance between the projection xij = PiXj and the measurement xij :-

εij = d (xij , xij) = d (PiXj , xij) (A.7.52)

where d (a, b) denotes the Euclidean distance between two points a and b.

The total reprojection error is the sum of the reprojection errors of the cloud of 3D

points Tn over the set of views Bmn throughout the sequence of cameras Sm:-

j=n∑
j=0

i=m∑
i=0

vijd (PiXj , xij) (A.7.53)

where vij denotes the binary variables that equal 1 if point Xj is visible in image i and

0 otherwise.

The definition of the reprojection error allows us to specify which minimisation algo-

rithm should be employed when performing BA. The most appropiate algorithm is the

Levenberg–Marquardt algorithm (L-M).

A.7.2 Levenberg–Marquardt Algorithm

The BA method must simultaneously optimise Tn and Sm so that the total reprojection

error is minimised. The problem therefore consists of minimising the cost function

derived from Eq. A.7.53, specifically:-

min
Pi,Xj

j=n∑
j=0

i=m∑
i=0

vij‖PiXj − xij‖2 (A.7.54)

The cost function A.7.54 represents a least square fitting problem, where the parameters

of Tn and Sm are adjusted to fit best Eq. A.2.13. Amongst the numerical methods

that apply to non-linear problems, the Levenberg-Marquardt algorithm (L-M) has been

found to be the most convenient for this case (Madsen et al. (2004)). L-M is an iterative

parameter minimisation method for non-linear problems, most commonly least-square

curve fitting. Conceived as an interpolation between Gauss-Newton (GN) method and

Gradient Descent (GD) algorithm, L-M takes the best features of both and avoids their

shortcomings. The damped version of the normal equations allows L-M to have the

robustness of GD while being nearly as fast as GN. The over-parametrisation issue
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is smoothly handled thanks to the specific configuration of L-M. Additionally, thanks

to its normal equations zeros pattern L-M can be employed in a sparse fashion, from

which software implementations gain tremendous computational benefits. All these

characteristics make of L-M the most suitable algorithm for applying BA to a 3D point

cloud over a sequence of cameras.

As numerical algorithm L-M may end up in a local minimum if the initial estimations

Tn and Sm are not close enough to the solution. It is therefore crucial to arrive at this

stage with a good initial guess. This is the reason why an appropriate method for the

computation of the epipolar geometry in real situations is decisive in SfM. Chapter 3

describes in detail the methods and devices utilised in order to attain SfM from noisy

images released by a low-budget mobile platform. These methods extend prior work

of Chang and Hebert (2002) on noise and Rohith et al. (2013) on feature tracking, as

they enable processing highly noisy images in an unexplored context of image sequences

taken by an omnidirectional platform (Oliveira et al. (2009)).
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Appendix B

Algebraic Definitions

B.1 Hat operator and cross product

The hat operator is widely used in 3D vision. It is defined as follows: given a 3-vector

a = (a1, a2, a3)
T , the hat operator [a]x is:-

[a]x =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (B.1.1)

[a]x (sometimes denoted as â) is a skew-symmetric matrix ([a]Tx = − [a]x) and as such

has special properties. [a]x is singular and a is its null-vector (right or left). Hence, a

3× 3 skew-symmetric matrix is defined up to scale by its null-vector, and [a]x a = 0. It

is easy to demonstrate that rank ([a]x) = 2.

Along with other applications, the hat operator is used in linear algebra to represent

the cross product as a matricial product. The cross product of two 3-vectors a× b is:-

a× b =

 a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 (B.1.2)

Therefore, the cross product can be expressed as a product between [a]x and b as:-

a× b = [a]x b =
(
aT [b]x

)T (B.1.3)

A corollary to this result is that when a skew-symmetric matrix [a]x is pre- and post-
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multiplied by a vector b the result is zero, since b is orthogonal to a× b:

bT [a]x b = bT (a× b) = 0 (B.1.4)

B.2 Line between two points

In homogeneous coordinates, the line l that passes through two given points a and b

can be represented by:-

l = a× b (B.2.5)

Since a · (a × b) = b · (a × b) = 0 it is clear that the line l = a × b accomplishes

aT l = bT l = 0
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