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Abstract

Korpela, I. 2004. Individual tree measurements by means of digital aerial photogrammetry. 
Silva Fennica Monographs 3. 93 p.

This study explores the plausibility of the use of multi-scale, CIR aerial photographs to 
conduct forest inventory at the individual tree level. Multiple digitised aerial photographs 
are used for manual and semi-automatic 3D positioning of tree tops, for species classifica-
tion, and for measurements on tree height and crown width. A new tree top positioning 
algorithm is presented and tested. It incorporates template matching in a 3D search space. 
Also, a new method is presented for tree species classification. In it, a partition of the 
image space according to the continuously varying image-object-sun geometry of aerial 
views is performed. Discernibility of trees in aerial images is studied. The measurement 
accuracy and overall measurability of crown width by using manual image measurements 
is investigated. A simulation study is used to examine the combined effects of discern-
ibility and photogrammetric measurement errors on stand variables. The study material 
contained large-scale colour and CIR image material and 7708 trees from 24 fully mapped 
plots in Southern Finland. The results of the discernibility analysis suggest that 88–100% 
of the total stem volume is measurable when using multiple aerial photographs. The 
structure and density of the forest were found to affect discernibility. The best hit-rates 
when using the semi-automatic tree top positioning algorithm ranged from 77 to 100% 
of the visually discernible trees. Systematic underestimation of the crown width was 
observed and the measurability of crown width was best near the image nadir. Species 
classification was tested in mixed stands of Scots pine, Norway spruce, and silver birch. 
The Kappa-coefficients ranged from 0.71 to 0.86. The results of the simulation suggest 
that very high accuracy at the individual tree level cannot be expected. However, if the 
photogrammetric measurements are unbiased, the aggregate stand variables can be very 
accurate. An accurate species recognition method is needed in the mixed stands in order 
to achieve unbiased estimates for the small strata.
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Definitions

Discernibility. Property of a tree. A tree is discernible if given several aerial images an 
operator can manually measure it in 3D for tree top position. This requires that the 
tree is seen on at least two images, which view the tree from different directions.

Photograph. Herein vertical aerial photographs are referred to as photographs. Photographs 
represent views.

Image (function). Used also as a synonym for an aerial photograph but the use of the word 
image emphasises that the digital version is somehow essential. The word image is 
used also with templates (template image) and cross-correlation functions (cross-
correlation image).

Template. A sub-image representing a tree top (in general, any object to be detected from 
an image).

Matching. Used in template matching (TM) and image-matching (IM). In TM the similarity 
of the template and the image are computed for a point in the image. TM is a pattern 
recognition method in image analysis. TM converts the image into a similarity or dis-
similarity image, which in this study is a cross-correlation image and cross-correlation 
is the measure of similarity. IM is synonymous with the correspondence problem in 
the field of 3D machine vision. In IM, corresponding entities are matched between 
images, and solved for 3D locations.

Precision. An estimate is impresice if it fluctuates considerably about its mean. An 
impresice estimate is affected by random errors. A precise estimate is not necessarily 
accurate. Standard deviation is used as a measure of precision.

Accuracy. An estimate is inaccurate if it in a systematic manner deviates from the true 
(field measurement) value, or, if it is imprecise. Root mean square error (RMSE) 
is a measure for accuracy used in this study. Mean difference of true and estimated 
values is used for measuring systematic deviation. An inaccurate estimate is affected 
by random errors and/or systematic errors (bias).

Relative height. The ratio from zero to one (truncated for high trees) between tree’s height 
and the dominant height of trees in a set which it belongs to. See Hdom.

Dominant tree. A tree with the relative height of above 0.9.
Co-dominant tree. A tree with the relative height of between 0.8 and 0.9.
Intermediate tree. A tree with the relative height of between 0.5 and 0.8.
Understorey tree. A tree with the relative height of below 0.5.
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List of symbols

CW  Crown width (maximum width)
dbh Stem diameter at breast height 1.3 metres above ground, above bark
h  Tree height. Length of the stem from ground to top.
sp  Species. Pine means Pinus sylvestris L. Spruce means Picea abies (L.) H. Karst. 

Birch means Betula pendula Roth and Betula pubescens Ehrh.
v  Tree stem volume above bark, stump excluded

Dg Basal area weighted mean diameter of a set of trees
G Basal area of a set of trees, m2 or m2/ha.
Hg Basal area weighted mean height of a set of trees
Hdom Dominant height of a set of trees. The arithmetic mean of height of trees with 

100 largest diameters per hectare.
Vtot Total stem volume of a set of trees, m3 or m3/ha excluding the stump.  

Calculated by using taper curves.
Vs Total saw wood volume of a set of trees, m3 or m3/ha. Determined by letting  

an algorithm grade stems.
Vp Total pulp wood volume of a set of trees, m3 or m3/ha. Determined by  

letting an algorithm grade stems.

#D #-dimensional
ALS Airborne laser scanning (lidar)
AT Aerial triangulation
CIR Colour infrared (false-colour film)
COL Colour (colour film)
DEM  Digital elevation model
GCP Ground control point
LS Least-squares
RGB Red, green, blue
Δ Difference between observed and estimated, or between observations of  

different type. E.g. Δ(Z), Δ(CW))

Aerial images: Copyright FM-kartta International ltd., Helsinki. Used with permission.
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1 Introduction

derive benefit from such data. The costs of data 
acquisition and maintenance, accuracy, preci-
sion, scale and purpose all need consideration 
(Nyyssönen 1979, Päivinen 1987, Ståhl 1994). 
It seems evident that for many applications, sole 
photogrammetric observations will not suffice, 
and field visits are needed (cf. Nyyssönen 1955). 
Field observations may also be needed for reasons 
of validation and calibration.

Aggregated forest variables, such as the total 
volume of stems refer to an area or a set of trees. 
A forest compartment, for example, can be mea-
sured by applying sampling or by the full map-
ping of trees. The ill-posed problem of delineating 
a compartment needs to be solved by force if 
sampling is applied and the results are needed for 
a stand. Forest data comprising of mapped and 
measured trees would facilitate the delineation 
of stands by making it a more objective process. 
This can be seen as a motivating factor. There 
are also technical motives for this study. Current 
forest management planning systems are in prin-
ciple capable of treating individual trees as basic 
computational units (e.g. Jonsson et al. 1993). A 
detailed spatial description would possibly be of 
use in the preparation of forecasts for the develop-
ment of the forest (e.g. Mitchell 1975, Pukkala 
and Kolström 1991).

Remote sensing based forest inventory sys-
tems have been developed mainly to improve 
the cost-efficiency of data acquisition. Different 
passive and active, analog and digital sensing 
techniques, with varying radiometric and geo-
metric properties, have been available for the 
experimenters. Because of the fast development 
of digital technology, they are now becoming 
available for a larger audience, and used in prac-
tice. (e.g. Pope 1957, Poso 1972, Aldred and Hall 
1975, Nelson et al. 1988, Leckie 1990, Tomppo 
1992, Næsset 1997, Holopainen 1998, Hyyppä 
and Inkinen 1999, Poso et al. 1999, Næsset and 
Økland 2002).

In the scope of this work, the emergent field of 

1.1 Framework

The thesis of this work is that in Finnish con-
ditions individual trees can be recognised and 
measured in three dimensions (3D) by using 
multiple high spatial resolution digitised aerial 
photographs. Another assertion included in this 
work, is that forest inventory systems based on the 
photogrammetric observations for tree position, 
height, crown diameter, and tree species, can be 
established as illustrated in Fig. 1.

Vertical aerial photographs taken with metric 
or calibrated cameras under clear sky conditions, 
when trees are in full leaf and the sun elevation 
exceeds approximately 30 degrees, are required. 
There should be at least two photographs per 
target, and the geometry of the photographs must 
be established with high accuracy so that reli-
able 3D data capture is possible. The spatial 
resolution of the images must be high such that 
a crown of a single tree is represented by several 
image elements. An accurate digital elevation 
model (DEM) is required for the estimation of 
tree heights.

The system in Fig. 1 is founded on a semi-
automatic method for positioning tree tops in 
3D, which is illustrated in Fig. 2. The idea is that 
image-based measurements of the crown size and 
tree species can partly be based on this confin-
ing information (cf. Pinz 1999a), and that tree 
heights are obtained directly by using a digital 
elevation model.

1.2 Motivation and Aims

A description of the forest, in which trees are 
given estimates for 3D position, species, height, 
and breast height diameter (Fig. 1) is detailed and 
useful for many purposes. Pre-harvest inventories, 
planning of wood procurement, forest manage-
ment, control of logging activities, conventional 
forest monitoring, and landscape planning can 
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digital photogrammetry (Helava 1991, Cramer 
1999, Schenk 1999) and the development of sat-
ellite positioning technology (Jiyu et al. 1996, 
Næsset 1999, Tötterström 2000, Bilker and 
Kaartinen 2001) are important. At present, com-
puters and algorithms are replacing the high-cost, 
mechanic-optical, and analytical photogrammetric 
instruments, and the adoption of satellite position-
ing has caused a radical reduction in surveying 
costs. For the use of aerial photographs for forest 
inventory, this has opened new possibilities since 
the costs of acquiring and analysing high-accu-
racy digital images can be reduced.

The overall motivation of this work was to 
investigate the possibilities of establishing forest 
measurement systems utilising single tree photo-
grammetric measurements and indirect estimation 
as illustrated in Fig. 1. Any inventory schemes, 
which sprout from the framework, will be based 
on the measurements of individual trees, which 
need to be positioned in 3D.
1) To develop and test a semi-automatic method for 

3D tree top positioning and tree height estimation 
was the primary objective of this study.

 The basis for the tree top positioning method is 
from the work by Larsen and Rudemo (1998) and 
Korpela (2000). The objectives of the testing of 

Fig. 2. The idea of positioning trees in the 3D with mul-
tiple aerial photographs (Korpela 2000). A search 
space is set with a priori information about the 
terrain elevation and height distribution of trees. A 
search space fills the canopy, and a finite set of can-
didate positions for tree tops is established there. 
The photographs give support to the correct posi-
tions. In subsequent steps, multiple photographs are 
available for the measurement of crown dimensions 
and tree species.

Fig. 1. Flowchart of a photogrammetric forest measurement system oper-
ating at the single tree level. Rounded rectangles represent measure-
ments or indirect model estimation, and rectangles results.
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the 3D tree top positioning method were to study 
the effects of imaging geometry (image scale, film 
type, image number), the effects of target proper-
ties (stand structure) and the effects of different 
algorithm-parameters on the performance of the 
method. The costs of photography are affected by 
the requirements on the scale and the number of 
images. Film type, scale, and number of images 
were assumed to have an effect on the accuracy 
of tree top positioning. The method of positioning 
tree tops by using aerial photographs is semi-
automatic, and based on the use of parameters that 
control the processes. It was considered essential 
to gain knowledge about the behaviour of the tree 
top positioning algorithm with respect to changes 
in the control parameters.

 The forest measurement system that is based on 
photogrammetric observations of single trees (Fig. 
1) is restricted to a small set of tree-variables 
on which the indirect estimation chain is based. 
Measurement errors in tree height, crown width, 
and species recognition are probable. Imperfect 
models are used for indirect estimation. It is likely 
that not all trees in a forest are discernible at all. 
Imperfect observations and models have an effect 
on the results of the forest inventory. To elaborate 
the possibilities of establishing a forest inventory 
system, information was needed about

2) the discernibility of trees in aerial photographs,
3) the attainable measurement accuracy of the pho-

togrammetric tree variables (species, height and 
crown width), and

4) their combined effect within the indirect estima-
tion chain illustrated in Fig. 1.

1.3 Survey of the Use of Aerial Photographs 
for Forestry

Photogrammetric interpretation of qualitative 
and quantitative forest stand characteristics using 
manual methods of stereo photogrammetry is 
an area, which has been studied widely since 
the 1940s. Thus, the concept of utilising aerial 
photographs for forest inventory is not novel. 
Small-scale photographs have been used for 
forest mapping, assessment of insect, fire, or 
wind damage, estimation of stand attributes and 
estimation of tree species composition to mention 
some applications. The stratification of the forest 

area into homogenous compartments or strata has 
been employed to improve the efficiency of field 
sampling in multi-stage sampling designs or in 
connection with the stand-wise forest inventory 
for forest planning. (e.g. Sarvas 1938, Bäckström 
and Walander 1948, Willingham 1957, Avery 
1958, Spurr 1960, Nyyssönen 1962, Bickford 
et al. 1963, Nyyssönen et al. 1968, Poso and 
Kujala 1971, Axelsson 1972, Murtha 1972, Poso 
1972, 1979, Ericsson 1984, Hall and Aldred 1992, 
Næsset 1992a, 1992b, 1993, 1998)

Visual interpretation of large-scale aerial 
photographs for single tree characteristics such 
as species, height, crown width and area, and 
breast height diameter has been tested in many 
experimental studies (Worley and Landis 1954, 
Nyyssönen 1955, Johnson 1958, Lyons 1961, 
Gerrard 1969, Aldred and Sayn-Wittgenstein 
1972, Sayn-Wittgenstein and Aldred 1972, Aldred 
1976, Talts 1977, Sayn-Wittegenstein 1978, Spen-
cer and Hall 1988, Savioja 1991, Kovats 1997, 
Anttila 1998). Both twin-camera fixed-base and 
single-camera sequential photographic systems 
have been used in the experiments. Unlike small-
scale photographs, large-scale aerial photographs 
have not been widely used in applications. Pos-
sible reasons are the higher costs and the require-
ment for expertise in photogrammetry.

Digital aerial photographs have been used in 
practice for forest management planning in Fin-
land since the mid-1990s. The digital computing 
resources had to reach the required level for fluent 
handling of the image data. Tarp-Johanssen (2001) 
distinguishes the digital analysis of forest images 
in two sections: 2D and 3D methods. 2D meth-
ods operate in the image domain of individual 
images alone whereas the 3D methods combine 
information from several images to operate in the 
physical 3D-object domain. This statement could 
be refined here such that 3D methods combine 
auxiliary information, which can also be other 
views, about the scene to operate in the object 
space. For example in orthoimage production, 
the auxiliary information resides in an elevation 
model. Such geometric constraints and condition-
ing are widely used in photogrammetry so that 3D 
information can be obtained using single images 
(van den Heuvel 1998).

2D digital image analysis methods for the inter-
pretation of aerial photographs for forestry have 
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been studied since the late 1980s. Automating 
the stand delineation task by image segmenta-
tion, estimation of forest variables using spectral 
and textural information (van Alphen 1994, Hol-
opainen 1998, Poso et al.1999, Muinonen et al. 
2001) as well as interpretation at the single tree 
level have been studied (Gougeon 1995, Dralle 
and Rudemo 1996, 1997, Pollock 1994, 1996, 
Larsen 1997, 1998, 1999a, 1999b, Larsen and 
Rudemo 1997, 1998, Brandtberg and Walther 
1998, Brandtberg 1999, 2002, Wulder et al. 2000, 
Pitkänen 2001, Haara and Nevalainen 2002). 
Forest inventory systems are also being devel-
oped to incorporate automated or semi-automated 
aerial photo interpretation (Pinz 1999b).

3D automated methods for the interpretation of 
tree or stand information from aerial photographs 
are a new field of applications (Kiema 1990, 
Korpela 2000, Tarp-Johanssen 2001, Sheng et al. 
2001, Gong et al. 2002). They have evolved with 
the development of digital photogrammetry which 
has its roots in computer technology, digital image 
analysis and analytical photogrammetry, and 
which is targeted at the automation of traditional, 
operator based, photogrammetric data-reduction 
(Helava 1991, Schenk 1999). Work on the general 
automation has continued since the late 1950s. 
This has mainly been within the branch of photo-
grammetry (Hobrough 1959, Helava 1978, 1991, 
Case 1980, Rosenholm 1980, Förstner 1982, Horn 
1983), but also in the field of machine vision (Jain 
et al. 1995, Sonka et al. 1998).

1.3.1 Discernibility of Trees in Aerial Photo-
graphs

Individual tree based forest inventory is based on 
measurements of all trees in a given area. This 
is attainable only if all trees are observable and 
measurable for the needed variables.

In general, only trees that have a part of the 
crown in direct sunlight are detectable on an 
aerial photograph (Kiema 1990). This is the case 
especially with CIR film. Panchromatic film with 
proper filters is used for topographic mapping 
in which it is necessary to obtain information 
about the shaded ground. The choice of optimal 
film-filter combination is always a compromise 
targeted at meeting the needs of interpretation 

(Lyytikäinen 1972). Despite the progress in sensor 
technology, it seems that it will be difficult, if not 
even impossible, to detect the smallest occluded 
and shaded trees in a stand. This is implied also by 
the findings obtained from the use of very high-
resolution laser scanning (Persson et al. 2002). 
Because the small trees are undetectable on the 
photographs, the need for field visits or the use 
of indirect estimation (e.g. Maltamo et al. 2001) 
seems unavoidable.

Aggregated tree crowns, in which individual 
branches of several trees overlap, are difficult 
to discern (Ilvessalo 1950, Talts 1977, Anttila 
1998, Pitkänen 2001, Persson et al. 2002). The 
number of manually or automatically detected 
stems will be an underestimate under such forest 
conditions.

Concerning the relative size of trees that are 
visible to aerial images and the effect of stand 
structure the findings of Persson et al. (2002) are 
interesting although the results were obtained 
by using low scanning angle laser. The overall 
detection rates were best for stands in which only 
one layer of trees occurred. Detection rates were 
lowest in stands with bi-modal or wide height dis-
tribution. Since the undetected trees (29%) were 
composed of small trees with relatively small vol-
umes, their proportion of the total volume was low 
(10%). The undetected trees were characterised 
by two variables describing the relative size of the 
tree: (i) distance to the closest detected tree, and 
(ii) the vertical angle from the tree top between 
zenith and the tree top of the closest detected tree. 
In the two-dimensional space, outlined by the 
two variables, most of the undetected trees were 
found to be small trees close (low distance, low 
angle) to tall trees.

1.3.2 Tree Allometry

Only the upper parts of the crowns are typi-
cally visible in vertical aerial photographs, and 
the contrast is low for the shaded parts of the 
tree crowns hampering the exact measurement 
of crown dimensions. The trunk is invisible, and 
direct measurements on the stem diameters can 
not generally be taken (cf. Talts 1977), hence indi-
rect estimation needs to be employed. The size of 
the crown has been shown to reflect the diameter 



11

Korpela Individual Tree Measurements by Means of Digital Aerial Photogrammetry

of the stem (Zieger 1928 in Spurr 1960 p. 383, 
Ilvessalo 1950, Jakobsons 1970, Kalliovirta and 
Tokola 2003). As early as in 1950, Ilvessalo moti-
vated his study “On the correlation between the 
crown diameter and the stem of trees” with the 
requirement that such fundamental information 
is needed for estimating the growing stock from 
aerial photographs.

The allometric models drawn up by Kalliovirta 
and Tokola (2003) for Finnish conditions are 
important in the context of this work. Regres-
sion models for Scots pine (Pinus sylvestris L.), 
Norway spruce (Picea abies (L.) H. Karst.), and 
Birch (Betula pendula Roth and Betula pubes-
cens Ehrh.) were derived using a large sample 
tree data set from the eighth and ninth Finnish 
National Forest Inventory. The models predict 
the diameter at breast height by three different 
sets of independent variables: {sp, h}, {sp, CW}, 
and {sp, h, CW}. The three-variable models had 
RMSEs from eight to ten per cent. In a separate 
test material consisting of 295 trees, the standard 
deviations of differences were from 20 to 23 mm 
for the {sp, h, CW}-models without notable bias. 
The data for the models were not free from meas-
urements errors, and the regression models tend to 
average. It is unlikely for the models to produce 
extreme values correctly (cf. Smith 1986). On the 
other hand, the material was representative and 
performed well in the test data.

Assuming that it is possible to recognise the 
tree species correctly, and to measure tree height 
and crown diameter with high accuracy from 
aerial photographs, the allometric models can be 
used to obtain an estimate for the dbh with 20–
30 mm accuracy. Measuring dbh with a caliper 
leads to a five to seven millimetre standard error 
(Päivinen 1987), and the recently introduced laser 
dendrometer has eight-millimetre standard error 
(Kalliovirta 2003). Thus, the accuracy is inferior 
when indirect photogrammetric measurements 
and model estimation is applied. The dependen-
cies between variables dbh, height, and crown 
width are on average such that a change of one 
metre in tree height results in the same change in 
dbh as a 0.2–0.35 metres’ change in crown width 
(Kalliovirta and Tokola 2003).

1.3.3 Measurement Accuracy of Crown Width 
and Tree Height

Talts (1977) reports that crown diameters in 
Swedish conditions could be measured without 
notable bias with a RMS error of 0.37–1.05 m, 
except for a stand in which the canopy was closed 
and crowns interlaced. Talts used very large-scale 
(1:2500–1:4000) aerial photographs obtained with 
terrestrial wide-angle metric camera, and mature 
stands. Talts (1977) concluded that measurements 
of individual crown diameters would not be pos-
sible with images in a smaller scale and in dense 
stands, although he reports of no such tests.

Persson et al. (2002) obtained estimates for 
crown diameters and tree heights using airborne 
laser data in Swedish conditions. A RMSE of 
0.61 m for crown width was achieved for trees 
with CW varying between three and eight metres. 
Automated measurements by segmentation of 
laser data of low scanning angle and high resolu-
tion were used. Thus, the perspective effects were 
minimised in this study. Persson et al. (2002) 
used Jakobsons’ (1970) models (cf. Talts 1977) to 
predict the dbh and obtained a RMSE of 3.8 cm, 
which corresponds to 10% of the mean in the data. 
Combined use of tree height and dbh estimates 
lead to 0.21 m3 or 22% RMSE in the single tree 
volume estimates.

In a recent Canadian study (Pouliot et al. 2002) 
small coniferous trees with CW varying from 0.1 
to 1.4 metres were manually delineated with an 
11% RMSE using digital aerial images of five 
centimetre pixel size. Correspondingly, using an 
automated delineation method, a RMSE from 
17.9 to 39.0% was obtained for varying pixel 
sizes from 5 to 30 centimetres. In this study, the 
maximum nadir angle or the field of view of the 
image data was low – less than seven degrees – to 
minimise the perspective effects.

Besides the effects that are connected with 
stand density and vertical structure, it seems 
likely that perspective effects and the overall 
image-object-sun geometry (Section 1.4.2) 
affect crown diameter measurements on aerial 
photographs. However, no studies were found 
in which the effect of viewing geometry on tree 
crown diameter-measurements would have been 
investigated.
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The accuracy of height measurements from 
aerial photographs has been studied in the context 
of visual stereo interpretation (Worley and Landis 
1954, Nyyssönen 1955, Johnson 1958, Lyons 
1961, Aldred and Sayn-Wittgenstein 1972, Talts 
1977, Spencer and Hall 1988, Cagnon et al. 1993, 
Kovats 1997, Anttila 1998). In the context of this 
study, studies on the accuracy of non-stereo meth-
ods (multiple image-matching, see Section 1.4.4), 
manual or automatic, in which the measurements 
are done from two or more monocular photo-
graphs, would be interesting, but as such they are 
missing. Findings of the stereo-methods suggest 
that factors related to the photography (scale, film 
material, and timing) and to the target (crown 
geometry and radiometric properties, stand struc-
ture, stand density, species composition, topog-
raphy) affect height measurements. The risk of 
underestimating heights is apparent since the very 
highest top shoots can not be detected (Worley 
and Landis 1954, Nyyssönen 1955, Talts 1977, 
Anttila 1998). The amount of underestimation is 
related to scale such that with higher scale the bias 
increases (Talts 1977). This relationship between 
scale and accuracy of height measurements has 
not always been observed (e.g. Pope 1957). In 
stereo interpretation of large-scale photographs, 
the relatively large horizontal parallax hampers 
the stereoscopic height measurements in such a 
way that the operator cannot view both the butt 
and the tree top at the same time (Pope 1957, 
Talts 1977). Talts (1977) recommends the use of 
narrow-angle cameras for a satisfactory solution 
for this problem. Also, the elevation of the ground 
is not always easily measurable from the photo-
graphs, and may hamper tree height estimation. 
Talts (1977) refers to the work of Kvarnbrink and 
Thunberg (1952) in which it was found that only 
12% of the ground is visible, from the above, 
under normal Swedish forest conditions.

1.3.4 Tree Species Recognition Using Aerial 
Photographs

Species identification is crucial in forest inventory 
for technical, economic, and ecological reasons. 
In the boreal zone, the number of trees species 
is low, and in Finland, the main species Scots 
pine, Norway spruce, downy birch, and silver 

birch constitute 96.5% of the total stem volume 
(Tomppo et al. 2001).

In practical forestry, CIR photographs, with 
suitable enhancement, have been used suc-
cessfully for delineating stands and separating 
between coniferous and deciduous stands. Visual 
interpretation is a slow and subjective process, 
which motivates for the use of numerical meth-
ods. Tree species recognition algorithms that 
operate at the individual tree level have been 
developed for high-resolution images and rang-
ing data. They are mainly based on the spectral 
properties of the observed signal (e.g. Rohde 
and Olson 1972, Meyer et al. 1996, Gougeon et 
al. 1999, Pinz 1999a, Haara and Haarala 2002). 
Structure-based classification methods have also 
been developed (Brandtberg 1999, Brandtberg et 
al. 2003). Combined methods in which structural 
and spectral features are used have also been 
developed (Brandtberg 2002).

In customary determination of tree species, a 
forester would rely on a number of distinctive 
features with varying scale. Sometimes ecologi-
cal factors are used to help species identification 
– impossible choices are ruled out and likely 
ones are stressed. If the species-specific features 
are distinct and well known to the interpreter, 
visual species identification on the ground can 
be very accurate. Species identification is chal-
lenging when the number of features is reduced 
or if the features are shared by several species. 
The latter holds often true for species in the same 
genus (cf. Brandtberg et al. 2003). Details such 
as leaves and branches become unusable when 
the scale of aerial photographs is higher than 
1:5000–1:8000 (Talts 1977, Sayn-Wittgenstein 
1978, Haara and Haarala 2002). Very large-scale 
photographs have been used successfully for spe-
cies recognition (Lyons 1961, Talts 1977, Sayn-
Wittgenstein 1978).

CIR and colour film represent the simplest 
form of multispectral sensing. Spectral resolution 
is better for multispectral scanners, which have 
also been tested for species identification (e.g. 
Rohde and Olson 1972, Gougeon et al. 1999). 
However, there seems to be a general trade-off 
between the geometric and radiometric properties 
of sensors (cf. Leckie 1990). This also implies 
that the use of hybrid methods and data for the 
different tasks of individual tree measurements 
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is advisable as suggested by Pinz (1999a). Iden-
tification accuracy results obtained for different 
classification methods and imagery are not always 
comparable. Studies have been carried out in dif-
ferent vegetation zones, which affects the number 
of species. In general, it has been found that the 
spectral signatures in most cases overlap between 
species, and varying amount confusion between 
species is inevitable, independent of the used 
classification method (e.g. Gougeon et al. 1999, 
Brandtberg 2002).

For digitised aerial photographs and spectral 
classification, there are specific problems related 
to the varying image-object-sun geometry within 
an image (e.g. Rohde and Olson 1972, Haara and 
Haarala 2002). For example, a delineated crown 
segment can be comprised of pixels originating 
from the sun-lit crown alone, or the segment is 
accompanied by a varying proportion of pixels 
representing the shaded part of the crown. The 
illumination, exposure, development, and scan-
ning processes affect the radiometric properties of 
the images. Two images of the same forest taken 
on successive days can differ from each other if 
the above mentioned factors are not controlled.

Training sets on which the classification is 
based are generally required. They are sets of 
trees with a known 3D position and species. Field 
observations are accurate, but expensive. Visual 
interpretation using large-scale aerial photographs 
can be used alternatively or in combination with 
field data. However, very large-scale photographs 
add to the costs.

1.3.5 Individual Tree Detection and  
Positioning

For the 3D reconstruction of objects by using mul-
tiple images, the same corresponding objects or 
primitives need to be detected on the images. The 
objects in the images and in the object domain 
can be points such as tree tops, area features such 
as projections of crown surfaces, line features, 
curved edges, or even individual pixels (Schenk 
1999). Traditionally, 3D correspondence algo-
rithms are divided into two groups: area-based 
and feature-based methods (Sonka et al. 1998, 
Schenk 1999). In feature-based matching points, 
edges, and corners are automatically identified 

in the images before matching takes place. Area-
based algorithms, on the other hand, are based on 
the general assumption that pixels in correspon-
dence have similar intensities.

For the feature-based 3D positioning of tree 
tops, it is desirable to have an operator or an algo-
rithm that extracts the point locations of tree tops 
in the images as proposed by Larsen and Rudemo 
(1998). For the measurements of crown dimen-
sions, the general approach has been to attempt 
the delineation of the crown into a segment, which 
is then measured for dimensions and possibly 
further processed for tree species recognition, 
defoliation classification etc. (e.g. Gougeon 1995, 
Stoltze 2001, Anttila and Lehikoinen 2002, Haara 
and Nevalainen 2002, Haara and Haarala 2002). 
The segmentation approach has also been used 
for obtaining stem counts and positions (Uuttera 
et al. 1998, Pitkänen 2001). However, for the 
accurate 3D reconstruction of trees, segments of 
crowns are not suitable. This is because the seg-
mentation usually only succeeds with nadir views, 
and because the segments obtained for different 
viewing angles do not represent the same object, 
i.e. partial crown surface. Area-based matching 
methods have been tested for the 3D-reconstruc-
tion of individual tree crown surfaces (Sheng et 
al. 2001), and for canopy surface modelling and 
for the subsequent derivation of stand mean height 
(Næsset 2002).

In the context of this study, the 3D methods are 
emphasised although the 2D image analysis meth-
ods are also essential for tree species classification 
and measurement of crown dimensions.

Dralle and Rudemo (1996, 1997) have devel-
oped semi-automated tools for estimating the 
number of stems and tree top image positions 
from digital aerial photographs. The basic idea is 
that for a single crown there exists a local bright-
ness maximum in the image. A high-resolution 
image is at first suitably smoothed and then deter-
mined for local maxima. The method was tested 
for panchromatic images of a Norway spruce 
thinning experiment. Dralle concluded (1997) 
that for plots with a heavy or medium thinning, 
95% of the tree tops were found with a displace-
ment error of 65 cm in the object scale. The 
brightness maxima were systematically located 
off the true positions of tree tops on the images. 
For the dense plots, the method produced larger 
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omission, commission, and displacement errors. 
The results were best in the nadir views. For 
front-lighted views, the method was no longer 
applicable. In front-lighted views, the branches 
of the trees formed spurious local maxima in the 
tested images of the scale 1:4000.

The local-maxima method (Dralle and Rudemo 
1996, 1997, Dralle 1997, Wulder et al. 2000) is not 
robust against the varying image-object-sun angu-
lar orientation, which causes the appearance of 
similar objects to vary greatly within an aerial pho-
tograph. Template matching based tree top detec-
tion takes this effect into account (Pollock 1994, 
1996, Larsen 1997, 1999a, 1999b, 1999c, Larsen 
and Rudemo 1997, 1998, Olofsson 2002).

Pollock (1996) built geometric-optical models 
for the broad-leaved trees and conifers of Ontario, 
Canada to be used with high spatial resolution 
images. The geometric-optical models were used 
for rendering synthetic templates of tree tops 
in a given imaging geometry. The method was 
tested with multispectral MEIS II images with 
a 0.4-metre resolution. The field data consisted 
of uneven-aged forests with many species, vari-
ation in crown size and in growing conditions. 
The recognition results were successful also in 
cases where the tree crown image regions were 
not clearly delimited by a contrasting background 
region. Human interpretations were better in cases 
where the crowns had irregularities caused by 
high stocking. Omission errors – i.e. lost trees 
– were the main source of error in the automatic 
recognition. (Pollock 1996).

Larsen (1997, 1999a, 1999b, 1999c, Larsen and 
Rudemo 1997, 1998) modelled the crown shape 
and crown-light interaction to produce ray-traced 
(e.g. Hearn and Baker 1997) elliptic templates 
representing Norway spruce tops as seen by the 
aerial camera. The aerial images were operated 
with the template to produce a cross-correla-
tion image in which local maxima correspond 
to tree tops. Larsen and Rudemo (1998) report 
that at best the standard errors for positioning 
were, excluding bias, 25–30 centimetres, and 
that 91–98% of the trees was recognised. The use 
of stereo-methods, which combine results from 
several images, was proposed as a possible way of 
improving the results (Larsen and Rudemo 1998). 
This study and an earlier work (Korpela 2000) 
were strongly motivated by the proposal.

In the work by Kiema (1990), the objective 
was to develop a method for creating a simplified 
synthetic aerial image in which individual pixels 
were classified as having reflected from (i) the 
sun-lit, (ii) the shadowed part of the tree crown, or 
(iii) from the background. Edges of this synthetic 
image could be superimposed on the aerial image 
for finding a set of field mapped trees from the 
aerial image. The synthetic image was rendered 
using Z-buffering (Hearn and Baker 1997). Trees 
were given a parabolic surface as their crown 
envelope form. Kiema (1990) reports that the 
orientation of the images suffered from a low 
geodetic quality of the ground control points and 
that the radiometric quality of the scanned images 
was poor. The trees of two out of four plots were 
located on the computer screen with the help of 
the crown edge map.

The method proposed by Korpela (2000) for 
positioning tree tops in 3D incorporates the 2D 
template matching approach used by Larsen and 
Rudemo (1997, 1998) for finding tree tops from 
individual images. Template matching trans-
forms the aerial images into correlation images 
where local maxima are assumed to correspond 
to projections of tree tops. The forest canopy is 
discretised into a 3D-point grid using a priori 
information about the ground elevation and the 
height distribution of trees. Each 3D locus is 
mapped on the correlation images and aggregated 
for a 3D-correlation value. Local maxima in this 
volumetric correlation data were shown to cor-
respond to tree top positions. The acquisition of 
templates was simplified. Rectangular templates 
representing tree tops on the images were simply 
cut from the real images. (Korpela 2000).

In a conventional image-matching scheme for 
3D reconstruction from images, very little prior 
knowledge about the object is needed. The strat-
egy used by Korpela (2000) and Tarp-Johanssen 
(2001) uses unavoidable geometric constraints in 
confining the search space. 3D-models represent-
ing the object to be recognised and reconstructed 
in 3D or 2D, are forms of prior geometric knowl-
edge (e.g. Grün and Baltsavias 1988, Kiema 1990, 
St-Onge and Cavayas 1995, Pollock 1996, Larsen 
1997, Strahler 1997, Tarp-Johanssen 2001, Sheng 
et al. 2001, Gong et al. 2002).

Tarp-Johanssen (2001) presented a method for 
positioning and measuring oak stems in 3D by 
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using very large-scale leaf-off aerial photographs. 
For positioning the stems in 3D, the base of the 
oak-tree is modelled as a vertical cylinder, which 
is rendered for image templates that are matched 
with the aerial images to transform them into cor-
relation images (cf. Korpela 2000). A 3D search 
space is established in the forest floor as a regular 
grid of points. Each point in the grid is computed 
for an average 3D-correlation by mapping the 
points onto the correlation images. 3D positions 
are found by processing the 3D correlation data 
for local maxima. In the estimation of the size of 
the stem, the parameters for the position, size, and 
shape (tapering was included for size estimation) 
of the cylinder modelling the stem are optimised 
by using maximum likelihood estimation. The 
estimation was ensured to converge by a stepwise 
procedure in which the position is first solved for 
a good approximate value. A link is established 
between the parameters and the image pixels. The 
problem is turned into finding the optimal model 
tree parameters. For dbh, a standard deviation 
of 3.2 centimetres was obtained without notable 
bias. The planimetric accuracy was of the same 
order, but the accuracy of Z was lower. Tarp-
Johanssen used panchromatic aerial photographs 
in the scale of 1:4000 with a 4-centimetre pixel 
size. The optimisation by means of likelihood 
estimation was computer intensive and resulted 
in long run-times, from six to 30 minutes per tree. 
Match-rates with zero omission errors varied from 
85% to 98%.

Gong et al. (2002) present an interactive tree 
interpreter to be used with three large-scale images 
having large forward overlap. The approach 
resembles that of Kiema’s (1990). Kiema (1990), 
used a parabola of revolution to represent crown 
envelope. Gong et al. (2002) report on the use of 
generalised hemi-ellipsoids (cf. Horn 1971, Pol-
lock 1996, Larsen 1997, Sheng et al. 2001) with 
parameters characterising crown depth, radius, 
and curvature. The interpreter is interactive and 
is founded on the skill of the operator that first 
measures the tree for butt and top 3D coordinates. 
When the approximate parameters for the 3D 
geometric tree model are known, its silhouette 
can be superimposed on the images. The problem 
turns then into optimal tree model determination, 
which is solved manually or semi-automatically 
by adjustment of the parameters that determine 

the crown shape (cf. Tarp-Johanssen 2001). An 
edge-indicator, which compares the projected sil-
houette curve and the pixel values, is used for the 
automatic selection of an optimal model tree.

1.3.6 Development of Photogrammetry

Conventional 3D aerial photo interpretation for 
forestry has involved the use of analogue, opti-
cally enlarged and manually normalised (for 
stereopsis) photograph pairs viewed by a stereo-
operator. Lens and mirror stereoscopes and paral-
lax bars have been typical low-cost viewing and 
measurement instruments. High precision topo-
graphic mapping instruments such as analog or 
analytic stereoplotters and comparators have also 
been tested and used to some degree, for example 
in Sweden and in Norway (Talts 1977, Åge 1983, 
Eriksson 1984, Savioja 1991, Jensen and Köhl 
1992, Næsset et al. 1992, Næsset 1992a, 1992b, 
1992c, 1993, 1998). The analytical instruments, 
which expand the instrument ranges and allow 
specific formulation of the geometry of the sensor, 
and in which the computations and registration of 
observations are performed by a computer, have 
been commonly available since the mid 1970’s 
(Talts 1977, Schwidefsky and Ackermann 1978, 
Konecky 1981, Kamara 1989, Helava 1991).

The concept of digital or softcopy photogram-
metry is quite old (Schwidefsky and Ackermann 
1978, Konecky 1981, Sarjakoski 1981, 1989, 
Schenk and Toth 1992), but only recently has the 
price of powerful digital computing and digital 
storage made digital photogrammetric worksta-
tions (DPW) and digital 3D image analysis algo-
rithms competitive. There are many benefits in 
digital photogrammetry that makes it favourable 
(Helava 1991, Schenk 1999). The high accuracy 
image measurements that require sophisticated 
and expensive optical-mechanic instruments are 
done only once when the image is scanned for 
with a photogrammetric scanner. In principle dig-
ital images are long lasting, if properly stored, and 
orientations are solved just once. Image process-
ing capabilities are available for the operator, a 
photo laboratory is no longer required for the basic 
tasks, and DPWs are universal and flexible as they 
possess the functionality that resides in the algo-
rithms. If DPWs are used in visual stereoscopic 
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interpretation of forest scenes, a DPW cannot be 
expected to provide any major improvement in 
the visual interpretation accuracy over analog 
instruments such as stereocomparators or stereo-
plotters. The analog-to-digital transformation of 
the photographs always degrades the geometric 
and radiometric properties of the images (Helava 
1978, Jain 1989, Schenk 1999). The possible 
benefits come in the form of improved efficiency 
explained mostly by the equipment flexibility and 
lower price of DPWs and the automation of image 
processing and analysis (Schenk 1999).

1.4 Geometry of Aerial Photography and 
Photographs

1.4.1 Sensor Geometry and Perspective 
Mapping

To reconstruct the position and shape of objects 
from photographs, the geometric laws by which 
images were formed need to be known. Metric 
aerial cameras, used commonly in aerial photog-
raphy, can be regarded with sufficient accuracy to 
produce central projections of the photographed 
spatial objects and the perspective, or, the pinhole 
camera model can be employed.

In central projection, the points P in the object 
space E are mapped on the plane Π through lines 
(homocentric ray pencil) that pass the projection 
center point K and intersect the plane at points 
P’

p: E → Π, p(P) = KP ∩ Π = P’ (1)

A Cartesian 3D-coordinate system (x, y, z) may 
be established to represent the camera. The origin 
is at the projection center (K). The film plane 
(Π) is co-planar with the xy-plane. The principal 
distance c, is the distance between the film plane 
(at the principal point (x0, y0)) and the projection 
center along the optical axis. By this definition, 
all points in the film plane have constant values 
for z = ±c depending on the orientation of the 
camera z-axis.

True cameras are never perfect realisations of 
the pinhole camera and the physical imaging 
deviates from the mathematical model chosen to 
model the process. For a real camera, the theoreti-

cal location of the projection center, the principal 
distance (or the camera constant, c), the coordi-
nates of the principal point, and possible correc-
tions to lens imperfections, are mathematically 
defined in a process called camera calibration. 
The inner orientation of the camera is established 
in this process. (Schwidefsky and Ackermann 
1978, Fryer 1989, McGlone 1989, Kraus 1993).

Interior orientation of the camera establishes 
the ray-pencil in the projection centre-centred 
camera coordinate system. To map points from 
the object space to the film plane, the camera 
needs to be given 3D-position and attitude in 
the object coordinate frame. The attitude of the 
camera is represented by an orthogonal 3 × 3 rota-
tion matrix, R that describes the differences in 
attitude between the camera and the object coordi-
nate systems. The elements of R are the direction 
cosines between the coordinate axes. The angular 
orientation of the camera can be defined in several 
ways, but all definitions aim at the same funda-
mental target, the R-matrix. A common way to 
define the attitude of the camera is to give three 
rotation angles (ω, ϕ, κ), which define how the 
camera coordinate system is rotated in the space 
with respect to the X, Y, and Z-object coordinate 
axes. The location of the projection center K (X0, 
Y0, Z0) and the attitude of the camera R(ω, ϕ, κ) 
define the exterior orientation of the perspective 
camera in six parameters.

As stated, the perspective projection P → Π 
requires that the inner and exterior orientations be 
known. Collinear equations that map the object 
coordinates (X, Y, Z) to the camera coordinates (x, 
y), omitting any additional calibration or atmos-
pheric corrections, are (cf. Salmenperä 1973, 
Methley 1986, McGlone 1989, Kraus 1993):

 (2)

rij in (2) are elements of the rotation matrix R.

From equations in (2) it can be seen that for every 
object point there is a corresponding photo point. 
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Collinear equations and their linearizations is the 
core of analytic photogrammetry (Salmenperä 
1973).

The equations may be solved for the object 
coordinates (assuming that the camera coordinate 
system is centred at the principal point, i.e. x0 = 
y0 = 0) and the inverse collinear equations are 
obtained

 (3)

The individual equations in (3) represent planes 
in the 3D-object space. Any 3D point along the 
image ray that was projected to the point on the 
film plane can be anywhere in the intersection 
of these two planes forming the ray. Equations 
(3) may be used to solve the 3D path of the 
camera ray by fixing one of the unknown object 
coordinates.

The perspective camera model and the collin-
earity equations constitute a basis for the mod-
elling of the image-object-relationship and the 
solving of the photogrammetric problems. The 
model is often extended to cover factors such as 
lens imperfections and the refraction of light in 
the intermediate substance (cf. Schwidefsky and 
Ackermann 1978, McGlone 1989, Kraus 1993).

The exterior orientation of aerial photographs 
may be solved in many ways. The overall aim 
is to determine for each image frame the loca-
tion of the projection center and the attitude 
of the camera. Aerial triangulation (AT) is the 
traditional indirect method that employs a set 
of well-known ground control points (GCP), a 
number of conjugate tie points, and for these their 
corresponding image coordinates (Kraus 1993, 
1997). Image observations are obtained either 
manually or automatically. AT can be extended 
to make use of observations such as polar points, 
spatial distances and directions measured in field 
(Kraus 1997), and satellite positioning estimates 
for the projection centres measured during the 
flight (Cramer 1999). Satellite positioning esti-
mates reduce significantly the required number 
of GCPs, thus rationalising the process of AT 
(Cramer 1999).

Direct geo-referencing i.e. the direct measure-
ment of the exterior orientation of an imaging 
sensor employing satellite positioning and inertial 
systems, has been stimulated in recent years by 
the development of airborne push-broom scanners 
(cf. laser-scanning), which require continuous 
orientation information. Direct geo-referencing of 
aerial cameras has been shown to fulfil high accu-
racy requirements, and is a potential economic 
substitute to the somewhat laborious AT-methods. 
(Cramer 1999, 2001, Cramer et al. 2000).

1.4.2 Image-Object-Sun Angular Orientation

The varying image-object-sun angular orientation 
of aerial photographs is described by four angles 
illustrated in Fig. 3. The appearance of tree tops, 
which can be described as sharp vertical peaks, 
changes along with variation in the image-object-
sun angular orientation. In an attempt to automate 
the process of positioning tree tops from aerial 
photographs this must be considered.

Fig. 3. Image-object-sun angular orientation. The exam-
ple illustrates the back-lighted case and two cam-
eras with different focal lengths.



18

Silva Fennica Monographs 3 2004

Sun elevation gives the angle of the incoming 
sunrays to the horizon. For forest photographs, the 
acceptable range is usually defined to lie above 
ca. 30 degrees. In Southern Finland, aerial photo-
graphy is possible from early April to the middle 
of September. Lengths of daily time-windows 
and phenology of flora need to be considered 
also. In Finland, aerial photographs are taken in 
the morning hours (Fig. 4) with the sun in East 
or Southeast.

Nadir angle (~ viewing angle) is the deviation 
of the camera ray from the camera nadir. For verti-
cal photographs, it is almost the same as the image 
angle, the deviation of the camera ray from the 
optical axis. The radial displacement of vertical 
objects is determined by the amount of the nadir 
angle. Aerial cameras typically have a 23 × 23-cm 
film format and the focal lengths range from 9 to 
30 cm. With 15-cm focal length, the maximum 
image angle is approximately 45 degrees in the 
corners of the photograph. Occlusion of objects 
is partly explained by the oblique viewing and 
the probability of occlusion increases for objects 
further away from the image nadir. The net area 
becomes small if near-nadir views are desired. 
Increase in the focal length reduces perspective 
distortion, decreases the field of view, and impairs 
the accuracy of Z-estimation (Fig. 3).

The azimuth angles for the camera ray and the 
sunrays may be used to describe image-object-sun 
geometry of an object on the photograph. The 
photograph can be classified into four sectors: 
front-lighted, back-lighted, back-side-lighted and 
front-side-lighted (cf. Dralle 1997, Larsen 1997). 
In the front-lighted region, sun is behind the 
camera, and the sunlit parts of the tree crowns 
are observed. In back-lighted views the shadowed 
sides of the crowns dominate.

1.4.3 Correspondence Problem

”One of the most fundamental processes in photo-
grammetry is to identify and to measure conjugate 
points in two or more overlapping photographs. 
Stereo photogrammetry relies entirely on con-
jugate points. In analogue and analytical photo-
grammetry the identification of conjugate points 
is performed by a human operator; in digital pho-
togrammetry one attempts to solve the problem 

automatically – a process known as image-match-
ing” (Schenk 1999 p. 231). Image-matching is 
also known as the stereo correspondence problem 
in computer vision (Sonka et al. 1998).

3D measurements of objects are possible with 
two or more oriented photographs. The object 
must be seen from different perspectives i.e. the 
camera rays should intersect in the object space. 
The intersection of the camera rays gives the 3D 
coordinates of the object. The reliability of the 
3D measurements relies on the accuracy of the 
image orientations, the accuracy and number of 
the image observations, and the imaging geom-
etry. Here imaging geometry means the effects 
of camera optics, image overlap, and the flying 
height. (Kraus 1993).

The image observations must apply to the same, 
corresponding object on all images. It may be 
solved by stereoscopically viewing a normalised 
stereo pair, or by identifying the corresponding 
entities from multiple images monoscopically.

Schenk (1999 p. 234) provides a problem state-
ment for image-matching:
1. Select a matching entity in one image
2. Find its conjugate (corresponding) entity in the 

other image(s)
3. Compute the 3D position of the matched entity in 

the object space
4. Assess the quality of the match.

Fig. 4. Time of aerial photography in Finnish condi-
tions during summer 2003 (CIR photography for 
forestry). 85% of photographs were taken before 
1 p.m. local time. Nearly 10 000 exposures cover-
ing the whole country. In courtesy of FM-kartta 
International ltd., Helsinki, Finland.
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The fundamental problem of image-matching is 
that it is ill-posed. To be well-posed the solution 
should exist, be unique, and depend continuously 
on the data. Image-matching violates several, if 
not all of the conditions above (Schenk 1999 p. 
235). Ambiguity occurs in matching if the match-
ing entities provided by step one above are not 
unique enough. In complex scenes with occlusion, 
the solution does not necessarily exist.

1.4.4 Multiple Image-Matching

Traditionally the 3D interpretation of aerial 
images for forestry has been done stereoscopi-
cally by using stereopairs. A good stereo operator 
can provide fast and accurate 3D reconstruction, 
and for many tasks, the human interpretation 
still surpasses automatic methods in efficiency 
(Helava 1991, Schenk 1999). Disadvantages of 
stereoscopic viewing and interpretation are in 
its subjective nature, and in the inability of the 
human spatial vision system to accommodate 
itself to an angular difference of more than 1.2 
degrees (Kraus 1993, cf. Talts 1977), and in the 
fact that information of only two views may be 
used at a time.

With the presumption that the imaging geom-
etry is accurate, the search for corresponding 

entities can rely on the epipolar geometry of the 
images (Fig. 5, Fig. 6). If an object is detected on 
one image at one point, the search for this object 
on other images is restricted to the central projec-
tions of the camera-ray of that image observation. 
These projections on the other images are epipolar 
lines, which are found on the intersections of the 
image planes and epipolar planes (Fig. 5). The 
epipolar line degenerates into a point on one 
image, but for the other images, lines are defined 
on the image planes.

The 3D path of a camera-ray may be solved 
with the inverse collinearity equations (3). Given 
an image observation and by fixing two Z-values, 
two 3D points along the camera-ray that produced 
that image observation are computed. This is ade-

Fig. 5. Epipolar geometry of an image pair. The white 
triangle depicts the epipolar plane connecting the 
projections centers O' and O'' and the object P. The 
search for object P pointed at image location P' is 
restricted to a line on the other image.

Fig. 6. Epipolar geometry of a set of three aerial photo-
graphs. The tree top at 3D-position B is pointed 
from image 1 at B'. The camera ray from B' to B, 
within the expected range in Z, [Zmin, Zmax], 
maps into line segments e1(B) on images 2 and 
3. The dots on the images represent possible can-
didates (neighbouring trees) to be matched with 
B'. On image 2 there is only one which intersects 
e1(B). If that image point (camera-ray) is pointed, 
epipolar line segments e2(B) are defined on images 
1 and 3. The intersection of epipolar lines in image 
3 shows a likely candidate for the solution of cor-
respondence problem if B really is restricted to 
[Zmin, Zmax], and the geometric accuracy of the 
images is high.
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quate for calculating the epipolar line segments 
in the other images. These two fixed Z-values 
may represent, for example, the extremes of the 
expected elevation of the object (a tree top is 
expected to lie within Zmin and Zmax in Fig. 6). 
The corresponding object point is located along 
the epipolar line segments, if the assumption of 
the expected elevation holds, and the geometry is 
accurate. A good approximation of the Z-coordi-
nate reduces ambiguity of image-matching.

Computation of the 3D object coordinates of 
the point, which is observed on several images, 
calls for non-linear methods. If it is assumed that 
imperfect image observations were made, the 
problem is solved by using least-squares (LS) 
adjustment in which the norm of the 2D obser-
vation errors in the photographs is minimised. 
On the other hand, if it is assumed that perfect 
observations were made, but the exterior orienta-
tion of the photographs is erroneous, the 3D-point 
position is found by minimising the 3D errors in 
the object space. LS-adjustment is typically used 
in photogrammetry.

1.5 Qualitative Analysis of the Image Chain

1.5.1 Motivation for a Critical Examination 
of Task Complexity

An elaborate analysis of the image chain, or the 
flow of information, should be done when image 
interpretation is attempted. The analysis should 
consider all aspects affecting the feasibility of an 
image-based task. Recognizing the image chain 
includes critical examination of target properties 
and their variation, examination of the effects of 
imaging conditions, sensor geometry and radio-
metry, and the interpretation methods applied. 
(Lyytikäinen 1972).

“Image analysis is a process of discovering, 
identifying and understanding patterns that are 
relevant to the performance of an image based 
task” (Gonzalez and Woods 1993, p. 571). In the 
framework of this study, the patterns of inter-
est are tree tops and the task is to give the tree 
tops a position in 3D and to measure other tree 
variables. The task is automated where possible. 
The automated recognition system should exhibit 
some degree of intelligence. It should be able to 

extract pertinent information about the tree tops 
from a noisy background. It should be robust 
against changes in different circumstances such as 
the imaging geometry, and scale. In addition, the 
system should have some ability to make infer-
ences from incomplete information. These char-
acteristics can usually only be implemented in a 
very limited operational environment (Gonzalez 
and Woods 1993, Jain et al. 1995). Because of 
this, a single algorithm is most likely unable to 
solve the tasks of finding, isolating, measuring, 
and classifying individual trees (Pinz 1999a). 
Hybrid procedures are thus required.

Jain et al. (1995 p. 463) provide a qualitative 
method for analysing the complexity of model-
based object recognition:
1. Scene constancy: Illumination, camera parameters, 

viewpoint, background, and forest characteristics. 
Variability is present in these factors in the case of 
aerial photographs and forests scenes.

2. Image-model spaces: For example in template 
matching the models of trees can be three-dimen-
sional objects that are ray-traced for 2D templates 
(e.g. Pollock 1996, Larsen 1997). Perspective 
effects and 3-dimensionality increase the com-
plexity of the recognition (Horn 1983).

3. Number of objects in the model database: Number 
of tree species, their varying shape, size and reflect-
ance properties. Need for size invariance in feature 
detection and object description. The number of 
objects affects the amount of effort that needs to 
be spent in selecting appropriate features.

4. Number of objects in an image and possibility of 
occlusion: Occlusion is present and leads to the 
absence of expected features. The possibility of 
occlusion should be considered at the stage of 
hypothesis verification or quality assessment.

1.5.2 Spatial and Radiometric Properties of 
Analog Aerial Photographs

Aerial cameras are passive optical sensors that 
capture electromagnetic radiation during expo-
sure. An object on the ground absorbs a part of 
the total incident light and remits by diffuse or 
specular reflectance the remainder. The incident 
light at an object point consists of direct and scat-
tered diffuse light. Scattering occurs in the atmos-
phere as well as in the objects on the ground. 
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The irradiance on the film emulsion consists of 
a superimposition of the scattered radiation and 
of the radiation that reflected from the objects 
in the direction of the camera ray. The spectral 
sensitivity of the film depends upon the sensitivity 
of different chemicals in the film layers. Filters 
are used in connection with aerial photography 
to compensate for atmospheric and lens effects. 
The choice of the correct film-filter combination 
is a compromise targeted at meeting the needs of 
interpretation. (Lyytikäinen 1972, Lillesand and 
Kiefer 1979, Kraus 1993, Fent et al. 1995).

The finest details, which are visible in the aerial 
photographs are mainly dependent on the qual-
ity of the lens system, the film emulsion, and the 
immobility of the camera system during exposure 
(Lyytikäinen 1972, Kraus 1993). Aerial cameras 
are usually equipped with a forward motion com-
pensator and a heavy-duty or stabilized camera 
mount (Lillesand and Kiefer 1979, Kraus 1993). 
The resolution of a photograph is measured in 
line pairs per millimetre. The interpretation of the 
resolution values should include a critical review 
of the test environment. The photographic resolu-
tion of modern aerial films and cameras, obtained 
in laboratory conditions, is approximately 40–105 
lp/mm. The resolution is highest in the center 
parts of the focal plane and typical values of an 
average, area weighted average resolution, are 
50–60 lp/mm (Kraus 1993, Schenk 1999). The 
optical properties of the target are also of great 
importance. For example, thin power lines can be 

visible and blurred on aerial photographs when 
details of the same size are not seen in the under-
lying vegetation. Resolution is strongly dependent 
on contrast (Lyytikäinen 1972, Kraus 1993).

1.5.3 Digitized Aerial Photographs

Commercial, solid-state metric cameras that could 
provide the same spatial resolution as film-based 
aerial cameras have not yet entered the market 
(Schenk 1999, Petrie 2003). The data acquisi-
tion phase at the present includes the processes 
of selecting the film, and filters and exposing, 
developing and scanning the film. Scanners 
are usually linear sensors and the sampled and 
quantified signal obtained with a scanner is an 
approximation of the signal that was stored on 
the film. Scanners further introduce geometric 
and radiometric inaccuracy to the 2D-signal (Jain 
1989, Gonzales and Woods 1993, Jain et al. 1995, 
Schenk 1999).

1.5.4 Scale

Humans perceive objects in the world as having 
structures both at coarse and at fine scales. A tree 
may appear as having a roughly round or cylindri-
cal shape when seen from a distance, although it 
is built from a large number of branches. On a 
closer look individual leaves become visible, and 

Fig. 7. 1:5000 and 1:10000 near-nadir views to a dominant spruce tree. Pixel sizes 
on ground are 12.5 and 25 centimetres respectively. The diameter of the crown 
is approximately 4.5 metres.
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we can observe that the leaves in turn have texture 
at an even finer scale. The scale of observation has 
important implications when analyzing measured 
signals, such as images, with automatic methods 
(Woodcock and Strahler 1987, Lindeberg 1994). 
Fig. 7 illustrates the effect of scale. Individual 
branches contribute to the texture in the 1:5000 
scale image.

Lindeberg (1994) emphasised that the problem 
of scale must be faced in any image situation. 
Two scales, the inner scale and the outer scale 
determine the extent of any real world object. 
The outer scale of an object or a feature may 
be said to correspond to the minimum size of a 
window that completely contains the object or the 
feature, while the inner scale may loosely be said 
to correspond to the scale at which substructures 
of the object begin to appear. In a given image, 
only structures over a certain range of scales can 
be observed. For a digital image, the inner scale 
is determined by the pixel size and for a photo-
graphic image by the grain size in the emulsion.

A too detailed image may even prove harmful 
in some situations. For example, an appropriate 
scale for tree crown detection and delineation 
may be one in which branches do not contribute 
to contrast and influence the behaviour of a seg-
mentation algorithm. (Pouliot et al. 2002).

Multi-scale representations of signals such as 
image pyramids may be used to explicitly rep-
resent the multi-scale aspect of real world data 
(Lindeberg 1994, Jain et al. 1995). An image-
processing algorithm may operate at first at a 
coarser level and continue further at a more 
detailed scale (Horn 1983, Zheng 1993, Brandt-
berg and Walter 1999, Pinz 1999a).

Scale has also significant implications on the 
costs of aerial photography. In general, it can be 
said that scale and costs are in quadratic ratio. 
An operational forest inventory system, which 
is a based on aerial photographs, needs to be 
cost-efficient. Thus, it is essential to study the 
effects of scale.

1.5.5 Objects to be Detected – Individual 
Trees

The many elements that absorb and reflect radia-
tion in a tree include the foliage, flowers, cones, 
branches, epiphytes on the shoots, and the stem. 
The radiometric properties also vary during the 
growing season. For example, a spruce tree with 
an abundance of pistils and stamens and fresh 
shoots is easily mistaken for a deciduous tree 
when interpreted from an early-summer CIR pho-
tograph (cf. Brandtberg 2002). Timing of photog-
raphy with respect to phenology has been shown 
important for tree species recognition (Sayn-Witt-
genstein 1978, Key et al. 1999). The radiometric 
properties of needles and leaves change during 
the growing season (Gates 1980, Stenberg 1996). 
Temporal, between-year variation in the devel-
opment and senescence of foliage is explained 
mainly by weather conditions. In a given area, 
the phenologic status of trees also varies between 
sites and tree species. In planning the timing of 
aerial photography, the phenology of trees and 
other forest flora need to be considered. However, 
there can be little room for fine adjustment in the 
timing if the season for photography is short, and 
appropriate weather conditions is scarce.

The crown shape, density and amount of foli-
age, and branching pattern vary between tree 
genera and species (Kujala 1958, 1965, Sarvas 
1964, Horn 1971, Sayn-Wittgenstein 1978, Lille-
sand and Kiefer 1979). Needles of conifers are 
clumped in shoots (Oker-Blom 1986, Nilson and 
Ross 1996). Within a tree crown the density of 
needles is, on average, higher in the upper and 
outer parts of the crown. The amount of needles or 
foliage varies during the growing season. Crowns 
can be sparse. For example, crowns of pine trees 
growing on barren bogs are almost impossible 
to discern on CIR photographs because the trees 
have very sparse crowns, which, furthermore, 
have vital bog shrub and moss flora forming the 
background.

The branching of Scots pine is regular. There 
are whorls of primary shoots and no later second-
ary branching from lateral dormant buds. Alike 
most species in the Pinus-family Scots pine has 
a round-conical crown form. The density of nee-
dles is higher towards the surface of the crown 
envelope, since the spurs with needles are formed 
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only in new branchlets and the lifetime of needles 
is from two to five years. Old pines have round 
apexes. (Kujala 1958, Sarvas 1964). The crown 
shape of Norway spruce is often conical. It is a 
semi-shade-tolerant tree species with relatively 
deep crown. The branching pattern is not as regu-
lar as in the case of pine. The lifetime of needles 
is from five to twelve years. The pistils usually 
occupy the upper parts of the crowns, and there 
is strong variation in the flowering and cone 
production between growing seasons. There is 
also an element of between-tree variation in the 
flowering. (Kujala 1958, Sarvas 1964). The crown 
shape of silver and pubescent birch can be said 
to vary from conical to ‘plum-shaped’. The top 
is not always a very distinct point feature. Birch 
usually has a single trunk, but occasionally has 
multiple stems due to stump sprouting. Birch 
is a light demanding, pioneering tree species. 
(Kujala 1965)

In Finland, aerial photographs for forestry 
are taken on sunny, cloudless middays. There 
are hardly any gale winds, but tree-sway may 
be assumed to take place. Any sway, or target 
motion, will affect the accuracy of 3D data cap-
ture from images (cf. Aldred 1964). Trees respond 
to variable forcing of the wind with an oscillating 
motion. For example, Flesch and Wilson (1999) 
measured angular displacements of white spruce 
stems and observed an average fundamental fre-
quency of tree sway at 0.4 Hz. Secondary peaks at 
higher frequencies were assumed to be caused by 
the motion of shaking branches. Given the natural 
frequency of tree sway, the systematic layout of 
camera locations and the constant aircraft veloc-
ity, it is possible that the consecutive photographs 
are taken at a frequency that causes systematic 
errors in the reconstructed 3D-positions of the 
tree tops or even impedes image-matching. For 
example, during the field measurement campaign 
of this study, it was noticed that normal midday 
summer-wind impeded reliable height measure-
ments from the ground. The tops of slender, 20-
metre high birches swayed and bent outside the 
field-of-view of the hypsometer optics, even some 
metres away from the resting position.

1.5.6 Scene Constancy – Stand and Regional 
Level Aspects

Trees in a stand vary in stem and crown size, tree 
species, state of health, and many other qualita-
tive and quantitative characteristics. There are 
stands in which the spatial pattern of trees is 
regular, clustered or inhomogeneous, random, or a 
non-stationary mixture of the preceding (Tomppo 
1986). If such within-stand variation in tree-vari-
ables would not exist and trees would stand in 
rows on a plane, automation of photogrammetric 
stand cruising would be much easier.

Planted stands can have a very regular spatial 
pattern of trees. Birch and aspen reproduce from 
root and stump sprouts and often form clumps of 
stems with overlapping crowns. The stand struc-
ture of managed forests is altered in intermediate 
thinnings. In Finland, the thin-from-below-rule 
has been commonly practised. In addition to the 
effect of regeneration and intermediate fellings, 
soil conditions, wood harvesting tracks and ditches 
affect the spatial pattern of trees. Sun-lit blob-like 
patches on the forest floor caused by openings in 
the canopy are easily misinterpreted on monocu-
lar images as trees (e.g. Pitkänen 2001).

In unmanaged dense stands, the height distribu-
tion of trees is wider, spatial pattern of trees can 
be irregular, and the number of occluded and 
shaded trees is therefore likely higher. Unman-
aged stands, in which the quality of the forest is 
decreased in regard to timber production, make up 
18% of productive forest land in Finland (Tomppo 
et al. 2001). Only four or five species are favoured 
in silviculture, and pine, spruce, and birch consti-
tute 96.5% of the total volume. Two-layer stand 
structure occurs in 8.4% of productive forest-
land, and uneven-aged forests constitute 0.8% 
of productive forest land. Stands in which the 
proportion of the main species is over 95% make 
62.4% of the area of productive forest area. Mixed 
stands in which the percentage of main species is 
below 75% constitute 12.2% of productive forest. 
(Tomppo et al. 2001).

A 1:10000 scale photograph covers an area of 
approximately 2.3 by 2.3 kilometres. In Finnish 
conditions, an area of such size can contain almost 
all of the variation in forest characteristics for the 
region (e.g. Kangas 1994, Fish 2000).
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1.6 Outlines for Inventory Procedures

In this study, the task of forest data acquisition 
for which methodology is proposed is highly 
restricted. We confine ourselves to the basic quan-
titative tree and forest variables related closely to 
the commercial value of the forest. Forest man-
agement problems are secondary in the chosen 
context.

The thesis is that by applying photogram-
metric measurements and indirect estimation 
with models, the following tree variables can be 
assessed (cf. Fig. 1, p. 8):

The set of independent variables of the allometric 
models f1 that predict the dbh from photo-measur-
able quantities can differ. Calibration and valida-
tion of the models as well as photo-measurements 
is also possible for the control of gross systematic 
errors. Allometric models f2 represent tree-level 
volume and taper curve functions. Forest vari-
ables are aggregated from the single tree data. 
Field visits may be needed to assess the role of 
small undetectable trees since the photogram-
metric estimates are by nature underestimates. In 
the context of this study, several alternative inven-
tory models can be considered. Three models are 

Table 1. Examples of outlined inventory schemes (models) utilising photogrammetric individual tree measure-
ments.

Work A B C
phase No field visits Systematic sample of field plots Field visits in stands of interest

I  Image (and laser data) acquisition, preparatory work.

II Field – {Position, sp, dbh, h, CW} {Position, sp, dbh, h, CW}
  – field observations e.g.  – field observations 
  from systematic layout in every stand.
  of field plots.
  Satellite positioning + Satellite positioning +
  laser-relascope laser-relascope

III Image  Semi-automatic measurement of tree top position and height.

IV Image – Training sets for Training sets for
  image based species image based species
  classification classification

V Image  Interpretation of tree species and measurement of crown width.

VI  Indirect estimation of dbh and derivation of volumes.
  (Calibration/validation procedures in B and C).

VII  The estimation of forest variables for the non-discernible tree stratum.

VIII  Computation of the aggregated results, density maps etc.

– Tree top position in 3D
– Tree top position in 3D + DEM ⇒ height
– Tree top position in 3D + Images + field data ⇒ species
– Tree top position in 3D + Images ⇒ CW

– f1 (height, CW, species) ⇒ dbh
– f2 (height, dbh, species) ⇒ tree volume, sortiments, value
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outlined in Table 1. The list is far from complete 
and the outlined models can be varied for different 
sampling designs.

Model A describes an inventory model without 
any field visits (Table 1). Results obtained by type 
A inventory are most susceptible to systematic 
errors since the tree species identification relies 
on photogrammetric observations only, and there 
is no field control for the tree and forest estimates. 
Models B and C require fieldwork for mapped 
tree-data that can be linked together on a one-
to-one basis with the trees found from the aerial 
images. This is a fair assumption considering 
the recent development in the field equipment. 
Satellite positioning under forest canopy pro-
vides positioning accuracy in the metre level 
(Næsset and Jonmeister 2002). Laser-relascope, 
which is equipped with a ranging laser, electronic 
compass, angle gauge and a dendrometer, can 
be used for fast mapping of trees and measure-
ment of dbh and height (Kalliovirta 2003). The 
measurement of crown width in the field can be 
time-consuming and inaccurate. It is therefore 
more tempting to calibrate the indirect estimation 
chain for the estimated dbh (phase VI) instead of 
the photogrammetric crown width measurement 
(phase V). In model B, the field data is collected 
from a systematic sample of field plots. This 
approach is intended to be used with a large area 
forest inventory. In model C stands are delineated. 
Model C represents stratified sampling and is 
comparable with traditional stand-wise inventory 
for management planning or pre-harvest stand 
cruising. In an inventory, which applies model 
C, the results are not necessarily wanted for the 
whole forest area. In B and C, model-calibration 
and validation of results is possible within the 
limits of the field data.
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2.1.1 Field Data

The forest data consists of 24 plots from Hyytiälä 
in Southern Finland, 61º50’ N, 24º20’ E (Table 2). 
The study area is on state owned land. The field 
data has been collected in 1995–1997, 2000, and 
2002–2003. Some field plots have been measured 
twice. There are square-shaped, rectangular, and 
circular plots with varying size, and three of 
the plots are actually fully mapped stands. Tree 
butts were mapped in 3D with a tacheometer in 
a local Cartesian coordinate system. Living and 
dead trees with dbh above a threshold, which 
varied between plots from 25 to 90 millimetres, 
were recognised as trees that make up the forest. 
All trees were recorded for species, dbh, height, 
and the state of health. Other tree variables such 
as crown width, crown length, six-meter stem 
diameter, stump diameter, and stump height were 
collected for a sub-set of trees. On each plot, basic 
tree measurements were repeated for a sub-set of 
trees in order to control measurement errors.

The field plots were named such that the main 
species and development class can be determined 
from the name. The letters P, S and B denote tree 
species for pine, spruce and birch respectively. 
Fifteen plots belong to a thinning experiment 
(Räsänen et al. 1992). These are plots P1–P4, P6, 
B1–B4, and S1–S6. Plots PS1 and PS2 are also 
thinning stands in which both pine and spruce 
occur. Mature stands are marked with a prefix 
Ma. The species mixtures in proportion of stem 
volume are given in Table 2.

The chosen object coordinate system was the 
Finnish coordinate system KKJ. KKJ is not a true 
Cartesian coordinate frame, which is required 
in a photogrammetric project, but it serves as a 
good approximation in a small area (cf. Kraus 
1997). KKJ was re-defined as right-handed. Seven 
geodetic points surrounding the study area had 
coordinates in KKJ. For AT fifteen complemen-

tary ground control points were measured and 
marked in the study area with a kinematic GPS in 
August 2000. The estimated measurement accu-
racy for these points was four centimetres for the 
planimetric coordinates and five centimetres for 
Z-coordinate.

The elevation of each field plot was measured 
by levelling. Nine levelled points were marked 
with a signal and used as tie points in AT. The 
differences in Z-coordinates for these points had 
a –0.02 metre mean and a 0.11 metre standard 
deviation. From this, it can be assumed that the 
plot elevations are within ±25 cm (95% confi-
dence) from their true values (or rather the differ-
ence between the chosen local photogrammetric 
datum).

The XY-coordinates for the trees were obtained 
by measuring the tree tops using four to six CIR 
photographs (see Sections 2.3, 3.1.1). In order 
to transform the local coordinates into the object 
coordinate frame, a rotation angle in XY-plane, 
and shift parameters in X and Y, were estimated 
by using the photogrammetric observations and 
field data.

The accuracy of the tree butt locations inside the 
plot coordinate system was evaluated by re-meas-
urements on plots B1, B2, MaPS3 and MaPS4. 
The results implied that within each plot the XY-
coordinates for the butts should be within ±40 
cm (95% confidence) from the true values. The 
data can be assumed heterogeneous as it has been 
collected over several years and by many people. 
There are blunders in the data. Plots B1 and B2 
were re-mapped with a tacheometer because the 
tree tops (XYZ-points) did not match well with 
the patterns on the aerial images. It was found 
that on both plots the Z-coordinates for the tree 
butts had a systematic 40-centimetre error with 
respect to the plot origin. This was most likely 
due to incorrectly set prism height during the first 
mapping. In addition, the planimetric coordinates 
had an element of systematic error. When the 
tacheometer measurements were taken, the prism 

2 Material and Methods
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that reflects the laser back to the apparatus was 
placed in front of the trunk at the height of 1.3 
metres. The position in XYZ obtained this way 
should be corrected by using the measured dbh, 
since the correct position for the prism should be 
’inside the trunk’. This correction was not done 
for a part of the data (1995–1997 mapped stands) 
and could not be done afterwards, since neces-
sary data was lacking. The error pattern is such 
that the trees are shifted towards the tacheometer 
positions in these stands.

The tree top positions in the 3D object coordi-
nate frame were obtained by using the 3D position 
of the butt (after a transformation consisting of 
shift and rotation) and the tree height. Thus, the 
inaccuracy of height measurements affects the 
accuracy of Z of the tree top positions. On each 
field plot, a subset of trees was double-measured 
for height. No systematic errors were encoun-
tered, and the precision (standard error, assuming 
equal precision for both measurements) of the 
measurements varied from 0.35 to 0.6 metres 
between plots. Single large errors up to ±3 metres 
were observed. The measurement imprecision 
was largest in the dense unmanaged stands and 
in the mature stands with high trees.

Given a single tree top in the data set, its posi-
tion accuracy (95% of cases) in the object coor-
dinate frame was assessed to be 50 centimetres in 
XY, and ±80–100 centimetres in the Z-direction. 
However, the accuracy most likely varies signifi-
cantly between plots.

Local, raster-DEMs with a one-metre spatial 
resolution were computed for each plot by using 
the local coordinate data for tree butts. A k-near-
est-neighbour, inverse-distance interpolation was 
applied. These DEMs were used in the tests of the 
semi-automatic 3D tree top positioning method.

2.1.2 Image Data

Including images in different scales and of dif-
ferent film material was the main objective in the 
planning of the aerial photography. The images 
were intended to exhibit variation in the image-
object-sun geometry. The budget limited the total 
number of images to 72, and these were then 
divided to provide a satisfactory experimental 
design. Unfortunately, images taken with a normal 
angle camera (effect of lesser perspective distor-
tion) could not be included in the experiment.

The CIR photography took place in the morning 
of May 27, 2002 and the colour photography on 
July 10, 2002. May 27 is exceptionally early. Two 
wide-angle Wild RC 20 cameras, with a 15-cm 
focal length were used with antivignetting low-
pass filters. The 23 by 23 centimetre films were 
developed on the following week and scanned in 
July–August 2002 with a photogrammetric scan-
ner at 14-micrometer resolution. (Table 3). The 
photography was initially planned for 2001, but 
was cancelled that year because of poor weather 
for aerial photography. Only some three to four 
days were suitable for photography in 2001.

For the development of the methods used in 
this study, a set of 42 photographs taken between 
1995–1999 was available. These include CIR, 
colour, and black-and-white images from the 
study area in scales of 1:5000–1:20 000. In solv-
ing the exterior orientation, the older images and 
a set of 1:30 000 CIR images taken in 2002 were 
included in the image block (N = 114) in order 
to have them all in one datum. The tests for this 
study are all done by using the 2002 photographs 
in scales of 1:6000–1:16 000 (Table 3).

The parameters for affine fiducial mark trans-
formation were solved by using least-squares 

Table 3. Image parameters.

Scale Film N images Overlap Date Local Sun Sun
   forward/ ddmmyy time azim. elev.
   side %   degr. degr.

1:6000 CIR  22 60/60 270502 0945 113 35.2
1:6000 COL 22 60/60 100702 1054 128 42.5
1:12000 CIR 18 70/60 270502 1000 117 36.7
1:16000 CIR 10 60/60 270502 1015 121 38.2

Film: Kodak Aerochrome 1443 (CIR), Agfa Aviphot Chrome 200 PE3 (COL)
Exposure: Aperture stop 4, speed 150 (CIR), 300 (COL). Filters: 520AV+80% (CIR), 420AV (COL)
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estimation. RMSEs had an average of 6.7 microns 
and ranged from 2.6 to 11.3 microns.

AT was carried out by using bundle block 
adjustment (Kraus 1993). Image observations 
were collected monoscopically with sub-pixel 
accuracy. Twenty-two GCPs and one hundred 
tie points were used. The images were fastened 
to the block with the help of tie points which 
were mostly stones or corners of buildings. The 
use of natural tie points reduces the costs without 
affecting the accuracy (Gruen 1982). Altogether 
there were 1187 image observations (9.7 per field 
point). At solution, the RMSE of weight unit 
was 9.3 microns and the residuals ranged from 
–46 to +42 microns. The standard errors for the 
unknowns are given in Table 4. All image obser-
vations independent of scale, film or point type 
had the same weight in the adjustment.

The work was done in phases by including 
individual images in the block and then by re-
calculating the results (cf. El-Hakim and Ziemann 
1982). Small observation errors were difficult 
to trace because adjustment effectively spreads 
the errors among the elements of the residual 
vector.

The largest standard errors for tie points (Table 
4) and differences for GCPs (Table 5) were 
obtained for detached single points in the borders 
of the block coverage.

Image decimation by a factor of two was per-
formed for the 1:6000 images after AT because 

of the computational complexity of cross-corre-
lation. The non-decimated versions were used in 
all other experiments but those involving the use 
of cross-correlation for template matching (see 
section 2.4.2). With a decimation factor set at two, 
25% of the pixels are retained, but the run-times 
of template matching, when using cross-correla-
tion, are reduced by a factor of 1/16. There is 
a trade-off between the computational burden 
and the precision of the images and subsequent 
image-matching results. The image decimation 
was done uniformly in the row and column direc-
tions, and in two phases. First, the images were 
operated with a 3 × 3 binomial low-pass filter 
(Schenk 1999, p. 119) that reduced the bandwidth 
of the signal by reducing the high frequency 
spectrum. The actual decimation followed as the 
second step, and in it, the unwanted samples were 
removed. The parameters of the affine fiducial 
mark transformation were recomputed for the 
decimated image versions by simply multiplying 
the parameters with the reciprocal of the decima-
tion factor. The effect resulting from odd image 
dimensions was accounted for.

The majority of computer analysis of the image 
data, the statistical analysis, and the simulations 
were performed by a program written in Visual 
Basic and C. A part of the statistical analysis was 
carried out with Statistix.

2.2 Models for Indirect Estimation of dbh 
and Stem Volume

The allometric models by Kalliovirta and Tokola 
(2003) were used for deriving dbh for a tree with 
estimates on species, height, and maximum crown 
width. General models that apply for the whole of 
Finland were chosen. The form of the models is

Table 4. Standard errors of exterior orientation parameters for the 2002 images (N=72) in scales 1:6000–1:16000 
(images used in the experiments) and standard errors of tie point coordinates in metres.

 Projection center position, m Rotation angles, radians Tie point coordinates, m
 X0 Y0 Z0 omega phi kappa X Y Z

Mean 0.22 0.23 0.09 0.000161 0.000152 0.000050 0.08 0.07 0.17
Min 0.11 0.11 0.03 0.000072 0.000076 0.000028 0.02 0.02 0.04
Max 0.46 0.67 0.30 0.000430 0.000317 0.000085 0.52 0.45 0.98

Table 5. Differences in triangulated and field measured 
coordinates for the GCPs (N=22) in metres.

 X Y Z

Mean 0.01 0.01 0.03
s 0.06 0.07 0.11
Min –0.19 –0.10 –0.08
Max 0.14 0.25 0.47
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 (4)

Coefficients for the model are given in Table 6.
Pine has the largest dbh given the tree height 

and crown width. The difference between pine 
and spruce is not large, between –15 mm and 25 
mm for trees with a height ranging from 5 to 25 
metres. If species identification fails for birch, 
larger systematic errors could be expected, some-
thing in the order of 10 to 80 mm in dbh. Birch 
has wider crowns than pine and spruce for a given 
height × dbh combination.

Stem volumes of individual trees and sortiments 
were calculated with polynomial taper curves 
(Laasasenaho 1982). The volumes exclude the 
stump. Certain log-lengths and minimum log-
top diameters define the sortiments. These were 
defined separately for each species, the saw-
wood, and the pulpwood in order to follow aver-
age definitions on the wood market. Division into 
sortiments (grading, bucking) was optimised for 
the maximum saw-wood proportion.

2.3 Tree Discernibility and Manual Tree Top 
Positioning in 3D

2.3.1 Manual Image-Matching Using 
Multiple Images

When the correspondence problem for tree tops 
is to be solved manually, the operator can point 
the tree top in many cases unambiguously and 
the corresponding tree top on other images is 
found along the epipolar lines (Fig. 6, p. 19). 
Other constraints are used as well to solve the 
correspondence problem. The relative size of the 
tree top with respect to neighbouring trees, crown 
shape, the topology (spatial pattern) of the trees 
partially distorted by the central projection, and 
the apparent differences in tree species among 
the neighbouring trees are used in solving the 
correspondence problem. With these constraints 
the operator can rule out impossible choices and 
gradually solve the ill-posed image-matching.

A tree top is not always a clear point feature. 
The shape of the crown, image scale, and contrast 
all have an effect on how accurately the point 
location of the tree apex may be determined on an 
image. For example, tree tops are well detected if 

they are in direct sunlight but against a shadowed 
dark background. Correspondingly, in front-lit 
parts of the images tree top detection may be 
difficult because of the low contrast.

A tree top may not visible in all views. If the 
correspondence problem is solved for multitem-
poral images, the set of tree tops in direct sunlight 
can differ between the images. This may further 
hamper or facilitate the problem, depending on 
whether the operator or algorithm is aware of the 

Table 6. Coefficients for allometric models (4). (Kallio-
virta and Tokola 2003).

Species a0 a1 a2

Pine –3.140 0.691 1.400
Spruce –3.224 0.819 1.092
Birch –3.076 0.622 1.246

Fig. 8. Occlusion is the cause of omission and commis-
sion errors. Tree top B is first pointed from image 
1 at B’. Epipolar lines e1(B) are defined in images 
2 and 3. If tree A in image 2 at A’ is thought to be 
the corresponding tree top, epipolar lines e2(A) are 
defined on images 1 and 3. The operator would, 
perhaps, then notice that the tree top at the intersec-
tion of epipolar lines in image 3 is not a conifer (as 
B is), and 3D solution at point B would be rejected. 
Point BCE is a possible commission error. For point 
BCE, there is a crown of a conifer in every image 
(B→image 1, C→2, E→3).
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fact that the images are multitemporal. Occlu-
sion, shadowing, and the varying image-object-
sun angular orientation between images all cause 
ambiguity in image-matching that result in omis-
sion and commission errors (Fig. 8). An operator 
can try to take into account these factors. For 
example, a tree with a small crown that is visible 
in a near-nadir view may be missing in an oblique 
view. The operator stops the search of the conju-
gate tree top in oblique views where occlusion of 
a relatively small tree is likely.

2.3.2 Test Set-up for the Experiment of Tree 
Discernibility

All 7708 living trees in the field data were tried for 
a photogrammetric measurement for the tree top 
position by using manual multiple image-match-
ing. The positions were computed by using least-
squares ray-intersection (e.g. Korpela 2000).

Non-decimated CIR images, 4–6 per plot, in 
scale 1:6000 were used. Plots MaS1, PS2, MaPS1, 
MaPS3 and MAPS4 were not covered by a com-
plete set of images in 1:6000. For these plots, 
substitute 1:12000 CIR photographs, exposed 15 
minutes later, were used.

The operator knew where to look for the trees, 
because the 3D points representing the field-
measured tree tops could be superimposed on 
the images. The work was organised such that 
the operator first measured the dominant and 
co-dominant trees. These were visible in all four 
views and easily measurable without auxiliary 
information. For the suppressed trees, field data 
was used to assist the work. Tree tops, which 
could be subjectively recognised on at least two 
images, were measured for their 3D position. 
While pointing the tree tops monoscopically, the 
operator did not have the superimposed points 
on the image. A short training period in multiple 
image-matching preceded the work.

2.4 Proposed Method for Semi-Automated 
3D Positioning of Tree Tops

2.4.1 Choice of Strategy for Method  
Development

When a human operator does image-matching, 
the operator selects the matching entities, finds the 
conjugate entities in the other images and assesses 
the quality of the match. The computation of 
the 3D position is the only problem the opera-
tor escapes. Full automation of photogrammetric 
tasks is considered very difficult (Horn 1983, 
Helava 1991, Schenk 1999, Gong et al. 2002) 
and therefore the semi-automatic approach, with 
human intervention, was chosen. The complex-
ity-analysis, the findings of previous studies, the 
experience gained during method development, 
and the overall objective of solvability of research 
problems confirmed the choice of strategy.

2.4.2 Extraction of Tree Tops from Individual 
Images by Template Matching

Tree crowns in an image are area features. A 
tree top on the other hand may be considered to 
be a point feature both in the image and object 
domains. Here the tree top is defined to be the 
highest point of a tree.

The extraction of tree tops from aerial image 
is based on a image processing and object rec-
ognition technique called template matching. 
Template matching has been used for tree top 
extraction (e.g. Pollock 1996, Larsen 1997, Olofs-
son 2002). Tree stems have also been recognised 
(Tarp-Johanssen 2001). As such, template match-
ing does not provide tree top image locations to 
be matched for 3D positions. The correlation 
image, ρ needs to be processed for local maxima 
to provide a list of tree top locations or stem count 
(Pollock 1996, Larsen 1997).

A template is a sub-image, which models the 
appearance of the object to be recognised from the 
image. The presence of the object in the scene is 
detected by searching for the location of a good 
match between the template and the scene. The 
measure of match energy may be defined in dif-
ferent ways. (Secilla et al. 1987, Jain 1989, Jain 
et al. 1995, Schenk 1999). Normalised cross-
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correlation ρ (Eq. 5) was used. It is scaled in the 
interval ρ ∈ [–1,1]. If there is no similarity at all 
between the template and the image at a given 
image location (i, j), then the cross-correlation has 
value zero. If ρ = –1, the correlation is inverse. 
Such is a case with a positive and a negative of 
the same image.

 (5)

In (5) the size of the template, g is m × n. It 
intersects the image f.   and  denote the mean 
of pixel values of the template and the image. 

 is constant and  varies. Cross-correlation is 
computed for the point (i, j) on the image.

Template matching, which uses cross-correla-
tion as a measure of match-energy is computer 
intensive. With an increased image scale, the 
number of pixels grows in quadratic ratio, and 
the computational complexity increases to the 
fourth power. Unlike in some other measures, 
it cannot be halted in the middle of computa-
tions at a given image location if intermediate 
results imply a low match. Computations can 
be speeded if other measures are used, and the 
computations are done in the frequency domain 
using Fourier-transformations (Secilla et al. 1987, 
Tarp-Johanssen 2001). For a multispectral image, 
the cross-correlation may be computed separately 
for all channels or a transformation into a single 
channel precedes the computations. Here the 
three-channel CIR and colour images were trans-
formed into intensity images by calculating the 
average of the three channels or by selecting the 
red (infrared, IR) channel only. A transformation 
(RGB → Intensity) that improves the contrast of 
the image such as the Hotelling transformation 
(Gonzalez and Woods 1993) could also be used.

Template matching-based object recognition 
is not invariant to varying object properties. In 
a complex scene with trees of varying size and 
species, a single template will most likely not 
perform effectively (Fig. 11, Fig. 12, Fig. 13). The 
image-object-sun geometry changes continuously 
in an aerial photograph. A template that takes into 
account the illumination and perspective effects is 

therefore local. Occlusion is present and crowns 
are viewed against a changing background.

Figures 10–12 illustrate how template matching 
is not invariant to scale. The two cross-correlation 
functions appear quite different. The responses 
(Fig. 11) of the two templates representing trees 
of different size (Fig. 10) differ. There is a large 
crown of a birch outlined by a white square in 
the upper right part of the aerial image in Fig. 
9. The local maxima for this birch crown in the 
cross-correlation images of Fig. 11 are, by visual 
examination, quite different. The local peak in 
correlation is not very distinct or high when a tem-
plate representing a relatively small spruce crown 

Fig. 9. A near-nadir panchromatic 1:5000 view of an 
unmanaged spruce-birch thinning stand. The white 
circles outline two crowns of spruce enlarged in 
Fig. 10 below. The square points out a relatively 
large crown of a birch.

Fig. 10. Two enlarged elliptic templates capturing spruce 
trees in the near-nadir view of Fig. 9. The template 
on the left represents a larger dominant tree glarge, 
and the template on the right contains a smaller 
co-dominant spruce gsmall.
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Fig. 11. Cross-correlation functions ρ for the image in Fig. 9 obtained by using 
templates of Fig. 10. Left: ρ = f ° glarge, right: ρ = f ° gsmall. The circles and 
the squares depict the same trees (image position) as in Fig. 9.

Fig. 12. Left: an oblique back-lighted view of a spruce-birch stand. Right: Cross-
correlation function ρ computed with the template pointed out by an arrow 
and a circle in the aerial image. The squares depict the image location of 
the same birch as in Fig. 9.

Fig. 13. Left: an oblique front-side-lighted view of a spruce-birch stand. Right: 
Cross-correlation function ρ computed with the template pointed out by the 
arrow and the circle in the aerial image. The squares depict the same birch 
as in Fig. 9.
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is applied. The response seems better for the tem-
plate representing a bigger spruce crown.

In some cases, the local peak in the correlation 
image is shifted from the correct location because 
of the variation in the background. Overlapping 
crowns can produce this effect. The local peaks 
found in non-nadir, oblique views are not as cir-
cular-symmetric as in nadir views. Fig. 12 and 
Fig. 13 illustrate the effect. Often, the local peaks 
in the cross-correlation images are elongated and 
orientated with the direction of the radial displace-
ment. In addition, for oblique views the variation 
in the background of a tree top increases with 
the nadir-angle. It has been shown that template 
matching, at least in the case of spruce stands, 
does not produce the same accuracy as when 
applied in a different image-object-sun orientation 
(Larsen 1997). In nadir views, the lower parts of 
the crowns and the ground form the background. 
In dense forests, the background is mostly shaded 
and dark, and thus the sun-lit crowns are easily 
discernible from nadir-views.

The image-matching algorithm for 3D position-
ing of tree tops, which follows template match-
ing, relies on the quality of the cross-correlation 
images. Template matching is the feature detector 
in the algorithm (Section 2.4.5). A good feature 
detector is robust against changes in different cir-
cumstances such as imaging geometry, scale and 
background noise. A good feature detector works 
also with incomplete information (Gonzalez and 
Woods 1993 p. 572, Jain et al. 1995 p. 462). An 
ideal response of a tree top detector would be a 
complete set, without any omission or commis-
sion errors, of accurate image coordinates for the 
tree tops to be matched in 3D. Attached with the 
image coordinate information, the ideal feature 
detector would also provide accurate information 
of the type of the detected feature such as tree 
species and crown size information. This would 
support the solving of the remaining ill-posed 
correspondence problem. These characteristics of 
the ideal feature detector are hardly ever realised 
even if we consider the superb capabilities of the 
human perception. Occlusion inevitably results in 
an uncompleted set of detections, and the accu-
rate image observations are further impaired by 
camera lens and orientation-errors.

Templates of tree crowns in a given viewing 
geometry can be generated by using methods of 

computer graphics and geometric-optical model-
ling (cf. Kiema 1990, Pollock 1996, Larsen 1997). 
In the method proposed in this study, instead of 
rendering an image of the tree top with a com-
puter-graphics method, the templates are copied 
from real images by using a single subjectively 
selected model tree. The coordinates of the tree 
top are manually solved, and the template is 
captured for each image by using parameters that 
define the position, size, and shape of the template 
on the image (Section 2.4.5). Geometric-optical 
modelling was not used since geometric-optical 
models of pine and birch were lacking.

2.4.3 Search for Tree Tops in the Object 
Space

Corresponding entities are located in the inter-
section of the camera-rays. A local peak in the 
cross-correlation image does not define one dis-
tinct camera-ray. The peak maps into a geometric 
object (loosely defined as a ray-pencil with asso-
ciated probability) that occupies a space around 
the true camera ray that came from the 3D point 
object (Fig. 14). If the peak in the correlation 
image is circular-symmetric, the camera ray turns 
into a cone. As explained earlier, correspond-
ing entities are found on the images from the 
intersections of epipolar lines. With the uncer-
tainty of cross-correlation, the camera-rays are 
volumetric, as well as the epipolar planes. The 
intersection of epipolar lines in the images is 
therefore represented by a high summed cross-
correlation, ρ3D for a point in 3D, Σρ i → ρ3D(X, 
Y, Z). The 3D space below the cameras’ is full of 
these 3D maxima (cf. Fig. 14). They are mainly 
false solutions to the correspondence problem. 
Correct solutions are amongst them, and may be 
selected if an approximation for the range in Z 
can be specified. This is called the search space. 
A too deep search space produces false solutions. 
Inevitably, there will be false solutions even if 
the depth of the search space is optimal due to 
the height variation of trees (Fig. 8, p. 30). Also, 
false solutions as well as omission errors are 
inevitably produced due to the imperfect response 
of template matching.

It is clear from Fig. 14 that the response of 
template matching, the cross-correlation image, 
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should exhibit sharp peaks at the correct image 
locations to make the conical ’intersecting epipolar 
volume’ as thin as possible. This would improve 
3D accuracy, and would restrict the ambiguity of 
image-matching by making the local maxima of 
correlation in 3D more compact.

Near-nadir views have proven best in many 2D 
applications for tree crown delineation or tree top 
detection. A requirement of several near-nadir 
views in image-matching is not, however, prac-
ticable. Costs would be high and the accuracy 
of Z-estimation would be inferior to that of the 
planimetric coordinates. It can be expected that 
an increase in the number of images in matching 
improves results, provided that template match-
ing works for that added view (image-object-sun 
geometry, scale, time of photography). If template 

matching fails, an added image can even impair 
image-matching.

As stated earlier, it would be desirable if the 
step in which tree tops are detected would produce 
information on tree species, crown size and shape. 
Thereby more constraints, consisting of features 
and symbols could be used in solving the ill-posed 
correspondence problem. In this respect, template 
matching cannot be valued very high as a feature 
detector. However, the image-matching approach, 
which will be represented in more detail in Sec-
tion 2.4.5, relies on geometric constraints only 
and on the use of template matching.

2.4.4 Quality Assessment

A good quality assessment procedure provides 
a feedback loop to the previous stages of image-
matching: (i) the tree top detection (selection of 
conjugate entities) routine and (ii) the correspond-
ence problem solver. The feedback ’guides’ the 
previous stages of image-matching so that eventu-
ally the matching results are optimal. Optimality 
needs to be defined separately. In the case of 
finding tree tops from aerial photographs there 
are several criteria that can be used. An optimal 
image-matching could be the one that maximises 
the number of correct hits (correct 3D tree top 
positions produced by image-matching) while 
allowing no commission errors. Alternatively, 
a matching that provides the best estimates for 
the number of trees, regardless of the 3D-accu-
racy, can be considered optimal. Maximising the 
number of accurate hits without any false solu-
tions may be optimal, if the automatic matching 
is to be made complete with additional manual 
measurements, and the manual rejection of false 
solutions is considered expensive.

The assesment of quality operates autonomously 
in the sense that it does not usually posses the 
information about the correct hits. Such informa-
tion may be available. For example, the number 
of planted trees in an area may be known, or the 
total number of trees in an area could be estimated 
from a manually pre-measured sub-sample.

In the 3D tree top positioning method presented 
in the next section, the assessment of the quality 
of the matching is left to the operator. Feedback 
is provided in the form of changes in the para-

Fig. 14. Illustration of 3D ’intersecting epipolar volume’, 
which is in the intersection of the camera-rays 
(cones) passing through local 2D maxima in cross-
correlation images. Due to the inaccuracy of tem-
plate matching (images with projection centres 
O' and O'' are cross-correlation images) camera 
rays are volumetric. Grey ellipsoids depict two 3D 
maxima of cross-correlation one of which is a cor-
rect solution to the correspondence problem. The 
3D⇔2D mapping is used to retrieve an aggregate 
cross-correlation for 3D points in the object space 
below cameras.
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meters that control the algorithm. The assessment 
is based on visual evaluation of the agreement of 
the algorithm-found tree tops, which are super-
imposed on the aerial images. Alternatively, as 
stated above, the assessment can be based on 
the comparison of the expected and estimated 
number of trees.

2.4.5 Algorithm

Only geometric constraints are used in the pro-
posed semiautomatic image-matching method 
for 3D tree top positioning. It relies on epipolar 
geometry and a restricted, properly set search 
space. There are parameters (Table 7, p. 42), 
which need to be given values.

The semi-automatic positioning of tree tops in 
3D consists of steps 1–9:

Step 1. Manual delineation of the forest area 
to be measured, in 3D, by using monoscopic or 
stereoscopic interpretation

For an aerial photo-plot the map coordinates are 
known, and delineation is not needed.

Step 2. Acquisition of a priori coarse-level 
information about the height-profile of the trees 
to be mapped

This can be done alternatively by stereoscopic 
viewing (Anttila 1998), by area-based image-
matching (DEM algorithms, Næsset 2002), by 
analysing high-resolution lidar-data (Hyyppä and 
Inkinen 1999), or from a forest database.

Step 3. Selecting and measuring a Model Tree 
and capturing templates representing it on all 
images

The operator selects a Model Tree and measures 
the 3D tree top position, point 4 in Fig. 15 with 
coordinates (Xt, Yt, Zt). The size of the area to 
be mapped limits the applicability of the model 
tree in terms of the varying image-object-sun 
geometry. Elliptic templates (Fig. 15, Fig. 16) are 

captured from the images. Three metric param-
eters, defined in the object space, determine the 
location, size and shape of the ellipses. On each 
image, the major axis of the ellipse is aligned with 
the direction of the radial displacement.

Parameter EllipseShift shifts the center of the 
template in the direction of the radial displace-
ment, i.e. in Z-direction. At value zero, the tem-
plate is centred at the tree top position. A negative 
value produces a template centred below the tree 
top (point 3 in Fig. 15). The size and shape of the 
template are determined by parameters Ellipse-
Height and EllipseWidth. The length of the major 
ellipse axis a1 parallel to the direction of the radial 
displacement, is determined by calculating the 
photo-distance between points (Xt, Yt, Zt) and 
(Xt, Yt, Zt + EllipseHeight). Similarly the length 
of the axis a2 perpendicular to the direction of 
radial displacement is computed from projections 
of points (Xt, Yt, Zt) and (Xt + EllipseWidth/2, Yt, 
Zt). The shape is conditioned: if | a1 | < | a2 | then 
| a1 | = | a2 |. Thus, the templates are only allowed 
to be elliptic for oblique views with a large value 
of EllipseHeight and only in the direction of the 
radial displacement. Parameters are common in 
all images. (Fig. 15, Fig. 16).

Templates are rectangular sub-image copies of 
the aerial images. Pixels outside the ellipse are 
masked out. The location of the tree top within 

Fig. 15. Illustration of metric parameters of 3D tree top 
positioning. See text below (step 3 and step 5) for 
further explanation.
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the template extent, the so-called hot-spot, is 
stored for each template, and is accounted for in 
cross-correlation computations.

Step 4. Template matching

The image areas that will cover the search space 
need to be determined so that cross-correlation 
is not computed for excessive areas. Image deci-
mation may precede the cross-correlation com-
putations for very high-resolution images for 
time-saving reasons.

Step 5. Setting the vertical position and extent 
of the search space above the DEM – Setting up 
sample points within the 3D search space

The information on the height (tree top elevation) 
profile of the forest is provided by step 2. The 

quality of the information can vary. Here it is 
assumed that the 3D tree top positioning is tried 
over a homogeneous stand or plot in which the 
height of dominant trees does not vary spatially 
to a large degree. This leads to the assumption 
that the depth and the vertical position of the 
search space is constant. If more detailed spatial 
information is available, the depth and vertical 
position of the search space could vary in space.

The height of the model tree, H is computed 
with the help of a DEM. H serves as an approxi-
mation for the mean height of trees. The operator 
sets the depth of the search space by giving a 
value to the parameter SpaceDepth. Asymmetry 
of the search space with respect to H, in the 
direction of the Z-axis, is defined by parameter 
SpaceAsymmetry. SpaceAsymmetry is set at zero 
if the model tree is assessed to represent the mean 
height of discernible trees. A negative value is 
given for a dominant, relatively tall tree in order 
to lower the search space to better occupy the 

Fig. 16. Template acquisition for a model spruce tree. Parameter values: EllipseHeight 
= 3 m, EllipseWidth = 2.6 m, and EllipseShift = –1.7 m. Positions of the tree tops 
(hot-spot) and template centers are marked by a point. The arrows mark the direction 
to the sun. Ellipses are outlined as well as the direction and length of radial displace-
ment corresponding to a change of 10 metres in Z. The illumination-class and nadir 
angle in degrees for the sub-images are: A front-lighted 3, B back-side lighted 29,  
C back-side 32, D back 35, E front 14, and F back-side 14. Images are in scales 1:6000 
and 1:12 000.
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canopy of discernible trees. (Fig. 15).
The search space is filled with points. Grid-

Density gives the spacing. At each XY-position, 
the DEM is consulted for ground Elevation. A 
particular XY-position is established with points 
at GridDensity-distances starting from 
Elevation + H + SpaceAsymmetry – SpaceDepth/2
up to
Elevation + H + SpaceAsymmetry + SpaceDepth/2.

Step 6. Mapping of each point in the 3D grid to 
the cross-correlation images

Each 3D point in the search space is computed 
ρ3D, which is a measure of correspondence:

 (6)

In Eq. 6 ρi are the 2D-correlation images, and 
collinear equations fx, fy for each image i map 
the 3D-points in the search space to the corre-
sponding camera coordinates. Ax and Ay are the 
functions of the (affine) fiducial mark-transforma-
tion, which map the camera coordinates to pixel 
coordinates. Weights wi may be given for example 
to reflect the scale, imaging geometry, and film 
format of the images. In this study, equal weigths 
were applied. For sub-pixel accuracy, the cross-
correlation images can be interpolated.

Step 7. Clustering of ρ3D-data into tree top 
candidate positions

Volumetric ρ3D data is clustered (Fig. 17). Clus-
ters are candidate tree top positions. Clustering 
is performed by first sorting the ρ3D data. Clus-
ters are formed from points in the 3D point set 
with ρ3D above a lower limit, Rlimit. Points are 
merged into existing clusters during the process-
ing of the sorted list. This is controlled by a 
planimetric distance parameter, XYthin. Points 
closer than the set value are merged and do not 
form a new cluster.

The position of the cluster is the mean of the 3D 
points that belong to the cluster and ρ3D is used 
in linear weighting of the coordinates. The list 
search is stopped when the first point with ρ3D 
below Rlimit is found. At that point there are M 
clusters, i.e. candidate tree tops. The computa-
tional complexity of the search is O(N2), where 
N is the number of 3D points in the search space, 
since for each 3D point (Max N), the minimum 
distance between existing M (Max N) clusters and 
the 3D point is computed.

Rlimit is a parameter, which can be used for 
controlling the quality of the clusters. Only the 
best clusters are accepted as candidate tree tops, 
if Rlimit is set to a high value. In such a case, 
commission errors are few if the search space is 
set correctly. Lowering the value of Rlimit brings 
about new clusters, but at the cost of commission 
errors.

Fig. 17. Illustration of the 3D volumetric correspondence data, ρ3D. Left: Vertical slice along YZ-plane. Middle: 
XZ-plane. Right: XY-plane at Z=192 m a.s.l. The images represent an area of 30 metres in X and Y, and 10 
meters in Z. Data is from a spruce stand and obtained using three panchromatic 1:10 000 images. The bright 
pixels depict high value of correspondence (ρ3D).
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The merge-parameter XYthin controls the 
density of the clusters. A value, which is too 
large, causes neighbouring trees to be merged. 
Similarly, a value set too low can result in several 
clusters originating from the ρ3D-response of a 
single tree.

The parameters Rlimit and XYthin are sub-
jectively set and adjusted by the operator. An 
optional method for acquiring an approximate 
value for XYthin by spectrum analysis of the aerial 
images is presented below.

The determination of the parameter XYthin can 
be based on the analysis of the spatial structure 
of the images (Ripley 1981 p. 78–87, Jupp et al. 
1988, Cohen et al. 1990, St-Onge and Cavayas 

1995, Hyppänen 1996). Near-nadir views are 
preferred as they preserve the XY-topology of 
tree tops better. Lag-distance-correlation plots 
(correlograms), which are derived from the 2D-
autocorrelation functions are used to analyse the 
spatial structure of the stand. Correlograms cal-
culated from aerial images characterise tree size 
and density. Fig. 18 and Fig. 19 show an example 
of two image functions and their correspond-
ing autocorrelation functions, which have been 
computed in the Fourier-domain (Gonzalez and 
Woods 1993). The lag-distance-correlation data 
in Fig. 20 is computed from the autocorrelation 
images by calculating the lag-distance of each 
pixel.

Fig. 18. Left: A near-nadir, back-lighted view to a mature spruce stand, right:  
A near-nadir view to a young dense thinning stand of spruce. Photograph 
scale 1:5000, pixel size 10 centimetres on ground, 256×256 pixels.

Fig. 19. Autocorrelation functions of the aerial images in Fig. 18. Images are 
shifted to zero-lag in the center, and contrast enhancement is performed for 
visualisation purposes.
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Approximate start-up values for the parameter 
XYthin may be determined by visually analysing 
the correlation lag-distance plots. The relatively 
regular pattern of trees of the young stand shows 
in the correlation data. There is a relatively dis-
tinct peak at a lag-distance of 2.3 metres followed 
by a secondary peak at approximately 4.6 metres 
(Fig. 20). The spatial structure of the mature 
stand seems to be less regular judging by visual 
examination of Fig. 18 and Fig. 19. In addition, 
the crowns in the mature stand seem to show 
larger variation in crown size in comparison to 
the young stand. This is possibly related with the 
slower relative rate of decline in autocorrelation 
at a small lag-distance.

Approximate values for the XYthin parameter 
could be found by visually examining autocor-
relation-lag-distance plots instead of determining 
them by visual examination of the aerial images. 
This is, however, a time-consuming process and it 
can be disputed whether anything is gained from 
it. Empirical models that link the texture meas-
ures, e.g. autocorrelation or variogram-features 
with optimal values of XYthin, can be estimated 
as data accumulates. Models could be used for 
automatic, faster, and more objective determina-
tion of the parameter.

Step 8. Quality assessment of image-matching

The evaluation of the matching results is based 
on visual examination. The clusters i.e. candidate 
tree top positions are superimposed on the aerial 
photographs.

If necessary, the clustering algorithm is re-run 
with new values for XYthin and Rlimit. It is pos-
sible that the matching is repeated by selecting 
a new model tree (step 3), by re-specifying the 
search space (2 or 5), or by recapturing the tem-
plate with new parameters. All subsequent steps 
need to re-computed, so it can become time-
consuming if, for example, the process needs to 
be repeated from the beginning. It is therefore 
important to have good approximate values for 
the many parameters involved to avoid iteration.

Step 9. A manual correction to the automatic 
matching results (optional)

The matching results are examined and bad 
positions are removed. The measurements of the 
unrecognised trees are completed manually.

2.4.6 Measuring the Performance

A photogrammetric forest inventory, which uti-
lises single tree photo-measurements, is practi-
cable only if the share of manual work can be 
kept small. This is in part attained if the number 
of high-quality, automatic 3D tree top positions 
is high. In most cases, some editing of the posi-
tioning results will be needed. Editing consists 
of completion of the missed trees and deletion 
of the commission errors, i.e. the false tree tops 
produced by the algorithm. Thus, the number of 
commission errors should be kept minimal. In 
addition, amendment of some positionings can 

Fig. 20. Autocorrelation vs. lag-distance (correlograms) in the object scale computed from the autocorrelation 
functions in Fig. 19.
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be a part of the editing phase. 3D positioning 
accuracy is essential if the species-recognition 
process and the measurement of crown width rely 
on the top positionings.

For height estimation and subsequent estima-
tion of dbh, it is desirable that the tree heights are 
obtained accurately and without bias. Accurate 
height measurements yield the height distribu-
tion of a forest, which together with accurate 
CW-measurements give the dbh-distribution. An 
unbiased but averaged height distribution pro-
duced by 3D positioning in which the extreme 
height values are lacking, will result in a distorted 
dbh-distribution that similarly lacks the extreme 
values. For the estimation of timber sortiments, 
the correct estimation of the joint dbh-height 
distribution is essential. In addition, unbiased but 
inaccurate height and dbh estimates can cause 
bias in the different tree volume estimates due to 
non-linear relationships between variables.

From above it is clear that the performance 
measures should take into account several fea-
tures, and that the evaluation of the performance 
is a complex procedure also linked with the end-
use of the data.

Rules are needed for separating between found 
tree tops, herein called hits, and false candidates, 
i.e. commission errors. If the positioning algo-
rithm produces a candidate close to the field-
mapped tree top it can be considered a hit. One 
candidate can only hit one tree; other candidates 
are hits for neighbouring trees or commission 
errors. A tree top that has no candidates in its 
vicinity is missed. Uncertainty in tree mapping 
and height measurements in the field, phenomena 
such as tree sway and slant, as well as the uncer-
tainty of image orientations, should be accounted 
for in setting the rules for a hit-or-miss test. For 
example, given the field and image data at hand, it 
would be unreasonable to require centimetre-level 
positioning accuracy for a hit.

A hit-cylinder was defined for the tests. It is 
centred on each field-measured tree top and each 
candidate produced by the algorithm. It was 
defined to be 2.4 metres in width and six metres 
in height. The candidate can be 1.2 metres aside 
the tree top, with a three metre erroneous Z-
coordinate and still produce a hit. It is clear that 
the size of the hit-cylinder has an effect on the 
measures of performance. A small hit-cylinder 

will produce fewer hits with a better, observed 
positioning-accuracy. In a dense stand, large hit-
cylinders can have plenty of overlapping volume, 
which complicates the hit-or-miss testing.

The performance of image-matching-based 
3D tree top positioning, manual or automatic, is 
tested against a set of field measured tree tops. 
The set of field trees can be confined with respect 
to tree size. In the field data for this study, lower 
bounds for dbh were defined, and small trees 
were left out already in the field measurement 
phase. Thus, the stem number estimates obtained 
from the field vary in accuracy. The stem number 
estimate is a function of the lower bound and 
thus a poor reference value. For the hit-or-miss 
testing, the set of field trees was further confined 
to the set of discernible trees (Sections 2.3, 3.1). 
It was assumed that non-discernible trees would 
not be detected by automated methods either. An 
estimate for the need of manual editing of the 3D 
positionings can be obtained, if the discernible 
trees form the ground truth.

The set of field trees comes from a restricted 
area, the field plot. There are always trees, which 
are located near the border. The 3D positioning 
algorithm can produce a candidate that falls just 
outside the XY-extent of the plot, but is still a hit 
for a tree inside. Similarly, there can be candi-
dates, which are inside the field plot extent but 
hit trees outside and should not be accounted for 
as commission errors. To take into considera-
tion this border-effect, the hit-or-miss testing was 
always performed for circular plots with a buffer 
of mapped trees surrounding them.

The number of hits is the total number of 
trees inside the plot that have a unique candidate 
within the extent of the hit-cylinder, including 
trees that are hit by a candidate from the buffer 
zone. Hit-rate is the ratio between the number of 
hits and the total number of trees, both inside the 
plot. Hit-rate in total volume is the ratio of total 
stem volume between the hit trees and all trees. 
The number of commission errors is the total 
number of candidates inside the plot extent that 
do not hit any tree inside the plot or in the border 
zone. Commission error rate is the ratio between 
commission errors and the total number of trees 
inside the plot. The number of omission errors is 
the total number of trees, belonging to the plot, 
without a hit.
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The 3D-positioning accuracy of the trees with 
a hit is evaluated with RMSE. It is computed 
separately for the planimetric (ΔXY) and eleva-
tion error-components (ΔZ). The positioning 
error-vector [ΔX, ΔY, ΔZ] is defined as field 
position–candidate position in the object coor-
dinate frame. For example, an error vector [–0.2, 
0.5, –0.8] means that the candidate is 0.2 metres 
East, 0.5 metres South and 0.8 metres above the 
field measured tree top position.

Mean differences, i.e. the means of ΔX, ΔY 
and ΔZ, are also used as error measures. In order 
to evaluate the averaging of Z, a regression line 
was fitted in the ΔZ×tree height data and the slope 
coefficient [m/m] was computed.

2.4.7 Set-up for the Performance Testing 
Experiment

It is practically impossible to optimise the 3D tree 
top positioning given a forest, the image data, 
and the large number of parameters. In practice, 
an operator needs to find an optimal parameter 
combination quickly, but does not necessarily 
have much field data to support the work. It was 
decided to let the computers try a large number 
of different parameter combinations, store the 
results, and analyse the data for best cases. It 
was assumed that the best cases would imply 
on the effects that imaging geometry and forest 
conditions have on the performance of 3D tree 
top positioning.

The semi-automatic 3D positioning algorithm 
relies on several parameters, which are set manu-

ally. These are, in the course of the algorithm, 
given in Table 7, and illustrated in Fig 15, p. 36.

The height of the model tree (H in Fig. 15) 
was used for defining the vertical position of the 
search space (step 2 in section 2.4.5).

The dimension of the parameter-space is nine, 
if the selection of the model tree is included as a 
single parameter. However, the measurement of 
the model tree top position is susceptible to errors 
(dX, dY, dZ). This further adds to the dimension 
of the parameter space.

Ten plots were selected for extensive testing of 
the 3D tree top positioning algorithm. These plots 
were B1, B2, B3, P3, P4, S3, S6, PS1, PS2, and 
MaS1. Plot MaS1 is a mature spruce stand and all 
of the other plots represent thinning stands. Plots 
B2, S3 and P4 have all escaped thinnings and have 
a high density in terms of stem number and basal 
area. Plot B1, B3, S6 and P3 represent normally 
managed stands. Plots PS1 and PS2 represent 
young recently thinned mixed stands.

Different sets of aerial images were selected 
for each plot to examine the effect of imaging 
geometry (Table 8). Sets LNAD, MNAD and 
WNAD represent theoretical image combina-
tions, but were included in the tests to study the 
effect of nadir angle. The hypothesis is that the 
image sets with low nadir angle images only, 
the LNAD sets, would produce higher hit-rates 
than sets MNAD and WNAD. Sets 6COL, 6CIR, 
12CIR and 16CIR all contain images in one scale 
only. Sets 6COL and 6CIR compare well since 
the camera locations are nearly the same. Sets 
612CIR and 616CIR consist of an image pair in 
1:6000 and a quadruplet in the smaller scale. For 

Table 7. Parameters of 3D tree top positioning algorithm.

Parameter description Symbols

1) Selection of model tree and measurement Xt, Yt, Zt
of the top location. (errors dX, dY, dZ)

2) Parameters defining the size, shape and location EllipseHeight, (EH)
of the elliptic templates. EllipseWidth, (EW)
 EllipseShift, (ES)

3) Parameters defining the vertical extent and density SpaceDepth, (SD)
of the search space in the canopy. SpaceAsymmetry, (SA)
 GridDensity, (GD)

4) Parameters controlling the clustering of ρ3D. Rlimit, XYthin
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different sets of 612CIR and 616CIR, the pair of 
images in scale 1:6000 is changed. All images 
in scale 1:6000 were downsampled by a factor 
of two for 28-micrometer pixel size. This means 
that the images in scale 1:6000 and 1:12000 had 
the same nominal resolution on ground.

Ten (eleven in plot S6) model trees were selected 
in each plot by using systematic sampling and by 
following the every Nth rule. All other parameters 
except for GridDensity were allowed to take mul-
tiple values in a multidimensional grid (Table 9). 
GridDensity was kept constant at 0.5 metres.

The runs were carried out with a cluster of 
24–40 computers, which run the performance 
tests during night-time and over the weekends. 
If a run was terminated abruptly due to lack of 
time, the simulation was repeated with a new, less 
dense grid of parameter values until the simulation 
could be finished for that model tree × image set 
combination. This unfortunately resulted in vari-
ation in the density of the parameter grid between 
trials. Primarily, the density of parameters Rlimit 
and XYthin was altered for the adjustment of the 
run-times. The number of trials, i.e the number 
of times tree top positioning was tried and per-
formance measures computed for a plot × image 

set × model tree combination, varied from about 
40.000 to over 1.5 million. The number of trials 
was larger for the ‘weekend-runs’ that had longer 
run-times.

The interval of parameters was selected sepa-
rately for each plot, based on tests with a few 
subjectively measured model trees, and expe-
rience gained with them. Hence, it cannot be 
guaranteed that the grid captures the global opti-
mum, i.e. the best case in performance. The 3D 
positions for the model trees’ tops were obtained 
by manual image-matching in the discernibility 
analysis (Sections 2.3, 3.1). The top position was 
allowed to vary at maximum ±0.3 metres in the X 
and Y-directions and ±0.5 metres in Z-direction 
by altering parameters dX, dY and dZ (Table 9). 
In the discernibility analysis, four CIR images 
in 1:6000 were used for measuring the tree top 
positions manually. In a real situation, the posi-
tion of the model tree is measured from the image 
material, which is available. In this respect, the 
top positions of the model trees are too optimistic 
especially for the image sets lacking any 1:6000 
scale images. This affects the analysis of the effect 
of scale on the performance.

The set of photo-discernible trees formed the 

Table 8. Description of the image sets used in the performance tests.

Set name Description

LNAD CIR images (1:6000, 1:12000, 1:16000) that view the stand with low nadir angle. 6–8 images.
MNAD CIR images (1:6000, 1:12000, 1:16000) with variation in nadir angle. 6–8 images
WNAD CIR images (1:6000, 1:12000, 1:16000) with large nadir angle. 6–8 images
6COL 1:6000 colour images. 4 images. 60 / 60% overlaps
6CIR 1:6000 CIR images. 4 images. 60 / 60% overlaps
12CIR 1:12000 CIR images. 6 images. 70 / 60% overlaps
16CIR 1:16000 CIR images. 4 images. 60 / 60% overlaps
612CIR Pairs of CIR images in 1:6000 and four 1:12000 CIR images
616CIR Pairs of CIR images in 1:6000 and four 1:16000 CIR images
P6CIR Different pairs of CIR images in 1:6000, 60% overlap
P12CIR Different pairs of CIR images in 1:12000, 60 and 70% overlaps
P16CIR Different pairs of CIR images in 1:16000, 60% overlap

Table 9. Dimension of the grid of parameters per Plot × image set × model tree combination used in the perform-
ance tests. See also Table 7 and Section 2.4.5 for explanation about the parameters.

Model
tree dX dY dZ EH EW ES SD SA GD Rlimit XYthin

10 1–3 1–3 3–5 3 3–4 3 6–8 3–5 1 10–15 6–10
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ground truth trees for the performance tests (see 
rules for hits and errors in Section 2.4.6). Thus, 
the results do not directly apply to the whole 
set of field measured trees. Also, circular plots 
with a two-meter wide buffer, centred within the 
field plots were used in the tests. Circular plots 
were used because of the simplicity of inclusion 
testing.

2.5 Measurement of Crown Width

In nadir views, tree tops are seen from straight 
above. The longest branches are visible provided 
the contrast is good and image resolution high. In 
very large-scale aerial photographs, say 1:2000 in 
scale, details such as individual leaves contribute 
to the texture. With such image material, it is pos-
sible to measure the crown width perhaps even 
more accurately than in the field with a plumb 
and tape.

Tree crowns vary in shape. The maximum 
crown width, typically used in allometric and 
growth models, may occur at different relative 
crown height. That part of the crown may not 
be visible at all on the photograph. Similarly, an 
irregular, non-symmetric crown may be observed 
from a direction that prevents observing the maxi-
mum width. Only the very tops of suppressed 
trees are visible.

A simple manual method for measuring crown 
widths was applied in this study. First, the tree 
top is located in 3D by manual image-matching 
(see Section 1.4.4). The elevation of the butt is 
obtained from a DEM. With this information, 
the trunk of the tree can be superimposed on the 
images. A line segment represents it. The operator 
makes two point observations on each image for 
the maximum width of the crown. A line con-
necting the observed points is superimposed on 
the image, and the operator checks that the line 
is perpendicular to the trunk line segment for 
oblique views with considerable radial displace-
ment. This assures that the observations are made 
approximately horizontally in the object space. 
The observed crown edge points are solved for 
3D positions assuming they were made at the 
elevation of the tree top. The crown width is the 
distance between the 3D solutions.

The experiment was carried out such that the 

operator had the photogrammetrically obtained 
tree top position superimposed on the images. 
Images, maximum nine at a time, were centred 
on the computer screen for that position, and the 
stem of the tree, represented by a line segment 
was superimposed on the image. The operator 
measured the maximum width of the crown and 
classified the observation. In cases where it was 
difficult to discern both crown edges, symmetry-
assumption was used, or, if measurement was 
considered impossible, it was not made, and 
classified accordingly. The images were placed 
in the order of camera-ray’s azimuth angle on 
the computer screen so that the viewing angle 
changed as little as possible when switching over 
to a new image. The crown widths of a field plot 
were measured first from a set of COL and CIR 
images in the scale of 1:6000 followed by another 
set of images in the scales 1:12 000 and 1:16 000. 
In order to avoid correlation between consecutive 
observations, a random order of trees, plots, and 
images had perhaps been better.

754 sample trees were measured for CW in the 
field. Systematic sampling using the every Nth 
tree rule, and basal area weighting were applied in 
selecting the trees. In the discernibility analysis, 
715 of these trees were defined as discernible. 
These 715 trees were manually measured for CW 
on all images in scales 1:6000 (non-decimated), 
1:12 000, and 1:16 000.

2.6 Tree Species Recognition

2.6.1 Spectral Classification Using Multiple 
Images

In this study, the use of new spectral signatures for 
tree species detection is demonstrated. With the 
tree top exactly mapped in 3D, it can be sampled 
for pixel values from several images, and most 
importantly, from various parts of the crown, the 
sunlit and the shaded side (Fig. 21).

It is assumed that the tree tops are accurately 
mapped in 3D. An estimate for the crown width 
is possibly available. The image-object-sun geo-
metry is known. Those images in which the sunlit 
and shaded sides of the crowns are seen are 
selected. It is assumed that there are field observa-
tions to support species classification. These are 
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field mapped trees which are one-to-one linkable 
with the 3D positioned trees. Mapped tree data 
can be collected with a laser-relascope (Kallio-
virta 2003). Satellite positioning should provide 
good approximate values for the linking between 
photo-measured and field-measured trees.

Training data, i.e. sets of pixel values, is col-
lected by using the trees with known species. 
Crowns are sampled for pixels in a window. The 
features for classification are channels of the 
CIR images as suggested by Haara and Haarala 
(2002).

2.6.2 Set-up for the Species Recognition 
Experiment

The suggested method for species classification 
was tested for demonstrative purposes with the 
data from plots MaPS2, PS1, and PS2. These plots 
represent mixed stands in which pine, spruce, and 
birch occur.

Discernible trees formed the trees, the test sets, 
for which species classification was tried. On 
each plot, a training set consisting of 10 trees 
per species was selected randomly. The small 
number of birch on plots PS1 and PS2 resulted in 
a smaller training set, and the same birches were 
re-measured for the test set. Trees not belonging 
to the training set formed the test set of plots PS1 
and PS2. On plot MaPS2 all pines and birches not 
belonging to the training set formed the test set 
together with a systematic sample of spruces.

For each field plot, two CIR images were 
selected such that the sun-lit sides of the crowns 
would show on the one image, and the shaded 
sides of the crowns would be seen on the other 
(Fig. 21). The image pairs consisted of an image 
in scale 1:6000 and another in scale 1:12 000 
(Table 10). The crowns were manually sampled 
for RGB-values in a 3 × 3 pixel window, corre-
sponding to 25 × 25 and 50 × 50 centimetres on the 
ground. A sample was taken manually from the 
sun-lit and shaded part of the crown. The images 
were centred automatically to the 3D position of 
the tree top, a sunray (direction of sunlight) and 
trunk (vector giving the image direction of radial 
displacement) were superimposed on the images 
to assist the work.

RGB-values from two images formed the set 
of six classification variables from which to 
select the features for the minimum distance and 
Bayesian classifiers (Gonzalez and Woods 1993,  

Fig. 21. Simultaneous use of two images for species 
recognition. The crown is sampled for the sun-lit 
(F = Front-lighted image region) crown and the 
shaded (B = Back-lighted) crown for pixel values. 
Extinction of light is related to foliage/needle 
mass density and may provide the basis for spe-
cies discrimination. Arrows depict the direction 
of sunlight.

Table 10. Image data and classification variables.

Plot / Image Scale Image-object- Nadir angle, Channels in the pattern vector,
  sun geometry degrees SH = shaded, SL = sun-lit

MaPS2 / 22044592  1:6000 Back-side 13 RED-SH, GREEN-SH
MaPS2 / 22054598  1:12000 Front-side 17 RED-SL
PS2 / 22044588 1:6000 Front 19 RED-SL, GREEN-SL
PS2 / 22054608 1:12000 Back 6 BLUE-SH
PS1 / 22044581 1:6000 Back-side 29 GREEN-SH
PS1 / 22054599 1:12000 Front 29 RED-SL, GREEN-SL
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p. 588–590). 3D-feature space was chosen 
because of simplicity. The selection of variables 
was done subjectively by simply comparing the 
differences between the means of the six channels 
between the three tree species in the training set. 
This is not optimal. The selected variables are 
shown in Table 10. Minimum distance classifier 
was employed on all plots, and for plot MaPS2, 
classification was computed with a Bayesian clas-
sifier for comparison.

2.7 Simulation of Photogrammetric Stand 
Cruising

2.7.1 Motivation

The accuracy of a forest inventory is explained 
largely by three error sources: (i) errors due to 
imperfect observations and measurements, (ii) 
sampling errors and (iii) errors due to imperfect 
models of indirect estimation. An estimate of the 
combined effect may be obtained by numerical 
simulation. Assumptions are made about the mag-
nitude and quality of the individual error-sources. 
Errors travel through the system, and the total 
effect may be difficult, in some cases impossible 
to assess without numerical calculations. Non-
linearity and inter-dependencies are difficult to 
describe analytically. Simulations can be used 
to provide information about systematic errors 
arising from erroneous observations and about the 
necessary sample sizes or measurement accuracy 
for a wanted end-level accuracy.

Tree discernibility, accuracy of tree top position-
ing and crown width measurements, DEM-accu-
racy, species recognition accuracy, and accuracy 
of the allometric and tree-volume functions all 
set fundamental limits for individual tree-based 
forest inventory. These are tried to account for, as 
realistically as possible in the simulations.

It should be noted here that the cost-efficiency 
of an inventory is essential. In this respect, the 
degree of automation of both field work and 
image analysis is important. The cost-efficiency 
was not evaluated in the simulations since the 
needed information was lacking.

Monte-Carlo-simulation was used in the simu-
lations. In it, the inventory chain (stand cruising 
with full mapping of trees, scheme C in Table 1, 

Fig. 22) is repeated several times for two model 
stands and results are computed for variables of 
interest. Measurements, observations, and model 
estimates are affected by errors drawn from statis-
tical distributions. The fluctuation and systematic 
deviation of the variables of interest was studied. 
Simplifying assumption on the error distributions 
were made.

2.7.2 On Restrictions and Assumptions

The realisation of a forest inventory, which uti-
lises the model presented in Fig. 1, was simulated 
(Fig. 22) by computer. However, plenty of simpli-
fying assumptions were made, and they need to be 
considered when interpreting the results.

Nothing explicit is said about the image mate-
rial. It is assumed that single tree photo-measure-
ments are possible, and that changes in the image 
material are reflected by the changing magnitude 
of the observation errors. Field data is expected to 
be available for species recognition. It is assumed 
that an accurate digital elevation model is avail-
able for height estimation and that DEM-errors are 
included in the positioning-errors (cf. Fig. 22).

Fig. 22. Flowchart of simulation. Simulated sub-proc-
esses are depicted with rounded rectangles.
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The errors drawn from statistical distributions 
are thought to model the observation error proc-
esses. Dependencies between processes are not 
considered. This is an assumption that most likely 
violates any real situation. For example, an error 
in the positioning of a tree top will most likely 
affect both crown width measurement and species 
recognition, if these processes use the 3D-position 
estimate as confining information. Similarly, an 
error in which two trees with overlapping crowns 
is detected and positioned as a single tree, will 
lead to a considerable overestimation in crown 
width and dbh.

The allometric models (Eq. 4) which predict 
dbh with estimates on species, crown width and 
height are assumed to produce unbiased estimates 
for unbiased measurements. This may require that 
the inventory chain includes a calibration phase 
in which the predicted dbh-values are corrected 
for systematic errors. For example, in a validation 
test for 753 field-measured trees from the study 
area, the models underestimated dbh by 6.7 mm 
(Fig. 23). The differences between field-measured 
and model-estimated dbh had a standard deviation 
of 26.6 mm. Mean differences of field-measured 
and model-estimated dbh were 22.5 and 19.1 mm 
for plots MaPS3 and MaPS2, respectively. These 
plots represent stands in which exceptionally old 
pine and spruce occur. It is possible that the allo-

metric relationships of old trees are not properly 
described by the allometric models.

For the simulations, two model stands were 
generated by using the field data from plots S2 
and MaPS3. Stand S2 represents a thinning stand 
and plot MaPS3 represents a mature stand. Model 
stands consist of tree-records with true values 
for species, dbh, height, and CW. Pine, spruce 
and birch were recognised as species and the 
small number of other broad-leaved species were 
treated as birches in all phases. Field-measured 
CW was not available for all trees. It was estimated 
by inverting the regression models (4) dbh = f (sp, 
CW, h). These estimates were not in accordance 
with the field measurements especially in the 
case of Model stand MaPS3. Inverted regression 
functions cannot be expected to yield a correct 
functional form unless the correlation between 
X- and Y-variables is very high. To add variation 
to the estimates of CW, a Gaussian error term with 
40-centimetre standard deviation was added to the 
model inverted values. This was derived by sub-
tracting the estimated measurement error of CW 
(0.6 m) from the average mean square errors of 
local regression models CW = f (sp, dbh, h), which 
were estimated by using the 753 sample trees.

Single tree volume models vi = f (sp, dbh, h) 
for the total, the saw wood, and the pulp wood 
volume were assumed to yield the true values. 
However, the stem form of trees can vary within 
a stand and between stands. The models can, thus, 
give biased volume estimates with respect to the 
real values, which are only attainable by meas-
uring the trees for a large number of variables. 
Description of the forest is far from perfect even 
if every tree is known for species, dbh, and height. 
This element of model errors in tree-level volume 
models is not accounted for in the simulations. In 
a real situation, it adds to the error.

Only saw wood and pulpwood sortiments were 
recognised. In a real situation, a single stem can 
be graded for logs representing up to three or four 
sortiments. The quality of the stem is affected by 
several qualitative and quantitative factors (e.g. 
Uusitalo 1995) that were not available for the 
simulation. In a real inventory, this information 
needs to be collected in the field, since it is likely 
that sole interpretation of aerial photographs will 
not provide it. In the simulation each tree is 
graded into logs of stump-residue, saw wood, 

Fig. 23. Differences between 753 field-measured and 
model-predicted (Eq. 4) breast-height diameters 
(circles) plotted in the estimated dbh-field meas-
ured height-space. Underestimates are marked in 
black and overestimates in white. The width of the 
circle represents the absolute value of dbh-differ-
ence (in mm, scale 1:5 with respect to dbh-axis).
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pulpwood, and tree-top residue. The algorithm 
utilises polynomial taper curves (Laasasenaho 
1982), which give the stem diameter from the butt 
to the top. The saw wood volume of a single tree 
increases in a stepwise manner with increasing 
stem dimensions. For a single tree even a small 
deviation in dbh or height can cause gross changes 
in the saw wood or pulp wood volumes as the 
number and type of logs in changed (cf. Fig. 24). 
This is especially the case at the threshold, where 
the tree turns from a pulp-wood-only trunk into a 
stem that can potentially be cut for a saw log.

2.7.3 Flow of Simulation

1. Discernibility of trees

The first process selects the trees that are discern-
ible, i.e. measurable in 3D using multiple images. 
In it, a sigmoid (Eq. 7) representing the prob-
ability of discernibility for a tree of given relative 
height (hrel) is used (Fig. 25). The sigmoids were 
estimated from the empirical data obtained in the 
discernibility analysis (Section 2.3). Thus, they 
represent the situation in which four views in 
scales 1:6000 and/or 1:12 000 were available. For 
a smaller number of images, or images in smaller 
scale, the curves are probably too optimistic.

P (discernible) = (1− e
ah

rel

b
)  (7)

The sigmoid produces values between zero 
and one for relative height in the same interval. 
Parameters a and b are estimated using non-linear 
estimation by least-squares adjustment. For model 
stand MaPS3, the parameters were obtained by 
weighting the residuals to the third power of rela-
tive height. This corresponds to weighting with 
stem volume, and the sigmoid has a locally better 
fit for the dominant trees (Fig. 25).

The discernibility-sigmoid is assumed to model 
omission errors in 3D tree top positioning. These 
are omission due to occlusion, shading, and over-
lapping crowns. A random deviate, with uniform 
distribution between zero and one, is generated 
and compared against the value from the sigmoid 
given the tree’s relative height. If the random devi-
ate has a smaller value than the sigmoid, then the 
tree is considered discernible in 3D, and is added 
to the set of photo-measurable trees.

Fig. 24. Dbh-height distribution of model stand S2. An 
approximate division of the dbh-height plane into 
classes of trunk’s commercial potential. For exam-
ple, trunks with 21 cm dbh and 18 metre height can 
be cut to yield one saw log of allowable dimensions 
whereas a trunk with seven centimetre dbh and 
6 metre height is classified as a non-commercial 
trunk yielding no pulp wood or saw wood logs.

Fig. 25. Empirical discernibility data and modelled dis-
cernibility-functions (7) for model stands MaPS3 
and S2. Two sigmoids are drawn for Model stand 
MaPS3. For the curve ‘v-weighted’, the residuals 
are weighted with third power of relative height.
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2. Species recognition

All discernible trees are given an estimate for the 
species. This is based on conditional probabilities 
Pij, which give the probability of a tree with true 
species i to be classified as species j. The species 
recognition process is not allowed to produce new 
species, which do not already occur in the stand. 
The errors in species recognition cause random 
effects in dbh and stem volume estimation, which 
is performed by using the species-specific allo-
metric models (4) (cf. Fig. 26).

The conditional probabilities are put in a 
symmetric matrix (Table 11). The dimension is 
determined by the number of species. For each 
simulation at the stand level, the matrix is updated 
for new diagonal elements representing the prob-
abilities for correct recognition. In Table 11 they 
are elements A, B and C, which are allowed to 
fluctuate ± 0.1 units as a result of adding uniform 
random variates ε1, ε2, and ε3 to the diagonal 
elements. Coefficients λ1, λ2, and λ3 assure that 
the row-totals equal one. A random uniform devi-
ate between zero and one is generated for each 
tree, and it is compared with the values of the 
error matrix to determine the result of species 
recognition.

3. Measurement of crown width

The photo-measurement of CW is simulated for 
the discernible trees by adding a Gaussian error 
term to the true value, with expectance ECW and 
variance σ 2(CW):

CW = CW + ε ~N(ECW,σ 2(CW)) (8)

In the simulations σ 2(CW) was 0.36 m2, while 
ECW was varied.

4. Height measurement

Height estimates are affected by an additive Gaus-
sian error term, with expectance Eh and variance 
σ 2(h):

h = h + ε ~N(Eh,σ 2(h)) (9)

This error process is assumed to model both errors 
in tree top positioning and in the digital elevation 
model. In the simulations, σ 2(h) was 1 m2, while 
Eh was varied.

5. Dbh-estimation with allometric models

Discernible trees are estimated dbh given the pho-
togrammetric estimates for species, crown width, 
and height using the allometric equations (4).

As a result of the measurement and model error 
processes, the dbh-height distribution is changed 
as illustrated in Fig. 26.

6. Computation of stand attributes

When all photo-measurable trees in the stand 
have estimates for species, dbh, and height; the 

Table 11. Error matrix consisting of conditional prob-
abilities for species recognition. See text below for 
more explanation.

 Probability to be classified as
True species  Pine Spruce Birch Total

Pine A + ε1 D × λ1 E × λ1 1
Spruce D × λ2 B + ε2 F × λ2 1
Birch E × λ3 F × λ3 C + ε3 1

Fig. 26. One realisation of error-simulation of model 
stand S2. The line segments represent the simu-
lated measurement and estimation errors in dbh 
and height for the discernible trees. σ(h) = 1.0 
m, σ(CW) = 0.6 m. Species recognition accuracy 
85%.
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total volume, saw wood volume, and pulp wood 
volume for each tree is computed by using taper 
curves and a grading algorithm as described in 
Section 2.7.2. The results are summed up to 
stand level variables of total volume by species, 
saw wood volume, pulp wood volume, basal area 
weighted mean diameter, and basal area weighted 
mean height.

7. Simulation

Processes 1–6 above are repeated 200 times for 
each combination of error distribution parameters 
ECW and Eh until they are allowed to change to 
a new set of values. σ 2(h) and σ 2(CW) are kept 
constant at the chosen values. The mean and 
standard deviation of the stand variables from 
200 repetitions are stored for analysis.
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3.1 Tree Discernibility and Manual Image-
Matching of Tree Tops

3.1.1 Positioning Accuracy of Manual Image-
Matching

For analysing the positioning accuracy a 3D error 
vector [ΔX, ΔY, ΔZ] was defined as field posi-
tion–photogrammetric position. The bias of 
planimetric accuracy cannot be analysed since 
the field plots were not oriented in the field by 
surveying (Section 2.1.1). The precision of X 
and Y coordinates varied from 0.16 to 0.43 m 
measured by standard deviation of ΔX and ΔY 
per plot. Observed imprecision was the largest 
in the birch plots B1 and B2 and in the mature 
stands MaPS1, MaPS2, MaPS3, and MaPS4. For 
example, in plot MaPS4, the standard deviations 
of ΔX and ΔY were 0.59 m and 0.50 m for pine 
and 0.32 m and 0.32 m for spruce. The tops of 
the old pine trees, which are from 130 to 215 
years of age in plot MaPS4, appeared round on 
the photographs. It is clear that the shape of the 
tree-apex influences the 3D positioning accuracy 
(cf. Kraus 1993).

The means of ΔZ per plot varied from –0.6 m 
to 0.56 m. The mean ΔZ of 5675 discernible trees 
was –0.02 m with a standard deviation of 0.72 m. 
The CIR photography took place on May 27, 2002 
at the beginning of the growing season, and the 
height measurements were made between May 
22, 2002 and April 2003. The height growth of 
summer 2002 is missing in the images but present, 
in varying degree, in the field observations. It was 
estimated that the average missing height growth 
was 0.20 m. With this correction, the positionings 
were made, on average, 0.22 m above the tree 
tops. The plot elevations were assumed to be 
known with ± 0.25 m accuracy (95% of cases). 
The photogrammetric positionings can therefore 
be claimed unbiased in Z. The standard deviations 
of ΔZ per plot varied from 0.31 to 1.01 metres. 

The largest values were obtained for the dense 
plots B2 and S3, and mature stands MaS1, and 
MaPS1, MaPS2, MaPS3, and MaPS4. The impre-
cision of height measurements and imprecision 
of tree butt Z-coordinates constitute a portion of 
the observed differences as well as the inaccura-
cies in the determination of the plot elevation by 
levelling. If it is assumed that the height measure-
ments were done with a 0.5-m standard error, the 
precision of Z-coordinate of photogrammetric 
measurements was approximately 0.5 m.

It should be noted that the operator who meas-
ured the tree tops could learn from the field data 
where, on the image, to point out the tree top. 
Thereby the results of positioning accuracy are 
tentative.

3.1.2 Tree Discernibility

The number of discernible trees, their total 
volume, volume of saw wood, and volume of 
pulp wood are given for each plot relative to the 
total tree set (Table 12, Table 14). The number of 
discernible trees and the total number of trees by 
classes of relative height are tabulated for each 
plot (Table 13, Table 15). These proportions are 
also illustrated in Fig. 27.

Considerable underestimation in the total stem 
number was observed in spruce stands S1–S6. 
The discernibility-functions (Fig. 27) of the dens-
est plots S3 and S5 differ from the others. On all 
spruce plots, almost all of the dominant trees were 
discernible except for trees, which had overlap-
ping crowns. This shows in the proportion of 
measurable saw timber that varied from 97.8 to 
100%. Of the total volume, 92% or more was 
discernible in the managed stands. On plot S3, 
which has escaped thinnings, only 88% of the 
total volume and 82% of pulp wood volume was 
discernible. (Fig. 27, Table 12, Table 13).

3 Results of the Experiments
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Fig. 27. Proportion of discernible trees as a function of relative height.

Pine plots P1–P6 have understorey consisting of 
spruce and pubescent birch. Because these small 
trees were mainly not visible on the photographs, 
the stem number of the set of discernible trees 
underestimated the true stem number consider-
ably. The dominant, co-dominant, and interme-
diate trees are almost all discernible. Thus, the 
proportion of measurable total volume is high, 
from 95% to 98%. The dense unthinned plot P4 
has a less dense understorey, which is probably 
due to high stocking of the dominant layer. This 
explains the low underestimation of stem number 
in plot P4. (Fig. 27, Table 12, Table 13).

The birch stands B1–B4 had no understorey 

trees in 2002. A very dense understorey of spruce 
was cleared in the early 1990’s (Räsänen et al. 
1992). There are mainly dominant and co-domi-
nant trees. 96.4% or more of the trees were dis-
cernible. On the non-thinned plot B2, there were 
some non-discernible dominant trees, which had 
overlapping or defoliated crowns. (Fig. 27, Table 
12, Table 13).

Stands PS1 and PS2 have been recently thinned. 
Plot PS2 was thinned in spring 2002 and plot PS1 
in autumn 2000. On plot PS1, 48% (Dg 15.2 cm 
for removed trees) and on plot PS2, 62% (12.2 
cm) of the stems was removed in the intermedi-
ate felling. The thin-from-below strategy was 
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followed. There is a harvesting track, four to five 
metres in width, which runs through each plot. 
All trees were discernible on plot PS2. On plot 
PS1, six intermediate trees were not measurable. 
(Fig. 27, Table 12, Table 13).

Table 12. Stem number (N), total volume (Vtot), saw 
wood volume (Vs) and pulp wood volume (Vp) of 
the discernible tree set relative (%) to the total tree 
set. Thinning stands. Basal area (G) is given as a 
measure of stand density.

Plot G N Vtot Vs Vp
 m2/ha %

S1 25.4 83.8 99.2 100.0 98.9
S2 20.9 49.4 96.1 100.0 96.4
S3 40.0 50.2 87.8 97.8 81.8
S4 29.3 64.5 94.2 99.2 92.4
S5 33.2 75.7 92.3 100.0 91.2
S6 25.2 79.2 96.9 100.0 95.0
P1 20.9 66.4 97.8 100.0 98.9
P2 24.7 51.2 96.5 100.0 98.7
P3 21.9 50.4 95.1 100.0 96.2
P4 29.9 72.4 94.8 100.0 94.8
P6 21.5 51.8 95.4 100.0 96.9
B1 15.0 98.0 99.4 100.0 99.4
B2 21.7 96.5 98.2 100.0 98.3
B3 14.6 100.0 100.0 100.0 100.0
B4 15.1 96.4 99.8 100.0 100.0
PS1 20.7 95.6 98.4 100.0 98.2
PS2 18.6 100.0 100.0 100.0 100.0

Table 13. Number of discernible trees and total tree number of trees in relative height classes. Thinning stands.

 Understorey Intermediate Co-dom Dom
Plot –2 23 34 45 56 67 78 89 9–

S1 0/3 0/18 0/10 10/13 17/18 38/38 40/40 43/43 33/33
S2 0/38 0/41 0/47 4/18 8/10 15/15 19/19 48/48 45/45
S3 0/59 0/47 0/41 0/29 0/43 18/38 62/74 109/114 69/69
S4 0/29 0/37 0/28 8/29 31/40 66/75 62/65 39/40 43/43
S5 0/3 0/14 0/12 0/20 11/32 34/55 74/86 142/146 75/76
S6 0/16 0/7 0/9 0/7 11/16 19/22 60/64 52/52 53/53
P1 0/10 1/46 0/36 3/16 4/4 16/18 56/57 71/71 61/61
P2 0/33 2/97 3/53 2/20 5/10 8/10 35/36 75/75 84/84
P3 0/15 0/79 0/49 0/19 4/9 10/12 34/36 65/65 61/61
P4 0/31 0/31 0/25 1/11 2/6 21/27 61/74 137/141 103/103
P6 0/17 0/74 0/48 1/22 12/19 15/16 38/40 75/75 42/42
B1 – – – – 0/1 2/3 3/3 21/21 68/68
B2 – – – – 0/1 1/2 23/26 89/90 80/81
B3 – – – – – – 6/6 18/18 59/59
B4 – 0/3 – – – – – 13/13 67/67
PS1 – – – 1/2 2/3 9/13 30/30 51/51 36/36
PS2 – – – – 1/1 3/3 27/27 60/60 34/34

Plot MaPS1 represents a heterogeneous plot. 
The plot is 60 m wide and extends 180 m in 
south-north direction. In the south, it covers a 
drained bog dominated by pines with an under-
storey of pubescent birch. Two-thirds of the plot 
is on mineral soil. The site type there varies a lot 
and there are even openings caused by rocky soil 
conditions. Both pine and spruce occur in the 
dominant layer and understorey is missing. In the 
discernibility analysis, the plot was considered 
as a whole. There were many non-discernible 
intermediate trees resulting in low proportion of 
discernible pulp wood volume, 90.2%. (Fig. 27, 
Table 14, Table 15).

Plot MaPS3 is a stand, which was clear-cut in 
April 2003. The dominant trees consist of pines 
and spruces that grew in patches. In the pine-
dominated parts, there was a dense understorey 
of small spruce, which was mostly excluded from 
the data because of the 90-mm lower bound for 
dbh. 90 mm in dbh corresponds to approximately 
seven to nine metres in height, which is from 28% 
to 36% in relative height. If the small spruces had 
been tallied, the underestimation in stem number 
would have been much higher than the observed 
13.7%. Trees with a dbh lower than 90 mm are 
not harvested for commercial timber and their 
share of the total volume is small. This means 
that the estimates for discernible saw-wood and 
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planted in rows. Although the density is high, 
94% of the trees and 96.6% of the total volume 
was discernible. (Fig. 27, Table 14, Table 15).

Plot MaPS2 consists of spruce and pine, which 
are from 110 to 145 years old and between 20 
and 34 metres high. The two species grow mixed. 
There is only a scarce understorey tree-layer. 13% 
of the stems and five per cent of the total volume 
was non-discernible. Pulpwood in stand MaPS2 
was underestimated by 13%. This was mainly due 
to the non-discernible intermediate trees. (Fig. 27, 
Table 14, Table 15).

The clear-cut area represented by plot MaPS4 
could be delineated in two stands. The northern 
part of the plot, 30% of the area, consisted of 215-
year old pines and 40-year old spruce understorey. 
The rest of the plot was made up of a 130-year 
old spruce-pine forest with no understorey. Since 
the plot was an actual clear-cut, it was treated as 
a whole in the analysis. On plot MaPS4, under-
storey spruces below the old pines were mostly 
non-discernible. If an understorey tree was vis-
ible, it was only seen on two or three views, 
whereas the dominant trees could be seen in all 
four views. It should be noted here that a portion 
of the understorey spruce was not mapped in the 
field since the lower bound for dbh on this plot 
was 90 mm. It corresponds to approximately 8.5 
metres (30% of Hdom) in height. Pulpwood was 
underestimated by 23% because a large portion of 
the intermediate spruce trees, with relative height 
between 0.3 and 0.7, were non-discernible. 97% 
of the saw wood volume was discernible (Fig. 27, 
Table 14, Table 15).

Table 14. Stem number (N), total volume (Vtot), saw 
wood volume (Vs) and pulp wood volume (Vp) 
of the discernible tree set relative (%) to the total 
tree set. Mature stands. Basal area (G) is given as 
a measure of stand density.

Plot G N Vtot Vs Vp
 m2/ha %

Pine dominated stands
MaPS1 18.1 78.2 94.0 96.8 90.2
MaPS3 23.1 86.3 96.0 97.8 89.6
MaP1 16.1 100.0 100.0 100.0 100.0
MaP2 20.4 98.2 98.3 98.8 97.3

Spruce dominated stands
MaS1 36.7 94.0 96.6 96.7 96.1
MaPS2 33.2 87.2 95.0 96.2 87.6
MaPS4 31.8 76.5 94.5 97.0 76.8

Table 15. Number of discernible trees and total tree number of trees in relative height classes. Mature stands.

 Understorey Intermediate Co-dom Dom
Plot –2 23 34 45 56 67 78 89 9–

Pine dominated
MaPS1 – 0/13 1/45 7/39 11/20 45/54 104/112 134/140 151/156
MaPS3 – 0/1 8/39 22/53 9/17 16/31 42/47 157/167 427/434
MaP1 – – – – – 4/4 11/11 19/19 51/51
MaP2 – – – – – – 11/11 42/43 55/56

Spruce dominated
MaS1 – 0/3 0/4 2/5 2/5 1/1 11/14 106/107 131/133
MaPS4 – 4/7 17/61 24/74 37/62 34/53 41/52 150/156 210/211
MaPS2 – 0/14 0/2 3/11 5/13 43/59 135/144 106/113 152/153

pulp wood volume would not have changed sig-
nificantly even if the small trees had been tallied. 
(Fig. 27, Table 14, Table 15).

Plots MaP1 and MaP2 are located on barren 
mineral soil, on poor and dry CT forest type, 
where spruce is restricted to the understorey and 
pine dominates. Plot MaP1 has been thinned 
heavily and has only 340 stems per hectare. All 
trees were discernible on this plot. On plot MaP2 
two trees, which were partly occluded by close 
neighbouring trees, were not seen by the operator. 
(Fig. 27, Table 14, Table 15).

Plot MaS1 represents a planted spruce stand, 
which was extended somewhat to include some 
large aspens with interlaced crowns. These aspens 
formed mainly the non-discernible total and saw 
wood volume. Initially the trees of MaS1 were 
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3.2 Performance of Semi-Automated 3D 
Tree Top Positioning

3.2.1 Hit-rate Best-Cases

The best case was defined as the one with the 
maximum hit-rate with the commission error rate 
below five per cent, and the RMSE of Z below 
one metre. It was assumed that a five per cent of 
commission error-rate represents an acceptable 
amount of erroneous positions to be removed 
manually after an automated search for tops.

The best case in hit-rate was searched for each 
Plot × Image Set × Model tree-combination. The 
total number of such combinations was 1608 
and, it equals the number of ‘computer nights’ 
that were used for the computations of perform-
ance testing.

Pine plots P3 and P4

Pine plots P4 and P3 (Fig. 28) form a pair for 
testing the effect of stand density on the perform-
ance of 3D tree top positioning. P4 has never been 
thinned, and has a basal area of 30 m2/ha. There 
is mortality due to overstocking. Plot P3 was last 
thinned in 1989 and had 22 m2/ha of basal area in 
2002. Differences in the treatment history show in 
the dbh-distribution. The mean diameter of trees 
in plot P3 is two centimetres larger than in plot 
P4. In the discernibility analysis, approximately 
95% of the volume was discernible in both plots. 
50.2% of the stems were discernible in plot P3 
and 72.4% in plot P4. These trees constituted the 
ground truth for the performance testing of the 
3D tree top positioning algorithm.

Table 16. Statistics of best cases in hit-rate (%) by image sets (Table 8). Pine plots P3 and P4. Ten model trees per 
plot. An asterisk marks the overall best case and N is the number of image set × model tree combinations.

 Plot P3 (thinned) Plot P4 (unthinned)
Image Set N  Mean s Min Max Image Set N Mean s Min Max

MNAD 10 91.3 4.3 81.5 95.8* 12CIR 10 70.8 15.5 38.2 83.0
6CIR 10 88.6 4.0 80.7 93.3 612CIR 19 70.7 18.6 11.3 84.0
612CIR 20 88.1 6.9 71.4 95.0 MNAD 10 69.9 24.5 15.6 86.8*
12CIR 10 87.5 4.7 80.7 93.3 6CIR 10 67.1 21.2 12.3 80.2
LNAD 10 87.4 8.5 68.9 93.3 6COL 10 65.7 14.4 35.9 78.8
WNAD 10 86.3 6.6 71.4 93.3 LNAD 10 65.4 21.4 17.5 80.2
616CIR 20 85.5 9.0 54.6 94.1 WNAD 10 64.3 20.0 10.4 80.7
16CIR 10 84.3 5.6 73.1 91.6 616CIR 20 63.8 21.1 7.1 80.7
P6CIR 20 73.8 11.4 44.5 85.7 16CIR 10 58.3 23.8 15.1 82.6
P12CIR 20 68.2 19.2 12.6 85.7 P12CIR 20 52.2 24.6 0.9 73.1
6COL 10 67.3 23.8 20.2 89.1 P6CIR 20 47.5 21.8 1.9 71.2
P16CIR 20 62.9 18.4 19.3 86.6 P16CIR 20 46.9 18.4 6.6 72.6
 170 72 077 064 trials 169 51 283 739 trials

Fig. 28. Plots P3 and P4 in the aerial image 22054607 with tree tops of 
discernible trees. Scale 1:12000, nadir angles 17 and 16 degrees.
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The best cases in hit-rate were 95.8% and 
86.8% for plots P3 and P4 respectively. These 
were both obtained with the MNAD image set, 
which consisted of four images in scale 1:6000 
and three images in scale 1:12000. Since plots 
P3 and P4 are located next to each other in the 
field, all image sets are identical. The best case 
hit-rates correspond to 98.3% and 92.6% hit-rate 
in total discernible stem volume. There is a clear 
difference in the mean hit-rates between the two 
plots. This is likely due to the differences in stand 
density and structure. However, it is also possible 
that the parameter space was incorrectly set. For 
example, the parameter EllipseWidth was allowed 
to take values 2, 2.3, 2.6, and 2.9 metres on plot 
P4. The mean of the 169 best cases was 2.10 m. 
Perhaps better results had been obtained by allow-
ing the parameter to take lower values. The image 
set LNAD did not produce best hit-rates against 
expectations, and it is possible that the condition 
set on maximum RMSE in Z-coordinate caused 
this. The LNAD set with images viewing the trees 
from near-nadir directions is not able to produce 
the same Z-accuracy as the sets with images 
having variation in nadir angle. The image-pair 
sets produced on average poorer results on both 
plots and the variation in hit-rate between model 
trees was the largest for these sets. The differ-
ences due to image scale were not significant. 
Set 612CIR was superior to set 616CIR in both 

plots, and set 16CIR produced lower hit-rates 
than sets 6CIR and 12CIR. Colour images in set 
6COL produced on average lower hit-rates in 
comparison to CIR images in the set 6CIR. One 
model tree on plot P4 turned out very poor in all 
sets, and had an effect on the results. This tree had 
a small crown and was visible against the sun-lit 
forest floor in some of the images. For example, 
the mean hit-rate for image set MNAD would 
have been 74.0% instead of 69.9%, had that model 
tree been omitted. (Table 16).

Spruce plots S3 and S6

S3 has escaped all thinnings and S6 is a managed 
stand (Fig 29). The proportion of birch is 15% of 
total volume on plot S3, and plot S6 represents 
an almost pure spruce stand. Birches of plot S3 
belong to the dominant layer, and grow in clusters 
with partially overlapping crowns.

The best cases in hit-rate were 98.4% and 
77.3% corresponding to 99.2% and 82.6% of 
total discernible volume. In the discernibility tests 
79.2% and 50.2% of trees and 96.9% and 87.8% 
of total volume was discernible on plots S6 and 
S3. It appears that the stand structure and density 
has an effect upon the performance of 3D tree top 
positioning. For the dense plot S3, the hit-rates 
are lower. Image set 612CIR produced the best 

Table 17. Statistics of best cases in hit-rate (%) by image sets (Table 8). Spruce plots S6 and S3. Eleven and ten 
model trees. An asterisk marks the overall best case and N is the number of image set × model tree combi-
nations.

 Plot S6 (thinned) Plot S3 (unthinned)
Image Set N  Mean s Min Max Image Set N Mean s Min Max

612CIR 22 92.4 8.1 66.1 98.4* 612CIR 19 63.3 8.7 49.4 77.3*
12CIR 11 84.2 17.8 34.7 96.9 616CIR 20 61.6 6.3 50.6 72.1
LNAD 11 84.0 13.8 48.0 93.7 LNAD 10 61.2 9.9 45.9 75.6
MNAD 11 82.2 16.3 45.7 96.1 12CIR 10 58.7 8.7 42.4 70.4
6CIR 11 78.7 15.7 37.8 90.6 MNAD 10 56.3 8.4 43.6 67.4
616CIR 22 77.4 21.7 15.8 93.7 16CIR 10 54.6 8.4 41.3 64.0
6COL 11 70.7 20.5 20.5 89.0 6CIR 10 51.2 13.9 25.0 64.0
16CIR 11 69.4 22.3 10.2 87.4 6COL 10 50.9 15.9 19.8 70.9
WNAD 11 61.8 23.4 22.8 85.8 WNAD 10 36.7 15.4 7.6 58.1
P6CIR 22 55.2 27.8 0.0 86.6 P6CIR 20 34.9 16.6 7.6 66.3
P12CIR 44 47.2 26.7 2.4 89.0 P16CIR 20 34.6 13.2 4.7 52.3
P16CIR 22 41.2 24.8 1.6 78.0 P12CIR 40 34.2 13.3 12.2 70.9
 209 100 239 430 trials 189 61 971 025 trials
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cases on both plots. Sets 12CIR consisting of six 
images in the scale of 1:12000 yielded higher 
average hit-rates than the sets 6CIR, which had 
four decimated images in the scale of 1:6000. By 
comparing sets 6CIR and 16CIR, it can be seen 
that the possible effect of scale is not consistent. 
Set 16CIR was better than set 6CIR on plot S3. 
Image pairs produced poorest results with large 
variation in the hit-rate between model trees. This 
is in line with the findings on pine plots P3 and 
P4. The expected order of the image sets LNAD, 
MNAD, and WNAD was fulfilled. Oblique views 
in the sets WNAD have more occluded trees, 
which lead to lower hit-rates. CIR images in the 
sets 6CIR proved better in comparison to colour 
images in the sets 6COL. (Table 17).

Birch plots B1, B2, and B3

Intermediate fellings have taken place in plots B1 
and B3 whereas plot B2 is unthinned (Fig. 30). 
Plot B1 was thinned from 981 to 600 stems per 
hectare in winter 2000–2001, and plot B3 to 520 
stems per hectare in 1992. Stem diameters and 
crowns on plot B3 are larger than on plot B1 pos-
sibly due to the thinning effect which has lasted 
10 years longer on plot B3 than on plot B1. Plot 
B2 consists of slender trees with relatively short 
crowns. Mortality due to overstocking has taken 
place on plot B2. The weather was windy on May 
27, 2002, when the CIR photography took place. 
At weather station 1.5 kilometres away from the 
birch plots, average wind velocity of 4.2 metres 

per second was measured between 09:45 and 
10:30 a.m. The maximum values, up to seven 
metres per second, occurred at 09:50–09:54. 
The CIR photography in scale 1:6000 took place 
between 09:46–09:55. In July 2002, it was veri-
fied that such wind causes considerable tree sway 
and bend in plots B1 and B2 where the trees are 
slender. Superimposed 3D points of field meas-
ured tree tops did not match the crown patterns on 
the images. This was observed in parts of the plots 
in two consecutive CIR images in scale 1:6000. 
Plot B2 is situated on a slope, and the tree tops not 
matching the patterns in the images were located 
at the hilltop. For plot B2, these two CIR images 
in scale 1:6000 were rejected and replaced with 
colour images in a set 6C_6CIR.

In the managed stands B1 and B3, there were 
cases in which all trees were hit. Hit-rates of 
100% were observed even in some image-pair 
sets. For the dense plot B2, image set LNAD pro-
duced the overall best case of 97%. On plot B3, 
one model tree produced low hit-rates if a particu-
lar CIR image in the scale 1:6000 was included 
in an image set. This co-dominant model tree had 
an interlaced crown with a taller dominant tree 
located close by. Possibly this model tree×image 
combination produced a poor-quality, cross-cor-
relation image, in which the correlation maxima 
were low and shifted. This image was included in 
sets 612CIR, 616CIR, 6CIR and P6CIR. (Table 
18, Table 19).

The anticipated effect of nadir angle was 
observed in all plots. Set WNAD, consisting of 
oblique views, produced lowest hit-rates in com-

Fig. 29. Plots S3 and S6 in the aerial image 22054599 with tree tops of 
discernible trees. Scale 1:12000, front-lighted, nadir angles 13 and 
10 degrees.
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Table 18. Statistics of best cases in hit-rate (%) by image sets (Table 8). Birch plots B1 and B2. Ten model trees. 
An asterisk marks the overall best case and N is the number of image set × model tree combinations.

 Plot B1 (thinned in 2000) Plot B2 (unthinned)
Image Set N  Mean s Min Max Image Set N Mean s Min Max

MNAD 10 92.2 9.9 69.5 100.0* LNAD 10 93.5 2.2 89.6 97.0*
LNAD 10 90.7 12.8 61.0 100.0 612CIR 10 93.0 2.0 88.9 95.6
612CIR 10 90.3 12.9 55.9 100.0 12CIR 10 90.6 3.4 84.4 94.1
WNAD 10 89.3 5.3 83.1 96.6 MNAD 10 89.2 3.4 83.7 94.1
12CIR 10 88.0 8.9 71.2 98.3 616CIR 10 86.4 7.0 71.9 94.8
616CIR 10 83.4 18.4 33.9 96.6 WNAD 10 85.0 6.8 66.7 90.4
16CIR 10 79.0 22.6 18.6 94.9 P6CIR 10 80.1 18.5 30.4 94.1
6CIR 10 78.5 16.0 39.0 93.2 6C_6CIR  10 79.8 13.7 48.2 95.6
P6CIR 10 73.9 15.0 40.7 94.9 16CIR 10 70.6 21.7 20.7 87.4
6COL 10 71.9 30.3 11.9 96.6 P12CIR 20 69.9 20.1 19.3 89.6
P12CIR 20 47.2 23.3 8.5 83.1 6COL 10 65.0 18.1 36.3 85.2
P16CIR 20 33.5 20.7 0.0 62.7 P16CIR 20 39.1 22.8 6.7 83.0
 140 58 337 141 trials 140 53 762 743 trials

Table 19. Statistics of best cases in hit-rate (%) by image sets (Table 8). 
Birch plot B3. Ten model trees. An asterisk marks the overall best case 
and N is the number of image set × model tree combinations.

 Plot B3 (thinned in 1992)
Image Set N Mean s Min Max

LNAD 10 98.7 3.6 88.7 100.0*
12CIR 10 94.5 12.9 58.5 100.0
MNAD 10 94.5 10.1 69.8 100.0
612CIR 20 93.6 15.8 43.4 100.0
616CIR 20 93.5 9.5 71.7 100.0
16CIR 10 90.8 15.5 49.1 100.0
6COL 10 87.9 11.6 66.0 100.0
6CIR 10 81.9 30.2 24.5 100.0
WNAD 10 79.6 26.2 17.0 100.0
P12CIR 20 78.0 25.4 15.1 100.0
P6CIR 20 71.8 27.8 11.3 100.0
P16CIR 20 64.3 30.2 9.4 98.1
Total 170 80 757 188 trials

Fig. 30. Plots B1 and B2 in the aerial image 22054602 and plot B3 in image 22054608 with tree tops of discern-
ible trees. Scale 1:12000, nadir angles 13, 12, and 14 degrees.
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parison to sets LNAD and MNAD. CIR images 
in scale 1:6000 were better than colour images 
on plots B1 and B2. On plot B3, reverse order 
was observed. The effect of scale shows in the 
inner order of sets {612CIR, 616CIR}, {P6CIR, 
P12CIR, P16CIR} and {12CIR, 16CIR}. How-
ever, this is not only due the effect of scale since 
the sets 12CIR have six images with 70% forward 
overlap. In addition, sets 6CIR with images in 
scale 1:6000 produced on average lower hit rates 
than sets 12CIR and 16CIR. The observed effect 
of scale was therefore not consistent. The hit-
rates for image pairs were considerably lower 
than for sets with four or more images. Sets 
P12CIR and P16CIR on plot B1 and set P16CIR 
on plot B2 produced clearly lower hit-rates. No 
likely reasons for this could be found. (Table 18, 
Table 19).

It seems also that in the case of pure birch 
stands, in which quite little variation in tree height 
occurs, the density of the stands plays only a 
minor role. The mean of best cases for the ten 
model trees produced by image set LNAD on 
the dense unmanaged plot B2 was 93.5%. This 
is more than in the best case for the neighbouring 
thinned plot B1. Plot B3 is on flat terrain, and the 
spacing of trees is quite even. In such conditions, 
the 3D tree top positioning gave high best-case 
hit-rates. (Table 18, Table 19).

Recently thinned, young pine-spruce stands PS1 
and PS2

The maximum observed hit-rate for plot PS1 
was 89.5% corresponding to a 95.5% hit-rate in 
volume. Image set LNAD, which consists of low 
nadir-angle images, produced the best average 
results in hit-rate, 83.2%. As expected, the set 
WNAD was inferior to sets MNAD and LNAD. 
The effects of scale and image number were 
unexpected. Image set 12CIR with six images in 
scale 1:12000 produced slightly higher hit-rates 
than scale-combination sets 612CIR and 616CIR. 
In addition, set 16CIR produced higher hit-rates 
than set 6CIR, and image pair set P6CIR was 
inferior to sets P12CIR and P16CIR. CIR images 
surpassed colour images also on plot PS1. (Table 
20).

One model tree in plot PS1 was a 17.2-metre 
high birch. It produced the overall best case of 
89.5% in set LNAD and the best case in four 
other sets with a mean hit-rate of 71.6%. The 
other best cases were obtained by using pines as 
model trees (mean hit-rate 67.7%) and the three 
tested spruce model trees with heights 13.8, 15.0, 
and 16.3 metres, produced an average best-case 
hit-rate of 59.9%.

On plot PS2, the maximum hit-rates were 
observed for the scale-combination set 612CIR. 
The best observed hit-rate was 93.5% correspond-
ing to 92.6% in volume. This means that large 
trees were missed and a larger portion of the 

Fig. 31. Plots PS1 and PS2 in the aerial images 22054600 and 22054608 with tree 
tops of discernible trees. Scale 1:12000, nadir angles 8 and 6 degrees.
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small trees hit. The expected effect of scale was 
observed in the inner order of sets {612CIR, 
616CIR}, {12CIR, 16CIR}, and {P6CIR, P12CIR, 
P16CIR}. Images in small scale produced lowest 
average best-case hit-rates. Comparison of CIR 
and colour images could not be made since full 
sets 6COL and 6CIR could not be formed due to 
deficits in image material. (Table 20).

There were three spruce model trees in plot 
PS2. The best case in five image sets was obtained 
with a 17.6-metre high spruce tree. The mean best 
case hit-rates for spruce and pine were 49.6 and 
53.3%, respectively.

Mature, planted spruce stand MaS1

Plot MaS1 is a managed stand, in which trees 
were planted in rows in 1932 (Fig. 32). The rows 
still show in the spatial pattern although a large 
number of the planted trees have been removed 
in intermediate fellings. Height variation of trees 
on plot MaS1 is quite moderate. One co-dominant 
model tree, which had close and higher neigh-
bouring trees, produced poor hit-rates in all sets. 
This model tree, when later checked, was barely 
discernible in the images. If it were rejected, 
the mean best-case hit-rate for the set 612CIR 
would be 98% with a minimum of 88%. For 
the set LNAD, corresponding values would be 
98.3 and 95.4%. It should be noted that the set 

Table 20. Statistics of best case in hit-rate (%) by image sets (Table 8). Plots PS1 and PS2. Ten model trees. An 
asterisk marks the overall best case and N is the number of image set × model tree combinations.

 Plot PS1 Plot PS2
Image Set N  Mean s Min Max Image Set N Mean s Min Max

LNAD 10 83.2 4.0 77.9 89.5* 612CIR # 10 84.6 9.4 64.1 93.5*
MNAD 10 81.7 3.9 74.7 86.3 616CIR # 10 73.6 17.0 43.5 90.2
12CIR 10 80.6 4.7 71.6 86.3 MNAD # 10 69.2 20.4 39.1 91.3
612CIR 20 79.8 5.4 67.4 88.4 12CIR 10 62.9 23.9 17.4 84.8
616CIR 20 76.3 4.3 67.4 84.2 LNAD # 10 61.6 27.1 19.6 91.3
16CIR 10 75.5 7.9 55.8 82.1 WNAD # 10 57.7 16.6 19.6 81.5
6CIR 10 70.6 9.9 49.5 79.0 P6CIR # 10 52.9 14.5 32.6 73.9
WNAD 10 65.8 16.6 20.0 76.8 16CIR 10 46.4 22.3 13.0 68.5
P12CIR 20 55.2 18.6 20.0 83.2 6COL # 10 40.4 21.8 4.4 72.8
6COL 10 49.2 9.6 28.4 61.1 P12CIR 20 39.8 20.0 9.8 77.2
P16CIR 20 47.6 14.7 11.6 65.3 P16CIR 20 25.2 13.6 5.4 51.1
P6CIR 20 44.6 18.3 12.6 71.6 – – – – – –
 170 92 216 321 trials 130 69 447 029 trials
 # Plot PS2 is covered by only one strip in scale 1:6000

Table 21. Statistics of best cases in hit-rate (%) by image 
sets (Table 8). Plot MaS1. An asterisk marks the 
overall best case and N is the number of image set 
× model tree combinations.

Image Set N Mean s Min Max

612CIR # 10 90.9 22.5 27.7 100.0
LNAD # 10 89.5 27.7 10.8 100.0
MNAD # 10 89.1 27.0 12.3 100.0
616CIR # 10 86.6 28.0 7.7 100.0
16CIR 10 84.8 29.6 1.5 100.0
WNAD # 10 83.2 23.4 20.0 100.0
P12CIR # 20 78.9 29.0 6.2 100.0
P16CIR 20 58.7 34.9 0.0 96.9
P6 # 10 51.4 21.2 15.4 76.9
6COL # 10 45.7 17.0 16.9 67.7
Total 120 52 183 383 trials

# Plot MaS1 is covered by one strip of 1:6000 and 1:12000 images.
Set 6COL consists of 3 images.

612CIR consists of two images in scale 1:6000 
and two in 1:12 000 since only one strip covers 
the plot extent in both scales. Similarly, the sets 
LNAD, MNAD, and WNAD have four, five, and 
five images respectively. Images in scale 1:6000 
view the stand at oblique angles. This in its part 
explains why the results for image pairs in scale 
1:6000 are inferior to pairs in the smaller scales. 
The effect of nadir angle is seen in the hit-rates 
of sets LNAD, MNAD, and WNAD. Set WNAD, 
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with images of large nadir angle, produced lowest 
hit-rates. A hit-rate of 100% was achieved in 
fourteen model tree × image set-combinations. 
It seems that the positioning algorithm performs 
reasonably well even with a small number of 
images in a stand such as MaS1. (Table 21).

3.2.2 Sensitivity to Changes in Parameters

Best-case results were analysed for their sen-
sitivity to changes in the parameters. This was 
assumed to give an idea of the robustness of the 
3D tree top positioning method, and the analysis 
demonstrates the functioning and behaviour of 
the algorithm. The best case from plot S6 was 
selected for the analysis. The best case in hit-rate, 
98.4% was obtained with tree 88 as the model 
tree. One parameter at a time was allowed to 
take values around its best-case optimum (Table 
22) while the other parameter values were kept 
constant.

RGB to greyscale transformation

In the performance tests, the templates and aerial 
images were transformed into one-channel images 

by calculating the average of RGB-values for each 
pixel. By keeping all other parameters constant 
(Table 22), and by using the red channel only 
for template matching, the hit-rate changed from 
98.4 to 94.5%. At the same time, RMSE of Z 
changed from 0.81 to 0.79 metres indicating a 
minor improvement in Z-accuracy. In this single 
case, the two transformations produced compa-
rable results.

Fig. 32. Plot MaS1 in the aerial image 22054608 with tree tops of discern-
ible trees. Scale 1:12000, nadir angle 10 degrees, 110 × 88 metres.

Table 22. The parameter values used in the sensitivity 
tests for plot S6 and image set 612CIR. Optimal 
values for model tree 88.

Parameter Value at optimum

Model tree 88
dX 0.3 m
dY 0.3 m
dZ –0.5 m
EllipseWidth 2.4 m
EllipseHeight 3.15 m
EllipseShift –1.5 m
SpaceDepth 10 m
SpaceAsymmetry 0 m
GridDensity 0.5 m
Rlimit 0.34
XYthin 1.7 m
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Model tree selection

Table 23 gives the results of a test in which dif-
ferent model trees were used for 3D tree top 
positioning with the optimal parameter set of 
tree 88 (Table 22). Exceptions were the shift 
parameters dX, dY, and dZ which were set to zero 
value, i.e. the original photogrammetric positions 
obtained by manual image-matching were used. 
The results imply that the parameters are strongly 
dependent on the properties of the model tree. 
These properties possibly include relative height, 
crown width, and local neighbourhood, all fac-
tors which have an effect on how the tree is seen 
in an aerial image. For example, tree 162 is an 
intermediate tree, which had only the very top 
of the tree visible in the images. This model tree 

produced poor results with the optimal parameter 
combination of tree 88. Tree 88 is a co-dominant 
(locally dominant) tree, which is clearly visibly 
in the images and does not have nearby neigh-
bour-trees to cause crown overlap in the images 
of the set 612CIR. The crown patch of tree 162 
in the images is relatively small, and the values 
for parameters EllipseHeight and EllipseShift at 
3.15 and –1.5 metres, are likely too large. The 
optimal values for tree 162 were 2.4 and –0.75 
m, and with these it produced a 96.1% best case 
hit-rate (Table 24).

To further clarify the role of the model tree, the 
best cases for plot S6 obtained with image sets 
612CIR were analysed (Table 24). The tallest, 
21.3-metre high model tree number 164 produced 
the lowest best-case hit-rate. It is possible that 

Table 23. Performance of the 3D tree top positioning algorithm between eleven model trees of plot S6. Optimal 
set of parameter values for tree 88. Image set 612CIR.

Tree Height Height CW Hit-rate, Comm. Mean Mean RMSE Mean RMSE
No photogr./ field, m photo,m % error ΔX, m ΔY, m (XY), m ΔZ, m (Z), m
 DEM, m    rate, %

164 21.1 21.3 3.0 50.4 38.6 0.28 –0.14 0.72 0.09 1.19
173 20.7 20.6 2.6 81.9 33.9 –0.09 –0.57 0.82 –0.81 1.20
149 19.8 19.5 3.9 82.7 11.0 –0.02 –0.10 0.58 0.32 0.82
248 19.4 19.2 2.9 89.8 18.9 0.09 –0.13 0.63 –0.47 0.96
181 18.6 18.9 2.7 87.4 14.2 –0.29 –0.26 0.72 –0.33 0.86
8 18.2 18.5 3.1 92.1 17.3 0.27 0.03 0.65 –0.31 0.91
236 18.0 17.8 2.9 82.7 12.6 –0.04 –0.16 0.65 –0.14 0.85
156 17.7 17.4 2.8 93.7 10.2 0.07 –0.16 0.59 –0.25 0.65
*88 17.4 18.0 2.6 98.4 3.1 –0.10 –0.15 0.59 0.12 0.81
193 17.4 17.1 2.0 81.1 26.0 0.16 0.47 0.77 0.58 1.10
162 16.8 16.6 1.2 79.5 30.7 –0.22 –0.31 0.73 0.90 1.23

Table 24. Characteristics of model trees, optimal parameter values, and best cases of performance of 3D tree top 
positioning algorithm for the eleven model trees of plot S6. Image set 612CIR.

Tree Height CW EW, ES, EH, SD, SA, Rlimit, XYthin, Hit-rate, Comm.
No in field, photo, m m m m m ρ3D m % error
 m m         rate, %

164 21.3 3.0 2.4 –1.50 2.40 10 –3 0.40 2.0 85.0 4.7
173 20.6 2.6 2.7 –0.75 2.40 7 –3 0.34 1.8 95.3 4.7
149 19.5 3.9 2.7 –1.50 2.40 6 –3 0.34 1.4 95.3 3.1
248 19.2 2.9 2.4 0.00 3.15 9 –1.5 0.40 1.6 98.4 4.7
181 18.9 2.7 2.4 –1.50 3.15 7 –1.5 0.32 1.8 97.6 4.7
8 18.5 3.1 2.4 –0.75 3.15 9 –1.5 0.36 1.8 98.4 4.7
88 18.0 2.9 2.4 –1.50 3.15 10 0 0.34 1.7 98.4 3.1
236 17.8 2.8 2.7 –1.50 2.40 8 –1.5 0.32 1.8 98.4 3.9
156 17.4 2.6 2.4 –0.75 2.40 7 –1.5 0.40 1.4 97.6 4.7
193 17.1 2.0 2.4 –0.75 2.40 7 1.5 0.34 2.0 89.8 3.9
162 16.6 1.2 2.4 –0.75 2.40 10 0 0.38 1.6 96.1 4.7
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the range in parameter SpaceAsymmetry was too 
narrow in the multidimensional grid, which was 
used in performance testing. The mean height of 
discernible trees on plot S6 is 16.9 metres. The 
maximum shift downwards (SpaceAsymmetry) 
was –3 metres, which centres the search space 
vertically at 18.3 metres above ground. Perhaps 
with a larger negative value for the parameter 
SpaceAsymmetry an even better best case would 
have been found for tree 164. (In a separate test, 
an improved hit-rate of 86.6% was obtained for 
SpaceAsymmetry at –5 metres). Highest best case 
hit-rates were obtained for mean-sized trees 156, 
236, 88, 8, 181, and 248. This is possibly due to 
the inability of template matching to take into 
account size variation. Mean-sized model trees 
therefore performed the best. It is also possi-
ble that deficits in the multidimensional grid of 
parameters (Table 9, p. 43) are the cause for this 
effect. (Table 24).

Error in model tree top position

The Z-coordinate for the model tree top was 
allowed to vary in Z-direction by ± 0.5 metres. 
A new, better hit-rate maximum was not found. 
Hit-rates varied from 94.5% to 98.4% and the 
commission error-rate from 3.1% to 10.2%. The 
commission error-rate was at its minimum when 
the tree top was not shifted. Lowest RMSE in Z 
was obtained for the maximum commission error-
rate. No likely reason for this was found. Mean ΔZ 
varied from 0.61 metres to –0.24 metres, a total 

of 0.85 metres, as the position of the model tree 
top changed a metre. This implies that the error 
of the manual photogrammetric measurement of 
the model tree will be reflected in the positionings 
produced by the algorithm. It is close to a one-to-
one relationship in terms of Z-accuracy. A biased 
positioning of the model tree top will cause bias 
in the candidate positions. This sets demands on 
the quality of the images and the manual model 
tree measurement. (Table 25).

Ellipse size and position

The best case in hit-rate occurred with value 2.4 
metres for parameter EllipseWidth (Table 26). In 
the performance tests, the interval for the param-
eter EllipseWidth was from 2.0 to 3.0 metres in 
plot S6. As the parameter value was changed from 
one to four metres, all performance measures in 
Table 26 show changes. For values larger than 
two metres, the commission error rate is below 
6.3%, and positions are accurate in terms of mean 
differences and RMS errors.

Parameter EllipseShift is used to center the 
template in the direction of radial displacement. 
This corresponds to the direction of the Z-axis. A 
negative value means that the template is centred 
below the tree top and thus captures more of the 
crown in the image. The actual effect (shift in 
pixels) on the image is determined by the amount 
of radial displacement, which is determined by 
nadir angle. For near-nadir views, the parameter 
has almost no effect, and the template image 

Table 25. Performance of 3D tree top positioning algorithm for different vertical 
positions of model tree top. Plot S6, model tree 88, and image set 612CIR.

dZ, m Hit-rate, Comm. error Mean Mean RMSE Mean RMSE
 % rate, % ΔX, m ΔY, m (XY), m ΔZ, m (Z), m

–0.5 94.5 5.5 –0.05 –0.24 0.63 0.61 1.08
–0.4 95.3 5.5 –0.06 –0.22 0.62 0.43 1.01
–0.3 96.1 3.9 –0.08 –0.22 0.62 0.35 0.97
–0.2 95.3 3.9 –0.05 –0.18 0.6 0.35 0.87
–0.1 95.3 4.7 –0.07 –0.17 0.6 0.38 0.9
0 98.4 3.1 –0.1 –0.15 0.59 0.12 0.81
0.1 96.1 3.1 –0.09 –0.21 0.62 0.04 0.85
0.2 96.9 3.9 –0.02 –0.19 0.6 –0.09 0.77
0.3 97.6 3.9 –0.02 –0.18 0.6 –0.09 0.75
0.4 95.3 6.3 –0.06 –0.18 0.6 –0.2 0.72
0.5 94.5 10.2 –0.08 –0.19 0.6 –0.24 0.69



64

Silva Fennica Monographs 3 2004

is centred on the tree top. In the optimum, the 
value for EllipseShift was –1.5 metres (Table 
27). In the sensitivity tests, the parameter had a 
significant effect on the accuracy of Z. Parameter 
values below –0.75 metres resulted in low bias, 
but values between –0.5 and 0.5 metres resulted 
in large positive bias in Z. These findings are in 
line with those of Larsen (1998) who observed 
that the elliptic (synthetic) templates should be 
centred below the tree top for optimal results in 
template matching.

The best-case hit-rate was produced with the 
EllipseHeight value at 3.2 metres (Table 28). Low 
values for the parameter EllipseHeight caused 
bias in Z. This is explained by the parameter 
value for EllipseShift which was set at value 
–1.5 metres. For low values of EllipseHeight, the 
templates are circular in shape, and positioned 
such that in oblique views they no longer cap-
ture the tree top but instead the crown below the 
top. The maxima in the cross-correlation images 
are shifted down the crown. Thus, the candidate 
positions are shifted down. This resulted in the 
observed positive bias of Z. (Table 28).

Table 26. Performance of 3D tree top positioning algorithm for different values of 
parameter EllipseWidth. Plot S6, model tree 88 and image set 612CIR.

 EW, m Hit-rate, Comm. error Mean Mean RMSE Mean RMSE
 % rate, % ΔX, m ΔY, m (XY), m ΔZ, m (Z), m

 1 96.1 25.2 0.01 –0.35 0.71 0.73 1.26
 1.2 94.5 24.4 –0.05 –0.33 0.70 0.70 1.16
 1.4 92.9 22.8 0.00 –0.31 0.66 0.66 1.10
 1.6 93.7 16.5 –0.03 –0.27 0.64 0.56 0.96
 1.8 95.3 12.6 –0.05 –0.24 0.63 0.45 0.95
 2 96.9 5.5 –0.09 –0.20 0.60 0.27 0.83
 2.2 97.6 6.3 –0.10 –0.18 0.60 0.22 0.80
 *2.4  98.4 3.1 –0.10 –0.15 0.59 0.12 0.81
 2.6 94.5 4.7 –0.10 –0.11 0.59 0.13 0.81
 2.8 92.9 3.9 –0.10 –0.08 0.59 0.18 0.82
 3 92.9 3.9 –0.11 –0.08 0.60 0.22 0.87
 3.2 89.8 3.1 –0.11 –0.05 0.60 0.27 0.89
 3.4 89.0 3.9 –0.11 –0.04 0.61 0.29 0.91
 3.6 85.8 2.4 –0.10 –0.03 0.60 0.28 0.95
 3.8 81.1 2.4 –0.09 –0.01 0.60 0.33 0.94
 4 77.2 1.6 –0.11 –0.01 0.60 0.38 1.02

Table 27. Performance of 3D tree top positioning algorithm for different values of 
parameter EllipseShift. Plot S6, model tree 88, and image set 612CIR.

  ES, m Hit-rate, Comm. error Mean Mean RMSE Mean RMSE
 % rate, % ΔX, m ΔY, m (XY), m ΔZ, m (Z), m

 0.50 86.6 9.4 –0.05 –0.16 0.66 0.40 0.97
 0.25 91.3 11.0 0.00 –0.17 0.65 0.52 0.98
 0.00 91.3 11.8 0.00 –0.15 0.62 0.61 1.00
 –0.25 92.1 5.5 –0.12 –0.23 0.65 0.58 1.07
 –0.50 93.7 11.8 –0.02 –0.10 0.59 0.51 0.89
 –0.75 97.6 7.9 –0.01 –0.17 0.60 0.20 0.74
 –1.00 94.5 6.3 –0.08 –0.22 0.61 0.06 0.70
 –1.25 97.6 5.5 0.01 –0.20 0.60 0.02 0.77
 *–1.50 98.4 3.1 –0.10 –0.15 0.59 0.12 0.81
 –1.75 94.5 3.1 –0.13 –0.23 0.63 0.21 0.81
 –2.00 95.3 4.7 –0.05 –0.27 0.64 –0.11 0.84
 –2.25 96.1 3.9 0.01 –0.26 0.64 –0.05 0.92
 –2.50 93.7 9.4 –0.03 –0.28 0.66 –0.10 1.02
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Search space depth and vertical position

In the optimum, the depth of the search space 
was 10 metres, and it was centred vertically at 
the height of the top of the model tree 88. This 
is indicated by the value of the parameter Spa-
ceAsymmetry at the optimum, which was zero 
(Table 30). The depth of the search space had 
an effect on the Z-accuracy (Table 29). A low 
search space resulted in an averaging effect. This 
can be observed in the trend coefficient (b) of the 
regression model ΔZ = a + b × h. For example, at 
a parameter value of 10 metres, the coefficient is 
0.17. For a four-metre deep search space, the coef-
ficient increases to 0.46 m/m. Also, the RMSE 
of Z increases as the search space is lowered. 
This is a result of the averaging effect. When the 
search space is too deep, the commission error 

Table 28. Performance of 3D tree top positioning algorithm for different values of 
parameter EllipseHeight. Plot S6, model tree 88, and image set 612CIR.

  EH, m Hit-rate, Comm. error Mean Mean RMSE Mean RMSE
 % rate, % ΔX, m ΔY, m (XY), m ΔZ, m (Z), m

 2 96.9 7.9 –0.09 –0.14 0.62 0.59 1.09
 2.4 96.9 7.1 –0.09 –0.16 0.61 0.46 1.02
 2.8 96.9 3.9 –0.1 –0.15 0.60 0.26 0.88
 *3.2 98.4 3.1 –0.1 –0.14 0.59 0.12 0.81
 3.6 94.5 3.1 –0.1 –0.15 0.60 0.02 0.75
 4 92.9 3.9 –0.08 –0.12 0.59 –0.05 0.74
 4.4 89.0 3.9 –0.11 –0.11 0.60 –0.06 0.71
 4.8 85.8 3.1 –0.12 –0.1 0.60 –0.07 0.72

rate increases (cf. Fig. 8, p. 30, Fig. 14, p. 35). 
The first false tree tops appear at the lower and 
upper parts of the search space where epipolar 
lines of neighbouring trees intersect and produce 
clusters. The commission error rate was zero in 
a search space depth of between four and five 
metres, but at the expense of reduced hit-rate 
and accuracy of Z. This is also explained by the 
geometry: The search space is centred vertically 
at the correct position, and the 6-metre high hit-
cylinders still allow hits from above and below. 
For a one to three-metre deep search space, some 
of the shortest and tallest trees start to produce 
commission errors. The model tree’s height (18.0 
m) is close to the mean of the discernible trees 
and therefore the mean difference in Z was not 
affected by the changes in the depth of the search 
space. (Table 29).

Table 29. Performance of 3D tree top positioning algorithm for different values of parameter SpaceDepth. Plot S6, 
model tree 88, and image set 612CIR. The values of “Max hit-rate” indicate the maximum attainable hit-rate 
given the depth of the search space (SD), and the height of the hit cylinder, 6 metres.

SD, m Hit-rate, Max Comm. error Mean Mean RMSE Mean RMSE Trend in
 % hit-rate, % rate, % ΔX, m ΔY, m (XY), m ΔZ, m (Z), m ΔZ×h, m/m

1 75.6 81.5 2.4 –0.09 –0.16 0.63 –0.08 1.25 0.87
2 81.1 85.6 2.4 –0.08 –0.13 0.62 0.04 1.18 0.74
3 85.8 90.8 1.6 –0.09 –0.14 0.61 0.10 1.04 0.60
4 89.8 93.8 0.0 –0.11 –0.14 0.61 0.15 0.94 0.46
5 91.3 94.9 0.0 –0.10 –0.13 0.60 0.13 0.87 0.38
6 93.7 99.0 1.6 –0.09 –0.13 0.59 0.11 0.82 0.29
7 96.1 99.5 2.4 –0.10 –0.14 0.59 0.11 0.80 0.24
8 97.6 100.0 2.4 –0.10 –0.14 0.59 0.10 0.81 0.21
9 97.6 100.0 2.4 –0.10 –0.14 0.59 0.11 0.80 0.18
*10 98.4 100.0 3.1 –0.10 –0.15 0.59 0.12 0.81 0.17
11 97.6 100.0 5.5 –0.10 –0.15 0.59 0.12 0.86 0.17
12 97.6 100.0 7.9 –0.10 –0.13 0.59 0.09 0.86 0.16
13 98.4 100.0 7.1 –0.10 –0.13 0.60 0.08 0.89 0.15
14 96.9 100.0 11.0 –0.10 –0.14 0.60 0.13 0.84 0.14
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The parameter SpaceAsymmetry adjusts the 
vertical position of the search space with respect 
to the model tree top’s Z-value. If the model tree 
represents the mean height of trees, a value set 
at zero should produce best results. The arith-
metic mean height of trees in plot S6 was 16.8 
metres, and the field-measured height of tree 88 
was 18.0 metres. It can be seen that a one-meter 
shift downward still produced a hit-rate of 98.4% 
(Table 30). Similarly, a one-metre shift upward 
caused a reduction in the hit-rate and an increase 
in the commission error rate. The tallest tree on 
plot S6 is 22.7 metres high. However, 86% of the 
discernible trees have a height between 13 and 21 
metres. A ten-metre deep search space centred at 
17 metres above the ground fills this space better 
than a space of equal depth a metre above. It can 
also be seen that a wrongly centred search space 
causes bias in Z-estimation. On average, a metre’s 
change in the shift (SpaceAsymmetry) resulted in 
a 0.12-metre change in the mean of Z-differences. 
The parameter SpaceAsymmetry had an effect on 
the commission error rate, and the averaging in 
Z, both of which were minimised for the correct 

vertical position of the search space. The correct 
position was interpreted here to correspond to the 
mean height of discernible trees.

Search space grid density

The parameter GridDensity defines the density 
of points in the search space. These points are 
clustered for tree top candidate locations. Since 
the search space is three-dimensional, GridDen-
sity greatly affects the run-times. For the com-
putation of ρ3D, each point requires the use of 
collinear equations and fiducial mark transforma-
tion, which are made up of several floating-point 
multiplications and divisions. GridDensity at a 
value of 0.33 metres results in 27 points per cubic 
metre of search space, whereas a spacing of 0.5 
metres results in eight points. All points in the 
search space need to be computed for ρ3D-value 
and to be sorted and clustered. It is advisable to 
keep the density of the grid at a minimum. In the 
sensitivity test, four values of GridDensity were 
tried. At the 0.33-metre value, the optimum hit-

Table 30. Performance of 3D tree top positioning algorithm for different values of parameter SpaceAsymmetry. 
Plot S6, model tree 88, and image set 612CIR. The values of “Max hit-rate” indicate the maximum attainable 
hit-rate given the depth of the search space (SD), and the height of the hit cylinder, 6 metres.

SA, m Hit-rate, Max Comm. error Mean Mean RMSE Mean RMSE Trend in
 % hit-rate, % rate, % ΔX, m ΔY, m (XY), m ΔZ, m (Z), m ΔZ×h, m/m

–4 90.6 97.9 13.4 –0.12 –0.13 0.63 0.68 1.18 0.32
–3 96.9 99.5 5.5 –0.13 –0.14 0.62 0.49 1.03 0.26
–2 97.6 100.0 4.7 –0.11 –0.14 0.61 0.30 0.86 0.18
–1 98.4 100.0 3.1 –0.10 –0.14 0.60 0.18 0.79 0.14
*0 98.4 100.0 3.1 –0.10 –0.15 0.59 0.12 0.81 0.17
  1 96.9 100.0 5.5 –0.10 –0.14 0.59 0.00 0.88 0.22
  2 91.3 99.0 8.7 –0.09 –0.14 0.59 –0.01 0.77 0.22
  3 89.0 94.4 8.7 –0.08 –0.14 0.59 –0.16 0.81 0.27
  4 85.0 87.7 10.2 –0.06 –0.14 0.59 –0.44 1.00 0.39

Table 31. Performance of 3D tree top positioning algorithm for different values 
of parameter GridDensity. Plot S6, model tree 88, and image set 612CIR.

GD, m Hit-rate, Comm. error Mean Mean RMSE Mean RMSE
 % rate, % ΔX, m ΔY, m (XY), m ΔZ, m (Z), m

0.33 97.6 2.4 –0.11 –0.14 0.59 0.14 0.81
*0.5 98.4 2.4 –0.10 –0.15 0.59 0.12 0.81
0.67 92.1 2.4 –0.14 –0.15 0.63 0.16 0.89
0.83 86.6 3.1 –0.12 –0.15 0.66 0.13 0.88
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rate was changed only little. GridDensity values 
of 0.67 and 0.83 metres produced higher plani-
metric errors and lower hit-rates. The value for 
parameter XYthin at the optimum was 1.7 metres. 
There is likely a co-effect between parameters 
GridDensity and XYthin, which makes it difficult 
to interpret the effects that the changes of Grid-
Density caused. (Table 31).

Parameters controlling the clustering 
of ρ3D-data

Parameter XYthin controls the clustering of volu-
metric ρ3D-data by setting a minimum plani-
metric distance between two clusters. In the 
clustering, a list of points sorted according to 
ρ3D is searched through, and adjacent points are 
fused into existing clusters. Points with distances 
below XYthin are merged into existing clusters. 
This parameter should be set to a value that causes 
ρ3D values of one tree top to be merged into one 
and one cluster only. If the value is set too low, 
the maxima are split and it shows in increase 
of commission errors. Similarly, if the value is 
set too large, the number of clusters is reduced, 
and maxima produced by neighbouring trees are 
merged into positions somewhere between the 
trees. This results in a reduction of the hit-rate, 
an increase of the commission error rate, and an 
increase in positioning errors. These phenomena 
are seen in Table 32. Fig. 33 illustrates a correlo-
gram obtained by analysing a near-nadir image 

of plot S6. The values of XYthin, which produced 
satisfactory results, are located in the lower part 
of the slope, just before the correlation flattens. 
In the performance tests, the best cases of plot S6 
had an average of 1.9 metres for parameter XYthin 
with a 0.35-metre standard deviation.

Parameter Rlimit gives the lower bound for ρ3D. 
A low value of Rlimit results in more clusters, 
and similarly a high value decreases the number 
of points from which the clusters are formed, 
and reduces the number of clusters. Rlimit is a 
parameter used for adjusting the interrelationship 
of hit-rate and commission error-rate. A low value 
produces clusters of low quality, i.e. false tree tops 
with weaker positioning accuracy, but at the same 
time increases the hit-rate. A balance is found by 
adjusting the parameter value. Rlimit had an effect 

Table 32. Performance of 3D tree top positioning algorithm for different values of 
parameter XYthin. Plot S6, model tree 88, and image set 612CIR.

XYthin Hit-rate, Comm. error Mean Mean RMSE Mean RMSE
 % rate, % ΔX, m ΔY, m (XY), m ΔZ, m (Z), m

1.0 97.6 29.9 –0.11 –0.13 0.58 0.10 0.75
1.2 97.6 13.4 –0.11 –0.14 0.59 0.12 0.80
1.4 98.4 7.1 –0.11 –0.14 0.59 0.07 0.80
1.6 98.4 3.9 –0.11 –0.15 0.59 0.12 0.81
*1.7 98.4 2.4 –0.10 –0.15 0.59 0.12 0.81
1.8 96.1 1.6 –0.11 –0.15 0.60 0.13 0.82
2.0 92.9 0.8 –0.09 –0.15 0.62 0.16 0.83
2.2 89.0 0.8 –0.07 –0.14 0.64 0.17 0.82
2.4 79.5 3.9 –0.09 –0.17 0.68 0.22 0.87
2.6 74.0 3.1 –0.09 –0.18 0.71 0.21 0.87
2.8 67.7 4.7 –0.11 –0.21 0.76 0.21 0.94
3.0 56.7 7.9 –0.06 –0.16 0.80 0.32 1.00

Fig. 33. Correlogram of a near-nadir 1:12000 image of 
plot S6. Autocorrelation values for lag-distances 
below 10 metres are included.
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on the RMS error of XY and Z (Table 33). It also 
had an impact on ΔZ. For the largest tried values, 
positive bias was observed. It was interpreted that 
this was caused by the shape of the maxima on 
the correlation images of oblique views. These 
maxima were elongated asymmetrically in the 
direction of the radial displacement (cf. Fig. 17, 
p. 38). When the parameter Rlimit received a large 
value, points below the true tree top positions 
formed the clusters. This resulted in the positive 
bias of Z.

Table 33. Performance of 3D tree top positioning algorithm for different values 
of parameter Rlimit. Plot S6, model tree 88, and image set 612CIR.

Rlimit Hit-rate, Comm. error Mean Mean RMSE Mean RMSE
 % rate, % ΔX, m ΔY, m (XY), m ΔZ, m (Z), m

0.25 98.4 26.0 –0.09 –0.16 0.64 0.02 1.00
0.27 97.6 18.9 –0.09 –0.16 0.63 0.06 0.94
0.29 98.4 11.8 –0.09 –0.15 0.62 0.08 0.94
0.31 98.4 7.1 –0.10 –0.15 0.61 0.09 0.90
0.33 97.6 6.3 –0.11 –0.15 0.59 0.12 0.80
*0.34 98.4 2.4 –0.10 –0.15 0.59 0.12 0.81
0.35 96.9 3.1 –0.10 –0.14 0.59 0.16 0.78
0.37 92.1 1.6 –0.10 –0.13 0.59 0.18 0.74
0.39 89.8 0.8 –0.11 –0.12 0.58 0.19 0.70
0.41 86.6 0.0 –0.13 –0.12 0.59 0.19 0.71
0.43 80.3 0.0 –0.14 –0.13 0.59 0.24 0.74
0.45 70.1 0.8 –0.15 –0.13 0.56 0.28 0.62
0.47 64.6 0.0 –0.17 –0.13 0.58 0.33 0.59
0.49 59.8 0.0 –0.17 –0.13 0.58 0.39 0.63
0.51 52.8 0.0 –0.19 –0.15 0.59 0.43 0.63
0.55 40.2 0.0 –0.18 –0.16 0.58 0.40 0.58
0.59 21.3 0.0 –0.18 –0.19 0.56 0.39 0.54
0.63 7.1 0.0 –0.11 –0.20 0.56 0.47 0.64
0.67 3.9 0.0 –0.12 –0.17 0.56 0.52 0.56
0.71 1.6 0.0 –0.51 –0.26 0.79 0.76 0.78

Fig. 34. Field-measured CW plotted against field-measured dbh.

3.3 Manual Crown Width Measurements

3.3.1 Measurement Accuracy

The data set consisted of 13288 image observa-
tions of 715 discernible trees that had their crown 
width measured in the field (Fig. 34). On aver-
age, each tree was observed for photogrammetric 
crown width from 18.6 images.

The manual photogrammetric measurement of 
maximum crown width resulted in an underesti-
mation (ΔCW) of 0.53 metres on average (Table 
34). The amount of underestimation was found to 
be correlated with the crown size (Fig. 35), and 
it varied between species, film type, and scale 
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(Table 34, Table 35).
The standard deviation of the differences in 

crown width was 0.82 metres. If it is assumed that 
the precision of field measurements is of the same 
order, the precision (standard error excluding 
bias) of manual photogrammetric measurements 
is approximately 0.6 metres.

The average relative height, scaled between 
zero and one, was 0.864 for the trees with field 
measured crown width (Table 34). It is natural that 
for spruce the average relative height is smaller 
than for the light-demanding pine and birch. 
On average, the photogrammetric observations 
underestimated crown widths by 0.53 metres, 
which corresponds to 14.5% of the mean of the 
field-measured crown widths, which was 3.65 
metres. Observed differences were largest for 
spruce, 0.83 metres. This is most likely explained 
by the conical crown shape of spruce. The maxi-
mum crown width can occur below the sun-lit 
part of the crown and is therefore not well seen 
on the photograph. Crowns in the study material 
were asymmetric (Table 34), and this asymmetry 
in width explains partly the underestimation. In 
the field, the trees were measured for maximum 
crown diameter, which is required by the allomet-
ric models, but on the photographs, the direction 

was determined by the viewing geometry.
The underestimation of crown width was lowest 

for the smallest scales 1:16000 and 1:12000 (Table 
35). In 12.2% of the cases, an observation could 
not be made because the operator was unable to 
discern the crown edges (Table 36). This propor-
tion was 16.0% in the 1:6000 COL images and 
9.8, 11.1, and 12.1% in the CIR images in scales 

Table 34. Descriptive statistics of crown width measurement data.

Species N N Mean Mean Mean s Mean
 trees image CW CW⊥ ΔCW, ΔCW, m relative
  obs field, m field, m m  height

Pine 346 5449 3.55 2.78 0.31 0.80 0.888
Spruce 245 3828 3.70 3.20 0.83 0.75 0.812
Birch 120 2038 3.79 3.12 0.50 0.82 0.910
Other  4 58 3.97 2.85 1.53 1.06 0.614
All 715 11373 3.65 2.99 0.53 0.82 0.864

ΔCW = Field measured crown width (maximum) – Photo measured crown width, CW⊥ = field meas-
ured crown width measured in perpendicular direction to CW.

Table 35. Differences between field measured and photogrammetric crown widths 
(ΔCW) by image scale and tree species.

Scale and Film   ΔCW, m
 Pine Spruce Birch Other All

1:6000 COL 0.37 0.80 0.59 1.69 0.57
1:6000 CIR 0.44 0.88 0.62 1.60 0.64
1:12000 CIR 0.28 0.84 0.46 1.49 0.50
1:16000 CIR 0.22 0.82 0.36 1.32 0.43
All 0.31 0.83 0.50 1.53 0.53

Fig. 35. Differences of photogrammetric and field meas-
ured crown widths, ΔCW plotted against field-
measured crown width. N = 11373.
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1:6000, 1:12000, and 1:16000 respectively (data 
not shown). In small-scale images, the contrast 
is low due to the increase of the scattering and 
absorption of light. Also, the resolution is lower. 
Details that appear sharp in large-scale images 
become unclear as the scale decreases. A blurred 
crown edge in the image is possibly observed at 
a wrong position. Other possible causes for the 
unexpected effect of scale are the subjectivity 
of measurements and the failings in the experi-
ment.

3.3.2 Measurability

The type of observation, a class, which reflects 
the ease of measurement and explains as to why 
an observation could not be made, was connected 
with the quality of the crown width observation 
and the relative height of the tree. The amount of 
underestimation in crown width was lowest, 0.50 
metres, in the observations, which were classi-
fied as normal. In these cases, the operator could 
detect the crown edges without difficulties. For 
the other cases in which the measurement was 

done, with uncertainty, the amount of underes-
timation was higher, from 0.70 to 1.34 metres. 
The mean relative height of trees was lowest 
in the class: Tree occluded, no observation. It 
seems therefore that the operator could interpret 
the images in 3D although all observations were 
made monoscopically. (Table 36).

The operator could make more crown width 
observations by using the CIR images than by 
using colour images (Table 37). The differences 
in measurability between species are probably 
explained in part by the differences in relative 
height. Spruce trees had on average lower rela-
tive heights and the probability for occlusion 
and shading is higher for the suppressed trees as 
shown in the discernibility tests. The contrast of 
crowns of different species on the photograph 
can also have an effect on the measurability. The 
overall effect of scale in the measurability of 
crown width is not significant. For CIR images in 
the scale of 1:6000, 88.0% of the tried measure-
ments could be carried out. Correspondingly a 
measurability of 86.5% and 86.3% was achieved 
for the scales 1:12000 and 1:16000. It is plausible 
to assume that the measurability of crown width 

Table 36. Photogrammetric crown width measurements by observation types.

Observation type / class N Mean s Mean
 image ΔCW, m ΔCW, m relative
 obs   height

Normal observation 10863 0.50 0.81 0.875
One edge visible, symmetry assumed 143 0.70 0.65 0.826
Unclear edges, observed 47 1.34 0.99 0.842
Tree occluded, only top visible 320 1.32 0.83 0.794
Total, successful crown width observations 11373 0.53 0.81 0.864
Tree occluded, no observation 299 – – 0.675
Crown edges unclear, no observation 1616 – – 0.842
Tree falls outside image extent, no observation 104 – – 0.875
Total, all image observations 13392 – – 0.864

Table 37. Proportions of successful manual photogrammetric crown width measurements by 
image scale and tree species.

Film and scale N image Succesful CW photo measurements by species, %
 obs Pine Spruce Birch Other All

1:6000 COL 2357 83.4 79.1 80.4 71.4 81.1
1:6000 CIR 2361 89.9 84.0 91.3 83.3 88.0
1:12000 CIR 3563 90.0 81.2 88.9 68.0 86.5
1:16000 CIR 3092 86.8 83.9 89.7 64.7 86.3
All 11373 87.7 81.9 87.9 71.6 85.6
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is related to the discernibility of a tree. Thereby, 
the results of Table 37 imply that more or less the 
same trees are discernible independent of the used 
scale of the CIR images.

In analysing the effect of image-object-sun 
geometry, the observations were classified accord-

ing to nadir angle, tree-to-camera azimuth angle, 
and sun azimuth angles into six (two by three) 
classes (Fig. 3, p. 17, Fig. 36). Cases in which 
the nadir angle was below 25 degrees were put 
in class near-nadir and the remaining into class 
off-nadir. In addition, the photograph was divided 
in three sectors representing the back-, side-, 
and front-lighted cases. The side-lighted sector 
is 180 degrees wide, thus representing 50% of 
the image area. 48.6% of the observations were 
from this sector.

The proportion of unsuccessful photogram-
metric CW-measurements was highest in the two 
side-lighted classes ON-S and NN-S. Cases in 
which the tree is viewed either back-lighted or 
front-lighted did not differ much from each other, 
and were superior to the side-lighted views in both 
near-nadir and off-nadir views. The proportion of 
successful measurements was lower in off-nadir 
views than in near-nadir views. This is related to 
occlusion, since in oblique views of stands with 
variation in height, occlusion is present. (Table 
38).

Logistic regression analysis was used to illus-
trate the effect of nadir angle and the relative 
height on the measurability of crown width (Fig. 
37). The results indicated that the probability of 
successful manual CW measurement is dependent 
on both of these variables. Near-nadir views were 
better for the measurement of crown width, and 
the probability of measurability correlated with 
the relative height.

Table 38. Proportions of observation types of photogrammetric crown width measurement by image-object-sun 
geometry classes. NN = near-nadir, ON = off-nadir, B = back-lighted, S = side-lighted, F = front-lighted.

Observation type / class Proportions, %
 Image-object-sun geometry class
 NN-B NN-S NN-F ON-B ON-S ON-F All

Normal observation 91.9 88.5 91.1 77.6 73.3 83.9 81.8
One edge visible, symmetry assumed 0.6 0.5 0.4 1.8 1.8 0.4 1.1
Unclear edges, observed 0.1 0.3 0.2 0.5 0.5 0.2 0.4
Tree occluded, only top visible 1.0 1.0 0.9 5.8 2.9 1.5 2.4
Sub-total observed CW 93.7 90.2 92.6 85.7 78.5 86.0 85.6
Tree occluded, no observation 0.6 1.0 1.4 3.9 3.5 1.0 2.3
Crown edges unclear, no observation 5.7 8.7 6.0 10.5 18.1 13.0 12.2
Total, % 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Total, N 931 2294 1479 2086 4170 2328 13288

Fig. 36. Division of the photo-area in six classes of 
image-object-sun geometry. Near-nadir (NN) cases 
are inside the depicted circle and off-nadir (ON) fall 
outside. 90-degree wide back-lighted sector (B) is 
on both sides of the sun-vector, which is the projec-
tion of the sunray on the film plane. Front-lighted 
sector (F) is on the opposite side. Between these 
are the front-side and back-side lighted sectors (S) 
combined as one.
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3.4 Tree Species Classification with 
Simultaneous Use of Multiple Images

Species recognition by using two images simul-
taneously proved satisfactory in the three tested 
stands. This statement is based on the observed 
kappa-values (Kappa, e.g. Congalton et al. 1983, 
Haara and Haarala 2002). (Table 39, Table 40).

In stand MaPS2, the old and tall pine trees, 
from 120 to 145 years of age, were in many cases 
classified as spruce or birch (Table 39). The Baye-
sian classifier employing the estimated covariance 
matrices performed better in the recognition of 
pines. However, the overall results improved only 
marginally with the Bayesian classifier. On plot 
MaPS2, birches were also often classified incor-
rectly as pines. Pine and birch are situated close 
to each other in the feature space (Fig. 38). Fig. 
38 also illustrates how spruce and pine separate 
well in the variable RED-shaded. Spruce had 
much lower pixel values in this channel compared 
to pine and birch. Pine and birch are separated in 
the direction of variable RED-sun-lit, in which 
the values for birch were higher.

In the young stands PS1 and PS2, the minimum-
distance classifier produced species classifications 
in which 78.7% and 90.5% of the tested trees 
were correctly recognised. When interpreting the 
results, it should be remembered that the test sets 
and training sets consisted of the same birches 
sampled twice. On plot PS2, the classification 
produced the same number of pines, spruces, and 
birches as there was in the ground truth. On plot 
PS1, the proportions changed due to asymmetric 
misclassification and especially the share of birch 
was overestimated. (Table 40).

It is possible that the difference in results 
between plots PS1 and PS2 are in part explained 
by the image data (Table 10, p. 45). On plot PS2, 
the sun-lit crown patches were sampled from a 
CIR image in scale 1:6000, and the shaded part 
of the crown from a CIR image in scale 1:12000. 
On plot PS1, the reverse order of scales was 
employed. In addition, on plot PS1 both images 
viewed the trees with 29-degree nadir angles. On 
plot PS2, the images were near-nadir, back- and 
front-lighted views with 19 and 6-degree nadir 
angles.

Fig. 37. Probability for successful photogrammetric 
crown width measurement as a function of rela-
tive height and nadir angle. Logistic regression, 
deviance = 10217.5, degrees of freedom = 13285, 
and P-value = 1.0.

Fig. 38. Species classifications of plot MaPS2. Test set 
data consisting of 156 observations is plotted in the 
3D-feature space. Ellipsoids represent variation in 
the training set data. The quadratic Bayesian deci-
sion surface between pine and spruce is drawn. It 
has a rupture due to inaccuracies in the plotting 
software.
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3.5 Simulations of Photogrammetric Stand 
Cruising

In the simulations, the effect of biased crown 
width measurements and biased height meas-
urements was studied as well as the effect of 
imprecise photogrammetric measurements and 
model estimation.

Plot S2 modelled a thinning stand. Parameters 
in the discernibility function were a = –456.561 
and b = 9.437. All dominant, co-dominant, and 
intermediate trees are discernible applying this 
function (Fig 25, p. 48). Species recognition was 
programmed to produce, on average, 85% of cor-
rect recognition in model stand S2 (Table 41).

Model stand MaPS3 represented a regeneration 
stand. The parameters of the discernibility func-
tion (Eq. 7) were a = –4.351 and b = 3.12. For 
trees with a height greater or equal to the domi-
nant height (relative height = 1), the probability 
of being discernible is 0.987 when applying this 
function. The error matrix for the species recog-
nition process used in the model stand MaPS3 is 
presented in Table 42.

On average, 138.6 trees out of 281 trees in the 
thinning stand, and 671 out of 789 trees in the 
mature stand were discernible in the simulations. 
Total volume was underestimated in both stands 
with unbiased measurements (Table 43). This is 
due to non-discernible trees. The discernibility 
function applied in the simulations gave compa-
rable results (manual discernibility analysis, Table 
12, p. 53, Table 14, p. 54) in both stands.

The systematic errors in total volume resulting 
from biased CW and height measurements can be 
considerable as seen in Table 43. One metre in CW 
in the model stand S2 corresponds to 24% relative 
error in CW. The intervals in relative volume error 
are on average ± 19% in classes of height bias. 
Thus, the relative bias in CW resulted in an almost 
one-to-one relationship with the relative error 
in total volume. The mean basal area weighted 
height of all trees in stand S2 is 17.4 metres. One 
metre height error thus corresponds to 5.7% in 
relative value. On average, the intervals in relative 
volume error are ±12.3% in CW bias classes. In 

Table 39. Results of species classification in plot 
MaPS2.

Species by minimum Species – ground truth. Plot MaPS2
distance classification
 Pine (47) Spruce (89) Birch (20)

Pine 26 6 4
Spruce 11 81 1
Birch 10 2 15
 78.2% correct, kappa = 0.705

Species by Bayesian Species – ground truth. Plot MaPS2
Classification
 Pine (47) Spruce (89) Birch (20)

Pine 31 9 5
Spruce 9 79 1
Birch 5 1 14
 79.5% correct, kappa = 0.726

Table 40. Results of species classification in plots PS1 
and PS2.

Species by minumum Species – ground truth. Plot PS1
distance classification
 Pine (47) Spruce (62) Birch (4)

Pine 38 11 1
Spruce 3 48 0
Birch 6 3 3
 78.7% correct, kappa = 0.719

Species by minumum Species – ground truth. Plot PS2
distance classification
 Pine (81) Spruce (19) Birch (5)

Pine 77 2 1
Spruce 3 15 1
Birch 1 2 3
 90.5% correct, kappa = 0.857

Table 41. Error matrix of species recognition for model 
stand S2.

 Species by classification
True species  Spruce Birch Total

Spruce 0.85 + ε1 0.15 × λ1 1
Birch 0.15 × λ2 0.85 + ε2 1

Table 42. Error matrix of species recognition for model 
stand MaPS3.

 Probability to be classified as
True species  Pine Spruce Birch Total

Pine 0.80 + ε1 0.12 × λ1 0.08 × λ1 1
Spruce 0.12 × λ2 0.80 + ε2 0.08 × λ2 1
Birch 0.08 × λ3 0.08 × λ3 0.84 + ε3 1
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the model stand MaPS3, one metre corresponds 
to 1.9% of the mean height and 20% of the mean 
crown width. On average, the intervals of volume 
error over CW bias classes are ±8.5% and ±21.3% 
over height bias classes. The relative effect of 

biased height measurements was stronger than 
the effect of biased CW measurements in both 
stands. (Table 43).

In stand S2, the volume of spruce was under-
estimated by 14% and the volume of birch was 

Table 43. Means of 200 simulated total volume, saw wood volume, and pulp wood volume estimates, relative to 
true values, as a function of biased CW and height measurements. Model stands S2 and MaPS3. Measurement 
errors: σ(CW) = 0.6 m, σ(h) = 1.0 m.

 Bias in crown width estimates, m

  1.00 0.75 0.50 0.25 0.00 –0.25 –0.50 –0.75 –1.00

  Stand S2. Total volume (true value 43.79 m3)
 1.0 65.3 69.6 73.9 77.9 82.2 86.1 90.4 94.7 98.5
 0.5 70.1 74.5 78.9 83.5 87.8 92.0 96.7 101.1 105.7
 0.0 75.1 79.6 84.6 89.1 93.5 98.6 103.2 108.2 112.8
 –0.5 80.0 85.2 90.2 95.3 99.9 105.3 110.4 115.2 119.9
 –1.0 85.6 90.8 96.3 101.5 106.7 111.8 117.1 122.3 127.6

  Stand MaPS3. Total volume (401.0 m3)
 1.0 66.5 71.3 76.0 80.7 85.6 90.6 95.5 100.5 106.0
 0.5 69.9 74.7 79.8 84.6 89.7 94.7 100.0 105.3 110.6
 0.0 73.3 78.4 83.4 88.7 94.1 99.2 104.8 110.4 115.8
 –0.5 76.8 82.0 87.3 92.7 98.3 104.0 109.3 115.2 120.8
 –1.0 80.1 85.7 91.3 97.1 102.6 108.3 114.5 120.3 126.3

  Stand S2. Saw wood volume (24.16 m3)
 1.0 49.2 56.4 63.3 69.8 77.3 84.3 92.0 100.2 107.1
 0.5 56.6 63.7 70.7 78.9 86.4 94.0 102.8 111.3 120.0
 0.0 64.2 71.6 80.2 88.1 96.0 105.7 114.2 123.9 133.1
 –0.5 72.0 80.7 89.3 98.3 107.1 117.5 127.3 136.8 145.9
 –1.0 80.8 89.8 99.7 109.1 119.0 128.7 139.2 149.4 160.0

  Stand MaPS3. Saw wood volume (316.0 m3)
 1.0 56.6 63.3 69.9 76.5 83.6 90.8 97.9 105.3 113.0
 0.5 60.7 67.4 74.6 81.5 88.9 96.0 103.7 111.3 118.8
 0.0 64.7 71.9 79.1 86.6 94.4 101.8 109.8 117.8 125.4
 –0.5 69.1 76.3 83.8 91.6 99.6 107.9 115.5 123.9 131.8
 –1.0 73.0 80.9 88.8 97.2 105.1 113.3 122.2 130.4 138.8

  Stand S2. Pulp wood volume (17.84 m3)
 1.0 88.2 89.4 90.8 92.1 92.6 93.0 93.2 92.9 93.1
 0.5 90.1 91.6 93.0 93.5 94.2 94.4 94.2 93.7 93.3
 0.0 92.0 93.5 94.3 94.8 95.1 94.8 94.6 93.9 92.9
 –0.5 93.6 94.9 95.8 96.2 95.9 95.3 94.6 93.7 93.0
 –1.0 95.4 96.3 96.8 96.7 96.5 96.0 95.0 93.9 92.7

  Stand MaPS3. Pulp wood volume (81.15 m3)
 1.0 103.0 100.9 98.9 96.3 93.2 89.8 86.7 83.3 80.3
 0.5 103.7 101.8 99.4 96.3 93.0 90.1 86.4 83.5 80.2
 0.0 104.7 102.6 99.4 96.7 93.1 89.7 86.5 82.9 80.3
 –0.5 105.3 103.1 100.2 97.0 93.5 89.9 86.7 83.0 80.0
 –1.0 106.3 103.7 100.7 97.1 93.6 90.0 85.9 83.2 80.0

  1.00 0.75 0.50 0.25 0.00 –0.25 –0.50 –0.75 –1.00

 Bias in crown width estimates, m
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overestimated by 48% with unbiased measure-
ments (Table 45). This is due to the differences in 
the allometric models (Eq. 4), which predict dbh 
with species, CW, and height. In the simulations, 
15% of the spruce were misclassified as birch 
and vice versa. Since the proportions of total 
volume are 87% for spruce and 13% for birch 
(Table 2), it is understandable that the volume 
of spruce was underestimated and the volume of 
birch overestimated. In stand MaPS3, the smaller 
strata were also overestimated because of the 
errors of species classification (Table 42). The 
overestimation of spruce and birch was 16% and 
380%, respectively. Similarly, the volume of pine 
was underestimated by 17% (data not shown).

Table 44. Means of 200 simulated mean diameter and mean height (basal area weighted) estimates, relative to true 
values, as a function of biased CW and height measurements. Stands S2 and MaPS3. Measurement errors: 
σ(CW) = 0.6 m, σ(h) = 1.0 m.

 Bias in crown width estimates, m

  1.00 0.75 0.50 0.25 0.00 –0.25 –0.50 –0.75 –1.00

 Stand S2 Mean diameter (214 mm)
 1.0 94.1 96.6 99.2 101.5 104.0 106.2 108.6 111.1 113.3
 0.5 95.9 98.3 100.8 103.4 105.7 108.0 110.6 112.9 115.5
 0.0 97.5 100.1 102.6 105.0 107.3 110.0 112.4 115.0 117.4
 –0.5 99.2 101.8 104.3 106.8 109.2 111.8 114.5 116.8 119.2
 –1.0 100.9 103.5 106.1 108.6 111.1 113.6 116.1 118.6 121.2

 Stand MaPS3. Mean diameter (280 mm)
 1.0 89.9 92.4 94.8 97.2 99.6 102.2 104.5 107.1 109.7
 0.5 91.1 93.6 96.2 98.5 101.0 103.4 105.9 108.4 111.0
 0.0 92.4 94.9 97.4 99.8 102.4 104.8 107.3 109.9 112.3
 –0.5 93.7 96.1 98.6 101.0 103.6 106.1 108.6 111.2 113.7
 –1.0 94.7 97.4 99.8 102.4 104.9 107.4 110.1 112.5 115.1

 Stand S2. Mean height (17.4 m)
 1.0 102.1 102.0 101.7 101.5 101.3 101.1 100.9 100.8 100.5
 0.5 104.9 104.6 104.4 104.3 104.0 103.8 103.6 103.5 103.4
 0.0 107.6 107.4 107.2 107.0 106.7 106.6 106.4 106.3 106.1
 –0.5 110.4 110.1 109.9 109.7 109.5 109.3 109.3 109.0 108.9
 –1.0 113.0 112.9 112.7 112.5 112.2 112.1 111.9 111.7 111.6

 Stand MaPS3. Mean height (22.6 m)
 1.0 98.4 98.3 98.1 98.1 97.9 97.8 97.7 97.7 97.6
 0.5 100.6 100.4 100.4 100.2 100.1 100.0 99.9 99.8 99.7
 0.0 102.7 102.6 102.5 102.3 102.3 102.1 102.0 102.0 101.9
 –0.5 104.9 104.7 104.6 104.5 104.4 104.3 104.2 104.1 104.0
 –1.0 107.0 106.9 106.7 106.6 106.5 106.4 106.4 106.2 106.2
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With unbiased CW and height measurements, 
saw wood volume in the thinning stand S2 was 
underestimated by 4% and by 5.6% in the stand 
MaPS3. The discernibility curve for stand S2 
gave a high probability of discernibility to all 
dominant, co-dominant, and intermediate trees. 
The underestimation by 4% is explained by the 
non-linear effects that errors in species classifica-
tion and the measurement errors of CW and height 
have on the estimation of dbh and saw wood 
volume (cf. Fig. 24, p. 48). Biased CW and height 
estimates cause considerable bias in saw wood 
volume. Pulp wood volume was underestimated 
in stand S2 because a portion of the intermediate 
trees was not discernible. In model stand MaPS3, 
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the pulp wood volume was overestimated only if 
the crown width measurements produced under-
estimates by 0.5 metres or more. This is also 
explained by the non-linearities of grading (cf. 
Fig. 24, p. 48). With unbiased measurements, the 
pulp wood volume was underestimated by 6.9% 
because of the omission errors. (Table 43).

In model stand S2, the basal area weighted 
mean-diameter of trees is overestimated even with 
unbiased measurements by 7.3% (16 mm). It is 
explained in part by the fact that the small trees 
are not measurable in the photographs. The model 
used for predicting the dbh with estimates on spe-
cies, CW, and height is also non-linear and causes 
part of the observed bias. Basal area weighted 
mean-height of trees is overestimated by 6.7% 
(1.1 m) with unbiased measurements. A portion 
of small trees is non-discernible, and the mean 
height is therefore overestimated. It is clear that 
bias in height estimates has a direct impact on the 
estimate of the mean height. Bias in CW also has a 
small effect on the mean height. This is explained 
by the weighting with the square of dbh. On 
plot MaPS3, the omission errors cause the mean 
diameter and height to be overestimated even if 
the measurements are unbiased. (Table 44).

In order to demonstrate the importance of accu-
rate species recognition results for the model 
stand S2 were computed with varying accuracy of 
species recognition (Table 45). A high accuracy 

(0.9–0.95) is needed in mixed stands for the reli-
able estimation of the small strata.

Coefficients of variation were computed from 
the simulations in which the measurement errors 
had zero expectances (Table 46). The random 
errors cancel each other, and high precision was 
observed as can be expected. If the forest were 
measured by using plots instead of full mapping 
of trees, an element of sampling error would be 
included in the results. Such simulations were 
not performed.

Table 45. Means of simulated estimates of stand attributes relative to true values (Δ, %) and the coefficients of 
variation (CV, %). Stand S2 with varying species recognition accuracy (randomness through elements εi in 
Table 41 not included). Unbiased measurements of CW and height. Measurement errors: σ(CW) = 0.6 m, 
σ(h) = 1.0 m.

Species Vtot Vspruce Vbirch Vs Vp
recognition Δ, % CV, % Δ, % CV, % Δ, % CV, % Δ, % CV, % Δ, % CV, %
accuracy

0.75 91.2 2.4 78.8 6.7 174.6 13.3 90.9 5.6 96.4 2.9
0.80 92.3 2.4 82.4 6.3 158.7 14.5 93.6 5.3 95.4 2.9
0.85 94.0 2.2 86.0 5.2 148.0 13.4 96.7 4.6 95.4 2.9
0.90 95.0 2.0 89.7 4.3 130.0 12.5 99.4 4.2 94.2 2.8
0.95 96.6 1.9 93.9 3.5 114.8 12.0 102.8 3.8 93.7 2.2

Table 46. Coefficients of variation in percentage com-
puted from 200 simulations with unbiased meas-
urement errors. Model stands S2 and MaPS3. 
Measurement errors: σ(CW) = 0.6 m, σ(h) = 1.0 
m. Species recognition accuracy, see Table 41 and 
Table 42.

Variable Stand S2 Stand MaPS3
 Coefficient of variation, %

Vtot 2.2 1.7
Vpine – 7.4
Vspruce 6.1 13.0
Vbirch 15.7 22.2
Vs 4.7 2.4
Vp 2.8 2.3
Mean diameter 1.1 0.8
Mean height 0.5 0.3
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4.1 Tree Discernibility

It seems inevitable that in most cases photogram-
metric stem number estimates based on individual 
tree positions will be underestimates. Overesti-
mates can be caused by commission errors only. 
The results of tree discernibility implied that 
in most cases the probability of discernibility 
for the suppressed, shortest trees is very small. 
These trees are occluded with a high probability 
in oblique views by the dominant trees and by the 
shadows of neighbouring trees. The height dis-
tribution of trees and the stand structure seem to 
determine largely what portion of trees is poten-
tially measurable. In managed stands with only 
one crown-layer and a narrow height distribution, 
the underestimation in stem number will be lower. 
In stands with bimodal or wide height distribu-
tion, the stem number will be underestimated 
considerably. In the study material there were no 
samples of seed tree stands or young stands with 
single remnant trees, nowadays left in the forest 
for bio-diversity reasons. In such stands, it is pos-
sible that a larger portion of the smallest trees is 
discernible, since the upper canopy is sparse.

The analysis of discernibility indicated that 
a large portion of trees that constitute the com-
mercial stem volume is measurable with manual 
image-matching by using CIR photographs in 
scale 1:6000. The lowest proportion for total 
volume was observed in an unmanaged 60-year 
old spruce stand with high growing stock and 
large height variation. In that stand, 88% of total 
volume, 98% of saw wood volume, and 82% of 
pulp wood volume were discernible. In the other 
tested stands, the proportions of discernible total 
volume varied from 92% to 100%. In stands with 
bimodal or wide height distribution, the pulpwood 
volume is inevitably underestimated if the pulp-
wood resides in the suppressed and intermediate 
trees. This was demonstrated in plot MaPS4, a 
stand in which there was an upper layer of old 

pine trees and an understorey of spruce. In it, 94% 
of the total volume, but only 77% of the pulpwood 
volume was measurable.

The volume of saw wood resides in the largest 
stems. In the tests, these trees were discernible 
with a high probability, and thus it seems possible 
to assess the saw wood volume without notable 
underestimation. The observed proportions of 
discernible saw wood volume ranged from 96% to 
100%, and they were in all stands higher than the 
proportion of discernible total volume. The pro-
portion of discernible pulp wood volume ranged 
from 77% to 100%. It was close to the proportion 
of discernible total volume in the thinning stands, 
but lower in the mature stands. In mature stands, 
the non-discernible intermediate trees with high 
proportion of pulp wood volume were the cause 
for this.

The results of discernibility were obtained by 
using manual image-matching and four to six 
CIR images in scales 1:6000 and 1:12 000. Wide-
angle cameras viewed the stands from different 
directions with 60% side and forward overlaps 
(1:6000). In some cases, substitute images in the 
scale of 1:12 000 were used if the photo-strip in 
scale 1:6000 did not cover the field plot. With sup-
port from the field data, the operator knew where 
to look for the smallest trees. This means that 
the results (level of discernibility) are attainable 
only under optimal conditions and that the results 
represent upper bounds. In the images used in the 
discernibility analysis, the sun elevation was 35 
degrees, which is close to the typically required 
minimum of 33 degrees. The number of trees 
shaded by larger trees can be expected to be lower 
for a higher sun elevation. In addition, it can be 
assumed that less occlusion is present in images 
that are taken with a normal angle camera that 
has a longer focal length. Also, the results would 
have been different for a smaller number of views. 
The stands in which discernibility was tested were 
subjectively selected and do not represent the full 

4 Discussion
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variation in factors affecting the discernibility. 
Thus the results obtained in this study should be 
generalised with caution. For example, in mixed 
stands, different species can form separate canopy 
layers, and in these stands, the underestimation of 
a particular species can be considerable.

The underestimation in stem number can be 
considerable and the photogrammetric stem count 
is an unreliable estimate for the true stem number. 
On the other hand, if the shape and position of 
the discernibility function can be estimated, it 
would be possible to correct the estimate of stem 
count for the intermediate and suppressed trees. 
This calibration, however, would require that the 
discernibility function be known with high reli-
ability. Without field observations it can be dif-
ficult. Active remote sensing methods such as 
laser scanning could perhaps provide information 
about the small trees.

The findings on tree discernibility when using 
multiple image-matching of aerial images are in 
accordance with results of earlier studies on stereo-
scopic interpretation (e.g. Talts 1977) and laser 
ranging (see Section 1.3.1, Persson et al. 2002).

4.2 Automated 3D Tree Top Positioning and 
Tree Height Estimation

3D positioning of tree tops is of great importance 
in the context of the proposed photogrammetric 
individual tree measurement schema (Fig. 1, p. 8). 
In it, tree top positions are supposed to benefit the 
processes of crown width measurement and spe-
cies recognition. The results of the performance 
tests imply that a portion of the tree tops can be 
mapped in 3D accurately without a multitude of 
commission errors. Manual image-matching by 
using multiple image-matching or stereoscopic 
measurements can be used to complete and cor-
rect the set of detected tree tops.

Best case hit-rates of 100% were observed in 
three tested stands. In these stands, the semi-
automatic positioning method was able to locate 
all of the tree tops which had been determined as 
discernible and without more than 5% of com-
mission errors. These stands are characterised 
by low variation in tree height and a regular pat-
tern of trees. The best case hit-rates were higher 
in the three tested managed stands than in the 

unmanaged counterparts. The unmanaged stands 
usually have a higher stem number so there will 
also be a greater need for later manual editing 
of the positionings. In the unmanaged stands the 
spatial pattern of trees is likely less regular, and 
there can be more variation in tree height, crown 
dimensions, and species selection. These are all 
likely causes for the inferior performance.

The number and scale of images had an effect 
on the results. Image-pair sets were inferior to 
image sets that consist of four or more images. 
The theoretical image sets with up to seven or 
eight images, as well as the scale-combination 
sets with six images in two scales, produced best 
performance. In many cases, the effect of scale 
was such that better performance was observed 
for the large-scale image sets. However, it is diffi-
cult to draw conclusions about the effect of image 
scale because the 3D top positions of model trees 
were the same for all tested image combinations, 
and they were obtained using four to six images 
in scale 1:6000. In a real situation, the operator 
measures the model tree with the image material 
available. Also, the use of downsampled images 
in the scale of 1:6000 complicated the interpreta-
tion of the effects of scale. Operational tests will 
be needed to further evaluate the effect of scale 
on the performance of the method. The viewing 
angle of the images was shown to have an effect 
on the performance. In many cases, the theoretical 
image sets consisting of images with high nadir 
angle (oblique views) were inferior to the sets 
with same number of images, which had a smaller 
average nadir angle. The probability of occlusion 
is higher in oblique views. Performance of the 
positioning algorithm was better in CIR images 
than in colour images.

The proposed 3D positioning method relies on 
a set of parameters, which affect the performance. 
Exact proposals for their optimal tuning are not 
given in this study. In the method, a model tree is 
selected, measured for 3D tree top position, and 
used for template acquisition. Template matching 
relies on successful realization of these tasks. The 
objective is to acquire cross-correlation images 
with sharp local maxima at the correct 2D image 
locations. The results of the sensitivity analysis 
and the experience gained during the development 
of the method suggest that a small tree, which is 
likely occluded in oblique views, is not optimal. 
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Nor is a tree with exceptional crown. The opti-
mal position of the template with respect to the 
crown pattern on the image seems to be such that 
the template is centred below the tree top. Thus, 
the template captures more of the crown than the 
background. This is in line with results by Larsen 
and Rudemo (1998) which apply to spruce.

The sensitivity analysis showed that changes 
in the metric parameters, which affect the depth 
and vertical position of the search space, cause 
predictable and interpretable changes in the per-
formance of 3D tree top positioning algorithm. 
Manual measurement of the model tree (top posi-
tion) proved crucial. Measurement errors in the Z-
coordinate were shown to map almost one-to-one 
to the candidate positions. This sets high demands 
on the quality of the manual measurement and 
on the quality of the image material. In addition, 
a wrongly set depth or position of the search 
space has an effect on the accuracy of Z, hit-rate 
and commission error-rate. In order to apply the 
proposed method for positioning of tree tops, the 
search space must be correctly set in 3D to contain 
the tree tops of discernible trees. Hit-rate will be 
low and commission error-rate high if the search 
space is positioned above or below the canopy. 
The positions will get averaged in Z if the depth 
of the search space is too low.

At best, the RMSE of XY-errors (planimetric 
positioning accuracy for the trees with a hit, 
inside the hit-cylinders) of the algorithm was 
approximately 0.5–0.6 m. This is approximately 
0.4–0.5 m if the estimated imprecision of the 
field measurements is subtracted. The RMSE of 
Z-coordinate was at best 0.7–0.8 m. This corre-
sponds to 0.5–0.6 m if the imprecision of Z in the 
ground truth is deducted. As stated, the positions 
can be biased in Z due to inaccurate model tree 
measurement. In all, it seems plausible to state 
that the method works at the individual tree level. 
It may be possible to establish continuous forest 
inventory that operates at the single tree level and 
is based on the tree positions.

There are limitations and prerequisites. The 
orientation of the images has to be accurate, as 
the 3D tree top positioning method relies on geo-
metric constraints. Also, it seems that large-scale 
images are required. Large-scale images allow 
reliable measurement of the model tree, and they 
can be used for the quality control and for the edit-

ing of the false and erroneous tree top positions. 
However, the method is not restricted to the use of 
images in one scale only. Image sets with images 
in different scales produced in many cases best 
results in the performance tests. Since the costs 
of image material are largely determined by the 
scale, it would maybe be advisable to perform 
aerial photography in two scales and such that the 
large scale images have less image overlap.

Very high-resolution airborne laser scanning 
(ALS) has been shown to produce similar or 
even better positioning and height measurement 
accuracy for single trees (e.g. Hyyppä et al. 2001, 
Persson et al. 2002). However, even with ALS 
there seems to be a need for a calibration of the 
height estimates. Echoes that are expected to 
return from the ground are actually returned from 
the ground flora, and unless very high resolution 
is used, the uppermost parts of tree tops are not hit 
by the beam (Persson et al. 2002). Requirements 
for high resolution, small beam divergence, and 
narrow near-nadir scanning angle all add of costs 
of laser scanning.

4.3 Measurement of Crown Width

The allometric models that predict dbh from tree 
height and crown width are based on the assump-
tion that the tree is measured for the maximum 
crown width. Even on ground the crown width 
cannot be measured unambiguously. Trees can 
have single exceptionally long branches and 
crowns can be asymmetric due to crown compe-
tition. Thus, the measurements from the ground 
or from an image are inherently inaccurate, sus-
ceptible to bias, and imprecise. The allometric 
relationships between crown dimensions and stem 
size form the basis of the indirect estimation. 
Many factors that affect the relationships are 
possibly not accounted for in the current models. 
These factors can be related with the site type, 
stand-history, or age and to estimate these factors 
only by using the aerial photographs, can be dif-
ficult. From this, it seems apparent that very high 
accuracy for dbh or volume estimates cannot be 
expected at the single tree level even if the exact 
crown dimensions are known.

Large systematic underestimation of crown 
width was observed in the tests of manual pho-
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togrammetric measurement of crown width. The 
amount of underestimation varied between tree 
species, and was largest for spruce, 0.8 metres. 
The underestimation correlated with the field 
measured crown width so that the absolute under-
estimation was largest for the trees with large 
field measured crown width. Unexpectedly the 
underestimation was smallest for the small-scale 
images in scales 1:12 000 and 1:16 000.

Near-nadir views proved best for visual deter-
mination of crown width. An observation of the 
crown width was possible in over 90% of the near-
nadir cases. Off-nadir observations, particularly 
those in the side-lighted regions of the photograph, 
were found less fit for manual measurement of 
crown width. For these off-nadir and side-lighted 
views, which represent approximately 39% of 
the photo-area (wide-angle camera), the propor-
tion of successful measurements was as low as 
78.5%. Differences in the measurability were also 
observed between front-lighted, side-lighted, and 
back-lighted photo-areas. The results imply that 
there are possibly areas better suited for the auto-
matic measurement of crown width. Small trees 
will likely pose a challenge should the automation 
of crown width measurement be tried, because of 
the lower probability of discernibility.

One operator was used in the tests. There is an 
element of subjectivity involved in the manual 
measurements. The results obtained are, thus, 
tentative and should be interpreted with caution.

High-sampling-rate airborne laser scanning 
data, with small footprint size, will likely be 
superior in comparison to passive image data 
(cf. Persson et al. 2002). Shadows do not cause 
a problem with ALS data as they seem to do in 
aerial images. Problems caused by overlapping 
crowns, occlusion, and imprecision of the allo-
metric models are shared by both ALS data and 
aerial images.

4.4 Species Recognition

This work presented a new method for species 
recognition by using multiple CIR aerial images 
and spectral classification. This was not an initial 
objective for this work, but rather a by-prod-
uct. The Kappa-coefficients in the three tested 
stands ranged from 0.71 to 0.86, and the overall 

recognition accuracy from 78% to 90%. Under 
similar forest conditions and quite comparable 
image material, but with smaller tree sets, Haara 
and Haarala (2002) obtained Kappa-values from 
0.40 to 0.86 by using monocular images and 
segmentation. It is too early to draw conclusions 
about the superiority of either approach. How-
ever, especially for separating between pine and 
spruce, the suggested method proved efficient. 
Misclassification between pine and spruce was 
the main source of errors in the work by Haara 
and Haarala (2002).

The proposed species recognition strategy relies 
on the accurate 3D tree top positions. In the tests, 
the tree top positions were obtained by means of 
manual image-matching, and the operator tra-
versed the image for the proper location so that 
the crowns were sampled for pixels from the 
sun-lit and of the shaded parts of the crown. The 
automation of the sampling procedure remained 
unsolved. It is probable that an increased position 
inaccuracy will worsen the accuracy of species 
recognition. Training data was local and from 
the same stand. It can be argued if such data 
collection scheme is cost-efficient in practice. 
There are problems related to the continuously 
varying image-object-sun geometry, film devel-
opment, weather conditions, and phenology of 
trees, which will all have to be accounted for if 
spectral classification is attempted. Normalisa-
tion of images, which are taken under varying 
photographic conditions (weather, sun elevation, 
exposure, development), is probably difficult (cf. 
Haara and Haarala 2002). In the context of the 
proposed species recognition method, the nor-
malisation could perhaps be done ‘via ground’ by 
using the mapped trees of the training set. Their 
spatial density should be high enough so that for 
each image there would be available several sam-
ples from various parts of the image. However, 
it remained unclear how far in the image-object-
sun-metrics the training data is still valid. In addi-
tion, it remained unclear if the training sets should 
be collected separately for trees of different age 
and vigour. Concerning the phenology of trees, 
it is plausible that little can be done with respect 
to the timing of photography (Haara and Haarala 
2002, Fig. 4) although it is likely that phenology 
has an effect on species recognition accuracy.

The species recognition accuracy will most 
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likely be inferior in stands that are more diverse. 
Improvement in species recognition can be 
expected with the introduction of digital aerial 
cameras if their spectral resolution is superior to 
that of the films. Species recognition methods that 
are based on the use of airborne laser scanning 
data have relied on the use of statistical measures 
of the 3D data and on the intensity of the echoes 
(Brandtberg et al. 2003, Holmgren 2003). Holm-
gren (2003) reports of 95% overall classification 
accuracy for separating Scots pine and Norway 
spruce by using high resolution (5 points per m2) 
laser data from a flying height of 130 metres.

4.5 Photogrammetric Single Tree 
Measurements in the Estimation of 
Stand Attributes

This study was confined to the assessment of 
timber resources. The appraisal of timber 
resources is the core element of forest invento-
ries. However, the list of variables of interest in 
a forest inventory can be extensive depending on 
the information needs.

The results of the simulations, which on their 
part were based on the findings of this study, 
imply that an inventory scheme, which uses pho-
togrammetric individual tree measurements, full 
mapping of trees, and indirect estimation can 
provide precise distribution estimates such as 
sums and means of the volumes, height and diam-
eter of trees. However, these estimates of timber 
resources are susceptible to large systematic errors. 
This is due to the imperfections of the allometric 
models and likely biased measurements. Inherent 
underestimation is also unavoidable because not 
all trees in a stand are discernible. The accuracy 
of species classification needs be high if accu-
rate estimates of timber resources by species are 
required in the mixed stands. In comparison to the 
accuracy of customary standwise field inventory 
(e.g. Poso 1983, Laasasenaho and Päivinen 1986), 
results for the basic stand attributes can be more 
accurate, should photogrammetric stand cruising 
be applied. Prerequisites for this are field visits, 
which would provide calibration data.

It is not always sufficient for the end-user of 
the data that the sums and means are correct. For 
example, in pre-harvest timber cruising, it can 

be desirable to get an accurate estimate of the 
diameter-height distribution per species (Uusitalo 
1995). This requires that the photogrammetric 
measurements and subsequent model estimates 
are accurate at the tree level and that the averaging 
effect is compensated for, or avoided. Averaging 
is inherently present in the estimates of allometric 
regression models, and averaging was observed in 
the 3D tree top position estimates. Very accurate 
estimates at the tree level cannot be expected even 
if the image measurements on species, crown 
width, and tree height were perfect because of the 
imprecision of the allometric models.

4.6 Costs and Applicability

The appraisal of the costs of an inventory scheme 
that utilises photogrammetric individual tree 
measurements, is determined largely by the mate-
rial costs of photography and the amount of field-
work and manual photogrammetric work.

High quality is required for the exterior orienta-
tion of the images. The use of satellite positioning 
has reduced the need of ground control points, 
which are expensive to measure and mark in the 
field. Automatic methods for the solution of inte-
rior and exterior orientation can be used to trim 
down the costs. Large-scale images are required. 
The largest scale tested for this study was 1:6000, 
and it seems that a least part of the image material 
should be in this scale to enable reliable manual 
measurements. Metric aerial cameras were used 
in this study. Such cameras are not necessarily 
required, but the camera to be used needs to be 
calibrated for imperfections. Aerial photography 
is typically done only under clear sky condi-
tions in the summertime. In this respect, airborne 
laser scanning is much more flexible, although if 
leaf-on data is required, the data acquisition is 
restricted to the summer season for laser scanning 
and photography alike.

The current material costs of aerial photography 
(for large projects) in Finland are approximately 
120 € per scanned and orientated image. The costs 
are approximately 2–3 €/ha for images in the scale 
of 1:6000 assuming 60% and 20% overlaps. In 
this study, images in scales 1:12 000 and 1:16 000 
were used in combination with images in 1:6000. 
The costs for such medium-scale material are 
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approximately 1–2 €/ha assuming 60% forward 
and 60% side overlaps. In a given area, there is 
only a certain proportion of forest, in which it is 
reasonable to use the individual tree approach. 
This will add to the per hectare costs. On the other 
hand, the image material may be valid for other 
purposes as well.

To strive for the full mapping of trees is pos-
sibly too ambitious, since in a real situation the 
tree top positioning algorithm will not provide 
the best observed (see Section 3.2.1) hit-rates of 
75–100%. The operator needs to complete the 
missed trees. This can be time-consuming. In the 
tests for tree discernibility, tree tops were meas-
ured with a rate of 40–80 trees per hour. The rate 
of height measurements in the field is approxi-
mately 15–20 trees per hour. In a stand with 600 
discernible trees per hectare, the complementary 
editing of the missed trees and commission errors 
can thus take up to 2–3 hours. If full mapping of 
trees is replaced by sampling, the costs of operator 
work can be reduced significantly. However, the 
accuracy of the results will worsen because of the 
element of sampling error. The required sampling 
rate for a stand will largely be determined by the 
within-stand variation (cf. Talts 1977). In this 
respect, the photogrammetric approach of forest 
inventory does not differ from the conventional 
methods. However, for the system to be opera-
tional and cost-efficient, the automation of species 
recognition and the measurement of crown size 
need to be solved.

Field visits seem inevitable, since the estimates 
are susceptible to systematic errors. Non-discern-
ibility of trees, biased crown width and height 
measurements, and allometric models are the 
sources of systematic errors. In addition, it can 
be appropriate to have a reliable training set for 
species recognition. Even for sole timber cruis-
ing, such qualitative observations of stems can be 
needed which are impossible to obtain from the 
aerial photographs (Uusitalo 1995).

The proposed methodology combines expert 
knowledge in surveying, photogrammetry, dig-
ital image analysis, and forest mensuration. This 
study presents tools and methods to be incorpo-
rated in an interactive, semi-automatic image-
based interpretation system. For the system to 
be applicable, the degree of automation should 
be increased.

4.7 Elevation Models

In this study it was assumed that an accurate 
elevation model is available for height estimation 
and for the estimation of the search space used 
by the semiautomatic 3D tree top positioning 
algorithm. This assumption is questionable.

In Finland, basic maps have elevation contour 
lines at intervals of 2.5, 5, and 10 metres. Raster 
DEMs have been interpolated by using these data. 
The National Land Survey of Finland reports of 
an analysis in which the standard deviation of 
elevation differences between DEM and geodetic 
points (N = 62876) was 1.39 metres and a mean 
absolute error of 1.76 metres (Maanmittauslai-
tos 1997). There were differences between map 
sheets. This reflects the photogrammetric method 
by which the data was originally collected. The 
raster DEMs have a 25-metre resolution. Thus, it 
is clear that they cannot represent well breaklines 
or small-scale topographic variation. The mod-
elled topography is flattened out. The accuracy 
of the DEMs derived from basic maps will not 
suffice for the methods presented in this study.

Airborne laser scanning (ALS) can be used 
for terrain modelling of wooded areas (Kraus 
and Pfeifer 1998). ALS can provide elevation 
accuracy in the range between 0.5 and 2 centime-
tres per 100 metres of flying height (Baltsavias 
1999). A combined flight with a passive camera 
and laser scanner could perhaps be used for data 
acquisition (cf. Baltsavias 1999). In this way, 
the terrain elevation would be obtained from the 
ALS-data, and the images would be used for tree 
measurements. The ALS-data could also pro-
vide an approximation for the 3D search space 
required by the 3D tree top positioning algorithm 
(e.g. Næsset 1997). Integrated ALS and passive 
sensing requires careful flight planning. The field 
of view (FOV) of ALS is typically restricted to 
20–40 degree scan angles, whereas aerial cameras 
have FOV from 60 to 80 degrees (Baltsavias 
1999). The flying heights for ALS is typically 
from 200 to 1000 metres, whereas aerial images 
in scale 1:6000, and smaller, are taken from 900 
metres and above. The current costs of ALS data 
acquisition are approximately 2–3 €/ha using an 
aeroplane at the flying height of 900 metres. If 
the aim is to try individual tree extraction from 
the ALS data, a lower flying height and/or speed 
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is required.
The topographic aerial photographs, which are 

taken in early spring under leaf-off conditions, are 
an alternative for the estimation of elevation. In 
CIR images, the ground is barely detectable and 
trees are emphasised. Panchromatic topographic 
images are better in this respect and could pos-
sibly be used for the calibration of an existing 
DEM.

4.8 General Conclusions and Suggestions for 
Future Research

In this study, an attempt to study the whole 
photogrammetric measurement and estimation 
scheme was tried. 3D positioning of tree tops by 
using multiple image-matching is the core of the 
scheme upon which other measurement processes 
are expected to be founded on. As such, the idea 
of estimating the characteristics of single trees 
with aerial photographs is not novel. This study 
tried to answer questions that are concerned with 
the automation of the photogrammetric measure-
ments. An investigation for the upper bounds was 
performed. Tree discernibility tests implied that 
at least in the managed stands a large portion 
of the commercial timber is measurable should 
semi-automatic or manual methods for the tree 
detection be applied. Accurate position estima-
tion of tree tops was proven possible in both 
the semi-automatic method and in the manual 
image-matching. Tests in the manual measure-
ment of crown width revealed that these measure-
ments are likely to be imprecise and inaccurate. 
A method for species recognition, which uses 
multiple images and spectral classification was 
demonstrated, and the tentative results imply that 
the proposed approach can possibly make species 
recognition more reliable in comparison to exist-
ing methods that operate on monocular images. 
The estimation of the characteristics of single 
trees is indirect, and the allometric models are 
inherently imprecise and susceptible to systematic 
errors. Very high estimation accuracy at the single 
tree level cannot be expected. The simulations 
demonstrated that high precision for the stand 
attributes is possible by applying full mapping 
of the stand.

There are parts in the measurement and estima-

tion scheme that should be studied further and 
developed for better methods should the approach 
be applied in practice.

The semi-automatic 3D tree top positioning 
algorithm is likely applicable only in an area 
where the tree crowns do not exhibit large varia-
tion and the variation in tree height is restricted. 
These areas could be stands or sub-stands. Auto-
matic delineation of such inventory strata, or prob-
lematic areas could be incorporated to the 3D tree 
top positioning algorithm. The delineation could 
perhaps be carried out by using segmentation of 
orthoimages combined with auxiliary information 
on the spatial variation of stand height. Stand 
height information could be assessed by using 
automatic image-matching of stereo pairs (Næsset 
2002), by using multiple image-matching (Grün 
and Baltsavias 1988) or by using the ranging laser 
data (Hyyppä and Inkinen 1999).

The templates that are captured from the images 
are applicable only locally in the varying image-
object-sun geometry of the images. Further stud-
ies will be needed for testing the applicability 
of templates in the image-object-sun metrics, 
and the applicability of synthetic templates (e.g. 
Larsen 1997).

Template matching that uses a single-sized 
template is not invariant to the size of crowns. 
In a stand where the crowns exhibit large vari-
ation, the use of multi-scale templates could be 
possible to overcome the problem. However, the 
whole image-matching strategy would have to be 
reconsidered in such a case.

The 3D tree top positioning algorithm relies 
on a number of parameters, which need to be 
optimised by the operator. Further studies should 
address the objective of finding ways for quick 
acquisition of good approximate values.

Automatic measurement of crown width 
remained unsolved. It may be well assumed that 
the 3D positions of tree tops will facilitate the 
task by providing the number of crowns and seed 
values for the image locations. Multiple images 
can possibly be used to control the estimation. 
Consistency of the estimates of different images 
could perhaps be used for quality control. Model 
based matching (e.g. Tarp-Johanssen 2001), 
least-squares matching (Kraus 1997), and image 
segmentation methods (e.g. Gougeon 1995) are 
possible solutions to the problem of automating 
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crown width measurements.
The proposed method for species recognition 

assumes that the images are traversed for the cor-
rect image locations from the tree top locations 
where the sun-lit and shaded parts of crown can 
be sampled for pixel values. The automatic imple-
mentation of this can be challenging. With respect 
to species recognition and spectral classification 
of multiple CIR images, the requirements of the 
training sets need to be investigated. A method 
is needed for linking the field-mapped tree set 
with the trees positioned by using the aerial pho-
tographs. The need for image normalisation in 
the context of the spectral classification should 
be looked into.

The integration of laser scanning and aerial pho-
tography can possibly be used to solve problems 
related with the DEM and the setting of the search 
space. Methods are needed for the calibration 
of photogrammetric measurements and model 
estimates. Finally, more tests in practice will be 
needed, since the field and image material for this 
study was limited. Young stands were completely 
lacking from the data set. Also, it seems likely that 
mixed stands and unmanaged stands will be chal-
lenging for the application of the methodology. In 
this study, a wide-angle camera was used. Normal 
angle cameras exhibit less perspective distortion 
and are possible a better choice. In the near future 
digital cameras will enter the market and possibly 
offer features that will be of use.
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