52 research outputs found

    High-speed surface profilometry based on an adaptive microscope with axial chromatic encoding

    Get PDF
    An adaptive microscope with axial chromatic encoding is designed and developed, namely the AdaScope. With the ability to confocally address any locations within the measurement volume, the AdaScope provides the hardware foundation for a cascade measurement strategy to be developed, dramatically accelerating the speed of 3D confocal microscopy

    Nuclear accessibility of beta-actin mRNA is measured by 3D single-molecule real-time tracking

    Get PDF
    Imaging single proteins or RNAs allows direct visualization of the inner workings of the cell. Typically, three-dimensional (3D) images are acquired by sequentially capturing a series of 2D sections. The time required to step through the sample often impedes imaging of large numbers of rapidly moving molecules. Here we applied multifocus microscopy (MFM) to instantaneously capture 3D single-molecule real-time images in live cells, visualizing cell nuclei at 10 volumes per second. We developed image analysis techniques to analyze messenger RNA (mRNA) diffusion in the entire volume of the nucleus. Combining MFM with precise registration between fluorescently labeled mRNA, nuclear pore complexes, and chromatin, we obtained globally optimal image alignment within 80-nm precision using transformation models. We show that beta-actin mRNAs freely access the entire nucleus and fewer than 60% of mRNAs are more than 0.5 microm away from a nuclear pore, and we do so for the first time accounting for spatial inhomogeneity of nuclear organization

    Nuclear accessibility of β-actin mRNA is measured by 3D single-molecule real-time tracking

    Get PDF
    Imaging single proteins or RNAs allows direct visualization of the inner workings of the cell. Typically, three-dimensional (3D) images are acquired by sequentially capturing a series of 2D sections. The time required to step through the sample often impedes imaging of large numbers of rapidly moving molecules. Here we applied multifocus microscopy (MFM) to instantaneously capture 3D single-molecule real-time images in live cells, visualizing cell nuclei at 10 volumes per second. We developed image analysis techniques to analyze messenger RNA (mRNA) diffusion in the entire volume of the nucleus. Combining MFM with precise registration between fluorescently labeled mRNA, nuclear pore complexes, and chromatin, we obtained globally optimal image alignment within 80-nm precision using transformation models. We show that {beta}-actin mRNAs freely access the entire nucleus and fewer than 60% of mRNAs are more than 0.5 {my}m away from a nuclear pore, and we do so for the first time accounting for spatial inhomogeneity of nuclear organization

    High-throughput Single-Entity Analysis Methods: From Single-Cell Segmentation to Single-Molecule Force Measurements

    Get PDF
    This work is focused on the development of new microscopy-based analysis methods with single-entity resolution and high-throughput capabilities from the cellular to the molecular level to study biomembrane-associated interactions. Currently, there is a variety of methods available for obtaining quantitative information on cellular and molecular responses to external stimuli, but many of them lack either high sensitivity or high throughput. Yet, the combination of both aspects is critical for studying the weak but often complex and multivalent interactions at the interface of biological mem-branes. These interactions include binding of pathogens such as some viruses (e.g., influenza A virus, herpes simplex virus, and SARS-CoV-2), transmembrane signaling such as ligand-based oli-gomerization processes, and transduction of mechanical forces acting on cells. The goal of this work was to overcome the shortcomings of current methods by developing and es-tablishing new methods with unprecedented levels of automation, sensitivity, and parallelization. All methods are based on the combination of optical (video) microscopy followed by highly refined data analysis to study single cellular and molecular events, allowing the detection of rare events and the identification and quantification of cellular and molecular populations that would remain hidden in ensemble-averaging approaches. This work comprises four different projects. At the cellular level, two methods have been developed for single-cell segmentation and cell-by-cell readout of fluorescence reporter systems, mainly to study binding and inhibition of binding of viruses to host cells. The method developed in the first pro-ject features a high degree of automation and automatic estimation of sufficient analysis parameters (background threshold, segmentation sensitivity, and fluorescence cutoff) to reduce the manual ef-fort required for the analysis of cell-based infection assays. This method has been used for inhibition potency screening based on the IC50 value of various virus binding inhibitors. With the method used in the second project, the sensitivity of the first method is extended by providing an estimate of the number of fluorescent nanoparticles bound to the cells. The image resolution was chosen to allow many cells to be imaged in parallel. This allowed for the quantification of cell-to-cell heterogeneity of particle binding, at the expense of resolution of the individual fluorescent nanoparticles. To account for this, a new approach was developed and validated by simulations to estimate the number of fluo-rescent nanoparticles below the diffraction limit with an accuracy of about 80 to 100 %. In the third project, an approach for the analysis and refinement of two-dimensional single-particle tracking ex-periments was presented. It focused on the quality assessment of the derived tracks by providing a guide for the selection of an appropriate maximal linking distance. This tracking approach was used in the fourth project to quantify small molecule responses to hydrodynamic shear forces with sub-nm resolution. Here, the combination of TIRF microscopy, microfluidics, and single particle tracking enabled the development of a new single molecule force spectroscopy method with high resolution and parallelization capabilities. This method was validated by quantifying the mechanical response of well-defined PEG linkers and subsequently used to study the energy barriers of dissociation of mul-tivalent biotin-NeutrAvidin complexes under low (~ 1.5 to 12 pN) static forces. In summary, with this work, the repertoire of appropriate methods for high-throughput investigation of the properties and interactions of cells, nanoparticles, and molecules at single resolution is expand-ed. In the future, the methods developed here will be used to screen for additional virus binding inhib-itors, to study the oligomerization of membrane receptors on cells and model membranes, and to quantify the mechanical response of force-bearing proteins and ligand-receptor complexes under low force conditions

    Optical microscopy to study the role of cytoskeleton in cell locomotion and virus trafficking

    Get PDF
    3. General conclusions 150 The interest in optical microscopy is constanly growing, mainly because of its unique features in examining biological systems in four dimensions (x-y-z-t)1 . The work presented here was focused on biological applications of optical microscopy by exploring and improving the spatial and temporal resolution performances and by futher developing optical tools for manipulating biological samples. First, I studied the resolution performances of the system in the three dimensional space and I contributed in improving the experimental spatial resolution of microscope by applying deconvolution. In this respect, theoretical modelling can characterize the image formation process of the microscope, but only experimental measurement of the PSF can quantify the limitations of the real system. Indeed, experimental PSF presents shape assymetry due to spherical aberrations introduced by optical elements, while theoretical PSF is symmetric and account only for the resolution limits of an ideal imaging system. The disadvantage of experimental PSF is that could be corrupted by noise, otherwise deconvolution with the theoretical PSF offer only a qualitative improvement of the image, because the introduced artefacts cannot be quantified. Deconvolution of the acquired data with experimental PSF...3. General conclusions 150 The interest in optical microscopy is constanly growing, mainly because of its unique features in examining biological systems in four dimensions (x-y-z-t)1 . The work presented here was focused on biological applications of optical microscopy by exploring and improving the spatial and temporal resolution performances and by futher developing optical tools for manipulating biological samples. First, I studied the resolution performances of the system in the three dimensional space and I contributed in improving the experimental spatial resolution of microscope by applying deconvolution. In this respect, theoretical modelling can characterize the image formation process of the microscope, but only experimental measurement of the PSF can quantify the limitations of the real system. Indeed, experimental PSF presents shape assymetry due to spherical aberrations introduced by optical elements, while theoretical PSF is symmetric and account only for the resolution limits of an ideal imaging system. The disadvantage of experimental PSF is that could be corrupted by noise, otherwise deconvolution with the theoretical PSF offer only a qualitative improvement of the image, because the introduced artefacts cannot be quantified. Deconvolution of the acquired data with experimental PSF...Department of Genetics and MicrobiologyKatedra genetiky a mikrobiologieFaculty of SciencePřírodovědecká fakult

    Light Sheet Microscopy and Image Analysis of Neural Development and Programmed Cell Death in C. Elegans Embryos

    Get PDF
    The positioning of neuronal cell bodies and neurites is critical for intact functioning of the nervous system. Mapping the positions of the soma and neurites in the brains of developing embryos as important central nervous system structures are being created may yield novel insight into the role of distinct cell groups in creating these structures. New developments in microscopy have made this an excellent time to study neural development in the C. elegans embryo. In the past decade, implementations of highly light efficient methods such as single plane illumination microscopy have rendered it possible to follow development of embryonic structures in 3D with excellent temporal resolution (Huisken et al., 2004) and low phototoxicity. Recent work has resulted in quantitative characterization of the outgrowth of a single neurite in the late, rapidly moving three-fold stage of the C. elegans embryo for the first time (Christensen et al., 2015). In this thesis, I first describe the construction and programming of a single plane illumination microscope (SPIM) based on a design from Hari Shroff\u27s lab (Wu et al., 2011). The microscope is developed especially for use with C. elegans embryos and permits fast image acquisition without excessive photodamage, compared to other forms of microscopy. Second, I describe the use of the SPIM microscope to image the development of a subset of sublateral neurons, the earliest known entrants to the nerve ring (Rapti et al, in preparation), into which they grow in the 1.5-fold stage. I describe an algorithm for automatically aligning developing embryos onto one another until the beginning of the rapid embryonic movements known as twitching, which begin at the start of the twofold stage. I employ my algorithm to align a group of identically imaged embryos onto one another and deduce information about the positioning of the nerve ring in an approximately uniform coordinate system. I determine that nerve rings are precisely positioned in the embryo to within about a micrometer while the cell bodies that grow into the nerve ring are positioned over a much wider distance. My work suggests that the nerve ring grows out towards the ALA neuron as an anchor, and that twitching may begin when the developing nerve ring reaches the ALA. I additionally describe observation of new phenotypes related to the cam-1 mutation, which was previously identified as a regulator of anterior-posterior placement of the nerve ring (Kennerdell et al., 2009). Third, I describe an application of the SPIM microscope for imaging the death of the tail spike cell, a complex, multi-compartment differentiated cell which dies over a period of hours during the three-fold stage, when the animal is rapidly moving in its shell, and cannot be imaged otherwise than with a rapid, light efficient microscope such as the one described here. I determined the time course and confirmed the sequence of events of wild type tail spike cell death. Additionally, I report stronger phenotypes for some known tail spike cell death genes when imaged in the embryo, suggesting that eff-1 plays a stronger role than previously known in clearance of the distal part of the tail spike cell process, and additionally that ced-5 has a strong role in clearance of the same compartment (in addition to its known role in soma clearance). In an appendix I describe work beginning on an extension of the microscope, which will hopefully see the microscope used as a tool for selectively inducing fluorescence in individual cells and following the development of those cells in time. My results demonstrate the utility of single plane illumination microscopy for study of C. elegans embryogenesis and establish fundamental facts about the variability of the C. elegans central nervous system by making direct comparisons between animals. This work contributes to our understanding of the C. elegans nervous system by establishing fundamental bounds on the range of nerve ring positioning between individuals

    Photoacoustic imaging in biomedicine

    Get PDF
    Photoacoustic imaging (also called optoacoustic or thermoacoustic imaging) has the potential to image animal or human organs, such as the breast and the brain, with simultaneous high contrast and high spatial resolution. This article provides an overview of the rapidly expanding field of photoacoustic imaging for biomedical applications. Imaging techniques, including depth profiling in layered media, scanning tomography with focused ultrasonic transducers, image forming with an acoustic lens, and computed tomography with unfocused transducers, are introduced. Special emphasis is placed on computed tomography, including reconstruction algorithms, spatial resolution, and related recent experiments. Promising biomedical applications are discussed throughout the text, including (1) tomographic imaging of the skin and other superficial organs by laser-induced photoacoustic microscopy, which offers the critical advantages, over current high-resolution optical imaging modalities, of deeper imaging depth and higher absorptioncontrasts, (2) breast cancerdetection by near-infrared light or radio-frequency–wave-induced photoacoustic imaging, which has important potential for early detection, and (3) small animal imaging by laser-induced photoacoustic imaging, which measures unique optical absorptioncontrasts related to important biochemical information and provides better resolution in deep tissues than optical imaging
    • …
    corecore