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Abstract

This thesis investigates new convex optimisation techniques for motion and pose
estimation. Numerous computer vision problems can be formulated as optimisation
problems. These optimisation problems are generally solved via linear techniques
using the singular value decomposition or iterative methods under an L2 norm minimi-
sation. Linear techniques have the advantage of offering a closed-form solution that
is simple to implement. The quantity being minimised is, however, not geometrically
or statistically meaningful. Conversely, L2 algorithms rely on iterative estimation,
where a cost function is minimised using algorithms such as Levenberg-Marquardt,
Gauss-Newton, gradient descent or conjugate gradient. The cost functions involved
are geometrically interpretable and can statistically be optimal under an assumption
of Gaussian noise. However, in addition to their sensitivity to initial conditions,
these algorithms are often slow and bear a high probability of getting trapped in a
local minimum or producing infeasible solutions, even for small noise levels.

In light of the above, in this thesis we focus on developing new techniques for
finding solutions via a convex optimisation framework that are globally optimal.
Presently convex optimisation techniques in motion estimation have revealed enor-
mous advantages. Indeed, convex optimisation ensures getting a global minimum,
and the cost function is geometrically meaningful.

Moreover, robust optimisation is a recent approach for optimisation under un-
certain data. In recent years the need to cope with uncertain data has become
especially acute, particularly where real-world applications are concerned. In such
circumstances, robust optimisation aims to recover an optimal solution whose feasi-
bility must be guaranteed for any realisation of the uncertain data. Although many
researchers avoid uncertainty due to the added complexity in constructing a robust
optimisation model and to lack of knowledge as to the nature of these uncertainties,
and especially their propagation, in this thesis robust convex optimisation, while
estimating the uncertainties at every step is investigated for the motion estimation
problem.

First, a solution using convex optimisation coupled to the recursive least squares
(RLS) algorithm and the robust H∞ filter is developed for motion estimation. In



x

another solution, uncertainties and their propagation are incorporated in a robust
L∞ convex optimisation framework for monocular visual motion estimation. In this
solution, robust least squares is combined with a second order cone program (SOCP).
A technique to improve the accuracy and the robustness of the fundamental matrix
is also investigated in this thesis. This technique uses the covariance intersection
approach to fuse feature location uncertainties, which leads to more consistent motion
estimates.

Loop-closure detection is crucial in improving the robustness of navigation algo-
rithms. In practice, after long navigation in an unknown environment, detecting that
a vehicle is in a location it has previously visited gives the opportunity to increase
the accuracy and consistency of the estimate. In this context, we have developed
an efficient appearance-based method for visual loop-closure detection based on the
combination of a Gaussian mixture model with the KD-tree data structure.

Deploying this technique for loop-closure detection, a robust L∞ convex pose-
graph optimisation solution for unmanned aerial vehicle (UAVs) monocular motion
estimation is introduced as well. In the literature, most proposed solutions formulate
the pose-graph optimisation as a least-squares problem by minimising a cost function
using iterative methods. In this work, robust convex optimisation under the L∞ norm
is adopted, which efficiently corrects the UAV’s pose after loop-closure detection.

To round out the work in this thesis, a system for cooperative monocular visual
motion estimation with multiple aerial vehicles is proposed. The cooperative motion
estimation employs state-of-the-art approaches for optimisation, individual motion
estimation and registration. Three-view geometry algorithms in a convex optimisation
framework are deployed on board the monocular vision system for each vehicle. In
addition, vehicle-to-vehicle relative pose estimation is performed with a novel robust
registration solution in a global optimisation framework. In parallel, and as a
complementary solution for the relative pose, a robust non-linear H∞ solution is
designed as well to fuse measurements from the UAVs’ on-board inertial sensors with
the visual estimates.

The suggested contributions have been exhaustively evaluated over a number of
real-image data experiments in the laboratory using monocular vision systems and
range imaging devices. In this thesis, we propose several solutions towards the goal
of robust visual motion estimation using convex optimisation. We show that the
convex optimisation framework may be extended to include uncertainty information,
to achieve robust and optimal solutions. We observed that convex optimisation is a
practical and very appealing alternative to linear techniques and iterative methods.
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Chapter 1

Introduction

This work provides an introduction to the motion estimation problem in computer
vision using novel convex optimisation techniques. The optimisation impact on
visual motion estimation is revealed here and, in particular, convex optimisation
method is discussed along with its competitors techniques, such as linear and iterative
optimisation techniques. This would show the motivation and the advantage of using
convex optimisation for motion estimation as an alternative to linear and iterative
methods.

1.1 Motivation

The main objective of this thesis is to investigate the adaptation of convex optimi-
sation in visual motion estimation problem. First, let us consider the scenario where
a digital camera is moving through an unknown environment. Obviously, considerable
visual information are being recorded and usually comprised of two-dimensional
images. In this scenario, it is possible to match the images to each other, and then
to recover camera displacement using multiple-view geometry algorithms [82, 200].
If one performs this displacement estimation and then optimises its parameters, we
speak of motion estimation.

In this thesis, we discuss how the optimisation in general can be efficiently used
in the problem of motion estimation. In particular, we focus on convex optimisation
and robust convex optimisation, where uncertainties are incorporated. As a global
optimisation tool, branch and bound optimisation technique is considered as well in
this thesis for non-convex problems. In contrast to linear and iterative methods, one
might wish to formulate the motion estimation problem as a meaningful optimisation
problem that converges to the global minimum. The main objective of this thesis is
to develop techniques that are guaranteed to recover the robust and global solution.
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Indeed, our goal is to extend the state-of-the-art for motion optimisation problems
by formulating them as multiple-view geometry problems. In addition to motion
estimation, our implementations include loop-closure detection, registration, feature
matching, pose-graph optimisation and cooperative navigation. We focus on monoc-
ular systems, in which a single camera is deployed. Monocular systems have become
an unavoidable solution for autonomous navigation systems, since they are practical
and offer cheap and compact installations.

Unmanned and micro aerial vehicles will shortly be used in important operations,
such as inspection, reconnaissance, surveillance and search and rescue. Moreover,
they are expected to achieve similar performance as manned aircraft. The GPS and
other satellite navigation systems may offer valuable assist for these aerial vehicles to
accomplish their tasks. However, relying solely on satellite-based navigation systems
is not fully reliable, especially in crucial and rapid operations. Urban- and indoor-
environment operations present real handicaps to these navigation systems, where
its availability is extremely limited or even does not exist at all. Inertial navigation
system (INS) or GPS-aided INS systems might be used in these situations. However,
the eventual growth in INS errors is prohibitive to these applications. Therefore,
investigating other alternative solutions, such as visual systems, has become a priority
for many research programmes. Indeed, vision systems are relatively more convenient
for unmanned aerial vehicles (UAVs) due to their light-weight, low-cost and the great
quality of information they provide.

Clearly, vision is the most significant sense for humans. It allows many tasks to
be completed with simplicity, such as walking, directing themselves and recognising
previously visited places. Recently, the decreasing cost of digital cameras has put
their popularity in a steady increase. Thus, it is no longer difficult or expensive to
set up an application that uses multiple cameras [82]. These systems have many
benefits in real applications such as visual effects and scientific research.

1.2 Visual motion estimation

Several studies have been piloted during the last three decades on the theory and
the geometry of single-camera systems, which are used to capture images from two,
three and multiple viewpoints. However, complete and exhaustive solutions have not
been given or applied yet.

This process of recovering the orientation and position information of a moving
vehicle using only vision systems is known in the scientific community as the visual
motion estimation or the ’visual odometry’ problem (Figure 1.1). More precisely,
visual odometry is the process of estimating the movement of a camera by matching
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point features between pairs of consecutive image frames. No prior knowledge of the
scene or the motion is necessary [188].

Fig. 1.1 Example of ground vehicle for visual odometry.

On the other hand, multiple view geometry is the subject where relations between
the coordinates of the image points in different views are studied. The three main
tasks in multiple view geometry are:

• Points matching problem: this problem deals with finding the corresponding
image points between some extracted reference points in one image with the
ones extracted in the other images;

• Scene structure problem: this problem tries to recover the 3D structure of
the scene under process. This is known also as scene construction;

• Motion estimation problem: using visual input only, this problem estimates
the rotations and translations of a moving camera along a path.

Therefore, the first step of any ’feature-based’ multiple-view algorithm is to detect
the image points (known also as image features) which are in correspondence. In
general, image features in multiple views framework are said to be in correspon-
dence if they represent the same feature in the 3D space. The problem of detecting
corresponding image features is known as the matching problem [159]. Due to
their extraction techniques, image features locations accuracy is heavily dependent on
the variation in intensity within their neighbourhoods, from which their uncertainties
are estimated. In addition to their extraction, in this thesis we investigate the
incorporation of feature position uncertainties in motion estimation problems.

1.3 Optimisation in multiple view geometry

The main task of the optimisation in multiple views systems is to recover the optimal
positions of both the image features and the cameras when a sufficient number of
image features is measured, where the only source of information is images. It is
important to note that the two tasks of reconstructing the structure and recovering
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the camera positions are interlinked and should not be considered as two decoupled
problems.

Let us consider for example the triangulation problem as illustrated in Figure 1.2,
where a 3D scene point X is seen from two camera positions P1 and P2. Let x1 and
x2 be the projection of X into cameras P1 and P2 respectively. This theoretically
means that the two lines of sight (P1, x1) and (P2, x2) intersect in the 3D point X.
The question now is: do the two image points x1 and x2 represent a unique point in
space? In fact there is noise in the measurements of x1, x2, P1 and P2. This means
that the two lines of sight (P1;x1) and (P2;x2) will not necessarily intersect, hence
an optimisation procedure should be performed to select the 3D scene point X that
projects to image points that are as close as possible to the measured image points
x1 and x2 [123]. The best what we can do is to estimate a 3D point X̂ that projects
to image points x̂1 and x̂2 via the cameras P1 and P2. In this case, the projection
error is the sum the squared Euclidean distance d(∗) between x1 and x̂1 and the
squared Euclidean distance between x2 and x̂2. Therefore, the goal is to find X̂ that
minimises this projection error:

min
X̂

[
d1 (x1, x̂1)2 + d2 (x2, x̂2)2

]
. (1.1)

Fig. 1.2 The Triangulation Problem: recovering the 3D structure given two views of
the same scene
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Many algorithms have been proposed over the last few decades to solve this
kind of optimisation problems. These algorithms can be classified into two main
categories. The first categories includes linear approaches, which is based on least
squares optimisation by minimising the algebraic cost function, leading to using the
singular value decomposition (SVD) [82, 84]. This approach is efficient and yields a
closed-form solution. However, its main drawback is the fact that the quantity being
minimised is not geometrically or statistically meaningful [25].

The second category includes iterative methods, where algorithms such as
Levenberg-Marquardt, Gauss-Newton, Newton, gradient descent or conjugate gra-
dient are used to minimise a geometric cost function in iterative way [199]. In this
category the cost function has a geometrical meaning and, under an assumption of
Gaussian noise, shown to be statistically optimal. However, the core problem with
these methods, and notwithstanding of dependency on good initialisation, is related
to the high probably of converging to a local minimum or even an infeasible solution.

As a powerful alternative, convex optimisation represents a third category offering
the possibility of getting around problems that linear and iterative approaches have
[25]. The cost function of this optimisation technique is geometrically meaningful,
and has a single global minimum [94].

1.4 Visual SLAM and Visual Odometry

Imagine a digital camera is moving through its environment and acquiring sequence
of images. Exploiting the rich amount of information in images, camera motion
can be estimated by aligning the frames to each other and using the multiple view
geometry. In fact, this motion consists on recovering the trajectory, which is built
up from the estimated camera positions and orientations at different time steps.
Specifically, the motion of image points (known as well as image features) can be
used to determine the trajectory of the camera and the three dimensional structure
of the scene. Two main motion estimation categories can be distinguished: "visual
odometry - VO" (visual motion estimation) and "visual simultaneous localisation
and mapping - visual SLAM (vSLAM)"

Though an exact discriminative line between the two categories is not fully defined,
some properties of the employed algorithm can define its category. Specifically, if the
algorithm relies on image feature matching between pairs of images, this algorithm
belongs to the "visual odometry - VO" category (visual motion estimation). However,
if the matching is performed between a map of the scene structure and the current
image, it is identified as "visual simultaneous localisation and mapping - vSLAM"
[210]. Our approach in this thesis belongs to the former category. Indeed, throughout
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this thesis we discuss how image features between images can be used as a general
tool for motion estimation via convex optimisation.

It is worth-noticing some basic notions about the SLAM category. In the SLAM
framework, the problem is to estimate the motion of a moving vehicle as it con-
tinuously observes and maps its unknown environment using sensors which do not
necessarily include cameras. When cameras are employed as the only exteroceptive
sensor, it is called visual SLAM (vSLAM). In some applications this is referred
as vision-based SLAM. Many studies have been presented in the last decade in
which visual systems are used as the only external perception for SLAM systems
[47, 103, 153, 162]. This is due to rich amount of information that cameras can
provide.

The first notions of SLAM are started to appear during the period of 1985-1990,
when Chatila and Laumond [34] and Smith et al. [181] proposed a mapping and
localisation framework. After a while later, this problem took the name of SLAM
(simultaneous localization and mapping). The key feature of SLAM is its capacity
of building a global map of the environment and uses this map to deduce its own
location at any time step [62]. In order to successfully do that, the system must
possess exteroceptive (range lasers, sonar, cameras or GPS) and proprioceptive
(encoders, accelerometers and gyroscopes) sensors. However, all these sensors are
noisy and have limited range capabilities. Therefore, their ability to accurately
estimate the vehicle position is compromised since errors are cumulative.

Simultaneous localisation and mapping (SLAM) algorithm is extensively for-
mulated for the indoor and outdoor ground vehicle applications. This approach is
stated as follows: starting from an initial position, the vehicle navigates through an
unknown environment and obtains a set of sensor measurements at each position.
The final aim is to process the sensor measurements to estimate the position while
concurrently building a map of its environment. SLAM is known as an expensive
algorithm, especially for the 6DOF implementation. Increasing the state size by
including the sensor errors, and dealing with the sampling rates when using the
inertial sensors, further intensifies the problem. In more details, when the number of
features in the system state increases, then computational cost grows rapidly and
consequently it becomes difficult to maintain the frame rate operation. To solve this
problem, old features can be removed from the state to maintain a stable number of
features. However, if old features are removed, then previous mapped areas cannot be
recognized in the future. In the context of visual odometry, this fact is not considered
as a problem.

In contract, visual odometry approach (visual motion estimation) is based on con-
secutive pairs of images to exclusively estimate the relative motion, neglecting scene
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construction. This method can work in real time with significant less computational
complexity.

As a summary, it is truth that the SLAM systems are able to achieve drift free
position estimations of a camera relative to a jointly estimated map of landmarks
(features). Due to the aforementioned computational complexity and in order to
allow real-time operation, the map is kept quite spare with usually only tens of
landmarks visible in each frame. In contrast, visual odometry technique is allowed to
use and track hundreds of features per frame. This certainly leads to a very accurate
estimate of the relative camera motion, but without a persistent map, the estimate
tends to drift over time.

1.5 Filtering option within the SLAM (vSLAM)
framework

Two different approaches to deal with system uncertainties in real-time motion esti-
mation applications, the optimisation and the filtering approaches. Both approaches
have proven some successful, but they deal with the problem in completely different
ways. Filtering option ignores past poses and relies on a probability distribution
framework. The optimisation approach, on the other hand, uses the bundle adjust-
ment (BA), but computationally must select only a small number of past frames to
process.

In the SLAM technique, it is possible to create a consistent map of the environment.
The main advantage of this technique is that repeated observation of the same
landmark (or feature) ensures consistent trajectories where drifts over time are avoided.
However, continuously and simultaneously building the map is computationally
expensive. In fact, filtering option is adopted within the SLAM framework. Most
proposed solutions for SLAM systems are based on the extended Kalman filter (EKF)
and conditioned in the map size by the computational complexity, which certainly
limits the number of feature matches [47, 210].

The filtering option (also referred as probabilistic filters) is the most commonly
used approach due to its ability to provide the best results. This option is successful
on small scale; however it is significantly limited when the vehicle is required to
navigate in large environments, especially when including loop closure constraints
[62].

The filtering-based approach to the SLAM is defined by a state vector composed
mainly of the vehicle position and the map elements (landmarks positions). This
state vector is recursively estimated from the non-linear models of transition and
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observation. In this framework, the uncertainty is identified by probability density
functions (pdf). Mainly, it is assumed that the propagation of the mean and
covariance of these pdf are close to the optimal solution. However, the filtering
option is known to be sensitive to outliers. A single inaccurate measurement can
lead to the divergence. In addition, the SLAM quadratic complexity with respect to
the number of the map features limits its deployment in large environments. Some
techniques are introduced to cope with this problem such as atlas framework [22] and
sparse extended information filter (SEIF) [194]. Other techniques based on particle
generation process have managed to reduce the complexity to logarithmic, O(p log n),
where p is the number of particle and n is the number of features (landmarks) on the
map. However an optimal number of particles in these methods is still not identified.
Many other solutions have been proposed to increase the number maintained features;
however they are required to perform within reduced scale environments. Davison
presented in [46] a successful real-time monocular filtering system, called MonoSLAM.
This solution employs a single digital camera to simultaneously estimate a 3D metric
map and the vehicle position. However, this system is limited to work only in
confined and indoor environments and suffers from the initialisation problem of the
features (landmarks).

As a summary, in the filtering option the SLAM problem, all previously estimated
poses are marginalised out after every frame and only features that can be observed
again are maintained. However the main issue is the map size and the computational
cost which grows extremely fast.

1.6 Experimental set-up

Experimentation validations of the proposed solutions have been conducted on real
data from different environments. Indoor and outdoor experiments are conducted
on ground and aerial platforms equipped with monocular vision systems. While
indoor experiments are held on our laboratory, outdoor experiments include data
collected from three different locations. The first one consists of data collected at
the university campus, the second one are data collected from a vehicle travelling
in an urban environment and the third one is a collection of data gathered at a
Mars/Moon analogue site at Devon Island, Nunavut.

1.6.1 Laboratory data

Indoor experiments are conducted at the unmanned autonomous systems laboratory
(UASL) at the university (Figure 1.3). In this laboratory, real experiments are
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performed within a flying volume of about 15 × 8 × 10 m3. During each experiment,
the ground-truth is collected using the OptiTrack motion-capture system [1].

OptiTrack is a motion capture system designed by NaturalPoint Inc. Position
and orientation data of the vehicles, streamed from the optitrack cameras, can be
saved in CSV (comma separated values) format or sent over network in real-time.
This system provides absolute position information with millimetre accuracy at 100
Hz [1]. This system employs a set of six cameras with 1.3 Megapixels resolution and
56 degrees field of view.

Fig. 1.3 Unmanned Autonomous Systems Laboratory (UASL)

1.6.2 Urban environment data

Data from the urban environment are collected via a vision system mounted on
a vehicle, where a pointing-forward calibrated camera is mounted on the roof of
this vehicle [67]. This sequence consists of high quality images, with a resolution
of 1344 × 372 pixels. This dataset is known as the KITTI dataset and has been
recorded from a moving vehicle while driving in and around Karlsruhe, Germany.
It includes camera images, laser scans, high-precision GPS measurements and IMU
accelerations from a combined GPS/IMU system.

Figure 1.4 shows a sample of images from this dataset. The sensor set-up of this
dataset includes:

• 2 × PointGray Flea2 grayscale cameras (FL2-14S3M-C), 1.4 Megapixels, 1/2"
Sony ICX267 CCD, global shutter.

• 2 × PointGray Flea2 color cameras (FL2-14S3C-C), 1.4 Megapixels, 1/2" Sony
ICX267 CCD, global shutter.



10 Chapter 1. Introduction

(a)

(b)

Fig. 1.4 Examples of images used in the experiments [68].

• 4 × Edmund Optics lenses, 4mm, opening angle ∼ 90°, vertical opening angle
of region of interest (ROI) ∼ 35°.

• 1 × Velodyne HDL-64E rotating 3D laser scanner, 10 Hz, 64 beams, 0.09°angular
resolution, 2 cm distance accuracy, collecting ∼ 1.3 million points/second, field
of view: 360°horizontal, 26.8°vertical, range: 120 m.

• 1 × OXTS RT3003 inertial and GPS navigation system, 6 axis, 100 Hz, L1/L2
RTK, resolution: 0.02m / 0.1°.

1.6.3 Mars/Moon analogue site data

The Devon Island rover navigation dataset is a collection of data gathered using a
rover at a Mars/Moon analogue site on Devon Island, Nunavut in the Canadian High
Arctic (75°22’N and 89°41’W). This dataset collects rover traverse data including
stereo images, Sun vectors, inclinometer data, and differential global positioning
system (DGPS) position [64]. The rover passes through areas with vegetation-
free, planetary-analogue, rocky canyons, boulder fields, sandy flats and significant
topographic relief terrain. For the ground-truth position pair of Magellan ProMark3
GPS units is used to produce post-processed DGPS data for the whole traverse. The
images in the dataset are collected using an odometric trigger with approximately
one image collected every 20 cm travelled. The sensor setup used to collect this
dataset includes (Figure 1.5):

• Point Grey Research Bumblebee XB3 24 cm baseline stereo colour camera,
with a resolution of 1280×960 pixels and a capture rate of approximately one
image every 20 cm;



1.6 Experimental set-up 11

• A pair of Magellan ProMark3 GPS units (DGPS), with a capture rate of 1 Hz;
• Honeywell HMR-3000 inclinometer, estimating the pitch and the roll, with a

capture rate of 1 Hz.

Fig. 1.5 Platform used to collect data in Mars/Moon analogue site [64].

1.6.4 Platforms used for the experimental validations

The main platforms used in our experimental validations in indoor and outdoor
environments include:

• AscTec MAV Firefly platform: This platform is the most advanced UAV
of the AscTec research line. The hexacopter offers the vibration damped slots
for various payloads. Table 1.1 shows the technical data of this platform.

• AscTec MAV Pelican platform: This quadrocopter offers plenty of space
and various interfaces for individual components and payloads. Table 1.2 shows
the technical data of this platform.

• Mobile-Robots Pioneer P3DX: The Pioneer 3DX (P3DX) from Mobile
Robotstext™ is an advanced research robot that has an on-board PC, a range
of sensors (including a laser range finder), and communicates via WiFi. Pioneer
research robot is the world’s most popular intelligent mobile robot. Table 1.3
shows the technical data of this platform.

In order to implement our visual motion estimation algorithms, these platforms are
equipped with a mvBlueFOX-MLC camera. These kind of cameras are characterised
by their on-board 8 M pixels memory. Calibration of these cameras is performed
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Table 1.1 Technical Data - AscTec Firefly

UAV Type Hexacopter
On-board computer Intel© Core™ i7 processor
Size 605 × 665 × 165 mm
Max. take off, weight 1,6 kg
Max. payload 600 g
Flight time, incl. payload 12-14 min.
Range 4,500 m ASL, 1,000 m AGL
Max. airspeed 15 m/s
Wireless,communication 2,4 GHz XBee, link, 10-63 mW, WiFi
Intertial, guidance system AscTec, AutoPilot with 1,000 Hz update rate
Flight modes GPS Mode, Height Mode, Manual Mode
Emergency, modes Direct, landing, Come-home straight, Come-home high

Table 1.2 Technical Data - AscTec Pelican

UAV Type Quadcopter
On-board computer Intel© Core™ i7 processor
Size 651 × 651 × 188 mm
Max. take off, weight 1,65 kg
Max. payload 650 g
Flight time, incl. payload 16 min.
Range 4,500 m ASL, 1,000 m AGL
Max. airspeed 15 m/s
Wireless,communication 2,4 GHz XBee, link, 10-63 mW, WiFi
Intertial, guidance system AscTec, AutoPilot with 1,000 Hz update rate
Flight modes GPS Mode, Height Mode, Manual Mode
Emergency, modes Direct, landing, Come-home straight, Come-home high
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Table 1.3 Technical Data - Mobile-Robots Pioneer P3DX

Robot Weight 9 kg
Operating Payload 17 kg
Max. Forward/Backward Speed 1.2 m/s
Rotation Speed 300 °/s
Max. Traversable Step 2.5 cm
Traversable Terrain Indoor, wheelchair accessible
Run Time 8-10 hours w/3 batteries
Charge Time 12 hours
Batteries Supports up to 3 at a time, Voltage: 12 V
User Control Panel MIDI programmable piezo buzzer

Table 1.4 Technical Data - mvBlueFOX-MLC

Resolution 1280 × 960
Mpixels 1.2
Shutter type Rolling
Rotation Speed 300 °/s
Sensor size 1/3"
Pixel size [µm] 3.75 × 3.75
Exposure time 100 µs - 10 s
SNR 40 dB
Focal length [1638.63 1634.15]⊤
Focal length uncertainty [5.30 5.26]⊤
Principal point [627.46 479.09]⊤
Principal point uncertainty [7.78 6.35]⊤
Skew coefficient uncertainty 0.00
Distortion coefficients [−0.47 0.19 − 0.0028 0.00075 0.00]⊤
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t our laboratory using the camera calibration toolbox for Matlab™ given in [92].
Table 1.4 shows the technical data of this camera.

1.6.5 Software tools

OpenCV computer vision library is employed the in our solutions within the C/C++
programming tool. In addition, Matlab™ software is used with two the main
toolboxes: SeDuMi [187] and Yalmip [116].

1.7 Assumptions for the proposed solutions

As we aim in our monocular motion estimation algorithms for generic trajectories,
we explicitly avoid constraints on the vehicles’ motion and derive our solutions for
the full 6 DoF case. However, few assumptions for simplicity are still required, which
however do not affect the proposed solutions.

Mainly, in matching task, the brightness constancy assumption is made. This
assumption simply says that if x and x′ are two matching points, then the intensity
of x in the first image should be reasonably similar to the intensity of x′. Hence,
given x, we may find its match by finding the point x′ in the second image that has
the closest intensity to x.

In addition, within reasonable assumptions on lighting condition, surface reflective
property, and geometry of objects, the proposed solutions are able to fully capture
information of a three-dimensional scene by a collection of two-dimensional images
taken from different camera positions. These assumptions usually include:

• Lighting condition remains relatively stable while all the images are taken for
a scene;

• Colour and brightness intensity of a point on a surface does not heavily change
with the camera position;

• Objects in the scene consist of geometric primitives: vertex, edge, plane, and
some simple curves or surfaces.

Our solutions also include another important assumption related to the nature of
the scene being captured. It makes sense to require that there is always sufficient
variation of colour and reflectance among these primitives such that it is possible to
distinct them from one or another - a scene of purely white objects against a white
background does not reveal itself well from any view.

An important parameter of the imaging system is the field of view (FOV). The
field of view is twice the angle between the optical axis and the end of the retinal plane
(CCD array), covering the scene under consideration. Therefore, in our monocular
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vision systems it is acceptable to assume that consecutive cameras have a sufficient
overlapping field of view, as is the case in standard stereo scenarios. This scene is
assumed to be relatively static and includes sufficient texture and visual features,
allowing consistent image feature extraction and matching. However, the developed
solutions have the ability to cope with dynamic information that might occur during
navigation. The proposed solutions are autonomous and not depending on any
external source of information or human interaction.

In our multi-sensor systems, the inter-sensor calibration is crucial to the robust-
ness of the motion estimation algorithms. While we assume the intrinsic camera
parameters to be accurately estimated and remain unchanged, the inter-sensor cali-
bration parameters describing the 6 DoF pose between the inertial measurement unit
(IMU) and the camera are unknown. There exist various methods in the literature
to calibrate these unknowns. In the real-world case, a good extrinsic calibration can
be obtained using off-the-shelf toolboxes as presented in [115].

We also assume the flying UAV and the ground vehicles to have sufficient motion
with a reasonable speed at any point in time. The proposed algorithms ensure real
time performance as well. This includes all the operations, from image and inertial
data acquisition to all the processes in motion estimation. A frame rate of 5 frames
per second (fps) is considered as sufficient to achieve accurate navigation.

Under these assumptions, we may expect that full motion estimation can be
obtained from multiple images. The following chapters of this thesis are going to
show how.

1.8 Commercially available platforms with vision
and inertial systems

Nowadays, digital video cameras, low-cost MEMS-based IMUs and GNSS devices are
commercially available and some producers have already integrated such devices into
their systems. Our research aims to develop robust algorithms for visual navigation
systems in challenging environments where GPS signal is denied. A portion of our
study includes as well the IMU sensors, where a solution fusing vision and inertial
measurements is presented. Our research final goal is to present algorithms that can
be implemented on the commercially available platforms equipped with vision and
inertial systems.

Many platforms have become commercially available where camera is the dominant
sensor for perceptions. A non-exhaustive list of these systems can include:
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• Platforms used in our experiments, AscTec MAV Firefly and AscTec MAV
Pelican for example, can be used in domestic operations.

• In addition to these two platforms, AscTec Falcon 8 platform is equipped
with high resolution camera. This platform can be used in operations such
as inspection and surveillance of big installations such as dams and electrical
stations.

• AscTec Hummingbird Drone is another platform that can integrate our algo-
rithms, exploiting its embedded inertial and vision systems.

• QuestUAV is another range of small unmanned airborne systems (sUAS) in
the 3kg to 4kg weight range. These systems (Q-200 and Q-300) can operate
payloads up to 1500g using high resolution vision systems.

• Zephyr2UAV is a platform characterised for its high speed of 30-40 MPH and
high payload capabilities.

• For the ground vehicles, our platform used in the experimental validation in
this thesis, Mobile Robots™ Pioneer P3DX, is considered as the world’s most
popular intelligent mobile robot. This platform is featured for its mobility and
high operational payload.

• The Arlo Robotic System is another ground mobile system. In addition to the
embedded inertial and vision systems, this platform can also include a laser
range-finder and IR distance sensors.

• Scitos G5 is a mobile robot platform, which is able to move the 60 kg platform
at a speed of up to 1.4 m/s and handles payloads of up to 50 kg.

1.9 Summary and outline of the thesis

The thesis outline is illustrated in Figure 1.6. This thesis can be divided into two
main parts: multiple view geometry problems and convex optimisation as a solution
tool. The connection between these parts is the main objective of this thesis which
is to robustly and optimally estimate the motion. In addition, the structure of the
thesis is designed in a progressive-research presentation, where a developed solution
in a later chapter is based on the previous solution presented in a previous chapter.
This is shown using red arrows in Figure 1.6.

Our scenario consist of using monocular vision systems, where a vehicle equipped
with single camera takes a sequence of images as it moves. We wish to estimate the
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camera rotations and translations relying exclusively on visual inputs. In addition to
image analysis, another challenge is added to our scenario consisting on the scale
ambiguity estimation due to the projection effects.

In the next two chapters, we will present an overview of the theoretical basics
which are relevant for the thesis. Particularly, Chapter 2 introduces the basic ideas
of multiple view geometry, focussing on camera geometry and projective camera
model. We show the mathematical background of the multiple-view geometry
problems. Attention is given to the fundamental and essential matrices estimation
problems, especially their mathematical formulation problem. Three-view geometry
is considered as well in this chapter, in which a scenery is sequentially captured by a
moving camera from three different positions.

In Chapter 3, we provide details on convex optimisation, robust convex optimi-
sation and quasi-convex optimisation, along with some notions about least-squares
optimisation, linear optimisation, iterative optimisation, robust and recursive filtering.
Furthermore, we introduce convex optimisation tools, such as the second-order cone
programming (SOCP). Details on global optimisation methods (Branch and bound
in particular) are given as well. This chapter can be considered as a preamble for
the deployment of optimisation in motion estimation.

Using tools introduced in Chapter 2 and Chapter 3, in Chapter 4 we present first
contribution in this thesis. Using monocular systems makes the motion estimation
challenging due to the absolute scale ambiguity caused by the projective effects. For
this, we use robust tools to estimate both the trajectory of a moving object and
the unknown absolute scale ratio between consecutive image pairs. Thus, the novel
approach presented in this chapter consists of a two-stage solution used to efficiently
solve the monocular visual odometry problem. The first stage of which pertains
using convex optimisation with the L∞ norm in motion estimation. For the second
solution, we propose to use two new methods such as the recursive least squares
(RLS) algorithm and more robust one such as the H∞ filter to solve the scaling
estimation problem. Both techniques follow on nicely from the first one and capable
of dealing with system ambiguities in frame to frame absolute scale estimation. The
proposed solution uses as input only images provided by a single camera mounted
on the roof of a ground vehicle.

Typically, the camera pose is recovered from the available corresponding points
between two or more views and the camera calibration parameters. These correspon-
dences lead to estimate the fundamental matrix, which is the key for any motion
estimation. Generally, the fundamental matrix is the critical link that represents the
vision geometry between two views in the pinhole camera model. Thus, in Chapter
5, we present a new technique to robustly and accurately estimate this fundamental
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Fig. 1.6 The overall thesis outline.
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matrix. In most vision applications, colour images are converted first to grey-level
images, leading to a serious loss of information. In our solution, however, each
RGB channel of colour images is processed separately. Then a fusion mechanism is
employed to combine the information. After having estimated the uncertainties in
features locations in each channel, covariance intersection is used as a fusion solution,
resulting on considerable decrease in the measurement errors, which leads in turn to
more accurate estimation of the fundamental matrix.

Exploiting the uncertainty estimation techniques from Chapter 5, and convex op-
timisation tools in Chapter 4, in Chapter 6 we present a robust convex optimisation
solution for monocular motion estimation systems. Critical implementations in the
computer vision systems are based on robust features extraction, matching and track-
ing. Due to their extraction techniques, image feature locations accuracy is heavily
dependent on the variation in intensity within their neighbourhoods, from which
their uncertainties are estimated. In this chapter, we incorporate the uncertainty
estimation in feature positions via the SIFT and the Harris derivative approaches
along with their propagation.

In practice, for any navigation system, errors in position estimates are continuously
growing due to the integration of noisy measurements over time and imperfect
computational techniques. This unavoidable drift in motion estimation, due to
inherent inaccuracy of the devices as well, needs to be corrected. Thus, providing
additional correction tools would have a crucial impact on the final estimates of the
navigation solution. Indeed, after long navigation into an unknown environment,
detecting that the vehicle has returned to a previously visited location offers the
opportunity to correct and to increase the accuracy and the consistency of the
vehicle motion estimates. In computer vision, this is known as detecting loop-
closures. In Chapter 7, we present a novel appearance-based technique for visual
loop-closure detection. The widely used techniques based on the Bag-of-Words image
representation have shown some limitations, especially with the perceptual aliasing
problem. Our solution, however, uses both local invariant and colour features.
Moreover, the proposed solution combines Gaussian mixture modelling (GMM)
with the KD-tree data structure. In doing so, this solution takes advantage of
the robustness of the KD-tree data structure and the efficiency of the Gaussian
mixture modelling representation. Experimental validation using datasets from
different environments has been conducted. We show that due to their efficiency and
complementarity, a combination of KD-trees with GMM could be an alternative for
real-time loop-closure detection for mobile robots navigation.

In Chapter 8, we present a new robust convex pose-graph optimisation solution
for UAVs monocular motion estimation systems. Pose-graph formulation is an
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intuitive way to address the pose estimation problem. The nodes of the graph
represent the vehicle’s poses and the edges encodes measurements that constrain
the connected poses. Solving the pose-graph problem involves finding the optimal
configuration of the nodes that best satisfies the constraints. Most methods in
the literature utilise standard approaches, like the Gauss-Newton or Levenberg-
Marquardt algorithms. However, with these methods there is no guarantee of
convergence to the global minimum. Furthermore, they could lead to an infeasible
solution. As such, these methods are also very dependent on good initialisations.
Alternatively, the proposed solution recovers the optimal position configuration by
using convex optimisation through the adoption of more robust norms such as the L∞

norm. Furthermore, uncertainty estimations, based on the SIFT derivative approach
and their propagation through multi-view geometry algorithms are included in this
solution. Once a loop-closure is detected using technique presented in Chapter 7,
convex pose-graph optimisation solution performs the correction of any drift occurred
during the monocular motion estimation.

After developing robust solutions for visual navigation systems, in which an
autonomous vehicle can estimate its own localisation independently, a need for a
cooperative solutions has been risen. Thus, Chapter 9 deals with cooperative
navigation using convex optimisation. In this chapter, a system for cooperative
monocular visual motion estimation with multiple aerial vehicles is proposed. The
distributed system between vehicles allows efficient processing in both computational
time and estimates accuracy. The global cooperative motion estimation employs state-
of-the-art approaches for optimisation, individual motion estimation and registration.
Three-view geometry algorithms in a convex optimisation framework are deployed on
board the monocular vision system for each vehicle. In addition, vehicle-to-vehicle
relative pose estimation is performed with a novel robust registration solution in a
global optimisation framework. In parallel, and as a complementary solution for the
relative pose, a robust non-linear H∞ filter is designed as well to fuse measurements
from the UAVs’ on-board inertial sensors with the visual estimates.

This thesis is concluded in Chapter 10 where we summarise the obtained results
and achievements, and finally point out future directions.

In addition, this thesis includes three appendices. Appendix A presents a review
on some multiple-view geometry problems that can be solved using convex optimisa-
tion. Particular attention is given to problems of triangulation estimation, camera
resectioning and homography. These tasks were implemented in this thesis using
the second-order cone programming (SOCP) on benchmark datasets, familiar to the
computer vision community.
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As a complementary extension to Chapter 7, Appendix B details the KD-tree data
structure, presenting an illustrative example on the tree construction and nearest
neighbour search trough it.

Appendix C focuses on the fundamental matrix estimation, giving the main
algorithms used throughout this thesis in the multi-view geometry framework. Image
interest point extraction techniques are also presented in this appendix, such as
the Harris corner detector, the scale invariant feature transform (SIFT) and colour
features.
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Chapter 2

Image Geometry

In this chapter, we introduce the basic notions of image formation and multi-view
geometry. The aim of this chapter is to familiarise the reader with concepts of
computer vision that are the basis for the contributions made in this thesis. First
we give a brief review of image representation as digital data, where intensity values
are parametrised in a 2D array. Then, we present the basis of the projective camera
model, giving some details about the pinhole camera projective mapping. Details
concerning estimation of the relative rotations and translations between two cameras
in different positions are given. Three-view geometry is considered as well in this
chapter, in which a scenery is sequentially captured by a moving cameras from three
different positions.

In this thesis, we concentrate on motion estimation using multiple view geometry.
In this scenario a ground or an aerial mobile platform is moving through an unknown
environment and recording digital images. Using image geometry principles, it is
possible to align images to each other and then estimate the camera motion. If one
performs these steps, then one is doing visual motion estimation - known in computer
vision as visual odometry.

2.1 Overview

Digital image processing started to emerge during the mid 1960s, when the cost of the
corresponding devices was rather high. The first digital consumer camera was sold
in 1991, which was a 1/3-inch, 376 × 240 pixel model CCD (charged coupled device)
with 256 grey levels. This camera was designed by Dycam, and could be directly
connected to a personal computer to transfer images. Recently, digital cameras have
seen substantial development and have become widely available. In addition, current
generation of digital cameras are inexpensive and easy to use. Another important



24 Chapter 2. Image Geometry

feature of digital cameras is their compact design, which ensures low weight and
low power consumption. Due to these new technologies, digital cameras can also be
deployed in different harsh environments.

Throughout this thesis, we will validate our results using monocular vision systems,
which consist of a single camera with low power supply. These cameras are easily
embedded on ground and small aerial vehicles. As a summary, digital cameras are
small, light, low-power and inexpensive. Therefore, they are ideal for our work on
visual navigation systems.

On the other hand, using monocular vision systems poses many challenging tasks.
Some drawbacks of such vision systems comprise the need of depth information,
poor resolution, image occlusion and the necessity for wide data interpretation. In
contrast to range/bearing sensors that are able to estimate the travelled distance via
estimating the time-of-flight, visual monocular systems are not able to estimate this
distance directly. Instead, they extract and track some scene features from different
camera positions and use the triangulation technique to estimate the non-scaled
distance to the scene and then recover the absolute depth scales using optimisation
tools. One more challenging task is how to deal with the large amount of information
that a camera is acquiring as it moves. Extracting relevant data under real-time
constraints would be a difficult task as well.

2.2 Notation

Throughout this thesis, the transpose of a vector x is represented by x⊤. A vector
(x1, x2, x3)⊤ denotes a column vector and (x1, x2, x3) denotes a row vector.

Suppose we have a rigid body rotating about a stationary point O in a three-
dimensional Euclidean space E3. The space of orthogonal matrices in R3×3 is denoted
throughout this thesis by:

SO(3) = {R ∈ R3×3 |R⊤R = I and det(R) = +1}

where I is the identity matrix, R ∈ R3×3 is the rotation matrix and det(R) is the
determinant of R.

The set of rigid body motion, is a (Lie) group and denoted as SE(3). This refers
also to the special Euclidean transformation defined by:

SE(3) = {g = (R, T )|R ∈ SO(3) and T ∈ R3} = SO(3) × R3

where T is the translation vector.
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Suppose, x is a 3-element vector, where x = (x1, x2, x3)⊤. Then, we denote by
[x]× a 3 × 3 skew-symmetric matrix of the form:

[x]× =


0 −x3 x2

x3 0 −x1

−x2 x1 0



2.3 Image formation

Digital images are constructed after the incoming light hits the image plane passing
the camera lens. In most cases, this plane is called the CCD (Charged Coupled
Device). The CCD consists of an array of n×m rectangular grid of photo-sensors,
each one is sensitive to light intensity. Then, the light energy is converted into
voltage by any element of the CCD. After that, an electronic device called a frame
grabber receives an electric signal from the CCD and digitises it into 2D rectangular
array of N ×M integer values and stores it in a memory buffer [200]. Thus, a digital
image is characterised, at this point, by a matrix Ω of size N ×M . An entry Ω(i, j)
of this matrix is an integer quantity ranging from 0 to 255, representing the image
brightness at the position (i, j) and called pixels (an acronym for picture elements)
[82, 200]. The quantities N and M represent then the image size in pixels along each
direction.

In a mathematical way, an image is a two-dimensional brightness array. More
precisely, an image is a map I defined on a surface Ω of a two-dimensional surface,
whose entries are positive real [82, 122, 200]:

I : Ω ⊂ R2 → R+ (x, y) 7→ I(x, y) (2.1)

where (x, y) are image coordinates in 2D space.
Figure 2.1 shows the image representation for a grey scale image. Plot (b) in this

figure shows the intensity at the z-axis, while x and y-axis represent the N rows and
M columns respectively. Colour images include three monochromatic component
images RGB (red, green and blue), therefore giving three overlapping matrices.

2.4 Projective geometry

2.4.1 Point representation

A point in 2D Euclidean space R2 is represented with an ordered pair of real numbers
(x, y). This representation is called an inhomogeneous vector x = (x, y)⊤. However,
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(a) (b)

(c) (d)

Fig. 2.1 (a) Original image taken in our laboratory. (b) The same image represented
as a two dimensional surface. The intensity is represented at the z-axis ranging from
0-255. (c) Shows the top view of the surface in (b). (d) Part of the same image
represented as a two-dimensional array of integers.
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it is possible to add a third coordinate to represent the same point as (x, y, 1). For
a non-zero value k, this point can be represented with homogeneous coordinates
(kx, ky, k). Therefore, it is possible to extend the 2D Euclidean space R2 to a
projective space P2 by representing points as homogeneous vectors. In this projective
space, points at infinity can be represented with homogeneous coordinates in which
the third coordinate is zero [82].

Throughout this thesis we will be using the homogeneous vector notation x̂ =
(x1, x2, x3)⊤ to represent a point in projective space P2. The relationship between
the homogeneous and inhomogeneous coordinates of the same point in 2D is:

x = x1

x3
, y = x2

x3
(2.2)

Note that any homogeneous vector is defined to a scale; this means that (x1, x2, x3)⊤

and k(x1, x2, x3)⊤, where k ̸= 0, refer to the same point.
Similarly, in 3D Euclidean space R3, a point is represented with an inhomogeneous

vector X = (X, Y, Z)⊤ and in 3D projective space P3 with a homogeneous vector
X̂ = (X1, X2, X3, X4)⊤. Similarly, the relationship between the homogeneous and
inhomogeneous coordinates of the same point in 3D is:

X = X1

X4
, Y = X2

X4
, Z = X3

X4
(2.3)

2.5 Geometry of cameras

As discussed in the preceding section, the world can be characterised using a projective
space P3, where the structures and the shapes of objects are represented using points
in the form of a homogeneous 4-element vectors, such as X̂. Relying on the projective
geometry, the main goal of this section is to define the link between the positions of
3D scene points and their corresponding image points. The motion of these points is
represented by a 3 × 3 rotation matrix R ∈ SO(3) and a 3-element vector translation
T ∈ R3 [82, 122, 200].

2.5.1 The pinhole camera model

A pinhole camera is a mapping π from Euclidean 3D space E3 to Euclidean 2D space
E2:

π : R3 → Ω, X 7→ x = π(X), (2.4)
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where Ω ⊂ R2 and X = (X, Y, Z)⊤ ∈ R3 are the coordinates of a point in space
expressed in the camera coordinate frame, and x = (x, y)⊤ is the corresponding 2D
coordinates.

The optical system of this model gathers of a lens set used to guide the light.
This means, lenses are used to control the direction of the light propagation by
means of refraction, refraction and diffraction. A simpler model of this optical system
includes thin lenses. This model is defined by an axis, called the optical axis, and
the focal plane, which is perpendicular to this axis (Figure (2.2a)). Thin lenses are
characterised by their focal length, which is the distance from the optical centre (O
in Figure (2.2a)) and to the intersection point, called the focus, of rays entering the
aperture in parallel to the optical axis (Figure 2.2a). One other important property
for thin lenses is that oncoming rays through the optical centre do not deflect. This
is illustrated in Figure 2.2b, where there is a point p ∈ R3 at a distance Z from the
optical centre on the optical axis. The first ray from the point p through the optical
centre remains undeflected, while the second ray from p and parallel to the optical
axis will be deflected and cross the optical axis at the focus. The first and the second
ray intersect at a point x. This point is the image of p. If z is its distance along the
optical axis from the optical centre, then:

1
Z

+ 1
z

= 1
f
. (2.5)

Equation 2.5 means that, a thin lens with a focal length f is focusing the light
from a plane at a distance Z from the lens at a distance z behind the lens [190]. This
equation is called the fundamental equation of thin lenses. If all the rays go through
a single point, the optical centre, and the lens aperture is compacted to zero, then
all rays remain undeflected. In this scenario we speak about pinhole model which
is adopted throughout this thesis. This model is depicted in more details in Figure
(2.3).

Briefly, the camera is a mapping between the 3D real world and a 2D image (the
image plane) [82] . Let us consider a 3D point X = (X, Y, Z)⊤ expressed relative to
a reference frame centred at the optical centre O, where the Z-axis is the optical
axis. This reference is called the camera reference frame. The image of this point is
x, which is where the line from X to the optical centre intersects the image plane.
Four principal and critical reference frames ought to be detailed (Figure 2.3):

• The pixel frame: a pixel represents information from the real world on
the image. The two coordinates on this frame are measured in pixels [73],
representing number of pixels from upper-left corner of the image plane in
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(a) (b)

Fig. 2.2 (a) The rays parallel to the optical axis meet at the focus. (b) x is the image
of the point p, which is the intersection of the rays parallel to the optical axis and
the ray through the optical centre [122].

the horizontal and vertical directions. Usually, u is used as the horizontal
coordinate and v as the vertical coordinate.

• Image plane frame or focal plane: This frame is identified by its origin
which is what called the principal point. This origin, located at the centre of
the image plane, corresponds to the projection of the optical centre O on the
image plane.

• Camera frame: in this frame, the origin is the optical centre, and the distance
between this origin and the image plane is the focal length f . The 3D point
X = (X, Y, Z)⊤ is expressed in this frame.

• The world reference frame: defined by the user as an external global
positioning reference.

As shown in Figure 2.3b, x is the image of the 3D scene point X. Consider the
camera reference frame, if X = [X, Y, Z]⊤ and x′ = [x, y, z]⊤ are expressed in this
reference frame, then we can see from Figure 2.3b that the coordinates of x and X
are related by:

x = −f X
Z
, y = −f Y

Z
, z = −f (2.6)

Observe that any 3D scene point that lies on the line through X will be projected
at the same point x′ = [x, y, z]⊤. As previously observed, this model is called the
pinhole camera. In (2.6), coordinates are expressed with a negative sign. Similarly to
the retina of the eye, this sign makes objects appear upside down on the image plane
(dotted green arrow in Figure 2.3b). The way to remove this effect is to place the image
plane in front of the optical centre at Z = f instead of Z = −f as shown in Figure
(2.3b). Then, it is sufficient to apply a transformation: (x, y, z) 7→ (−x,−y,−z).
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(a) (b)

Fig. 2.3 (a) In the image plane, o is the principal point and x is the image of the
point X, which is the intersection of the ray going through the optical centre O. (b)
The image plane is placed at a distance f in front of the camera centre [82, 122, 200].

This transforms the point x′ to x:

x = f
X

Z
, y = f

Y

Z
, (2.7)

x =
x
y

 = f

Z

X
Y

 . (2.8)

In other worlds, we are saying that point X = [X, Y, Z]⊤ is mapped to the point
x = [x, y]⊤ = [f X

Z
, f Y

Z
]⊤ on the image plane. Note that x and y are expressed in 2D

coordinates on the image plane centred at the principal point.

2.6 Camera model

Now, let us consider the two reference frames {O,Xw, Y w, Zw} and {o, xc, yc, zc} in
Figure 2.4. These frames are the world reference frame and the camera reference
frame respectively. In order to remove any ambiguity, in this section we will be
using the superscripts and the subscripts w and c to refer to the world and the
camera reference frames respectively. A 3D scene point X is expressed in the camera
reference frame with the coordinates: Xc = [Xc, Yc, Zc]⊤. Now, in order to express
this point in the world reference frame Xw, we need to define a transformation gcw

from the camera to the world reference frame, where:

Xc = gcw(Xw) (2.9)
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Fig. 2.4 Transformation between camera and world reference frame

This transformation is defined by a rigid motion, gcw = (Rcw, Tcw), where Rcw ∈
SO(3) is the rotation matrix and Tcw ∈ R3 is the translation vector. Thus, this gives:

Xc = gcw(Xw) = RcwXw + Tcw (2.10)

On the other hand, Xw = gwc(Xc), where gwc = g−1
cw is the inverse mapping from

the world reference frame to the camera reference frame. Equation (2.10) can be
reformulated in a compact form as:

Xc

1

 =
Rcw Tcw

0 1

Xw

1

 . (2.11)

Now, using homogeneous coordinates, equation (2.8) can be rewritten as:

Z

x
1

 =


f 0 0 0
0 f 0 0
0 0 1 0


Xc

1

 ,

Z


x

y

1

 =


f 0 0 0
0 f 0 0
0 0 1 0



Xc

Yc

Zc

1

 . (2.12)
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Since the Z coordinate represents the depth, which is not known, we can denote it
with a positive scalar λ ∈ R+. Thus:

λ


x

y

1

 =


f 0 0 0
0 f 0 0
0 0 1 0



Xc

Yc

Zc

1

 (2.13)

Notice as well that:
f 0 0 0
0 f 0 0
0 0 1 0

 =


f 0 0
0 f 0
0 0 1



1 0 0 0
0 1 0 0
0 0 1 0

 = KfP (2.14)

where:

Kf =


f 0 0
0 f 0
0 0 1

 and P =


1 0 0 0
0 1 0 0
0 0 1 0



Then, using (2.11), (2.13) and (2.14), we can write the geometric model:

λ


x

y

1

 =


f 0 0
0 f 0
0 0 1



1 0 0 0
0 1 0 0
0 0 1 0



Rcw Tcw

0 1



Xw

Yw

Zw

1

 (2.15)

Or in matrices:

λx̂ = KfP ĝX̂w (2.16)

Unfortunately, the only known coordinates in practice are the pixels location (u, v),
in which the image upper-left corner is the origin (Figure 2.3a). The challenge now
is to identify the transformation between the pixel coordinates and the image plane
coordinates. Now, suppose that (x, y) are expressed in metric units (in millimetres
for instance), and (u′, v′) are in pixels, then this transformation is given as follow
[82, 122]: u′

v′

 =
su 0

0 sv

x
y

 (2.17)
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where su and sv represent the number of pixels per unit distance (e.g. pixel/mm)
along the image coordinates in the u and v directions. In other words, su and sv

represent the relation between the pixels and the metric units. However, the origin
has to be translated to the upper-left corner, hence (see Figure 2.3a):

u = u′ + u0 ; v = v′ + v0 (2.18)

where (u0, v0) are the the image centre coordinates (expressed in pixels). Hence
(2.17) becomes: 

u

v

1

 =


su 0 u0

0 sv v0

0 0 1



x

y

1

 (2.19)

A more general form has to be considered in the case where the pixels are not
rectangular:


u

v

1

 =


su sθ u0

0 sv v0

0 0 1



x

y

1



u

v

1

 = Ks


x

y

1

 , where Ks =


Su Sθ u0

0 Sv v0

0 0 1

 (2.20)

The quantity sθ is the skew factor.

Combining (2.13) with (2.20) gives the transformation model between a 3D point
relative to the camera frame and its image expressed in pixels using homogeneous
coordinates [82, 122]:

λ


u

v

1

 =


su sθ u0

0 sv v0

0 0 1



f 0 0
0 f 0
0 0 1



1 0 0 0
0 1 0 0
0 0 1 0



Xc

Yc

Zc

1

 (2.21)
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Now consider a new matrix K, where:

K =


su sθ u0

0 sv v0

0 0 1



f 0 0
0 f 0
0 0 1

 ∈ R3×3

K =


fsu fsθ u0

0 fsv v0

0 0 1



=


αu γ u0

0 αv v0

0 0 1

 ∈ R3×3 (2.22)

This new triangular 3 × 3 matrix K gathers the parameters of a camera, and
called the calibration matrix. Specifically:

• u0 is the u-position of the point where the optical axis intersects the plane;
• v0 is thev-position of the point where the optical axis intersects the plane;
• αu = fsu is the size in pixels of the focal length in the horizontal direction;
• αv = fsv is thesize in pixels of the focal length in the vertical direction;
• γ = fsθ is the skew of the pixels, often close to zero.

In the case where the effect of the skew factor is considerable, this parameter
must be integrated in the camera parameter matrix.

Now, back to equation (2.15), points in space may be expressed in the two
coordinate frames: the world and the camera coordinate frames (Figure 2.4). We
want to define the geometric relationship between image point coordinates [u, v]⊤

expressed in pixels and their corresponding 3D scene point coordinates [Xw, Yw, Zw]⊤

expressed in the world reference frame {O,Xw, Y w, Zw}. Using (2.15), (2.21) and
(2.22), we can write the general geometry as:

λ


u

v

1

 =


αu γ u0

0 αv v0

0 0 1



1 0 0 0
0 1 0 0
0 0 1 0



Rcw Tcw

0 1



Xw

Yw

Zw

1

 (2.23)

Or in matrix form:

λx̂im = KP X̂c = KPĝX̂w (2.24)
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A more compact form can represent this projection using homogeneous coordinate
as [82, 209]:

x̂ = KRcw[I| − C̃] X̂w (2.25)
x̂ = P X̂w (2.26)

where:

P = KRcw[I| − C̃]

Specifically:
• C̃ : collects the coordinates of the camera centre in the world reference frame;
• x̂ : image point represented by a homogeneous 3-vector;
• X̂w : 3D scene point in space expressed in the world reference frame, on a

homogeneous 4-element vector in 3D projective space P3;
• K : camera calibration matrix (intrinsic parameters);
• Rcw : 3 × 3 rotation matrix in SO(3);
• P : 3 × 4 homogeneous camera projection matrix.

The camera projection matrix P has 11 degrees of freedom: 5 for K, 3 for Rcw and 3
for C̃. Equation (2.26) is known as the projective equation.

2.7 Image interest points (image features)

In visual autonomous navigation systems, image points (or usually called features)
are of great interest in estimating the camera translations and the rotations. In fact,
for any computer vision problem, recorded images are the main source of information.
Indeed, extracting these image points is the first step for any algorithm. Matching
and tracking these image points is not less important than the extraction task,
especially for problems of registration and recognition [106]. Having images in hand
as inputs, the first thing to look for is points that can be recognised in other images.
Therefore, interest points like corners and edges seem to be valid options. These
image points are commonly called image features in computer vision. Other names
such as keypoints, interest points, corners, control points and edges are used as
well. Other tasks in computer vision apart from motion estimation such as object
classification and recognition, use image features in their algorithms [27, 119, 218] as
well.

Good quality features must be easy to track, be extracted with precision and
invariant to illumination and geometrical changes such as rotation, translation and
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(a) RGB (b) Red (c) Green (d) Blue

Fig. 2.5 Example of a colour image and its RGB channels [190].

M

N

R
G
B

Fig. 2.6 Image matrix representation.

scale. Obviously, best scene features must have similar appearance from different
camera positions. Two main tasks can be distinguished when dealing with image
features: detection and description. Detection involves processing the image infor-
mation to obtain regions, corners or even edge segments. The description consists of
creating a descriptive vector based on the visual appearance in the image. Invariant
features to changes in scale and rotation are of great interest in visual autonomous
navigation systems since they ensure accurate matching and data association.

2.8 RGB channels in colour images

In computer vision, it is known that the incoming light rays in different wavelengths
are integrated into the discrete red, green, and blue (RGB) colour values to form a
digital colour image [190]. This digital image is represented by a numerical matrix,
E, with N rows and M columns. The matrix element E(i, j) represents the value
at the pixel (i, j), which consist of three RGB numeric components. Colour images
need three components (red, green and blue) to represent a pixel value, therefore
the numerical matrix E is of size M ×N × 3 (Figure 2.6). The pixel colour is given
by three values, where each one is ranging from 0 to 255. This means that a pixel
takes one of 16 million colours (256 shades of red, 256 of green, and 256 of blue, so
256 × 256 × 256 = 16.8 million possible combinations). Black is an RGB value of (0,
0, 0) and white is of (255, 255, 255).
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Red, green and blue colours are considered as additive colours. That is the colours
are added together to form the final colour image. This can be explained by the fact
that these colours are the dominant colours that our eyes can see. Combining them
together we can effectively generate almost every colour our eyes can see.

2.9 Two-view geometry - epipolar geometry

Views are defined as images taken by a one or more cameras at different locations
[82, 122, 200]. If the same camera is used, each view has the same image size and
the same calibration parameters. In two-view geometry, the two images are captured
by a single camera that is shifted from one place to another, or they can be captured
by two cameras at two different positions in space [89]. Multiple views imply that a
single camera is used to capture multiple images, which form a single image sequence,
from n different positions.

It is possible to estimate correspondences between image points of the same 3D
scene points at each camera position assuming that the scene is relatively static.

Now, let us consider an arbitrary 3D scene point X in the scene (Figure 2.7),
where X̂ = [X 1]⊤. From (2.26), this scene point X will be projected to image point
xi = PiX̂ in the left image li and to image point xj = PjX̂ in the right image lj.
Hence, xi and xj are corresponding (matching) image points of the same 3D point X.
Also, it can be seen from Figure 2.7 that scene point X, the matching image points
xi and xj , and the camera centres Ci and Cj are in the same plane, denoted as π. In
the case where xj is known, then our task is to recover its corresponding xi. The
distance between the two camera centres is called the baseline. Knowing that xi is
on the plane π, therefore the search area must be restricted to the line, where the
left image plane πi intersects with the plane π. This important line is called the
Epipolar line.

Now the question is: what is the geometrical relationship between the two points
xi and xj? This is discussed in the following section.

2.9.1 The essential matrix

Let us consider the scenario where the point X is seen by two cameras Pi and Pj

from different locations. Therefore, points xi and xj ∈ R3 represent the coordinates
of the projection of the same 3D scene point X. As stated before, each camera has its
own reference frame (Section 2.5.1). Let Xi ∈ R3 and Xj ∈ R3 be the 3D coordinates
of the same point X in each camera frame respectively. Then Xi and Xj are related
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Fig. 2.7 Two-view geometry

by the rigid body motion:

Xj = RXi + T (2.27)

where R is the rotation matrix ∈ SO(3) and T ∈ R3 is the translation. Here
we assume that the second camera Pj is the reference frame. The transformation
g = (R, T ) ∈ SE(3) gathers the location and the orientation of the camera Pi. This
equation may be written using the image points xi and xj as:

λjxj = Rλixi + T (2.28)

where λj and λj are again the depths. In order to eliminate these depths, one may
multiply both sides of (2.28) by [T ]×, and since [T ]×T = 0, then:

λj[T ]×xj = [T ]×Rλixi (2.29)

Since [T ]×xj = T × xj is perpendicular to the vector xj, the inner product is
x⊤

j [T ]×xj = 0, then x⊤
j [T ]×Rλixi = 0. We know that the depth λi is positive (λi > 0),

then:

x⊤
j [T ]×Rxi = 0 (2.30)
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This equation is of great importance in computer vision and is called the essential
constraint or epipolar constraint.

The geometric interpretation of this equation is shown in Figure 2.7. The camera
centres Ci and Cj , the 3D scene point X and its image points xi and xj are coplanar
(i.e. lie in the same plane π). Therefore (2.30) is simply the co-planarity constraint
expressed in the reference frame of camera Pj. Let the matrix E = [T ]×R ∈ R3×3,
then (2.30) could be rewritten as:

x⊤
j Exi = 0 (2.31)

Matrix E is called the Essential Matrix. This matrix constraints the relative
translation T and rotation R between the two cameras Pi and Pj [2, 72, 82, 89, 122,
200]. Note that the E matrix deals with points expressed in the camera coordinate
frame. In this thesis, we define a space for this kind of matrices in R3×3 called the
Essential space denoted by E :

E = { [T ]×R | R ∈ SO(3), T ∈ R3 } ⊂ R3×3 (2.32)

[T ]× is the 3 × 3 skew-symmetric matrix of T . 1 Now let us define this theorem
[82, 89, 200]:

Theorem 1. A non-zero matrix E ∈ R3×3 is an essential matrix if and only if E
has a singular value decomposition (SVD): E = UΣV ⊤, where Σ = diag{σ, σ, 0} for
some σ ∈ R+ and U, V ∈ SO(3).

Proof to this theorem is given in [123].

2.9.2 Pose extraction from the essential matrix

Obviously, when we have the relative rotation R and the relative translation T

between the two cameras, we can immediately estimate the essential matrix by just
putting E = [T ]×R. Now the question is how can we estimate the pose T and R

by knowing the essential matrix E? This problem is known as pose recovery from
the essential matrix. Prior to that, we have to estimate first this matrix. This is
performed using the corresponding image points. Then, recovering the translation
and rotation from the estimated E. However, before performing the second step, we
have to make sure that the recovered E is really an essential matrix, i.e. E ∈ E .

First let us show how to estimate the E matrix itself. Equations (2.30) and (2.31)
imply that corresponding image points are connected by the E matrix. Thus, it is

1[T ]× is the 3 × 3 skew-symmetric matrix of T as defined in the Notation Section in this chapter.
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possible to estimate the E matrix given these correspondences. This can be done
using what is called the eight-point algorithm.

The eight-point linear algorithm

Longuet-Higgins [117] was the first to develop the 8-point algorithm in computer
vision. This algorithm estimates the essential matrix using 8 pairs of matching points
across two views [2]. The 3 × 3 essential matrix E can be derived from the essential
constraint (2.31):

x⊤
j Exi = (xj, yj, zj)⊤


e1 e2 e3

e4 e5 e6

e7 e8 e9

 (xi, yi, zi) = 0 (2.33)

Let the vector e ∈ R9 contain the elements of the essential matrix:

e = (e1, e2, e3, e4, e5, e6, e7, e8, e9)⊤ ∈ R9 (2.34)

If we have n correspondences, then the n× 9 matrix A ∈ Rn×9 is given by:

A =


xj1xi1 xj1yi1 xj1zi1 yj1xi1 yj1yi1 yj1zi1 zj1xi1 zj1yi1 zj1zi1

xj2xi2 xj2yi2 xj2zi2 yj2xi2 yj2yi2 yj2zi2 zj2xi2 zj2yi2 zj2zi2
... ... ... ... ... ... ... ... ...

xjnxin xjnyin xjnzin yjnxin yjnyin yjnzin zjnxin zjnyin zjnzin


(2.35)

The epipolar geometry constraint (2.31) can be simply formulated as the inner
product of A and e. This leads to the linear equation in the entries of e:

Ae = 0 (2.36)

This linear equation may be solved for the vector e. The rank of the matrix A
needs to be exactly eight in order for the solution to be unique. This requires at
least 8 corresponding points, i.e. n ≥ 8. However, even with a sufficient number
of corresponding points, the linear equation (2.36) may have no solution due to
the noise. In this case, the one available option is to recover the entries of e that
minimise ∥Ae∥2.

Before extracting the relative pose from the recovered E matrix, this matrix
must satisfy the essential constraint, i.e. E ∈ E (2.32). Enforcing this involves
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orthogonally projecting it onto the essential space. Let us first consider the following
theorem [82, 122]:

Theorem 2. Let H ∈ R3 be a real matrix and its SVD(H) = Udiag(λ1, λ2, λ3)V ⊤,
where U, V ∈ SO(3) and λ1 ≥ λ2 ≥ λ3. The optimal essential matrix E ∈ E is the
one that minimises the cost function: ∥E − H∥2

f , given by E = Udiag(σ, σ, 0)V ⊤,
where σ = (λ1 + λ2)/2. The subscript f designates the Frobenius norm.

The recovered E matrix is to an unknown scale, since the corresponding image
points are expressed in homogeneous coordinates. A typical solution to deal with
this ambiguity is to select an E whose non-zeros singular values are 1, i.e. E =
Udiag{1, 1, 0}V ⊤.

Now after estimating E, let us consider the following theorem [82, 122]:

Theorem 3. For a non-zero Essential matrix E = Udiag(1, 1, 0)V ⊤ ∈ E , there exist
four possible choices for the relative poses (R, T ), where R ∈ SO(3) and T ∈ R3:

• [R|T ] = [UWV ⊤ | + u3] or [R|T ] = [UWV ⊤ | − u3] or
• [R|T ] = [UW⊤V ⊤| + u3] or [R|T ] = [UW⊤V ⊤| − u3].

where W =
[ 0 −1 0

1 0 0
0 0 1

]
is the rotation by an angle of π

2 around the Z-axis, and u3 is
the last column of U . Proof of this theorem can be found in [82].

So we end up with a four-fold ambiguity. This ambiguity may be solved by the
reconstruction of a scene point X, which must be in front of both cameras in only one
of these four solutions. This is known as the cheirality constraint. This constraint
means the condition that points in an image must obviously lie in front of the camera
and not at the back. The E matrix here gives four possible solutions for R and T .
However, there is just one combination of R and T that guarantees the depth of the
3D reconstructed points is positive. Therefore, three out of the four solutions will be
infeasible and hence will be discarded [72, 82, 84, 122, 200].

A structured form of the eight-point algorithm is given in Appendix C (Algorithm
4, page 298).

2.9.3 The fundamental matrix

The primary aim of two-view geometry is to recover the relative pose (R, T ) between
two views, even in non-calibrated camera scenarios circumstances. Let us again
consider the rigid body motion between two views [2, 72, 82, 122, 200]:

λjxj = Rλixi + T, (2.37)



42 Chapter 2. Image Geometry

where λi and λj are again the unknown depths. Let K be the calibration matrix,
then, by multiplying both sides of (2.37) by K we get:

λjKxj = KRλixi +KT, (2.38)
λjx′

j = KRK−1λix′
i +KT, (2.39)

λjx′
j = KRλiK

−1x′
i + T ′. (2.40)

where x′
j = Kxj and T ′ = KT . Notice that the coordinates in x′

i and x′
j are now

in pixels. Similarly to the case in (2.29) and (2.30), the depths λi and λj may be
eliminated from (2.40) by multiplying both sides by the cross product (x′

j × T ′):

x′
j
⊤
K[T ′]×RK−1x′

i = 0 (2.41)

Then:
x′

j
⊤
Fx′

i = 0
F = K[T ′]×RK−1 ∈ R3×3

(2.42)

Matrix F is called the fundamental matrix and x′
j
⊤Fx′

i = 0 is called the epipolar
constraint. Note that when K = I, the fundamental matrix is equal to the essential
matrix [T ′]×R. The relationship between the fundamental and essential matrices is
then given by:

E = K⊤FK (2.43)

Therefore, the fundamental matrix, F , is another algebraic representation of epipolar
geometry (Figure 2.7) [82]. This matrix, however, deals with image points measured
in pixels. Therefore, it is of great importance for motion estimation, since the image
point locations in two frames are measured in pixels. More detail about estimating
this matrix is given in Appendix C (Section C.1, page 293).

2.10 The three-view geometry

The two-view geometry is the dominant concept in computer vision even for monocular
systems. Suppose two images of a reasonably stationary scene are taken from a
moving vehicle with an on-board camera. As we have seen in the previous section, two-
view geometry is mainly characterised by an algebraic representation that abstracts
the geometry between these two images [82]. In fact, this algebraic entity represents
the relationship between the corresponding image points in the two images through
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Fig. 2.8 Three-view geometry.

the Essential or the Fundamental matrix, from which the vehicle motion between
the two positions is estimated.

The three-view geometry, on the other hand, is an extension of these geometrical
concepts to three views, where three images of a scene are taken from three different
camera locations. This geometry is hardly deployed in computer vision on applications
involving localisation and reconstruction. The essential matrix role in two-view
geometry is played by its analogous entity in three-view geometry called the trifocal
tensor [82]. This latter entity encapsulates the geometry between three views via
the three image point correspondences.

The three-view geometry concept was first introduced in [184, 208], where it
was deployed for scene reconstruction from corresponding lines; however, without
considering it as a tensor [83]. There is common agreement that the first work to refer
to this entity as a tensor was introduced in [206]. In an independent study, author
in [173] introduced the trifocal tensor’s parameters for a system of four independent
trilinearity constraints, which relate the coordinates of matching points in three
frames. Later on, a linear approach for estimating trifocal tensor’s parameters from
no more than seven points is presented in [174].

Figure 2.8 summarises the three-view geometry, where point-point-point relation-
ship, x ↔ x′ ↔ x′′, is given in function of the trifocal tensor’s parameters T . Let
the 3 × 4 camera matrices for three views be P = [I|0], P ′ = [a1 a2 a3 a4] = [A|a4]
and P

′′ = [b1 b2 b3 b4] = [B|b4], where I is the identity matrix, A and B are 3 × 3
matrices and the vectors ai and bi are the ith columns of the respective camera
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matrices for i = 1, · · · , 4. Let x = (x1, x2, x3), x′ = (x′
1, x

′
2, x

′
3) and x′′ = (x′′

1, x
′′
2, x

′′
3)

be corresponding image points in the three views respectively. Then, the relationship
between these three image point correspondences x ↔ x′ ↔ x′′ is given by the
point-point-point relation [82, 174]:

Tu = aub
⊤
4 − a4b

⊤
u , u = 1, . . . , 3

[x′]×(
3∑

i=1
xiTi)[x′′]× = 03×3

(2.44)

In these equations, the set of three matrices T1, T2, T3 constitute the 3 × 3 × 3
trifocal tensor, where Ti is a 3 × 3 with rank 2. Note that the relationship between
the three cameras is completely described by T1, T2, T3.

2.11 Optical flow approach

In addition to multiple view geometry approach for vision-based motion estimation,
optical flow is another option that can be used for this purpose. In real-life the
apparent visual motion that one can experience as he moves is referred as optical
flow. Certainly, when one is sitting in a moving train for example, all external objects
(trees, building, ground, etc.) appear to move. This motion is referred as optical flow.
One can realise that distant objects such as mountains or clouds move relatively
slower, whereas, closer objects such as trees appear to move faster (Figure 2.9).

A mathematical model can represent this optical flow. In this model, the magni-
tude of the optical flow must define the position of the objects, whether they are close
or distant. This model should also take in consideration the angle to the objects.
Obviously, objects in the direction of the movement move much slower than objects
to side of the direction of the movement.

Indeed, given camera optics (camera calibration parameters) and scene depth,
there is a one-to-one correspondence between camera motion and optical flow. That
means that the optical flow can be used to determine the motion of the vehicle.
Formally, given a sequence of images, optical flow is an approximation of local image
motion based upon local derivatives. The 2D image sequences are formed under
perspective projection via the relative motion of a camera and scene objects as
described in the previous sections. The crucial property in optical flow is that moving
patterns cause varieties of the image brightness. These temporal intensity changes
are assumed to occur due to motion only.

Many algorithms have been presented in the literature to estimate the optical flow.
The well-known technique is the Luca-Kanade method. This algorithm employs the
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Fig. 2.9 Optical flow as seen by ground vehicle

gradients over multiple frames and analyses them spatially and temporally. Other
techniques use feature tracking to estimate motion parameters. Elementary motion
detector (EMD) method can be used as well to obtain motion measurements. The
diversity of methods introduced in the literature illustrates how difficult the optical
flow problem is. Having said that, it seems that estimating the motion from the
optical flow has been addressed in different ways and there is no global solution
applicable in all cases. However, some aspects must be considered when using the
optical flow based solution:

• Translation and rotation: Translational optical flow indicates the motion
of objects in the environment. In the case of rapid rotations, the measurements
of translational optical flow may be illuminated by the rotational optical flow.
External sensor such as the gyro can be used in these situations.

• Low texture contrast: Texture is crucial in the optical flow framework.
Obviously in perfectly clean and smooth surfaces it is not possible to track
any texture. Therefore, good images and good feature extractor algorithms
are critical.

• Mechanical jitter: In any vision system, mechanical vibrations can sig-
nificantly affect the algorithm. Tools to overcome this problem should be
incorporated during the whole navigation.

2.11.1 The 2D and 3D motion constraint equations

In 2D (images) optical flow defines how much each image pixel moves between
adjacent images while in 3D it specifies how much each volume in 3D moves between
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(x, y)

(x + δx, y + δy)

displacement

(δx, δy)

t t + δt

Fig. 2.10 The image at position (x, y, t) and time step t is the same as at (x+ δx, y+
δy, t+ δt) and time step t+ δt.

adjacent volumes. The motion constraint equation is the basis of differential optical
flow.

The 2D motion constraint equation

Let I(x, y, t) be the centre pixel in an n×n neighbourhood. Assume this pixel moves
by δx and δy to I(x + δx, y + δy, t + δt) (Figure 2.10). One can see that I(x, y, t)
and I(x+ δx, y + δy, t+ δt) are images of the same 3D scene point X. Then, one
may write:

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (2.45)

Equation (2.45) represents the basis of the 2D motion constraint equation, which
is illustrated at Figure 2.10. The first order Taylor series expansion about I(x, y, t)
in equation (2.45) is given as:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) + ∂I

∂x
δx+ ∂I

∂y
δy + ∂I

∂t
δt+ Ψ (2.46)

where Ψ represents are the higher order terms. In fact, Ψ is assumed to be small
and can safely be ignored. Using (2.45) and (2.46), one can get:

∂I

∂x
vx + ∂I

∂y
vy + ∂I

∂t
= 0 (2.47)

where vx = ∂x
∂t

and vx = ∂y
∂t

are the x and y components of image velocity or
optical flow. By putting:

Ix = ∂I

∂x
, Iy = ∂I

∂y
, It = ∂I

∂t
(2.48)
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equation (2.47) may be written as:

(Ix, Iy) · (vx, vy) = −It (2.49)

or as:
∇I · −→v = −It (2.50)

where ∇I = (Ix, Iy) is the spatial intensity gradient and −→v = (vx, vy) is the image
velocity or optical flow at pixel (x, y) at time t.

Equation (2.50) is of great interest in optical flow framework and called 2D
motion constraint equation. This constraint is the basis of optical flow based motion
estimation.

The 3D motion constraint equation

The 3D motion constraint equation is an extension of the 2D motion constraint
equation. This 3D constraints depicts an n×n×n block at (x, y, z) at time t moving
by (δx, δy, δz) to (x+ δx, y + δy, z + δz) over time δt. Similarly to the 2D case, the
3D motion constraint equation is given as:

∇I · −→v = −It (2.51)

where ∇I = (Ix, Iy, Iz) is the 3D spatial intensity gradient and −→v = (vx, vy, vz) is
the 3D velocity.

2.11.2 Optical flow based motion estimation methods

Many techniques have been presented in the literature for motion estimation through
the optical flow. Among all the presented approaches we can list:

• Gradient based approach: This approach was first presented by Horn and
Schunck [88]. This technique combines the gradient constraint (2.50) with a
global smoothness term to constrain the estimated velocity field −→v = (vx, vy).
Then, Lucas and Kanade presented in [120] a second technique through the
gradient-based approach. This technique relies on an iterative least-squares
minimisation.

• Correlation-based approach: This method is very close to block matching.
In this approach, the image in divided into fixed-size blocks. The matching is
performed using the correlation technique.
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• Spatio-temporal energy based approach: In this approach, frequencies
define the velocity of translational moving objects. Motion can be evaluated
by using spatio-temporally oriented filters.

• Phase-based approach: this approach is based on spatially filtering the
images using a bank of quadrature pair filters.

2.12 Conclusion

We have introduced in this chapter the basics of image formation and multi-view
geometry. More attention is given to the pinhole camera model, describing some
optical principles behind image formation. We discussed in detail the mathematical
representation of the camera geometry and the link between the positions of 3D
scene points with their corresponding image points, which is defined as a mapping
from the Euclidean 3-space to Euclidean 2-space. We then discussed the two-view
geometry, the epipolar geometry and the relationship between two image points of
the same 3D scene point. We have detailed in depth the essential matrix, which
constrains the relative translation and rotation between two cameras. We presented
also some techniques that might be used to estimate this matrix. The fundamental
matrix and its estimation methods were investigated as well. Three-view geometry
is also presented in this chapter, where we showed that the trifocal tensor is the
algebraic representation of this geometry. This chapter includes as well the basic
notions of the optical flow approach.
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Convex Optimisation

In this chapter, we provide a brief introduction to some basic notions that are
used in this thesis. First, we start by giving a short overview of the subclasses of
optimisation problems and their implementations. We then give a brief introduction
to the basic concepts in convex optimisation that are used extensively throughout the
thesis. Specifically, we detail the concepts of convex sets, convex functions, convex
and quasi-convex optimisation problems. As a special case, we will focus on the second
order cone program (SOCP), which is used as a solution tool for our optimisation
models.

Robust convex optimisation is also considered in this chapter along with global
optimisation methods, such as the branch and bound algorithm.

3.1 Notation

The set of real numbers is denoted with the symbol R, and the set of non-negative
real numbers is denoted with R+ = {x ∈ R|x ≥ 0}; while the positive numbers
set is denoted with R++ = {x ∈ R|x > 0}. The n-dimensional Euclidean space is
denoted with Rn and the set of real m × n matrices is denoted with Rm×n. The
non-negative numbers is denoted with Rn

+ = {xi ≥ 0, for i = 1, . . . , n}, while
Rn

++ = {xi > 0 ,for i = 1, . . . , n} is for the positive orthant.

The symbol 1 denotes a vector with a given dimension all of whose components
are one. A vector is denoted with x and its ith component is denoted with xi. The
symmetric k × k matrices set is denoted with Sk, while Sk

+ and Sk
++ are used to

represent the symmetric positive semi-definite and definite k×k matrices respectively.
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3.2 Optimisation problem classes

Firstly, let us frame the optimisation problem and why we should optimise. Assuming
we have a set of measurements xi, our goal is to fit a parametrised model to these
measurements. Now consider some model values x̂i, then the residuals are given
by: δi = ∥xi − x̂i∥, where ∥.∥ is any norm in the measurement space. Optimisation
involves finding the model parameters that minimise the residuals δi.

Many algorithms are presented in the literature to solve this optimisation problem.
All of these algorithms can be subdivided into three main classes. The first covers
linear approaches such as least squares optimisation. The second approach concerns
the iterative methods, where a geometric cost function is minimised using iterative
algorithms such as Levenberg-Marquardt or Gauss-Newton; and the third method,
which is important for us in this work, is convex optimisation.

3.2.1 Least squares solution

Generally, the least squares solution is said to be the optimal solution [84], and it
is one of the most commonly used methods in numerical computation. The least
squares solution minimises the cost function:

min
x

∥ ∆ ∥=
∑

i

∥ xi − x̂i ∥2. (3.1)

The objective of this optimisation problem is to find a solution that minimises
the sum of squared errors between observed and estimated values. This optimisation
assumes that the measurements are estimated from values that are spoiled with
Gaussian noise with variance σ2. Hence, the probability of the set of measurements
xi given true values x̂i is obtained as:

P
({
xi|x̂i

})
= K

∏
i

exp
(
− ∥ xi − x̂i ∥2 /2σ2

)
(3.2)

where K is a normalising constant. Minimisation after taking logarithms shows that
the values of x̂i that maximise this probability also minimise the cost function in (3.1).
Therefore, under an assumption of Gaussian noise in the measurements, we can say
that the least squares solution is the maximum likelihood (ML) estimate. However,
in multi-view geometry, the justification of this assumption is not straight forward.
In addition, the optimality of the Maximum Likelihood is not always guaranteed
[84].
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The more general form of Least Squares (LS) minimisation problem is given as:

min
x
fo

(
x
)

=∥ Ax− b ∥2
2=

∑
i

(
a⊤

i x− bi

)2
(3.3)

The objective function fo(x) is a summation of squares:
(
a⊤

i x− bi

)
. Note here

that there are no constraints. A set of linear equations can be used to solve the
least-squares problem (3.3):

(A⊤A)x = A⊤b (3.4)

This form has the analytical solution xopt = (A⊤A)−1A⊤b = A‡b, where A‡ =
(A⊤A)−1A⊤ is the pseudo-inverse of A. This can also be called the Batch least-squares
solution.

3.2.2 Iterative methods

In general, iterative estimation methods minimise a geometric cost function using
iterative algorithms such as Levenberg-Marquardt, Gauss-Newton, gradient descent
or conjugate gradient. Let us consider the functional relation: X = f(P ), where X
is the measurement vector and P is the parameter vector. The aim here is to find
some parameters P̂ that satisfy as far as possible the functional relation. In other
words, we try to minimise the difference between X and f(P̂ ). Thus, this involves
minimising ∥ε∥, where ∥ε∥ = f(P ) −X.

When f is not-linear, the approach is to start with an initial value of parameters
P̂ , let us denote it as the set of parameters P0, and continuously refine it until a
satisfactory ending threshold is met. Let ε0 = f(P0) −X, then we assume that the
function f is approximated at P0 by:

f(P0 + ∆) = f(P0) + J∆ (3.5)

where J is the linear mapping represented by the Jacobian matrix J = ∂f/∂P [82].
We now look for some updated parameters P1, where P1 = P0 + ∆, that minimises
f(P1) −X = f(P0) + J∆ −X = ε0 + J∆. Thus, we have to minimise ε0 + J∆ in ∆,
which can be done by solving the linear system:

(J⊤J)∆ = −J⊤ε0 (3.6)

The solution is then updated by adding the solution ∆∗ of (3.6) to the initial guess:

Pi+1 = Pi + ∆∗ (3.7)
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Fig. 3.1 Local and global solutions.

The Gauss-Newton algorithm iterates the equations (3.5) and (3.6) and updates
(3.7). The previous solution ∆∗ is used as the linearisation point and the initial guess.
This procedure is iterated until a satisfactory convergence standard is achieved;
usually until a predefined termination criterion is met.

The Levenberg–Marquardt (LM) algorithm is slightly different from Gauss-
Newton. The LM algorithm adds a new variable λ to equation (3.6):

(J⊤J + λI)∆ = −J⊤ε0 (3.8)

where I is the identity matrix. If the recovered ∆ by solving (3.8) leads to a decrease
in the error, the update is accepted and λ is updated (usually divided by a factor of
10). But, if the error increases, then λ is multiplied by the same factor and (3.8) is
solved again. This process is repeated until a value of ∆ is recovered to decrease
the error. However, and notwithstanding their dependency on a good initialisation
guess, these algorithms have high probabilities of convergence to a local minimum
value, or does not converge at all (Figure 3.1).

3.2.3 Convex optimisation

Our aim in this thesis is to extend the state-of-the-art techniques for motion estimation
in computer vision. Thinking of more accurate and robust techniques would be a
valid option. Thus, global optimisation methods such as convex and quasi-convex
optimisation offer the possibility of getting around the drawbacks of linear and
iterative techniques and recovering robust and global solutions. Convex functions
necessary have a single minimum solution to the problem due to their shape.
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3.3 Basic notions of convex optimisation

Convex optimisation is well detailed in [25, 131], where basic notions are given,
specifically: convex sets, convex functions including affine functions, convex and
quasi-convex functions. Second-order cone programming (SOCP) is also detailed in
this textbook, referring to problems that can be solved using this technique.

First, let us consider two different points x0 and x1 in Rn (Figure 3.2). The line
passing through x0 and x1 has the form:

y = (1 − α)x0 + αx1 , where α ∈ R

Note that when α = 0, then y = x0, and when α = 1, then y = x1. When α is
between 0 and 1, 0 ≤ α ≤ 1, this corresponds to the line segment between x0 and x1

(Figure 3.2).

Fig. 3.2 The line passing through x0 and x1 is identified by (1 − α)x0 + αx1. The
(red) solid line segment between x0 and x1 is parametrised when α is between 0 and
1.

3.3.1 Affine sets

If the segment passing any two different points in set C ⊆ Rn stays in C, then this
set is affine. In other words:

Definition 1. A set C ⊆ Rn is an affine set, if for any x0 and x1 ∈ C and α ∈ R,
we have (1 − α)x0 + αx1 in C.

3.3.2 Convex set

A set C in Rn is supposed to be convex, if the line segment joining any two points of
the set also belongs to the set [25, 131]. In more details, if x0 and x1 are in C, then
(1 − α)x0 + αx1 must belong to C for each α ∈ [0, 1].
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Definition 2. A set C ⊆ Rn is a convex set, if for any x0 and x1 ∈ C and 0 ≤ α ≤ 1,
then, (1 − α)x0 + αx1 is in C.

Obviously, all affine sets are convex, but not all convex sets are affine sets. Figure
3.3 illustrates the notion of a convex set. Note that the line segment joining x0 and
x1 in the middle plot in this figure does not entirely lie inside the set.

In general, a point x of the form:

x =
n∑

i=1
αixi , where

n∑
i=1

αi = 1, 0 ≤ αi ≤ 1 and xi ∈ C (3.9)

is said to be a convex combination of x1, . . . , xn. In these conditions, if the non-
negativity condition of αi is dropped, the combination is known as an affine combi-
nation.

Fig. 3.3 Left: A convex set. Middle: A non-convex set. Right: The convex hull of
the middle set.

Examples of convex sets

Norm Balls. A norm ball in Rn has the form:

B(xctr, r) = {x|∥x− xctr∥ ≤ r}

where xctr ∈ Rn is the centre of the ball, the scalar r > 0 is the radius of the ball and
∥.∥ is a norm on Rn. An Euclidean ball is a norm ball using the norm ∥x2∥ = (x⊤x) 1

2 .
That is [25]:

BEuclid.(xctr, r) = {x|∥x− xctr∥2 ≤ r}

Norm Cones. A norm cone in Rn has the form [25]:

C = {(x, t)Rn−1 × R|x ∈ Rn−1, t ∈ R; ∥x∥ ≤ t}
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y

Fig. 3.4 Examples of convex sets in R3.

A second-order cone of dimension n is a norm cone, where the Euclidean norm is
used. That is:

Cn = {(x, t)Rn−1 × R|∥x∥ ≤ t} (3.10)

A second-order cone is also called a quadratic cone, a Lorentz cone or an ice-cream
cone (Figure 3.4b). In R3 this cone has the equation:

C3 = {(x, t)R2 × R|
√
x2

1 + x2
2 ≤ t}

Planes or hyperplane. A plane in R3 has the following equation:

C4 = {(x1, x2, x3) ∈ R3|ax1 + bx2 + bx3 = d} ∈ R3

In general, C4 = {X : PtX = δ} forms a hyperplane in Rn, where P is a nonzero
vector in Rn and δ is a scalar.

3.3.3 Operations that preserve convexity

The two main categories of operations that preserve convexity of a set are the
intersection and the mapping via an affine function.
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Intersection

Let C1 and C2 be convex sets in Rn, then C1
⋂
C2 is a convex set. Convexity is

preserved under intersection.

Mapping via an affine function

Let f : Rn → Rm be an affine function with the form: f(x) = Ax+b where A ∈ Rn×m

and b ∈ Rn. If C ⊆ Rn is a convex set, then the image of C under f given by:

f(C) = {f(x)|x ∈ C}

is a convex set.

3.3.4 Affine functions

In the case where a function f : Rn → Rm is defined by a sum of a constant and a
linear function, then this function is said affine. Thus, this function is defined as:
f(x) = Ax + b, where A ∈ Rn×m and b ∈ Rm. Let us consider the linear function
f(x) = ax+ b, where x ∈ R. This is simply the equation of a line in which a is the
slope and b is the y-intercept of this line. In R2, this function, f(x) = a1x1 +a2x2 + b,
is the equation of a plane. Using higher dimensions, a function f : Rn → Rm is affine
in the case where f(x) = a⊤x+ b, here a, x ∈ Rn and b ∈ Rm which is the equation
of a hyperplane. Now the first function f(x) = Ax+ b, has several affine functions
fi(x) = a⊤

i x+ bi, for i = 1, · · · ,m, where ai are the row of the matrix A.

Now, according to Definition 1, an affine set C is any set where the line segment
passing any two different points in C lies in C. Similarly, if for any x0 and x1 ∈ C

and α ∈ R, then αx0 + (1 − α)x1 ∈ C.

It is easy to confuse the concepts of affine sets and affine functions. To clarify these
two concepts, consider this example in R2: the affine function f(x) = x0 +x1 +1 is the
equation of a plane (red-sloped plane in Figure 3.5) and the affine function f(x) = 6
is the equation of a plane (blue-horizontal plane in Figure 3.5). The affine set, on
the other hand, {x ∈ R2|f(x) = 6} is all points on the line {x ∈ R2|x0 = 5 − x1}
where the red and the blue planes intersect.
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Fig. 3.5 Example of affine function and affine set.

3.3.5 Convex function

A convex function is a function f that has the domain, C, of a convex set such that
for all x, y ∈ C and 0 ≤ α ≤ 1:

f((1 − α)x+ αy) ≤ (1 − α)f(x) + αf(y) (3.11)

This inequality means that the line segment between (x, f(x)) and (y, f(y)) lies
above the graph (Figure 3.6).

Definition 3. A function f : Rn → R is convex if its domain C is a convex C and
for all x, y ∈ C : f((1 − α)x+ αy) ≤ (1 − α)f(x) + αf(y).

Fig. 3.6 Graph of a convex function.

If strict inequality holds in (3.11) whenever x ̸= y and 0 < α < 1, then, function
f is strictly convex. We say f is concave if −f is convex. 1

1Most theorems given in this chapter are simply stated without proof since they are well known
and whose proofs may be found in books such as [25]. Proofs are only provided for results that are
crucial to the thesis.
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Theorem 4. A function f : Rn → R is convex if its domain C is a convex C and
for all x, y ∈ C : f((1 − α)x+ αy) ≤ (1 − α)f(x) + αf(y).

Suppose we have a differentiable function, then, the first-order convexity condition
is that its first-order approximation is a global under-estimator, that is:

∀x0, x1 ∈ C, f(x0) ≥ f(x1) + ▽f(x0)⊤(x0 − x1) (3.12)

If f is differentiable then f is convex if and only if (3.12) holds for all x0, x1 ∈ C.
The geometric interpretation of this means that f is convex if and only if f lies above
its tangent plane at all points. Figure 3.6 illustrates the geometry of the definition.
This illustrates why convexity is of great importance in optimisation. It means that
the tangent is global under the estimator of the function. 2

Theorem 5. A function f is convex if and only if its domain C is convex and
f(x0) ≥ f(x1) + ▽f(x0)⊤(x0 − x1) holds for all x0, x1 ∈ C.

If f(x) is twice differentiable, which means its Hessian ▽2f exist for all points
x in its domain C, then f is convex if and only if C is convex and its Hessian is
positive semi-defined for all points x ∈ C, that is,

∀x ∈ C,▽2f(x) ≽ 0 (3.13)

The geometrical interpretation of (3.13) is that the graph of f(x) has an upward
curvature at x.

Theorem 6. A function f is convex if and only if its domain C is convex and its
Hessian ▽2f(x) is a positive, semidefinite matrix.

Some examples of functions used in this thesis that are convex functions:
• Norms: Every norm on Rn is convex;
• Affine functions: f(x) = a⊤x+ c, where a ∈ Rn, c ∈ R;
• Quadratic functions: f(x) = x⊤Ax+ 2b⊤ + c if and only if A ≽ 0 since A is

its Hessian;
• Exponential functions: f(x) = eαx, where α ∈ R.

3.3.6 Quasi-convex functions

Commonly, convex problems do not come up in multi-view geometry [84]. Most prob-
lems are formulated as quasi-convex optimisations instead. Quasi-convex functions
are defined as:

2[T ]× is the 3 × 3 skew-symmetric matrix of T as defined in the Notation Section in this chapter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3.7 Quasi-convex functions.
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Definition 4. A function f : Rn → R is quasi-convex if its domain C and its
sub-levels sets Sδ = {x ∈ C|f(x) ≤ δ} are convex for δ ∈ R.

The geometrical interpretation of quasi-convexity is shown at Figure 3.7. In
this figure, functions in the first and the second rows (plots from (a) to (f)) are
quasi-convex. For a given value of δ, the δ-sub-level sets, Sδ = {x ∈ C|f(x) ≤ δ},
of these functions are convex. These sets are the intervals Sδ = [a, b] in R for the
plots (a), (d) and (e); and the shaded (gray areas) in R2 for the plots (b), (c) and
(f). It is easy to see that these δ-sub-level sets are convex. First row functions (plots
(a), (b) and (c)) are convex and quasi-convex at the same time. However, functions
in the second row (plots (d), (e) and (f)) are not convex since not all line segments
between two points lie above their corresponding graph. Therefore, clearly, any
convex function is also quasi-convex. However, not all quasi-convex functions are
convex. Functions on the third row in this figure (plots (g), (h) and (i)) are not
convex for the same reason. Furthermore, they are not quasi-convex, either since
their δ-sub-level sets, intervals Sδ = [a, b]⋃[c, d] in R for the plot (g) and the shaded
areas (gray areas) in R2 for the plots (h) and (i), are not convex.

Two important properties of quasi-convex functions are:
• Quasi-convex functions have no local minima apart from the global minimum;
• If functions f1, f2, . . . , fm are quasi-convex, the function f = max

i=1,...,m
fi, the

point-wise maximum, is also quasi-convex (proof is given in the next section).
This is illustrated in Figure 3.8 for the one dimensional case.

Fig. 3.8 Quasi-convex function and their pointwise maximum.
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3.3.7 Operations that preserve quasi-convexity

Theorem 7. If functions f1, · · · , fm are quasi-convex, then their pointwise maximum
f , defined by: f(x) = max{f1, · · · , fm} with dom f = ⋂m

i=1 dom(fi) is also quasi-
convex.

Proof. First we need to prove that the domain of f is convex then we shall prove
that its sub-level sets are convex.

• domf = ⋂m
i=1 dom(fi) is the domain of f . We know that the domain of each fi

is convex since they are quasi-convex. We know that convexity is preserved
under intersection; thus, dom(f) must be convex.

• The δ-sub-level set of f is:

Sδ(f) = {x ∈ dom f |f(x) ≤ δ}
= {x|max fi ≤ δ, i = 1, · · · ,m}

=
m⋂
i

{x|fi ≤ δ, i = 1, · · · ,m}

=
m⋂
i

Sδ(fi)

Again, since the intersection preserves the convexity, then the δ-sublevel set of f is
convex [94].

3.4 Convex optimisation problem

3.4.1 Definitions

First, we will give some definitions concerning optimisation problems. Let us consider
this notation:

min
x

f0(x)

subject to fi(x) ≤ 0 for i = 1, · · · ,m
ci(x) = 0 for i = 1, · · · , p

(3.14)

This means that we wish to find all components of x that provide the minimum
value of the function f0(x), but these components must satisfy all the m conditions
fi(x) ≤ 0 and all the p conditions ci(x) = 0.

Here, x ∈ Rn is called the optimisation variable and f0(x) : Rn → R is the
objective function (or cost function). The equalities ci(x) = 0 are called the equality
constraints and the corresponding functions ci(x) are called the equality constraint



62 Chapter 3. Convex Optimisation

functions. The inequalities fi(x) ≤ 0 are called the inequality constraints, and the
corresponding functions fi(x) are called the inequality constraint functions.

The set of points for which the objective and all constraint functions are defined,

D = dom f0 ∩
m⋂

i=1
dom fi ∩

p⋂
i=1

dom ci (3.15)

is called the optimisation problem domain. A point x ∈ D is said to be feasible if
it satisfies the inequality and the equality constraints fi(x) and ci(x). If there is
no x that satisfies this condition, then the problem is said infeasible. The set of all
feasible points is called the feasible set.

Definition 5. p∗ is said an optimal value to the optimisation problem (3.14), if

p∗ = inf {f0(x)|fi(x) ≤ 0, i = 1, . . . ,m, ci(x) = 0, for i = 1, . . . , p} (3.16)

Definition 6. x∗ is said an optimal solution to the optimisation problem (3.14), if
x∗ is feasible and f0(x∗) = p∗. A feasible point x with f0(x) ≤ p∗ + ε, where ε > 0 ,
is called ε-suboptimal.

3.4.2 Convex optimisation form

Similarly to problem (3.14), a convex optimisation problem has the form:

find f0(x)
subject to fi(x) ≤ 0 for i = 1, · · · ,m

a⊤
i x = bi for i = 1, · · · , p

(3.17)

where:
• The objective function f0 must be convex;
• The inequality constraint functions fi(x) ≤ 0 for i = 1, · · · ,m must be convex;
• The equality constraint functions a⊤

i x = bi for i = 1, · · · , p must be affine.
The feasible set of a convex optimisation problem is convex. Therefore, in a convex
optimisation problem, we are minimising a convex objective function (which has a
single minimum) over a convex set.

A point x ∈ D is a feasible point if it satisfies the constraints fi(x) ≤ 0 for
i = 1, · · · ,m and ci(x) = 0 for i = 1, · · · , p (ci(x) = a⊤

i x − bi). The feasible set is
the set of all feasible points. An optimisation problem is said to be feasible if there
exists at least one feasible point and infeasible otherwise.
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(a) (b) (c)

Fig. 3.9 a. Graph of the objective function f0(x) = x2
1 + x2

2, note f0(x) is clearly a
convex function. b. After adding the inequality constraint function f1(x) = x1 ≤ 0,
the feasible set has been reduced to the green set. c. The quality constraint function
c1(x) = x1 + x2 = 0 has even reduced the feasible set to the blue curve.

Example

In order to get a clear idea, let us consider this problem in R2:

min
x

f0(x) = x2
1 + x2

2

subject to f1(x) : x1 ≤ 0
c1(x) : x1 + x2 = 0

(3.18)

This is a convex optimisation problem since the objective function f0(x) is convex,
the inequality constraint function is convex and the equality constraint function is
affine. The feasible set is convex (Details is given in the caption of Figure 3.9).

3.4.3 Convex feasibility problems

One form of convex optimisation problems that is used extensively in this thesis is
the quasi-convex optimisation via convex feasibility problems. The most attractive
property of a convex problem is that it has one single minimum, which is at the
same time the global minimum [25, 84].

A feasibility problem has the following form:

find x

subject to fi(x) ≤ 0 for i = 1, · · · ,m
ci(x) = 0 for i = 1, · · · , p

(3.19)

Note that there is no objective function here. Therefore, the feasibility problem seeks
to find out if the constraints are consistent and, if so, recover the points that satisfy
them.
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3.5 Quasi-convex optimisation problem

The general form of a quasi-convex optimisation problem is:

min
x

f0(x)

subject to fi(x) ≤ 0 for i = 1, . . . ,m
a⊤

i x = bi for i = 1, . . . , p

(3.20)

where the objective function f0(x) must be quasi-convex, the inequality constraint
functions fi(x) ≤ 0 for i = 1, . . . ,m must be convex and the equality functions
ci = a⊤

i x− bi for i = 1, . . . , p must be affine. The most important feature here is the
fact that the feasible set of the quasi-convex optimisation problem is convex.

One may notice that a quasi-convex optimisation problem is similar to a convex
optimisation problem, except that the objective function f0(x) is quasi-convex.
Though, quasi-convex optimisation problems share most agreeable properties of
convex optimisation [84]. The most important one is that a quasi-convex function
has no local minima apart from the global minimum.

To solve this quasi-convex optimisation problem, its sub-level sets are represented
using inequalities of convex functions ϕδ : Rn → R with:

f0(x) ≤ δ ⇔ ϕδ(x) ≤ 0 (3.21)

Let us consider the following problem:

find f0(x)
subject to ϕδ(x) ≤ 0 for i = 1, . . . ,m

fi(x) ≤ 0 for i = 1, . . . ,m
a⊤

i x = bi for i = 1, . . . , p

(3.22)

One may notice that this problem is similar to the convex feasibility problem (3.19),
where the aim is to determine whether the constraints are consistent or not. Thus,
let p∗ be the optimal solution of the problem (3.20). In the case where the problem
(3.22) is feasible, then p∗ ≤ δ. On the contrary, if it is infeasible, then p∗ ≥ δ.

This leads to solve the quasi-convex problem (3.20) using what is called a bisection
algorithm (Algorithm 1). In each step of this algorithm, we check the feasibility of
the problem. We start with the lower bound δl and the upper bound δu, assuming
that the problem is feasible within the interval [δl, δu] with an optimal solution p∗.
Then we solve the convex feasibility problem at the interval midpoint δ = (δl+δu)

2 , to
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Algorithm 1 Bisection algorithm for solving the optimisation problem.
Given: optimal value δopt ∈ [δl, δu] and tolerance ε > 0
while ( δl − δu < ε ) do

δ = 1
2(δl + δu)

Solve the convex feasibility problem (3.22)
if feasible then

δu = δ
else

δl = δ
end if

end while

check whether the optimal solution p∗ is within the lower or the upper bound. This
allows us to dismiss the second half in which the optimal solution does not exist.
This produces a new narrower interval (half the width of the initial interval) that
certainly contains the optimal solution.

3.6 Basic examples of convex optimisation

3.6.1 Linear programming

A linear program (LP) is appropriate for optimisation when the objective function
and the constraint functions are all affine. Therefore the general form of a linear
program is:

min
x

f0 : c⊤x+ d

subject to Gx ≤ h

Ax = b

(3.23)

where G ∈ Rm×n and A ∈ Rp×n.
The geometric interpretation of a LP is shown in Figure 3.10. We seek a point

in the polyhedron P where function c⊤x+ d has the smallest value, if such a point
exists. The number of constraints defines the dimension of this polyhedron. The
objective function c⊤x+ d is affine so its level curves {x|f0(x) = t} for some value
t ∈ R are hyperplanes {x|c⊤x+ d = t} that are orthogonal to vector c. The optimal
point x∗ is the point in P which is as far as possible in the direction −c. Decreasing
values of the cost function are in the negative direction of the gradient direction
−∆f0 = −c.
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Fig. 3.10 The geometric interpretation of the LP. The shaded area is the feasible set.
The dotted lines are the level sets of the cost function, and the red arrow indicates
the direction in which we are optimising, defined by − ▽ f0 = −c.

3.6.2 Quadratic programming

Let us consider the optimisation problem (3.17). If the objective function of this
problem is quadratic, and the constraint functions are affine, this problem is called a
quadratic program (QP)(Figure 3.11):

min
x

f0 : x⊤Px+ 2q⊤x+ r

subject to Gx ≤ d

Ax = b

(3.24)

where Sn
+ ∈ Rm×n.

3.6.3 Quadratic constrained quadratic program

A quadratic constrained quadratic program (QCQP) is a problem of the form:

min
x

x⊤P0x+ 2q⊤
0 x+ r0

subject to x⊤Pix+ 2q⊤
i x+ ri, for i = 1, . . . ,m

a⊤
i x = bi for i = 1, . . . , p

(3.25)

where x, qi, ai ∈ Rn, Pi ∈ Sn
+ for i = 0, . . . ,m, bi, ri ∈ R. In a QCQP, a convex

quadratic function is minimised over a region which is the intersection of ellipsoids
(when Pi > 0).

Observe that quadratic programs (QP) include linear programs (LP) as a special
case, by taking P = 0 in (3.24).
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Fig. 3.11 The geometric interpretation of the QP. The shaded area is the feasible set.
The dotted curves are the level sets of the cost function, and the red arrow indicates
the direction in which we are optimising, defined by −▽f0(x∗).

3.7 Second-order cone programming

The Second-Order Cone Programming (SOCP) is a convex optimisation technique
used to solve convex and quasi-convex problems. In a second order cone program
(SOCP), a linear function is minimised over the intersection of an affine set and the
product of second order cones. SOCP are close to quadratic programs (QP). Let us
consider the second order cone program (SOCP):

min
x

f⊤x

subject to ∥Aix+ bi∥ ≤ c⊤
i x+ di, for i = 1, . . . ,m

g⊤
i x = hi for i = 1, . . . , p

(3.26)

where x ∈ Rn is the optimisation variable, and f ∈ Rn, Ai ∈ R(ni−1)×n, bi ∈
Rni−1, ci, gi ∈ Rn and di, hi ∈ Rn are the problem parameters. The norm ∥.∥2 is
the standard Euclidean norm ∥u∥2 =

√
(u⊤u).

The constraint:
∥A1x+ bi∥ ≤ ci⊤x+ di (3.27)

is called the second order cone constraint of dimension ni [84, 135]. This is called so
because the set of points that satisfy this second order cone constraint is the inverse
image of the unit second order cone of dimension k, defined as:

Lk =


u
t

 |u ∈ Rk−1, t ∈ R, ∥u∥ ≤ t

 (3.28)
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under an affine mapping:

∥Aix+ bi∥ ≤ c⊤
i + di ⇔

Ai

c⊤
i

x+
bi

di

 ∈ Lni
(3.29)

In other words, the set of points satisfying a second-order cone constraint of dimension
ni is the inverse image of the second-order cone of dimension ni under an affine
mapping. Therefore, the feasible set of the problem (3.26) is the intersection of m
second-order cones {x| ∥Aix+ bi∥ ≤ c⊤

i + di} with p hyperplanes g⊤
i x = hi. Both

second-order cones and hyperplanes are convex. Therefore, their intersection produces
a convex set. Hence, the SOCP in (3.26) is a convex optimisation problem as the
objective function is a convex function and the constraints define a convex set.

Note that when ni = 1 for i = 1, . . . ,m, the SOCP reduces to the linear program
(LP):

min
x

f⊤x

subject to ci⊤x+ di ≥ 0, for i = 1, . . . ,m
g⊤

i x = hi for i = 1, . . . , p

(3.30)

Furthermore, SOCP integrates numerous significant classes of convex optimisation
problems, such as Quadratic Program QP and Quadratic Constrained Quadratic
Program QCQP. To see that, let us consider the QCQP problem given in (3.25).
This problem can be rewritten as [135]:

min
x

∥P
1
2

0 x+ P
− 1

2
0 q0∥2 + r0 − q⊤

0 P
−1
0 q0

subject to ∥P
1
2

i x+ P
− 1

2
i qi∥2 + ri − q⊤

i P
−1
i qi, for i = 1, . . . ,m

a⊤
i x = bi for i = 1, . . . , p

(3.31)

with the assumption that matrices Pi are positive definite. Introducing a new
optimisation variable t, problem (3.31) can be formulated and solved as SOCP:

min
x

t

subject to ∥P
1
2

0 x+ P
− 1

2
0 q0∥ ≤ t

∥P
1
2

i x+ P
− 1

2
i qi∥ ≤ (q⊤

i P
−1
i qiri)

1
2 , for i = 1, . . . ,m

a⊤
i x = bi for i = 1, . . . , p

(3.32)

The optimal solution of problems (3.25) and (3.32) are equal to constant and a square
root. If ci = 0, for i = 1, . . . ,m in problem (3.26), the SOCP reduces to a QCQP.
Therefore, SOCPs are more general than QCQPs, QPs and LPs.
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3.7.1 SOCP feasibility problems

SOCP feasibility problems are of great importance in this thesis. In addition to the
detail given in the previous sections, this section gives more analysis to quasi-convex
optimisation problem. Most problems throughout this thesis are formulated as SOCP
feasibility problems. First, let us consider the following feasibility problem:

Find x

subject to ∥Aix+ bi∥ ≤ δ (ci⊤x+ di) , for i = 1, . . . ,m
ci⊤x+ di ≥ 0, for i = 1, . . . ,m

(3.33)

This problem is a SOCP feasibility problem, which involves finding a solution x

that satisfies the second-order cone constraint.

Example of a quasi-convex function

A particular form of a quasi-convex function that is used frequently in this thesis is
given as:

f(x) = f1 (x)2 + f2 (x)2

f3 (x)2 (3.34)

where fi(x) = a⊤
i x+ bi.

As given in Section 3.3.4 (page 56), fi(x), i = 1, . . . , 3 are affine, since they have
the form: fi(x) = a⊤

i x+ bi. To prove that this function is a quasi-convex function,
let us show first that its domain is convex.

The domain of f(x) is the intersection of convex sets:

Df(x) = dom f1 ∩ dom f2 ∩ dom f3

Since convexity of a set is preserved under intersection, Df(x) is also a convex set.
Now, we have to prove that the sub-level sets of f(x) are convex. First, let us

define Sδ(f) as a δ-sublevel of f , then:

Sδ(f) = Sδ(f) = {x ∈ Df(x)|f(x) ≤ δ}

= {x|f1 (x)2 + f2 (x)2

f3 (x)2 ≤ δ, f3(x) > 0}

=
{
x|fi1 (x)2 + fi2 (x)2 ≤ δfi3 (x)2 , fi3 > 0

}
=
{
x|
√
fi1 (x)2 + fi2 (x)2 ≤

√
δfi3 (x) , fi3 > 0

}
=
{
x|∥fi1 (x) , fi2 (x)∥2 ≤

√
δfi3 (x) , fi3 > 0

}
(3.35)
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where δ ≥ 0. One can see that (3.35) is the equation of a second-order cone of
dimension 3 (see equation (3.10) page 55), which is clearly a convex set [84, 94].
The function f(x) = f1(x)2+f2(x)2

f3(x)2 is quasi-convex. Furthermore, for any function
where the numerator is the sum of a number of squared affine functions, then this
function:f(x) = f1(x)2+f2(x)2+...+fn−1(x)2

fn(x)2 is still quasi-convex

Theorem 8. Let fi(x), i = 1, . . . , 3 are affine functions, having the form: fi(x) =
a⊤

i x+ bi. Then function f(x) = f1(x)2+f2(x)2

f3(x)2 , in the domain {x|f3(x) > 0} is quasi-
convex.

Let us consider now the optimisation problem that minimises the maximum of a
number optimisation functions given in (3.34):

min
x

f0(x) = max
i=1,··· ,m

fi(x) = max
i=1,··· ,m

(
fi1 (x)2 + fi2 (x)2

fi3 (x)2

)
subject to fi3 (x) > 0, for i = 1, . . . ,m.

(3.36)

Note that fi1, fi2, fi3 are all affine functions of the optimisation variable x. Ac-
cording to Theorem 8, fi(x) = fi1(x)2+fi2(x)2

fi3(x)2 is quasi-convex function. In addition,

according to Theorem 7 (page 61), the function f0 = max
i=1,··· ,m

(
fi1(x)2+fi2(x)2

fi3(x)2

)
is also

quasi-convex since the point-wise maximum is also convex. The constraint function
has a convex domain {x|}fi3 (x) > 0, for i = 1, · · · ,m, therefore problem (3.36) is a
quasi-convex optimisation problem [94, 101].

To solve this optimisation problem, suppose δ is an upper bound for the objective
function f0(x) = max

i=1,··· ,m
fi(x). Obviously, δ is also an upper bound for each of the

functions fi(x). Then,

fi(x) ≤ δ

fi1 (x)2 + fi2 (x)2

fi3 (x)2 ≤ δ√
fi1 (x)2 + fi2 (x)2

fi3 (x) ≤ δ

(3.37)

Since fi3 (x) > 0 for i = 1, · · · ,m, and by using the norm ∥u∥2 =
(
u⊤u

) 1
2 , then

the function in 3.37 may be reformulated as:

∥fi1 (x) , fi2 (x)∥2 ≤ δfi3 (x) , i = 1, . . . ,m. (3.38)
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Thus, the quasi-convex optimisation problem in (3.36) can be rewritten as:

min
δ,x

δ

subject to ∥fi1 (x) , fi2 (x)∥2 ≤ δfi3 (x) , i = 1, . . . ,m.
(3.39)

By introducing the new variable δ, the new composed optimisation variable Φ
is defined as: Φ = (δ, x). This makes the optimisation problem (3.39) a non-SOCP
problem because the right hand side of the constraint function: δ

(
a⊤

i x+ bi

)
is

quadratic in the optimisation variable Φ = (δ, x). The solution for this issue is to fix
the value of δ, which makes the expression δ (ci⊤x+ di) linear in the optimisation
variable x.

The optimisation problem (3.39) may then be formulated for a given value of δ
as:

Find δ

subject to ∥fi1 (x) , fi2 (x)∥2 ≤ δfi3 (x) , i = 1, . . . ,m.
(3.40)

In this formulation, we are checking the feasibility of the problem for a given value
of δ [25]. Similarly to problem (3.20) in Section 3.5 (page 64), this problem can
be solved by a sequence of SOCP feasibility problems. This is done through the
Bisection algorithm (Algorithm 1, page 65) for finding the global optimum. Note
that in every iteration of the bisection algorithm, the search space is halved.

The L∞-norm

Given an n-dimensional vector x = (x1, . . . , xn)⊤, the Lp norm of vector x for
p = 1, 2, . . .. is defined as:

∥x∥p =
( n∑

i=1
|xi|p

) 1
p (3.41)

With the special case where p = ∞, the L∞-norm is defined as:

∥x∥∞ = max
i

|xi| (3.42)

The most commonly encountered vector norm in computer vision is the L2 norm
(also called the Euclidean norm) given by:

∥x∥2 =
( n∑

i=1
|xi|2

) 1
2 =

√
x1 + x2 + . . .+ xn (3.43)
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3.8 Robust convex optimisation

In the recent years, the need to deal with uncertain data has become crucial, especially
when real life applications are involved. In these circumstances, robust optimisation
aims to recover an optimal solution whose feasibility must be guaranteed for any
realisation of the uncertain data [20]. Robust optimisation, for which the data are not
specified exactly, explicitly incorporates uncertainty to protect the decision-maker
against parameter ambiguity and stochastic uncertainties [65].

We have seen that convex optimisation offers the possibility of getting around
the problems that linear and non-linear approaches have in terms of convergence.
We have also seen that the cost function in convex optimisation is geometrically
meaningful, and has a single global minimum [25, 94]. In this thesis, most problems
are formulated in terms of parameter estimation from image-based measurements.
Since these measurements are subject to deterministic perturbations, more studies
have started to focus on how this parameter estimation might be improved if
uncertainties in these data are integrated [26].

Therefore, in this thesis more interest is given to robust optimisation and robust
convex optimisation in particular. Throughout this thesis we will be dealing with
uncertain data resulting from inexact measurements. Inaccuracy of the devices could
be considered as an important source of uncertainties as well. Furthermore, data
uncertainty results in uncertain constraints and an uncertain objective function as
well.

Robust optimisation is a recent approach to optimisation under uncertain data,
where the uncertainty model is not stochastic, but rather deterministic. Even though
it is still considered as a new approach to optimisation problems under uncertainty,
an increasing number of real applications have already proved its efficiency. Robust
optimisation is mainly designed to allow uncertainty-affected optimisation problems
to provide guarantees about the performance of the solution [20, 65]. In other words,
in this optimisation, instead of recovering the solution in some probabilistic sense
under stochastic uncertainty, the optimiser builds a solution that is optimal for
any realisation of the uncertainty in a given set [18]. In cases where the optimality
of a solution is affected by the uncertainty, the robust optimisation main goal
will be then to seek a solution that performs well enough for any value taken by
the unknown coefficients. Many studies are conducted toward different robustness
methods, however, the most known one is to optimise the worst-case objective
function [65].

Robust optimisation, in general form, deals with two sets of entities, decision and
uncertain variables. The first aim of robust optimisation is to recover the optimal
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solution on the decision variables such that the worst-case is minimised and the
constraints are robustly feasible, while the uncertainty is allowed to take arbitrary
values in a defined uncertainty set [116]. The optimal solution is evaluated using the
realisation of the uncertainty that is most unfavourable [65].

The general form of this robust optimisation is given by:

min
x

max
ω

f0(x, ω)

subject to fi(x, ωi) ≤ 0 ; ∀ωi ∈ W , i = 1, . . . ,m
(3.44)

where x ∈ Rn are the decision variable, f0 and fi are objective function and the
inequality constraint functions, ωi ∈ Rk, are the uncertain variables and W ⊆ Rk

are the uncertainty sets. If the objective function and the inequality constraints are
convex, the problem (3.44) is considered as a robust convex optimisation problem.
The aim of problem (3.44) is to recover the optimal solution, x∗, of the cost function
among all feasible solutions, allowing the uncertain variables ωi to take any realisation
within Wi.

3.8.1 Robust solution using SOCP

In this thesis we focus on the SOCP, as most problems are solved using this approach.
In our work, uncertainties, and their propagation through all multiple-view geometry
algorithms, are estimated. Therefore, uncertainties are included in our optimisation
problems. Let us consider the following SOCP problem:

min
x

f⊤x

subject to ∥Aix+ bi∥ ≤ c⊤
i x+ di, for i = 1, . . . ,m

g⊤
i x = hi, for i = 1, . . . , p

(3.45)

Due to these uncertainties, the problem parameters Ai, bi, ci and di are allowed
to accept any values within the set. In these situations, we refer to checking the
feasibility of the SOCP for all realisations of the uncertain parameters as a robust
feasibility problem. The problem of finding the set of robust feasible solutions is
called the robust counterpart. Thus, problem (3.45) will be written as:

min
x

f⊤x

subject to ∥Aix+ bi∥ ≤ c⊤
i x+ di; ∀(Ai, bi, ci, di) ∈ Wi

g⊤
i x = hi, for i = 1, . . . , p

(3.46)

where Wi ⊆ Rk are again the uncertainty sets.
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3.8.2 Robust least-squares via SOCP

First let us remind the reader on least squares (LS) minimisation. Consider the LS
problem given in (3.3):

min
x
fo

(
x
)

=∥ Ax− b ∥2
2=

∑
i

(
a⊤

i x− bi

)2
(3.47)

The objective function here is the sum of squares (a⊤
i x − bi). Note that the LS

problem has no constraints. The objective function, in fact, is a (quadratic) convex
function since f0(x) may be written as x⊤A⊤Ax− 2b⊤Ax+ b⊤b. Thus, a set of linear
equations can be used to solve the least-squares problem (3.47):

(A⊤A)x = A⊤b (3.48)

Thus,
Ax = b (3.49)

where A = (A⊤A) and b = A⊤b. This is similar to finding a solution to an
overdetermined set of equations Ax ∼= b. Figure 3.9a (page 63) shows a plot of the
objective function. Obviously, the problem has a single minimum. Similarly to other
problems, this optimal solution xopt is obtained by putting its gradient ▽f0(x) =
2x⊤A⊤A− 2b⊤A = 0. Therefore, the analytical solution xopt = (A⊤A)−1A⊤b = A‡b,
where A‡ = (A⊤A)−1A⊤ is the pseudo-inverse of A.

Now, in the scenario where the parameters of the equation (3.49) are subject to
unknown but bounded uncertainties ∆A and ∆b, where ∥∆A∥ ≤ ρ and ∥∆b∥ ≤ ξ,
then our new Least-Squares problem has the form:

min
x

max
∥∆A∥≤ρ,∥∆b∥≤ξ

∥(A + ∆A)x− (b + ∆b)∥ (3.50)

This problem is refereed as the Robust Least-Squares and introduced by El Ghaoui
and Lebret in [52], Miguel Soma Lobo in [135], Chandrasekaran in [32, 33] and Sayad
et al. in [5]. The problem (3.50) may be formulated in closed form as:

max
∥∆A∥≤ρ,∥∆b∥≤ξ

∥(A + ∆A)x− (b + ∆b)∥

= max
∥∆A∥≤ρ,∥∆b∥≤ξ

max
∥y∥≤1

y⊤(Ax− b) + y⊤∆Ax− y⊤∆b

= max
∥z∥≤1

max
∥y∥≤1

y⊤(Ax− b) + z⊤x+ ξ

= ∥Ax− b∥ + ρ∥x∥ + ξ (3.51)
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The Robust Least-Squares solution to this problem computes the exact value of the
optimal worst-case residuals using convex Second-Order Cone Programming (SOCP).
This problem can be formulated as a SOCP [52]:

min
λ

λ

subject to ∥Ax− b∥ ≤ λ− τ∥∥∥∥∥∥
x

1

∥∥∥∥∥∥
2

≤ τ

(3.52)

The unique solution to this problem is then given by:

S =


(
µI + A⊤A

)−1
A⊤b if µ = (λ− τ)/τ > 0

A‡b else,
(3.53)

3.9 Branch and bound algorithms

In this thesis we will be dealing with some non-convex optimisation problems. Clearly,
in these situations we cannot use convex optimisation to recover the global solution.
Fortunately, there are some tools to overcome these kinds of problems. One way
to solve these problems is to use branch and bound algorithms. These are iterative
approaches for recovering the global solution. The outcome of these algorithms is an
ε-suboptimal solution. Changing the value of ε to its smallest value allows us to get
to the possible global optimum.

The basic idea of branching and bounding is simple but at the same time very
reliable. Figure 3.12 illustrates an example of the branch and bound algorithm.
Suppose we are looking for the global minimum of an objective function Φ(x) over a
domain Q0. If Φ(x) is non-convex, finding such a minimum directly is very difficult.
One way to do that is to bound Φ(x) over Q0 with a simpler function, Φlower(x), and
then minimise this new function. Minimising this simpler function Φlower(x) should
be much easier than minimising Φ(x). Let us consider Φlower(x) as the lower bound
of Φ(x) over Q0, then Φlower(x) ≤ Φ(x) for all x ∈ Q0. After finding the minimum
of the bounding function Φlower(x), let us denote it as x∗

lower. We evaluate the cost
functions of both functions: the bounding function, y∗

lower = Φlower(x∗
lower), and the

original function y∗ = Φ(x∗
lower). If y∗

lower − y∗ ≤ ε, then the ε-suboptimal solution is
recovered and the algorithm stops. Otherwise, we subdivide (branch) the domain
Q0 into subsets (which we refer as rectangles) and perform (bounding) on each
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(a) (b) (c)

(d) (e) (f)

Fig. 3.12 Plots depicting the branch and bound algorithm for the problem of non-
convex minimisation. (a) shows the non-convex function Φ(x) and the interval l ≤
x ≤ u. (b) shows the first bounding via the convex relaxation of the Φ(x), indicated
by a (green) dashed curve and its minimum value at x. y∗

1 is the corresponding cost
of the original function Φ(x). (c) Shows results after the first branching. The right
hand side subset (hatched in light gray) can be discarded since the minimum ŷ of
its bounding function is higher than the value of the best solution found so far y∗

1.
(d) The function Φ(x) in the discarded subsets is shown using (red) bold dashed
curves. The function is bounded in the remaining subset and the new minimum y∗

2 is
estimated. This new estimate y∗

2 is dismissed as it is greater than the best solution
found so far y∗

1. (e) Shows further branching in which the left side subset is discarded
as the minimum ŷ of its bounding function is higher than y∗

1. (f) shows the bounding
in the remaining subset. A new estimate Φ(x∗) = y∗

3 of the minimum value of Φ(x)
is found. The algorithm terminates if y∗

3 − ŷ ≤ ε, and in this case x∗ is said to be
the ε−suboptimal solution.
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subset. The subset (rectangle) in which the cost function is higher than the best
optimum so far is eliminated. We continue bounding and branching as long as the
difference between the lower bounding function and the cost function is larger than
ε.

3.10 Conclusion

We have introduced in this chapter the basic notions of convex optimisation that are
used extensively throughout the thesis. An overview on other optimisation subclasses
and their implementations are given as well. Details on the convex sets; convex
functions; convex and quasi-convex optimisation problems are also given. Special
attention is made to the Second Order Cone Program (SOCP), which is used as a
solution tool for our optimisation model along with the quasi-convex optimisation
formulation. Robust convex optimisation is considered as well in this chapter along
with global optimisation methods (branch and bound in particular). For more details
about using the the SOCP on some multiple-view geometry problems, the reader
may refer to Appendix A (page 275 ).





Chapter 4

Convex Optimisation and H∞
Filtering for Motion Estimation

In this chapter a new approach for the monocular visual odometry problem is presented.
The L∞ norm and H∞ filter are employed alongside convex optimisation. In addition
to the H∞ filter, the use of a recursive least squares (RLS) technique is investigated.
Such techniques have the ability to cope with noisy data and to provide optimal
solutions [114]. Using monocular systems makes the motion estimation challenging
due to the absolute scale ambiguity caused by projective effects. For this, we propose
robust tools to estimate both the trajectory of a moving vehicle and the unknown
absolute scale ratio between consecutive image pairs. The proposed solution uses
as input only images provided by a single camera mounted on the roof of a ground
vehicle. Experimental evaluations show that convex optimisation with the L∞ norm
and the robust H∞ filter clearly outperforms classical methods based on least squares
and solved using iterative algorithms.

4.1 Overview

In this chapter we present our first contribution in this research. The proposed
motion estimation solution, which is based on the L∞ norm with convex optimi-
sation for the triangulation problem is detailed. Techniques that are introduced
in Chapter 2 and Chapter 3 are used in this solution throughout this chapter. In
this solution, we describe the mechanism to estimate the unknown absolute scale
between successive pairs of frames using the H∞ filter and recursive least squares
(RLS). In the last section of this chapter, we provide and analyse the obtained results,
where comparisons with standard and classical structure-from-motion algorithms for
motion estimation are given.
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Convex optimisation has attracted many researchers in computer vision in the last
decade. In [80], Hartley and Schaffalitzky introduced the L∞ norm in the cost function
for the multi-view triangulation problem and the motion reconstruction problem
for omni-directional images. Then, in [94] Kahl presented a convex optimisation
technique for multi-view problems such as triangulation, homography estimation,
the reconstruction problem and the camera resectioning problem using SOCP. In
[101] similar problems were formulated as quasi-convex optimisation problems with
known rotations using both SOCP and linear programming (LP). Appendix A (page
275) gives a detailed discussion about these multi-view geometry problems, where
experiments on real-image data using convex optimisation are performed.

4.2 L∞ Norm based solution for visual odometry

In autonomous navigation systems, visual odometry estimates the pose of moving
vehicles using visual inputs only from either a single camera (monocular system),
stereo cameras or multi camera systems [109, 204]. Visual odometry is a particular
case of Structure from Motion (SfM), where the latter tackles the estimation of both
the relative camera poses and three-dimensional structure [60, 166]. Visual odometry,
on the other hand, emphasises on estimating the motion of the camera sequentially
[60, 82, 166]. Optimisation approaches such as Bundle Adjustment (BA) are used to
refine the estimates of the trajectory [60]. More robust optimisation techniques such
as convex optimisation for motion estimation have began to attract more interest
among computer vision researchers as well.

As we have seen in Chapter 2, the camera pose can be recovered from the available
corresponding points between two views and the camera calibration parameters.
Commonly, the essential matrix estimation is performed through the eight-point
algorithm (Algorithm 4, page 298), which is then used for recovering the camera
relative pose by solving least squares problems via singular value decomposition
(SVD) [82, 109, 204].

In [36], an approach on stereo visual odometry which consists of determining the
essential matrix by minimising the algebraic error through convex optimisation is
presented. As a consequence of the convexity of its optimisation function, the main
advantage of convex optimisation consists in avoiding local minima and approximat-
ing non-linear terms when compared to other competitor methods for minimising
algebraic cost functions. A successful method is presented in [145] for real time
motion estimation of a single camera and a stereo rig. In [130] an algorithm based on
minimising the L∞ norm of the re-projection error is proposed, where the problem is
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divided into two successive tasks by fixing the parameters of one sub-problem while
optimising the remaining sub-problem.

4.3 Scale ambiguity in monocular systems

A fundamental issue with the monocular visual odometry solution is related to the
scale ambiguity due to the projective effects. A measured point x = (u, v)⊤ in a
particular image can represent the projection of an infinite number of 3D scene points
in the world. As shown in Figure 4.1, the projective nature of monocular systems
generates a scale ambiguity in both the 3D scene structure and in motion estimation.
One way to estimate the global scale is to use known information about the real
world. An INS/IMU and GPS could be used to gather information about the real
world, and the camera travelling distance to remove the scale ambiguity. In addition
to the global scale ambiguity, the estimated translation vectors from frame-to-frame
image points (features) correspondences suffers as well from scale ambiguity. This
ambiguity is known in the computer science community as a local scale problem.

Stereo visual odometry takes advantage of the known baseline to directly remove
any scale ambiguity. However, it suffers from a substantial lack of accuracy when
the distance to the 3D scene points is much larger than the baseline. Therefore,
monocular visual odometry becomes an unavoidable solution and ought to be used
since the stereo system reduces to the monocular case [166].

4.4 Related work

4.4.1 Scale ambiguity issue

Many algorithms have been successfully implemented to implicitly solve the problem
of scale ambiguity. In [46], initially known landmarks are used to build a well scaled
map. In [39], initially known landmarks are not required as an un-delayed landmark
initialisation technique is used. Nutzi et al. presented in [147] an approach to estimate
the unknown absolute scale in a monocular SLAM frames by fusing data from an
inertial measurement unit (IMU) and vision system with an extended Kalman filter
(EKF). However, this method is tested only on simulated two-meter-cube data which
limits its applicability.

Previous methods used information gathered from IMU and GPS or from a
known fixed landmark, to recover the scale ambiguity. Others in the literature
solved the scale ambiguity implicitly. Real word information could also be used to
estimate the global scale factor, as showed in [167], where the camera’s height to
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Fig. 4.1 Scale ambiguity problem in monocular vision systems in motion estimation.
Pose C1 could only be estimated up to an unknown scale. The camera at C0 projects
X1 and X ′

1 as a single image point and projects X2 and X ′
2 at another single image

point as well. Suppose that the camera has moved to C1, then it projects X1 and
X2 and match them to image points when the camera was in C0. However, in pose
C ′

1, the camera matches the image points of X ′
1 and X ′

2 to the same image points in
C0 as it was in C1. Therefore, it is impossible to distinguish whether the cameras
has moved from C0 to C1 or from C0 to C ′

1.

the ground plane and position with respect to the vehicle axis are used. However,
assuming that the camera is moving at a known and fixed height over ground reduces
its applicability. Another technique is presented in [168] where the non-holonomic
constraints of wheeled vehicles are exploited to estimate the absolute scale. Other
techniques estimate the distance travelled by the camera using GPS or other devices
such as an odometer to recover the global scale [168]. Although these approaches
are used extensively in the literature, they suffer from a number of weaknesses.

One major drawback is the reliance on external devices such as IMU/INS or
GPS that are not necessarily accurate. This will allow errors to be propagated
to the estimated motion. Correspondences between image points and 3D scene
points are used to solve the camera pose, in which the scale is implicitly recovered
[29, 48, 133, 199]. However, 2D-3D-correspondence methods suffer from a serious
problem of error propagation between triangulation and back projection tasks. For
the local scale estimation, explicit methods are deployed in the literature. A practical
technique in [145] for real time motion estimation of a single camera or stereo rig is
presented. In [54], I. Esteban et al. presented a successful monocular visual odometry
algorithm relying on a linear computation of the scale ratio between frame pairs.
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4.4.2 Visual odometry

For the visual odometry task, the main goal of the optimisation is to find both the
3D point positions and camera parameters that minimise the re-projection error
between the measured image points (features) and the projection of the estimated
corresponding 3D scene points [188]. Bundle adjustment is frequently formulated as a
non-linear least squares problem in which the 3D point positions are recovered using
triangulation, where the cost function is minimised using a numerical optimisation
method such as Levenberg-Marquardt(LM) using the L2 norm [82, 166] . The
differentiability of the cost function for this norm, which allows the use of gradient-
and Hessian-based optimisation methods, makes this choice reasonable [130].

Gauss-Newton and Levenberg-Marquardt [146] are the most popular algorithms
for solving non-linear least squares problems, and considered as the algorithms of
choice for bundle adjustment. These algorithms have some nice convergence properties
near a local minimum. However, apart from their computational complexity and
memory requirement, the main issue with these methods is the cost functions dealt
with, which are highly non-linear and non-convex. Therefore they have many local
minima and guaranteeing to end up in the global minimum is very difficult.

On the other hand, the L∞ norm optimisation, contrary to iterative L2 based
optimisation methods using Levenverg-Marquadt, ensures the global optimum of the
error function [25]. Indeed this function, which is geometrically meaningful, is of
quasi-convex type that can be efficiently minimised by the bisection method as a
sequence of second order cone programs (SOCP) feasibility problems (Section 3.5,
page 64) [80, 172].

4.5 The Proposed method

In this chapter we propose to use more robust norms such as the L∞ norm. This
norm deals with minimising the worst-case error or min-max estimation. Therefore,
from the perspective of getting more accurate 3D point positions, our method uses
convex optimisation for the triangulation task based on the L∞ norm formulation.
Image re-projection errors can be efficiently minimised, which leads to a global
minimum. The only drawback of using the L∞ norm is its sensitivity to outliers
which are critical as well to the ordinary L2-norm based algorithms.

Our scenario deals with a calibrated camera taking a sequence of images as it
moves along an unknown trajectory. The proposed motion estimation algorithm
accepts as inputs the intrinsic calibration parameters and a sequence of grey-scale
undistorted images, including the previous and the current views. Harris feature
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extraction is performed on each new frame (Section C.2.1, page 299). For each pair
of consecutive images, correspondences between image points are recovered using a
maximum correlation technique followed by an outlier-rejection scheme using the
RANSAC algorithm (Algorithm 2, page 296). Then the relative frame-to-frame
motion is estimated using convex optimisation. These relative motion estimates are
accumulated, resulting in a 6 DOF trajectory.

The navigation solution proposed in this work can be summarised in the following
steps (Figure 4.2):

• Computing image point tracks (using Harris detector [79] and RANSAC [58]).
• Estimating the essential matrix using the 8-point algorithm (Algorithm 4, page

298) [82].
• Estimating relative rotations Ri and the translation Ti.
• Optimising the estimated parameters using L∞ norm-based bundle adjustment

with convex optimisation for the triangulation problem.
• Computing the unknown absolute scale ratio using robust H∞ filter and

recursive least squares algorithm (RLS) for motion estimation [54].

Fig. 4.2 Illustration of the motion estimation pipeline.

4.6 The L∞ motion estimation

Triangulation is a critical part for the subsequent motion estimation. Therefore, an
efficient and optimal algorithm for estimating its parameters is essential. Thus, our
approach is based on convex optimisation with the L∞ Norm.

user
Highlight
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Fig. 4.3 The triangulation problem. Each point is seen from two or more cameras.
The goal is to estimate the position of the 3D scene points Xi.

The geometry of a multiple views system is depicted in Figure 4.3, where the
cameras are modelled using the pinhole model (Section 2.5.1, page 27) [82]. Assume
we have m views of a scene point X̂i = [X⊤, 1]⊤, where X̂ is a vector represented
by homogeneous coordinates and X = [X, Y, Z]⊤ ∈ R3. This scene point is mapped
to image points x̂i = [ui, vi, 1]⊤ via camera matrices Pi. The triangulation problem
is detailed in Section A.1 (Appendix A, page 275), presenting its solution within
the convex optimisation framework. In general, this problem is recovering the 3D
space position of points X̂ such that x̂i = PiX̂, for i = 1, . . . ,m. The optimisation
variable is then x = (X, Y, Z)⊤ ∈ R3. Since the motion parameters are estimated
from image-to-image correspondences, these quantities are related by the projection
equations:

ui = p1
i X̂
p3

i X̂
; vi = p2

i X̂
p3

i X̂
(4.1)

where pj
i denotes the jth row vector of the 3 × 4 camera matrix Pi. Then, for a given

image point i, the error residual may be rewritten as:

εi = d(x̂i, PiX̂) (4.2)

where d(.) denotes image-space Euclidean distance between two points in the image
plane, the measured and the projected points. Our aim is then to recover the value
of X̂ that minimises the maximum of this re-projection error across the two images.

Given:
• the camera matrices P̃i = K−1

i Pi = [Ri|ti], where Ri ∈ RO(3) is the rotation
matrix, ti ∈ R3 is the translation vector, and Ki is the camera calibration
matrix. Let the rotation matrix be Ri = [ri1, ri2, ri3], and the translation vector
ti be ti = [ti1, ti2, ti3]⊤,
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• X̂ = [X, 1] and their corresponding normalised images x̃i = K−1
i x = [ũi, ṽi].

Therefore, the residual error εi on the ith image can be written as:

εi = d(x̂i, PiX̂)

=

√√√√(ũi − ri1⊤X + ti1
ri3⊤X + ti3

)2

+
(
ṽi − ri2⊤X + ti2

ri3⊤X + ti3

)2

=

√√√√(ũi(ri3⊤X + ti3) − ri1⊤X + ti1)2 + (ṽi(ri3⊤X + ti3) − ri2⊤X + ti2)2

(ri3⊤X + ti3)2

=

√√√√fi1 (x)2 + fi2 (x)2

fi3 (x)2

(4.3)

The point X̂ is seen fromm cameras, this givesm error residuals: ε = (ε1, ε2, · · · , εm)⊤.
Therefore, the optimal 3D scene point X̂ is the one that minimises the norm of the
error residuals vector: ∥ε∥.

Most classical methods use the L2 norm for the cost function ∥ε∥2 or, equivalently,
∥ε∥2

2 = ∑m
i=1 ε

2
i = ∑m

i=1 d(x̂i, PiX̂)2. This optimisation problem is shown in the
literature to have multiple local minima [80, 82, 94, 101]. Therefore, iterative
methods can easily get trapped in one of these local minima instead of ending up in
the global minimum.

To get around this problem, the L∞ norm is used instead. Optimising the L∞

norm of ε leads to the cost function: ∥ε∥∞ = maxi|εi| = maxi|d(x̂i, PiX̂)|. The goal
of the optimisation problem now is to minimise the maximum error between the
projected points and the measured image points, hence:

min
x

f0(x) = max
i=1,··· ,m

fi(x) = max
i=1,··· ,m

(
fi1 (x)2 + fi2 (x)2

fi3 (x)2

)
subject to fi3 (x) > 0, for i = 1, . . . ,m.

(4.4)

Note that fi1, fi2, fi3 are all affine functions of the optimisation variable x. Ac-
cording to Theorem 8 (Chapter 3, page 70), fi(x) = fi1(x)2+fi2(x)2

fi3(x)2 is quasi-conex
function. In addition, according to Theorem 7 (Chapter 3, page 61), the function
f0 = max

i=1,··· ,m

(
fi1(x)2+fi2(x)2

fi3(x)2

)
is also quasi-convex since the pointwise maximum is

also convex. The constraint function has a convex domain {x|fi3 (x) > 0, for i =
1, · · · ,m}, therefore problem (4.4) is a quasi-convex optimisation problem [94, 101].

Let δ be the upper bound of the optimisation function in (4.4), then each
projection defines a conical surface where the bound δ is the radius of this cone and
the camera centre is its apex. It is noteworthy here that each image measurement
adds one conical constraint to (4.4).
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This problem is solved using the technique introduced in Section A.1 (Appendix A,
page 275) via the bisection algorithm with a sequence of second order cone programs
(SOCP) feasibility problems. The 3D points recovered using convex optimisation
for triangulation are then used in the optimisation algorithm for recovering the
camera motion. Thus, given the efficiently estimated 3D point positions and their
corresponding measured image locations, the goal of bundle adjustment is then to
exclusively find the camera parameters that minimise the re-projection error.

4.7 Robust solution for scale estimation

After having robustly estimated the camera motion using L∞ norm-based bundle
adjustment, ambiguities in the translation scale can nevertheless still occur. Unlike
in the stereo scheme, the monocular visual odometry estimates both the relative
motion and the 3D structure up to an unknown scale. This absolute scale cannot be
estimated unless information about the real world is provided.

Inspired of the work in [54], as we have seen is Section 2.6 (Chapter 2, page
30), we assume that m 3D scene points X̂i = [X⊤, 1] are mapped into image points
x̂i = [ui, vi, 1]⊤ via the normalised camera matrix P = [R|t] then [46, 82]:

λx̂i = P X̂i (4.5)

where λ is the unknown depth factor that takes into account the projection plane
ambiguity. This parameter should be chosen to obtain image points and not image
plane points [46, 82]. Hence:

λx̂i = [R|t]X̂i (4.6)

λ


ui

vi

1

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33

∣∣∣∣∣∣∣∣
tx

ty

tz

 X̂i (4.7)

By introducing the unknown scale S we get:

λ


ui

vi

1

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33

∣∣∣∣∣∣∣∣
Stx

Sty

Stz

 X̂i (4.8)
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Hence:

λui = r1Xi + Stx (4.9)
λvi = r2Xi + Sty (4.10)
λ = r3Xi + Stz (4.11)

where ri denotes the ith row vector of Ri and X̂i = [Xi, 1]. By substituting (4.11) in
(4.9) to remove the image scale factor λ, we get:

(r3Xi + Stz)ui = r1Xi + Stx (4.12)
(tzui − tx)S = (r1 − r3ui)Xi (4.13)

A S = b (4.14)

where A = (tzui − tx) and b = (r1 − r3ui)Xi. In [54], this problem is solved in the
least squares sense by minimising ∥ A S−b∥2. Here we propose two new methods to
solve this scaling estimation problem. These methods are the recursive least squares
(RLS) and the more robust H∞ filter.

To formulate the unknown scale estimation problem in a mathematical way,
suppose x is the unknown constant and y is a vector containing noisy measurements.
Our aim is to find the best estimation x̂ of x. Measurements y must be related to
the unknown vector x coupled the accumulation of some measurement noise; hence,
we can write [178]:

y = Hx+ v (4.15)

where H is a known observation matrix and v is some additional noise. This
matrix relates the unknown vector x to the measurements y, and the difference is
compensated with the error vector v. Thus, for a given estimate x̂, the corresponding
error is given by:

ε = y −Hx̂ (4.16)

This error is the difference between the vector Hx̂ and the noisy measurements
y. Solving this problem in a least squares form leads us to minimise the sum of
the squared errors between the elements of the measurement vector and those of
the vector given by Hx̂. In the least squares algorithm, the measurement noise is
assumed to be zero-mean and white with known variance.
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Suppose we have k measurements, then, the cost function to be minimised is
given by:

J = ε2
1 + . . .+ ε2

k

J = ε⊤ε

J = (y −Hx̂)⊤(y −Hx̂)
J = y⊤y − x̂⊤H⊤y − y⊤Hx̂+ x̂⊤H⊤Hx̂ (4.17)

Minimising J with respect to x̂ means computing its partial derivative and setting it
equal to zero:

∂J

∂x̂
= −y⊤H − y⊤H + 2x̂⊤H⊤H = 0 (4.18)

x̂ = (H⊤H)−1H⊤y (4.19)
x̂ = H‡y (4.20)

Therefore, the best estimate of x̂ in least squares form is given by (4.19). Note that
H‡ (4.20) is the pseudo inverse of the matrix H. Thus, H must be of a full rank, i.e.
simply the number of measurements k has to be greater than the number of variables
n. Note that when H is equal to 1, this solution simply computes the average of all
measurements.

4.7.1 Recursive least squares method

We propose to find the optimal value of x̂ in a recursive manner. In this section, we
show how to recursively compute the least squares estimate of the absolute scale.
Using the recursive least squares (RLS) algorithm, which is based on continuously
estimating x̂ while relying on its previous estimate. Figure 4.4 depicts the main
steps of this algorithm. After estimating x̂ from (k− 1) measurements, the challenge
is how to update our estimate x̂ when a new measurement yk is obtained without
rebuilding and solving the whole system given in (4.19).

First, let us consider this linear estimator:

yk = Hkx+ vk (4.21)
x̂k = x̂k−1 +Kk(yk −Hkx̂k−1) (4.22)

We can see from (4.22) that the new estimate x̂k is computed from the previous
estimate x̂k−1 and from the new measurement yk. The term (yk −Hkx̂k−1) is called
the corrector term. Note that Kk is the estimator gain matrix, which is obtained via
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Initialising the estimator:
x0 = E(x)
P0 = E((x − x̂0)(x − x̂0)⊤)

Obtaining a new measurement:

vk is the noise with zero mean and covariance Rk.
The measurement noise is independent, so:

yk = Hkx + vk

E(v2) =
{

Rj , if i = j

0, if i ̸= j

Updating the gain:
Kk = PkH⊤

k R−1
k

Updating the estimate x̂ and the covariance P of the
estimation error:

x̂k = x̂k−1 + Kk(yk − Hkx̂k−1)
Pk = (I − KkHk)Pk−1

Fig. 4.4 Algorithm for recursive least squares estimation.

[178]:

Kk = PkH
⊤
k R

−1
k (4.23)

Here Rk is the covariance of the noise vector vk and Pk is the estimation error
covariance given by:

Pk = (I −KkHk)Pk−1 (4.24)

Equations (4.21) to (4.24) form our recursive least squares algorithm (Figure 4.4).
The initial value of P0 depends on our knowledge of x̂. The better our knowledge of x̂
is, the smaller the value for P0 will be. In other words, in case of no prior knowledge
of x̂ is available, we can assume P0 = ∞I. In the case of perfect prior knowledge, we
put P0 = 0.

4.7.2 H∞ Filter method

The least squares algorithm assumes a measurement with white noise, zero-mean and
known variance. Unfortunately, these assumptions are not always valid. Therefore,
using more robust estimators would be a reasonable option to investigate. The
first estimator that one might think of is the Kalman filter due to its efficiency in
estimating a system state.
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The Kalman filter took its name from its inventor Rudolf E. Kalman [183]. This
filter is mostly suitable for linear systems with Gaussian process and white observation
noise. This provides analytical solutions to the Bayesian prediction and update step.
The Kalman filter is famous for its success in aerospace applications in the 1960s.
This success urged industrial applications to deploy it as well. However, a quick
mismatch between the filter assumptions and their problems is observed [178]. This
mismatch is induced by the lack of knowledge of the nature of the process noise in
industrial applications in comparison to aerospace applications. These problems have
stimulated new research to develop filters that are able to cope with modelling errors
and system uncertainties. These new filters are called robust since they can handle
such uncertainties. The H∞ filter is one of the newer filters that were designed for
robustness. We use this filter to estimate the optimal absolute scale in the presence
of noisy measurements of an unknown nature.

Before developing our H∞ filter, an overview on the Kalman filter seems to be
necessary as the structure of both filters is similar. A linear dynamic system is given
by:

xk+1 = Fkxk + wk (4.25)
yk = Hkxk + vk (4.26)

here wk and vk are stochastic process noise terms with covariances Qk and Rk

respectively. The Kalman filter’s main goal is to estimate the state of this linear
system. In this model, xk is the state vector and Fk is the transition matrix. In fact,
the process noise wk is injected into the linear system because of the uncertainties
in the transition matrix Fk. This process noise is supposed to be uncorrelated with
zero-mean, with covariance:

E(wk) = 0 ∀k

E(wkw
⊤
j ) =

Qk, if k = j

0, if k ̸= j

(4.27)

In the observation model given in (4.26), Hk relates the state vector at time k
to the observation vector. The observation noise vk is assumed to be zero-mean,
uncorrelated random sequence, where:

E(vk) = 0 ∀k

E(vkv
⊤
j ) =

Rk, if k = j

0, if k ̸= j

(4.28)
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More importantly, the process and the observation noise are assumed to be
uncorrelated:

E(wkv
⊤
j ) = 0 ∀k, j (4.29)

Kalman filter estimates the state xk based on the known system dynamics and
the availability of the noisy measurements yk. The Kalman filter’s equations are
given as follow:

x̂−
k+1 = Fkx̂

−
k + FkKk

(
yk −Hkx̂

−
k

)
Kk = P−

KFk

(
I +H⊤

k R
−1
k HkP

−
K

)−1
H⊤

k R
−1
k

P−
k+1 = FkP

−
k

(
I +H⊤

k R
−1
k HkP

−
k

)−1
F⊤

k +Qk

(4.30)

The available measurements yk up to time k are used in the estimation of xk to
form what is called the a-posteriori estimate, denoted by x̂+

k . If we have available
measurements before time k, then we can form an a-priori estimate denoted by x̂−

k .
Therefore, x̂−

k is the estimate of x̂k before the measurement yk is taken into account,
and x̂+

k is our estimate of x̂k, after the measurement yk is taken into account [178].
These procedures perform well, but only under certain conditions [178]:
• Firstly, the mean and the correlation of wk and vk need to be accurately known

at each time step.
• Secondly, the covariances Qk and Rk need to be known as well.
• Thirdly, the system matrices Fk and Hk need to be perfectly known.
• Finally, and most importantly, the cost function needs to be minimised over

the least potential standard deviation. Hence, the smallest variance estimator
is given if the noise is Gaussian. If the noise is not Gaussian, a linear minimum
variance estimator is provided. This fact signifies that minimising different
cost functions does not guarantee optimal estimates.

The problem is: what happens if one of these conditions is not satisfied? And
what should we do in cases where no information is available about the noise?
Moreover, what should we do if we want to minimise different cost functions such as
the worst-case estimation error?

Applying the Kalman filter without satisfying of all these conditions will certainly
result in a less accurate estimation or sub-optimal solutions. Satisfying all these
conditions in our case is difficult, since the image-based measurements are subject to
unknown perturbations with an unknown distribution law. Moreover, in most vision
applications the noise statistics are not identified.

To get around the problems that the Kalman filter and other equivalent filters
have, one might consider using robust filters. The H∞ filter is based on a min-max
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estimation method, leading to an important difference with the Kalman filter: the
former is optimal in terms of minimising the L∞-norm between ranges of disturbances
[178]. Therefore, the H∞ filter is a more robust alternative to the Kalman filter.
The key feature of the H∞ filter is the fact that no assumptions about the noise are
required. Moreover, it minimises the worst-case estimation error.

Let us consider the H∞ based system as filter model as in (4.25) and (4.26):

xk+1 = Fkxk + wk (4.31)
yk = Hkxk + vk (4.32)

where wk and vk are the noise terms with an unknown distribution law. They may
have a non-zero mean as well. Under these circumstances, we aim to estimate a
linear combination of the system states given by:

zk = Lkxk (4.33)

where Lk is a user defined matrix. Note that we can set L = I in the case where xk

is estimated directly as in the Kalman filter. Now, at time step (N − 1), our aim is
to estimate zk based on all previous measurements.

The estimate ẑk is found after minimising the cost function J1 as J1 <
1
θ

, where
θ is the performance bound specified by the designer and J1 is defined as [178]:

J1 =
∑N−1

k=0 ∥zk − ẑk∥2
Sk

∥x0 − x̂0∥2
P −1

0
+∑N−1

k=0

(
∥wk∥2

Qk
−1 + ∥vk∥2

Rk
−1

) (4.34)

where P0, Qk, Rk and Sk are chosen matrices with the condition of being symmetric
positive-definite. Re-organising this equation gives:

J = −1
θ

∥x0 − x̂0∥2
P −1

0
+

N−1∑
k=0

[
∥zk − ẑk∥2

Sk
− 1
θ

(
∥wk∥2

Qk
−1 + ∥vk∥2

Rk
−1

)]
< 1 (4.35)

Hence, the min-max problem is defined as:

J∗ = min
ẑk

max
wk,vk,x0

J (4.36)

The worst case is obtained when wk, vk and x0 are chosen to maximise J . The
solution then is to find an estimate ẑk, which minimises this maximum. Since
yk = Hkxk + vk, hence vk = yk −Hkxk, then the norm of the noise ∥vk∥2

Rk
−1 will be:

∥vk∥2
Rk

−1 = ∥yk −Hkxk∥2
Rk

−1 (4.37)
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Since zk = Lkxk and ẑk = Lkx̂k, then:

∥zk − ẑk∥2
Sk

= (zk − ẑk)⊤ Sk (zk − ẑk)
= (xk − x̂k)⊤ L⊤

k SkLk (xk − x̂k)
= ∥xk − x̂k∥2

Sk

(4.38)

where:

Sk = L⊤
k SkLk (4.39)

We can then substitute the results in (4.35) to get:

J = −1
θ

∥x0 − x̂0∥2
P −1

0
+

N−1∑
k=0

[
∥xk − x̂k∥2

Sk
− 1
θ

(
∥wk∥2

Qk
−1 + ∥yk −Hkxk∥2

Rk
−1

)]

J = ψ(x0) +
N−1∑
k=0

Lk

(4.40)
This leads to the filter description below [178]:

Sk = L⊤
k SkLk

Kk = Pk[I − θSkPk +H⊤
k R

−1
k HkPk]−1H⊤

k R
−1
k

x̂k+1 = Fkx̂k + FkKk(yk −Hkx̂k−1)
Pk+1 = FkPk[I − θSkPk +H⊤

k R
−1
k HkPk]−1F⊤

k +Qk

(4.41)

In order for this estimator to be a solution to the problem 4.40, this condition
must hold at each time step k:

P−1
k − θSk +H⊤

k R
−1
k Hk > 0 (4.42)

Note that the output and the input of our system are gathered from the vectors
A and b in (4.14), which are constructed using 3D scene points and their measured
corresponding image point projections.

Using the observed data in A and b, errors are calculated as follows:

ek = yk −Hxk (4.43)

where Hk and yk are always collected from the vectors A and b respectively. Matrix
A and vector b in (4.14) can be constructed in four different ways to solve the system
for S [54]. Choosing the best method depends on the reference system used and
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(a)

(b)

Fig. 4.5 Examples of images used in the experiments [68].

where most of the motion occurs: whether in the x-axis direction, the y-axis direction
or a combination of both.

4.8 Experimental evaluation

This section presents an experimental evaluation of the proposed method for motion
estimation using convex optimisation coupled to the recursive least squares and the
H∞ filter. A comparison with the classical bundle adjustment based on the LM
algorithm is given. A further comparison, estimating the absolute scale, is made
between the proposed methods based on the H∞ filter and the recursive least squares
(RLS) and the previous method using the batch least squares.

Real data from urban environments are used to validate the proposed solution.
The data are collected via a vision system mounted on a vehicle travelling in the city
of Karlsruhe [68], where a forward-pointing calibrated camera is mounted on the roof
of the vehicle. These sequences consist of high quality images, with a resolution of
1344 × 372 pixels, for travelled distances up to 460 metres. Ground truth is provided
using an OXTS RT3003 inertial and GPS navigation system, 6 axis, 100 Hz, L1/L2
RTK, resolution: 0.02m / 0.1 degrees. Figure 4.5 shows a sample of images from
this dataset (Section 1.6, Chapter 1, page 8). In our experiment we used SeDuMi
toolbox for optimisation in SOCP problems [187].
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Fig. 4.6 Comparison between trajectory estimates using convex optimisation and the
Levenberg-Marquardt algorithm for triangulation.

Fig. 4.7 Illustration of feature matching on sample of images used in motion estima-
tion.
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Fig. 4.8 Camera motion estimation errors.

4.8.1 Motion estimation

Our first aim is to investigate the robustness of the proposed technique on real data
and in the presence of high levels of noise. Figure 4.6 shows the trajectory estimates
obtained with the convex optimisation approach and those obtained using the LM
approach superimposed on the ground truth data. Figure 4.7 illustrates feature
matching on a sample of images used in motion estimation. Euclidean distance errors
between these series and reference data are shown in Figure 4.8.

Achieved results are motivating, reaching errors smaller than 2% and normally
bounded by 4 − 9% in terms of travelled error, defined as:

Travelled error = 100 abs(error)
Travelled distance (4.44)

Several experiments were performed on different datasets in [68]. Table 4.1 sum-
marises the RMS, the minimum and the maximum errors from different experiments.
The corresponding plot of these figures is illustrated on Figure 4.9

It is clearly seen that convex optimisation is able to more accurately estimate the
motion than traditional methods based on the LM algorithm. This is in conformity
with theory in terms of global optimality. By analysing these results, we can establish
that convex optimisation with the min-max error scheme performs better over the
the experimental set. Equally, this shows that our algorithm is suited for estimating
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Table 4.1 RMS, maximum and minimum errors for the motion estimation using
convex optimisation (CVX) and Levenberg-Marquardt (LM) algorithm

Trajectory 1 2 3 4 5 6 7 8 9 10 11
Travelled

distance [m] 431.06 271.20 462.28 213.65 225.22 309.74 92.97 412.3 184.94 62.69 234.46

RMS [m] CVX 5.32 2.52 4.95 1.75 4.56 5.36 1.21 3.48 2.03 1.86 1.48
LM 6.06 3.31 4.85 3.25 4.29 6.02 1.89 4.23 2.64 2.23 2.59

Min [m] CVX 1.23 1.02 1.59 0.86 1.13 1.28 0.78 2.03 1.03 0.56 1.85
LM 2.03 1.03 1.56 1.26 1.09 1.19 1.23 3.04 1.65 0.86 2.32

Max [m] CVX 8.86 5.26 8.45 4.85 3.89 5.86 4.33 5.36 3.25 3.25 6.25
LM 7.96 7.25 9.25 5.06 4.82 5.92 5.05 6.35 4.95 2.89 6.85
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Fig. 4.9 RMS, maximum and minimum errors for the motion estimation using convex
optimisation (CVX) and Levenberg-Marquardt algorithm

the motion of a vehicle travelling in an urban environment, where high levels of noise
of unknown type are likely to persist. A clearer comparison is shown in Figure 4.8.
Indeed, the Euclidean distance errors of camera motion estimates demonstrate better
accuracy of results with the convex optimisation approach.

4.8.2 Absolute scale estimation

We now show the capacity of the H∞ filter and the recursive least squares algorithm
to estimate the frame-to-frame absolute scale in the presence of high level of noise.
After having estimated the scale free motion, we apply our two techniques on the
motion estimates. Figure 4.10 compares the trajectory estimates obtained using the
three methods. The first method is linear, using a batch least squares algorithm, as
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Fig. 4.10 Motion estimation after convex optimisation and absolute scale computation
using three different methods: H∞, recursive least squares and Least squares.
Trajectory estimates are superimposed with the ground truth data.

described in [54, 82] and the two others are using recursive schemes: the H∞ filter
and the recursive least square (RLS).

The obtained results show that recursive methods perform better in comparison to
the batch least squares method. Additionally, Figure 4.11 compares camera motion
estimation errors at each successive frame pair. These represent the Euclidean
distance errors, as well as errors over the x-axis and y-axis. The results show that the
H∞ filter remarkably outperforms the recursive least squares algorithm as well. This
is likely due to its tendency towards minimising the worst case. These results justify
our final choice for the global solution, which consists of using convex optimisation
for motion estimation followed with an H∞ filter for absolute scale estimation.

4.9 Conclusions

We have presented in this chapter two novel contributions to efficiently solve the
monocular visual odometry problem. The first of these pertains to using convex
optimisation with the L∞ norm in motion estimation for the triangulation problem.
Our second contribution, which follows on nicely from the first one, is to use an
H∞ filter capable of dealing with system noise for frame-to-frame absolute scale
estimation. Although solutions to the motion estimation problem based on least
squares are liable to offer good results, they also impose limitations that a solution
based on the L∞ norm is capable to overcome. Through several experiments, the
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Fig. 4.11 Motion estimation errors after convex optimisation and absolute scale
computation using three different methods: H∞, recursive least squares and Least
squares.

results confirm that the proposed technique clearly outperforms classical techniques,
which use the bundle adjustment based on the Levenberg-Marquardt algorithm for
motion and the least squares algorithm for absolute scale estimation.

In the next chapter, we will introduce a solution that improves the accuracy and
the robustness of the fundamental matrix, and consequently the motion estimate
of a ground vehicle equipped with a monocular visual system. This solution takes
into consideration the feature position uncertainties in each RGB channel of colour
images for the optimisation problem.



Chapter 5

Robust Motion Estimation Using
Covariance Intersection

In the present chapter, a novel technique for robust motion estimation is presented. In
this technique, we use information from all three RGB channels of colour images. The
novelty of our approach consist of fusing feature localisation errors to robustly estimate
the motion of a camera via the fundamental matrix. Robust features extraction,
matching and tracking are crucial for many applications in computer vision systems.
The feature location accuracy is dependent to the variation in intensity within their
neighbourhoods, from which their uncertainties are estimated. Our approach tries to
improve the accuracy and the robustness of the fundamental matrix, and consequently
the motion estimate by considering these uncertainties.

In our solution, rather than converting colour images to gray-level images, which
results in a serious loss of information as most vision applications do, each RGB
channel of colour images is processed separately. Then, the covariance intersection
(CI) technique is used to fuse all the uncertainties in each channel. Through several
experimental results in different environments, we show that including the fused
feature uncertainties from all three channels, better estimates of the fundamental
matrix are obtained.

5.1 Overview

Colour information is of great importance in computer vision due to its ability to
describe the world around us. Interestingly, each RGB channel of colour images
provides its own description of the scene into consideration. This description is
completely different from other channels’ response. Figure 2.5 shows a colour image
with the associated RGB channels, where each channel is encoded using a gray scale.
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We can see from these images that each channel generates a different response to the
incoming light rays.

Most solutions in the literature ignore the valuable information that each channel
provides. Usually, these solutions convert colour images to gray-level images, resulting
in a substantial loss of information. The proposed solution however, processes each
channel independently, then the covariance intersection technique is used to fuse all
information in each channel.

Motion estimation via the fundamental matrix

We have seen in Chapter 2 (and in Appendix C) that the fundamental matrix is
the algebraic representation that characterises the geometry between two views
in the pinhole camera model [82]. Two main approaches can be distinguished
for its estimation: iterative and linear algorithms. In general, the fundamental
matrix is recovered from image point (feature) correspondences between images
[42, 81, 121, 129, 217]. Only eight correspondences are sufficient to estimate the
fundamental matrix since it is defined to a scale factor [189]. Knowing that the
motion estimation steps rely heavily on the estimation of this matrix, a rational
interest on recovering its parameters should be allocated.

Indeed, optimally estimating the fundamental matrix is a hard task since image
point (feature) locations are always affected by noise and the correspondences are
spoilt by outliers [42]. Random sample consensus (RANSAC) (Algorithm 2, page 296)
[58] is a well-known robust statistical solution for this type of problems. Unfortunately,
RANSAC and similar solutions are able to detect outliers, but the inaccuracy in the
image point locations is still not estimated. Therefore, modelling the uncertainty
in estimating the fundamental matrix is of great interest for the motion estimation
robustness.

Uncertainty in image-based measurements and Covariance
Intersection (CI)

Motion estimation is one of the main problems of computer vision, which can be
formulated as parameter estimation from image-based measurements. Knowing
that these image-based measurements are corrupted with noise, more interest has
recently been given to investigate how parameter estimation might be improved if
the uncertainty is incorporated [37, 96, 108]. Commonly, the uncertainty in these
applications is represented as covariance matrices.
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In this chapter, we investigate how the integration of feature position uncertainties
for each RGB channel of colour images might help to improve the accuracy of
the fundamental matrix estimates. As we have seen in Chapters 2 and 4, image
description i.e. feature extraction, is a decisive step for motion estimation. Regardless
the algorithm used to extract them, feature positions have always some uncertainties
[99]. The problem is how one can evaluate this uncertainty and does the estimated
uncertainty really characterise the accuracy of feature position? Moreover, does the
integration of this uncertainty in the optimisation problem really improve the final
estimate of the fundamental matrix?

To investigate that, two feature extraction techniques are used in this work,
mainly the SIFT extractor and the Harris feature detector. Feature extraction for
each technique is performed along with the associated uncertainties and for each
RGB channel. Then, we use the covariance intersection technique (CI) to fuse the
uncertainty information from the three RGB channels for each feature. This fusion
technique is of great importance in our solution since it allows the reduction of
feature position errors. Then, the reduced position errors are used to estimate a
more accurate fundamental matrix, F , by formulating it as an optimisation problem.

5.2 The proposed solution

An overview of the proposed solution is depicted in Figure 5.1. As shown in this
diagram, the input to the solution is a sequence of colour images. Relative motion is
estimated between consecutive pairs (depicted as RGB Colour image 1 and RGB
Colour image 2). For each colour image, feature extraction is performed along with
their uncertainties in each channel. Thus, each feature in each image is associated
with three uncertainty estimates. Covariance intersection algorithm (CI) is then
used to reduce feature position uncertainty by fusing the three uncertainties of the
three RGB channels. Since the fundamental matrix estimation algorithm accepts
only features with low uncertainty, our fusion technique via CI allows more features
to contribute in the estimation of this matrix. Hence, more accurate estimations
would be obtained. Notice from Figure 5.1 that in our solution, feature uncertainties
after CI are used as well in matching features between the two images. Details of
each block in this diagram is given in the following sections.
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5.3 Related work

We have shown in Chapter 2 that the fundamental matrix can be estimated using
linear algorithms from corresponding image points in two images under Gaussian
noise assumption, that is not necessary homogeneous or isotropic [97]. Many studies
tried to improve the accuracy of this matrix by formulating it as an optimisation
problem with the incorporation of feature position uncertainties [26, 99, 215].

In [99], authors presented a framework for introducing feature uncertainties
to estimate the homography and the fundamental matrix using renormalisation
technique. In that work, authors compared the results between using default values
for the covariance matrices (the identity matrix diag(1, 1, 0)), and using the estimated
covariance matrices from gray level images. They raised the issue of usefulness of
feature uncertainties in this optimisation problem. In addition, they stated that the
improvement of the accuracy cannot be ensured by incorporating such uncertainties
due to its nature, which is isotropic and homogeneous. On the other hand, Brooks
et al. showed in [26] that the quality of the fundamental might be considerably
improved by incorporating these uncertainties. They demonstrated a significant
reduction in the residual errors for the fundamental matrix when feature uncertainties
are incorporated.

In [161], authors presented a procedure to decrease the feature position uncertainty
by employing the covariance intersection in all channels of a colour image in order to
decrease the homography estimation error by using the Harris features detector. In
addition, Zeist et al. illustrated in [215] the enhancement of the bundle adjustment
estimations by incorporating the uncertainty for scale invariant feature points.

In the same optic, our solution here uses the iterative renormalisation technique
[98] to compute the fundamental matrix. In addition to the matched features, this
technique accepts as inputs their reduced uncertainties, which are estimated by
fusing uncertainties in the three RGB channels using covariance intersection (Figure
5.1). Our solution exploits as well these feature uncertainties to improve the feature
matching operation before estimating the fundamental matrix.

5.4 Feature location uncertainty

The extraction of image features is associated with some localisation errors. Many
studies have been dedicated to investigate these localisation errors in the computer
vision community [26, 42, 99, 185, 215]. Most of these studies dealt with feature
uncertainties based on the pixel noise. Commonly, it is supposed that the error model
is Gaussian, leading to characterising the uncertainty by 2D covariance matrices. The
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ultimate objective of all these methods is to estimate a feature position uncertainty
that really reflects their localisation errors. In this section, we investigate a method
to recover feature uncertainty in an image.

Two kinds of feature spaces are considered in this chapter. The first one is the
Harris corner detector [171] (Section C.2.1, Appendix C, page 299) and the second
is the scale invariant feature transform (SIFT) [119] (Section C.2.2, Appendix C,
page 300). Local invariant features such as the SIFT have been extensively used in
these imaging based applications. These features have impressive robustness qualities
to changes in the orientation and the scale. However, they impose some limited
robustness to illumination and affine changes. Over the last decades, the Harris
corner detector is considered as the most employed algorithm in the computer vision
community. To detect corner pixels, this algorithm relies on the second moment
matrix, which is the second order derivative matrix. This matrix in reality describes
the curvature distribution around a point.

A comparative study between the two algorithms, regarding their uncertainties
for motion estimation, is given. For both algorithms, feature extraction is performed
with associated localisation errors.

5.4.1 Basic notions of uncertainty

Before introducing the method for estimating the uncertainties in feature positions,
let us introduce some basic notions about the covariance matrix. Suppose we have
a measurement of a scalar p, in which its true value is p̄ . If we assume that the
measurement process of this scalar has a zero-mean Gaussian distribution, then p

can be regarded as a particular sample figure of a random variable, where:

p = p̄+ ∆p
∆p ∼ N (0, σ2)

(5.1)

Here, ∆p is a random variable describing the errors and σ is a positive value
representing the standard deviation (σ2 is the variance). The expression ∼ N (0, σ2)
represents the Gaussian distribution with zero mean and a variance σ2 of ∆p. The
expectations of ∆p and ∆p2 are given as [26]:

E[∆p] = 0, E[(∆p)2] = σ2 (5.2)

Now, Let us upgrade the scalar p to the two-dimensional case. In this case, the
quantity p has a two-entry measurement, p = (x, y)⊤. Similarly, let p̄ = (x̄, ȳ)⊤ be its
true value and the measurement errors of each entry is of zero-mean with Gaussian
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distribution. Then, we may write:

p = p̄+ ∆p
∆p ∼ N (0,Λ)

(5.3)

where N (0,Λ) is the Gaussian distribution with zero mean and a covariance matrix
Λ. Obviously, ∆p = (∆x,∆y)⊤ and the parameters of this distribution are given by:

(E[∆x], E[∆y])⊤ = 0

E[(∆p)(∆p)⊤] = Λ =
 E [∆x2] E [∆x∆y]
E [∆x∆y] E [∆y2]

 (5.4)

This is equivalent to:

Λ =
σ2

x 0
0 σ2

y

 (5.5)

Note that if σx = σy then the probability distribution is said to be isotropic and
the level-set is represented with a circle (Figure 5.2a and 5.2b). On the other hand,
if σx ̸= σy then the probability distribution is said to be anisotropic and the level-set
is represented with an ellipse (Figure 5.2c and 5.2d).

Now, let us move to the case where we have a number of k two-dimensional
quantities pi = (xi, yi)⊤, where i = 1, . . . , k. Then, the covariance matrix of a
particular pi is given by:

Λi =
σ2

ix
0

0 σ2
iy

 (5.6)

If all quantities pi = (xi, yi)⊤, where i = 1, . . . , k have the same distribution then,
the measurement error is said to be homogeneous. However, if the standard deviation
may change from one quantity to other, then the measurement error is said to be
inhomogeneous. Therefore, four cases might be distinguished here:

• If σx = σy with the same distribution, then the probability distribution is said
to be isotropic homogeneous (Figure 5.2a).

• If σx = σy with the different distributions, then the probability distribution is
said to be isotropic inhomogeneous (Figure 5.2b).

• If σx ̸= σy with the same distribution, then the probability distribution is said
to be anisotropic homogeneous (Figure 5.2c).

• If σx ≠ σy with the different distributions, then the probability distribution is
said to be anisotropic inhomogeneous (Figure 5.2d).
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(a) (b) (c) (d)

Fig. 5.2 Noise models. (a) Isotropic homogeneous. (b) Isotropic inhomogeneous. (c)
Anisotropic homogeneous. (d) Anisotropic inhomogeneous.[26][99]

5.4.2 Uncertainty estimation for the Harris corner detector

The Harris corner detector has been extensively used over the last decades in computer
vision community. As mentioned in Section C.2.1 (Appendix C, page 299), this
detector uses the second order derivative matrix, evaluated from the intensity around
corners. This matrix in reality is the second moment matrix, which describes the
curvature distribution. Regardless the techniques used for extraction, Harris feature
positions have a certain level of uncertainty.

Let x = (x, y)⊤ be the pixel coordinates of an image feature extracted using the
Harris corner detector (which is a gradient based feature extractor) and x̄ = (x̄, ȳ)⊤

be the correct location of this feature [171]. Errors in its location are then given by
∆x = (∆x,∆y)⊤ = (x − x̄, y − ȳ)⊤. Considering ∆x and ∆y as random variables
and referring to (5.4), the covariance matrix of this feature measurement is given by
[99]:

Λ =
 E [∆x2] E [∆x∆y]
E [∆x∆y] E [∆y2]

 (5.7)

where E[.] represents the expectation. This matrix in reality provides the extent
or the spread of the uncertainty of a feature x = (x, y)⊤ in each axis (x-axis and
y-axis), which is characterised as a Gaussian distribution.

Two main techniques are used in the literature for determining Λ. The first one
is a residual technique, while the second is a derivative approach. These techniques
are detailed in [99]. We employ the latter technique for computational reasons. To
extract a feature using this approach, a Hessian matrix is defined for the coordinates
x and y as follows:

H =
 ∑(x,y)∈Nx ωxyI

2
x

∑
(x,y)∈Nx ωxyIxIy∑

(x,y)∈Nx ωxyIyIx
∑

(x,y)∈Nx ωxyI
2
y

 (5.8)
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where Ix and Iy are the partial derivatives and ωxy is a weight function, commonly
has a Gaussian nature and Nx is a rectangular grid whose centre is the feature point
x = (x, y)⊤.

Known as the second moment matrix, this expression is the basis of all gradient-
based feature extractors, which depicts the curvature distribution around the feature
point x = (x, y)⊤. Therefore, this matrix decides, in the extraction step, whether
a feature in this position is good or not. The greater the change in curvature, the
more accurately the corner can be located and vice versa. Therefore, a quick change
in the gray level around a point corresponds to a large Hessian. This means that
this corner will be accurately located. Therefore, the inverse of this expression will
certainly define the covariance of this feature:

Λ = inv (H ) (5.9)

The estimated covariance of a feature can be visualised through an error ellipse
as illustrated in Figure 5.3. We can see clearly from these images that the noise
is anisotropic and inhomogeneous. Figure 5.4 shows some Harris features with the
associated position uncertainties for each RGB channel of colour images. We can see
from this figure that each RGB channel behaves in different way and using Covariance
Intersection will certainty reduce these uncertainties.

5.4.3 Uncertainty estimation for SIFT feature positions

Similarly, the SIFT [119] and the SURF [15] features inherit also some feature
localisation errors. Zeist et al. presented in [215] a similar method to the Harris
detector, for estimating the uncertainty of the SIFT and the SURF features. In
addition to their robust detection of keypoints in an image, these algorithms are also
able to detect interest regions. Most applications in the literature have been focusing
on matching features to assess their localisation errors but giving less interest to the
detection accuracy [128, 171].

The SIFT region detector has become one of the most popular algorithms for
feature extraction problem, and the algorithm of choice for many vision applications.
This algorithm uses Laplacian for feature detection and scale selection. Using the
derivative based approach; the location uncertainty of the SIFT features is also
calculated as the inverse of the Hessian matrix as well [215]. Neighbouring sample
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Fig. 5.3 Harris features with position uncertainties visualised through error ellipses.

Fig. 5.4 Harris features with position uncertainties for each RGB channel visualised
through error ellipses. Covariances from each channel is coloured according to the
channel.
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Fig. 5.5 SIFT features with position uncertainties visualised through error ellipses.

points are used to calculate the derivatives:

H =
∑

(x,y)∈Nx

ω (i, j)
Dxx (i, j, δx) Dxy (i, j, δx)
Dyx (i, j, δx) Dyy (i, j, δx)


Λ = inv (H )

(5.10)

where Dxx, Dxy and Dyy are the second order derivatives around the point x = (x, y)⊤,
σx is the scale, and Nx is the image neighbourhood. The Hessian is calculated as a
Gaussian weighted sum ω(i, j). Usually, the neighbourhood is taken as regions of
3 × 3 to 5 × 5 pixels. Again, the estimated feature covariances are visualised using
error ellipses as shown in Figure 5.5.
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Figure 5.6 shows some SIFT features with the associated position uncertainties
for each channel. We can see from this figure that each channel RGB of a colour
image behaves in different way. Using Covariance Intersection will certainty reduce
these uncertainties.

Fig. 5.6 SIFT features with position uncertainties for each RGB channel visualised
through error ellipses. Covariances from each channel is coloured according to the
channel.

5.5 Covariance intersection

After having estimated the covariance of each feature in each RGB channel, covariance
intersection is used to fuse information from all the three channels. Covariance
intersection is a filtering approach based on the combination of information matrices
in order to get better estimate. This technique uses a data fusion architecture, where
information about a signal is incomplete [142]. In distributed fusion systems, different
nodes or sensors provide different estimates with unknown degree of cross-correlation.
Therefore, covariance intersection could be a good option, which gives much better
and reliable estimates for local cross-correlated estimates [59, 142].

Given x̂1, x̂2, . . . , x̂n, the unbiased estimates of a quantity x0, where:

E[x̂i] = x0, for i = 1, 2, . . . , n. (5.11)

The associated covariance matrices for each estimate are given by P1, P2, . . . , Pn.
These covariance matrices are assumed to be consistent, which means:

Pi − P̃i ≥ 0, for i = 1, 2, . . . , n. (5.12)

where:
P̃i = E[(x̂i − x0)(x̂i − x0)⊤] = E[x̃ix̃

⊤
i ] (5.13)
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The matrix P̃i represents the covariance matrix of the ith estimate x̂i, i.e., the
correlation matrix of the ith estimation error x̃i = x̂i −x0. The covariance intersection
is then specified by:

P−1
0 =

n∑
i=1

ωiP
−1
i (5.14)

P−1
0 x0 =

n∑
i=1

ωiP
−1
i x̂i (5.15)

where 0 ≤ ωi ≤ 1. Detail on estimating these weights is presented in [142]. For
n ≥ 2, these weights must satisfy the linear constraint:

ω1 + ω2 + . . .+ ωn = 1 (5.16)

and:

tr(Pi)ωi − tr(Pi+1)ωi+1 = 0, for i = 1, 2, . . . , n− 1 (5.17)

Combining the two constraints (5.16) and (5.17) yields to the linear system:


ε1 −ε2 0 · · · 0
0 ε2 −ε3 · · · 0

· · · · · · · · · · · · · · ·
0 · · · 0 εn−1 −εn

1 · · · 1 1 1





ω1

ω2

· · ·
ωn−1

ωn


=



0
0

· · ·
0
1


(5.18)

where εi = tr(Pi).
Figure 5.7 shows an example of error ellipses of three original estimates and the

error after using the covariance intersection algorithm. Results from this simple
example confirm our analysis made above.

In our case, n equals to three, representing the three channels of the colour image.
In each colour image, each feature is represented with three covariance matrices.
Figure 5.4 and Figure 5.6 illustrate some features with their uncertainties on images
taken from the dataset presented in [69].

5.6 Robust fundamental matrix estimation

Our framework relies on the estimated uncertainties in the feature position after
fusing all covariances of each RGB channel of colour images. These uncertainties
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Fig. 5.7 Example of covariance intersection. Red, green, and blue lines represent
three covariances of three inputs illustrated via error ellipses. The magenta error
ellipse shows the estimate from CI.

are then incorporated in the motion estimation algorithm. Prior to that, these
uncertainties are used in improving the feature matching task.

5.6.1 Matching using features uncertainty

The availability of more accurate feature-uncertainty information will be adopted
in our work to improve the matching task before estimating the motion parameters
(Figure 5.1). Instead of using the standard RANSAC algorithm, we exploit the
feature uncertainty and their propagation to reject outliers. This techniques is
introduced in [10] and [155]. Given a set of corresponding image points xi ↔ xj,
where xi = (xi, yi, 1)⊤ and xj = (xj, yj, 1)⊤, then the 2D homography matrix H
is the 3 × 3 matrix that links between xi and xj. Detail about estimating the 2D
homography is given in Appendix A (Section A.3, page 283).

In the same uncertainty framework, and after having estimated:
• the 9×9 covariance matrix ΛH that encodes the uncertainty of the homography

matrix H using technique introduced in [10], and
• the 3 × 3 covariance matrices Λxi

and Λxj
that encodes the uncertainty of

the points xi and xj respectively using techniques introduced in the previous
Sections 5.4 and 5.5.

the covariance of the projection point of xi in the second image, denoted x̂i, is then
given by [155]:

Λx̂j
= AΛHA+ HΛxi

H (5.19)
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where A is 3 × 9 matrix given by:


x⊤
i 01×3 01×3

01×3 x⊤
i 01×3

01×3 01×3 x⊤
i



The covariance Λx̂j
in (5.19) models the uncertainty in x̂j due to both the

measurement uncertainty in xi and in the estimated homography H. Note that the
uncertainty Λxj

, of the point xj in the second image, has already been estimated
using techniques presented in Sections 5.4 and 5.5 as well. Then, rejecting matching
outliers is performed by checking the intersection between the uncertainty in the
projected point x̂j and the uncertainty in the measured point xj. Clearly, these
uncertainties (in the measured point in the right image xj and the projected point
x̂j) are represented using error ellipses. Therefore, if the two ellipses intersect in
the image plane, this means that this correspondence can be considered as a true
matching, otherwise this matching is said to be an outlier.

5.6.2 Robust fundamental matrix estimation

After having rejected matching outliers using uncertainty information, the fundamen-
tal matrix is then estimated using again the reduced feature position uncertainties
(Figure 5.1). We have seen in Section 2.9.3 (and in Appendix C), that the funda-
mental matrix, F , is the algebraic representation of epipolar geometry. It is well
known that for each pair of images Ii and Ij, point correspondences xi ↔ xj, where
xi = (xi, yi, 1)⊤ and xj = (xj, yj, 1)⊤, then the 3 × 3 fundamental matrix, F , can be
derived from the following equation system:

xjFx⊤
i = (xj, yj, 1)⊤


f1 f2 f3

f4 f5 f6

f7 f8 f9

 (xi, yi, 1) = 0 (5.20)

Let the column vector f contain the nine elements of F , where:

f = (f1, f2, f3, f4, f5, f6, f7, f8, f9)⊤

The epipolar geometry constraint, (∀k ∈ [1, n], xjk
Fx⊤

ik
= 0) simply leads to the

matrix equation Mf = 0 [82]. If we have n correspondences, then this n× 9 matrix
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M is given by:

M =


xj1xi1 xj1yi1 xj1 yj1xi1 yj1yi1 yj1 xi1 yi1 1
xj2xi2 xj2yi2 xj2 yj2xi2 yj2yi2 yj2 xi2 yi2 1

... ... ... ... ... ... ... ... ...
xjnxin xjnyin xjn yjnxin yjnyin yjn xin yin 1

 (5.21)

The well-known method for solving this problem is the singular value decomposi-
tion (SVD) of M and putting the smallest singular value of F to zero. Obviously,
data are still corrupted with noise. Therefore, recovering an exact solution is not
possible. All standard solutions for solving the matrix equation Mf = 0 ignore the
uncertainties in the feature locations even the well-known 8-point algorithm.

In an optimisation framework, to estimate the fundamental matrix from point
correspondences between two images by taking into account the feature uncertainties,
[98], the cost function to be minimised is defined as:

JF = 1
n

n∑
k=1

Wk (xik
, Fxjk

)2 (5.22)

Wk = 1
(xjk

, F⊤V0[xik
]Fxjk

) + (xik
, F⊤V0[xjk

]Fxik
) (5.23)

Specifically, (a, b) denotes the inner product of vectors a and b, and V0[xik
] for a

particular image feature xjk
is given by:

V0[xik
] =

Pxik
0

0 0

 (5.24)

where P is the covariance of that feature location.
The optimisation is performed in two main stages. Firstly, the fundamental

matrix F is computed without taking in account the constraint det(F ) = 0. Then,
this constraint is enforced in the second stage. During the first stage, the weighted
least-squares solution is estimated by using the renormalisation technique.

In the cost function (5.22), features with low uncertainty are included more, and
thus, they contribute more to the final results. This is because the weighting term
Wk has an inverse proportion with the uncertainty, as shown in (5.23). In [26, 97, 98]
features covariance matrices are evaluated using two methods. In the first one, they
used the derivative approach from the grey-level images and in the second approach
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they just used default values (V0[xik
] = diag(1, 1, 0)). In this work however, features

covariances are estimated for each RGB channel, and then the covariance intersection
filter is applied to fuse the three estimates. Therefore, feature uncertainties are
reduced and consequently more features, which are optimally matched as explained
in Section 5.6.1, will be able to contribute to the final estimate of the fundamental
matrix. This method will lead to more robust and accurate estimates.

After robustly estimating the fundamental matrix, motion parameters (translation
vectors and rotation matrices) are then extracted using our techniques introduced in
Section 4.5 (Chapter 4, page 83).

5.7 Experimental results

This section presents the experimental evaluation of the proposed method using
covariance intersection in motion estimation. Uncertainties in feature positions have
been taken into consideration in this implementation. First, we illustrate the need
for separately dealing with each RGB channel of colour images, and then using the
covariance intersection filter. To do that, the error function used to evaluate the
performance of the proposed solution is defined by:

fF = 1
n

n∑
k=1

d (xjk
, Fxik

)2 + d
(
xik
, F⊤xjk

)2
(5.25)

where d(xjk
, Fxik

) is the Euclidean distance error between the point xjk
and Fxik

.
Note that the quantity Fxik

is in fact the epipolar line corresponding to xik
(Section

C.1, page 293). Since the fundamental matrix defines a point-line mapping, the error
is the average over all n matches of the squared distance between the epipolar line of
a point and its matching point in the other image.

The implementation of the proposed technique is conducted on real data from
different environments (Section 1.6, Chapter 1, page 8), showing the diversity of the
image qualities. The first dataset is gathered from a vehicle travelling in an urban
environment in the city of Karlsruhe [68] (Figure 5.8a). The second is a sequence of
images taken from our laboratory (Figure 5.8b) and the third one is a collection of
data gathered at a Mars/Moon analogue site on Devon Island, Nunavut [64] (Figure
5.8c). Few matching features along with their uncertainties are shown in this figure
(Figure 5.8).

The corresponding results of these experiments are given in Figure 5.9. For
each environment, residual errors are shown against the number of matched points
used to compute F . Note that these errors are calculated over all matched points
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(a) Urban environment

(b) Indoor environment

(c) Moon/Mars analogue environment

Fig. 5.8 Examples of image pairs used for comparison. Features and their uncertainties
in these environments are extracted using the SIFT algorithm. Few matched points
are illustrated. Error bounds for each channel are given as ellipses coloured according
to the channel from which they were estimated.



5.7. Experimental Results 119

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
Uncertainty evaluated from CI of RGB channels
Uncertainty evaluated from grey levels

Number of points

E
rr

or
s

(p
ix

el
s)

(a) Urban environment
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(b) Indoor environment
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(c) Mars/Moon analogue site

Fig. 5.9 Errors plotted against the number of points used to compute the fundamental
matrix. Dashed lines (blue) show the results using covariance matrices evaluated from
the grey levels. Solid lines (red) show results using covariance intersection to fuse
uncertainties from all the three RGB channels of colour images. In all environments,
using covariance intersection is noticeably better than using grey-levels, though the
latter also shows good results.
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and not just the ones used to compute F . To illustrate the advantage of using
colour information, comparison between using the covariance intersection over the
three RGB channels for estimating the feature uncertainties and using just the grey
levels is shown. Figure 5.9 shows the significant impact on the final estimate of
the fundamental matrix when using the decreased feature location uncertainty via
the covariance intersection. One can see that the improvement is not considerable
in the Moon/Mars analogue environment. This is due to the image qualities and
also to the nature of the landscape. However, this is not the case for the remaining
environments, where considerable improvement can be noticed. Therefore, including
features position uncertainties yields to remarkably better results. Obviously, for all
environments, the accuracy is improved as the number of matched points used to
estimate F is increased.

These results are summarised as well in Table 5.1.

Table 5.1 Average residual errors in pixels for each environment using covariance in-
tersection for feature uncertainties of all RGB channels (ERGB) and using covariances
from grey levels (EGray)

Egray ERGB

Urban environment 1.88 1.16
Indoor environment 1.36 0.74
Moon/Mars analogue environment 2.17 2.02

Comparison with similar algorithms for estimating the fundamental matrix, such
as the 8-point algorithm, is conducted. Figure 5.10, shows the residual errors from the
urban environment experiment as an illustrative example. The proposed solution uses
the renormalisation technique with reduced feature uncertainties. This uncertainty
reduction is obtained by employing the covariance intersection to the feature location
errors. This technique iteratively removes bias of weighted least squares, instead of
minimising a cost function.

Both methods, the 8-point algorithm and the proposed technique, use the same
well matched points. It is clearly shown in Figure 5.10 that when using the covariance
intersection, more features will be able to contribute to the final solution. Thus, this
leads to better estimates of the fundamental matrix.

Comparative experiments when using two feature extractors, such as the Harris
corner detector and the SIFT algorithm, are conducted as well in this experiment.
The two main investigated tasks in this part are the matching robustness and the
uncertainty estimation of each detector. We have seen that the Harris corner detector
relies on the image intensity changes to detect corners using the second moment
matrix. Matching in the Harris corner detector algorithm is performed using the
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Fig. 5.10 The fundamental matrix estimation using the covariance intersection al-
gorithm. Residual errors are plotted as a function the number of deployed points.
Dotted blue line shows the results using the normalised eight-point algorithm. Solid
red line shows results using the normalisation technique with reduced feature un-
certainties by employing the covariance intersection. The residual errors from the
covariance intersection algorithm are substantially smaller than those from the
normalised eight-point algorithm, regardless the number points.

cross correlation technique between local image patches (Section C.2.1, Appendix
C, page 299). This means that only features that correlate most strongly with each
other in both directions are accepted. The SIFT features on the other hand, use the
Euclidean distance between the feature descriptors as a similarity criteria, and use
the nearest neighbour algorithm to match features (Section C.2.2, Appendix C, page
300). This technique has proved its efficiency among the computer vision researchers
[128]. Note that while the Harris corner detector is able to match larger number of
features in relatively shorter time, this significantly compromises its robustness. The
SIFT robustly performs that, but relatively in more time.

Our experiments reveal that, even though, features uncertainties using the Harris
corner are relatively smaller than those estimated using SIFT, the latter detector
is more representative to the real uncertainties in the features positions. In our
experiments, the average of the residual errors using the Harris corner detector is
1.48 pixels, while it is 1.16 pixel when SIFT is used. The obtained results are plotted
in Figure 5.11. These results confirm that uncertainties from SIFT features are less
conservative than Harris. Hence, more robust estimates are obtained, which justify
our preference for the SIFT algorithm. A summary graph is illustrated in Figure
5.12 comparing the proposed solution using CI of uncertainty in the three RGB
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Fig. 5.11 Comparison between using uncertainties from the SIFT extractor and from
the Harris corner detector features with the covariance intersection technique to
estimate the fundamental matrix. Performance with the SIFT features is better
than with Harris corner detector, though the latter algorithm also gives encouraging
results.

channel of colour images with the solution using uncertainty from grey-level images,
and with the traditional eight-point Algorithm.

5.8 Conclusion

In this chapter, a technique for robust and accurate estimation of the fundamental
matrix is presented. In most vision applications, colour images are converted first to
gray-level images leading to a serious loss of information. In our solution, however,
each RGB channel of colour images is processed separately. Then, a fusion mechanism
is employed to combine these information. After having estimated the uncertainties
in feature locations in each channel, covariance intersection filter is used. This results
on a reduction of the measurement error, leading to more accurate estimates of the
fundamental matrix. The iterative technique for this matrix estimation is adopted,
which takes as inputs the uncertainties in feature locations. Before estimating the
fundamental matrix, the available feature uncertainty information is used as well to
improve the matching task rather than using only the standard RANSAC algorithm.

Through several experimental results in different environments, we showed that
including feature uncertainties from all three RGB channels of images leads to more
accurate estimates of the fundamental matrix and consequently to more accurate
estimates of the motion parameters. A comparative study between employing feature
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Fig. 5.12 A summary graph comparing the proposed solution using the covariance
intersection algorithm on the uncertainty in the three RGB channel of colour images,
the solution using uncertainty from grey-level images, and the traditional eight-point
Algorithm.

uncertainties extracted from the Harris corner detector and the SIFT algorithm is
given as well, where the latter exhibits better performance.





Chapter 6

Robust L∞ Convex Optimisation
for Monocular Motion Estimation

In chapter 4, we presented a solution for motion estimation using convex optimisation
in the triangulation task and the H∞ filter in the scale ambiguity problem. In
Chapter 5, we introduced a solution that incorporates feature position uncertainties in
estimating the fundamental matrix before recovering the camera motion parameters.
In the present chapter, a more global and robust L∞ norm-based optimisation solution
for monocular motion estimation systems is presented. In addition to exploiting the
uncertainty estimation techniques from the previous chapter, this solution propagates
this uncertainty through the multiple-view geometry algorithms and incorporates it at
each stage of the solution.

More precisely, we introduce in this chapter the robust convex optimisation notion
in our solution, where the propagated uncertainties to the relative rotations and
translations, and to the 3D scene points contribute in improving the global motion
estimation. Rather than using the H∞ filter to solve the scale ambiguity problem in
our monocular system, we set up a robust least squares algorithm using the SOCP
approach, capable of handling the system uncertainties. Experimental evaluations
showed that robust convex optimisation with the L∞ norm under uncertain data and
the robust least squares via the SOCP clearly outperform classical methods based on
least squares and Levenberg-Marquardt algorithms.

6.1 Overview

Visual Odometry (VO) types of approaches have been widely studied in the last
decade as a possible solution for autonomous navigation systems. Optimisation
techniques, such as bundle adjustment (BA) are used to deliver trajectory estimates.
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Throughout this thesis, monocular system is used for motion estimation. As we
have seen in Chapter 4, this system is known for its frame-to-frame scale ambiguity,
in which some successful solutions dealing with this problem have been listed. For the
optimisation task, the bundle adjustment algorithm has been widely used in motion
estimation for both stereo and monocular systems. This optimisation technique
is used to refine the visual reconstruction jointly with the optimal camera pose
estimates by minimising the re-projection errors. This optimisation problem is
usually formulated as a non-linear least squares problem, where the error is the
squared differences between the observed feature locations and the projection of
the corresponding 3D points on the image plane. The Levenberg-Marquardt (LM)
algorithm is the most popular algorithm in the computer vision community for
solving non-linear least squares problems. It is considered as the algorithm of
choice for bundle adjustment. However, the main issue with these methods, and
notwithstanding of dependency on good initialisation, is related to the high probably
of converging to a local minimum or even to infeasible solutions.

As a powerful alternative, convex optimisation (denoted in this chapter as CVX)
offers the possibility of getting around these issues when dealing with these types of
non-linear minimisation problems [25, 94]. A projective bundle adjustment algorithm
using L∞ norm is proposed in [130], based on minimising the L∞ norm of re-
projection error, where the problem is divided into two successive tasks, by fixing
the parameters of one sub-problem while optimising the remaining sub-problem
using convex optimisation. The first sub-problem consists of recovering the camera
parameters while keeping the structure parameters fixed. The second one looks for
the camera and the structure parameters. In [36], a visual odometry approach to
estimate the essential matrix by minimising the algebraic error through a convex
optimisation is presented.

Dealing with uncertain data and more specifically in our visual uncertain measure-
ments has become crucial in the computer vision community. Robust optimisation
in general is an optimisation procedure, which is able to recover an optimal solution,
that guarantees its feasibility for any realisation of the uncertain data [20]. Indeed,
robust optimisation, for which data are not precisely specified, can explicitly incor-
porate uncertainty [65]. Knowing that image-based measurements are subject to
deterministic perturbations, more studies have started to focus on how parameters
estimation using these measurements might be improved if additional information
characterising the uncertainty of the data are available [26].

Robust convex optimisation, on the other hand, would be a valid option to
develop for visual odometry, for which image-based measurements are associated
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with uncertainties. It is worth noticing here, that the common way of expressing
this uncertainty information is in terms of covariance matrices.

We have seen in the previous chapters, that extracting feature points is the first
step in many vision applications, including the motion estimation problem. Position
uncertainty estimation for these feature points is presented as well in Chapter 5,
where details on the uncertainty on the SIFT extractor and the Harris corner detector
are given. The same techniques are used in this solution, where comparisons between
the solution performance using the Harris corner detector and the SIFT extractor
are given.

In the present solution, more interest is given to the uncertainty propagation. More
studies have started to consider the impact of the propagated uncertainties on the
final estimate accuracy. Haralick described in [78] how to propagate additive random
perturbations through the various stages of a vision-based algorithm. A similar idea
is adopted by Leo et al., [49], who presented a methodology for propagating the
measurement uncertainty, from the initial stages through the stereo calibration, to
the uncertainty in the triangulation. However, a complete method adopting robust
convex optimisation scheme using covariance information to get better estimates of
the camera motion for monocular systems has not been given yet.

6.2 The proposed solution

We aim, in this chapter, to robustly improve the camera motion estimations of an
innovative monocular visual odometry solution by incorporating feature localisation
uncertainties and their propagation through the multiple view geometry. The
proposed approach provides a framework to estimate robust and global solution
under the L∞ norm. This approach, which relies on modern optimisation methods,
is more efficient in dealing with uncertain data than their traditional gradient-based
counterparts. Therefore, robust and global solutions are guaranteed.

Although most researchers avoid uncertainty due to the added complexity in
constructing the robust optimisation model, and to the lack of knowledge of the
nature of the uncertainty, especially its propagation, our work focuses on developing
a robust convex optimisation solution along with estimating the uncertainties in
every step of the algorithm, starting from uncertainties in features positions. First,
we propose a technique that minimises the errors by incorporating these uncertainties
from all sources and their propagation to the rotations, to the translations and to
their corresponding 3D scene points, using robust L∞ convex optimisation via the
second-order cone programming (SOCP). Secondly, we propose to use the robust least
squares solution via the SOCP as well, in dealing with system uncertainties for frame-
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Fig. 6.1 A block diagram showing the main architecture of the proposed solution.

to-frame absolute scale estimation. The proposed solution, which is geometrically
meaningful, does not possess any element of randomisation, in which the global
optimality is ensured since its local minimum is guaranteed, by definition, to be the
global minimum.

Thus, our first set of contributions in this chapter consists of estimating robust
and globally optimal solutions to problems that arise in monocular motion estimation
using robust convex optimisation under the L∞ norm. Our goal is to provide a
solution with a priori guaranteed feasibility when the uncertain problem parameters
vary within the approved uncertainty set defined after propagation. Implementation
of these techniques is conducted on real challenging data collected in our autonomous
system laboratory, in an urban environment and data gathered from a Mars/Moon
analogue site.

The proposed solution, described in Figure 6.1, assumes a fully calibrated system
with known intrinsic parameters K. Using a vehicle equipped with a single camera,
capturing sequence of images, the final goal is to estimate the camera pose at each
time step, relying only on these images and incorporating the uncertainties. Thus,
the main steps of the proposed algorithm are:

• Extraction of image feature points using the SIFT/Harris detector and esti-
mating their uncertainties.
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• Estimating the initial relative rotations Ri and the translation Ti via the
essential matrix.

• Estimation of the propagated feature uncertainties to Ri and Ti through the
normalised eight-point algorithm and the SVD.

• Estimation of the 3D scene points using convex optimisation along with their
uncertainties.

• Optimising the motion using robust L∞ convex optimisation, taking in con-
sideration all sources of uncertainty with a sequence of camera resectioning
/triangulation.

• Computing the unknown absolute scale ratio using the robust least squares
algorithm via the SOCP solution.

Details about each block of the diagram illustrated in Figure 6.1, are given in the
coming sections. The basic concepts of the robust convex optimisation are discussed
in the next section. Then, we describe the propagation of uncertainties in feature
positions to the rotation matrices and to the translation vectors. After that, we
present the techniques used in estimating the uncertainties in the reconstructed 3D
points. Robust L∞ motion estimation and robust scale estimation algorithms are
detailed in last two sections of this chapter before giving the main conclusions.

6.3 Robust convex optimisation

In general, optimisation is important in engineering and control design, where most
applications assume a complete knowledge of the problem data. However, most
optimisation problems deal in fact with data that are not completely known, and
without taking their uncertainties into consideration. Two main sources of uncertainty
exist: data which are not exactly known or cannot be exactly measured, and inherent
inaccuracy of the devices used in the applications [20]. This uncertainty results in
uncertain constraints and objective functions.

As we have seen in Section 3.8 (Chapter 3, page 72), robust optimisation is a
recent alternative to the optimisation under uncertain data, where the uncertainty
model is not stochastic, but rather deterministic. In this optimisation, instead of
recovering the solution in some probabilistic sense under stochastic uncertainty, the
optimiser builds a solution that is optimal for any realisation of the uncertainty
in a given set [18]. In cases where the optimality of a solution is affected by the
uncertainty, the robust optimisation main goal will be then to seek a solution that
performs relatively well for any value taken by the unknown coefficients. While a
common approach is to optimise the worst-case objective, more studies are conducted
toward other robustness methods [65].
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Robust optimisation, in general form, deals with two sets of entities, decision
variables and uncertain variables. In this context, the first aim of worst-case robust
optimisation is to recover the optimal solution on the decision variables such that
the worst-case is minimised and the constraints are robustly feasible, while the
uncertainty is allowed to take arbitrary values in a defined uncertainty set [116]. The
optimal solution is evaluated using the realisation of the uncertainty that is most
unfavourable [65]. The general form of this robust optimisation is given by:

min
x

max
ω

f(x, ω)

subject to g(x, ω) ≤ 0 ; ∀ω ∈ W
(6.1)

where ω is the uncertain variables, W is the uncertainty set and x is the decision
variables.

In the main part of this solution, we will be dealing with convex optimisation
problems for monocular motion estimation, for which the data are uncertain and
known to belong to a given uncertainty set W. These problems can be efficiently
recast and solved using second-order cone programming (SOCP). A SOCP constraint,
which is a conic quadratic constraint, is of the form:

∥Aix+ bi∥2 ≤ c⊤
i x+ di, Ai ∈ R(m)×n bi ∈ Rmci ∈ Rn di ∈ R (6.2)

where x is the variable vector and Ai,bi,ci and di are the constraints parameters
[94, 101]. The robust counterpart is the problem of finding x such that:

min
x

f⊤x

subject to ∥Aix+ bi∥2 ≤ c⊤
i x+ di, ∀(Ai, bi, ci, di) ∈ Wi

g⊤
i x = hi for i = 1, · · · , p

(6.3)

Boni et al. showed in [20] that a convex quadratic constraint with ellipsoidal
uncertainty errors can be implemented as a system of conic quadratic constraint. In
addition, they showed that a conic quadratic constraint with ellipsoidal uncertainty
error can be reformulated as a set of nearly conic quadratic constraints.

6.4 Uncertainty propagation

The expression of uncertainty refers to doubt, and in the measurement framework, it
stands for doubt about the validity of the measurement results. This measurement
uncertainty characterises the dispersion of the values, that could be associated to the
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quantity being measured (the measurand) [91]. This uncertainty in reality reflects
the lack of knowledge of the value of the measurand. More precisely, the uncertainty
indicates the upper and the lower values that an uncertain variable may assume;
after all systematic biases have been corrected.

Estimating the uncertainty could be not sufficient in some vision applications.
One of the most important tasks is to evaluate its propagation through a particular
model. To illustrate that, let us consider a system with inputs X = (X1, . . . , Xm)⊤,
and outputs Y = (Y1, . . . , Yn)⊤, where:

Y = f(X), f = (f1, f2, . . . , fm)⊤ (6.4)

where f is the measurement model. Given an estimate x of X, then an estimate of
Y is:

y = f(x) (6.5)

The covariance matrix of the dimension m×m of the output y is:

Λy =


u(y1, y1) · · · u(y1, ym)

... . . . ...
u(ym, y1) · · · u(ym, ym)

 (6.6)

and given by:
Λy = JxΛxJ

⊤
x (6.7)

where Jx is the input Jacobian matrix, called also the sensitivity matrix of dimension
m× n, and given by:

Jy =


∂f1
∂X1

· · · ∂f1
∂Xn... . . . ...

∂fm

∂X1
· · · ∂fm

∂Xn

 (6.8)

The uncertainty of the output given in (6.7) is estimated in fact through a first
order Taylor series approximation [50]:

u2
y =

m∑
i=1

m−1∑
j=1

(
∂f

∂Xi

)(
∂f

∂Xj

)
u (xi, xj) (6.9)

where u (xi, xj) is the covariance of xi and xj, and when i = j, the
√

(u(i, xi)) = uxi

is the uncertainty of xi. Equation (6.9) can be written in a more general form:

u2
y = Λy = JxΛxJ

⊤
x (6.10)
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where Λx is the input covariance matrix, and Jy is the input Jacobian matrix, namely
the matrix of partial derivatives. Equation (6.10) is known as the propagation
property of the uncertainty through non-linear systems [50].

6.5 Feature location uncertainty

Selecting the most appropriate feature extraction technique for any vision application
is not obvious. In the literature, a relatively large variety of feature detectors are
usually used in such applications. Interestingly, the final performance of these
solutions vary from one feature extraction technique to the other. Similarly to the
previous solution, in this chapter we investigate the performance of our solution
using the Harris corner detector and the SIFT extractor. Since the detected feature
points, regardless the nature of the detector, have some uncertainty, the proposed
solution in this chapter to estimate the motion uses the robust convex optimisation
scheme based on those uncertainties and their propagations.

We have introduced in Chapter 5 (Section 5.4, page 105) techniques that can be
used to estimate the uncertainty in feature positions from the Harris corner detector
and from the SIFT extractor. The derivative approach is used as well in this solution,
where the covariance matrix is recovered as the inverse of the Hessian matrix.

Implementation of these techniques is conducted on challenging datasets and
shown in Figure 6.2 and Figure 6.3. The first one is collected in our laboratory using
a Pioneer P3-DX platform with a fully-calibrated forward-looking camera (Section
1.6, Chapter 1, page 8). The second is gathered from a vehicle travelling in an urban
city environment, where a forward-pointing calibrated camera is mounted on this
vehicle [68]. The third one is a collection of data from a Mars/Moon analogue site at
Devon Island, Nunavut [64].

Figure 6.4 and Figure 6.5 show clearly that feature points localisation uncertainties
using the Harris corner detector are relatively smaller than those estimated using
SIFT for all environments. Results are summarised in Table 6.1 as well. The average
error for Harris corner detector in urban environment, for example, is in the order
of 0.04 pixels, whereas it reaches 0.15 pixels using the SIFT extractor. In the
Moon/Mars analogue environment, and due to its nature, these uncertainties have
remarkably increased (0.05 pixels for Harris corner detector and 0.25 pixels for SIFT
extractor), which directly affects the subsequent motion estimations. For the indoor
environment, the same pattern is recorded. The average errors is 0.03 pixels for the
Harris detector and about 0.12 pixels using the SIFT extractor. However, overall,
lower errors are noticed here in comparison to the two other environments. This is
due to nature of the environment, where features are relatively closer.
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(a) Indoor environment

(b) Urban environment

(c) Moon/Mars analogue environment

Fig. 6.2 Harris image features with location covariances visualised via error ellipses.
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(a) Indoor environment

(b) Urban environment

(c) Moon/Mars analogue environment

Fig. 6.3 SIFT image features with location covariances visualised via error ellipses.
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Fig. 6.4 Average feature points localisation errors using Harris.
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Fig. 6.5 Average feature points localisation errors using SIFT.
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Table 6.1 Average localisation errors of the extracted feature points using Harris and
SIFT.

Average localisation errors [pixels]
Harris SIFT

Indoor environment 0.03 0.12
Urban environment 0.04 0.15
Moon/Mars analogue environment 0.05 0.25

Matching in the Harris corner detector algorithm is performed using the cross
correlation between local image patches. This means that only features that correlate
most strongly with each other in both directions are accepted. Therefore, as a serious
drawback, the matching accuracy and robustness, in this algorithm, is completely
depending on the actual transformation between views. On the other hand, the
SIFT extractor uses the Euclidean distance between two feature point vectors as a
similarity criteria of the two keypoints and uses the nearest neighbour algorithm
to match each other, which increases significantly its accuracy. Even the matching
using the Harris corner detector can be performed with low time consumption, its
accuracy is compromised comparing to the high accuracy and robustness matching
that is provided by the SIFT algorithm.

By analysing the obtained results shown in Figure 6.4 and Figure 6.5, for the
SIFT extractor and the Harris corner detector in all environments, the latter confirms
its ability to provide relatively more stable and conservative uncertainty estimations.
The SIFT quality is necessary to discard underestimated uncertainty as in the Harris
detector, which could influence on the performance of motion estimations. This, in
addition to matching accuracy of the SIFT extractor, justify our deployment of the
SIFT extractor along with the covariance intersection of their uncertainties in each
RGB channel for our monocular motion estimation algorithm.

In addition, one of the important novelty parts of our solution in this chapter
is the estimation of the propagated uncertainties from the feature positions to the
rotation matrices and the translation vectors and to the 3D scene points. In the
following two sections, we introduce the techniques used to estimate these propagated
uncertainties.

The uncertainties in the rotation matrices and in the translation vectors are
estimated by propagating the feature position uncertainties through the eight-point
algorithm and the singular value decomposition (SVD) algorithm. These new
uncertainties in the rotations and translations, in addition to the original uncertainties
in feature positions, are propagated even more to the 3D scene points through the
triangulation algorithm.
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Our robust optimisation motion estimation algorithm takes these propagated
uncertainties at each stage, in order to robustly estimate the camera trajectory (as
shown in Figure 6.1).

6.6 Uncertainty in the rotation matrix and the
translation vector

We have seen in Chapter 2, that the entity encoding the translation and rotation
comprising the 3D motion is the essential matrix, E. This matrix is defined by E =
[T ]×R 1, where T and R represent respectively the translation vector and the rotation
matrix. In calibrated vision systems, this matrix is deduced from the fundamental
matrix F , which is estimated via the eight-point algorithm, followed by an SVD
estimation process. Starting from the estimated uncertainties in feature points,
and before estimating the propagated uncertainties to T and R, it is necessary to
estimate first, the uncertainties in the fundamental matrix and then the uncertainties
in the essential matrix. For that, we present in this section techniques adopted in
estimating these propagated uncertainties.

6.6.1 Uncertainty estimation in the fundamental matrix

Given two views with camera matrices Pi and Pj , a pair of matching image points
xi ↔ xj must satisfy: x⊤

j Fxi = 0, where F is the fundamental matrix (Appendix C,
Section C.1, page 293). Estimating the fundamental matrix is the key stage for any
motion estimation algorithm, where information has to be retrieved from several
images as a unique source. Since F is defined to a scale factor, it can be estimated
with only eight correspondences [189]. Since the subsequent motion estimation steps
rely heavily on the estimation of this matrix, a rational attention on recovering its
parameters should be paid. Indeed, estimating an optimal F is a hard task, since
point locations are noisy and the correspondences are spoilt by outliers. RANSAC
(Algorithm 2, page 296 ) is a well-known robust statistics solution for this type of
problems [58].

Unfortunately, RANSAC and similar solutions are able to detect outliers, but the
inaccuracy in the image point locations is still not estimated. In the literature, two
main methods are used for estimating the covariance of F: Monte-Carlo simulations,
and the derivation of a closed-form formula. The uncertainty estimation method
adopted in this work was originally introduced in [189].

1[T ]× is the 3 × 3 skew-symmetric matrix of T as defined in Section 2.2 in Chapter 2, page 24.
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It is well known that for each pair of images Ii and Ij, point correspondences
xi ↔ xj, where xi = (xi, yi, 1)⊤ and xj = (xj, yj, 1)⊤, the 3 × 3 fundamental matrix
F can be derived from the following system equation:

xjFx⊤
i = (xj, yj, 1)⊤


f1 f2 f3

f4 f5 f6

f7 f8 f9

 (xi, yi, 1) = 0 (6.11)

The epipolar geometry constraint, that is,

∀k ∈ [1, n], x⊤
j Fxi = 0

simply leads to the matrix equation Mf = 0, where M is given in (5.21), and the
column vector f contains the nine elements of F , where:

f = (f1, f2, f3, f4, f5, f6, f7, f8, f9)⊤.

The well-known method for solving the problem: Mf = 0 is by using singular
value decomposition (SVD) of M and putting the smallest singular value of F to zero
(rank 2 constraint enforcement) (Theorem 2 - page 41). This makes it necessary to
choose F in a (generally) 1-dimensional singular. To do that, we choose to set f9 = 1.
Obviously, data are still corrupted with noise; therefore recovering an exact solution
is not possible. All standard solutions for solving the matrix equation Mf = 0 ignore
the uncertainties in the feature locations, even the well-known eight-point algorithm.

The matrix F is then given as the solution of the linear system M̃f̃ = c, where
M̃ is the sub-matrix of M containing the first eight columns, f̃ is equal to f without
the last element f9 and the 8 × 1 vector c = −[18]⊤. In this case, we recover F by
solving:

f̃ = M̃−1c (6.12)

Using the propagation property of the uncertainty through non-linear systems
given in (6.10), a first order approximate gives an approximation of the covariance
matrix Λf̃ of the system in (6.12). This approximation is given by:

Λf̃ = JXΛXJ⊤
X, (6.13)

Note that (6.13) involves the estimation of the Jacobian JX of this trans-
formation from X to F , where X is a vector containing the entries of M. i.e.
X = (xi1 , yi1 , xj1 , yj1 , xi2 , yi2 , xj2 , yj2 , . . . , xin , yin , xjn , yjn)⊤. The method used to com-
pute this Jacobian is given in the following section. The quantity ΛX is the covariance
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matrix, representing the feature position uncertainties, before propagation, and esti-
mated using technique presented in Chapter 5 (Section 5.4, page 105).

Computation of JX, the Jacobian of f̃ :

Equation (6.12) gathers three transformations from the vector X, which contains
the coordinates of the matched points to the vector M̃−1c. (X 7→ M̃−1c). These
three transforms are : Θ : A 7→ A.c, Ψ : A 7→ A−1 and Φ : X 7→ M̃, hence,
f̃ = Θ ◦ Ψ ◦ Φ (X) and the 8 × 32 Jacobian matrix of the transform is given by:

JX = JΘ.JΨ.JΦ(X) (6.14)

where:
• JΦ(X) is a 64 × 32 matrix containing the derivative of M with respect to all

element of X;
• JΨ(X) is a 64 × 64 matrix where its entries are calculated as follow: for any

element JΨ(i, J) = −A−1ΓijA
−1 where Γij is the matrix with entries equal to 0

except in position (i, j) which is 1;
• JΘ(X) is a 8 × 64 constant matrix.

After estimating the Jacobian JX, then the covariance matrix f̃ is estimated using
(6.13).

Computation of the Jacobian of the SVD:

Since the fundamental matrix must be enforced to have a rank equals to two, which is
done using the SVD, then the computation of the Jacobian of this SVD is necessary.
If F = UDV ⊤, is the SVD decomposition of F ; then imposing rank(F ) = 2 is simply
performed by putting the element the last element of D to 0 or putting [152]:

F = UD
[ 1 0 0

0 1 0
0 0 0

]
V ⊤ (6.15)

Let fij be the (i, j)th element of F , then the entries of the 8 × 8 Jacobian matrix
of the SVD, JSVD(F ), are then given by:

∂F

∂fij

= ∂U

∂fij

D
[ 1 0 0

0 1 0
0 0 0

]
V ⊤ + U

∂D

∂fij

[ 1 0 0
0 1 0
0 0 0

]
V ⊤ + UD

[ 1 0 0
0 1 0
0 0 0

] ∂V
∂fij

⊤
(6.16)

To estimate the derivatives ∂U
∂fij

, ∂D
∂fij

and ∂V
∂fij

in (6.16), we use the method
introduced in [152]. Note that, ∀(k, l) ̸= (i, j), ∂fkl

∂fij
= 0 and ∂fij

∂fij
= 1.
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Since U in (6.15) and (6.16) is an orthogonal matrix, then:

U⊤U = I ⇒ ∂U

∂fij

⊤
U + U⊤ ∂U

∂fij

= Ωij⊤

U + Ωij
U = 0 (6.17)

where:
Ωij

U = U⊤ ∂U

∂fij

(6.18)

Similarly to (6.15) and (6.16) we can get from (6.14):

Ωij
V = ∂V

∂fij

⊤
V (6.19)

Notice that from (6.18) and (6.19) Ωij
U and Ωij

V are antisymmetric matrices. By
multiplying (6.16) by U⊤ and V from the left and right respectively, and (6.18) and
(6.19), the following relation is obtained:

U⊤ ∂F

∂fij

V = Ωij
UD

[ 1 0 0
0 1 0
0 0 0

]
+ ∂D

∂fij

[ 1 0 0
0 1 0
0 0 0

]
+D

[ 1 0 0
0 1 0
0 0 0

]
Ωij

V (6.20)

The derivatives of the singular values in (6.20) are given by

∂Dkk

∂fij

= UikVjk (6.21)

where Dkk are the diagonal elements of D. Now, for computing ∂U
∂fij

and ∂D
∂fij

, we
first compute Ωij

U and Ωij
V . A set of 2 × 2 linear systems are used to compute these

matrices using the off-diagonal entries of the matrices in (6.20):

DllΩij
U +DkkΩij

V = UikVjl

DkkΩij
U +DllΩij

V = −UikVjl

(6.22)

where the index ranges are k = 1, . . . , 3 and l = k + 1, . . . , 3. Then :

∂U

∂fij

= UΩij
U and ∂V

∂fij

= −V Ωij
V (6.23)

After having estimated ∂U
∂fij

, ∂D
∂fij

and ∂U
∂fij

we can compute JSVD from (6.16).

The covariance of the fundamental matrix:

After estimating all these quantities, and,
• since the coefficient f9 is fixed;
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• and after estimating Λf̃, the covariance of the sub-matrix f̃ using (6.13);
• and after estimating JSVD, the Jacobian of the SVD of F using (6.16).

then, the 9 × 9 covariance matrix of the fundamental matrix F is given by:

ΛF = JSVD

 Λf̃ 08,1

01,8 0

 JSVD
⊤ (6.24)

6.6.2 Uncertainty estimation in the essential matrix

We have seen in Chapter 2 that the relative translation, T , and rotation, R, are
encoded in the essential matrix, E. This matrix is given by E = [T ]×R. In that
chapter, we showed that the fundamental matrix can be used in estimating this
essential matrix, as [82]:

E = K⊤
j FKi (6.25)

where K is the camera calibration matrix. Given, ΛF , the covariance of the funda-
mental matrix from (6.24), and using (6.10), then, the covariance of the essential
matrix, E, ΛE, can be computed as:

ΛE =
∂
(
K⊤

j FKi

)
∂F

ΛF

∂
(
K⊤

j FKi

)
∂F

⊤

(6.26)

The derivative of K⊤
j FKi with respect to Fij, an element of F , is given by:

∂
(
K⊤

j FKi

)
∂F

= K⊤
j

∂F

∂F
Ki (6.27)

where ∂F
∂F

, the derivative of F , is a matrix whose all its entries are zeros, apart from
from those in column j and row i, which are ones.

6.6.3 Uncertainty estimation in the rotation and translation

After estimating the uncertainty of the essential matrix, we move now to the estima-
tion of the uncertainty in the rotation R, and the translation T . As stated in Section
2.9.2, given the essential matrix E = Udiag(1, 1, 0)V and making the first camera
matrix Pi = [I|0], then the four possible choices for the second camera matrix Pj are
[82]:

• Pj = [R1| + T ]; Pj = [R1| − T ];
• Pj = [R2| + T ]; Pj = [R2| − T ].

where the rotation matrices R1 = UWV ⊤ and R2 = UW⊤V ⊤, the translation vector
T = U(0, 0, 1)⊤ is the last column of U and W =

[ 0 −1 0
1 0 0
0 0 1

]
.
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Estimation of the Covariance of the rotation matrix:

The uncertainty in the rotation matrix R1 knowing ΛE, the uncertainty of E, is
given by:

ΛR1 =
∂
(
UWV ⊤

)
∂E

ΛE

∂
(
UWV ⊤

)
∂E

⊤

(6.28)

For the estimation of the derivative ∂(UW V ⊤)
∂E

, we can use the technique presented
in Section 6.6.1 in the part: Computation of the Jacobian of the SVD. The same
technique is used to estimate the covariance of R2, where we use W⊤ instead of W .

Estimation of the covariance of the translation vector:

The translation vector T is given by u3 = U(0, 0, 1)⊤, the last column of U . Hence,
its covariance ΛT is then simply:

ΛT = ∂ (u3)
∂E

ΛE
∂ (u3)
∂E

⊤

(6.29)

Again, we can use the procedure presented in Section 6.6.1 in the part: Compu-
tation of the Jacobian of the SVD to estimate the derivative ∂(u3)

∂E
.

6.7 Feature uncertainty propagation to the 3D re-
construction

Assume we have m views of a scene point X̂, which maps to image points x̂i =
(x⊤, 1)⊤ = (ui, vi, 1)⊤ via the camera matrices Pi, reconstruction is to recover the 3D
space position of points X̂ such that x̂⊤

i = PiX̂, for i = 1, . . . ,m. These quantities
are related by the projection function f , where:

fu(R, T, xi,X) = ui − ri1
⊤X + ti1

ri3⊤X + ti3
= 0

fv(R, T, xi,X) = vi − ri2
⊤X + ti2

ri3⊤X + ti3
= 0 (6.30)

The camera matrices, Pi, are given by: Pi = [Ri|Ti], where Ri = [ri1, ri2, ri3] and
Ti = [ti1, ti2, ti3] are the rotation matrix and the translation vector respectively. Note
that X̂ = [X, 1] is represented by homogeneous coordinates (X = [X, Y, Z] ∈ R3). In
a calibrated vision system, normalised camera matrices are used, where P1 = [I|0],
and set as a reference camera, and P2 = [R2|T2]. In this case, a system composed of
four equations can be obtained from (6.30).
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Let ΛX be the covariance matrix of the scene point X, and ΛIn = diag(Λxi
,ΛRi

,ΛTi
)

is the diagonal covariance matrix associated with the input parameters vector:
In = [xi, R, T ]⊤, which is estimated using techniques presented in Section 6.6. Then,
the following expression can be written to model the covariance propagation [35]:

JXΛXJ⊤
X = JInΛInJ⊤

In (6.31)

where JX and JIn are the Jacobian matrices of derivatives of f in (6.30) with respect
to the 3D scene point X and the input parameters vector In = [xi, R, T ]⊤ respectively:

JX =


∂fu1 (R,T,x1,X)

∂X
∂fu1 (R,T,x1,X)

∂Y

∂fu1 (R,T,x1,X)
∂Z

∂fv1 (R,T,x1,X)
∂X

∂fv1 (R,T,x1,X)
∂Y

∂fv1 (R,T,x1,X)
∂Z

∂fu2 (R,T,x2,X)
∂X

∂fu2 (R,T,x2,X)
∂Y

∂fu2 (R,T,x2,X)
∂Z

∂fv2 (R,T,x2,X)
∂X

∂fv2 (R,T,x2,X)
∂Y

∂fv2 (R,T,x2,X)
∂Z


JIn =

Jx1 0 JRT1 0
0 Jx2 0 JRT2


where:

Jxi
=
∂fu1 (R,T,x1,X)

∂ui

∂fu1 (R,T,x1,X)
∂ui

∂fv1 (R,T,x1,X)
∂ui

∂fv1 (R,T,x1,X)
∂ui


JRTi

=
 ∂fui

∂Ri11

∂fui

∂Ri12
. . .

∂fui

∂Ri33

∂fui

∂Ti1
. . .

∂fui

∂Ti3
∂fvi

∂Ri11

∂fvi

∂Ri12
. . .

∂fvi

∂Ri33

∂fvi

∂Ti1
. . .

∂fvi

∂Ti3


The output covariance matrix and, thus, the output uncertainties are given by:

ΛX = JX
†(JInΛInJ⊤

In)JX
⊤† (6.32)

where JX
† = (J⊤

XJX)−1J⊤
X is the pseudo inverse matrix of JX.

Implementation of 3D scene point uncertainty estimation:

An extensive experimental validation has been conducted for the developed uncer-
tainty propagation given above. Figure 6.6 shows the 3D scene points uncertainties
patterns of a sequence of frames against their respective depths. It can be clearly
seen from this figure that closer points have smaller uncertainties than relatively
distant points from the camera. Therefore, tracked points over long sequence of
images will have decreasing uncertainties as the vehicle approaches to them. Note
that while these uncertainties are dependent on the 3D position, they are completely
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Fig. 6.6 3D points uncertainties against their depths.

independent of their images coordinates (ui, vi). Indeed, selecting relatively closer
points would be better for good robust motion estimation.

As a summary of Sections 6.6 and 6.7:

• Feature position uncertainty estimation is given in (5.10) for the SIFT extractor
and in (5.9) for the Harris corner detector (Chapter 5);

• The propagation of this uncertainty to the rotation matrix is given in (6.28);
• The propagation of this uncertainty to the translation vector is given in (6.29);
• The propagated uncertainty to the reconstructed 3D points is given in (6.32).

6.8 Robust L∞ motion estimation solution

After having estimated Λx, the uncertainties in features position from (5.9) and
(5.10), and the uncertainties in the initial rotations and translations ΛR and ΛT from
(6.28) and (6.29) respectively, robust L∞ motion estimation is then performed. For
each consecutive image pair, the whole algorithm can be depicted in the following
operations:

• Estimating the 3D position for each point Xi using robust convex L∞ tri-
angulation and including the covariance matrices Λxi

, ΛT and ΛR (Section
6.8.2);

• Estimating the covariance matrix ΛXi
for each recovered 3D scene point Xi

using (6.32) (Section 6.7);
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• Estimating the camera parameters using robust convex L∞ resectioning and
including the covariance matrices Λxi

and ΛXi
(Section 6.8.3).

These operations are repeated until the L∞ re-projection errors reach a satisfactory
minimum.

6.8.1 Computational cost

It is known that the computational complexity of the Levenberg-Marquardt algorithm
is: O((m+ n)3), where m is the number of cameras and n is the number of 3D scene
points [82]. In our algorithm, at a given time step, we will be dealing with either
the triangulation problem or the camera parameters recovering problem for which
they are solved using a bisection algorithm for feasibility checks. The triangulation
problem has a computational complexity of O(m1.5) and a memory requirement of
O(m), where m is the number of cameras in which the triangulating point is visible
[130, 135]. Similarly, the camera parameters recovering problem has a computational
complexity of O(n1.5) and a memory requirement of O(n), where n is the number
of scene points. Therefore, for one whole update of the proposed solution, when
dealing with n scene points and m cameras, the computational complexity is given
by: O(mn(

√
m+

√
n)) and the memory requirement is O(max(m,n)) [130].

The number of iterations is crucial in this kind of problems, where a bisection
search is performed. In our solution, defining the initial diameter of the second
order cones plays a very important role in determining the number of the required
iterations. Hence, the upper and the lower parameters of the bisection algorithm are
chosen so the search area is reduced. A memorable search, based on the previous
iteration parameters is performed, where these parameters are chosen in relation
with the previous iteration results. This technique significantly reduces the number
of iterations and hence the time consumption. This makes our solution comparable
to the classical L2 Bundle Adjustment (BA) in terms of time consumption and in the
same time it recovers the global minimum of the cost functions, which is a valuable
advantage over the classical L2 BA.

6.8.2 Robust L∞ triangulation with uncertain data

In order to provide an optimal solution to subsequent L∞ robust motion estimation,
a need for a robust and efficient optimal triangulation algorithm will be crucial.
Our approach is based on robust convex optimisation with L∞ norm, taking in
consideration all sources of uncertainty. Our uncertain data are bounded, therefore,
we will be looking for optimal solutions, which are feasible for any realisation of these
data.
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As described in Section 6.7, the function f in (6.30) relates all parameters of the
triangulation between two cameras positions Pi, i = 1, . . . ,m, where m is the number
of cameras. In this problem, the aim is to recover the value of X that minimises the
maximum of the re-projection error across all images:

εi = d(x̂i, PiX̂), i = 1, . . . ,m (6.33)

where d denotes image-space Euclidean distance between two points in the image
plane, the measured and the projected points.

Given the camera matrices Pi = [Ri|Ti], where Ri = [ri1, ri2, ri3], Ti = [ti1, ti2, ti3],
X̂ = [X, 1] and their corresponding image points x̂i = (x⊤, 1)⊤ = (ui, vi, 1)⊤; and by
considering the uncertainties in the image points positions ∆xi = (∆ui

,∆vi
), in the

rotation matrices ∆Ri
and in the translation vectors ∆Ti

from covariance matrices
Λxi

, ΛTi
and ΛRi

respectively; the L2 norm of this re-projection error function is
given by:

Fi (X) =
∥∥∥∥(ui + ∆ui

) − (r⊤
i1+∆r⊤

i1)X+(ti1+∆ti1)

(r⊤
i3+∆r⊤

i3)X+(ti3+∆ti3)
, (vi + ∆vi

) − (r⊤
i2+∆r⊤

i2)X+(ti2+∆ti2)

(r⊤
i3+∆r⊤

i3)X+(ti3+∆ti3)

∥∥∥∥
2

(6.34)

It is shown in [80] that this type of cost function clearly has multiple local
minima. This creates a problem to iterative minimisation methods, such as the
Levenberg-Marquardt (LM) algorithm, as they converge with high probability to
a local minimum. To get around this issue, this problem is formulated within a
quasi-convex optimisation framework by using the L∞ norm instead. Then, the
projection error will be then given by:

G(X) = maxi Fi(X) (6.35)

For a scene point X to be visible as image points xi, it must obviously lie in front
of all cameras Pi, i = 1, . . . ,m. This implies the constraint g(X, Pi) > 0 for all i,
where g(X, Pi) = (ri3 + ∆ri3)⊤X + (ti3 + ∆ti3). Our optimisation problem is then
given by:

min
X

G(X)

subject to g(X, Pi) > 0 ; ∀i = 1, . . . ,m
(6.36)

The m error residuals in (6.33) give the error vector ε = (ε1, . . . , εm)⊤. The
estimated scene point is then the vector X that minimises the norm of this error
vector. Section 3.7.1 (Chapter 3, page 69) gives a detailed proof that the problem is
a quasi-convex optimisation problem. This optimisation problem is solved using a
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sequence of robust SOCP feasibility problems similar the problem given in (6.3). This
robust SOCP is capable of dealing with the feature uncertainties and recovering a
robust solution [116]. This leads toward using a bisection search to find the minimum
value of δ, for which the optimisation problem is feasible.

The recovered 3D points using this robust L∞ triangulation and their uncertainties
are then used in the optimisation algorithm for recovering the camera parameters,
which is described in the next section.

6.8.3 Robust L∞ camera resectioning with uncertain data

Camera resectioning problem is detailed in Appendix A (Section A.2, page 281).
Firstly, let us assume that n scene points X̂i are given, with their uncertainties
∆Xi

, which are mapped to image points xi with their uncertainties ∆xi
, via the

camera projection matrix P . This mapping is written as x̂i = P X̂i, for i = 1, . . . , n.
According to Definition 8 (page 281), the problem of camera resectioning is the
problem of recovering the 3×4 matrix P , such that x̂i = PiX̂i, for all i, that minimises
the maximum of the re-projection error across all points:

εi = d(x̂i, P X̂i), i = 1, . . . , n (6.37)

where d denotes again the image-space Euclidean distances between two points in the
image plane, the measured and the projected points. By introducing the uncertainties
in feature position ∆xi = (∆ui,∆vi), and those in their 3D corresponding points
∆Xi; the L2 norm of this re-projection error function is given by:

F (X) =
∥∥∥∥(ui + ∆ui

) − p1⊤(Xi+∆Xi)
p3⊤(Xi+∆Xi)

, (vi + ∆vi
) − p2⊤(Xi+∆Xi)

p3⊤(Xi+∆Xi)

∥∥∥∥
2

(6.38)

where pj denotes the jth row vector of P .
Again, this cost function is highly non-linear and has multiple local minima, where

iterative algorithms, such as Levenberg-Marquardt (LM), can easily get trapped in
one of these local minima. Similarly to the triangulation problem, to get around these
drawbacks and to recover robust and global solutions, the L∞ re-projection error is
used. The global minimum can be obtained by solving the following optimisation
problem:

min
X

max
i

Fi(X)

subject to p3⊤ (Xi + ∆Xi) > 0 ; ∀i = 1, . . . , n
(6.39)

This is again a quasi-convex optimisation problem and can be solved using
technique presented in Section A.2 (Appendix A, page 281).
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The recovered camera parameters and their uncertainties are then used again in
the subsequent robust convex L∞ triangulation algorithm and so on as detailed in
Section 6.8.

6.9 Robust scale estimation

H∞ filter is adopted for frame-to-frame scale estimation in the solution presented
in Chapter 4. Some experimental tests on real data revealed that more accurate
estimates can be obtained when the robust least squares approach via the SOCP
algorithm is used instead. This is illustrated in Figure 6.10. Therefore, in this
chapter, investigating this approach within the robust convex optimisation framework
is performed.

More precisely and as detailed Chapter 4, after estimating the camera motion
parameters using robust L∞ convex optimisation under uncertain data, ambiguities
in the translation scale still occur. Assuming we have i 3D points X̂i, which maps
to image points x̂i = (ui, vi, 1)⊤ via the normalised camera matrix P = [R|T ], then
[46, 82]:

λx̂i = [R|ST ]X̂i (6.40)

where λ is the unknown depth factor that takes into account the projection plane
ambiguity. This leads to the problem of finding a solution S to the over determined
set of equations given by:

(tzui − tx)S = (r1 − r3ui)Xi

AS = b (6.41)

where ri denotes the ith row vector of R and T = [tx, ty, tz]⊤. Finding a solution S

to this problem in the least squares sense (LS) means minimising the residual ∥∆b∥,
subject to AS = b + ∆b [54]. However, knowing that xi, Xi, R and T are subject
to deterministic perturbations, this solution is expected to exhibit very sensitive
behaviour to these perturbations [53]. Therefore, thinking of using more robust
estimator would be a valid option to investigate. Thus, in our implementation, robust
least squares (RLS) technique is used instead [52]. Indeed, as presented in Section
3.8.2 (Chapter 3, page 74), robust least squares (RLS) solution computes the exact
value of the optimal worst-case residuals, using again a convex second-order cone
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programming (SOCP) of the general form:

min
x

f⊤x

subject to ∥Aix+ bi∥2 ≤ c⊤
i x+ di, i = 1, . . . ,m.

g⊤
i x = hi, i = 1, . . . , p.

(6.42)

where vectors x,f ,ci,gi ∈ Rn, scalars di,hi ∈ R, matrix Ai ∈ R(ni−1)×n and bi ∈ Rni−1.
The norm ∥.∥2 is the standard Euclidean norm ∥u∥2 =

(
u⊤u

)1/2 . The SOCP that
formulates this problem is [52]:

min
x

λ

subject to ∥AS − b∥2 ≤ λ− τ∥∥∥∥∥∥
S

1

∥∥∥∥∥∥
2

≤ τ

(6.43)

The unique solution to this problem is then given by:

S =


(
µI + A⊤A

)−1
A⊤b if µ = (λ− τ)/τ > 0

A‡ else,
(6.44)

where A‡ is the pseudo-inverse matrix of A. The quantities (λ, τ) are the unique
optimal solutions for problem (6.43).

6.10 Experimental results

This section presents an experimental evaluation of the proposed solution using robust
convex optimisation. As explained previously, in this implementation, uncertainties in
feature positions and their propagation to the rotations, to the translations and to the
reconstructed 3D scene points have been taken into consideration. Comparison with
classical bundle adjustment approach based on the Levenberg-Marquardt algorithm
is given as well.

In order to test the proposed solution, data from three different environments are
used (Section 1.6, Chapter 1, page 8). The first one consists of data collected in our
laboratory, using a Pioneer P3-DX platform with a fully-calibrated looking forward
camera. Ground-truth is collected using the OptiTrack motion-capture system, which
provides absolute ground truth position information with millimetre accuracy at 100
Hz (Figure 6.7).
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Fig. 6.7 Set-up used in our indoor experimental validations.

The second dataset is collected from a vehicle travelling in an urban environment
with a forward-pointing calibrated camera mounted on the roof of this vehicle [68].
The third one is a collection of data gathered at a Mars/Moon analogue site at Devon
Island, Nunavut [64].

As we can see, the three environments are completely different, so the technique
would be tested in unbiased circumstances. The concurrent methods of the proposed
solution are those which use iterative optimisation via L2 norm, hence comparisons
with bundle adjustment method based on the Levenberg-Marquardt algorithm on
exactly the same data are given.

Thus, in this section, we show first the navigation results, illustrating the motion
estimation using robust convex optimisation applied on a vehicle travelling in a variety
of environments. Second, the robustness of the proposed solution is investigated,
where the solution is tested under different error-level scenarios. A sequence of robust
SOCP feasibility problems for the convexity task using SeDuMi toolbox [187] is
employed along with the Yalmip toolbox [116] for uncertainties modelling.

6.10.1 Motion estimation

Motion estimation using robust convex optimisation algorithm was integrated into
our implementation for each environment. Figure 6.8 shows the performance of both
algorithms in each environment. Figure 6.8a shows errors of the indoor experiment,
where the robot has performed two loops in the main arena in our laboratory. Figure
6.8b plots errors of a trajectory of more than 350 meters estimated through 200
key-frames from the urban environment, while Figure 6.8c shows errors of a travelled
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distance of more than 650 meters recovered through 1000 key-frames taken from the
Mars/Moon analogue site.

It can be seen, from the Euclidean distance errors, that robust convex optimisation
approach is more accurate in all environments than the classical bundle adjustment
using the Levenberg-Marquardt approach. Indeed, convex optimisation has shown
its ability to ensure the global minimum in recovering the motion parameters in
comparison to iterative methods, where a predefined termination criterion is set,
which favours convergence to local minima.

Notwithstanding of the convex optimisation properties, this can be explained
as well by the fact that incorporating uncertainties made the optimisation problem
more robust, leading to an efficient min-max optimisation in the presence of high
level of noise.

In addition, monocular motion estimation using robust algorithm for the scale
estimation problem ensures more consistent trajectories. Deployment of robust
least squares algorithm under second-order cone programming (SOCP) along with
incorporating uncertainties in both feature positions and in their corresponding 3D
scene points, has demonstrated its ability to accurately and robustly compute the
absolute scale. Figure 6.10 shows that more accuracy is obtained when robust least
squares algorithm is used in comparison to results when using the H∞ filter. This
can be seen as well in the recovered trajectories in Figure 6.9. This figure plots
the trajectory estimates aligned with their corresponding ground truth. Figure 6.9a
plots the trajectory of the indoor experiment, while Figure 6.9b gives the trajectories
estimates of a portion of the Moon/Mars analogue dataset. Clearly, more accuracy
is provided when robust convex optimisation is used in comparison with classical
bundle adjustment with LM algorithm. This is in accordance with the theory as the
estimates should be globally optimal.

Achieved results are good, reaching errors smaller than 3% and normally bounded
by 5 − 12% in terms of travelled error, defined as:

Travelled error = 100 abs(error)
Travelled distance (6.45)

This also shows that our algorithm is suitable for estimating the motion of a
vehicle travelling in different environments where high level of noises of unknown
nature are likely to occur.
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Fig. 6.8 Camera motion estimation errors.
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Fig. 6.9 Comparison between the trajectory estimates using robust convex optimisa-
tion and the classical BA using LM algorithm.
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Fig. 6.10 Comparison between using the H∞ Filter and the robust least squares
algorithms in solving the scale ambiguity problem.

6.10.2 Motion estimation robustness

We want to highlight the robustness of the proposed solution and its behaviour
and sensitivity to high level of noise. To do that, four scenarios were adopted in
function to the noise level (Table 6.2). In fact, we take the extracted image points
xi = (ui, vi) using the SIFT algorithm and then perturb them with varying levels
of Gaussian noise ∆xi, where x̂i = (ûi, v̂i) = xi + ∆xi. These noisy image points
x̂i are then subsequently used to estimate the camera motion and scene points
Xi using the proposed solution (which we called here Robust CVX). The same
noisy image points x̂i are used as well to estimate the camera motion using a L∞

convex optimisation without taking in consideration the uncertainties (which we
called Normal CVX). Therefore, four different scenarios can be distinguished in this
experiment as illustrated in Table 6.2.

Table 6.2 The four scenarios for robustness investigation.

Non Perturbed Image
Points xi

Perturbed Image
Points x̂i

Robust convex optimisation
(Robust CVX) Scenario 1 Scenario 2

Normal convex optimisation
(Normal CVX) Scenario 3 Scenario 4

The estimated camera motions for the four scenarios are aligned with the ground
truth and the Euclidean distance errors on the camera position are computed. A
plot of these errors is shown in Figure 6.11.
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Fig. 6.11 Performance of the motion estimation algorithm as a function of noise level
for the four different scenarios.

Table 6.3 Average back projection errors of the estimation of the 3D scene points
and the camera parameters of the two real datasets under the four scenarios.

Average back projection errors
Indoor site Urban site Moon/Mars Ana. site

Robust CVX 0.4985 0.7189 3.3107
Robust CVX +Gaussian noise 0.5102 0.7281 3.3204
Normal CVX 0.5215 0.7372 3.3401
Normal CVX +Gaussian noise 1.7253 2.0504 7.2978
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From these results, we can learn that the proposed method, which takes into
consideration the uncertainties of its inputs, performs remarkably better than the
normal L∞ convex optimisation as expected, since it encodes large intervals in its
optimisation and models well the uncertainties. In order to assess the robustness
in depth, back projection errors of the 3D scene points for the same scenarios are
investigated as well. Figure 6.12 plots these re-projection errors of the recovered
3D scene points on the image plane. These errors depict the accuracy of both the
3D position of the scene points and the camera motion parameters. Similar pattern
to Figure 6.11 can be noticed here as well. Typically, robust convex optimisation
performs well, even when corrupted image points x̂i are used and in all environments
(Figure 6.12 - solid purple graphs). On the other hand, using normal convex
optimisation for motion estimation with corrupted image points x̂i would generate
a significant divergence (Figure 6.12 - solid cyan graphs). Logically, both solutions
provide similar performances with non-corrupted inputs xi (dashed purple and cyan
graphs). Indeed, it is clear that the uncertainty scheme always produces the best
results.

6.11 Conclusions

In this chapter, a robust convex optimisation solution for monocular motion estima-
tion systems has been presented. Including uncertainty estimation, based on the
SIFT derivative approach with the developed propagations through the eight-point
algorithm and the singular value decomposition SVD, to the rotations and the
translations of the camera and also to the 3D reconstructed points via triangulation,
have improved the global motion estimation. An experimental validation has been
conducted and results are compared to a solution using classical bundle adjustment
based on the Levenberg-Marquardt algorithm.

Although solutions to the motion estimation problem based on bundle adjustment
with LM algorithm are eligible to provide accurate results, they impose limitations
in the presence of a high level of noise that a system based on robust L∞ norm is
able to overcome. Through several experimental results, we show that the proposed
technique, by including all sources of uncertainties, clearly outperforms these classical
techniques, which use the Levenberg-Marquardt algorithm for motion and the least
squares approach for absolute scale estimation.

Our second contribution, which follows on nicely from the first one, is to use the
robust least squares algorithm capable of dealing with system uncertainties for frame
to frame absolute scale estimation.
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Chapter 7

Real-Time Loop-Closure Detection

This chapter investigates the problem of recognising locations relying on their ap-
pearance. In computer vision, this problem is known as "Loop-Closure Detection".
In this chapter, a fast and efficient appearance-based solution for visual loop-closure
detection is proposed. This solution tries to extend the state-of-the-art by developing
a probabilistic framework with the Gaussian mixture models (GMM) for appearance-
based place recognition. The widely used techniques based on the bag-of-words image
representation has shown some limitations, especially with the perceptual aliasing
problem. In this work, however, two appearance-based techniques using local invariant
and colour features are introduced. The first technique adopts the Bayes decision the-
ory based on the Gaussian mixture model (GMM). The second technique is based on a
combination of the GMM modelling with the KD-Tree data structure. Both solutions
have been validated using monocular vision systems in several environments.

Loop-closure detection can be addressed as a problem of data association and
matching, which intends to correctly associate the camera measurements obtained
at a given time with the information already stored in a map. This data association
allows the vehicle to correctly localise itself and consequently recognises in what part
of the map it is.

7.1 Overview

The loop-closure detection is of critical interest in improving the robustness of
autonomous navigation systems. After long navigation in unknown environments,
detecting that the vehicle has returned to a previously visited position offers the
opportunity to increase the estimation accuracy and consistency. Recognising pre-
viously mapped locations may also be relevant for a solution to the problem of
global localisation. Thus, solving the loop-closure detection problem can significantly
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improve the performance of the navigation algorithm, but at the same time, it also
provides additional tasks to the navigation system.

In the case where the vehicle has no prior information about its position in a map,
finding the best data association will solve the global localisation problem. Global
localisation may itself be considered as a special case of the loop-closure detection,
for which it is assumed that the robot is located in a known part of the map. In
some situations, the vehicle could be in a location that has not yet known. In this
case, the vehicle should be able as well to distinguish this location from the others,
even in the presence of a strong resemblance to a place already visited.

The loop-closure solution is independent from the motion estimation. This means
that the loop-closure solution has its own model of the environment where the vehicle
is navigating, and the objective is to detect whenever the vehicle has returned to a
previously mapped location. However, it is critical that the loop-closure algorithm
is able to work in conjunction with any motion estimation algorithm to improve
the global performance of the general navigation. This will be discussed in the next
chapter.

The loop-closure problem is a data association problem whose solution brings the
robustness to the motion estimation algorithm, allowing the detection of cycles in
the trajectory without prior information on the position. One more important aim
of the loop-closure detection consists of allowing the vehicle to restore its position
after a failure or temporary obstruction of its sensors. Therefore, the outcome
of the loop-closure detection is major for autonomous navigation systems, since
the robustness of the motion estimation algorithms determines the quality of the
navigation and, accordingly, the vehicle adaptability.

In this chapter, we propose robust methods for loop-closure detection based on
vision systems. For this, we define a Bayesian filtering framework to estimate the
probability that newly acquired images to come from an already visited place. This
Bayesian filtering is working with Gaussian mixture modelling and KD-tree data
structure.

In the literature, the well-known method for loop-closure detection is the bag-
of-words (BoW) approach [180]. Even though this method has been showing good
performance in loop-closure detection, it imposes some drawbacks. The main limita-
tion is its dependency to an off-line learning while building the visual dictionaries.
It is also considerably affected by the perceptual aliasing problem [216]. This usu-
ally happens when two distinct places are considered as the same place due to the
quantisation process. This problem generates more missed loop-closures and more
geometrical verifications [113].
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Moreover, most methods presented in the literature are based on a single feature
space to describe images, where the vast majority of them use the SIFT features
[7, 13, 21, 44]. These features have impressive robustness qualities to the changes
in the orientation and scale, but they suffer from limited robustness to illumination
and affine changes. Fewer approaches in the literature use global signature features
such as colour histograms [154, 201].

New methods have started to appear, in which they rely directly on matching
features extracted from images [66, 113, 216]. In these methods, the loop-closure
detection is performed by using the features themselves rather than their vector
quantised representation. The main challenge for these techniques is how to cope
with the search computational time. Fortunately, a data structure for storing the
extracted features such as KD-tree would solve this problem. The search time in
this data structure is logarithmic due to the time to descend from the root of the
tree to the leaves.

7.2 Related Work

In the last decade, many appearance-based localisation and mapping solutions have
been proposed. Although many solutions use the stereo vision systems [201, 219],
many others make use of monocular configurations [8, 9, 43, 113]. The proposed
technique belongs to this latter category. This approach is motivated by the bag-of-
words methods, which were introduced to the computer vision by Sivic and Zisserman
[180], and Nister and Stewenius [144]. However, we adopt the appearance-based
technique using local image features themselves.

Before the introduction of the loop-closure concept to the computer vision com-
munity, previous techniques have been used for the localisation task, where the map
is known and the vehicle is guaranteed to be in some location within this map. To
use these techniques in the loop-closure detection problem, the algorithm must be
able to distinguish views coming from unvisited locations. Obviously, this makes the
problem significantly more complicated. The perceptual aliasing problem is the most
challenging problem of these techniques, where different places can appear similar
to the vehicle vision sensing system. Many techniques have been proposed to deal
with this problem, in which some success is achieved. However, a complete and
satisfactory approach has not been yet developed.

For image description, the BoW approach has gained more interests [140, 180].
This method has introduced new concepts, such as the visual vocabularies. This
model processes an image as a collection of visual vocabularies called "Bag of Words",
similarly to a text document (Figure 7.1) [180]. This model adopts the technique
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Feature extraction and matching with the dictionary

Original Image The Dictionary The Bag of Words representation

Image quantification with Visual Words

Fig. 7.1 Example of image representation with the "bag-of-words" concept. After
visual words extraction from the original image (left), matching with words already
existing in a dictionary is performed (middle). Image will be represented in function
of the occurrence of these words in the dictionary (right).

used for text retrieval, which allows a fast search. However, this model ignores
the image geometry, which limits its efficiency. Other proposed techniques in the
literature try to cope with this problem by using the geometric information in a
second step for verification [38].

Authors in [140] have proposed a solution that combines laser and vision systems.
An incremental scheme with the BoW concept is used by Angeli et al. [8, 9]
in estimating the loop-closure probabilities. This work was expanded with other
local feature of colour histograms along with the SIFT features. Even though
good performance is obtained using this technique, some drawbacks can be noticed,
especially in dealing with perceptual aliasing problem. Schindler et al. proposed
a more discriminative approach for building the visual words [169]. Cummins and
Newman developed a new algorithm for fast appearance-based mapping (FAB-MAP),
where a Chow-Liu tree is used for modelling the dependencies between the visual
words [43].

Other techniques use the similarity matrices as an extension to the appearance-
based methods [109, 176]. A similarity score is defined between selected images, then
a square similarity matrix is computed, gathering the pair similarity between all
images. Loop closures in this approach will appear in the off-diagonal entries of this
matrix. As a development to this technique, Newman et al. [85, 86, 141] introduced
an approach to deal with the perceptual aliasing problem by using the SVD of the
similarity matrix, where the aim is to eliminate the effect of repetitive structures.

Other techniques use global descriptors, such as Gist descriptors [148]. Siagian
and Itti presented in [175] a low-computational complexity and biologically-inspired
scene classifier using Gist representation. In [112], Y. Liu and H. Zhang presented a
method for visual loop-closure detection using Gabor-Gist descriptor by applying
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the principal component analysis (PCA) technique to them. Similarly, Singh and
Kosecka presented in [179] an approach for detecting loop-closures in a large sequence
of omni-directional images from urban environments.

Clearly, some methods require a prior offline learning phase, in which a substantial
amount of representative images of the environment need to be analysed and encoded
to obtain a relevant model of the environment [44, 140]. The main drawback of
these methods is the limitation of the robot navigation in areas not properly learned.
Other approaches try to create a model for the environment where the robot is
planned to navigate [31, 211]. However, these techniques prevent a direct adaptation
of the navigation algorithms to different environments.

Another category of loop-closure detection method, apart from bag-of-words
(BoW) or global descriptors, focuses on using local invariant features themselves.
Authors in [100] proposed an approach which uses position-invariant robust features
(PIRFs) to describe images. Zhang presented a method which uses a selective subset
of visual features relying on the SIFT features. These feature in turn will be matched
consecutively in several images [216]. The main drawback of this technique is the
growing complexity with the number of images. To cope with this issue, Liu and
Zhang presented a KD-tree-structure-based approach in appearance-based robot
SLAM for a faster loop-closure detection technique [113]. In this work, they heavily
rely on the efficiency of the tree structures for feature matching to achieve a real-time
processing. However, in real applications where a vehicle is navigating for long
distances, a linear increase of the number of features to deal with, while new images
are acquired, can be a serious problem to the navigation algorithm. Therefore, relying
on just the KD-tree data structure for features matching makes it really harder to
ensure a real time processing, especially for faster moving vehicles.

The diversity of methods introduced in the literature illustrates how difficult the
loop-closure detection problem and global localisation are. Having said that, it seems
that detecting the loop-closure has been addressed in different ways and there is no
global solution applicable in all cases.

In this chapter, new appearance-based techniques for loop-closure problem are
presented. These solutions extend the previously presented methods by particularly
addressing the perceptual aliasing problem with the Gaussian mixtures model (GMM)
in combination with the KD-tree data structure. The proposed technique improves
the computational time, where a significant reduction in the search time is achieved.
Furthermore, to ensure the efficiency in different environments, two feature spaces are
used to describe the images. These feature spaces are the SIFT features and the local
colour histograms. In addition, an entirely GMM-based technique for loop-closure
detection is presented first in this chapter.
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7.3 Tools for loop-closure detection

The proposed solutions for the loop-closure detection problem are based on image
classification approach. A newly acquired image is classified into the place it belongs.
If this image comes from a known location, this is equivalent to a return of the vehicle
to a previously visited place. In our approach, each location has to be modelled
to distinctively describe any already visited location. This model is continuously
and incrementally updated while the vehicle is navigating in the environment. More
specifically, once a new image is acquired, the solution should correctly decide whether
this image comes from a previously visited location, where its representation has
already been modelled, or it characterises a new location.

As an overview of the proposed solution, newly acquired images are encoded first
under the form of features. This is referred in our solutions as image description. The
output of this image description stage is a number of feature vectors that describe
each image. Then, this image is compared to the last processed image in order to
avoid local loop-closures. This allows the vehicle to have sufficient motion before
looking for loop-closures. Otherwise, the image will be ruled out. If the newly
acquired image has not been ruled out, then its probability of closing the loop with
previously seen images is estimated. This is performed within a Bayesian filtering
framework. Prior to that, this image has to undergo the Gaussian mixture modelling
(GMM), where the distribution of its feature vectors is estimated.

In fact, two distinct methods for loop-closure detection are proposed in the present
chapter. The first one adopts the GMM modelling with the Bayes decision theory,
while the second technique uses the GMM modelling with the KD-tree data structure.
In the first technique, the outputs of the GMM modelling will serve as inputs to
the Bayesian loop-closure detection module. In the second technique, however, the
GMM modelling outputs are used to construct the KD-tree, which is used in turn
for loop-closure detection.

The outputs of both solutions need to undergo through a further checking scheme
to confirm or reject their decisions. This checking scheme consists of a multi-view
geometry algorithm, which verifies the epipolar geometry constraint [82, 143]. This
test approves whether effectively there is a common structure between the query
image in question and the supposed place of origin, before confirming the loop-closure.
It may occur in fact that the current image is very similar to a place in the model
that it does not come from. By doing so, any ambiguity should be removed.

Finally, for both techniques, if a loop-closure is confirmed, the location to which
the current image belongs is updated with the GMM parameters of the current image.
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If the loop-closure is rejected, the GMM parameters will be used to create a new
location in the model.

Therefore, introducing the basic concepts of the tools adopted in the proposed
solutions is necessary. These tools consist of the Bayesian probability, the Gaussian
mixture modelling (GMM) and the KD-Tree data structures.

7.3.1 Bayes decision theory for loop-closure

The adopted method in our work defines a probabilistic Bayesian filtering framework.
The aim of this approach is to model the probability that a query image comes from
one of the places already visited. This is considered as the loop-closure probability.
In this chapter, we introduce techniques inspired of Bayes decision theory and we
show how to employ them in the loop-closure detection task.

In a general classification problem, the inputs consist of a query pattern and
the task is to correctly classify it into one of the existing c classes. The inputs are
represented using specific description values, xk, where k = 1, . . . , l. Then, these
representations are collected in a feature vector x = [x1, x2, . . . , xl]⊤ ∈ Rl.

Given x ∈ Rl and the classes ωi, i = 1, . . . , c, then the Bayes decision theory gives
the probability that x belongs to a specific class ωi as:

P (ωi|x)P (x) = P (x|ωi)P (ωi) (7.1)

and:
P (x) =

c∑
i=1

P (x|ωi)P (ωi) (7.2)

where:
• P (x|ωi), i = 1, . . . , c is the likelihood of ωi with respect to x;
• P (ωi|x) is the a posterior probability of the class ωi given the value of x;
• P (x) is the probability density function (pdf) of x;
• P (ωi) is the a priori probability of class ωi; i = 1, . . . , c;
More precisely, given an input pattern with the feature vector x = [x1, x2, . . . , xl]⊤ ∈

Rl, which is collected from some measurements, and given a number of possible
classes c, that is, ω1, . . . , ωc, then the Bayes decision theory states that x is assigned
to the class ωi if:

P (ωi|x) > P (ωj|x), ∀j ̸= i (7.3)

Using (7.1) and given that P (x) is positive, then (7.3) may be rewritten as:

P (x|ωi)P (ωi) > P (x|ωj)P (ωj), ∀j ̸= i (7.4)
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In some circumstances, the probability density function P (x|ωi) of the input query
is not known. In this case, it has to be estimated before employing the Bayesian
classifier. One of the most used methods to model this probability density function
is the Gaussian mixture modelling (GMM) (Section 7.3.2). The unknown probability
density function can be modelled as the sum of weighted Gaussian densities, as given
in (7.5) in the following section. In the literature, the most used probability density
function (pdf) for P (x|ωi), is the Gaussian pdf due to its mathematical tractability
[192].

7.3.2 Gaussian mixture modelling (GMM)

Gaussian mixtures are used in the proposed solutions to model the keyframes (in our
framework, keyframes refer to the selected images and considered as our classes). The
mixture model in general is based on a probabilistic representation of the existing
sub-populations within a larger population. This model assumes that all data are
generated from a mixture of a finite number of Gaussian distributions with unknown
parameters. Iterative expectation maximisation (EM) algorithm is used to estimate
the GMM parameters from the training data.

Assuming that we have K component Gaussian densities, then the Gaussian
mixture model is the weighted sum of these components [156, 191, 192] and given
by:

P (x|λ) =
K∑

i=1
wig(x|µi,Σi), (7.5)

where x is the data vector of dimension D (i.e. the measurements), wi, i = 1, . . . , K,
are the mixture weights, and g(x|µi,Σi), i = 1, . . . , K, are the component Gaussian
densities given by:

g(x|µi,Σi) = 1
(2π)D

2 |Σi|
1
2
e− 1

2 (x−µi)⊤Σ−1
i (x−µi), i = 1, . . . , K (7.6)

where µi is the mean vector and Σi is the covariance matrix. Note that the sum of
the mixture weights is one, i.e. ∑K

i wi = 1 [191, 192].

Therefore, the complete parameters of the Gaussian mixture model are the mean
vector, the covariance matrices and the mixture weights from all components densities.
These parameters are represented by:

λi = {wi, µi,Σi}, i = 1, . . . , K (7.7)
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Due to their ability to characterise big class of sample distributions, the GMMs
have attracted more interests, especially in biometric and speaker recognition systems
[102, 156]. Generally, a GMM represents data distributions using a position, which
is the mean vector, and an elliptical representation, which is the covariance matrix,
and finally a nearest neighbour model.

These characteristics have motivated us in this work to employ the GMM repre-
sentation in the loop-closure detection problem, where the system’s inputs are the
selected keyframes and the outcome is the classification of any new keyframe into
previously modelled keyframes.

7.3.3 KD-tree Structure

KD-tree data structure is of great import in the proposed solution. In general, a
KD-tree, or K-dimensional tree, is a data structure that can be used for storing and
organising a number of points in a space with K dimensions. This data structure is
also known as a multidimensional binary search tree, which is a generalisation of the
simple binary trees [61, 136, 177].

KD-trees are very effective for the nearest neighbour search (NNS), in which
every node is a k-dimensional point. Each node in these trees has two pointers; each
one has a null value or points to another node in the tree. Therefore, a non-leaf node
divides the space into two parts, known as half-spaces, forming two sub-trees. In
other words, each non-terminal node contains two sons or successor nodes [61].

In one-dimensional search, a single key is used to define a node in the tree. All
nodes in this tree with key values less than or equal to this key will be stored in the
left-hand side, while nodes with larger key values will be in the right-hand side. In
the k-dimensional search, each node is represented with k keys. In this tree, any one
from these k keys can be used as the discriminator to position the sub-trees.

Appendix B (page 287) presents a detailed description of the KD-tree data
structure, including the tree construction and the nearest neighbour search within
these structures. A two-dimensional illustrative example is also given in this appendix.
The KD-tree performance given this appendix has motivated us to adopt this data
structure in the proposed solution. In our problem, we will be dealing with image
features with high-dimensional descriptors. Therefore, these tree structures are more
likely to suit us since they significantly reduce the search time to logarithmic. In
addition, one more important property is their ability to provide an already sorted
neighbours by traversing the tree just once. In the case of a query image, which is
described with one of the two feature spaces, the KD-tree search provides the top
nearest neighbours features among all images already modelled in the tree.
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Fig. 7.2 A sample image from the outdoor environment showing the description of a
window in the image using the SIFT and the colour descriptors.

7.3.4 Image features and their matching

The value of colour information quality is commonly agreed in upon computer vision
community, due to its valuable ability to describe the world around us. However,
most local feature spaces used in the literature are based on shape description only
and attach less importance to the colour information. Describing images with local
colour has received little consideration. Consequently, the vast majority of methods
use only luminance and dismiss colour space. Therefore, considering augmenting the
image description with colour space would be a valid option in our solution.

Colour features use histograms to represent the distribution of colours in a
particular image. Basically, they count similar pixels and store them in appropriate
bins in order to describe the number of pixels in each range of colours (or bin)
independently. Local colour histograms capture information about distribution of
colour in particular areas in the image.

Therefore, in our approach, each image is described using two feature spaces.
The first one is the SIFT extractor and the second is the local colour histograms.
Merging two complementary visual representations, such as the shape and the colour,
would bring more efficiency and consistency to the solution in different environmental
contexts.

In the colour description, images are decomposed into regularly spaced sub-areas
(windows) of different sizes to improve scale invariance, then the normalised H
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histograms in the Hue Saturation Value (HSV) colour space for each sub-area are
used as features [8, 207]. The two feature spaces are respectively detailed in Sections
C.2.2 and C.2.3 (Appendix C, page 300). We incremented our solution with this
colour feature space in order to ensure the robustness especially in less structured
environments. For this colour descriptor, the histogram is divided into 36 bins.
Figure 7.2, shows a sample image from an outdoor environment, where an image
window is described using the SIFT and colour features. Employing a combination of
the SIFT and the colour features would overcome the problem of perceptual aliasing
that methods using BoW technique have.

7.3.5 Keyframe selection

The aim of the proposed solutions is to associate a query image to a location in the
navigation environment. Due to the high frame rate in our datasets, any consecutive
images will refer relatively to the same place since they were taken from very close
viewpoints. Therefore, a distance threshold is applied to impose that the travelled
distance between these views is considerable. This is referred in this framework as:
sufficient motion.

Sufficient motion check means that the loop-closure detection will not be per-
formed unless the vehicle has moved a certain distance, so newly captured images
would be different to the last maintained images. In our experiments, in order to
ensure that, a predefined number of frames will be always overcome before selecting
any new keyframe.
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7.4 Gaussian mixture Bayes solution

In this section, the first solution for the loop-closure detection is presented. This
solution uses the Gaussian mixture modelling (GMM) with Bayes decision theory.
This solution aims to automatically classify a query image into previously seen images,
whose GMM parameters are accumulated and stored into some GMM dictionaries,
built up for each feature space. The construction of these dictionaries is done on-line
in parallel with the image acquisition. This solution uses Bayes decision theory to
classify the descriptors of a query image into previously seen images. Figure 7.3
shows a diagram depicting the main modules of this solution. Details about each
module is given in the following sections.

Given a query image for loop-closure detection (Figure 7.3), after image de-
scription, a Gaussian mixture model will be fitted to their descriptors (Figure 7.3 -
GMM modelling module). This is performed in the case where sufficient motion is
not occurred (Section 7.3.5). Clearly, loop-closure detection is not performed over
recently seen images as they always look similar to their neighbours. The GMM
modelling outputs are the means µk, the covariances Σk and the mixture weights wk,
k = 1, 2, . . . , K, where K is the number of mixtures. These parameters are recovered
using the expectation maximisation algorithm (Section 7.3.2). These parameters will
be inserted into the GMM dictionaries µ, Σ and w, which will be used as inputs to the
Bayesian loop-closure detection module (Figure 7.3 - Bayesian LC Detection module).
The probability P (ωi) of each selected keyframe is estimated in this module as well.
As long as no sufficient motion is occurred, the GMM parameter λi = {wi, µi,Σi}
of the newly selected keyframes are estimated and inserted in the dictionaries and
the probabilities P (ωi), i = 1, . . . , c, are updated accordingly, where c is the number
of selected frames thus-far. This loop is shown in Figure 7.3 with the dashed black
arrows.

In the case where sufficient motion is detected, for each descriptor in the query
image, the probability of this descriptor to belong to each frame already seen
is estimated. The frame with the maximum probability will be assigned to this
descriptor. Then, the frame with the highest number of descriptors belonging to it
defines a candidate for a loop-closure.

7.4.1 Bayesian loop-closure detection module

To formulate this module in mathematical way, suppose at time t− 1, a number of
c keyframes have already been modelled and their parameters have already been
inserted into the GMM dictionaries (Figure 7.3 yellow block at the top right). These
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keyframes are denoted by ωi, where i = 1, 2, . . . , c. Given a new keyframe It at time t,
let us denote Xj

t as a descriptor extracted from this keyframe using the feature space
j . Using (7.1) and (7.4), Bayes theorem gives the probability that this descriptor
vector Xj

t belongs to one of the keyframes ωi as (superscript j and subscript t in Xj
t

are omitted hereafter for simplicity):

P (ωi|X) = P (X|ωi)P (ωi)
P (X) (7.8)

where:
• P (X|ωi) is the keyframe conditional probability density of X given ωi;
• P (ωi) is the a priori probability of keyframe ωi;
• P (ωi|X) is the a posterior probability of keyframe ωi given X;
• P (X) is the probability density of X given as;

P (X) =
c∑

i=1
P (X|ωi)P (ωi) (7.9)

According to Bayes theory given in (7.4), if P (ωi|X) > P (ωj|X), for all keyframes
such that j ̸= i, then X will be assigned to the keyframe ωi. Since P (X) is the same
for all keyframes, this becomes:

P (X|ωi)P (ωi) > P (X|ωj)P (ωj) (7.10)

Let us call the probability P (X|ωi)P (ωi), i = 1, 2, . . . , c, in (7.10) as the Assigna-
tion Probability. This probability is of great importance in the proposed solution.
Each descriptor in the query image will be assigned to a frame ωa, (a = 1, . . . , c),
where a is the index of the frames that holds the highest assignation probability. Each
descriptor will vote in a histogram for one frame. After processing all descriptors
of the query image, the frame ωn with the highest number of assignations in the
histogram will be considered as a loop-closure candidate (Figure 7.3).

However, estimating the assignation probabilities P (X|ωi)P (ωi), i = 1, 2, . . . , c in-
volves estimating first the unknown frame conditional probability densities P (X|ωi), i =
1, 2, . . . , c. In our solution, these conditional probability densities are estimated using
the Gaussian mixture modelling (GMM). Thus, the GMM modelling module is
triggered (Figure 7.3). Details about this module is given in the following section.

Prior to that, let us detail this scenario from a different standpoint. Given
at time step t a new query keyframe with M descriptors Xj

t . To check if this
keyframe forms a loop-closure with one of the keyframes already seen, we estimate
the assignation probability of each column of the matrix T = {Xj

t1 ,X
j
t2 , . . . ,X

j
tM

},
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(where T is of size d×M , d is the dimension of the descriptor space j). That is, for
each of the keyframes in the dictionaries, the GMM modelling module calculates
Gj

i (X
j
t) = P (Xj

t |ωi) = ∑K
i=1 wig(Xj

t |µi,Σi). Then, the assignation probability that
Xtm comes from the keyframe ωi is:

Gj
i (Xtm)P (ωi), m = 1, . . . ,M (7.11)

The probability P (ωi) of the keyframe ωi is estimated and updated continuously
by GMM modelling module, which is the ratio between the total number of features
in the keyframe ωi and the total number of all features in all previously selected
keyframes (Figure 7.3). Then, the keyframe with the maximum probability for
each vector Xtm is assigned to this keyframe. This process is repeated for all M
descriptors in the query image. Then, an M -element vector is constructed, containing
the assignations to all keyframes. This vector is displayed as a histogram in Figure
7.3. The keyframe with the most assignations is declared as the winner at this stage
and continues to the next stage which is the multi-view geometry module.

7.4.2 Gaussian mixture modelling (GMM) module

This section describes the functionality of the Gaussian mixture modelling (GMM)
module. While the frames conditional probability density P (X|ωi) is supposed to be
Gaussian, the feature distribution in a previously seen image is not identified. One
way to solve this issue is to estimate this distribution using the Gaussian mixture
modelling (Section 7.3.2). Therefore, to model the arbitrary probability density
function, the sum of K weighted Gaussian densities is adopted:

P (X|ωi) = Gj
i (X) =

K∑
i=1

wig(X|µi,Σi), (7.12)

where g(X|µi,Σi) are the component Gaussian densities and given by:

g(X|µk,Σk) = 1
(2π) d

2 |Σk| 1
2
e− 1

2 (X−µk)⊤Σ−1
i (X−µk), (7.13)

where µk is the mean vector and Σk is the covariance matrix. The quantity wk, k =
1, . . . , K, is the mixture weight where ∑K

k wk = 1, and d is the dimension of the
descriptor space j.

The Gaussian mixture model is fitted to the descriptor matrix T = {Xj
t} using the

expectation maximisation algorithm to estimate the parameters λk = {wk, µk,Σk}.
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The covariance matrix Σk is assumed to have the form:

Σk = σ2
kI (7.14)

where I is the identity matrix.
In the expectation step (E), the probability that each descriptor Xj

tm
belongs to

each Gaussian distribution in the mixture is estimated as:

P (k|Xj
tm
, λk) = wkg(Xj

tm
|λk)∑K

k=1 wkg(Xj
tm

|λk)
(7.15)

Using the current parameters λk = {wk, µk,Σk}, this probability is computed for
all descriptor Xj

tm
, m = 1, . . . ,M , in the query image for each feature space j and

also for all the mixture components k = 1, . . . , K.
On the other hand, in the maximisation step (M), the parameters λk = {wk, µk,Σk}

are updated as follows:
The mixture weights:

w+
k = 1

M

M∑
m=1

P (k|Xj
tm
, λk) (7.16)

Note that M is the number of descriptors in the query image.
The means:

µ+
k =

∑M
m=1 P (k|Xj

tm
, λk)Xj

tm∑M
m=1 P (k|Xj

tm
, λk)

(7.17)

The variances (diagonal covariance):

σ2+

k =
∑M

m=1 P (k|Xj
tm
, λk)Xj

tm∑M
m=1 P (k|Xj

tm
, λk)

− µ2+

k (7.18)

where σ2+
k , Xj

tm
and µ2+

k refer to the arbitrary elements of the vectors σ2+
k , Xj

tm
and

µk respectively.
The EM algorithm starts with initial values of λk = {wk, µk,Σk} to estimate

the updated model λ+
k = {w+

k , µ
+
k ,Σ+

k }, such that P (Xj
tm

|λ+
k ) ≥ P (Xj

tm
|λk). The

updated model then serves for the next iteration. This process is repeated until
convergence. This is reached by estimating the log-likelihood for each iteration and
computing the difference between iterations. If this difference appears to stabilise,
then the algorithm stops. This log-likelihood is estimated as:

l(λk) =
K∑

k=1
logGj

i (X
j
tm

) (7.19)
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In our solution, the initial values for the means µk are selected randomly, while
those for the mixture weights wk are chosen to be equal, so wk = 1

K
. The initial

values of the variances σk (diagonal entries of the covariance Σk) are chosen as the
variances of our descriptor matrix T = {Xj

t} rows. A regularisation value of 10−4 is
added to these variances to ensure that the estimates are positive-definite.

Then, the outputs of the mixture models are the parameters: wk, µk, Σk, k =
1, . . . , K.

7.4.3 The multi-view geometry module

Before checking the multiple-view geometry constraint and in order to reject weak
decisions, some thresholds are applied. This is similar to the technique used in [56]
with some modifications (Figure 7.3). The quality of the decision is estimated using
the following formula:

Quality = Nfirst winner −Nsecond winner

M
(7.20)

where Nx is the number of assignations to the keyframe x and M is the number
of descriptors in the query image. The Bayesian loop-closure detection module’s
decision is only accepted if the quality and the number of assignations are above
some thresholds.

As stated before, our solution uses two features spaces. Therefore, the given
details about the estimation of the posterior to a specific feature space j apply
identically to the other feature space. i.e., Equation (7.11) gives independently the
probability that Xj

t in space j belongs to keyframe ωi. A fusion scheme based on the
intersection of the winners in each space is applied at this stage.

Then, a second step of further verification of the possible candidates is performed.
In this step, a multiple-view geometry check is performed in order to remove outliers.
This is performed by checking that the two images of the potential loop-closure
ensure the epipolar geometry constraint. The geometric consistency test is completed
using a RANSAC algorithm to fit an affine transformation between the query image
and the candidate image. If the two images pass this test, this couple is declared as
a loop-closure pair. Otherwise, the loop-closure will be rejected (Figure 7.3).

Finally, if a loop-closure is confirmed, the location to which the query image
belongs is updated with the new GMM parameters. However, if the loop-closure is
rejected, the GMM parameters will be used to create a new location in the model
(Figure 7.3).
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7.5 The GMM KD-tree solution for loop-closure
detection

In this section, the second solution for loop-closure detection is presented. This
solution is based on a combination of the GMM with the KD-tree data structure.
A diagram giving the main modules of this solution is depicted in Figure 7.4. This
solution takes advantage of the robustness of the KD-tree data structure in the
nearest neighbours search and the efficiency of the GMM representation.

In [113], Liu and Zhang presented a solution for loop-closure detection using a
tree structure in appearance-based robot SLAM. In that work, authors used the
KD-tree data structure for feature matching. The descriptors of a query keyframe
are compared to all descriptors in all already selected keyframes via a continuously
updated tree. Then, the keyframe that contains the most matched features with
the query keyframe will be declared as a loop-closure after a second step of further
verification. This solution offers a real time processing in the case where the number
of the selected keyframes is relatively small. However, in real applications for vehicles
navigating for long distances, where the occurrence of the loop-closure is not frequent,
or for multi-vehicle cooperative navigation, a linear increase of the number of features
to deal with while new keyframes are inserted makes the exploration of the tree
considerably time consuming.

Our approach, however, does not compare the descriptors of a query keyframe to
all the descriptors of all keyframes already selected. Instead, a Gaussian mixture
is modelled for each new keyframe, and only the K means µ of these mixtures
are inserted into the KD-tree, where K is the number of mixtures (Section 7.3.2).
Therefore, the descriptors of a query keyframe are compared to just the means of
the descriptors of all keyframes already selected (Figure 7.4). Hence, a significant
reduction in the size of the tree is obtained. Consequently the search time for the
nearest neighbours will be considerably reduced. This reduction in the tree size does
not compromise the efficiency of the approach as shown in the experimental results
of this chapter.

The proposed solution can be divided into three main stages. The first stage
uses the KD-tree structure with the GMM representation to select only the most
appropriate candidate frames for the loop-closure. The second stage looks for the
loop-closure among the output frames of the first stage using a full representation
this time. Finally, the third stage is a post-process for the geometric consistency
check.
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7.5.1 The first stage: Gaussian mixture model with KD-tree
data structure

This stage is shown in Figure 7.4 through the yellow and the green blocs. Given a
new keyframe for loop-closure detection, after image description (features extraction),
a Gaussian mixture model will be fitted to their descriptors using the previously
presented Expectation-Maximisation algorithm. The outputs of this module are the
parameters λk = {wk, µk,Σk}, k = 1, . . . , K, for each selected keyframe, where K is
the number of mixtures. These parameters will be used in subsequent stages.

First, we check whether sufficient motion is occurred. If it is not the case, this
image will not be checked for loop-closure. Instead, its K GMM means µk will be
inserted into a KD-tree. In this solution, this tree is referred as the GMM-KD-tree. In
parallel, an index vector is created, which maps the means µk to their corresponding
images, from which they are modelled. This is similar to the inverted index used in
the bag-of-words (BoW) method, which associates keyframes and word frequencies
for each visual word. As long as no sufficient motion is occurring, the GMM means
µk of the newly selected keyframes are inserted in the GMM-KD-tree and the index
vector is updated accordingly. This loop is shown in Figure 7.4 with the dashed blue
arrows.

In the case where sufficient motion is detected, the query image will be first
checked for potential loop-closure. Note that in this case, the GMM-KD-tree gathers
the parameters of all previously selected keyframes. Let us assume that parameters
of c keyframes are already modelled. In this case, the GMM-KD-tree will be have
K × c nodes. Then, the next step is a nearest neighbours search (NNS) of the query
image descriptors in the GMM-KD-tree. This search is done for each descriptor of
the query image.

Let us assume that the query image is described with M descriptors Xj
t (as stated

before, j stands for the descriptor space, either SIFT or colour features). To check if
this keyframe forms a loop-closure pair with one of the keyframes already seen, we
perform a nearest neighbours search (NNS) in the GMM-KD-tree of each column of
the matrix T = {Xj

t1 ,X
j
t2 , . . . ,X

j
tM

}, (where T is of size d×M , d is the dimension of
the descriptor space j). This is performed in a logarithmic retrieval time as shown
in Appendix B (Section B.3, page 287).

In this solution, we extract the first two nearest neighbours, denoted as Ψ1 and
Ψ2. The output Ψ1 is accepted as the nearest neighbour to a descriptor query Xj

tm
if:

ξ1 ≤ κ.ξ2,
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where ξu = ∥Xj
tm

− Ψu∥, u = 1, 2, is the distance between the descriptor query Xj
tm

and the nearest neighbours Ψu, u = 1, 2. The quantity κ is a distance threshold.
This means that when the ratio between the distance to the nearest neighbour and
to the second nearest neighbour is less than the threshold, the output of this search
is accepted. Otherwise, the descriptor query Xj

tm
is ignored and supposed to have no

neighbours.
In the case where Ψ1 is accepted as a nearest neighbour of Xj

tm
, then a query is

sent to the Index Vector in order to extract the frame ωa from which the nearest
neighbour Ψ1 was modelled (dotted red arrows in Figure 7.4). The index a of the
extracted frame ωa will be assigned to the corresponding index in an assignation
histogram (Figure 7.4). Therefore, any descriptor in the query image that passes the
distance threshold will vote in this histogram for the frame ωa from which it was
modelled, accumulating to its score.

After processing all descriptors of the query image, the top P frames in the
assignation histogram that have successfully passed the assignation threshold will
continue to the next stage (Figure 7.4). This main purpose of the assignation
threshold is to reject any frames with low number of assignations. If no frame passes
this threshold, the "No Loop-Closure" decision will be taken at this early stage and
no need to go further. Otherwise, this list of P candidates will serve as an input
to the second stage. In order to ensure the efficiency and to avoid any possible
ambiguity, this list is relatively large.

7.5.2 The second stage: Full representation stage

The blocs depicting this stage are shown in red in Figure 7.4. This stage is referred
in our solution as the Full Representation Stage. This is because at this stage,
the descriptors themselves of the P frames are used rather than using their GMM
models. The P frames are considered in this stage as a "Short List" of loop-closure
candidates. This, because we have narrowed the search space from c frames to just
P frames, where c is the number of frames that have already been seen (representing
the locations that have been visited by the vehicle). In our experiments, we have
used an average value for P of 15. We can easily realise that P is by far smaller than
c.

Therefore, the second stage consists of looking for a frame among the P frames
that closes the loop with the query image. As we can seen in Figure 7.4, there are
two red blocs at this stage. These two blocs represent two options for solving the
loop-closure detection at this stage. The two options have exactly the same inputs
(the short list of P frames) and the same outputs (the loop-closure final candidate),
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but the way they solve the problem is completely different. The designer can choose
one option depending on the system parameters.

The first option adopts a typical KD-tree solution for loop-closure using the
reduced database of P frames. The second option, on the other hand, adopts the
Gaussian mixture Bayes solution, which is presented in Section 7.4, but on the
reduced database of P frames.

• Option one (Full representation technique with the KD-tree): Firstly,
a KD-tree of all the descriptors, this time, of the P frames is constructed. In
this case, this tree is referred as the Full-KD-tree and composed of ∑P

p=1 Mp

nodes, where Mp is the number of descriptors in the frame ωp, p = 1, . . . , P .
Similarly to the first stage, an index vector, which maps each feature to the
image where it was found, is also created.

Then, a search through this Full-KD-tree for the nearest neighbours is done for
each descriptor in the query frame. Applying the same principles as in the first
stage, the descriptors that pass the distance threshold will vote for a frame
among the P frames. After processing all descriptors of the query image, the
top two frames in the assignation histogram that have successfully passed the
assignation threshold will continue to the third stage.

• Option two (Full representation technique with the Gaussian mix-
ture Bayes solution): The second option adopts our first solution (The
Gaussian mixture Bayes solution), presented in Section 7.4 (Figure 7.4), but
applied on the P frames only. In Section 7.4 the Gaussian mixture Bayes
solution is applied on all previously seen frames as a single solution. The
number of these previously seen frames is refereed in that solution as c. In this
second solution (The GMM-KD-tree solution), we deploy the Gaussian mixture
Bayes solution on just the P frames. One can realise that P is by far smaller
than c, which increases the efficiency of the Gaussian mixture Bayes solution
at this stage. Note that since the GMM modelling is already performed for
all keyframes, there is no need to model again the P frames at this stage.
Instead, these GMM parameters λk = {wk, µk,Σk}, k = 1, . . . , K, of all P
frames are collected from the GMM module in the first stage (yellow bloc in
Figure 7.4). Then, a Bayesian Loop-Closure Module will assign each descriptor
in the query image to one of the P frames. Similarly to the first option, the
top two frames in the assignation histogram that have successfully passed the
assignation threshold will continue to the third stage.
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7.5.3 The third stage: geometric consistency check

The output of both options in the second stage is two candidate frames for loop-
closure detection. Before checking the multiple-view geometry constraint and in
order to reject weak decisions, some thresholds are applied before accepting the
winner. At this stage, we adopt the decision quality (7.20) (Blue bloc in Figure
7.4). The second stage’s decision is accepted only if the quality and the number of
assignations are above some thresholds.

The frame that passes the decision quality threshold will be confirmed or rejected
by a further condition derived from the multiple-view geometry. The multiple-
view geometry check is performed in order to remove outliers by verifying that
the two images of the loop-closure ensure the epipolar geometry constraint. The
geometric consistency test is completed using a RANSAC algorithm to fit an affine
transformation between the query image and any candidate image. If the two images
pass this test, this couple is declared as a loop-closure. Otherwise the loop-closure
will be rejected (Figure 7.4).

Finally, and similarly to the first solution, if a loop-closure is confirmed, the
location to which the current image belongs is updated with the GMM parameters
of the current image. However, if the loop-closure is rejected, the GMM parameters
will be used to create a new location in the model.

7.6 Computational complexity of the solution

The search complexity of the tree structure is decreased from linear to logarithmic
(Appendix B, Section B.3, page 290). Suppose we are looking for a loop-closure in
c previously visited locations in which each frame is described with an average of
M features (M in general is between 1000 and 4000), then building a KD-tree has
an O(Mc logMc) time complexity and an O(D log nc) space complexity (D is the
tree dimension). A search for m nearest neighbours costs closely to O(m logMc).
However, by introducing Gaussian mixture modelling (GMM), instead of inserting M
features for each frame, only K means µk, k = 1, . . . , K, mixtures are inserted into
the KD-tree, where k is the number of mixtures (GMM dimension, in our solution 5
mixtures are used). Consequently, in comparison to methods that use the KD-tree
only, the computational complexity would be significantly reduced by a factor of:

f = M logMc

K logKc (7.21)
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Note that K is significantly smaller than M . Then the computational cost of our
solution becomes: O(Kc logKc) plus the cost of the GMM modelling. This latter
modelling is done using the expectation maximisation algorithm, where for each
frame with M features, the computational complexity is given by: O(MKD +MK)
for the E-step and O(2MKd) for the M-step, where d is the feature dimension.

7.7 Experimental validation

Many experiments have been carried out in order to validate the proposed solutions
to efficiently detect any loop-closure. Datasets from different environments, including
outdoor and indoor conditions, are used. Each dataset is provided with the ground
truth, indicating all the loop-closure occurrences. Similarly to [66], the evaluation has
been conducted against the ground truth by counting the number of Correct Detection
(CD), Correct Rejection (CR), Incorrect Detection (ID) and Incorrect Rejection
(IR) for each sequence. A correct detection (CD) means that there is effectively a
loop-closure and the solution has successfully detected it. Correct rejection (CR), on
the other hand, means that there is no loop-closure and the solution has successfully
stated that. Incorrect detection (ID) refers to the case where there is no loop-closure
but the solution has detected a wrong one (false alarm). Finally, Incorrect rejection
(IR), means that there effectively is a loop-closure, however the solution has wrongly
rejected it or missed it.

The above criteria are used to compute the following three metrics:

• Precision: is the ratio between the number of correct detections (real loop-
closures) and total number of the detected loop-closures:

Precision = CD
CD + ID

• Recall: is the ratio between the number of correct detections and the total
number of loop-closures existing in the dataset:

Recall = CD
CD + IR

• Accuracy: is the rate of the correctly classified keyframes (Correct Detection
(CD) and Correct Rejection (CR)):

Accuracy = CD+CR
CD+CR+ID+IR
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Fig. 7.5 Example of keyframes forming a loop-closure in the indoor dataset. Top is
image number 15, which closes a loop with image number 83 (bottom).

For keyframe description, the proposed solution adopts the SIFT detector, using
128-dimensional descriptors. In addition the SIFT descriptors, images are also
described with local colour histograms. In the latter feature space, images are
decomposed into regularly-sized windows, and then the normalised H histograms in
the Hue Saturation Value (HSV) colour space for each sub-area are used as features.
For this descriptor, the histogram is divided into 36 bins. Therefore, the dimension
of colour descriptors is 36. Figure 7.2, shows a sample image from the outdoor data.

7.7.1 The Gaussian mixture Bayes solution

This first solution is applied on datasets from two different environments, outdoor
and indoor environment. These datasets are obtained from Angeli et al. [8]. The
indoor environment consists of 388 images of 240 × 192 pixels. The obtained results
using the first solution for this dataset are summarised in Table 7.1. The 100%
precision figure means that no incorrect loop-closure detection is found. The latter
can significantly mislead the motion estimation. We can see that the accuracy of this
solution is high, reaching 92%. Due to the sever epipolar geometry check, applied
in our solution in the third stage, 28 correct loop-closures were missed out. This
has lowered the recall rate down to just 87%. However, this solution has correctly
rejected 155 incorrect loop-closures.
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Fig. 7.6 Example of loop-closure detection using the Gaussian mixture modelling
(GMM) with Bayesian decision theory in the indoor environment. The graphs plot
the number of assignations for each frame of a query keyframe (image number 83)
using two feature spaces, SIFT and Colour features.

Table 7.1 Performance in the indoor environment

Correct Incorrect
Detection 189 0
Rejection 155 28

Precision Recall Accuracy
100% 87% 92%

Figure 7.5 shows an example of keyframes forming a loop-closure pair in the
indoor dataset. Figure 7.6 shows the robustness of the framework under changes
in the environment. It is shown that this solution is able to recover loop-closures
despite the changes in the scene and the camera rotation. The graphs in this figure
show the assignations of all descriptors of an example image to all previously seen
images for the two feature spaces used in this solution. Two peaks are recorded for
the SIFT descriptor space, around images with indices 15 and 41. It can be clearly
seen that colour descriptors, support and confirm the result obtained by the SIFT
space around the image with index 15. However, it remarkably declines it around
image with index 41, where few assignations are noticed. Therefore, only images
around the index 15 can continue to the next stage.

The high precision rate, 100%, and accuracy rate, 92%, show the capability of
this technique in indoor environments, where less structured locations are most likely.
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A second experiment is conducted on the outdoor environment [8]. This dataset
consists of hand-held camera travelling around an urban environment. A total of
1063 images, with a resolution of 240 × 192 pixels, were captured in this sequence.
Obviously, this environment is more challenging than the indoor on, since it contains
more images with big changes in appearance of the background throughout the city
due to the pedestrians and traffic. Results of this experiment are summarised in
Table 7.2.

Table 7.2 Performance in the outdoor environment

Correct Incorrect
Detection 538 0
Rejection 438 65

Precision Recall Accuracy
100% 89% 94%

Again our solution shows a 100% precision rate, indicating that no incorrect
detections were made. Along with the 100% precision rate, higher recall and accuracy
rates are obtained as well, reaching 89% and 94% respectively. Incorrect rejections are
due to the same reasons mentioned in the previous experiment. However, regarding
the size of the sequence, a relatively small number of incorrect rejections (IR) is
recorded. This is due to the effect of perceptual aliasing, which is less present in this
environment.

Figure 7.7 shows an example of keyframes forming a loop-closure in the outdoor
environment. Figure 7.8 shows the corresponding results. The graphs in this figure
show the assignations of all descriptors in the image with index 600 to all previously
seen images. For the SIFT feature space, several peaks were recorded. Again, this is
due to background similarities in this environment. Thus, high probabilities have
distributed around many frames. Colour descriptors have managed to reduce the
ambiguities, and kept only frames with indexes around 140. The final decision will
be accepted or rejected according to the multiview geometry constraint.

7.7.2 The GMM KD-tree solution

In order to validate the second proposed solution, experiments were conducted on
an indoor dataset collected from a hallway environment [216]. This dataset consists
of 7.420 images (Figure 7.9). In this dataset, a mobile robot performs two loops in
a hallway; therefore, loop-closures occur during the whole second loop. Due to the
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Fig. 7.7 Example of two keyframes forming a loop-closure in the outdoor dataset.
Top: image with index 140, which closes a loop with the image with index 600
(bottom)
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Fig. 7.8 Example of loop-closure detection using the Gaussian mixture modelling
(GMM) with Bayesian decision theory in the outdoor environment. The graphs plot
the number of assignations for each frame of a query keyframe (image number 600)
using two feature spaces, SIFT and colour features.
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high frame rate in this dataset, a keyframe selection mechanism has been employed,
where steps of 100 images are taken after each keyframe selection.

Fig. 7.9 Example of loop-closure in hallway dataset

Table 7.3 summarises the performance of the proposed solution in this environment.
Over all possible loop-closures, only two loops were rejected reaching a higher recall
rate of 95%. The 100% precision rate is due the low frequency of false alarms, which
cross the second stage of the solution. If any, the geometric consistency check in the
third stage will reject any candidate that not fulfilling the multiple-view geometry
constraint. This performance is obtained regardless the option we used in the second
stage of the solution, where both options give similar results.

Table 7.3 Performance in the hallway environment

Correct Incorrect
Detection 35 0
Rejection 38 2

Precision Recall Accuracy
100% 95% 97%

These results outperform those obtained from state-of-the-art methods [8, 9, 113].
In addition, the key feature of the proposed solution is the computational time.
As discussed, in Section 7.5.2 (page 179), the second stage of the solution can be
conducted via two options (Figure 7.4). Even though the computational time for the
whole algorithm with the first option offers a real-time processing, GMM option is
relatively time consuming in comparison to the full KD-tree option.

Experiments show that the GMM classifies the query image in an average time of
14.05 ms against just 3.14 ms using the full KD-tree. This is due to the complexity of
estimating the probability of each descriptor to belong to every single frame among
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the P frames in the GMM option. Therefore, in terms of computational time, the
solution with the full KD-tree option clearly outperforms the second option.

An analysis relative to the computational time of this solution using the full
KD-tree option is shown in Table 7.4. This includes the GMM modelling run time
for each new keyframe, the run time for building the GMM parameters tree and the
time required for search and indexing. Note that the time for building the GMM
KD-tree in stage one is taken into consideration only when a new frame is inserted.

Table 7.4 Computational time - Tree Construction, Search and Indexing (ms)

The Proposed solution Solutions using all frames directly
Min Max Average Min Max Average

GMM and Building the Trees Building the Tree
Fitting GMM 1.30 21.4 7.30
Building the GMM Tree 0.02 0.12 0.08
Building the full Tree 0.06 1.02 0.13

Building the whole Tree 2.1 31.2 16.2

Total 1.38 17.34 7.51 2.1 31.2 16.2

Search and Indexing Search and Indexing
In the GMM Tree 0.09 3.10 1.80
In the full Tree 1.06 7.42 3.01 In the whole tree 0.55 128.4 10.3

Total 1.15 10.52 4.81 0.55 128.4 10.3

To evaluate the performance of the proposed solution in terms of computational
complexity, we compare our figures to similar methods applied on the same dataset
(The hallway data) by using all frames directly, like the one presented in [113]. In
these techniques, the average time of building the tree is 16.2 ms. Since the time
for this operation is counted only when a new keyframe is found. This operation is
equivalent to the following operations in our solution:

• Fitting the GMM;
• Building the GMM KD-tree;
• Building the full KD-tree of the P frames.
The latter three operations are performed together in just 7.51 ms, which is less

than half time required for techniques that use all frames. Note that our solution
uses 5 mixtures and an average value of P of 15. Search and indexing take less than
5 ms in the proposed solution, while it exceeds 10 ms in techniques that search in all
frames.

These figures show that our solution gets good results in relatively less time in
comparison to techniques that use full representation.

7.7.3 Comparison between the first and the second solutions

In this section a comparison is given between the first solution using Gaussian mixture
modelling (GMM) with Bayesian loop-closure detection and the second solution using



7.7. Experimental Validation 189

the GMM representation in combination with the KD-tree data structure. Both
solutions were tested on the same outdoor data. We have selected this dataset due
to its complexity, since it includes more images with more changes in the appearance
around the urban environment such as the traffic and pedestrians.

In addition to its ability to robustly detect loop-closures, the distinctive feature
of the second solution is its reduced computational complexity. In this solution,
the first option using the Full-KD-tree is adopted in its third stage. This choice is
justified by the fact that KD-tree data structure offers a significant reduction in the
computational cost without compromising the search robustness.

Results from this experiment are summarised in Table 7.2. Testing the second
solution on this dataset has revealed some interesting results. These results are
shown in Table 7.5.

Table 7.5 Comparison of performance between the GMM-Bayesian and the GMM-
KD-tree solution.

Correct Incorrect
Sol. 1 Sol. 2 Sol. 1 Sol. 2

Detection 538 520 0 0
Rejection 438 318 65 83

Precision Recall Accuracy
Sol. 1 Sol. 2 Sol. 1 Sol. 2 Sol. 1 Sol. 2
100% 100% 89% 86% 94% 91%

• Sol. 1: The first solution using Gaussian mixture modelling (GMM) with
Bayesian loop-closure detection.

• Sol. 2: The second solution using the GMM representation in combination
with the KD-tree data structure.

The outdoor dataset gathers 1063 images with a resolution of 240 × 192 pixels,
where a hand-held camera is navigating in urban environment making a two-loop
trajectory. One can realise that this dataset generates too many potential loop-closure
pairs. The first statement that can be drawn in this experiment is that both solutions
have no incorrect loop-closure detections, leading to a 100% precision. We know that
these false alarms (incorrect detections) have a significant impact on the subsequent
motion estimation, as they mislead any localisation or motion estimation algorithm.

The correct detection figure in the GMM-KD-tree solution has dropped from 538
to 520 detections in comparison to the solution using GMM/Bayesian solution. This
is due to the fact that the former solution uses the technique of the Short List in the
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second stage. The size of this short list can be in some circumstances not sufficient to
include all the potential loop-closure candidates. This leads to missing more correct
loop-closures and decreases the recall and the accuracy rates in comparison to the
first solution.

However, computational time is of great importance in this kind of problems.
Real time applications require a rational execution cost. Note that any loop-closure
solution should be able to work in conjunction with any motion estimation or
localisation algorithms.

Analysis of the computation time for both solutions gives advantage to the GMM-
KD-tree method. Both solutions perform the GMM modelling, which is executed
in an average time of 7.30 milliseconds. In addition to the time required for GMM
modelling, the GMM-KD-tree solution needs 0.08 milliseconds for each frame to build
the first KD-tree and 1.80 milliseconds for the nearest neighbour search. However, the
GMM-Bayesian solution is required to estimate the unknown keyframe conditional
probability density P (X|ωi) for each descriptor X, which requires an average time
of 8.43 milliseconds. This operation significantly affects this solution in terms of
computational time. Finally, the geometrical consistency check is performed by both
solutions, thus this operation does not balance any solution.

The average total computational time for GMM-KD-tree method is about 0.3
seconds, while it exceeds 3.5 seconds in the GMM-Bayesian solution. These figures
justify our adoption of the former method in the next chapter for the global motion
estimation solution.

7.8 Conclusions

Two appearance-based loop-closure detection techniques have been presented in this
chapter. Despite other techniques, which use BoW approach for image representation;
in this work, local invariant features have been used along with colour features. These
two feature spaces work in a cooperative scheme for loop-closure detection. The
first solution uses the Gaussian mixture modelling (GMM) with Bayesian loop-
closure detection. This solution aims to automatically classify a query keyframe into
previously seen keyframes, whose GMM parameters are accumulated and stored into
some GMM dictionaries, constructed for each feature space.

The second solution takes advantage of the robustness of the KD-trees in features
matching and the efficiency of the GMM representation. The descriptors of a query
keyframe are compared to all modelled descriptors in all already selected keyframes
via a continuously updated KD-tree. Then, the keyframe that contains the most



7.8. Conclusions 191

matched features will be declared as a loop-closure with the query keyframe after a
second step of further verification.

Experimental validation using datasets from different environments has been
conducted. It is shown in our work that due to their efficiency and complementarity,
a combination of KD-trees with the GMM would be an alternative solution for
real-time loop-closure detection for mobile robots navigation with high recall rate.





Chapter 8

Robust L∞ Convex Pose-graph
Optimisation for Monocular
Localisation Solution for UAVs

After developing a loop-closure detection solution, a correction solution for any
potential position drift would be required. Indeed, in the present chapter, a robust L∞

convex pose-graph optimisation solution for monocular motion estimation with loop
closing is presented. Once a loop-closure is detected using the technique presented in
Chapter 7, the convex pose-graph optimisation solution performs the correction of any
drift occurred during the motion estimation. Most solutions proposed in the literature
formulate the pose-graph optimisation as a least-squares problem, by minimising a
cost function using iterative methods such as Gauss-Newton or Levenberg-Marquardt
algorithms. However, with these algorithms and as we have seen previously, there is
no guarantee to converge to a global minimum as they, with high probabilities, converge
to a local minimum or even to an infeasible solution. The solution we propose in this
chapter uses a new robust convex optimisation pose-graph technique, which efficiently
corrects the UAV’s pose after loop-closures detections. Uncertainty estimation using
derivative method and its propagation through the multi-view geometry algorithms
are included in the developed solution. The detection of visual loop-closures, in
appearance-based navigation, is achieved using our innovative technique presented in
the previous chapter.

8.1 Introduction

Unmanned and micro aerial vehicles will shortly be the first choice asset to be
deployed in important missions, such as inspection, reconnaissance, surveillance
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and search and rescue. The GPS and other satellite navigation systems may offer
valuable assist for these aerial vehicle. However, urban- and indoor-environment
operations present real handicaps to these navigation systems, where its availability
is extremely limited or even does not exist at all. Inertial navigation systems (INS)
or GPS-aided INS systems might be used in these situations. However, the eventual
growth in the INS errors is prohibitive to these applications. Therefore, investigating
other alternative, such as vision system has become a priority for many research
programmes. Indeed, in this chapter, we address the problem of the UAVs localisation
in unknown environments, using monocular visual systems as the only source of
information. However, the inherent difficulties in UAVs localisation in unknown
environments relying on visual sensing impose great research challenges, especially
when big coverage areas from higher altitudes capability is required.

In the literature, many studies have been focussing on using vision as a perception
sensor for UAVs navigation or even as a guidance tool for safely landing of aerial
vehicles [41, 150, 165]. Visual navigation approach has been widely studied in the
last years as an alternative navigation solution for autonomous aerial systems. It
estimates the pose of moving UAVs using visual inputs only with single camera,
stereo cameras or multi camera systems [82, 109, 204]. An INS-aided with stereo
vision system may be used in a cooperative visual simultaneous localisation and
mapping (VSLAM) design for multiple UAVs, in which the INS localisation errors
are corrected in a combination with vision algorithms [137]. In addition, 3D texture
mapping models for UAV applications can also be used [110].

In practice, and similarly to other navigation systems, errors in the vehicle position
estimates for aerial visual navigation are continuously growing due to the integration
of noisy measurements over time and imperfect computational techniques. Using
relative information in the positioning process rather than the absolute measurements
(like in the GPS) is another serious reason for this error propagation. This unavoidable
drift in motion estimation, due also to inherent inaccuracy of the devices, needs to
be corrected. Thus, providing additional correction tools would have a significant
impact on the final estimates.

During the last few years, visual loop-closures have gained more attention and
considered of as a powerful and practical tool for motion drift correction. Indeed,
after long navigation into an unknown environment, detecting that the autonomous
aerial vehicle has returned to a previously visited location offers the opportunity to
correct the positioning residual drift and consequently increase the accuracy and the
consistency of the vehicle motion estimates. To achieve this, many research studies
have started investigating efficient techniques for visual loop-closure detection.
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We have stated in the previous chapter that solving the problem of detecting
loop-closure would considerably improve the localisation algorithm performance. On
the other hand, it also induces additional computational charges. The previously
presented technique for loop-closure detected is employed in this chapter. This
technique relies on a combination of Gaussian mixture model (GMM) with the
KD-tree data structure.

8.1.1 Pose-graph representation

Once a loop-closure is detected, indicating that the UAV has returned to a previously
visited location; the challenge is how to ensure the creation of a consistent map
despite of the drift. In the recent years, pose-graph optimisation has become a
preferred technique for loop-closure correction, where relative constraints between
poses are used, especially those imposed when a loop-closure is detected. In a
pose-graph representation for the motion, each node in the graph represents a vehicle
pose. Constraints between these poses are represented by the edges between the
nodes (Figure 8.1). These constraints are defined from observations and depict
a rigid body transformation between the poses. Obviously, these constraints are
affected by the noise and drift (Figure 8.1). The main objective of the optimisation
algorithm is then to recover the optimal configuration of the nodes that best satisfies
the constraints (maximises the observation likelihood determined in the constraints)
[149]. Therefore, this involves solving a large error minimisation problem. In other
words, the principal aim is to jointly optimise the vehicle poses in order to minimise
the errors dictated by the constraints (Figure 8.1).

The pose-graph representation was first proposed by Lu and Milios in 1997 [55].
However, this approach took many years to become a solution for error minimisation
problems [75]. This work was followed by Gutmann and Konolige, who proposed
a graph construction technique by including loop-closures constraints [76]. In the
literature, optimisation techniques that recover the optimal poses given the constraints
are usually called back-ends. In contrast, front-ends techniques recover the input
data to obtain the constraints that are the basis for the optimisation.

8.1.2 Classical pose-graph optimisation

We have seen throughout this thesis that optimisation plays an important role in
motion estimation. Over the last decade, many optimisation algorithms have been
recommended for the pose-graph optimisation. These algorithms can be classified
into two main categories:
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UAV real pose

UAV estimated pose

Accumulated error

Uncertainty

Error

Fig. 8.1 A typical pose-graph representation. The UAV navigates around an unknown
environment. Poses are connected through constraints (blue dashed arrows), which
represent a rigid body transformation between poses.

• The first category employs linear approaches based on least squares minimisa-
tion. In this approach, singular value decomposition (SVD) is usually adopted,
where an algebraic cost function is minimised. These methods have the advan-
tage of offering a closed-form solution with a simple implementation. However,
the quantity being minimised is not geometrically or statistically meaningful.

• The second category relies on iterative estimation techniques, where a non-
linear cost function is minimised using iterative algorithms such as Levenberg-
Marquardt, Gauss-Newton, gradient descent or conjugate gradient. The cost
function here is geometrically interpretable and can statistically be optimal
under an assumption of Gaussian noise. Commonly, this category is adopted
as a solution for the pose-graph optimisation problems.

In order to have a deep sight on the second pose-graph optimisation category, let
us consider the following example (Figure 8.1). Let X = (X1, . . . , Xt) be a vector
representing the poses of a moving UAV. Let zij and Ωij represent respectively
the measurement and the covariance between the nodes i and j. Let ẑij(Xi, Xj)
encodes the measurement prediction given the poses Xi and Xj , which is the relative
transformation between the two poses. Let eij be the error between the predicted
observation ẑij and the real observation zij [75].

The main aim of the optimisation problem is then to find the configuration of
the nodes X∗ that minimises the negative log likelihood F (X) of all observations,
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where the objective function F (X) is defined as:

F (X) =
∑

e⊤
ijΩijeij (8.1)

This leads to solve the following optimisation problem:

X∗ = argmin F (X) (8.2)

This optimisation problem is formulated as a non-linear least squares problem,
where the error is the squared L2 norm. The error function is approximated by its
first order Taylor expansion around the current initial values X̆, which are selected
usually by guess. This leads to solve a linear system of the following form:

A∆x = −b (8.3)

where ∆x is the increment of the system. Then, the solution X∗ is obtained by
adding the recovered increments to the initial values:

X∗ = X̆ + ∆x (8.4)

The algorithm iterates the linearisation step, the solution of (8.3) and the update
of the equation (8.4). In each iteration, the previous solution is used as an initial guess.
This procedure is repeated until a satisfactory convergence standard is achieved.
Usually, until a predefined termination criterion is met. However, this non-linear
problem has multiple minima, which pose a serious problem for iterative methods.
Therefore, notwithstanding of their dependency on good initialisation guess, these
algorithms present high probabilities of convergence to a local minimum or even an
infeasible solution.

As a valid alternative and to get around these drawbacks, we present in this
chapter a third approach to solve the pose-graph optimisation problem for visual
navigation. This alternative employs convex optimisation using a more robust norm
such as the L∞ norm.

8.2 Convex optimisation formulation

In contrast to linear and iterative methods, convex optimisation ensures getting a
single global minimum, and the cost function is geometrically meaningful. As we
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have seen in Chapter 3, a convex optimisation problem has the form:

min
x

f0(x)

subject to fi(x) ≤ 0 for i = 1, · · · ,m
a⊤

i x = bi for i = 1, · · · , p

(8.5)

It is the problem of finding an x that minimises f0(x) among all x that satisfy the
constraints fi(x) ≤ 0 and a⊤

i x = bi. The vector x ∈ Rn is the optimisation variable.
It is worth mentioning here that the particular convex optimisation problems

where the objective function f0 is linear and the constraints are of the form: ∥Aix+
bi∥ ≤ c⊤

i x+ di are called Second-Order Cone Programming (SOCP). Therefore, a
SOCP is an optimisation problem of the form:

min
x

f⊤x

subject to ∥Aix+ bi∥ ≤ c⊤
i x+ di, for i = 1, · · · ,m

g⊤
i x = hi for i = 1, · · · , p

(8.6)

where vectors x, f, ci, gi ∈ Rn, scalars di, hi ∈ R, matrix Ai ∈ R(ni−1)×n and bi ∈
Rni−1.

Our task in this chapter, is to formulate the pose-graph optimisation as a convex
optimisation problem. Before detailing that, the L∞ optimisation will be adopted in
our framework. Therefore, the problem (8.6) is formulated as a min-max form:

min max ∥Aix+ bi∥
c⊤

i x+ di

, for i = 1, · · · ,m

subject to c⊤
i x+ di > 0, for i = 1, · · · ,m

(8.7)

As we have seen in Section 3.7.1 (Chapter 3, page 69), this problem may be
transformed into an equivalent problem by incorporating a new variable δ:

Find δ

subject to ∥Aix+ bi∥ ≤ δ
(
c⊤

i x+ di

)
, for i = 1, · · · ,m

c⊤
i x+ di ≥ 0, for i = 1, · · · ,m

(8.8)

For a given value of δ ∈ R, this optimisation problem will become a sequence
of SOCP feasibility problems. This leads toward using a bisection search to find a
minimum value δ∗ for which the optimisation problem is still feasible.

Thus, any problem that could be formulated as the one in (8.8) can be solved as
a SOCP sequence.
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8.3 Robust convex optimisation formulation

Before modelling the problem, we know that extracting feature points is the first step
for the solution. Since the detected feature points have some uncertainty, regardless
the nature of the detector [99, 215], we also propose to include these uncertainties
in the pose-graph optimisation formulation. We then solve the problem using the
robust L∞ convex optimisation techique via the SOCP.

In addition to the uncertainties in feature positions, the solution takes into
account the rotational and the translation uncertainties, which are estimated through
the propagation of feature position uncertainties via the multiple view geometry
algorithms, using the techniques presented in Chapter 7. The general form of this
robust optimisation is given as:

min
x

max
ω

f0(x, ω)

subject to fi(x, ωi) ≤ 0 ; ∀ωi ∈ W , i = 1, · · · ,m
(8.9)

where ω is the uncertain variable, W is the uncertainty set and x is the decision
variable. Similarly to (8.5), this problem can be efficiently recast and solved using
second-order cone programming (SOCP) [20].

8.4 Overview of the proposed solution

The overall pipeline of the proposed solution is described in Figure 8.2. The set-up
of this solution consists of an unmanned aerial vehicle (UAV) equipped with a
fully calibrated monocular vision system with known intrinsic parameters K, and
capturing sequence of images as it moves. In a loop-closure scenario, the UAV
navigates around a cycle and returns to an already visited location. Unfortunately
and due to the drift, there will be an error between the final UAV’s pose and its
estimate. The task of the pose-graph optimisation solution is then to correct this
drift error.
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As we can see from Figure 8.2, the whole solution can be divided into three main
sub-tasks:

• First, we estimate the motion using a monocular visual navigation algorithm
(The Monocular Motion Estimation Module).

• Second, we detect whenever a place is revisited by the UAV (loop-closure
Module). The output of this module is a geometric constraint between the two
camera poses, which typically represents to the same position.

• Third, the drift in the final pose estimate is corrected by distributing this drift
error around the loop.

In more details, the main steps of the solution can be defined as follows:

• Acquisition of image sequences by the on-board monocular vision system.

• Keyframes selection based on the amount of the translation regarding the
previous selected keyframe.

• Calling the Monocular Motion Estimation Module (MMEM) using the solution
presented in Chapter 6. (the Monocular visual navigation algorithm).

• In parallel, a loop-closure Module (LCM) is launched. This module processes
the data asynchronously as they arrive in order to detect any previously visited
place. This module uses the solution presented in Chapter 7. (Bayes Decision
Theory with Gaussian Mixture Model (GMM) in combination with the KD-tree
data structure).

• If the output of the LCM is positive, which means that the vehicle has returned
to an already visited location, the Robust Convex Pose-graph Optimisation
Module (RCPOM) will be in turn triggered. Its ultimate aim is to optimise the
vehicle poses around the loop and continuously the whole trajectory is updated
accordingly.

8.4.1 Monocular motion estimation module

The Monocular Motion Estimation Module (MMEM) estimates the UAV’s rotations
and translations as it moves from visual inputs alone. This module adopts the
previously presented solution in Chapter 6 on the on-board monocular vision system
for aerial vehicles. This system is equipped with a fully calibrated camera with known
intrinsic parameters K. The ultimate task of this module is to robustly estimate the
UAV pose at each time step, relying only on the captured images and incorporating
the system uncertainties. Hence, the main steps of this module are reminded here
(Figure 8.2):
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• Extraction of image feature points using the SIFT detector along with their
uncertainties.

• Estimating the initial relative rotations Ri and translation ti via the essential
matrix.

• Estimation of the propagated uncertainties to Ri and ti through the normalised
8-point algorithm and SVD.

• Estimation of the 3D scene points using convex optimisation along with their
uncertainties.

• Optimising the motion using robust L∞ convex optimisation taking into con-
sideration all sources of uncertainty, using a sequence of camera resectioning
/triangulation.

• Computing the unknown absolute scale ratio using robust least squares ap-
proach.

The outputs of this module at a given time step k are the UAV’s absolute
positions P = (P1, . . . , Pk), where Pi = (xi, yi, zi)⊤, and the relative-pose estimates
X = (X12, X23, . . . , Xk−1,k) between the selected key-frame pairs. These relative
transformations are in fact the relative rotations and translations (Rk−1,k, tk−1,k)
between consecutive keyframes.

8.4.2 Loop-closure module

After long navigation using the monocular motion estimation module, the drift
would affect the estimated positions. Even though drift during the exploration
is unavoidable, it is important to keep it as small as possible. This drift is due
to the integration of noisy measurements over time and to the imperfections and
inherent inaccuracy of the devices. Consequently, complementary information to
overcome these cumulative drift errors would become critical. As a great correction
tool, the solution relies on visual loop-closures detection. This is modelled through
position constraints given by the Loop Closure Module when the vehicle returns to a
previously visited place. Recognising previously optimised locations would restore
correct estimates and consequently allows generating consistent maps and reduces
their uncertainty.

In this module, we adopt our solution for visual loop-closure detection, presented
in Chapter 7. Mainly, the principal output of this module is the loop-closure constraint
of the current pose of the vehicle. This pose constraint, denoted as Xc = (Rc, tc),
indicates the relative rotation Rc and the relative translation tc between the current
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keyframe and the keyframe that closes the loop with it. This pose constraint is
estimated using multiple view geometry algorithms. This constraint, in fact, evaluates
the drift in motion estimation. In other words, this pose constraint tells us where
the vehicle should be located (Figure 8.3).

8.5 Pose-graph optimisation module

Once a loop-closure is detected, the robust convex pose-graph optimisation module
performs the correction of any drift occurred during the monocular motion estimation.
In this section, we present the new convex pose-graph optimisation approach, which
robustly corrects the rotation and the translation drift when a loop-closure is detected.

Let X = (X12, X23, . . . , Xij, . . . , Xk−1,k) be the relative pose estimates and P =
(P1, . . . , Pk) be the UAV’s absolute positions estimated from the Monocular Motion
Estimation Module, where k is the index of the current pose (Figure 8.3a). When
a loop-closure is detected, assuming between nodes k and l, then the loop-closure
constraint is estimated. This constraint defines the relative pose between the two
keyframes of the loop-closure:

Xc = (Rc, tc) (8.10)

In our case Xc = Xkl = (Rkl, tkl). The aim of the pose-graph optimisation is to
find the optimal configuration of the UAV’s positions P̂ = (P̂1, . . . , P̂k) ∈ R3n, that
satisfies all the constraints, including the loop-closure constraint. This configuration
would be obtained by an optimal distribution of the drift error over all relative
constraints.

Most proposed solutions in the literature formulate this pose-graph optimisation
as a least squares problem and solve it by minimising a cost function similar to one
given in equation (8.2). Most of these solutions use iterative estimation methods
for minimisation such as the Gauss-Newton or Levenberg-Marquardt algorithms
[55, 75, 76, 186]. However, with these methods, there is no guarantee of convergence
to the global minimum. Furthermore, they could lead to an infeasible solution. As
such, these methods are also very dependent on good initialisation.

In contrast, our solution recovers the optimal position configuration by using
convex optimisation through the adoption of a more robust norm such as the L∞

norm. Contrarily to linear and iterative optimisation methods, convex optimisation
guarantees the convergence to a single and global minimum.
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8.5.1 Robust convex pose-graph optimisation formulation

In this section, we consider the scenario in which a loop-closure between the
keyframes with indices k and l is confirmed by the Loop Closure Module (Fig-
ure 8.3a). In this case, the robust convex pose-graph optimisation module (RCPOM)
extracts, from the monocular motion estimation module, all the UAV’s absolute
positions P = (Pl, . . . , Pk) involved in this loop, along with their relative poses
X = (Xl,l+1, . . . , Xk−1,k), from index k back to index l (Figure 8.3a). In addition to
that, the loop-closure constraint Xc = Xkl is also extracted from the Loop Closure
Module (dashed red arrows in Figure 8.2). This constraint defines the relative pose
between the loop-closure keyframes k and l. These poses will serve as inputs to the
pose-graph optimisation module.

Among all the extracted absolute positions P = (Pl, . . . , Pk), let us consider first
any two consecutive positions Pi and Pj, and their relative pose Xij = (Rij, tij),
where l ≤ i < j ≤ k. Let us now consider the two 3-element vectors pij and tij,
where:

• pij = (Pj −Pi) represents a vector linking the two absolute positions Pi and Pj ,

• and, the 3-element vector tij is the relative translation vector in the relative
pose Xij, which was estimated by the Monocular Motion Estimation Module.

The relative constraint between these two nodes will be defined as:

tij ≡ pij (8.11)

The relative constraint in (8.11) means that vectors tij and pij have exactly the
same orientation (Figure 8.3a). In our scenario of a loop-closure, this remains valid
for all frames i and j, where i, j = l, . . . , k. However, due to error drift, this is not
the case for the loop-closure constraint between k and l, where:

tkl ̸≡ pkl (8.12)

This inequality (or drift error) can be expressed as an angular error θkl between
the two vectors. This is illustrated in Figure 8.3b. It is clear that, due to the drift
error, the node k should be moved into the node k̂ in order to satisfy the loop-closure
constraint. To do that, we have to minimise the angle θkl . However, minimising θkl

will implies changing all the graph’s nodes around the loop. Thus, the job of the
convex pose-graph optimisation module is to find the optimal nodes’ configuration.

Note that each relative translation tij, including the loop-closure relative transla-
tion tkl, will create a cone in R3, with a vertex on the node j, an axis tij and an angle
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Fig. 8.3 Convex pose-graph optimisation problem. (a) Solid line shows the recovered
UAV’s trajectory before optimisation. Nodes represent the vehicle poses and edges
represent constraints. After loop-closure detection (between nodes k (red) and l
(gray)), the loop-closure relative pose constraint tc (green) is estimated by the Loop-
Closure Module, indicating that node k is supposed to be in k̂. Clearly, the angular
error between tc and pkl is considerable, while it is not between tij and pij. Convex
pose-graph optimisation module corrects the trajectory (dashed line) by distributing
the drift error (or the angular error) around the loop. (b) Depicts the geometry of
the convex optimisation for angular error minimisation for one constraint.

determined by θij (Figure 8.3b). The aim of the pose-graph optimisation module
is then to distribute this angular error around the loop (dotted blue line). Hence,
closing the loop as illustrated in Figure 8.3a (dashed line). In other words, the
objective of the optimisation is to modify all the absolute positions Pi, in a way such
that all angular errors (cones’ angles) are as close to zero as possible. To do that, we
consider all the relative constraints in (8.11) and the loop-closure constraint in (8.12)
as measurements (constants), and the new vehicle’s positions P̂ = (P̂1, . . . , P̂k) ∈ R3n

is our optimisation variable, where n is the number of nodes involved in the loop.

8.5.2 The optimisation problem formulation

To minimise the angular error θkl, one might instead minimise the tangent of this
angle [84, 94, 101]. Then, the error residual associated with all tij is εij = tan θij,
where 0 < θij <

π
2 . These residual errors give the error vector:

ε = (εl,l+1, . . . , εk−1,k, εk,l)⊤ (8.13)
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In minimising the angular errors, the most important part of tij is its orientation,
which indicates the direction between nodes. Therefore, using unit vectors divided
by its norm is more appropriate. The optimal configuration P̂ is then the one that
minimises the norm of this error vector.

In our solution, we adopt the L∞ norm. Thus, the cost function is defined as:

F (x) = ∥ε∥∞ = max
i,j

|εij| = max
i,j

tan θij (8.14)

This can be formulated as the min-max optimisation problem:

Find min
P̂

max
i,j

max
i,j

tan θij (8.15)

This means that we perform a min-max optimisation over all the cones of the
graph. As detailed in Chapter 3 (Section 3.7, page 67), this may be reformulated as
the problem:

Find min
P̂,δ

δ

subject to tan θij ≤ δ, ∀i, j
(8.16)

In order to solve this problem as a SOCP sequence, it has to be formulated
as the problem in (8.8). To do that, let us reformulate tan θij. Note that the dot
product of the two vectors tij and pij that form the angle θij is given as: t⊤ij . pij =
∥tij∥∥pij∥ cos θij, and their cross product’s length is ∥tij × pij∥ = ∥tij∥∥pij∥ sin θij.
Therefore, dividing the cross product’s length by the dot product yields:

tan θij = ∥tij × pij∥2

t⊤ij . pij

(8.17)

tan θij = ∥tij × (P̂i − P̂j)∥2

t⊤ij . (P̂i − P̂j)
(8.18)

tan θij = ∥[tij]×(P̂i − P̂j)∥2

t⊤ij (P̂i − P̂j)
(8.19)

Thus, the optimisation problem in (8.16) may be rewritten as:

Find min
P̂,δ

δ

subject to ∥[tij]×(P̂i − P̂j)∥2 ≤ δ(t⊤ij (P̂i − P̂j)), ∀i, j
(t⊤ij (P̂i − P̂j)) > 0, ∀i, j

(8.20)

This falls exactly under the desired SOCP form given in (8.8), with Ai = [tij]×.
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The problem in (8.20) is only solvable up to a translation and a scale. We use
the constraint P̂1 = P1 to remove the translation ambiguity. More importantly, to
deal with scale ambiguity, we exploit the known initial absolute positions before
optimisation Pi, so: (P̂i − P̂j) ≤ (Pi − Pj). Hence, the optimisation problem (8.20)
will be rewritten as:

Find min
P̂,δ

δ

subject to ∥[tij]×(P̂i − P̂j)∥2 ≤ δ(t⊤ij (P̂i − P̂j)), ∀i, j
(t⊤ij (P̂i − P̂j)) > 0, ∀i, j
(P̂i − P̂j) ≤ (Pi − Pj), ∀i, j

(8.21)

The optimisation problem in (8.21) is again as the desired form (8.8), which can
be solved via a sequence of SOCP feasibility problems as described in Chapter 3
(Section 3.7, page 67).

8.5.3 Robust Convex pose-graph optimisation formulation

In the previous section, the convex optimisation problem is formulated with the
assumption that image keypoints have been perfectly extracted with no uncertainties.
However, as we have seen in Chapter 5, the detected feature points, regardless of the
feature detector, have some uncertainty in their positions.

In the scenario of a loop-closure between nodes k and l, the inputs to the pose-
graph optimisation are the relative poses X = (Xl,l+1, . . . , Xk−1,k), where Xij =
(Rij, tij) and the loop-closure relative pose Xc = Xkl = (Rkl, tkl). Therefore, since
image keypoint correspondences are used to estimate tij, the uncertainties in these
keypoint positions must have already propagated the relative translations tij. Let
∆tij

be the uncertainty in tij, which is estimated through the propagation of feature
position uncertainties via the multiple view geometry algorithms as detailed in
Chapter 6, then the optimisation problem in (8.20) becomes:

Find min
P̂,δ

δ

subject to ∥([tij]× + ∆tij
)(P̂i − P̂j)∥2 ≤ δ((tij + ∆tij

)⊤ (P̂i − P̂j)), ∀i, j
((tij + ∆tij

)⊤ (P̂i − P̂j)) > 0, ∀i, j

(8.22)

This again is of the desired form in (8.8), with Ai = [tij]× + ∆tij
, which can be solved

using a sequence of robust SOCP.
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8.5.4 Computational complexity

In this section, we compare the L∞ convex pose-graph optimisation complexity with
the classical Levenberg-Marquardt algorithm. The computational complexity for
the monocular motion estimation module and the loop-closure module are given in
Chapter 6 (Section 6.8) and in Chapter 7 (Section 7.6) respectively.

For the pose-graph optimisation module, in the classical technique, the Levenberg-
Marquardt algorithm has a cubic complexity in the number of parameters: O(N3)
per iteration (N is the number of the poses in the graph) [82]. Convex pose-graph
optimisation, however, is solved by a bisection algorithm [94, 101]. The convex
optimisation problems given in (8.21) and (8.22) are solved at each step by a
feasibility check. This leads to solve in total N second-order cone feasibility problems.
Therefore, this problem has a computational complexity of no more than O(

√
N)

and a memory requirement of O(N) [135].
This discussion concerns the computational complexity per iteration. In fact, the

number of iterations required for convergence is extremely important. Similarly to
the previous solution, the upper and the lower parameters of the bisection algorithm
are chosen according to the previous optimisation parameters when a global solution
was found. This technique reduces the search area and consequently fewer iterations
are required for convergence.

8.6 Experimental validation

This section discusses the experimental evaluations of the proposed solution. Com-
parison with iterative methods based on the Levenberg-Marquardt algorithm is given.
We compare our convex optimisation with the state-of-the-art solutions using the
open-source implementation in [186], in which pose-graph optimisation problem is
formulated as a non-linear least-squares minimisation problem and solved iteratively
using the Levenberg-Marquardt algorithm.

Experiments are performed using an AscTec Firefly MAV platform (Section 1.6,
Chapter 1, page 8), with a fully-calibrated forward looking camera. Implementation
of these techniques is conducted using real-world data in both indoor and outdoor
environments. Indoor experiments are held in our laboratory as shown in Figure
8.4. Ground-truth in the indoor experiment is collected from an OptiTrack motion-
capture system, which provides absolute ground truth position information with
millimetre accuracy at 100 Hz. Implementations to generate the results shown in this
section are based on a sequence of robust SOCP feasibility problem, in which SeDuMi
toolbox [187] is used the convexity task and Yalmip [116] toolbox is employed for
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the uncertainty modelling. The estimated UAV motions are aligned with the ground
truth and the Euclidean distance errors on UAV position are computed.

Fig. 8.4 Set-up used in the indoor experiments.

As the global solution is modular, any alternative algorithm could be used in any
module among the three modules of the solution (Figure 8.2). Therefore, and in order
to independently compare the performance of each module, two comparison scenarios
were retained as shown in Table 8.1. These scenarios are established to assess the
performance of the convex pose-graph optimisation method without the influence
of the chosen loop-closure method. In the first scenario, we compare the convex
pose-graph optimisation (denoted hereafter CVX) with the iterative Levenberg-
Marquardt pose-graph optimisation (denoted hereafter LM) and for loop-closure
detection; the same classical bag-of-words (denoted hereafter BoW) method is used.
The second scenario is similar to the first one but we use the GMM/KD-Tree method
for loop-closure detection instead.

Table 8.1 The two comparison scenarios

Pose-graph optimisation method Loop-closure detection method

Scenario 1 CVX + BoWLM +

Scenario 2 CVX + GMM/KD-TreeLM +

Investigation on the effect of using a particular loop-closure detection method on
the global performance of the solution is conducted as well in this section. The robust
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Fig. 8.5 Convex pose-graph optimisation results in the indoor experiment. Dotted
blue lines show the ground truth. Dashed red lines show the UAV motion estimation
before convex pose-graph optimisation and solid green lines illustrate the corrected
estimates after loop-closure detection. (a) shows results when the vehicle closes
the first loop. (b) and (c) depict results after detecting the second and the third
loop-closures. (d) shows a sample of loop-closure frames.
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(a) loop-closure 1 (b) loop-closure 2

(c) loop-closure 3 (d) Sample of loop-closure frames

Fig. 8.6 Convex pose-graph optimisation results in the outdoor experiment. Red
lines show the estimated trajectories before convex pose-graph optimisation. Green
lines illustrate their corrections after loop-closures detection.

convex pose-graph optimisation performance, in which uncertainties in the relative
translations are incorporated, are also compared to the normal convex pose-graph
optimisation.

In order to illustrate the final output of the solution, let us first consider Figure
8.5 and Figure 8.6. These plots show the outcome of the convex pose-graph opti-
misation process after loop-closures detection. Trajectories before loop-closure are
shown in dashed red lines. For every loop-closure detection, and before resuming
monocular motion estimation, convex pose-graph optimisation is performed on all
frames included in this particular loop as shown in Figure 8.5a to Figure 8.6c. Clearly,
robust convex pose-graph optimisation is accurately and effectively able to correct
any drift during navigation in both indoor and outdoor environments. These figures
confirm that the solution suits the multiple loop-closures as well.
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Fig. 8.7 Comparison of convex pose-graph optimisation with the classical LM method
using the same classical loop-closure detection technique (BoW).

8.6.1 Assessment of pose-graph optimisation with BoW method
(Scenario 1)

In this experiment, we investigate the performance of the proposed convex pose-graph
optimisation (CVX) against the classical method using the Levenberg-Marquardt
(LM) algorithm, where for both methods the classical Bag-of-Word (BoW) approach
is employed. This experiment is conducted in indoor and outdoor environments
as shown in Figure 8.7. Results obtained using convex optimisation substantially
outperform those with the LM algorithm for both environments. The accuracy of
the proposed convex optimisation is in accordance with the theory, as the estimates
should be globally optimal. Due to its landscape nature, higher errors are still noticed
after pose-graph optimisation in outdoor experiment especially for the LM method.

8.6.2 Assessment of pose-graph optimisation with GMM/KD-
tree method (Scenario 2)

Similarly to the previous setup, in this experiment we use the loop-closure detection
method based on Gaussian mixture modelling (GMM) with Bayesian theory and
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Fig. 8.8 Comparison of convex pose-graph optimisation with classical LM method
using the same GMM/KD-Tree method for loop-closure detection.

KD-tree structure to test the convex pose-graph optimisation. Results are shown
in Figure 8.8. In this scenario, we want to assess the performance of the convex
pose-graph optimisation with the method of loop-closure based on GMM/KD-Tree.
Similarly to the previous experiment, convex pose-graph optimisation outperforms
the traditional LM optimisation technique. Even though the improvement is not
considerable in the indoor experiment, More significant improvement can be seen in
the outdoor experiment. The RMS error in indoor environment with convex method
does not exceed 0.28 metres, while it is about 0.59 metres for the LM method. For
the outdoor experiment, the RMS of Euclidean distance errors have dropped from
3.35 metres when using the LM method to just 1.15 metres with convex optimisation.

It can be seen, from the Euclidean distance errors, and regardless the employed
loop-closure technique, that convex optimisation approach is more accurate in all
environments than the classical techniques using Levenberg-Marquardt approach.
Indeed, convex optimisation with L∞ norm has shown its capability of ensuring the
global minimum in recovering the motion parameters in comparison to iterative least
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square based methods, where a predefined termination criterion is set, which favours
convergence to local minima.
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8.6.3 Effect of loop-closure detection method

We have assessed so far the performance of the convex pose-graph optimisation re-
gardless the employed loop-closure technique. We want to investigate, in this section,
to what extent using a particular loop-closure detection method can affect the global
performance of the solution. Let us consider Figure 8.9, where both pose-graph
optimisation techniques (convex optimisation and Levenberg-Marquardt optimisa-
tion) are tested under the two loop-closure detection techniques (the GMM/KD-tree
and the classical BoW). The top row in this figure shows the Euclidean distance
errors using convex pose-graph optimisation with GMM/KD-tree (solid blue lines)
and the classical BoW (dashed blue lines) in both indoors and outdoors environ-
ments. These figures show that camera positions can be accurately estimated using
the GMM/KD-tree for loop-closure detection; even this improvement is not very
considerable in outdoor environment. Bottom row in the same figure illustrates the
effects of GMM/KD-tree for loop-closure with the Levenberg-Marquardt pose-graph
optimisation. Similar pattern is noticed here as well. From these results, we can
learn that in addition to the convex optimisation properties, in which solutions are
guaranteed to be globally optimal, using robust and accurate methods for loop-closure
detection, can improve the global performance of the solution.

8.6.4 Robust convex pose-graph optimisation

In this section, we investigate the performance of the solution when uncertainties
are incorporated as given in (8.22). These uncertainties are originally estimated
from image feature’s imperfect positions, due to deterministic perturbations, and
then propagated through the multiple view geometry algorithms to the relative
translations.

Figure 8.10 illustrates the outcome of the proposed solution when uncertainties
are included. Even though the improvement in indoor experiment is only reasonable
(the average error of 0.20 metres when including uncertainties against 0.28 metres
when using normal convex optimisation), it demonstrates the robustness of the
algorithm (Figure 8.10a solid green line). This improvement can be remarkably seen
in outdoor experiment, in which the average error has dropped even more when
uncertainties are taken into consideration, reaching a value of 0.72 metres (was 1.15
metres when using normal convex optimisation) (Figure 8.10b solid green line).

From these results, we can learn that taking the uncertainties into consideration in
the proposed method leads to robust and more accurate estimations than the normal
convex optimisation as expected, since it encodes large intervals in its formulation
and models well the uncertainties.
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Fig. 8.10 Robust convex pose-graph optimisation. Solid green lines plot Euclidean
distance errors after performing robust convex pose-graph optimisation. Dashed blue
lines show errors from normal convex optimisation and dotted red lines show results
from classical LM method.
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8.7 Conclusions

In this chapter, a novel robust convex pose-graph optimisation solution for UAVs
monocular motion estimation systems is presented. Through a variety of experimental
validations conducted on real-world data, from indoor and outdoor environments
and comparison to state-of-the-art methods, using convex optimisation in pose-graph
problems has proven its efficiency in motion estimation correction after loop-closure
detections.

Furthermore, including uncertainty estimations, based on the derivative approach
and their propagation through the multiple view geometry algorithms, have con-
tributed in the improvement of the global motion estimation. The unavoidable drift
in motion estimation due to imperfect computational tools and to inherent inaccu-
racy of the devices would be robustly and accurately corrected using robust convex
optimisation. In addition, the proposed solution is suitable to multiple loop-closures
circumstances.



Chapter 9

Robust L∞ Cooperative Motion
Estimation

In this chapter, a system for real-time cooperative monocular visual motion estima-
tion with multiple Unmanned Aerial Vehicles (UAVs) is proposed. Distributing the
system across a network of vehicles allows for efficient processing in terms of both
computational time and estimation accuracy. The resulting global cooperative motion
estimation employs state-of-the-art approaches for optimisation, individual motion
estimation and registration. Three-view geometry algorithms are developed within a
convex optimisation framework on-board the monocular vision systems of each vehicle.
In the presented novel distributed cooperative strategy, a visual loop-closure module
is deployed to detect any simultaneously overlapping fields of view of two or more
vehicles. A positive feedback from the latter module triggers the collaborative motion
estimation algorithm between any vehicles involved in this loop-closure. This scenario
creates a flexible stereo set-up which jointly optimises the motion estimates of all
vehicles, in a cooperative scheme. Prior to that, vehicle-to-vehicle relative pose esti-
mates are recovered with a novel robust registration solution in a global optimisation
framework. Furthermore, as a complementary solution, a robust non-linear H∞ filter
is designed to fuse measurements from the vehicles’ on-board inertial sensors with
the visual estimates. The proposed cooperative navigation solution has been validated
on real-world data, using two UAVs equipped with monocular vision systems.
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9.1 Introduction

9.1.1 Motivation

The ability to accurately estimate the position of a vehicle in its navigation environ-
ment is a critical prerequisite for any successful deployment of autonomous systems.
Localisation, the process of resolving the position and orientation of a vehicle within
the operating environment, is of particular interest over the course of a mission. In
multi-vehicle systems, each vehicle may rely on its own positioning capabilities for
self-localisation. In such systems, sharing a vehicle’s sensing capabilities provides
the ability to significantly improve the localisation accuracy of each platform within
the collective. This navigation architecture is known as cooperative navigation.
Vehicle-to-vehicle relative pose measurements and a vehicle’s own motion estimate
could lend supports to the joint estimation of the motion of a group of vehicles.

A team of collaborating vehicles leads to a solution distributed temporally
and spatially. The resulting collaborative strategy exploits parallel and redundant
mechanisms to gain increased robustness and efficiency. Every vehicle within a
cooperative navigation approach has the ability to improve its localisation using
data provided by other vehicles [11]. Collaborating autonomous vehicles finds use in
various applications such as environmental mapping, search and rescue, and aerial
surveillance [16]. To successfully accomplish their missions, vehicles participating in
such applications require accurate estimates of their localisation.

Each vehicle is equipped with its own navigation system and estimates its own
localisation independently. However, if a fleet of vehicles is deployed, a cooperative
strategy would potentially bring greater efficiency to the system. Furthermore,
localisation accuracy will also be much improved, besides additional gains in efficiency
with regards to vehicles performing their own specific tasks [134].

9.1.2 Visual sensing

There is common agreement that satellite navigation systems, such as GPS, are
dependable as navigation aids in large-scale integrated systems. This is due their
being easy to implement and efficient in most circumstances. However, in critical
situations, they are required to operate in tough environments where navigation maps
are unavailable and GPS signals may be denied, their use is inappropriate. Urban,
indoor, or underground locations during natural disasters, for instance, present big
handicaps to these satellite-based navigation systems, whereby the satellite signals
are either intermittent or not available at all. Therefore, alternative positioning
systems are required.
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From a practical standpoint, many aspects need to be taken into consideration
in the choice of sensors to be fit on-board unmanned aerial vehicles (UAVs). In
urban and indoor environments, small-sized and lightweight platforms are most
likely to fulfil the mission requirements. On the other hand, power autonomy and
payload restrictions impose further constraints. In the case of laser scanners for
example, their weight and large power consumption rule them out of contention.
Inertial navigation system (INS), on the other hand, can be used in such situations.
Nevertheless, accumulation of INS errors is prohibitive their application. Uncertainty,
if let uncorrected, can grow without bound.

Consequently, as we have seen in the previous chapters, investigating alternative
solutions, such as visual systems, has become the focus of a number of research
programmes. Indeed, vision systems appear better suited for UAVs and attract
significant research interests due to their light weight, low power consumption, low
cost and high fidelity of the information they provide. For instance, a fleet of UAVs
equipped with high resolution cameras can be deployed in operations where each
UAV relies solely on its visual sensing. However, this raises the problem of estimating
the vehicle’s position in real-time.

As detailed in Chapter 8, in vision-aided autonomous navigation systems, plat-
forms are usually equipped with stereo systems formed of two cameras. These systems
exploit the known distance between the two cameras, usually called the baseline,
to remove any ambiguity in motion estimation. These systems, however, present
an important drawback when their baseline is relatively small with regard to the
distance from the scenery. In reality, for aerial systems, the scene into consideration
has to be observed from a sufficiently large baseline, which is non-practical for UAVs.
Therefore, observing scenes from much higher altitudes in comparison to the camera’s
baseline reduces a stereo set-up to almost a bearing-only sensor, suffering similar
depth estimation problems as in the monocular case (using a single camera). Such
considerations spur more researchers to focus on monocular systems.

Indeed, monocular vision systems have become an indispensable solution for
autonomous aerial navigation systems, since they are practical and offer cheap and
compact installations. However, one of the most challenging issues of the monocular
visual odometry is the scale ambiguity due to the projective effects. In a monocular
cooperative navigation framework, where multiple vehicles are navigating within a
common environment, each vehicle constructs its own map 3D points for motion
estimation purposes. Clearly, this raises the necessity of studying the relationship
between these points (relative orientation and translation). One may see this problem
as working out the transformation between two different systems. This problem is
known in computer vision as the registration problem [125, 193].
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The registration problem can be addressed in several contexts: from estimating
the absolute pose given three dimensional measurements to solving the hand-eye
calibration problem. In our cooperative navigation framework, we are interested
in recovering the relative transformation between two UAV cloudreconstructions.
Specifically, suppose we are given a number of points from a scene measured in two
different coordinate systems. This would create two point patterns (sets of points).
Our aim, then, is to find the optimal transformation parameters (rotation and
translation) that transform the first pattern into the second. This allows estimating
the relative rotation and translation between the two UAVs, which is used in turn in
estimating accurate 3D scene points for our cooperative navigation.

9.1.3 Related work

Tremendous interest has been directed to unmanned mobile systems operating in
dynamic and complex environments over recent decades. A relatively small portion
of that has been directed toward cooperative systems. Among these studies, the vast
majority of cooperative navigation applications have been implemented using range
sensors, i.e. sonar, lidar and laser [74]. Indeed, ground wheeled robots navigating on
two dimensional planes have greatly dominated the autonomous navigation systems
literature. Limited interest has been shown toward visual cooperative navigation,
especially on autonomous aerial platforms. Relying on cameras as a primary sensing
tool is still an emerging research area. Interestingly, most studies in this area have
focused on building 3D maps [164, 170]. These approaches are usually designated as
visual simultaneous localisation and mapping (VSLAM)[213].

Most of the visual systems have focused solely on stereopsis vision, where a set-up
with two cameras with a fixed relative transformation is designed. However, as
mentioned before, the stereo configuration in aerial navigation systems has evidenced
some limitations, notably when the scene under consideration is relatively distant
from the platform. This would inhibit its ability of recovering the real scene depths,
which is the main purpose of the stereopsis configuration. However, less consideration
has been given to monocular vision systems. Indeed, such bearing-only sensors
present immense challenges, especially of unconstrained (6 DoF) motion estimation
for aerial vehicles [40, 125].

The authors in [197] deployed an extended Kalman filter (EKF) to fuse monocular
motion estimates from two distinct cameras, where their algorithm is implemented
on ground vehicles. In [4], an EKF is again used as well to recover the relative pose
between two UAVs equipped with a monocular vision system. Filtering is again
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adopted in [205], where a cooperative aerial/ground robotic system supplied with
stereo cameras is proposed.

An adaptive cooperative visual localisation solution based on a stereo vision
system is proposed in [138]. In the latter, a robust non-linear H∞ filter is designed
in a cooperative VSLAM (C-VSLAM) framework. Both aerial and ground platforms
were deployed separately to validate this approach. In [220], a vision-based SLAM
with multiple hand-held cameras for dynamic environments is presented. Some
assumptions related to covering the same scene at the start and the simultaneous
processing of images from different cameras make this approach impractical. A
maximum a posteriori estimator is used in [139], where an approach to distribute
the data processing between vehicles is adopted. In [45], a decentralised approach
for multi-robot SLAM is presented, in which each platform maintains a local map
that combines local information shared by other robots into a global augmented
map. In the cooperative visual simultaneous localisation and mapping (C-VSLAM)
framework, some studies have dealt with system uncertainty during the different
stages of cooperation [134]. These studies challenge the localisation performances
within their growing uncertainties. Information theory and entropy minimisation
have also previously been used in cooperative SLAM [30, 157].

The filtering option, rather than optimisation, has drawn more attention among
computer vision researchers. However, these sorts of solutions are highly sensitive to
outliers and the lower bound for map accuracy, due to errors introduced during the
filter linearisation process, which produces inconsistent estimates.

Our work, however, deals with the cooperative navigation problem from a com-
pletely different perspective. Global optimisation by means of convex and quasi-
convex optimisation and branch-and-bound algorithms is adopted for our registration-
based navigation. In addition to global optimisation, and in order to overcome EKF
non-representative models, a non-linear H∞ filter is adopted. The latter filter is
specifically designed for the relative pose estimation between the UAVs.

The remainder of this chapter is structured as follows: Section 9.2 provides an
overview of global optimisation. Section 9.3 details the general cooperative motion
estimation solution pipeline. Section 9.4 presents the solution adopted for the three-
view geometry motion estimation. Section 9.5 explains our registration solution.
Section 9.6 describes the implementation design for the non-linear H∞ filter for
relative pose estimation. Experimental validation is provided in Section 9.7, followed
by Section 9.8 giving the main conclusions of this work.
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9.2 Global optimisation

In this section, a brief introduction reminder to the principal concepts of global
optimisation, including convex optimisation [25] and branch-and-bound algorithms,
[104] is given. These two techniques are the main tools used for the proposed
solution in this chapter. Convex optimisation is presented in detail in Chapter 3,
including quasi-convex optimisation (Section 3.5, page 64) and the second-order cone
programming (SOCP) (Section 3.7, page 67).

In computer vision, certain constrained optimisation problems cannot be solved
directly. This is due to the non-convexity of either their objective functions or their
constraints. Therefore, convex optimisation cannot be deployed in such cases.

Conveniently, some algorithms, such as branch and bound algorithms, are able
to overcome this issue and provide globally optimal solutions. Branch and bound
algorithms are iterative methods for finding global optima in non-convex problems.

These algorithms employ a cleverly structured search of the space of all feasible
solutions. As presented in Section 3.9 (page 75), this space is continuously and
repeatedly partitioned (Branch) into narrower and narrower subsets while a lower
bound (Bound) is estimated for the cost of the solutions within all subsets [107].
That is why this method is also called progressive separation and evaluation [107]. A
known feasible solution is always kept for reference the least costly so far. Obviously,
after each partitioning, the subsets that cost more than the known least costly
solution are discarded from further partitioning. This partitioning policy continues
until a feasible solution is found, such that its cost is no greater than the bound of
all subsets. This provides satisfactory ε-suboptimal solutions. Figure 3.12 (Chapter
3 , page 76) presents a detailed example of the branch and bound algorithm used to
solve this problem

A practical way to solve a more complicated problem is to solve a related simpler
problem, and hope the latter’s solution can be a solution to the original problem.
This is the core principle of branch and bound algorithms. However, instead of
replacing the original problem with one single problem, a set of problems that bound
the original problem is used.

Suppose a tree structure is used to visualise this principle. At the beginning, the
tree is represented with one singe node (root-node) which represents the original
problem. Problems that replace this original problem in the bounding set are pointed
to by branches that create more nodes (hence the term ’Branch’). Usually, a convex
relaxation is performed resulting in a new convex problem. If the optimal solutions
of the newly created problems (nodes) are not feasible in the original problem or
they cost more, new branching is performed, creating more leaf-nodes. At any
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Relative Pose (Rr , tr)

Trifocal tensor based monocular motion estimation

Points used by UAV 1 for its own motion estimation
Points used by UAV 2 for its own motion estimation
Points used for loop closure detection, registration and cooperative motion estimation

Fig. 9.1 The set-up used in the cooperative motion estimation. Each UAV is equipped
with monocular visual system. In a loop-closure scenario, the UAVs construct a
flexible stereo set-up. This set-up is used to reconstruct the 3D scene points which
are in turn used in cooperative navigation.

intermediate stage, the least costly solution x̂ is retained. Any leaf-node of the tree
whose bound x̃ costs less than x̂ will be kept in the tree; otherwise it will be discarded
from any further consideration [107].

In view of its robust performance, this technique is used to solve our registration-
based navigation problem in this chapter.

9.3 Overview of the proposed solution

The overall aim in this work is to extend the state-of-the-art for autonomous cooper-
ative navigation systems. Our solution employs new optimisation techniques that
guarantee the global minimum, such as convex optimisation. The general set-up
of the solution is illustrated in Figure 9.1. The architecture consists of two UAVs
equipped with fully calibrated monocular systems capturing sequences of images



226 Chapter 9. Robust L∞ Cooperative Motion

and estimating their own motion as they move. The solution rests on three main
sub-solutions:

• a three-view-geometry-based solution for monocular motion estimation using
convex optimisation,

• global optimisation for the registration problem between the UAVs,
• and a non-linear H∞-filter-based solution for the relative pose estimation

problem.
The overall pipeline of the proposed solution is described in Figure 9.2. The

whole solution can be divided into three main sub-tasks. We first, independently,
estimate the motion of each vehicle using its on-board monocular visual systems.
Unlike most solutions presented in the literature, our approach adopts the three-view
geometry for this task (Figure 9.2). As proven in the literature, this approach
ensures more consistent and stable solutions over the two-view geometry approach
[83, 173, 174, 184, 206]. Moreover, estimating the trifocal tensor in our approach is
performed through convex optimisation, wherein getting a single global solution is
guaranteed. This is to overcome the linear and iterative methods problems, which
present a high probability of getting trapped in a local minimum or reaching infeasible
solutions, even for low noise levels [25, 80, 94, 101, 116].

In a loop-closure scenario, the two UAVs simultaneously fly over the same location
(Figure 9.1). In other words, the UAVs have a relatively significant overlap in their
fields of view. A positive feedback from the loop-closure detection module (Figure
9.2) triggers the cooperative motion estimation between any UAVs involved in this
loop-closure.

The cooperative motion estimation starts by first estimating the relative pose
between vehicles. This relative pose is of great importance to our solution. Recovering
a consistent full 6 DoF relative pose between two vehicles in metric units and in real
time will allow the creation of a flexible stereo vision set-up. At this point, one can
use the stereo vision’s advantages in order to compensate for the monocular vision’s
drawbacks. This way one can exploit the power of both monocular and stereo vision
while avoiding their drawbacks.

It is known that using solely monocular systems makes the motion estimation
challenging due to the absolute scale ambiguity caused by projective effects. A
measured point in a particular image can represent the projection of an infinite
number of 3D scene points in the world. Consequently, the estimated translation
vectors from frame-to-frame image point correspondences suffer from scale ambiguity.
Some monocular solutions in the literature have implicitly solved this scale ambiguity.
Linear approaches in combination with some optimisation tools are also used to
recover the global scale factor.
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Trifocal tensor based monocular motion
estimation with convex optimisation

UAV 2

Trifocal tensor based monocular motion
estimation with convex optimisation

UAV 1

Loop Closure detection
Module
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Estimating the Relative Transformation
(Rr, tr) between the two vehicles
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Robust relative transformation
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Global Optimisation
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Fig. 9.2 A block diagram showing the main architecture of the proposed solution.
The set-up consists of two UAVs equipped with monocular vision systems capturing
sequences of images and estimating their own motion as they move using three-view
geometry. If commonly-viewed scenery is detected by the loop-closure module, the
cooperative motion estimation module is triggered to optimise the UAVs poses.
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On the other hand, stereo visual odometry takes advantage of the known baseline
to directly remove any scale ambiguity. This baseline provides two viewpoints distinct
enough to recover the scene. However, it suffers from substantial lack of accuracy
when the distance to the 3D scene points is much larger than the baseline, which is
the case for most aerial platforms since it is impractical to install a stereo rig with
a large baseline on one UAV. The baseline in fact defines the relative rotation and
translation between the left and the right cameras in the stereo rig.

Our ultimate aim is to use two monocular systems (on-board each cooperative
vehicle) and construct a stereo rig with a sufficiently large baseline between the
two monocular systems, forming a variable baseline stereo set-up (Figure 9.1). This
would solve our problem with regard to scale ambiguity. The challenge then become
how to accurately estimate this variable baseline (relative pose) in real time. Since
this relative pose has great impact on the subsequent cooperative motion estimation,
our strategy relies on a complementary configuration in estimating it. Two separate
techniques are used for computing a consistent estimate of this entity. The two
estimates are then fused, aiming to increase robustness, stability and consistency.

For the first technique, we rely on the point cloud registration problem. The
second technique, on the other hand, fuses inertial measurements from the on-board
inertial measurement units (IMUs) with the vision estimates. After constructing the
stereo vision set-up, 3D scene points can more accurately be estimated, capitalising
on the stereo vision’s advantages. Note that the monocular motion estimation in each
vehicle relies heavily on their self-estimated 3D scene points in order to remove the
frame-to-frame translation ambiguity [23, 54]. Thus, any uncertainty with regards
to the self-estimated 3D scene points will propagate to the final motion, inducing
unstable estimates. Therefore, optimised ambiguity-free 3D scene points estimated
through the stereo vision would certainly improve the individual motion estimates of
each vehicle.

Details about each block of the proposed solution in Figure 9.2 are given in the
following sections.

9.4 Three-view geometry motion estimation

This section presents the algorithm for our motion estimation method for each
vehicle, which is based on the robust computation of trifocal tensors using image
features. Our motion estimation solution, described in Figure 9.2, assumes a fully
calibrated monocular system with known intrinsic parameters K. Using a vehicle
equipped with a single camera capturing sequences of images, the final goal is to
estimate the camera pose at each time step relying only on these images. Thus, for
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each consecutive image triad, the whole algorithm is summarised in the following
operations:

• Extraction of image feature points using SIFT detector,
• Estimating the trifocal tensor between the triad (previous, current, next)

frames, using feature point correspondences through convex optimisation,
• Extracting the camera matrices from the trifocal tensor,
• Estimating the initial relative rotations and translations (Ri, ti and Rj , tj) be-

tween the current-to-previous and the current-to-next frame pairs respectively,
• Estimation of the 3D scene points using convex optimisation for each frame

pair (current-to-previous and current-to-next),
• Optimising the motion between each frame pair using robust L∞ convex

optimisation,
• Computing the unknown absolute scale ratio of each frame pair using robust

least squares via SOCP.

9.4.1 Trifocal tensor estimation using convex optimisation

Three-view geometry has several advantages over algorithms that use two views only.
Adding a third image provides a good level of stabilisation to the subsequent solutions
[83, 174, 206]. More importantly for our work, the introduction of a third view has
the ability to stabilise 3D point estimation algorithms form 2D images. We have
seen in Chapter 2 (Section (2.10), page 42) that the trifocal tensor is the algebraic
representation of the three-view geometry. Indeed, the trifocal tensor exploits better
the information available in three views in comparison to the fundamental matrix in
two views [174]. Thus, in our work, an investigation on the adoption of the three-view
geometry on the motion estimation task is conducted. Moreover, a new approach for
estimating the trifocal tensor parameters via convex optimisation is proposed as well
in this work.

In our monocular system, the multiple view geometry is created by distributing
frame sequences over time. Correspondences between three frames are used to
estimate the trifocal tensor from which, along with the camera calibration parameters,
the motion parameters are estimated.

First, let the 3 × 4 camera matrices for three views be P = [I|0], P ′ =
[a1 a2 a3 a4] = [A|a4] and P ′′ = [b1 b2 b3 b4] = [B|b4], where I is the identity matrix,
A and B are 3 × 3 matrices and the vectors ai and bi are the ith columns of the
respective camera matrices for i = 1, · · · , 4. Then, the quantity we wish to find is
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the trifocal tensor T , which is parametrised as [82] (Figure 2.8, Chapter 2, page 43):

Ti = aib
⊤
4 − a4b

⊤
i , i = 1, · · · , 3 (9.1)

In this equation, the set of three matrices T1, T2, T3 constitute the 3×3×3 trifocal
tensor, where Ti is 3 × 3 with rank 2. Note that the relationship between the three
cameras is completely described by T1, T2 and T3.

Let x = (x1, x2, x3), x′ = (x′
1, x

′
2, x

′
3) and x′′ = (x′′

1, x
′′
2, x

′′
3) be corresponding

image points in the three views respectively. The relationship between these three
image point correspondences x ↔ x′ ↔ x′′ is given by the point-point-point relation
[82, 174]:

[x′]×(
3∑

i=1
xiTi)[x′′]× = 03×3 (9.2)

In the case of the line correspondence l ↔ l′ ↔ l′′ in the three images, then, it
can be verified that (9.1) is equivalent to:

li = l′⊤ Ti l′′ , i = 1, · · · , 3 (9.3)

where l = (l1, l2, l3). Using the tensor notation, the above relations can be equivalently
written as:

T jk
i = aj

i b
k
4 − bj

4b
k
i (9.4)

li = l′il
′′
j T jk

i (9.5)

The trifocal tensor has 27 elements; however, it represents an epipolar geometry
that has only 18 degrees of freedom. Clearly, there are some dependencies between
the tensor parameters. These dependencies, in fact define the internal constraints
that must be satisfied by any estimated tensor. Otherwise, the tensor would not
consistently encode any meaningful geometry [82, 83, 174, 206]. The rank constraint
is the most trivial constraint. Specifically, each Ti must be of rank 2.

To estimate the trifocal tensor parameters, 26 equations are required. Each triplet
of corresponding points provides four independent linear equations. Accordingly,
7 points are required to compute the trifocal tensor linearly. One can use linear
algorithms or normalised linear algorithms (when input data are normalised), to
estimate this tensor as discussed in [82]. This solution minimises an algebraic error
using the least-square approach via the singular value decomposition (SVD). Then
the iterative Levenberg-Marquardt (LM) algorithm is used to optimise the trifocal
tensor. However, in a major drawback, the quantity being minimised in the first
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part of the algorithm is not geometrically or statistically meaningful. Secondly,
the iterative part using the LM algorithm is prone to be affected by local minima.
Moreover, the success of this approach is heavily dependent on good initialisation.

As an alternative, our solution adopts convex optimisation, which guarantees
getting the global minimum by minimising the geometric image-plane distance. In
addition to getting the global minimum, another advantage is that the cost function
is geometrically meaningful.

Suppose we have three views of a set of scene points Xi. These points are imaged
as xi, x′

i and x′′
i in the first, second and third view respectively. The corresponding

point sets xi ↔ x′
i ↔ x′′

i may then be related by the trifocal as given in (9.2).
Moreover, using (9.3), a point xi in the first view can be transferred to the third
view using the line l′i passing through the point x′

i in the second view as:

x̃′′k
i = xil′ji T j

i (9.6)

This is known in the trifocal tensor framework as point transfer. Specifically, if
the transferred point is x̃′′

i = (x̃′′1
i , x̃

′′2
i , x̃

′′3
i ), then each coordinate x̃′′k

i is given by:

x̃′′k
i = xu

i l
′j
i T jk

u (9.7)

Our aim is to find the parameters of the trifocal tensor T = [T1, T2, T3] that
satisfy this point transfer along with its constraints using convex optimisation. Our
optimisation variable is then:

x = (T 11
1 , · · · , T 33

1 , T 11
2 , · · · , T 33

2 , T 11
3 , · · · , T 33

3 ) ∈ R27 (9.8)

Suppose that xi, x′
i and x′′

i are scaled such that their last coordinate is equal to
one. To estimate this trifocal tensor by the proposed method, the geometric distance
error is used:

εi = d(x′′
i , x̃′′

i ) = d(x′′
i , xil

′j
i Ti) (9.9)

This equation defines the Euclidean distance error between the measured point
x′′

i and the transferred point x̃′′
i . This error is due to measurement errors in the image

points. Each triad of corresponding points (xi ↔ x′
i ↔ x′′

i ) will then have an error
residual associated with its noise. Our aim is then to recover the trifocal tensor T
which minimises the maximum of this error across all image point correspondences.
To evaluate these residual errors, let us first estimate each coordinate x̃′′k

i = xu
i l

′j
i T jk

u

of the transferred point. Suppose xi = (x1
i , x

2
i , 1)⊤, l′i = (l′1i , l′2i , l′3i )⊤ and x̃′′

i =
(x̃′′1

i , x̃
′′2
i , x̃

′′3
i ), then, using (9.7), the first coordinate of the transferred point to the
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third view is given by:

x̃′′1
i = x⊤

i


l′1i T 11

1 + l′2i T 21
1 + l′3i T 31

1

l′1i T 11
2 + l′2i T 21

2 + l′3i T 31
2

l′1i T 11
3 + l′2i T 21

3 + l′3i T 31
3

 (9.10)

In order to simplify this transfer equation, we introduce the notation T vw. This
new column vector T vw = (T vw

1 , T vw
2 , T vw

3 )⊤ is formed by taking the (v, w)th element
from (T1, T2, T3). Then, (9.10) can be reformulated as:

x̃′′1
i = x⊤

i

(
l′1i T 11 + l′2i T 21 + l′3i T 31

)
(9.11)

Similarly, the second and the third coordinates of the point transferred to the
third view are given by:

x̃′′2
i = x⊤

i

(
l′1i T 12 + l′2i T 22 + l′3i T 32

)
(9.12)

x̃′′3
i = x⊤

i

(
l′1i T 13 + l′2i T 23 + l′3i T 33

)
(9.13)

The transferred point is scaled such that its last coordinate is equal to one:

x̂′′
i =

(
x̃′′1

i

x̃′′3
i

,
x̃′′2

i

x̃′′3
i

)⊤
(9.14)

Then, the ith error residual given in (9.9) is rewritten as:

εi = d(x′′
i , xil

′j
i T j

i ) =

√√√√( x̃′′1
i

x̃′′3
i

− x′′1
i

)2

+
(
x̃′′2

i

x̃′′3
i

− x′′2
i

)2

=

√√√√(x′′1
i − x′′1

i x̃
′′3
i )2 + (x′′2

i − x′′2
i x̃

′′3
i )2

(x̃′′3
i )2

=

√√√√fi1 (x)2 + fi2 (x)2

fi3 (x)2

(9.15)

where:

fi1 = x⊤
i

[
(T 11l′1i + T 21l′2i + T 31l′3i ) − x′′1

i (T 13l′1i + T 23l′2i + T 33l′3i )
]

fi2 = x⊤
i

[
(T 12l′1i + T 22l′2i + T 32l′3i ) − x′′1

i (T 13l′1i + T 23l′2i + T 33l′3i )
]

fi3 = x′′1
i (T 13l′1i + T 23l′2i + T 33l′3i )

(9.16)



9.4. Three-view geometry Motion Estimation 233

Note that fi1 , fi2 and fi3 are all affine functions of the optimisation variable
x given in (9.8). Given a set of corresponding image points xi ↔ x′

i ↔ x′′
i for i =

1, · · · ,m, then the m error residuals generate the error vector:

ε = (ε1, · · · , εm) (9.17)

The estimated trifocal tensor is then the tensor T that minimises the norm of
this vector. In our solution, the L∞ norm is adopted; therefore, the cost function
will be ∥ε∥∞ = maxi|εi| = maxi|d(x′′

i , xil
′j
i Ti)| or, equivalently:

f0(x) = max
i=1,··· ,m

fi(x) = max
i=1,··· ,m

d(x′′
i , xil

′j
i Ti) = max

i=1,··· ,m

(
fi1 (x)2 + fi2 (x)2

fi3 (x)2

)
(9.18)

Thus, the optimisation is given by:

min
x

max
i=1,··· ,m

(
fi1 (x)2 + fi2 (x)2

fi3 (x)2

)
subject to fi3 (x) > 0, for i = 1, . . . ,m.

(9.19)

Since fi1, fi2 and fi3 are all affine functions of x, according to Theorem 8 (Chapter
3, page 70), fi(x) = fi1(x)2+fi2(x)2

fi3(x)2 is quasi-convex function. In addition, according

to Theorem 7 (Chapter 3, page 61), the function f0 = max
i=1,··· ,m

(
fi1(x)2+fi2(x)2

fi3(x)2

)
is also

quasi-convex since the pointwise maximum is also convex. The constraint function
has a convex domain {x|fi3 (x) > 0, for i = 1, · · · ,m}, therefore problem (9.19) is a
quasi-convex optimisation problem [80, 94, 101].

Therefore, this problem can be solved using a sequence of SOCP feasibility
problems as described is Section 3.7 (page 67), where the aim is to recover the
optimal tensor Topt that minimises the maximum error.

The next step is to adapt this estimated tensor to satisfy all required constraints
[82, 173]. As a first stage, the epipoles e′ and e′′ in the second and the third views
respectively are extracted from the estimated trifocal tensor T [82]. Then, the
remaining parameters of the camera matrices P ′[A|a4] and P ′′[B|b4] are recovered.
The estimated camera matrices are then used to adapt the geometrically valid tensor.

From (9.4), one can see that once the epipoles are e′v = av
4 and e′′w = bw

4 , the
trifocal tensor can be recovered linearly by rectifying the remaining entries av

4 and
bw

4 [82, 174, 206]. This relationship can be parametrised linearly as t = Ea, where t
is a vector containing the tensor parameters, E is a matrix representing the linear
relationship in (9.4) and a is the vector of the remaining entries av

4 and bw
4 . This

is performed by minimising ∥AEa∥ where ∥AE∥ = 1. The matrix A is constructed
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over the transferred image point using the estimated trifocal tensor. The recovered
tensor then satisfies all constraints as shown in [82, 173].

9.4.2 Camera motion estimation from the trifocal tensor

After estimating a valid trifocal tensor, the final step is to extract the camera matrices
P ′ and P ′′, from which the relative translation and rotation between the first-and-
second views and the first-and-third views are estimated. The first projection matrix
can be assumed canonical. Hence, the set of projection matrices for three views can
be written as [82]:

P = [I|0]
P ′ = [[T1, T2, T3]e′′|e′]
P ′′ =

[
(e′′e′′⊤ − I)[T ⊤

1 , T ⊤
2 , T ⊤

3 ]e′|e′′
] (9.20)

It noteworthy that in the proposed solution, while the UAV is navigating, the
triad views are configured such that the first view is located between the second
and third views. In two-view geometry, before the camera acquires a new frame, the
current-frame camera matrix is set to P = [I|0], and motion between the current and
the newly acquired frame is extracted from new camera matrix P ′. In our three-view
geometry set-up, the previous frame is included in the motion estimation process.
Before acquiring a new frame, the current-frame camera matrix is set to P = [I|0],
and the trifocal tensor is estimated such that the first frame is the current frame, the
second frame is the previous frame and the third frame is the newly acquired frame.

One may notice that in this solution, the relative motion in each consecutive
frame pair is estimated twice. An averaging procedure between the two estimates is
then performed in order to get a final optimised motion. This certainly, as it will be
shown in the experimental validation section, would provide increased accuracy and
stability to the motion estimates.

After having robustly estimated the motion of the camera using three-view
geometry, ambiguities in the translation scale still occur. Unlike in the stereo scheme,
the monocular visual motion estimates both the relative motion and the 3D structure
up to an unknown scale. This absolute scale cannot be estimated unless information
about the real world is provided. Our solution in this chapter employs the technique
presented in Section 6.9 (page 148), where the robust least squares (RLS) solution is
used [52] as well. The RLS algorithm is deployed using again a convex second-order
cone programming (SOCP).



9.5 Registration problem 235

One might notice that the 3D scene points Xi are involved in estimating the scale
in our monocular motion estimation. In fact, our experimental studies showed that
these scene points have a significant influence over the final motion estimates. The
greater the number of accurately estimated 3D points, the better the estimate of the
motion will be. This has motivated us to exploit two monocular systems and build
a stereo rig, where more ambiguity-free 3D scene points can be estimated through
stereo vision, as shown in the following sections.

9.5 Registration problem

In a loop-closure scenario, the proposed solution employs a flexible stereo rig formed
by two UAVs involved in this overlap. The ultimate aim in this section is to estimate
the relative pose between the two vehicles, in order to use this stereo set-up in the
cooperative motion estimation.

Prior to that, each vehicle had to construct its own 3D scene points using its
on-board monocular vision system. These construction are based on pairs of frames
acquired over time. These 3D scene points are referred to us as a point cloud. In
the loop-closure scenario, the two vehicles are able to construct approximately the
same scenery. Given the 3D scene structures (point clouds) we further align them to
each other and then estimate the geometry between the 3D scene structures of each
camera.

If one performs 3D scene reconstruction, as seen from each camera, and then
estimates the relative transformation between them, we speak of registration prob-
lem. The registration problem is akin to finding the transformation between two
coordinate systems [6, 82, 193]. Many solutions have been proposed to this problem.
However, the well-known was presented by Horn et al. [87]. A similar solution with
some modifications was proposed by Umeyama in [202]. Both solutions propose a
closed-form approach that recovers the Euclidean transformation in a least-squares
minimisation framework. However, as concluded in [95], noise in both point sets can
significantly affect the final estimate in this approach. To overcome this problem,
another well known algorithm called the iterative closest point (ICP) algorithm is
presented in [19]. One major drawback of this algorithm is its dependency on a good
initial transformation in order to converge to the global minimum. Diverse solutions
have been proposed since then, however, they are still prone to being affected by
local minima.
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9.5.1 Registration using least squares estimation

In this section, a brief illustration of the registration method with least-squares min-
imisation is given [87, 202]. Given two corresponding point sets Xi = (xi

1, xi
2, · · · , xi

n)
and Xj = (xj

1, xj
2, · · · , xj

n), the aim is to find the best transformation that maps one
set onto the other. The optimisation function with respect to the rotation matrix R
and the translation vector t is defined as:

e2(R, t) = 1
n

n∑
k=1

∥xj
k − (Rxi

k + t)∥2 (9.21)

Here, e2 is the mean squared error. If UDV ⊤is the singular value decomposition of
the covariance between the two point sets, then the optimal rotation matrix R and
the translation vector t are recovered as [202]:

R = USV ⊤ (9.22)
t = µxj −Rµxi (9.23)

where µxi and µxj are the centroids of point sets Xi and Xj respectively. Note that
S must be chosen as:

S =

 I if det(U)det(V ) = 1
diag(1, 1, · · · , 1,−1) if det(U)det(V ) = −1

(9.24)

9.5.2 Overview of the proposed solution for the registration

In this section, an alternative approach to the registration problem using global
optimisation is presented. Note that this problem can be formulated as finding the
transformation between two or more coordinate systems using points expressed in
each system [87].

Let X be 3D scene points estimated from two camera viewpoints Ci and Cj.
Suppose Xi and Xj are their respective coordinates seen from camera Ci and Cj . The
main aim is to recover the Euclidean transformation T = [R t], where R = [r1 r2 r3]⊤

and t = [tx ty tz]⊤ are the rotation matrix and the translation vector respectively. We
wish to recover a transformation such that the mapping of the points Xi stands as
close as possible to its corresponding points in Xj. Hence, the registration problem
is then defined as follows: given a set of 3D scene point correspondences Xj

k ↔ Xi
k

for k = 1, · · · ,m, where m is the number of the correspondences, find T such that
for all k:

Xj
k = TXi

k, k = 1, · · · ,m (9.25)
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The quantity we wish to find is the transformation T which is parametrised as:

T = [R|t] =


r1 r2 r3

r4 r4 r6

r7 r8 r9

∣∣∣∣∣∣∣∣
tx

ty

tz

 =


r1

r2

r3

∣∣∣∣∣∣∣∣
tx

ty

tz

 (9.26)

Thus:

Xj =


r1 r2 r3

r4 r4 r6

r7 r8 r9

0 0 0

∣∣∣∣∣∣∣∣∣∣∣

tx

ty

tz

1

Xi (9.27)

The optimisation variable is then:

x = (r1, r2, r3, r4, r5, r6, r7, r8, r9, tx, ty, tz)⊤ ∈ R12 (9.28)

Due to the imperfect estimation of the 3D scene point positions caused by
measurement noise, after transformation, each pair of the corresponding scene points
Xi

k ↔ Xj
k defines an error residual. We define the 3D Euclidean distance from a

target point to a transformed one as: d(Xj
k, TXi

k), the associated error residual as:

εk = d(Xj
k, TXi

k) , k = 1, · · · ,m (9.29)

Given Xi
k = [xi

k y
i
k z

i
k 1]⊤ and their correspondence Xj

k = [xj
k y

j
k z

j
k 1]⊤, then the

residual error for the kth correspondence is parametrised as:

Fk(x) = εi = d(Xj
k, TXi

k) , k = 1, · · · ,m

=
√

[(r1Xi
k + tx) − xj

k]2 + [(r2Xi
k + ty) − yj

k]2 + [(r3Xi
k + tz) − zj

k]2

=
√
f 1(x)2

k + f 2(x)2
k + f 3(x)2

k

(9.30)

Given m correspondences, the error vector is then defined as: ε = [ε1, · · · , εm]⊤.
Note that f 1(x)k, f 2(x)k and f 3(x)k are affine functions over the optimisation variable
x given in (9.28). The L2 norm of this error function is given by:

∥ε∥2 =
√√√√ m∑

k=1
ε2

k =
√√√√ m∑

k=1
d(Xj

k, TXi
k)2

Then:

Fk(x) = ∥(r1Xi
k + tx) − xj

k, (r2Xi
k + ty) − yj

k, (r3Xi
k + tz) − zj

k∥2 (9.31)
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This optimisation problem involves estimating the rotation matrix R. It is known
that any rotation matrix must satisfy the orthogonality constraint (R⊤R = I). This
means that R ∈ SO(3) (Chapter 2, Section 2.2, page 24). Using the L∞ norm instead,
the optimisation is then given by:

min
x

max
k=1,··· ,m

(
f 1(x)2

k + f 2(x)2
k + f 3(x)2

k

)
subject to R ∈ SO(3).

(9.32)

In this case (9.32) becomes non-convex due to the orthogonality constraints R⊤R = I.
Therefore, standard convex optimisation tools cannot be used here. Instead, global
optimisation through the branch and bound algorithm is adopted [107]. Referring to
(9.26), one may rewrite the constraint in (9.32) as:

r2
1 + r2

2 + r2
3 = 1 , r1r4 + r2r5 + r3r6 = 0

r2
4 + r2

5 + r2
6 = 1 , r1r7 + r2r8 + r3r9 = 0

r2
7 + r2

8 + r2
9 = 1 , r4r7 + r5r8 + r6r9 = 0

(9.33)

Note that these newly created constraints include bilinear and quadratic terms.
It is essential to define the bounds of these entries before using the branch and bound
algorithm. As shown in Section 9.2, the next step is to perform a linear relaxation
for the problem. To do that, all bilinear and quadratic terms are replaced with new
linear variables.

Prior to that, given the lower and the upper bounds rL
i , rU

i , rL
j and rU

j of ri and rj ,
where i = 1, · · · , 9, j = 1, · · · , 9 according to (9.33), then the following inequalities
holds [116, 127, 160]:

(rU
i − ri)(rU

j − rj) ≥ 0 , (ri − rL
i )(rj − rL

j ) ≥ 0,
(rU

i − ri)(rj − rL
j ) ≥ 0 , (ri − rL

i )(rU
j − rj) ≥ 0.

(9.34)

The linear relaxation of the terms in (9.33) is obtained by replacing the terms
rirj with the new variables wij, i = 1, · · · , 9, j = 1, · · · , 9, where wij = rirj,
(wii = r2

i ). Then, in order to make the relaxation as tight as possible, the inequalities
in (9.34) are added to the optimisation problem to relate the new linear variables wij

with the original non-linear terms [116, 127, 160]. The inequalities in (9.34) yield
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[116, 127, 160]:

rirj ≥ max

rir
U
j + rU

i rj − rU
i r

U
j

rir
L
j + rL

i rj − rL
i r

L
j

= max

ϕ
u
1

ϕu
2

= ϕu

rirj ≤ min

rir
L
j + rU

i rj − rU
i r

L
j

rir
U
j + rL

i rj − rL
i r

U
j

= min

ϕ
l
1

ϕl
2

= ϕl

(9.35)

It is well-known that ϕu and ϕl are the convex and the concave envelopes of rirj

[116, 127, 160]. Thus, using (9.34) and (9.35), we get:

wij − ϕu
1 ≥ 0 , −wij + ϕl

1 ≥ 0
wij − ϕu

2 ≥ 0 , −wij + ϕl
2 ≥ 0

(9.36)

Since ϕu and ϕl are the convex and the concave envelopes of rirj, then the
convexity of the constraints in (9.36) is guaranteed. Thus, the new, relaxed problem
can be summarised as:

min
x

max
k=1,··· ,m

(
f 1(x)2

k + f 2(x)2
k + f 3(x)2

k

)
subject to w11 + w22 + w33 = 1, w14 + w25 + w36 = 0,

w44 + w55 + w66 = 1, w17 + w28 + w39 = 0,
w77 + w88 + w99 = 1, w47 + w58 + w69 = 0,
wij − ϕu

1 ≥ 0, −wij + ϕl
1 ≥ 0,

wij − ϕu
2 ≥ 0, −wij + ϕl

2 ≥ 0

(9.37)

where the new optimisation variable is:

x̂ = (r1, · · · , r9, tx, ty, tz, w11, · · · , w99)⊤ (9.38)

One may see that the original non-convex problem (9.32) has been reformulated
into a new convex optimisation problem. The solution of the problem (9.37) gives a
lower bound on the global minimum of the original problem. Figure 3.12 (Chapter 3
, page 76) presents a detailed example of the branch and bound algorithm used to
solve this problem.
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9.5.3 Implementation

In order to evaluate and validate its capability before deploying it in the main
cooperative motion estimation problem, implementation of the proposed algorithm
is performed on both synthetic and real data. Comparison with state-of-the-art
methods based on least squares estimation is provided as well. Our first aim was to
investigate the robustness and efficiency of the proposed solution in the presence of
noise.

The branch and bound algorithm detailed in Section 9.2 and the relaxation
approach given in the previous section are implemented. Synthetic data consists of
a series of point sets (point clouds) having known positions, and then transformed
with known transformations (Figure 9.3). Subsequently, the transformed point sets
are corrupted with varying levels of Gaussian noise: up to 0.01 metres of Gaussian
noise was then added to the transformed point sets. Real data, on the other hand,
were collected using an RGB-D sensor (MS Kinect) using the point cloud library
(PCL) for 3D mapping a wheeled vehicle (Figure 9.3). Given the original point set
and the target set, our aim is to then robustly recover the best transformation that
maps one set onto the other in the presence of high levels of noise.

The implementation used to generate the results shown in this section uses a
sequence of SOCP feasibility problems for the convexity task using the SeDuMi
toolbox [187] and Yalmip [116] toolbox for modelling.

Figure 9.3 shows samples of synthetic and real data used for the experimental
validation. The graphs in this figure show the outcomes of the proposed solution
in comparison to the least-squares technique. One can see that global optimisation
clearly outperforms methods based on least squares minimisation. This pattern is
valid for both synthetic and real data. These figures are in accordance with the
theory and confirm that the global optimisation solution is a superior solution for
the registration problem, especially on noisy data.

9.6 Filtering based approach for relative pose es-
timation

The second technique used in our solution to estimate the relative pose between the
two vehicles is based on a filtering approach. This technique recovers the relative
pose between the vehicles in order to create a flexible stereo rig. Inspired by the work
presented in [4], in addition to the monocular vision system, each UAV is equipped
with an inertial measurement unit (IMU). The relative pose is estimated by fusing
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metric measurements from the IMUs with visual estimates from the vision system.
The latter is referred to as the visual algorithm.

When the loop-closure detection module detects an overlapping field of view for
two or more UAVs, the visual algorithm estimates the relative pose between the
two vehicles. This is similar to monocular systems, where a multi-view geometry is
created by distributing frame sequences over time. Naturally, the estimated relative
translation is then scaled by a factor of λ, which is less optimal. Inertial systems, on
the other hand, provide metric measurements, but only for the acceleration. Hence,
a fusion mechanism that combines noisy measurements from both the vision and
the inertial systems is necessary. This fusion system is represented by the following
non-linear model: ẋ(t) = f(x(t), t)

y(t) = h(x(t), t)
(9.39)

where x is the state vector which contains the quantities we want to estimate. These
quantities are essentially the relative rotation Rr, the relative translation tr, and the
translation scale λ.

To estimate these quantities, an extended Kalman filter (EKF) is used in [4],
obtaining encouraging results. In our implementation, however, robustness is imper-
ative in the subsequent cooperative motion estimation tasks. The estimated relative
pose between the two UAVs is used to construct a stereo rig, which is a key device
in achieving global cooperative motion. Therefore, more care is taken in estimating
this pose, especially in the presence of high levels of noise.

At a specific time step, the key measurement of the visual algorithm (the vision
system) consists of image points (features) extracted and matched between images
taken by the first and the second vehicle. As we have seen in the previous chapter,
due to the way they are extracted, image point location accuracy is heavily dependent
on the variation in intensity within their neighbourhoods, causing high levels of noise
with unknown mean and variance. Measurements from inertial systems consist of the
triaxial acceleration and the angular rates; again, these measurements are laden with
noise of undefined types. One may formulate the system in (9.39) as a non-linear
discrete-time state transition equation:xk = f(xk−1, wk−1)

yk = h(xk, vk)
(9.40)
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where xk is the state vector at time step k, containing the estimated relative pose,
wk is some additive process noise, yk is the observation, and vk is some additive
observation noise.

The objective of the filtering technique is to estimate xk using available observa-
tions yk. The Kalman filter makes certain assumptions about the noise statistics that
cannot always be valid. The process and observation noise (wk and vk respectively)
is assumed to be uncorrelated, zero-mean Gaussian with perfectly known covariances
(Qk and Rk respectively). In addition, system model matrices should be specified
with high accuracy. Unfortunately, these assumptions limit the EKF’s application
especially in aerial systems, where models and/or noise descriptions are typically not
fully known.

The state and observation model in (9.40) may be rewritten as:

xk+1 = Fkxk +Gkwk + Ωk + ∆1(x̃k|k) + ∆2(x̃k|k)wk

yk = Hkxk + vk + Ψk + ∆3(x̃k|k)
(9.41)

where Fk, Gk and Hk are matrices estimated using the Jacobian of f and h w.r.t.
xk and wk. More importantly, terms ∆i model higher orders of the Taylor series
expansion, which are norm-bounded, as in ∥∆i∥ ≤ δi. The error state vector x̃ is
defined as the difference of an estimate x̂ from its real value x, i.e. x̃k = xk|k − x̂k|k.

The extended Kalman filter (EKF) makes use of this model (9.41); though
neglecting higher order terms of the Taylor series ∆i, presuming they are seldom
necessary. However, a number of studies have concluded that in certain real-time
applications, the EKF is affected by linearisation problems [14, 51]. Usually, non-
linear models are weakly approximated by the Taylor series expansion. Higher order
terms of the Taylor expansion then become necessary. Some alternative approaches
have been proposed to cope with this problem, such as the particle filter (PF) or
unscented Kalman filter (UKF). However, computational requirements impair their
suitability for real-time aerial navigation solutions.

Therefore, it is crucial to design a filter that can handle the modelling errors
and noise uncertainty, while also minimising the worst-case estimation error rather
than the covariance of the estimation error. State estimators that can tolerate
such uncertainty are called robust. Applying more robust estimator such as the
non-linear H∞ filter would appear to be logical next step. This filter is based on
the min-max estimation problem, drawing an important difference from the Kalman
filter: the former is optimal in terms of minimising the L∞-norm between ranges of
disturbances.
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9.6.1 Non-linear Filter design

The discrete-time linear H∞ filter is detailed in Section 4.7.2 (Chapter 5, page 90),
where the model is given by:

xk+1 = Fkxk + wk

yk = Hkxk + vk

(9.42)

where wk and vk are noise terms with an unknown distribution law or deterministic.

Before detailing the non-linear H∞ filter, let us give a brief insight into linear
filtering problems. Two main differences between the Kalman and the H∞ filters can
be distinguished. First, the H∞ filter is optimal in terms of minimising the L∞ norm
of the gain between a set of disturbance inputs and the estimation error. On the other
hand, the Kalman filter minimises the mean square gain between the disturbances
and the estimation error. The second core difference is that the minimum mean
square estimate of the Kalman filter commutes with linear operations. However,
the minimal L∞-norm estimate does not possess this property and the H∞ optimal
estimator depends on the plant output being estimated.

The non-linear H∞ filter has been a subject of research in many studies [3, 14, 51].
It tries to robustly estimate the state while satisfying the H∞ performance criterion.
The system given in (9.41) can be rewritten in the following form:

xk+1 = Fkxk +Gkwk + Ωk + Πk

yk = Hkxk + vk + Ψk + Σk

(9.43)

where
Πk = ∆1(x̃k|k) + ∆2(x̃k|k)wk

Σk = ∆3(x̃k|k)
(9.44)

These inputs must satisfy the following norm bounds:

∥Πk∥2
2 ≤ δ1

2∥x̃k|k∥2
2 + δ2

2∥wk∥2
2

∥Σk∥2
2 ≤ δ3

2∥x̃k|k∥2
2 (9.45)

An alternative way to approach the non-linear model in (9.43) is with the
additional terms Πk and Σk, given as [51]:

xk+1 = Fkxk +Gkcw + Ωk

yk = Hkxk + cvvk + Ψk

(9.46)
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where cw
2 = 1 − γ2δ3

2 and cv
2 = cw

2(1 + δ2
1)−1. One may notice that the terms Πk

and Ψk are omitted and replaced with the terms cw and cv. This formulation gives
the non-linear H∞ a similar structure to the EKF.

9.6.2 State representation

After presenting the general framework of the deployed non-linear H∞, in this section
details about process, measurement and error models are given. The non-linear H∞
filter is mainly used to estimate the relative rotation Rr and the relative translation
tr of the two UAVs involved in a loop-closure. The rotation is represented by either
the rotation matrix Rr or quaternions qr. The Hamilton notation is used to represent
a quaternion q, where qr =

[
q q⊤

]⊤
, q and q⊤are the real and the imaginary parts

respectively [105]. A quaternion representation of a vector p ∈ R3 is pr =
[
0 p⊤

]⊤
.

The key idea in this approach is a fusion between [4]:

• The drift-free pose estimation from the vision system, but with a scale ambiguity
(the visual algorithm),

• And, the metric measurements of the accelerometers and gyros in both vehicles
(inertial system).

These two measurements create a residual during the measurement update. This
residual will induce a state correction, which updates the scale as well. The filter
state includes the vision estimates, which contains the relative rotation Rr, the
relative translation tr and the scale λ. In order to relate the inertial estimates to
those from the vision system (Rr, tr and λ), angular velocities ω1, ω2 as well as the
linear acceleration a1, a2 of the first and second vehicles are included as in the state.
In addition, and in order to relate the IMU’s reading to the relative pose tr, the
relative velocity vr is included in the state vector as well. This yields the following
23-component state:

x =
[
q⊤

r , ω⊤
1 , ω⊤

2 , t
⊤
r , v

⊤
r , a⊤

1 , a⊤
2 , λ

]⊤ (9.47)

The linear accelerations a1, a2 and the angular velocities ω1, ω2 are modelled
as a random walk. Time step k is omitted for simplicity. The scale factor λ has no
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time-dependent dynamics. Hence, the state equations are given as:

q̇r = 0.5(qr ⊗ ω2 − ω1 ⊗ qr),
ω̇1 = nω1 , ω̇2 = nω2 ,

ṫr = vr − [ω1]×tr,
v̇r = Rra2 − a1 − [ω1]×vr,

ȧ1 = na1 , ȧ2 = na2 ,

λ̇ = nλ,

(9.48)

where the operator ⊗ stands for quaternion multiplication, [ωi]× denotes a skew-
symmetric matrix of ωi, and n represents the noise.

9.6.3 Error State Representation

In the state representation, the quaternions are used as attitude description. It is
common that in such a case the error and its covariance are not represented in terms
of an arithmetic difference but with the aid of an error quaternion. This will increase
the numerical stability and handles the quaternion in its minimal representation.
In the following, .̂ represents the estimated state. A preceding ∆ or δ represents
respectively the error state for additive error or multiplicative error. The 22-element
error state x̃ is defined as:

x̃ =
[
δθ⊤

r , ∆ω⊤
1 , ∆ω⊤

2 , ∆t⊤r , ∆v⊤
r , ∆a⊤

1 , ∆a⊤
2 ,∆λ

]⊤ (9.49)

where the difference of an estimate x̂ from its real value is x, i.e. x̃ = x− x̂.

Since the relative rotation associated with the error quaternion δqr can be assumed
to be very small, the small angular approximation is used [198]:

δqr ≈

 1
1
2δθr

 (9.50)

where δθr ∈ R3 is the attitude angular error vector. For the remaining state vector
entries, an additive error is used and represented with ∆.

Note that the multiplicative error is used to represent the error state for the
relative rotation expressed in quaternions. Thus, a small quaternion rotation is taken
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as an error representation instead of quaternion differences:

qr = q̂r ⊗ δθr

˙δθr = q̂
∗
r ⊗ (q̇r − ˙̂qr ⊗ δθr)

(9.51)

Hence, the error state for the relative rotation is given by:

˙δθr = −[ω2]×δθr −R⊤
r ∆ω1 + ∆ω2 (9.52)

An additive error model is used for the relative translation ṫr = ˙̂tr + ∆̇tr and for
the relative velocity v̇r = ˙̂vr + ∆̇vr. Then, the error states for these quantities are
given as [4]:

∆̇vr = [t̂r]×∆ω1 − [ω1]×∆vr

∆̇vr = −R̂r[â2]×δθr + [v̂r]×∆ω1 − [ω1]×∆vr − ∆a1 +Rr∆a2
(9.53)

The remaining error states remain unchanged, hence:

∆̇ωi = nωi
, ∆̇ai = nai

, ∆̇λ = 0, i = 1, 2. (9.54)

This can be summarised in the linearised continuous-time error state equation:

˙̃x = Fcx̃+Gcn (9.55)

with n being the noise vector n = [n⊤
ω1 n

⊤
ω2 n

⊤
a1 n

⊤
a1 ]⊤. Then, the new state covariance

matrix is given as:
Pk+1|k = FPk|kF

⊤ +Q (9.56)

9.6.4 State Prediction

Using the equations in (9.48), the state prediction is performed as follow:

q̂rk+1
= q̂rk

+ 0.5 · ∆t · (q̂rk
⊗ ω̂2k

− ω̂1k
⊗ q̂r),

t̂rk+1 = t̂rk
+ (v̂rk

− [ω̂1k
]× · t̂rk

) · ∆t,
v̂rk+1 = v̂rk

+ (R̂rk
· â2k

− â1k
− [ω̂1k

]×v̂rk
) · ∆t

(9.57)

The remaining states, including the angular velocities ω1 and ω2, the linear
accelerations a1 and a2, and the scale λ, remain unchanged during state prediction.
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9.6.5 Measurements

The visual algorithm:

As stated earlier, using the on-board monocular vision system of each UAV one can
get the relative rotation Rr (or qr) between the two vehicles and the scaled relative
translation tr with a factor λ. The multiplicative error model is used again for the
relative rotation qr:

δqr = q̂
∗
r ⊗ qr =

 q
δq

 ≈

 1
1
2δθr

 ⇒ z̃qr
= δθr = Hqr

x̃ (9.58)

where Hqr
represents the relative rotation measurement matrix, which relates the

error state vector the measurement residuals.

An additive error model is used for the relative translation; therefore, one can
pose the estimated measurement as:

z̃tr = λtr − λ̂t̂r

z̃tr = t̂r∆λ+ λ̂∆tr
(9.59)

which can be linearised to
z̃tr = Htr x̃ (9.60)

where Htr is the relative translation measurement matrix, computed through the
Jacobian ∂z̃v

∂x̃
of the vision measurements z̃v =

[
z̃⊤

qr
z̃⊤

tr

]⊤
with respect to x̃. Then,

one may write:

z̃v =
Hqr

Htr

 x̃ = Hvx̃ (9.61)

where
Hqr

Htr

 = Hv represents the measurement matrix for the vision algorithm.

Inertial system:

Measurements from the on-board inertial system in each vehicle consist of the angular
rates ω1, ω2 as well as the linear accelerations a1, a2 of the first and second vehicles
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respectively. Therefore:

z̃IMU =


ω1 − ω̂1

a1 − â1

ω2 − ω̂2

a2 − â2

 x̃ = HIMU x̃ (9.62)

We obtain the IMU measurement matrices HIMU , by computing the Jacobian ∂z̃IMU

∂x̃
with respect to x̃.

Then:

z̃ =
 z̃v

z̃IMU

 =
 Hv

HIMU

 x̃ = Hx̃ (9.63)

9.6.6 Filter Update

After estimating the 18 × 22 measurement matrix H and given the measurement
covariance matrix R18×18, one can update the estimates by:

• Computing the residual: r18×1 = z − ẑ,
• Computing the innovation: S = HPH⊤ +R,
• Computing the gain: K = PH⊤S−1,
• Computing the correction: ˆ̃x = Kr.

From the correction ˆ̃x, one can compute the updated state variables in the state
vector x. Since a multiplicative error model is used for the relative rotation expressed
in quaternion qr, the correction is computed as a small rotation qr+ . From (9.58),
one can see that δqr+ = 0.5δθr, hence:

qr+ =
[√

1 − q⊤
r+qr+ q⊤

r+

]⊤ (9.64)

This corrective quaternion must be of unit length. If it is not the case, re-
normalisation should be performed. Then,

qk+1|k+1 = qk+1|k ⊗ qr+
(9.65)

For the remaining states, an additive correction is simply performed:

xk+1|k+1 = xk+1|k + ˆ̃x (9.66)
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Finally, the error state covariance is updated as [51]:

Pk+1|k+1 = Pk+1|k − Pk+1|k
[
−L⊤ H⊤

]
Λ−1

−L
H

Pk+1|k

Λ =
LPk+1|kL

⊤ − γ2I −L⊤Pk+1|kH
⊤

−HPk+1|kL
⊤ HPk+1|kH

⊤ +R

 (9.67)

where γ2 = 1
θ

. Note that θ is the one given in Equation (4.35) (page 93).

9.7 Experimental validation

This section discusses the experimental evaluation of the proposed solution. Imple-
mentation of the proposed techniques is conducted using real-world data. Experiments
were performed in a laboratory setting as shown in Figure 9.4, using two AscTec
MAV platforms (Firefly and Pelican) with fully-calibrated forward-looking cameras
capturing images at 20 Hz (Section 1.6, Chapter 1, page 8). In addition, each
platform is equipped with an inertial measurement unit (IMU) providing data at 100
Hz. A wireless network is established to synchronise the time between the on-board
computers in each platform and the ground truth system using the network time
protocol (NTP). The ground truth is collected from an OptiTrack motion-capture
system that provides absolute position information with millimetre accuracy at 100
Hz.

Implementations used to generate the results shown in this section use a sequence
of SOCP feasibility problems for the convexity task with SeDuMi [187] and Yalmip
[116] toolboxes for the modelling and relaxation tasks. The estimated motions are
aligned with the ground truth and the Euclidean distance errors of the UAV position
are computed.

Real experiments are performed within an airspace of about 15×8×10m3. During
each flight, each vehicle estimates its own motion using its on-board monocular vision
system. A loop-closure detection module is launched in the background whose
objective is to detect any significant overlap between the fields of view of each
vehicle [24]. This is done from a central ground station in communication with
each vehicle. As soon as a loop-closure is detected, a stereo rig between the two
vehicles is constructed. More importantly, the corresponding image points that are
employed to detect this loop-closure are also used to recover relative rotation and
translation of the two vehicles. This saves a considerable amount of processing time.
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Fig. 9.4 Set-up used for the experimental validation.

In our experiment, planned paths were established for each vehicle for each flight
maintaining a baseline of around two metres.

Once a stereo rig is constructed, accurate 3D points are generated, allowing
significant correction of each vehicle’s motion. This is due to the fact that 3D scene
points are essential for recovering the scale in monocular motion estimation systems.
The recovered relative pose of the vehicles is also used to correct each vehicle’s
position in the global frame. Figure 9.5 shows samples of images used to detect a
loop closure. In this figure, each column corresponds to images captured by one
vehicle (left column for vehicle one and right column for vehicle two). Matched
points between top and bottom images in the same column are used to independently
estimate the motion of each vehicle. Matched points between the two vehicles are
shown in the images at the top. In our implementation the SIFT feature extractor is
used, with the nearest neighbour search technique in the matching task.

9.7.1 Motion estimation for each UAV

As described in Section 9.4, three-view geometry through the trifocal tensor is used
to recover the camera matrices from which the motion is estimated. The proposed
algorithm for trifocal tensor estimation was tested separately using real data. The
error is represented in terms of residual Euclidean distance, representing the root-
mean-squared (RMS) distance between the measured points and the transferred
points obtained via the estimated trifocal tensor T .
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Fig. 9.5 Sample of images used to detect a loop-closure, and to then construct the
stereo rig.
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The proposed algorithm was tested on images with different illumination patterns
from two different environments, namely, indoor and outdoor locations. Graphs
shown in Figure 9.6 represent the points used along the horizontal axis and residual
error on the vertical axis. A comparison with state-of-the-art iterative methods
based on the Levenberg-Marquardt algorithm is given as well. Results obtained using
the proposed solution based on convex optimisation are plotted in solid blue curves.
For comparison purposes, the algebraic minimisation algorithm using the iterative
Levenberg-Marquardt (LM) algorithm is implemented as well [82]. As one can see,
the proposed algorithm performs very favourably in both environments compared to
the algebraic minimisation algorithm.

Errors on the LM-based algorithm plots confirm its susceptibility to converging
to local minima while the convex optimisation algorithm ensures global minima. The
results obtained indicate that convex optimisation performs very well in comparison
to the LM iterative algorithm. The proposed algorithm has two advantages over
the LM iterative algorithm. First, the cost function which is minimised, i.e. the
Euclidean distance between the measured and the transferred points, is geometrically
meaningful. Second, the cost function is convex; therefore, it is ensured to get the
global minimum.

The recovered trifocal tensor is used to extract the camera matrices, from which
the motion of each vehicle is estimated. Convex optimisation for triangulation is then
used to optimise the estimated motion parameters in a convex bundle adjustment
framework. Following this, 3D scene points are used to remove the scale ambiguity.
Finally, the estimated camera positions are aligned with the ground truth camera
positions and an RMS error for camera position is computed. Results from two
different experiments with different trajectories are shown in this section. A plot
of the error as a function of time is shown in Figure 9.7 for each experiment. In
addition, Figure 9.8 shows plots of the estimated trajectory of each vehicle. These
plots show that the vehicle positions can be estimated relatively well when three-view
geometry is used.

From these results, one can learn that the trifocal tensor method performs
noticeably better than the essential matrix with two-view geometry. This is as
expected, since the trifocal tensor encodes information about the relative scale of the
translations. This confirms that three-view geometry estimates are more accurate
and more consistent. In fact, greater stability is achieved when including a third
view.

Figure 9.8 compares the estimated trajectories of each vehicle using three- and
two-view geometry. One may notice the improvement in the motion estimates when
three-view geometry is used.
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(b) Outdoor environment

Fig. 9.6 Trifocal tensor computation results using the convex optimisation technique
and the algebraic error minimisation with iterative LM optimisation in two different
experiments. The proposed algorithm was tested on images with different illumination
patterns from two different environments, namely, indoor and outdoor locations.
Residual error is plotted as a function of the number of points. The blue solid
line is the convex optimisation algorithm, and the red dashed line is the algebraic
minimisation algorithm using the iterative Levenberg-Marquardt (LM) algorithm.
The results with the convex optimisation technique are better, with the residual
errors being substantially less than in the algebraic error minimisation with iterative
LM optimisation.
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Fig. 9.7 Performance of motion estimation. The vertical axis gives the errors of
each vehicle position. The trajectories estimated using the trifocal tensor are more
accurate for both vehicles.
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Fig. 9.8 The estimated trajectories using two- and three-view geometry plotted
against the ground truth for the two experiments.



9.7. Experimental validation 257

Time [s]

E
rr

or
s

[m
]

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Registration (Global optimisation)
Registration (Least-squares Optimisation)

Fig. 9.9 The graph shows the results of the relative pose estimation using the
registration solution via the global optimisation for the first experiment. Residual
error is plotted as a function of time along with the loop closure occurrences. The
dashed line is the classical ICP via the least squares minimisation. Residual errors
from global optimisation are substantially smaller than those for the algorithm using
the least squares method. The algorithm performs well all through the loop closure
duration.

9.7.2 Relative pose estimation

The two techniques used to estimate the relative optimisation are set off once a
loop-closure is detected. Each technique provides its own uncorrelated estimates.
These estimates are then fused, in the interest of more robustness, stability and
consistency.

Registration using global optimisation:

In this section we describe the results obtained when using the registration approach.
This technique relies on global optimisation through the branch and bound algorithm
to recover the relative rotation and the translation of the two vehicles. Registration is
performed between 3D points constructed by each vehicle. Each vehicle is equipped
with a monocular vision system capturing images at 20 Hz. For comparison purposes,
implementation of the classical ICP algorithm is performed as well. Residual errors
are shown as a function of time along with the loop closure occurrences. The relative
translation errors are estimated in terms of the Euclidean 3D residual error. The
plots all show time along the horizontal axis and residual error along the vertical
axis.

Figure 9.9 and Figure 9.10 compare the classical ICP algorithm with the proposed
technique using global optimisation. Through the residual errors, one can see that
the branch and bound algorithm is able to provide consistent minimisations in
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comparison to the least-squares-based algorithm. The former algorithm performs
well all through the loop closure duration. In these plots, the dashed lines represent
the classical ICP via the least squares minimisation. Residual errors from global
optimisation are substantially smaller than the algorithm using the least squares
method.
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Fig. 9.11 The graph shows the results of relative pose estimation using the non-linear
H∞. Residual errors are plotted as a function of time along with the loop closure
occurrences. The dashed line plots residual errors using the extended Kalman filter.

Relative pose estimation using non-linear H∞ filter:

The non-linear H∞ filter presented in Section 9.6 is implemented to recover the
relative translation and rotation of the vehicles involved in a loop-closure. To evaluate
the filter performance, an extended Kalman filter (EKF) is implemented as well [4],
and comparisons with the proposed non-linear H∞ filter are drawn. Each vehicle is
equipped with an IMU capturing data at 100 Hz. One can realise that the NH∞
filter estimates are relatively more frequent than those of the registration technique,
which provides relative pose estimates at a frequency of 20 Hz. Thus, synchronisation
is of great importance in our solution.

Figure 9.11 and Figure 9.12 illustrate the results for both the translation and
rotation. Errors on these plots are given in terms of residual error, which is the
distance between the estimated relative pose and the true pose given by the Optitrack
system. Again, these plots show residual error behaviour over time. Figure 9.11
shows the relative translation errors using the proposed NH∞ filter and the standard
EKF filter. Even though both filters converge relatively quickly (after about 7
seconds), residual errors from the non-linear H∞ are consistently smaller than the
EKF errors. From these plots, it is clear that the estimates given by the NH∞ filter
are more accurate than those given by the EKF. Indeed, one can clearly see the
NH∞ filter’s robustness and consistency. The NH∞ filter is not constrained by any
assumptions about the system or the noise. This has made this filter more robust
against any type of disturbances. Furthermore, the inclusion of higher order terms
of the Taylor expansion has demonstrated its effectiveness on real aerial navigation,
which is highly non-linear. However, the main problems with the non-linear H∞
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filter are related to the computational cost, in which slightly more time is required
to perform the min-max minimisation. In addition, the non-linear H∞ filter requires
more tuning parameters (including the P , Q and R covariance matrices), in which
the filter is more sensitive. However, the guaranteed robustness of the non-linear
H∞ is more important in our implementation.

A similar pattern is evident in the relative rotation. Figure 9.12 plots errors in the
estimated relative rotations shown through the roll, pitch and yaw angles. One may
notice that the relative rotation has converged relatively quickly in comparison to
the translation. This is because the rotation is independent from the scale ambiguity
in the monocular vision system. The rotations estimated from the vision system are
more consistent in comparison to the translations. Less stable figures are observed
for the yaw angles are noticed. This is due to the fact that most motion has occurred
along the axis handling this angle.
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Table 9.1 summarises the RMS, the minimum and the maximum errors from the
conducted experiments. In each experiment, different trajectories were covered by
each vehicle, involving different relative translations and rotations.

Table 9.1 RMS, maximum and minimum errors for the relative pose estimation using
NH∞ and EKF

Relative Translation [m] Relative Rotation [rad]
X Y Z Roll Pitch Yaw

RMS NH∞ 0.080 0.105 0.097 0.030 0.025 0.060
EKF 0.095 0.112 0.104 0.033 0.026 0.063

Max NH∞ 0.205 0.430 0.290 0.100 0.120 0.180
EKF 0.195 0.453 0.223 0.123 0.102 0.167

Min NH∞ 0.019 0.017 0.020 0.018 0.014 0.028
EKF 0.028 0.023 0.028 0.016 0.021 0.034

Fusing the registration and the NH∞ filter estimates:

After estimating the relative pose between the two vehicles using the two methods
(registration and the NH∞ filter), a fusion algorithm based on averaging the estimates
from the two techniques is used to recover an optimised estimate that will be used
on the stereo rig. Figure 9.13 combines the estimates from each method. Obviously,
estimates from the NH∞ before its stabilisation are discarded. Dots on the solid
green line indicate estimation time with the registration technique. Clearly, the
estimates of the NH∞ are more frequent than those of the registration technique.
This is due to the difference in data acquisition rates between the IMUs and the
vision systems.

Significantly, this graph illustrates the utility of fusing the estimates from the two
techniques. Prior to the NH∞ filter stabilisation, estimates from the registration
are used exclusively. This is, in fact, the main purpose of using two techniques in
estimating the relative pose. Our experiments revealed that the NH∞ requires some
time for its stabilisation when it can provide consistent estimations. This period is
required to correct the absolute translation scale which is estimated from the vision
algorithm. Meantime, the registration method provides absolute estimations and
does not rely on the previous estimates to provide new accurate estimations. Thus,
in the fusion algorithm, at the early stage of the loop-closure, larger coefficients are
credited to the registration method than those for the NH∞ filter. These coefficients
are gradually augmented for the latter technique, allowing more contribution to
its estimates along with its stabilisation. After its stabilisation, even though more
accurate estimates are obtained from the NH∞ filter, the registration technique
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Fig. 9.13 The graph shows the estimation error of the relative translation using the
non-linear H∞ filter, the registration technique and the fused estimates. Residual
errors are plotted as a function of time along with the loop-closure occurrences. The
dotted blue line plot result from the non-linear H∞ filter. Dots on the green solid
curves indicate the estimation time for the registration technique. The dashed red
line shows errors after fusing the estimations from the non-linear H∞ filter and the
registration technique.

continues doing well, with more consistent figures being recorded. This suggests that
using two different techniques can increase the stability of the global cooperative
motion estimation solution. Similar pattern is recorded also for the relative rotation,
where the best performance alternates between the two techniques, as illustrated in
Figure 9.10 and Figure 9.12.

Cooperative motion estimation:

As described in Section 9.3, after estimating the optimal relative transformation
between any two vehicles involved in a loop-closure, a stereo vision set-up is con-
structed. By capitalising on the stereo vision’s advantages, more accurate 3D scene
points can be estimated. This results in improving the accuracy of the individual
motion estimates of each vehicle. In addition, the recovered relative pose between
the vehicles is also used to correct each vehicle’s position in the global navigation
frame.

Figure 9.14 and Figure 9.15 show results following cooperative motion estimation
for two separate experiments. The first two plots on each figure record error evolution
over time for each vehicle. The loop-closure occurs around key-frames 30 and 55
in the first and the second experiment respectively. The RMS position error was
0.15 m before the loop-closure detection. This RMS error has substantially dropped
to 0.06 m after the cooperative motion is performed. The bottom plots on Figure
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9.14 and Figure 9.15 illustrate each vehicle’s trajectory before and after cooperative
motion estimation, aligned with the ground truth. The highlighted portions indicate
the loop-closure occurrences.

As soon as a loop-closure is detected, matched image features are used to construct
joint 3D scenery, or more precisely, a joint map. In addition to the motion estimation,
the proposed solution for the registration allows merging the maps constructed by
each vehicle to build a global single map. This global map will implicitly contribute
to improvement of the motion. By implication, this global map is continuously
constructed and optimised, leading to more accurate motion estimates for vehicles
navigating within this map.

9.8 Conclusions

In this chapter, a system for cooperative monocular visual motion estimation with
multiple aerial vehicles is proposed. The distributed system between vehicles allows
efficient processing in terms of both computational time and estimation accuracy.
The global cooperative motion estimation employs state-of-the-art approaches for
optimisation, individual motion estimation and registration. Three-view geometry
algorithms in a convex optimisation framework are deployed on-board the monocular
vision system for each vehicle. In addition, vehicle-to-vehicle relative pose estimation
is performed with a novel robust registration solution in a global optimisation
framework. Complementary to the relative pose, a robust non-linear H∞ solution is
also designed to fuse measurements from the UAVs’ on-board inertial sensors with
the visual estimates.

Results on real-word data demonstrate the effectiveness and the efficiency of
the proposed solution in a vision-only motion estimation framework. Future work
will focus on the potential use of a decentralised architecture, where communication
becomes a challenging task. Even if it is still an immature technology, investigating
the inclusion of the received signal strength indication (RSSI) technique and the
light-based communication technique for estimating the relative pose between vehicles
would be interesting options.
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Fig. 9.14 Experiment 1: Top two graphs show the error evolution over time before
and after loop-closure detection for each vehicle. The estimated trajectories, aligned
with the ground truth, are shown on the bottom plot. The highlighted portions
indicate the loop-closure occurrences.
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Chapter 10

Discussion and Conclusion

10.1 Overview

Optimisation is of great importance in computer vision, as many fundamental
geometrical tasks may be solved by formulating them as optimisation problems. Until
recently, linear methods based on the singular value decomposition and iterative
estimation algorithms based on the minimisation of an L2 norm were typically
adopted to solve vision problems.

In this thesis, we investigated the deployment of convex optimisation techniques to
address the motion estimation problems in computer vision. We have seen that when
minimising the maximal error, the optimisation functions exhibit several significant
convexity properties, including quasi-convexity. Indeed, the L∞ norm exhibits many
attractive properties for optimisation in computer vision problems. Modelling the
motion estimation problem via this norm facilitates getting globally optimal solutions.

10.2 Summary and discussion of contributions

The first contribution in this thesis is presented in Chapter 4. The L∞ norm and
the H∞ filter are coupled to convex optimisation. In addition to the H∞ filter, the
recursive least squares technique is presented as well. The use of these techniques is
motivated by their ability to cope with noisy data and to provide optimal solutions.
We have shown in this chapter that although solutions based on least squares
techniques are able to provide good results, they also impose limitations that a
solution based on the L∞ norm is able to overcome.

The second contribution is presented in Chapter 5. This solution investigates the
integration of information from all three RGB channels of colour images. In most
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vision applications, colour images are first converted to grey-level images, leading
to a serious loss of information. In our solution, however, each channel is processed
separately. Then a fusion mechanism via the the covariance intersection filter is
employed. This filter combines information from all three RGB channels, which
results in a decrease in measurement errors, leading to more accurate estimates of
the fundamental matrix.

Due to the way they are extracted, image feature location accuracy is heavily
dependent on the intensity variation within their neighbourhoods, from which their
uncertainties are estimated. We showed through this solution that regardless of the
algorithm used to extract them, feature positions always contain some uncertainty.
Indeed, the novelty in our approach consists of fusing feature localisation uncertainties
in each RGB channel to robustly estimate the motion of a monocular vision system
via the fundamental matrix. Over a series of experiments in different environments,
we showed that including feature uncertainties from all three RGB channels leads to
better estimates of the fundamental matrix, and consequently better estimates of
the motion parameters.

In Chapter 6, a robust convex optimisation solution for monocular motion
estimation systems is presented. This solution employs the uncertainty estimation
techniques presented in Chapter 5. Estimating the system uncertainty without
evaluating its propagation may not be sufficient in some navigation systems. In this
chapter we showed the improvement in the global motion estimates when the system
uncertainties and their propagation to the relative rotations and translations, and to
the 3D scene points are incorporated. Rather than using the H∞ filter to solve the
scale ambiguity problem for the monocular system, we set up a robust least squares
algorithm based on the SOCP approach capable of handling system uncertainties.
Experimental evaluations showed that robust convex optimisation with the L∞ norm
for uncertain data and robust least squares clearly outperform the classical methods
based on least squares and the Levenberg-Marquardt algorithm.

In practice, for any navigation system, errors in position estimates grow continu-
ously due to the integration of noisy measurements over time and to the inherent
inaccuracy of the devices. This unavoidable drift in motion estimation needs to be
corrected. Thus, providing additional correction mechanisms ought to have a major
impact on the final estimate of the navigation solution. Thus, following a long period
of navigation in an unknown environment, detecting that the vehicle has returned to
a previously visited location offers the opportunity to correct and to increase the
accuracy and consistency of a vehicle’s motion estimate.

In the computer vision community this is known as detecting loop-closures.
Consequently, in Chapter 7 a novel appearance-based technique for visual loop-
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closure detection is presented. The widely used techniques based on the Bag-of-
Words image representation have shown some limitations, especially in connection
to the perceptual aliasing problem. The proposed solution uses both local invariant
and colour features with a combination of Gaussian mixture modelling (GMM)
and the KD-tree data structure. In doing so, this solution takes advantage of the
robustness of the KD-tree structure and the efficiency of the Gaussian mixture
modelling representation. Experimental validations using real data from indoor and
outdoor environments showed that due to their efficiency and complementarity, the
combination of the KD-tree structure and the GMM could be a plausible alternative
in real-time loop-closure detection for mobile robot navigation.

Upon developing a loop-closure detection technique, a means of corrections for
any potential drift is required. Hence, in Chapter 8, a new robust convex pose-graph
optimisation solution for UAV monocular motion estimation systems is presented.
Once a loop-closure is detected, using the technique presented in Chapter 7, the
convex pose-graph optimisation solution performs a correction for any drift incurred
during the monocular motion estimation.

The pose-graph formulation is an intuitive way to address the pose estimation
problem. Most methods in the literature utilise standard approaches, like the Gauss-
Newton or Levenberg-Marquardt algorithms. However, with these methods there is
no guarantee of convergence to the global minimum. Furthermore, they may lead
to an infeasible solution. As such, these methods are also greatly dependent on
good initialisation. Also while the aforementioned iterative methods, the proposed
solution is able to recover the optimal positions configuration using convex opti-
misation. Moreover, uncertainty estimates and their propagation through multiple
view geometry algorithms are included in this solution as well. Through a variety of
experimental validations on real-world data, from indoor and outdoor environments,
and comparison to state-of-the-art methods, using convex optimisation in pose-graph
problems has proven its efficiency in motion estimation correction after loop-closure
detections.

After developing robust solutions for visual navigation systems, in which an
autonomous vehicle can estimate its own localisation independently, a need for
cooperative solutions arises. To round out the work in this thesis, a system for coop-
erative monocular visual motion estimation with multiple aerial vehicles is proposed
in Chapter 9. The distributed system between vehicles allows efficient processing in
both computational time and estimations accuracy. The global cooperative motion
estimation introduced employs state-of-the-art approaches for optimisation, individ-
ual motion estimation and registration. Three-view geometry algorithms in a convex
optimisation framework are deployed on board the monocular vision system for each
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vehicle. In addition, vehicle-to-vehicle relative pose estimation is performed with a
novel robust registration solution in a global optimisation framework. In parallel, and
as a complementary solution for the relative pose, a robust non-linear H∞ solution
is designed to fuse measurements from the UAVs’ on-board inertial sensors with
the visual estimates. Results on real word data demonstrate the effectiveness and
efficiency of the proposed solution in a vision-only motion estimation framework.

Through this thesis, we have provided insight, discussion and experiments about
deploying convex optimisation in motion estimation. From a practical point of view,
we conclude that it is a relatively computationally inexpensive approach to achieving
optimality in motion estimation problems. In contrast to most previous work dealing
with motion estimation, we have presented in this thesis a framework for estimating
globally optimal solutions. For a number of computer vision problems, we have
shown both theoretically and experimentally that convex optimisation is indeed a
tractable approach. In conclusion, we believe that the use of convex optimisation
methods certainly has a place in visual motion estimation.

10.3 Future work

In this thesis, we proposed several solutions to the robust visual motion estimation
problem. However, to comprehensively solve this problem, there is still a significant
amount of research left to be done. We consider that the solutions developed and
presented here are a next fundamental building block towards achieving this goal.
The proposed navigation solutions ensure a level of stability and modular design.
Achieving a totally autonomous vision-based systems is still some way off. However,
mass-production in parallel with maturing technology, especially for long-life batteries
and heightened payload capabilities, can cause this to happen in the near future.

Taking a broader view, we believe that by using the proposed solutions in
applications where vision is the only perceptual means of navigation, it will be
possible in the near future to deploy these systems in operations like search and
rescue, and aerial surveillance. Widening use of micro aerial vehicles (MAVs) on
which compact vision installations can be mounted spurs further interest in robust
vision systems requiring global solutions. The growing demand for MAVs in urban
and indoor environments for domestic missions, such as item delivery or emergency
medication supply is noticed.

Multi-camera installations are a potential research topic in which developing
multi-camera rigs and their calibration for absolute motion estimation with many
open challenges. Investigating visual motion estimation by tracking moving objects in



10.3 Future work 273

highly dynamic scenes also opens up new challenges. Future works may also include
real-time implementation using graphics processing unit (GPU) programming. In
particular, GPU programming may reduce the computation time required to solve
the motion of multi-camera systems. RGB-D (Kinect-style) cameras provide real-
time colour and dense depth data through active sensing, combining the strengths
of passive cameras with laser range-finders. An emergent research community is
moving towards using this affordable equipment as a real-time device for robot
perception. Equally, future work may include a scenario of using an RGB-D sensor
in an autonomous micro vehicle (MAV) for navigation, where real-time multi-view
processing rates are sought.

In cooperative navigation, a potential use of a decentralised architectures could
improve coordination in a fleet of MAVs in urban environments. Even if it is still
an immature technology, investigating the inclusion of the received signal strength
indication (RSSI) technique and light-based communication techniques to estimate
the relative pose between vehicles would be valid options to investigate as well.
Using Li-Fi technology rather than radio frequency signals which are intolerant to
disturbances may improve decentralised cooperative motion estimation.





Appendix A

Convex Optimisation and Multiple

View Geometry

This appendix presents a review of some multiple-view geometry problems that can
be solved using convex optimisation. Techniques introduced in Chapter 3 and 2 are
used extensively throughout this thesis. Particular attention is given to problems of
triangulation estimation, camera resectioning and homography. These tasks were
implemented using the second-order cone programming (SOCP) [94] on benchmark
datasets, familiar to the computer vision community. Results are then compared
to traditional methods such as the linear approach by applying the Direct Linear
Transformation (DLT) [82] and the L2 minimisation using the Levenberg-Marquardt
algorithm. For comparison, the L∞ projection error and Root Mean Squares (RMS)
are used to illustrate the performance of convex optimisation.

A.1 Triangulation problem

The problem of estimating a 3D scene point’s positions when seen from multiple
cameras is known as the triangulation problem. Given the projection matrices, the
position of the 3D scene points can be estimated from their measured image point
positions in two or more views. Figure A.1 illustrates this problem.

Definition 7. The triangulation problem is defined as follow: Given a set of image

points x̂i and camera matrices Pi for i = 1, · · · ,m, find the scene point X̂ =

(X, Y, Z, 1)⊤ such that x̂i = PiX̂ for all i.
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Fig. A.1 The triangulation problem. Each point is seen from two or more cameras.
The aim is to estimate the position of the 3D scene points Xi.

This problem is usually solved using linear techniques such as the direct linear
transformation (DLT) [82], where an algebraic cost function is minimised. It can also
be solved using iterative minimisation techniques such as the Levenberg-Marquardt
algorithm, in which a geometric non-linear cost function is iteratively minimised.
In this section, we show how the triangulation problem can be formulated as a
quasi-convex optimisation problem.

Let us start first by setting out the general framework for this problem. The last
coordinate of the image points is equal to one, so x̂i = (xi, yi, 1). The variable that
we wish to estimate in this problem is the 4-element X̂, where X̂ = (X, Y, Z, 1)⊤.
The optimisation variable is then x = (X, Y, Z)⊤ ∈ R3.

Let Pi, for i = 1, · · · ,m be the 3 × 4 camera matrices and x̂i, the corresponding
measured image points of scene X, where x̂i = PiX̂. Then PiX̂ =

(
p1⊤

i X̂, p2⊤
i X̂, p3⊤

i X̂
)
.

Here the 3 × 4 camera matrices Pi are given as:

Pi =


p1

i

p2
i

p3
i

 =


pi1 pi2 pi3 pi4

pi5 pi6 pi7 pi8

pi9 pi10 pi11 pi12



The vector pj
i is the jth row of the ith camera matrix Pi. Then the optimisation

problem can be formulated as:

min
x

maxi d
(
x̂i, PiX̂

)
, for i = 1, . . . ,m

subject to p3
i

⊤X̂ > 0, for i = 1, . . . ,m
(A.1)
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where d
(
x̂i, PiX̂

)
is the distance between the projected 3D scene points PiX̂ and the

measured image points x̂i. Note that the quantity p3
i

⊤X̂, in the constraint function,
represents the depth of a point in an image, which implies that the points must lie in
front of the cameras. This optimisation entails that we are looking for the position
of X that minimises the biggest error between its projections on the m images and
the corresponding image points. Therefore, the residual error εi on the ith image can
be written as:

εi = d(x̂i, PiX̂)

=

√√√√√p1
i

⊤X̂
p3⊤

i X̂
− xi

2

+
p2

i
⊤X̂

p3⊤
i X̂

− yi

2

=

√√√√√√
(
p1

i
⊤X̂ − xip3⊤

i X̂
)2

+
(
p2

i
⊤X̂ − yip3⊤

i X̂
)2

(
p3⊤

i X̂
)2

=

√√√√fi1 (x)2 + fi2 (x)2

fi3 (x)2

(A.2)

The point X̂ is seen fromm cameras, this givesm error residuals: ε = (ε1, ε2, · · · , εm)⊤.
Therefore, the optimal 3D scene point X̂ is the one that minimises the norm of the
error residuals vector: ∥ε∥.

Most classical methods use the L2 norm for the cost function ∥ε∥2 or, equivalently,
∥ε∥2

2 = ∑m
i=1 ε

2
i = ∑m

i=1 d(x̂i, PiX̂)2. This optimisation problem is shown in the
literature to have multiple local minima [80, 82, 94, 101]. Therefore, iterative
methods can easily get trapped in one of these local minima instead of ending up in
the global minimum.

To get around this problem, the L∞ norm is used instead. Optimising the L∞

norm of ε leads to the cost function: ∥ε∥∞ = maxi|εi| = maxi|d(x̂i, PiX̂)|. The goal
of the optimisation problem now is to minimise the maximum error between the
projected points and the measured image points, hence:

min
x

f0(x) = max
i=1,··· ,m

fi(x) = max
i=1,··· ,m

(
fi1 (x)2 + fi2 (x)2

fi3 (x)2

)
subject to fi3 (x) > 0, for i = 1, . . . ,m.

(A.3)

From A.2, one can see that fi1, fi2, fi3 are all affine functions of the optimisation
variable x. Then, according to Theorem 8 (page 70), fi(x) = fi1(x)2+fi2(x)2

fi3(x)2 is quasi-
conex function. In addition, according to theorem 7 (Chapter 3, page 61), the function
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f0 = max
i=1,··· ,m

(
fi1(x)2+fi2(x)2

fi3(x)2

)
is also quasi-convex since the pointwise maximum is also

convex. The constraint function has a convex domain {x|}fi3 (x) > 0, for i =
1, · · · ,m, therefore problem (A.3) is a quasi-convex optimisation problem [94, 101].

To solve this optimisation problem, suppose δ is an upper bound for the objective
function f0(x) = max

i=1,··· ,m
fi(x). Obviously, δ is also an upper bound for each of the

functions fi(x). Then,

fi(x) ≤ δ

fi1 (x)2 + fi2 (x)2

fi3 (x)2 ≤ δ√
fi1 (x)2 + fi2 (x)2

fi3 (x) ≤ δ

(A.4)

Since fi3 (x) > 0 for i = 1, · · · ,m, and by using the norm ∥u∥2 =
(
u⊤u

) 1
2 , then

the function in A.4 may be reformulated as:

∥fi1 (x) , fi2 (x)∥2 ≤ δfi3 (x) , i = 1, . . . ,m. (A.5)

Thus, the quasi-convex optimisation problem in (A.3) can be rewritten as:

min
δ,x

δ

subject to ∥fi1 (x) , fi2 (x)∥2 ≤ δfi3 (x) , i = 1, . . . ,m.
(A.6)

This problem can be solved using a sequence of SOCP feasibility problems via
the bisection algorithm (Algorithm 1, page 65) as shown in Section 3.7.1. Essentially,
for a given value of δ ∈ R in each iteration of the bisection algorithm, the problem
(A.6) is solved by checking its feasibility. The convexity frame is maintained due to
the intersection of convex cones. If the SOCP problem (A.6) is feasible, then there
must exist a more optimal solution δ∗ ≤ δ. However, if the SOCP is infeasible, then
the optimal solution must be greater than δ (δ∗ > δ). This leads toward using a
bisection search to find the minimum value of δ for which the optimisation problem
is feasible [82, 94]. Therefore the L∞ norm of ε is defined to be the maximum of
(ε1, ε2, . . . , εm).
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A.1.1 Experiments

To show the performance of quasi-convex optimisation with the L∞ norm in the
triangulation problem, we conducted some experimental tests on real data. The
publicly available image sequence of the corridor dataset of the Oxford vision group
[203] is the one used. This sequence consists of 11 real images. Errors were estimated
using two methods. The first one is root mean squares (RMS):

RMS Error =
√√√√ 1
m

m∑
i=1

ε2
i (A.7)

and the second one is the L∞ error:

L∞ Error = max
i=1,...,m

|εi| (A.8)

For comparison purposes three optimisation methods were implemented in this
experiment as shown in Figure A.2. The first is the quasi-convex optimisation
method with the L∞ norm as described in the present section. The second method is
a linear approach applying the direct linear transformation (DLT) algorithm, which is
presented in [82]. The third approach employs an iterative minimisation technique by
using the Levenberg-Marquardt algorithm. The method adopted here is introduced
in [94] and uses the SeDuMi toolbox [187] for the convex optimisation problem via
the second-order cone programming SOCP.

Investigation of the results obtained shows varying performance according to the
method used to evaluate the errors. Figure A.2a and Figure A.2b show the Euclidean
distance errors in the image plane space against the number of views used to estimate
the 3D scene point position. When the L∞ projection error is used (Figure A.2a),
the L∞ method clearly outperforms both the DLT method and the L2-based iterative
method. This is in conformity with the theory in terms of global optimality of the
L∞. The L2 method seems to perform better than the DLT method as well. When a
comparison is performed using the RMS errors (Figure A.2b), both the L∞ and the
L2-based iterative methods clearly outperform the DLT method. Figure A.2c and
Figure A.2d show respectively, the image points in the last view of the sequence and
the 3D scene points recovered.
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(a) (b)

(c) (d)

Fig. A.2 The RMS and L∞ errors of the triangulation for the corridor dataset.
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A.2 Camera resectioning

Camera resectioning is the process of finding the camera projection matrix P given
3D scene points and their corresponding image points. The camera projection matrix
P represents the relationship between 3D scene points Xi and their image projections
xi (Figure A.3). The objective is to find a projection matrix P such that xi ≃ PXi.

Fig. A.3 Illustration of the problem of camera resectioning. The problem here is to
find the 3 × 4 camera matrix P that projects 3D scene points Xi to images points xi

where xi ≃ PXi for i = 1, . . . ,m.

This problem is taken into consideration in our work due to its importance in
recovering the camera rotations and translations, and also for intrinsic calibration
parameters. This task requires correspondence between the 3D scene points X̂ =
[X, 1]⊤ and their image points x̂ = [x, 1]⊤ = [xi, yi, 1]⊤ for i = 1, . . . ,m. The
parameters of the 3 × 4 projection matrix P are:

P =


p1

p2

p3

 =


p1 p2 p3 p4

p5 p6 p7 p8

p9 p10 p11 1



Note that because the projection matrix P can only be recovered up to a scale
factor, its last parameter has been set to one. The optimisation variable is then
x = (p1, . . . , p11) ∈ R11.

Definition 8. The camera resectioning problem is defined as follow. Given a set of

correspondences X̂i ↔ x̂i, for i = 1, . . . ,m, find the 3 × 4 camera matrix P such that

x̂i = PiX̂i for all i.
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As in the triangulation problem, let d(x̂i, P X̂i) be the distance between the
projected 3D scene points via the camera P and the measured image points. Then
the optimisation problem is:

min
x

maxi d(x̂i, P X̂i), for i = 1, . . . ,m.

subject to p3⊤X̂i > 0, for i = 1, . . . ,m.
(A.9)

Let the ith error residual be εi = d(x̂i, P X̂i), where i = 1, . . . ,m. Note that m is
the number of image points. Thus we have m residual errors ε = (ε1, ε2, . . . , εm).
Similarly to the triangulation problem, this problem is generally solved using linear
or iterative optimisation techniques. In our work, we formulate it as a quasi-convex
optimisation problem and we try to solve it using a sequence of SOCP feasibility
problems. The optimisation here tries to minimise the maximum error between the
projected points and the measured image points. Thus:

min
x

f0(x) = max
i=1,··· ,m

fi(x) = max
i=1,··· ,m

(
fi1 (x)2 + fi2 (x)2

fi3 (x)2

)
subject to fi3 (x) > 0, for i = 1, . . . ,m.

(A.10)

where fi1(x) = p1⊤X̂i −xip
3⊤X̂i, fi2(x) = p2⊤X̂i −yip

3⊤X̂i and fi3(x) = p3⊤X̂i. The
recovered camera matrix is then the matrix P that minimises the norm of this error
vector ε = (ε1, ε2, . . . , εm). Again, according to Theorem 8 (page 70) and Theorem
7 (page 61) in Chapter 3, the optimisation problem A.10 is quasi-convex. Hence, a
sequence of feasibility problems can be used.

A.2.1 Experiments

To show the deployment of quasi-convex optimisation and the L∞ norm for solving
the camera resectioning problem, we used data from the corridor sequence [203].
This dataset has 11 frames, so we can recover 11 camera matrices Pj . In each frame,
correspondences between 3D scene points X̂i and image points x̂i are recovered. We
then used these point correspondences, X̂i ↔ x̂i, to estimate the camera matrix Pj

for each view.
In this problem, we compare the convex optimisation performance of the L∞

re-projection error norm and the RMS errors. Figure A.4 shows that the projection
errors using the RMS errors norm are relatively better (errors vary between 0.42
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Fig. A.4 Camera resectioning problem - The RMS errors and L∞ errors for the 11
camera matrices estimation.

and 1.1 pixels) than those with the L∞ re-projection error norm where errors were
between 0.8 and 1.2 pixels.

A.3 Homography estimation

In the homography problem we wish to estimate the eight unknown parameters of a
transformation matrix H, called the Homography matrix, based on known planar
point correspondences (Figure A.5) [82, 94]. Thus, if we have planar 3D scene points
X̂k projected to image I as x̂i

k and to image J as x̂j
k, then the correspondences

x̂i
k ↔ x̂j

k are related by the 3 × 3 homography matrix H, where x̂j
k ≃ Hx̂i

k, for
k = 1, . . . ,m. Note that the vectors x̂i

k and Hx̂j
k are only equal up to a scale factor

(Figure A.5). Therefore, our aim is to find the parameters of H :

H =


h1

h2

h3

 =


h1 h2 h3

h4 h5 h6

h7 h8 1



Note again that because the homography matrix H can only be recovered up to a
scale factor, its last parameter has been set to one. Hence, the optimisation variable
will be then x = (h1, h2, . . . , h8)⊤ ∈ R8.
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Fig. A.5 Homography Estimation. The task is to find 3 × 3 Homography matrix H
such that x̂j

k ≃ Hx̂i
k for k = 1, . . . ,m.

Definition 9. The homography estimation problem is defined as follows: given a

set of point correspondences x̂i
k ↔ x̂j

k for k = 1, . . . ,m, find H such that x̂j
k ≃ Hx̂i

k

for all k.

Similarly to the triangulation and camera resectioning problems, let d(x̂j
k,Hx̂i

k)
be the distance between the projected 3D scene points and the measured image
points. Then, the optimisation problem can be formulated as:

min
x

maxi d
(
x̂j

k,Hx̂i
k

)
, for k = 1, . . . ,m.

subject to h3⊤x̂i
k > 0, for k = 1, . . . ,m.

(A.11)

Let the kth error residual be εk = d(x̂j
k,Hx̂i

k) where k = 1, . . . ,m and x̂i
k = (xi

k, y
i
k, 1)

(similarly x̂j
k = (xj

k, y
j
k, 1)). Note that m is the number of image points (Figure

A.5). We therefore have then m residual errors ε = (ε1, ε2, . . . , εm). The estimated
homography is the matrix H that minimises the norm of this error vector.

As in previous problems, this optimisation problem is generally solved using linear
or iterative optimisation techniques. In our work, we try to solve it using a sequence
of SOCP feasibility problems after formulating it as a quasi-convex optimisation
problem. Thus:

min
x

f0(x) = max
k=1,··· ,m

fk(x) = max
k=1,··· ,m

d(x̂j
k, Hxi

k) = max
k=1,··· ,m

(
fk1 (x)2 + fk2 (x)2

fk3 (x)2

)
subject to fk3 (x) > 0, for k = 1, . . . ,m.

(A.12)
where fk1(x) = h1⊤x̂i

k − xj
kh

3⊤ x̂i
k, fk2(x) = h2⊤ x̂i

k − yj
kh

3⊤ x̂i
k and fk3(x) = h3⊤ x̂i

k.
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(a) (b)

Fig. A.6 The RMS and L∞ errors for the 10 homographies estimated using convex
optimisation. Left image shows 23 planar image points used to estimate homographies
between consecutive pairs in the corridor dataset.

A.3.1 Experiments

The corridor sequence is again used in this problem exploiting from 23 points on
the left frontal wall (Figure A.6a). For each pair of consecutive frames (Ii and Ii+1),
correspondences between image points {x̂i

k ↔ x̂i+1
k } are recovered. These image

points are images of 3D scene points that lie on the left frontal wall. These image
points {x̂i

k} and {x̂i+1
k } are used to then estimate the homographies between the

corresponding frames. The corridor dataset includes 11 frames, which means that
we have 10 homographies to estimate. In this problem, we compared the convex
optimisation performance between the L∞-reprojection error norm and the RMS
errors. As shown in Figure A.6b, the L∞ method performs better when adopting the
L∞ error while using more image correspondences.





Appendix B

The KD-tree Data Structure

In order to have a clear idea about the KD-tree data structure, let us consider the
following example. Suppose that we want to build a search tree out of some points
E = (a, . . . , i), where the aim is to recover the nearest neighbour point to a query
point p as illustrated in Figure B.1.

B.1 Construction of a KD-tree:

A way of constructing the KD-tree is illustrated in Figure B.2. In this case, we
have two dimensions x and y, and the set of points E = (a, . . . , i). First, we sort
the points in each dimension, and then we divide the points perpendicular to the
axis with widest spread. In two dimensions, we can split the plane into two regions
by drawing a line across one axis. In three dimensions, we could partition space
into two regions by drawing a plane, then taking the regions above and below the
plane as the two half-regions. When working with KD-trees, one often uses the term
splitting hyper-plane to refer to the object that splits space in half. This technique
is known as binary space partitioning (since each step splits space into two regions).

In our two-dimensional illustrative example, the x axis holds the widest spread
as shown in Figure B.2a. Then, we sort again the points in one side and split them
into two sub-sets as shown in Figure B.2b. We recursively build a KD-tree in each
half-space by selecting the axis with the widest point spread and splitting the data
through it, as shown in Figure B.2b and Figure B.2c. If we continue this construction
to completion, our resulting KD-tree will look like the tree in Figure B.2d. As we
can see in this figure, each node in this tree has a splitting axis, a splitting value
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D: Distance estimation function.
p: Query Point.
E = (a, . . . , i) is a set of points.

Fig. B.1 Nearest Neighbour Search illustration. The red star refers to the query
point, and the green circles refer to the set of points.

(S1, . . . , S8), and a left and right sub-tree. If the left and right children are null, a
node will represent a point.

B.2 Nearest-neighbour search in KD-trees

This structure has been widely used in the computer vision community. The most
interesting operation on the KD-trees is the Nearest-Neighbour Search (NNS). KD-
tree structures are known for their abilities to reduce the search time from linear to
logarithmic.

For the nearest neighbour search, where a distance estimation function D is given
(also known as dissimilarity measure), the aim is to extract the nearest elements to
the query point p in a KD-tree B containing a collection of points (Figure B.1). If
the nearest neighbour to p is Q, then the mathematical formulation of this constraint
is given as [17]:

(∀R ∈ B, {R ̸= Q} ⇒ [D(R, p) ≥ D(Q, p)] (B.1)

This constraint can be applied as well for the m nearest neighbours to p.
To illustrate the Nearest-Neighbour Search (NNS) in a KD-tree, let us consider

again our example of the set of point E = (a, . . . , i) and the constructed KD-tree
shown in Figure B.2. Now, our scenario is as follow: given a KD-tree and a point in
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Fig. B.2 Illustration of a KD-tree construction.
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space p (called the Query Point), which point in the KD-tree is closest to p? (The
point in the data set closest to the query point is called its nearest neighbour).

In our scenario, which is depicted in Figure B.1, the query point p is marked as a
red star. The first operation to be performed is a recursive search to find the point
in the same cell as the query point. To do that, let us consider the Figure B.3a. By
checking the splitting value S1 and the splitting axis x in the root of the tree with
the query point, we can conclude that the cell that contains the query point must
be in the left-hand side sub-tree (shaded in yellow). Applying the same principle to
left-hand side sub-tree, by checking the splitting values S2 and S4, we can understand
that the query point belongs to cell where the point g is (shaded in cyan in Figure
B.3b). The point g will be selected as the nearest neighbour at this moment.

This first point is not necessarily the nearest neighbour, but at least we know
that any potential nearer neighbour must lie closer, and so must lie within the red
circle centred on the query point and passing through the point g (Figure B.3b).
Although in this example this region is a circle, in three dimensions it would be a
sphere, and in general it is called the candidate hyper-sphere.

We now back up to the parent of the current node (point g ), and we check
whether it is possible for a closer solution to that so far found to exist in this parent’s
other sub-trees. This is done by checking the splitting value S5 (Figure B.3c). Point
e is found to be closer than the nearest neighbour so far g . Then, obviously the

point e will be declared as the new nearest neighbour. Point d and the sub-tree
through the splitting value S3 (points a and b ) will be discarded since they have
greater values than the splitting values S5 and S2 respectively.

Then, we recursively check the right sub-tree of the splitting value S1, and we
check whether each node is closer than the nearest neighbour we have so far. Figure
B.3d illustrates the final search results. Blue nodes represent points that have been
checked for potential nearer neighbours. Grey points characterise the discarded
nodes.

B.3 Computational complexity

The average running times in a tree of n nodes is O(log n) for the insertion and
deletion tasks, and for the nearest neighbour search as well [17, 113]. Storage for
the KD-tree is O(n). These performances overcome by far the known existing
search algorithms [113]. That’s why KD-tree data structure have been widely used
in applications where computational time is very important. In vision systems,
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Fig. B.3 Illustration of Nearest Neighbour Search in a KD-tree.
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these structures are started to broadly extent for efficient nearest neighbour search
[136, 177].



Appendix C

The Fundamental Matrix and

Image Interest Point Extraction

C.1 The Fundamental matrix

The fundamental matrix, F , is an algebraic representation of epipolar geometry in
two-view geometry.

Given two views with camera matrices Pi and Pj , a pair of matching image points
x′

j ↔ x′
j must satisfy: x′

j
⊤Fx′

i = 0. It is easy to see that the essential matrix is the
specialisation of the fundamental matrix to the case of calibrated cameras. That
is, when the calibration matrix K is known. Historically, the essential matrix was
introduced to the computer vision community by [117] before the fundamental matrix
[82], but commonly the latter matrix is estimated first and then the essential matrix
is deduced from it using (2.43) (Chapter 2, page 42).

The geometric interpretation of the fundamental matrix is illustrated in Figure
C.1. First, note that ei ∈ R3 is a point where the baseline crosses the image plane.
This point is called the epipole (ej in the second image plane in Figure C.1). In this
figure, x′

i and x′
j are the image points of a 3D scene point X. One may notice that

point x′
i may be mapped onto a line lj in the second view. This important line is

called the epipolar line since it intersects the epipole:

x′
j
⊤
Fx′

i = x′
j
⊤
lj = 0 (C.1)
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Fig. C.1 The epipolar geometry

Since the search area is reduced to a line, this epipolar geometry property will
improve the matching task between image features. Figure C.2 shows an example of
image point matching using epipolar lines. From (C.1) we can see that the mapping
of a point via the matrix F to an epipolar line is given by:

Fx′
i = lj (C.2)

Estimating F

In general, the fundamental matrix is recovered from point correspondences between
images [42, 81, 121, 129, 217]. Since it is defined to a scale factor, it can be estimated
from no more than eight correspondences [189]. Similarly to the essential matrix in
the calibrated case, the fundamental matrix can be estimated using linear techniques
only. Let us consider the epipolar constraint:

x′
j
⊤
Fx′

i =
(
x′

j, y
′
j, z

′
j

)⊤


f1 f2 f3

f4 f5 f6

f7 f8 f9

 (x′
i, y

′
i, z

′
i) = 0 (C.3)
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(a) (b)

Fig. C.2 Example of image point correspondences using the epipolar constraints.

Let the vector f ∈ R9 contain the elements of the fundamental matrix:

f = (f1, f2, f3, f4, f5, f6, f7, f8, f9)⊤ ∈ R9 (C.4)

The epipolar geometry constraint (C.3) can be formulated as the inner product of
A and f . This leads to the linear equation in the entries of f :

Af = 0 (C.5)

where A ∈ Rn×9 can be constructed from n image points correspondences. At least
eight such correspondences are required to solve for f to a scale. Similar techniques
to those used in estimating the essential matrix can be used to solve (C.5) for the
vector f . Therefore, the SVD can be used, where the solution is the smallest singular
value of A. Matrix F is constrained to have a rank of 2. To enforce that we can
decompose it using SVD and then put the third non-zero singular value to zero, i.e.
σ3 = 0.

However, we again incur false correspondences between image points, also known
in computer vision as outliers. The latter could significantly affect the accuracy
of the estimate of the F matrix. This is due to some noisy measurements and to
the inaccuracy inherent in matching algorithms. Thus, the problem now is how to
solve this parameter estimation in the presence of outliers? One way to get rid of
false correspondences and recover a dominant estimate of F is by using an iterative
outlier removal algorithm such as RanSaC (RANdom SAmple and Consensus)[58]
(Algorithm 2). The output of the RanSaC algorithm is a dominant F matrix and set
of inliers of image point correspondences.
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Algorithm 2 RanSaC algorithm for fundamental matrix estimation.
Objective: Reject correspondence outliers and estimate a dominant fundamental
matrix, F .
Output: Dominant F with a set of consistent image point matches (inliers).
Given:

• Initial set of n image point matches (x′k
i ↔ x′k

j ), k = 1, · · · , n (n ≥ 7);
• Error threshold ε (to decide whether a point is an inlier or not);
• Maximum number of iterations imax.

i := 1;
Stop = false;
while Stop is false and i < imax do

i := i+ 1;
• Select m random image points out of n initial image point matches (m = 7 or
m = 8);

• Compute the fundamental matrix from the m randomly selected image points;
• Classify (x′

i, x′
j) inliers/outliers among n points as a function of the distance of

x′
j to epipolar line associated with x′

i with precision ε;
if the number of inliers is larger than the most coherent one so far then

keep it and re-estimate F using this set;
Stop =true;

end if
end while
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In this thesis, we will be investigating the introduction of optimisation techniques
in motion estimation for computer vision tasks. Given that the motion estimation
steps rely heavily on the estimation of this matrix, a premium need to be placed on
recovering its parameters. Indeed, optimally estimating the fundamental matrix is
a hard task since the data point locations are always corrupted with noise and the
correspondences are spoilt by outliers [42]. RANSAC [58] is a well-known robust
statistics solution for these types of problems. Unfortunately, though RANSAC
and similar solutions are able to detect outliers, the inaccuracy in the image point
location is still not estimated. In reality due to the noise, the measured points x′

i

and x′
j do not satisfy the epipolar constraint x′

j
⊤Fx′

i = 0, therefore, a non-linear
optimisation solution could be necessary. The relative objective function for this
task is usually defined as:

min
F

min
X̂

[
d1
(
x′

i, x̂′
i

)2
+ d2

(
x′

j, x̂′
i

)2
]

subject to x̂′⊤
j F x̂′

i = 0
(C.6)

In this optimisation problem, we try to find x̂′
i and x̂′

j that satisfy this constraint
and minimise the distances to the measured points x′

i and x′
j (Algorithm 3)

The notation d(∗) stands for the Euclidean distance and x̂′
i and x̂′

j are the true
correspondences that satisfy the constraint x̂′⊤

j F x̂′
i = 0 [82]. This optimisation

problem can be solved using the Levenberg-Marquardt (LM) algorithm. LM may,
however, easily get trapped in a local minimum. In addition, it is sensitive to initial
estimates. We will discuss this issue in the coming chapters.

Algorithm 3 Algorithm for fundamental matrix estimation with Ransac.
Objective: Estimate an accurate fundamental matrix F using image points.
Extract image points in each image, I and J ;
for i := 1 to number of image points in image I do

Find corresponding image points in image J ;
end for

• Perform outlier removal using RanSaC (Algorithm 2);
• Perform non-linear optimisation by minimising the objective function given in

(C.6).
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Algorithm 4 The eight-point algorithm.
Given: a number of corresponding image points (xk

i ↔ xk
j ), k = 1, · · · , n (n ≥ 8).

Objective: Find (R, T ) with R ∈ SO(3) and T ∈ R3 which solves:

xk⊤

j [T ]×Rxk
i = xk⊤

j Exk
i = 0, k = 1, · · · , n

k := 1;
while ( k ≤ n ) do

Build the matrix A ∈ R9×n as in (2.29).
k = k + 1;.

end while
• Solve equation (2.36), Ae = 0, by computing the SVD of A = UΣV ⊤. Then, e

is the 9th column of V.
• Reorganise e into a square 3 × 3 matrix E.
• Compute the SVD of the recovered E = UEΣEV

⊤
E , where UE, VE ∈ SO(3),ΣE =

diag(σ1, σ2, σ3) and σ1 ≥ σ2 ≥ σ3.
• Compute the projection of E onto the essential space as E = UEdiag(1, 1, 0)V ⊤

E .
• Extract R and T from E using Theorem 3 (Chapter 2, Section 2.9.2, page 41 ),

taking into consideration the positive depth constraint.

C.2 Image interest point extraction

In visual autonomous navigation systems, image points (or usually called features)
are of great interest in estimating the camera translations and the rotations. In fact,
for any computer vision problem, recorded images are the main source of information.
Indeed, extracting these image points is the first step for any algorithm. Matching
and tracking these image points is not less important than the extraction task,
especially for problems of registration and recognition [106]. Having images in hand
as inputs, the first thing to look for is points that can be recognised in other images.
Therefore, interest points like corners and edges seem to be valid options. These
image points are commonly called image features in computer vision. Other names
such as keypoints, interest points, corners, control points and edges are used as
well. Other tasks in computer vision apart from motion estimation such as object
classification and recognition, use image features in their algorithms [27, 119, 218] as
well.

The notion of feature space is important in the problem of feature extraction.
It defines the nature of the information being extracted for a particular feature
extraction algorithm. This varies from pixel values to other properties such as
corners, edges or line intersections [27]. Large patches in images can also be used
as image features and can be matched using area-based techniques. This method is
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usually used with images with less texture or with poor content, i.e. medical images
[27, 124, 214]. The reader may consult a rich survey on feature extraction in [218].

Many algorithms have been proposed in the literature during the last few decades
to improve interest point extraction from images. One common way is to use a corner
detection technique [158, 182]. One of the pioneer methods is the feature tracking
technique which is known as the Lucas-Kanade iterative registration algorithm [120]
and Kanade-Lucas-Tomasi (KLT) tracker [196]. Detectors based on intensity include
the Harris feature detector, which is the most famous algorithm in computer vision.
More advanced approaches used in computer vision are SURF (speeded up robust
features) [15] and SIFT (scale invariant feature transform) [119]. These techniques
are better at handling change in scale and other geometric transformations such
affine rotation. In our work, we used three detectors. The first one is the Harris
feature detector, the second one is the SIFT detector; and the third one is local
colour histograms. These detectors are detailed in the following sections.

C.2.1 Harris feature detector

The Harris corner detector is the most popular algorithm in computer vision. For
detection, this algorithm relies on the second order derivative matrix, also known
as the second moment matrix, constructed from intensity values. This detector is
known as a gradient-based detector. The idea of extracting features is simple but
powerful. This detector looks for pixel intensity variation over a region of an image.
If this variation is greater than a predefined threshold, t, the area is declared as a
feature. This technique was first used by Moravec in [132], then it was improved
upon and presented by Harris and Stephen [79]. The new version uses a local gradient
distribution represented as a second moment matrix A (Equation C.8). A feature is
defined as an edge, a corner or a clear flat region according to the eigenvalues of A.
Let λ1 and λ2 be the eigenvalues of matrix A, then:

• If both eigenvalues λ1 and λ2 are small, the area is flat. This means there is
no important variation in the gradient in both directions;

• If one of the eigenvalues is high and the other one is low, then area refers to an
edge. This describes a significant variation in just one direction;

• If both eigenvalues λ1 and λ2 are high, then the area is a corner. This describes
a significant variation in both directions.
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One of the major improvement proposed by Harris to complement Moravec’s
previous work [132] is the introduction of the corner-less function Cm:

Cm = det(A) − k.tr2(A) (C.7)

Matrix A is the second moment matrix and tr is the trace. The matrix A is given by:

A =
∑

l

∑
m

w (,m)
 I2

x IxIy

IxIy I2
y

 (C.8)

where Ii is the derivative in the direction i; w is a weighted Gaussian windows of
size l ×m; k is a constant chosen heuristically, usually between 0.04 and 0.15 [28].

Harris corner detector is considered a robust algorithm, especially in terms of
invariant detection for translation and rotation. In comparison to its competitors in
terms of time consumption, the Harris corner detector is a lot better. Correspondences
from Harris features between two images are recovered by looking for a maximum
correlation within windows surrounding each feature. Features with strong correlation
with each other in both directions are considered as matching. This technique in
general is good for matching. However, in some situations it is not robust enough
[118]. Its drawbacks are especially in matching images where scale and/or rotation
is the main transformation.

One solution to get rid of this matching problem is to use information about the
surroundings of the features. Not just intensity information but other geometric
information that describes the location or the area where the feature is detected.
The SIFT and SURF extractors fall into this category, where a descriptor strategy is
proposed.

C.2.2 Scale invariant feature transform (SIFT)

New algorithms that are not only able to detect points in an image but also interest
regions [119] were developed to tackle problems with the Harris corner detector, such
as invariance to scale and rotation. These regions of interest represent in general areas
that are brighter or darker than the surroundings [215]. Popular region detectors are
SIFT [119] and SURF [15]. In this thesis, we employed the SIFT feature detector
due to their useful properties related to robustness to variation in scale, partial
illumination, affine transformations and to some additive noise. Commonly, SIFT
features are called keypoints in the SIFT framework.

The SIFT algorithm is described through five main steps:
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• Scale-space extrema detection: First, the scaling is performed via smooth-
ing the images using Gaussian masks resulting in a pyramid of the image.
Subtracting adjacent smoothed images will results on what called: Difference
of Gaussian (DoG) pyramids. Each pixel in the current scale is compared with
the upper and lower scales and with its neighbours (for example a region of
3 × 3 pixels provides comparison with 26 pixels which, i.e. 9 in the lower scale,
9 in the upper scale and the 8 surrounding pixels), and then the extrema value
is estimated.

• Accurate keypoint localisation: The previous step produces too many
keypoints candidates. Keypoints smaller than a threshold value are rejected.
This procedure ensures discarding keypoints that are poorly localised along an
edge or with low contrast.

• Orientation assignment: Each keypoint is associated to an orientation based
on the orientation of pixel at its scale and the gradient magnitude. In total, 36
bins covering 360 degrees are used and represented via an orientation histogram.
The highest peak of the histogram is taken along with any peak above 80% of
the winning bin. Therefore, the outcomes of this step are keypoints with the
same location and scale, but different directions. This contributes to stability
matching.

• Keypoint descriptors: First, orientation histograms are created on a 4 × 4
pixel neighbourhood with 8 bins each for each keypoint. This makes descriptor
vectors δ ∈ R128 of 128 elements containing information about the keypoint
neighbourhood orientation and gradient magnitude.

Keypoints in the SIFT framework are matched by identifying their nearest
descriptor neighbours. Let us consider two images I and J . Image I is described
with ni keypoints with descriptors δi

I ∈ R128, where i = 1, · · · , ni. Similarly, image J
is described with nj keypoints with descriptors δj

J ∈ R128, where j = 1, · · · , nj. The
main steps to match a feature δk

I , where 1 ≤ k ≤ ni, from image I to a feature in
image J are:

• Compute the Euclidean distance between descriptor δk
I to all descriptors δj

J

where j = 1, · · · , nj:
dk =

(
dk

1, d
k
2, · · · , dk

nj

)
(C.9)

dk
j = ∥δk

I − δj
J∥ =

√(
δk

I − δj
J

)⊤ (
δk

I − δj
J

)
for j = 1, · · · , nj (C.10)
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• Arranging the vector dk into a vector ξ in ascending order:

ξ =
(
ξ1, ξ2, · · · , ξnj

)
(C.11)

where ξ1 = min
(
dk
)

and ξnj
= max

(
dk
)
.

• The feature with descriptor δk
I is matched to the feature with descriptor δl

I if
ξ1 ≤ κ.ξ2, ξ1 = min

(
dk
)

and ξ1 = ∥δk
I −δl

J∥, where κ is the matching threshold.
This means that when the ratio between the Euclidean distance to the closest
neighbour and to the second closest neighbour is less than the threshold, a
correct match is obtained.

Many studies have been conducted on local shape descriptors. Mikolajczyk and
Schmidt in [128] summarised their extensive study with the conclusion that the SIFT
descriptors perform best and outperform all similar descriptors. Indeed, the SIFT
detector is robust to scale and rotation changes. However, it is only partially robust
to illumination variations, since the correspondences are based on the structure of
the image gradient and not on the brightness of the keypoints. This fact induced
other studies to look for alternatives, especially in less-structured locations. One of
these is colour features.

C.2.3 Colour features

The value of colour information quality is commonly agreed in upon computer vision
community, due to its valuable ability to describe the world around us. However,
most local feature spaces in the literature are based on shape description only and
attach less importance to colour information [207]. Describing images with local
colour has received little consideration. Consequently, the vast majority of methods
use only luminance and dismiss colour space. Therefore, considering augmenting the
image description with colour space would be a valid option.

Early research programmes focused on methods that are invariant to illumination
changes, where objects are described by colour histograms [12, 57, 63, 70, 71]. Ongoing
researches still investigate indexing methods that are both invariant to illumination
changes and shading using lighting geometry. Some techniques tried to concatenate
local feature descriptors, like the SIFT descriptor, with colour descriptors, which
result in a new extended feature space [128, 207].

Colour features use histograms to represent the distribution of colours in a
particular image. Basically, they count similar pixels and store them in appropriate
bins in order to describe the number of pixels in each range of colours (or bin)



C.2 Image interest point extraction 303

(a) (b)

Fig. C.3 Hue Saturation Value (HSV). The colour wheel at the top includes all the
pure colours. The angle in this wheel is represented by the H parameter [93].

(a) HSV (b) H (c) S (d) V

Fig. C.4 Example of a colour image and its HSV representation [190].

independently. Local colour histograms capture information about distribution of
colour in particular areas in the image.

Colours are commonly represented with the RGB model. An additional system
to characterise colours is in terms of the Hue Saturation Value (HSV) model. More
techniques have started to incorporate local colour histograms using this colour
space. This space is used in our work as well. Therefore, it is worthwhile to present
some details about it. Hue Saturation Value (HSV) is a colour model that describes
colours (hue or tint) in terms of their shade (saturation or amount of gray) and
their brightness (value or luminance). Figure C.3 shows a representation of the
HSV model. Hue (H) is an angle from 0 degrees to 360 degrees. Figure C.3 gives a
representation of the Hue Saturation Value (HSV) model as a colour cone. Figure
C.4 shows a colour image with its HSV representation, in which the saturation S is
encoded using a gray scale (saturated shown as darker).

Figure C.5 shows an example of the SIFT descriptor and the colour descriptor
for a local patch in a colour image. Clearly, the SIFT descriptor deals with the
orientation of the edges. The Hue descriptor on the bottom line describes the hue
and the saturation at each position represented as vectors. As we mentioned before,
the hue defines the vector angle and the saturation defines its length.
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Similarly to most descriptor-based approaches, matching in colour descriptor
space is usually based on the nearest neighbour in the descriptor space. Commonly
descriptors are compared with the Euclidean distance [128][111].

Fig. C.5 SIFT and colour descriptors. The same patch is described using SIFT
descriptor space (top row) and colour descriptor space using the HSV model (bottom
row). Image source [207].

C.3 Feature position uncertainties

We have seen that feature extraction is of great importance in computer vision where
most applications rely on them, such as pose estimation and object detection. More
works have been conducted on feature stability and its geometric and photometric
robustness. State-of-the-art techniques extract accurate and robust features that
are invariant to scale and rotation changes. However, less attention is given to their
location errors, which are commonly assumed to be uniform or insignificant [215].
Before starting the subsequent tasks such as motion estimation, more care should be
taken over the position of these features. Questions should be raised about whether
their locations are correctly estimated. If they are not, how far are they from the
correct positions? And how can one evaluate or estimate these errors.

It is known that most feature extraction techniques rely heavily on the variation
in intensity. Therefore, there must be a relationship between their location accuracy
and the variation in intensity within their neighbourhood. In fact, the problem
of feature uncertainties has already been addressed outside of the computer vision
community, such as in microscopy[126], astronomy [163] and photogrammetrics [195].
In such domains, feature position precision is paramount and the error sources are
considered to originate from the image formation and feature extraction process.
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In computer vision community, some studies have dealt with this subject [26,
77, 90, 99, 151, 185, 212]. However, most researchers avoid uncertainty due to the
added complexity in constructing the robust optimisation model and to the lack of
knowledge of the nature of these uncertainties, especially their propagation. On the
contrary, in our work, feature uncertainties and their propagation through multiple
view geometry algorithms are explicitly taken into consideration and are included in
our optimisation framework. Details on uncertainty estimation approaches and their
propagation are given in the following chapters.
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