Optical imaging methods for the study
of disease models from the nano to the
mesoscale

Pedro Pablo Vallejo Ramirez

Department of Chemical Engineering and Biotechnology

University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Robinson College July 2020






To my parents, my sister, and my brother,

“En algiin anaquel de algiin hexdgono....”

(“On some shelf of some hexagon....”)

- Jorge Luis Borges, The Library of Babel






Declaration

This thesis is the result of my own work and includes nothing which is the outcome of
work done in collaboration except as declared in the Acknowledgements and specified in the
text. It is not substantially the same as any that I have submitted, or, is being concurrently
submitted for a degree or diploma or other qualification at the University of Cambridge or
any other University or similar institution except as declared in the Preface and specified in
the text. I further state that no substantial part of my thesis has already been submitted, or,
is being concurrently submitted for any such degree, diploma or other qualification at the
University of Cambridge or any other University or similar institution except as declared in
the Preface and specified in the text. This thesis contains fewer than 65,000 words including
appendices, bibliography, footnotes, tables and equations and has fewer than 150 figures as
specified by the Engineering Degree Committee.

Pedro Pablo Vallejo Ramirez
July 2020






Optical imaging methods for the study of disease models
from the nano to the mesoscale
Pedro Pablo Vallejo Ramirez

Abstract

The visualisation of disease phenotypes allows scientists to study fundamental mech-
anisms of disease. Optical imaging methods are useful not only to observe anatomical
features of biological samples, but also to infer interactions between molecular species using
fluorescence labelling. This thesis presents the development of imaging and analysis tools
to study biological questions in three models of disease, with samples ranging from the
sub-cellular to the organ scale.

First, the role of the alpha-synuclein (a-syn) protein, whose dysfunction is a hallmark of
Parkinson’s Disease, was studied with respect to vesicle trafficking at the synapse. Synaptic
vesicles are ~40 nm in diameter; imaging vesicles therefore requires methods with resolution
below the diffraction limit. Single-molecule localisation microscopy (SMLM), which circum-
vents the diffraction limit by separating fluorophore emission in time to localise individual
molecules in space with ~20 nm precision, was thus implemented to study a-syn in purified
synaptic boutons. A software package was developed to analyse the colocalisation of a-syn
with internalised vesicles, and the clustering of a-syn under differing synaptic calcium levels.
The colocalisation of a-syn and internalised vesicles was found to be temperature indepen-
dent, suggesting that a-syn is involved in non-canonical trafficking mechanisms. Ground
truth simulations from a synaptosome model were used to benchmark two cluster analysis
methods. Both methods applied on the experimental data showed that a-syn becomes less
clustered at low synaptic calcium levels.

Second, the spatiotemporal association of ESCRT-II, a protein complex whose role in the
budding of the human immunodeficiency virus (HIV) was previously considered dispensable,
and the HIV polyprotein Gag was studied during viral egress using novel image analysis
tools. A nearest-neighbour analysis showed the ESCRT-II protein EAP45 colocalises with
Gag similarly to ALIX, a protein well known to be involved in HIV budding. However,
upon deletion of EAP45’s N-terminus, its colocalisation with Gag was significantly impaired,
highlighting the importance of this EAP45 domain in linking to Gag. Single particle tracking
was used to trace the trajectories of EAP45 and Gag in live cells, and an algorithm was
developed to visualise the simultaneous motion of two particles; these analyses revealed

three types of potential dynamic interaction between EAP45 and Gag.



viii

Finally, an open-source instrument to visualise phenotypes from large organs in 3D was
developed for the study of chronic obstructive pulmonary disease (COPD) models. The
instrument implements Optical Projection Tomography, a technique which can reconstruct
cross-sectional slices of a transparent object from its orthographic projections, using off-the-
shelf components and novel ImageJ plugins for artefact correction and volume reconstructions.
Excised and cleared mouse lungs were imaged in which high order airways can be discerned
with 50 um resolution. The raw lung data, instructions for building the instrument, the
free ImageJ plugins, and a detailed software manual are available in an online repository to
encourage the widespread use of OPT for imaging large samples.
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Chapter 1
Introduction

The objective of my doctoral work was to develop quantitative imaging and analysis tools for
visualising phenotypes in models of disease. A large part of this work focused on imaging
molecular level events that lead to disease, such as the clustering of a protein involved in
Parkinson’s Disease, and the role of a protein unit in the budding of the human immunodefi-
ciency virus (HIV). At the macroscopic level, diseases can cause physical phenotypes that
affect the appearance of entire organs; the damage that the COVID19 virus does on lung
tissue is one such example. The length scales, optical properties of tissue, and sample prepa-
ration challenges for mesoscale (1-20 mm) imaging are vastly different, and other techniques
are required to address them. In the second part of my work, I describe a method which
permits the 3D visualisation of organ-scale phenotypes via tomographic reconstruction.

Because the parts of my thesis work are different in technology and application, I have
organised the thesis into two parts: Part I describes the development of single-molecule
imaging and analysis methods to examine the colocalisation of membrane proteins in cellular
models of Parkinson’s Disease and HIV. Part II describes the development of a low-cost,
open-source 3D imaging tool to investigate phenotypes at the organism scale. The focus
of the thesis is on technology and software developments driven by biological questions,
as part of various collaborations. This thesis assumes familiarity with the fundamentals of
fluorescence microscopy.

In Chapter 2, the use of fluorescence microscopy to infer biomolecular interaction is
briefly introduced, followed by the background to single-molecule imaging techniques. A
historical description of how advances in the detection of single molecules and the spreading
of fluorescent emissions in time led to single-molecule localisation microscopy (SMLM)
is provided. The background to the image processing and analysis tools used to examine

colocalisation and clustering of proteins from single-molecule imaging data is then presented,



2 Introduction

including a review on colocalisation methods for both conventional and single-molecule
imaging techniques.

Chapter 3 describes the use of SMLM to investigate the role of alpha-synuclein (a-syn)
in vesicle recycling mechanisms. A-syn and its controversial role at the presynapse are
introduced, and synaptosomes are presented as an effective model to image synaptic proteins.
A software package developed to automatically detect synaptosomes from SMLM data, and
to perform colocalisation and cluster analysis is described in detail. A-syn was found to
colocalise with internalised vesicles in a temperature independent manner, suggesting it
could be associated with non-canonical vesicle recycling mechanisms. Additionally, both the
clusters of related synaptic protein VAMP-2, and those of a-syn were found to increase in
size in calcium-starved conditions.

Chapter 4 presents a study on the colocalisation of HIV and the ESCRT-II protein EAP45
during viral egress from the cell. HIV is known to recruit the ESCRT-I and -III complexes
during egress, but ESCRT-II was hitherto considered dispensable. Building on biochemical
work from collaborators showing the necessity of ESCRT-II for efficient viral budding, an
imaging and analysis workflow was developed to quantify the colocalisation between HIV
and truncated EAP45 mutants at the plasma membrane. The N-terminus of EAP45 was found
to be necessary for colocalisation with the HIV protein Gag. The dynamics of the interaction
between Gag and EAP45 were then explored using single particle tracking, and a method
to visualise the correlated motion of two moving particles was developed. Three types of
interaction were observed between EAP45 and Gag, lasting from 10 seconds up to 6 minutes.

Chapter 5 begins with a review of volumetric bioimaging techniques. Optical Projection
Tomography (OPT) is introduced as a bridging method between medical imaging approaches
commonly used with organs and large organisms, and 3D light microscopy techniques
applied to image tissue slices or cells. OPT can generate cross-sectional 3D reconstructions
of transparent, mesoscale objects (~1-20 mm) with micrometre resolution; both anatomical
and fluorescently labelled features can be imaged. The working principles of OPT and the
reconstruction process are described, along with applications and advances in the field.

Chapter 6 describes the development of a low cost, open source OPT system to image
large organ samples, with freely available software plugins to reconstruct the acquired data.
The characterisation of the hardware and software components is described, with examples of
usage and demonstrations on how to correct common OPT artefacts. The system was applied
to image cleared mouse lung samples in a proof-of-concept study of chronic obstructive
pulmonary disease (COPD). Two different epithelial cell staining strategies were compared
for visualizing high order airways. Detailed instructions for reproducing the set up are

provided, to foster a wider adoption of OPT by future researchers.
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Imaging at the nanoscale






Chapter 2

Tools for studying protein colocalisation
at the nanoscale

2.1 Motivation

In biology, interactions amongst different proteins are the basis for most cellular structures
and activities [1]. Biologists often investigate whether two or more proteins inside a cell
interact, in order to understand pathways of cellular function. Knowledge of these pathways
can be used to design and test therapeutics against disease.

Experiments using biochemical assays [2, 3] and mass spectrometry [4] can provide
evidence for protein-protein interactions. Different experimental methods are often used
in conjunction to provide multiple indications of association between proteins. The spatial
proximity between proteins and other sub-cellular structures is considered a hallmark of many
types of physical and chemical interactions [5], although spatial proximity does not warrant
molecular interaction. Regardless, visual evidence of spatial correlations together with
biochemical and physical assays can provide strong evidence for interactions. Fluorescence
microscopy is a common method to image two sub-cellular structures of interest and produce
visual evidence of their spatial proximity, or colocalisation. In fluorescence microscopy,
proteins are tagged with fluorescent dyes. Upon excitation at the appropriate wavelength,
these dyes emit photons, which are then recorded by a detector that registers the positions of
the emitters in space. The colocalisation between the recorded signal for each fluorescent
label can be quantified using image processing and analysis algorithms. These algorithms,
often arranged in groups known as workflows [6], are used to determine the likelihood that

two or more fluorescently labelled structures are in contact.



6 Tools for studying protein colocalisation at the nanoscale

Biological questions require tailored microscopy and analysis workflows; there is no one
approach to address all questions [6]. The first part of this thesis comprises the development
of two novel imaging and analysis toolkits designed to understand how sub-cellular structures
colocalise in Parkinson’s Disease and HIV in-vitro models. In the Parkinson’s Disease model,
the colocalisation of two synaptic proteins with synaptic vesicles is studied in the context
of vesicle endocytosis (membrane uptake), whereas in the HIV model the colocalisation
between a cytosolic protein, EAP45, and the main HIV protein, Gag, is studied in the context
of viral egress from the cell (membrane budding and release).

This introductory chapter provides the background to the imaging and analysis tech-
niques used in both colocalisation studies. First, single-molecule localisation microscopy is
introduced as a method to study colocalisation at nanometre-scale resolution in fixed cells,
followed by single particle tracking to study the dynamic interactions between objects in live
cells. The image processing and analysis methods used in both studies are then introduced,
including the correction of chromatic aberrations resulting from using multiple fluorescent
labels with different emission spectra, segmentation to separate regions of interest from

background and noise, and colocalisation analysis.

2.2 Background to single-molecule imaging

2.2.1 Early single-molecule imaging experiments

In the early 1990s, thanks to advances in labelling methods for biological structures, sensitiv-
ity of imaging detectors, and brightness of fluorescent probes, single-molecule imaging was
first attained with the detection of single emitters in crystals at cryogenic temperatures [7, 8].
Experiments detecting single fluorescent molecules [9] and proteins at room temperature
[10, 11] closely followed. These early studies leveraged the knowledge that the centre posi-
tion of a single fluorophore can be localised much more precisely than the diffraction-limited
image of the fluorophore captured by a pixelated detector. If a single emitter is considered a
point source, then its blurred image on a detector (Fig. 2.1) corresponds to the point spread
function (PSF) of the imaging system. The detected PSF can be fitted to a model function,
such as an Airy Disk pattern (a Bessel function of the first kind) or a 2D Gaussian of the

_ (x—x0)2 (y_)’O>2
f(x,y)—Aexp(—( 262 + 26}2 )) (2.1)

form:
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where (xo,yo) are the centre coordinates, A is the amplitude, 62, 62 are the variances in x

X s
and y, respectively. The centre of the Gaussian fit provides an estimatye for the centre position
of the emitter, with a localisation uncertainty estimated by oy, and oy, as demonstrated with
the diagram in Fig. 2.1. These centroid-finding methods were developed and first applied
in video microscopy, to localise beads attached to motor proteins with nanometre precision
[12]. The ability to video track the motion of single particles, coupled with the detection of
single molecules at room temperature by Betzig [10] and later Dickson [11], were important
milestones in the development of single particle tracking (SPT) techniques, which will be

described later in this chapter.

Centroid (x,y)

Intensity

Fitting

Single point emitter

Fig. 2.1 The centre position of a point emitter can be localised with very high precision by
fitting the image of the emitter to a model function, such as a 2D Gaussian.

Later in the early 2000s, Thompson et al. [13] derived an equation which describes the
limit to how precisely the centroid of a single molecule can be localised. This localisation
precision is largely determined by the number of photons collected in each area; the more
photons collected, the better the precision of the fit. With negligible noise (shot-noise limited),

this localisation precision Ax is roughly given by:.

o
A —— 22
Ax ~ (2.2)

where o is the width of the diffraction-limited spot and N is the number of photons collected
[13].
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2.2.2 Isolating single molecules inside a diffraction-limited spot

The molecular resolution approach to fluorescence microscopy was further developed by
Betzig in 1995, by proposing that individual molecules clustered within the diffraction-limited
spot of an imaging instrument could be isolated by one or more defining optical characteristics
such as fluorescence spectra, lifetime, or photochromic state, and then localised with a much
higher precision [14]. The random fluorescent emission oscillation, or blinking, of fluorescent
molecules turned out to be a promising measure to separate the emission from neighbouring
molecules in time. Fluorophores had been previously observed to exhibit frequent transitions
between different energy states [9, 7, 8], however it was Dickson et al. [11] who first reported
the reversible photo-switching of single fluorophores and fluorescent proteins. A diagram of

the photo-activation and photo-switching principle of fluorophores is shown in Fig. 2.2.

405 nm 488 nm

k
Photo-activatable < > D
prObe kbleach

kOn
Photo-switchable J g e
prObe h koff bleach

Off state On state bleached

Fig. 2.2 The principle of photo-activatable (PA) and photo-switchable (PS) probes. PA probes
are activated from a dark off state to a bright on state by low intensity illumination with a
UV laser, and can be subsequently imaged with a readout laser (e.g. a 488 nm laser) until
photo-bleached. PS probes reversibly transition between a dark off state and a bright on state
for multiple cycles (blinking) until photo-bleached.

Centroid localisation applied to single-molecule biophysics

While the development of new and improved photo-activatable and photo-switchable fluores-
cent probes continued, centroid localisation techniques were being applied to track and image
an increasing number of single, sparse molecules. Early applications of centroid localisation
for single molecules included the dynamic imaging of single cyanine dyes attached to a
molecular motor protein, Myosin V, with nanometre accuracy (~1.5 nm lateral) [15], and
single quantum dots (QDs) attached to glycine receptors at the synapse [16]. The QDs were
distinguished by their blinking properties, and their centroids were localised to 5-10 nm pre-

cision. Following this work, other groups applied centroid localisation to image several (two
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to five) fluorescent dye molecules tethered to DNA scaffolds within a diffraction-limited area.
Nanometre localisation accuracy was achieved by sequentially localising and photobleaching
each dye on the scaffold [17, 18]. In 2005, Lidke et al. were the first to apply the temporal
separation of fluorophore emission to precisely localise the emitter positions in space, and
subsequently reconstruct an image consisting of individually localised points [19]. This
technique was termed “pointillism”, and it was demonstrated using the blinking properties
of QDs to accurately locate single molecules in groups of up to four emitters within 30 nm
of each other [19]. None of these methods could yet translate into an increase in traditional
imaging resolution, since it was still unfeasible to resolve more than a few emitters within a
diffraction-limited region. Nevertheless, having optimised the imaging and sub-diffraction
localisation of sparse, isolated single molecules, the next step was to detect single molecules

at high molecular density.

2.2.3 Single-molecule localisation microscopy
Spreading fluorescent emission in time to circumvent the spatial density problem

To resolve biological structures using fluorescence microscopy, dense labelling of a sample’s
fine features with fluorophores is often required such that a complete image of the sample
structure can be recorded. Lidke et al.’s [19] insight to spread the fluorescent emission from
multiple sources in time was essential to circumvent the spatial density problem; by keeping
the number of active (on state) probes at any point in time sufficiently low, this sparse subset
could be imaged as isolated single molecules. A full molecular image of the sample structure
could then be reconstructed by imaging a sparse subset of fluorophores in each frame over
thousands of frames. Figure 2.3 illustrates the concept of separating emissions in time to
address the spatial density problem. To implement this concept, the remaining challenge was
to reliably switch fluorophores between the on and off state.

The photo-switching and photo-activation properties observed in fluorescent proteins
and organic dyes during the single-molecule experiments in the 90s and early 2000s were
leveraged to control the number of active probes at any point in time. In the case of
fluorescent proteins, the characterisation of the photo-switching behaviour of the green
fluorescent protein (GFP) [11] led to the optimisation of many fluorescent protein alternatives
for better efficiency, longevity, and brightness in the blinking process [20]. In the case
of organic dyes, experiments to improve fluorophore photo-stability in single-molecule
Forster Resonance Energy Transfer (smFRET) [21, 22] led to the discovery of thiol-induced
Cy5 switching off [23]. Cy5 could be subsequently reactivated using a second laser line
enhanced by the proximity of a donor probe, such as Cy3 [24], or by ultraviolet (UV)
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a b C Frame1  Frame2 ... Framen | ¢

= a ®

B, ( D

| / .-

: 5B - .
Densely- Diffraction- Spreading emissions in time to reduce "Pointillist"
labelled limited spatial density in each frame reconstruction
sample image of the sample

Fluorophores Blurred images of fluorophores Localised (x,y) coordinates

Fig. 2.3 Diagram showing how the spatial density problem can be addressed by separating
fluorescent emission in time. (a) A structure densely labelled with fluorophores can result in
a diffraction-limited image with overlapping fluorophores, such as the blurred blob shown in
(b). By spreading the emission of the different fluorophores such that only a sparse subset is
on in any given frame (c), a pointillist reconstruction of the sample (d) can be assembled by
sequentially localising the centroids of the sparse molecules and superposing them.

excitation. Many other conventional organic dyes have now been demonstrated to photo-
switch controllably under suitable buffer chemistry and irradiation [25]. The challenge of
localising multiple emitters in a diffraction-limited area was addressed nearly simultaneously
in 2006 by three different techniques [26, 27, 28]. These techniques combined active control
of fluorophore blinking to separate the signal from individual probes in time with highly
precise centroid localisation methods to circumvent the resolution limit in space. This
mechanism is now widely applied in a series of SMLM techniques, which are photo-activated
localisation microscopy (PALM) [26], fluorescence PALM (fPALM) [27], stochastic optical
reconstruction microscopy (STORM) [28], direct STORM (dSTORM) [29, 25, 30], ground-
state depletion microscopy followed by individual molecule return (GSDIM) [31], and point
accumulation for imaging nanoscale topography (PAINT) [32, 33, 34, 35, 36, 37]. Table 2.1
summarises the main SMLM techniques, their working principle, and some advantages and

disadvantages of each.
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The names of the techniques denote the specific constraint mechanism used to keep
the active emitter concentration sparse, and thus avert emitter overlap in any one frame
(e.g. photo-activation, photo-switching using intrinsic dark states, or transient binding from
collisions in solution). Aside from SMLM, there are other fluorescent super-resolution
microscopy techniques which also circumvent the diffraction limit, such as stimulated
emission depletion (STED) microscopy and structured illumination microscopy (SIM) [38].
STED microscopy can achieve 50 nm resolution by depleting the fluorescence of emitters
around a diffraction-limited region, thereby confining the effective fluorescent emission
volume to a sub-diffractive spot [39]. SIM can achieve up to 100 nm lateral resolution by
acquiring multiple frames containing spatial frequency information outside the passband of
the optical system, and combining them in Fourier space to achieve double the resolution of
the raw images. In this thesis, SMLM was chosen specifically because it offers the largest
resolution improvement of all super-resolution techniques, and the SMLM microscope
available in our laboratory offered the necessary laser excitation lines (488, 568, and 647
nm) for performing multi-colour imaging. For further background on SMLM, Sauer et al.
[40] and Deschout et al. [41] provide comprehensive reviews. Li and Vaughan [42] provide
an excellent review on switchable probes for SMLM. The following section describes the
general working principles for most SMLLM techniques, encapsulating the building blocks

presented above.

Working principles of SMLM

Unlike in traditional fluorescence microscopy, in which the fluorescent emission of all flu-
orophores in a sample is collected simultaneously or by raster scanning across the sample,
in SMLM, images are assembled by collecting numerous frames containing sparse, single
emitters, and precisely determining the centre position of each emitter over multiple on/off
switching cycles. A super-resolution image is then generated as a computational reconstruc-
tion of the localised fluorophore density. This fundamental concept is illustrated in Fig. 2.4.
The temporal separation of fluorescent emission is achieved by using probes which exhibit
photo-switching properties, or reversibly bind to target structures.

In practice, SMLM is achieved by first acquiring several thousands of frames of the
blinking fluorophores (Fig. 2.4 a), and then processing frames with a localisation algorithm
to determine the centre coordinates of each emitter with high precision. The algorithm first
detects local maxima in each frame to get approximate localisations of bright emitters (on
state) [43] (Fig. 2.4 b). These approximate localisation candidates are extracted, and the sub-
diffractive localisation of the emitter centroid is accomplished by fitting each candidate’s 2D

photon distribution to a suitable PSF model, e.g. a 2D Gaussian (Eq. 2.1, Fig. 2.4 ¢), using
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Blinking movie Spot finding and candidate selection

c RN
: ‘

%

Model fitting for localisation SMLM reconstruction

Fig. 2.4 Image processing pipeline for SMLM. (a) Images of sparse fluorescent emitters are
segmented to detect bright spots (b), and each bright spot is then fitted to a model function
such as a 2D Gaussian to locate its centre position (c). The localisation density map is
then plotted to reconstruct a super-resolution image, shown in (d) with an overlay of the
diffraction-limited equivalent image. HFF cells stained for microtubules with Alexa Fluor
647 are shown in this figure.
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non-linear least-squares methods or maximum-likelihood estimation [44]. These elements of
image processing for localisation microscopy are summarised in Fig. 2.4. Although Eq. 2.2
provides a good estimate in cases with negligible noise, the uncertainty in the localisation
precision oy is generally calculated using Mortensen’s correction [44] of Thompson et
al.’s original formula [13], which accounts for dipole (anisotropic) photon emissions and
properties of both CCD and EMCCD detectors, written below:

2 a’ 2/, a’
o % [ 16 S ) as
*~ N 9 Na? '

where Ggs  1s the variance of the fitted PSF, N is the number of photons detected from
the emitter, a” is the pixel area, and b” represents the assumed background photons per
pixel. Thompson et al. [13] reported a 30% excess error in localisation precision when
using Gaussian masks to fit experimental images of fluorescent beads, compared to the
expected localisation value from computer simulations of Gaussian-distributed photons.
The factor 16/9 in Eq. 2.3 was empirically determined to compensate for this excess error
((16/9)? = 133%). Additionally, Eq.2.3 also treats the assumed background b? per pixel
exactly by including its product with the pixel area (4?) term, unlike Thompson et al.’s
formula which neglects this correction factor in the background term. The result of this
procedure is a table containing the (x,y) coordinates of each emitter, the integrated signal
density (in units of photons), the width of the PSF fit, and the localisation uncertainty o,. A
variety of reconstruction algorithms have been developed, and multiple software packages
have been produced and are readily available [45, 46, 47]. A super-resolved image can be
then reconstructed by generating a 2D histogram from the localisation table with a pixel size
in the range of the localisation precision. Alternatively, each localisation can be plotted as
a single point convolved with a Gaussian blur function whose standard deviation is equal
to the localisation precision [40]. This concludes the general acquisition and reconstruction
process for SMLM, after which image or spatial point pattern analysis techniques can be

used to extract further information from the data.

Image resolution in SMLM

The resolution in an SMLM data set depends on both the localisation precision achieved, the
labelling density, and the kinetics of the dye photoswitching [41]. The localisation precision
calculated from Mortensen et al.’s formula [44] provides a measure of how well the signals

from two neighbouring emitters can be distinguished, similar to the Abbe limit for diffraction-
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limited imaging. SMLM techniques regularly achieve localisation precision on the order of
~5-10 nm assuming 1000 detected photons per switching cycle and moderate background
noise [40]. At this length scale, the fluorescent probe distribution may significantly differ
from the target structure [48]. The target structure must be properly sampled by fluorophores
such that it can be faithfully reproduced in the reconstructed image, as demonstrated with the
illustrations in Fig. 2.5. The labelling density must be determined depending on the sample
structure. For samples with continuous boundaries, e.g. microtubules or mitochondrial mem-
branes, the Nyquist criterion [49] can be applied such that the distance between neighbouring
probes must be smaller than half the size of the smallest feature that can be resolved. For
samples without continuous boundaries, such as proteins attached to lipid membranes which
are only expressed in low copy numbers, or cytoplasmic proteins that are free floating, the
labelling density dictated by the Nyquist criterion might not be a useful metric. Regarding
photoswitching kinetics, the photoswitching ratio = k, s /kon, Which is ratio between the
off and on states, needs to be high, as this ensures only a small number of fluorophores will
be in the on state at any given frame, ensuring only single fluorophores will be localised.
Other, more complex metrics of SMLM resolution have been reported such as the
information transfer function and Fourier Ring Correlation (FRC). The information transfer
function is derived using Fisher information theory [50], and it provides an estimate of how
much information a parameter X (e.g. the emitter intensity) can provide about an unknown
parameter Y (e.g. the emitter centre position) [51]. This theoretical framework requires a
priori knowledge of the sample structure and thus may be impractical for some applications
[41]. FRC is based on evaluating the spatial frequency correlation between two independently
recorded images of the same region and reporting a cut-off spatial frequency based on the
correlation decay. FRC has been used for decades in electron microscopy to estimate image
resolution, and it was recently adapted for optical nanoscopy [52, 53]. In FRC applied to
SMLM data, localisation data tables are divided in two halves, and the correlation between
the Fourier transform of each half’s reconstruction is calculated over a series of concentric
rings in Fourier space. This results in a graph of decaying correlation as a function of
spatial frequency. The image resolution can then be obtained as the inverse of the spatial
frequency for which the FRC curve drops below a pre-set threshold value. The FRC value
should not be used indiscriminately, as it is not an absolute measure of resolution; rather
it should be reported along with the localisation precision and the estimated probe density
(nearest-neighbour distance) to give an overall estimate of the reconstructed image resolution.
Comprehensive reviews are provided by Chao et al. [51] on Fisher information theory, and

by Nieuwenhuizen et al. [53] on using FRC for resolution estimation in SMLM.
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Fig. 2.5 Drawings showing the effect of labelling density, localisation precision, and long
linker lengths in SMLM reconstructions. Column (a) shows a densely labelled structure
with fluorophores localised with high precision yields a faithful reconstruction of the sample.
Reconstruction quality and resolution deteriorates with sparse labelling (b), low localisation
precision during reconstruction (c), and long linker lengths between the target molecules and
the fluorophores used (d). Figure inspired by Deschout et al. [41].
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The historical background and working principles of SMLM have now been described.
This thesis specifically applied dSTORM to examine nanoscale protein distributions in
Chapters 3 and 4, therefore a brief explanation of the specific constraint mechanisms to
temporally separate fluorescent emissions in dSTORM is included in the following section.

dSTORM working principle

In dSTORM, photo-switchable organic dyes are used to achieve temporal separation of
fluorescent emission. Target molecules are labelled, and all fluorophores are transferred to a
reversible off state at the start of the experiment by irradiating the sample with high laser
intensity at the peak of the fluorophore’s excitation spectrum. A sparse subset of fluorophores
will return to the on state either stochastically, or after irradiation with a UV source. If the
reactivation probability is sufficiently low, then it is highly unlikely that any two fluorophores
in the on state will be closer together than the diffraction limit. In other words, the lifetime
of the off state must be substantially longer than that of the on state to keep the active emitter
concentration sparse. This cycle of activation, localisation, and deactivation is repeated
hundreds of times until the dyes are photo-bleached.

Altogether, unlike in STORM in which an activator/reporter dye pair is necessary to
switch between on/off states (Table 2.1), in dSTORM single organic dyes are reversibly
photo-switched making use of:

1. High laser irradiation to achieve an inter-system crossing between energy states [30].

2. A reducing agent and an oxygen scavenger in buffer solution to control the return rate

from the off to the on state, and ensure a long off state lifetime [30].

dSTORM photo-switching mechanism Upon illumination at its absorption maxima, an
organic dye will be cycled multiple times between its ground state (! Fy, Fig. 2.6) and its
excited singlet state (! F1, Fig. 2.6), emitting fluorescence photons with every decay from the
singlet to the ground state with a lifetime of a few nanoseconds. The dye can then undergo an
inter-system crossing (ISC, Fig. 2.6) either stochastically [54] or induced by high irradiation
[30] into a triplet state (*F, Fig. 2.6). From the triplet state, the dye can either be quenched
(Q, Fig. 2.6) by molecular oxygen back to the ground state, or further reduced by a thiol
such as mercaptoethylamine (MEA) to generate a stable off state of up to a few seconds
[40]. Both of these reactions are necessary. The occasional quenching of the triplet state
by molecular oxygen prevents the dye from being reduced into a dark state every time it

reaches the triplet state, thereby allowing for repeated fluorescent emission cycles. Hundreds
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ON state OFF state

Fig. 2.6 Photo-switching of organic dyes in the presence of a reducing agent. (a) Upon
fluorescent excitation, a dye can either cycle between its singlet ground ' Fy and excited
I Fy state, emitting fluorescent photons, or it can undergo an intersystem crossing (ISC) to
populate the triplet state >Fj. (b) The triplet state can either be quenched (Q) by molecular
oxygen back to the ground state or reduced (red) by a thiol to produce the fluorophore radical
(R). Some dyes can accept a second electron to form the fully reduced leuco form of the dye
(L). Both the reduced (R) and leuco (L) forms can return to the ground state by collisions
with molecular oxygen, i.e. oxidation (0Xx).

to several thousands of photons can then be detected prior to reduction of the triplet state by
a thiol into a long-lived off state.

The reduction of the triplet state can result in either a fluorophore radical (R, Fig. 2.6) or a
fully reduced leuco form of the dye (L, Fig. 2.6), which are oxidised to repopulate the singlet
ground state 'Fy. For most rhodamine derivatives (e. g. Atto 647N, Alexa Fluor 568, etc.) the
formation of a fluorophore radical R is accompanied by an additional blue-shifted absorption
band for the fluorophore around 400 nm. This allows for a photo-induced recovery of the
singlet ground state by irradiation with a UV (~405 nm) laser. In the absence of a reducing
thiol, the lifetime of the dark triplet state is only a few microseconds [30], and is therefore
impractical for SMLM.

In summary, the photo-switching of organic dyes depends on high irradiation to drive
inter-system crossings, and a balance of reduction-oxidation (redox) reactions to control the
lifetime of the off state. The redox reactions depend on the thiol concentration to reduce the
triplet state and enable a long-lived off state, and on the molecular oxygen concentration
not only to quench the triplet state and ensure high photon yield, but also to repopulate the
singlet ground state by oxidising the reduced form of the dye. The photo-switching rate
also depends on the buffer solution, the use of a UV laser to repopulate the singlet state,

and the type of dye, e.g. rhodamine, oxazine, or carbocyanine. Different dyes have distinct
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redox properties, and therefore require tailored thiol and oxygen scavenger concentrations
to achieve stable, long-lived off states and high photon yield. Nevertheless, Dempsey et al.
[55] have previously reported that most dyes perform best using both a glucose oxidase and
catalase oxygen scavenger, and a thiol such as MEA.

A thorough explanation of the photo-switching chemistry behind dSTORM can be found
in [56, 30, 40, 54]. Additionally, Dempsey et al. [55] report a methodical characterisation of
over 20 popular fluorophores for localisation microscopy, and present guidelines for choosing
photo-switchable dyes depending on the application. van de Linde et al. [30] provide a
meticulous protocol for SSTORM imaging, with discussions on how to adjust the ratio of
fluorophores in the on and off states, as well as best practices for labelling samples and
acquiring dSTORM data sets.

2.2.4 Single particle tracking

The centroid-finding algorithms developed for video microscopy [12], coupled with the
detection of single molecules at room temperature [10, 11] as described in the previous
section were fundamental to the development of SPT techniques over the past three decades.
SPT comprises a family of methods used to record and analyse the dynamics of particles
either in isolation or in ensembles. Particle tracking is an important tool for biology, enabling
discoveries such as the observation of the motion of motor proteins along the cytoskeleton
[15], or the entry, transport, and egress of viruses in cells [57], among many others [58].
SPT can be generally divided into two stages: spatial detection (Fig. 2.7 a-b), and temporal
tracking (Fig. 2.7 c-d), both of which share common elements with localisation microscopy.

Spatial detection involves identifying single, sparse molecules at high resolution, and
localising their centres with sub-pixel accuracy over multiple frames by fitting the image
of each emitter to a model function, e.g. a 2D Gaussian. This is analogous to the spot
finding and candidate selection process described for SMLM in Fig. 2.4 b-c, assuming
that point-like particles with symmetric images are being observed. In SPT however, the
particles observed are dynamic, and therefore localised emitters over each frame will trace
displacement trajectories that can be isolated and analysed. The temporal tracking step
involves linking detected particles in neighbouring frames to trace their displacement tra-
jectories. The simplest method for particle linking is the nearest-neighbour, which assigns
a link to the nearest detected particle in the following frame, as illustrated in Fig. 2.4 c.
More sophisticated, multi-frame association methods include multi-hypothesis tracking [60],
which is approximated by Jagaman’s popular linear assignment problem (LAP) tracker [61],
and combinatorial approaches such as that proposed by Sbalzarini et al. [62]. To illustrate a
basic SPT experiment, Fig. 2.7 shows the process of tracking Cy5-tagged mRNA molecules
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Fig. 2.7 Schematic diagram showing the two main stages of SPT: particle detection (a-b),
and temporal tracking (c-d). (a) Pixels with local brightness maxima in a time-series stack
are identified as candidates, and subsequently fitted with a model function to estimate their
centroid (b). (c¢) The centre coordinates corresponding to the same particle at different times
are linked using methods such as the nearest-neighbour. (d) The resulting displacement
trajectories, or tracks, can be plotted. The ImageJ plugin TrackMate [59] was used to detect
the particles and generate the tracks in this demonstrative experiment.
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diffusing in water, imaged using a 1.49NA oil immersion objective. Individual molecules
diffusing in and out of the focal plane were detected and fitted (Fig. 2.7 a-b), and their
trajectories were linked using Jagaman’s LAP tracker. The resulting tracks were plotted in
Fig. 2.7 d, as an illustration of typical random walks by diffusing particles in solution.

The resulting displacement trajectories can then be used to study physical properties
of the sample, such as diffusion, transient interactions, trapping, and velocity in time and
space. Extensive reviews on SPT can be consulted for further details on specific methods and
applications [58, 63]. In this thesis, SPT was specifically applied in Chapter 4 to measure
and analyse the transient interaction between HIV and a cytosolic protein, EAP45, during

viral egress from the cell.

2.3 Components of image analysis workflows

The single-molecule imaging methods described above provide the necessary resolution
and sensitivity to examine protein distributions at the nanoscale, both in fixed and dynamic
samples. Measuring the colocalisation between different protein distributions, however,
requires specialised image analysis methods. This section provides the background to the

image processing and analysis methods applied in Part 1 of this thesis.

2.3.1 Image processing

This subsection introduces image processing methods to correct for chromatic shifts in the
acquisition process (registration), and discern between regions of interest and background or

noise (segmentation).

Chromatic registration

Chromatic aberrations are wavelength-dependent errors in light propagation often caused by
the variation in refractive index with wavelength of refractive optical elements [64]. For ray
bundles of different wavelengths traveling in an optical system, axial chromatic aberration,
or axial colour, is the variation in focal position along the optical axis with wavelength (Fig.
2.8 a), whereas lateral chromatic aberration, or lateral colour, is the change in magnification
as a function of field angle for each wavelength (Fig. 2.8 b) [64]. In microscopy, commonly
used plan apochromat objectives are designed to correct for spherical aberration, coma, field
curvature, and chromatic aberrations for up to five wavelengths [64]. In practice, small

residual aberrations are often present even in well-corrected microscope systems due to tilt
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of the coverslip, misalignment in the imaging optics between the objective and the detector,

and/or refractive index mismatch between the sample media and the objective [65].

o)

c 647 nm

Objective Image plane

Axial
colour

Lateral
colour

N

Widefield overlay Localisation overlay Fiducials for
correction

Fig. 2.8 Chromatic aberrations can bias SMLM colocalisation studies. (a) Ray diagram
showing axial (a) and lateral (b) chromatic aberrations and their effect on the image of a
point emitter at infinity. (c-d) 100 nm beads imaged in two colours to demonstrate lateral
chromatic offset. A region was extracted at the edge of the field of view to highlight how,
although the beads overlap in the diffraction-limited overlay (e), the localised centres of the
cyan and orange emitters may actually appear more than 100 nm away from each other (f).
(g) Representative field of view containing sub-diffractive beads as fiducials, which can be
corrected to yield the image in (h).

In the context of SMLLM, chromatic aberrations are especially problematic, as objective
lenses are designed to have “diffraction-limited” performance, which means aberrations are
minimised for imaging spatial frequencies the size of, or larger than the diffraction limit.
For SMLM systems in which imaging resolution of 20-30 nm is achieved, even the best
objective lenses will exhibit pronounced chromatic aberrations for multi-colour imaging
[66, 67]. These chromatic offsets can introduce biases or errors in colocalisation studies,
therefore they must be corrected or minimised prior to analysing multi-colour SMLM data.

Lateral colour, which has the most prominent effect on multi-colour localisation data for
2D imaging, is illustrated using 100 nm multi-colour beads in Fig. 2.8 c-f. The images were
captured using 488 and 647 nm lasers, and an Olympus UAPON 100x 1.49 NA objective,
which is corrected for five colours at diffraction-limited performance. Assuming the optical
axis is in the centre of the field of view, lateral colour will cause the image of point emitters
away from the optical axis to deviate from its true location (Fig. 2.8 b,e,f). For widefield,
diffraction-limited imaging, even at the edge of the field of view (Fig. 2.8 e), the images of
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the emitters still overlap, however the localised centres of the emitters are distinctly separated
by more than 100 nm (Fig. 2.8 f).

Chromatic offset is generally corrected by imaging fiducials, e.g. 50 to 100 sub-diffractive
multi-colour fluorescent beads as shown in Fig. 2.8 g, and subsequently generating a mapping
function between a chosen reference colour channel and the warped (offset) channel to register
the two-colour images, resulting in an image with no chromatic offset as demonstrated in
Fig. 2.8 h. This mapping function can be a geometric transformation which compensates
for aberrations, e.g. distortions, shifts, or shears, between the positions of the reference
and warped fiducial images. For SMLM data sets, the figure of merit for the mapping
function is the registration error between the reference and the warped channels. In practice,
a registration algorithm is effective when the registration error is smaller than the localisation
precision of the data. Registration algorithms have been previously proposed for SMLM
by Annibale et al. [66] and Erdélyi et al. [67], which inspired the algorithms developed in
Chapter 3 of this thesis to register multi-colour SMLM data sets. The computational intensity
of this procedure is relatively low, taking at most a few minutes to register localisation data
sets.

Segmentation

Segmentation partitions images into labelled sub-regions that share similar characteristics.
In microscopy, segmentation discriminates between useful regions in a cell (e.g. organelles,
membranes, or distinct protein clusters) and background signal. In Chapters 3 & 4, segmen-
tation was used to detect protein distributions of interest and remove unwanted signals that
could bias colocalisation analysis. The segmentation operations used in this thesis involved

two key steps:

1. Thresholding an image to discern between specific signals and background.

2. Applying morphological operations to remove unwanted regions in the thresholded
image.

Thresholding Thresholding involves partitioning images into regions based on intensity
values. For an image f(x,y), pixels above a threshold value 7' are assigned a value of 1

(white), and those below a value of 0 (black), as in the equation below:

1, if foey) > T
flry) =4 b /oY) 2.4)
0, if fx,y)<T
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If T remains fixed for the entire image, it is a global threshold, whereas if 7 changes
depending on the pixel region, it is a local threshold. Thresholding can also be understood
as a classification problem in which the objective is to minimise the average error incurred
in asigning pixels to two or more classes. In this thesis, two different solutions to the
classification problem were used for segmentation: Otsu’s method [68] in Chapter 3, and

Weka segmentation [69] in Chapter 4.

Otsu’s method Otsu’s method provides an optimal solution to divide pixels into two
classes by calculating a threshold that maximises the variance between two groups of pixels
(the between-class variance) [68]. Otsu’s method is entirely based on calculations performed
on an image’s histogram, which is an easily obtainable 1-D array. For an image with M x N
pixels with L distinct intensity levels, let n; denote the number of pixels with intensity i. The
total number of image pixels is MN = ny+ny +ny +---+ng_1, and the normalised image
histogram has components p; = 37&. It follows then that:

L—-1

Y pi=1,pi>0 (2.5)
i=0

For a threshold 7 (k),0 < k < L — 1, the input image can be divided into two classes, C;
and C,, encompassing all pixels with intensity values in the ranges [0, k], and [k+ 1,L — 1],
respectively. With this threshold k, the probability P; (k) that a pixel assigned to class C|

(probability of C; occurring) is given by the cumulative sum:

k
Pi(k) =) pi (2.6)
i=0

Similarly, the probability of C, occurring is:

L—1
Pk)=Y pi=1-Py(k) 2.7)
i=k+1

It follows from Eq. 2.6 that the mean intensity value m; (k) of the pixels assigned to class Cj:

k
m (k) = Y iP(i/C1) (2.8)
i=0
where the term iP(i/Cy) is the probability of value i, given that i comes from class Cj. From

Bayes’ formula:

P(B/A)P(A)

P(B) (2.9)

P(A/B) =
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applied to iP(i/C) ), Eq. 2.8 becomes:

k iP(Cy/i)P(i)

ny (k) == Z

L pcy) (2.10)

The probability of C; given i, iP(C;/i) in Eq. 2.10 is 1, since m (k) only considers values
i from class C;. Additionally, P; is the probability of the i’ value, which is just the i*"
component of the histogram, p;. Finally, P(C)) is the probability of class Cy, which is equal
to P (k) (Eq. 2.6), so we can rewrite Eq. 2.10 as:

1 k

D 2.11
P1<k>§0”’ (2.11)

Following the same reasoning, the mean intensity value of the class C; pixels is:

ml(k) =

1 k
&®Zm (2.12)
i=0

The cumulative mean intensity up to & is then given by:

mz(k) =

k
m(k) =Y ip; (2.13)
i=0

and the average, or global intensity of the entire image is:
L—-1
mG =Y ipi (2.14)
i=0

To asses how well the threshold at level k separates pixels into two classes, the between-class

variance can be calculated:

03 = Py (k)(my —mg)? + Py (k) (my — mg)? (2.15)

The more separated the two mean intensity values m; and m, are from each other, the
larger the between-class variance Gé. Therefore, algorithms implementing Otsu’s method
evaluate 61% over all possible values of k to find the value k* that maximises Gg. If several
values of k are found for which G,% is at a maximum, then the average of the k values is used.
When the optimal threshold level £* is found, the image can be segmented as specified in Eq.
2.4:
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. *
Floy) =4 7)) 2 & (2.16)
0, if f(x,y) <k*

forx=0,1,2,.... M—1landy=0,1,2,...,N—1.
Otsu’s method performs best for images with a bimodal intensity distribution containing
a deep valley between the two peaks, as shown in the histogram for the camera man image
in Fig. 2.9 a. Images with other pixel intensity distributions, such as the cat image in Fig.
2.9 b may require local thresholding or filtering to extract features of interest such as edges,
lines, and circles in the image. The derivation of Otsu’s method, along with an outline for its
algorithmic implementation can be found in Gonzalez and Woods, Ch.10, Section 3.3 [70].
Since Otsu’s method only performs computations on 1D vectors, it is computationally very

quick and can segment images in a few seconds at most.

Original Histogram Otsu

0 100 200

2000 -

Counts

1000

0+ T T T
0.0 0.2 0.4 0.6

Grey levels

Fig. 2.9 Otsu’s threshold (orange line) applied to an image with a bimodal (a) and unimodal
(b) histogram. The open-source images "camera man", and "Chelsea the cat" from the Sci-kit
image data module were thresholded using Otsu’s method for this figure.

Weka segmentation As an alternative to traditional intensity-based image segmentation,
the Trainable Weka Segmentation (TWS) plugin in ImageJ was created by Arganda-Carreras
et al. [69] to combine machine learning algorithms with selected image features to generate
pixel-based segmentations. In TWS segmentation is also treated as a pixel classification
problem. Users can annotate images using a graphical user interface in ImagelJ, adding traces

of pixel regions to the specified classes. The annotated images are used as a training set for a
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classifier which, once trained, can be used to categorise the remainder of the data set, or a
completely new set of images. Any supervised classification or regression algorithm from
the Waikato Environment for Knowledge Analysis (Weka) [71] can be used as a classifier.
Conventional segmentation methods such as Otsu’s method [68] use the intensity or
spatial relationship among pixels to discern regions of interest. Conversely, manual segmen-
tation by humans leverages knowledge about the shapes, textures, local intensity gradients,
etc. in images. TWS aims to leverage part of that user knowledge to generate segmentations
using a rich space of image features, most of which are extracted using common filters before
being used in the classifier. TWS was implemented in Chapter 4 to distinguish fluorescent
puncta of HIV proteins and the associated ESCRT proteins from background signals at the

cell membrane. The filters to extract features include:

» Edge detectors to indicate boundaries of objects in an image (e.g. Sobel filter).
* Noise reduction filters (e.g. Gaussian blur filter).

* Membrane detectors which enhance membrane-like features in an image using direc-
tional filters.

The default classifier in TWS, the Fast Random Forest algorithm, was used in this thesis.
This classifier is based on the Random Forest, a supervised machine learning algorithm
which constructs multiple decision trees based on input features, and outputs the mode of
the resulting classes from all the trees. Decision trees for classification are models which
repeatedly split an input data source (the root of the tree) into subsets based on input features
at each node (branches), until all node results have been assigned a class label (leaves). By
pooling together the most popular classification results from multiple decision trees, and
using random input features for each node, the Random Forest algorithm provides a robust,
accurate classification method. In TWS, the default classifier uses 200 decision trees with 2
random input features per node. The details of the Fast Random Forest algorithm are beyond
the scope of this thesis; the reader can find a detailed introduction to Random Forests in
Chapter 15 of Hastie et al. [72]. A detailed description of the available features and classifiers
for the TWS can be found in the plugin repository [73]. For the work performed in this thesis
in Chapter 4 in which less than 10 images were segmented per experimental condition, the
TWS annotation for training could take between 5-10 minutes to complete, and the training

itself required less than 10 seconds to produce a segmented data set.

Morphological operations Morphology describes pixel-wise operations, often on binary

images, based on shapes of features in the image. Morphological operations (MOs) work
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by probing an image with a small shape or template called a structuring element. The
structuring element is scanned over all pixels in the image and compared to the corresponding
neighbourhood of pixels. MOs examine if the structuring element fits within, intersects with,
or neither fits nor intersects with the neighbourhood of non-zero value pixels. A new binary
image is then created with non-zero values in the pixels in which the structuring element
fulfilled the tested condition (fit, intersection, etc.). Structural elements in MOs are analogous
to convolution kernels in digital image filtering. The two fundamental MOs are erosion and
dilation. In these operations, a layer of pixels is either stripped away or added, respectively,
from the inner and outer boundaries of the image. Erosion removes small elements in an
image and enlarges the gaps between regions but reduces the size of the regions of interest.
Dilation, on the other hand, fills in small holes and gaps between regions. Both erosion and
dilation were applied in this thesis to remove unwanted signals or elements in images, or to
generate accurate masks around bright regions of interest.

This concludes the brief introduction to the segmentation techniques used in the first part
of this thesis. A comprehensive covering of image segmentation methods can be found in
Gonzalez and Woods, Ch.10 [70].

2.3.2 Colocalisation analysis

Fluorescence image colocalisation analysis is a widespread method to search for clues of
interaction or association between two molecules or structures in biological samples. If
two or more structures are associated or interact, they are likely to have overlapping spatial
distributions. However, the reverse is not true; co-presence does not guarantee association or
molecular interaction [5]. Even if two probes appear in the same location, this could either
be due to random chance or to being pushed by the crowded field of unlabelled structures
in the sample which are invisible to the microscope [5]. Only nearfield techniques such
as FRET [74] can directly measure probe-probe interactions. Nonetheless, the repeated
colocalisation of two probes in multiple samples/cell regions increases the confidence that
the two could be potentially associated or interacting [75], and allow researchers to infer
such interactions. Colocalisation analyses are widely used because they can be easily applied
on existing multi-colour fluorescence images obtained using standard microscopes and

fluorescent probes.

Conventional colocalisation measures

Colocalisation can be divided into two different measurements: correlation and co-occurrence

[75]. Correlation measures the intensity relationship between two overlapping fluorophore
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distributions. It can be used to compare the relative abundance between two species, or to
find a functional or stoichiometric relationship between species. Co-occurrence measures the
extent of spatial overlap or proximity between two fluorescent distributions, generally using
object segmentation methods. In Chapters 3 and 4, the colocalisation analyses specifically
measured the co-occurrence of fluorescent distributions, therefore unless specified, the terms
colocalisation and co-occurrence will be used interchangeably. An overview of the methods

used to test colocalisation now follows, in order of increasing complexity.

Dye overlap measurement The simplest implementation of colocalisation is to measure
the area of signal overlap between two images. In Fig. 2.10, the images of two simulated
blob patterns were binarised using Otsu’s method [68] to select the shapes of the blobs from
the background; the intersection and the union can then be used to calculate the degree of

overlap between the two different channels as given by the following equations:

AlCBinerseet _ ) (2.17)
Areacy,

Alelinersect _ () 1 (2.18)
Areacy,

Aledinersect _ () 1, (2.19)
Areaypion

where the fractional overlap of channel 1 with channel 2 is given by the quotient of the
intersection and channel 1 areas (Egs. 2.17), and vice versa (Eq. 2.18). An overall overlap
metric can be expressed as the fraction of the intersection over the union (total area) (Eq.
2.19).

This area overlap analysis can be expanded, as the segmentation step applied in Fig. 2.10
b allows discrete objects (contiguous pixel areas) to be identified with specific properties
such as centroid, area, ellipticity, etc. These properties can be leveraged to compare the
relative proximity of objects between colour channels. The nearest-neighbour algorithm [76]
is a common implementation of this object-based analysis, which considers two objects to be
colocalised if the distance between their centroids falls within a threshold distance given by:

dia =/ (1 —22)2 4 (1 —y2)? (2.20)

where d); is the distance between a spot with centre (x1,y;) in channel 1, and a spot with

centre (xp,y,) in channel 2. A nearest-neighbour algorithm was implemented in Chapter 3 to
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Fig. 2.10 The area overlap between two colour channels is the simplest form of measuring
colocalisation. (a) Two images of blobs with differing intensities and noise were simulated in
Imagel] to represent two colour channels in a microscopy experiment. (b) The images were
segmented using Otsu’s method, and their union and intersection were computed (c).

apply a density filter on localisation data, and in Chapter 4 to compare the proximity between

objects from two colour channels in different experimental conditions.

Manders’ coefficients The dye overlap and object-based analyses described in the previous
section do not take into account the signal densities of the examined fluorophore distributions.
Manders et al. [77] devised a method which accounts for signal intensities when calculating

the overlap between colour channels [77] in the form of two coefficients M| and M»:

n .
My = Ei=1 Ve 2.21)
Zizl Xi
where
xi, ify; >0
xiculoc = l yl (222)
0, if yi = 0
and
Zr'l—l Vi,
M2 — 1= coloc (223)
Z?:1 Yi

where
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Y = 420 20 (2.24)
0, ifx;=0

In these equations, x; and y; refer to the i*” pixel value above an intensity threshold for
colour channels 1 and 2, respectively, for a total of n pixels analysed. Thus, x; , andy; .
will only be non-zero when the corresponding x; and y; are also above the intensity threshold.
The M; coefficient therefore measures the co-occurrence fraction of colour channel 1 on
channel 2, and M, measures the reverse [77]. Manders et al. also proposed an intensity-
weighted overall overlap coefficient (Manders Overlap Coefficient, or MOC) between two

channels, expressed as:

Z?:l XiYi

\/Z?:lxiz\/z?:lyiz

where x; and y; are the same as defined above. The MOC is an improvement over the area

MOC = (2.25)

overlap calculation described previously, as it takes into account intensity per area (signal
density), giving larger weight to bright pixels than to dim background pixels. This causes the
MOC to be susceptible to large background signal contributions, such as those originating
from high non-specific labelling, strong autofluorescence, saturated pixels, or bright out-
of-focus contributions [77]. These non-biologically relevant sources can bias the MOC to
appear larger than its true value. Adequate thresholding, background subtraction, and/or
masking are necessary to remove unwanted signal contributions and minimise their effect
on the MOC [78]. Notwithstanding, the MOC is robust against variations in signal-to-noise
ratio (SNR) [77], as random pixel intensity fluctuations due to noise have little effect when
summing over a large number of pixels to calculate My, M,, and the MOC [78]. Manders
coefficients operate on the image as a matrix of pixels, and can therefore be computed within

less than a second for a simple image.

Testing colocalisation against a random chance distribution of fluorophores When
analysing the MOC, it is important to determine whether or not the observed co-occurrence
is due to a random chance distribution of the labelled species. A simple, yet coarse method
to test this was proposed by Dunn [75] in which one of the colour channel images is rotated
90°to act as a negative control, and its MOC is calculated with each of the original images.
A more sophisticated method was proposed by Costes [79] in which PSF-sized groups of
neighbouring pixels are randomly scrambled in one of the colour channels to simulate a

random distribution of fluorophores. The MOC is then calculated between the scrambled
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and the unaltered channel. This process of scrambling and calculating an MOC value is
repeated over ~100 to 1000 iterations to obtain a confidence interval for the mean MOC
value in the case of a pseudo-random distribution of markers. If the MOC value from the
experimental data exceeds 95% of the MOC values from the randomisation trials, then the
colocalisation is deemed statistically significant and unlikely to be due to random chance
[78]. Costes’ method, although more computationally intensive, is statistically more robust
than Dunn’s method [78]. For a single 256x256 pixel® region (which is the size of all images
acquired in Part I of this thesis), Costes’ method can take up to a minute to compute for 1000
iterations, whereas Dunn’s method can be computed within a second for a single image. A
more detailed review on different colocalisation methods and their application can be found
in Bolte and Cordelieres [80], Cordelieres and Bolte [81], Dunn et al. [75], and Aaron et al.
[78].

Coordinate-based colocalisation analysis

The emergence of super-resolution microscopy changed the way researchers think about
colocalisation, since structures that previously appeared to overlap in diffraction-limited
images could be revealed to be in distinct, separate locations in space [82], as demonstrated
with the localised bead images in Fig. 2.8. The emergence of SMLM methods in particular,
which can distinguish single molecules which are ~10-20 nm apart, led scientists to reassess
how to infer interactions between sub-cellular structures [5]. The proximity threshold to
determine colocalisation between two species then depends on the biological question.
Traditional colocalisation methods based on intensity overlap or correlation depend on the
microscope PSF and are therefore generally not applicable to localisation data [83], however
they can be applied to reconstructed SMLM images in which the pixel values in an image
represent the binned number of localisations within that pixel [84]. As mentioned in section
2.2.3, the output from an SMLM experiment is not a conventional image, i.e. a pixelated
array of intensity values. Rather, it is a table of x,y coordinates of individual molecules,
each with an associated uncertainty and signal density, and can therefore be treated as a
spatial point pattern. Colocalisation analysis becomes then the search for spatial associations
between point patterns originating from different fluorophore distributions. Spatial statistics
and correlation analysis methods have been developed to extract information about the spatial

association (coupling or tethering) of localisations based on their relative positions.

Spatial statistics Spatial descriptive statistics are often used to summarise a point pattern,
test hypotheses about the pattern, and fit models [85]. In spatial statistics, moments are

used to describe quantitative parameters about a probability distribution. The first moment
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property of a spatial point pattern is the number of points per area, and the second moment
property is the expected number of points N within a distance r of another point. Ripley’s
K-function [86], a common spatial statistic tool for analysing point patterns, is the second
moment property normalised by the number of points per area A:

K(r)=

< NPi<r)
i; 7 (2.26)

S| =

where p; is the i* point and the sum is taken over n points. The expected K (r) value for
a random Poisson distribution is 772, also defined as complete spatial randomness (CSR)
[85]. Any deviations from this expectation indicate either clustering or dispersion for a point
pattern. Besag [87] proposed a normalisation of the K-function so that its expected value for
CSR is linear with r:

K(r)

L(r) =/~ (2.27)

Besag’s function was further normalised so that the expected value for CSR yields 0, in the
form of the H-function [88]:

H(r)=L(r)—r (2.28)

Ripley’s K-function is most commonly used to test whether an observed point pattern
is consistent with a random Poisson distribution (the null hypothesis). Positive values of
the H(r) function indicate clustering over that spatial scale whereas negative values indicate
dispersion, as demonstrated with a simulated clustered and random pattern in Fig. 2.11.

The value of the search radius » which maximises the value of H(r) indicates the radius
of maximum aggregation, i.e. the radius of a disk centred on a sample point which on average
contains the most points per area. This radius has been used as an estimate for cluster size
in point patterns, however it has been reported to overestimate size of the clusters by up to
a factor of twice the true radius [89]. Bivariate or multivariate generalisations of Ripley’s
K, L, and H-function can be used to describe relationships between two or more spatial
point patterns; this is useful for performing colocalisation studies with localisation data.
Depending on the density of points in the pattern at hand, as well as on the radius chosen for
analysis, Ripley’s K function calculation can take up to a few minutes for a single 256x256

pixel® region, and over an hour for analysing multiple fields of view (> 15).

Correlation analysis Correlation analysis is useful to calculate spatial scales of density
fluctuations in a spatial point pattern [90, 91, 92]. The Pair Correlation Function (PCF)



34 Tools for studying protein colocalisation at the nanoscale

a
H 1 . . /\+1
Ripley's K function is 0
calculated over concentric ri\ + . + .
disks within a search o5
radius r. T
b Clustered pattern ¢ Random pattern d Ripley L(r)-r
,—-\\
0.51 / \
. . ’ \
. . ’ \
2 . 24 / \
L . = I Sy T A
> NS °. > = 00 \
o~ % . * g \\
1 .‘. o ° . 14 ~051 s Kpois \
¢ Krand \\
== Kecus \‘
0 ; : 0 . ; -1.01, , . ;
0 1 2 3 0 1 2 3 0 1 2 3
X X r search

Fig. 2.11 Using Ripley’s K-function to analyse spatial point patterns. (a) Illustration of
how Ripley’s K-function is computed over concentric circles centred on each point in the
pattern, for a maximum search radius r,. (b) Uniformly clustered point pattern. (c) Random
point pattern (d) Ripley’s L(r)-r function computed for the clustered pattern in (b) (blue
line), and the random pattern in (c) (orange line). The black dotted line represents the null
hypothesis, the L(r)-r curve for a Poisson distribution. The code for this simulation can be
found in the supplementary code repository for this thesis https://github.com/pedropabloVR/
supplementary-code-thesis.
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is similar to Ripley’s K-function, however it measures the probability of finding another
point at a distance R away from a given point, compared to that expected from a random
distribution of points [91] for concentric rings instead of disks. Both Ripley’s K-function
and the PCF are more descriptive than a regular nearest-neighbour calculation, as they can
point out properties of a spatial point pattern at different size scales e.g. regularity at a
small scale and clustering at large scales. Several implementations of Ripley’s K-function
[89, 83, 93, 94] and correlation analysis [83, 93, 95, 96, 90, 91, 97] have been applied to
measure colocalisation in SMLM data sets.

Segmentation, followed by spatial association Other methods apply segmentation on
SMLM data sets to identify clusters, followed by spatial association metrics to measure inter-
cluster proximity. One technique uses Voronoi diagrams to compartmentalise localisations
into polygons and create density maps [98, 99, 100]. A Voronoi diagram is a tessellation
in which a polygon corresponding to a data point represents the locus of all points in space
closest to this data point [101] (Fig. 2.12). Tessellation does not require a priori knowledge
of the clustering in the data, i.e. a search radius, and the properties of the Voronoi tiles can be
readily used to describe the physical properties of clusters. A similar technique was extended
to 3D data, in which convex hulls are fitted to localisation data to determine the 3D overlap
of clusters [102].

Clustered pattern Random pattern

Fig. 2.12 Voronoi diagrams for the clustered and random patterns in Fig. 2.11.

A number of tools previously developed by other groups to apply some of these point
pattern analysis methods are summarised in Table 2.2. In-depth reviews and analysis of the
currently available colocalisation techniques for SMLLM can be found in Deschout et al. [84]
and Lagache et al. [83].
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Tools for studying protein colocalisation at the nanoscale

Table 2.2 Software tools developed to analyse SMLLM data as spatial point patterns for
colocalisation and cluster analysis.

Tool Method Implemented in | Reference

ClusDoC Correlation-based analysis Matlab Pageon et al. 2016
(CBC, Malkusch et al. 2012) [103]

Icy-SODA Ripley’s K Function, PCF Icy Lagache et al.
(Lagache et al. 2015) 2018 [83]

LAMA Ripley’s K Function, PCF, Python Malkusch et al.
DBScan, OPTICS, 2016 [96]
Nearest-neighbour

MOSAICIA | Spatial interaction analysis Imagel/Fiji Shivandanan et al.

plugin 2013 [97]

ClusterViSU | Voronoi Tessellation Matlab Andronov et al.

2016 [98]
SR-Tesseler Voronoi Tessellation C++ Levet et al. 2015
[99]
STORM-RLA | Convex-hull fitting for 3D Matlab Veeraraghavan and
Gourdie, 2016
[102]

2.4 Summary

This chapter introduced the background to the imaging and analysis methods used in Part I
of this thesis. First, the historical background to the detection of single fluorescent molecules
was introduced. A description of the fundamentals of localisation microscopy techniques
ensued, with details on image acquisition, photoswitching, and reconstructions for SISTORM.
Subsequently, the working principles for SPT methods to analyse dynamic interactions
between single molecules were presented. Finally, an introduction to chromatic offset
correction, image segmentation, and colocalisation analysis methods was provided.

The following two chapters describe the individual application of these methods to
examine the colocalisation of membrane-bound fluorescently labelled protein clusters at
the nanoscale, in in-vitro models for Parkinson’s Disease (Chapter 3) and HIV (Chapter
4). In each chapter, the techniques introduced here serve as building blocks for integrated
image acquisition and analysis pipelines tailored to the constraints and requirements of each
biological question. A number of the introduced image processing and analysis methods
were implemented in newly-developed software packages; all the source code for these

algorithms can be found in Github repositories and will be specified accordingly in each
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chapter. Other methods were applied using existing open-source software, which will also be
clearly acknowledged.
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Chapter 3

A single-molecule method to study the
role of alpha-synuclein at the synapse

Alpha-synuclein (a-syn) is a protein whose dysfunction is associated with Parkinson’s Disease
and is primarily localised at the pre-synapse of neurons. The pre-synapse contains vesicles
~40 nm in diameter, which enable communication between neurons by fusing to the plasma
membrane to release neurotransmitters. A-syn is proposed to have role in vesicle recycling,
however it is unclear if it is involved in SNARE/clathrin-mediated (CM) exo/endocytosis or
in non-canonical mechanisms such as kiss-and-run, in which a vesicle transiently opens and
closes a small pore when in contact with the plasma membrane [1]. In this study we used
dSTORM to clarify a-syn’s spatial relationship to endocytosed vesicles in purified synaptic
boutons, called synaptosomes. The proximity of VAMP-2, a protein linked to SNARE/CM
mediated exo/endocytosis, to internalised vesicles was used as a control, and compared to
that measured for a-syn. A software tool for colocalisation and cluster analysis of SMLM
data from synaptosomes was developed, including routines for automatic synaptosome
detection, chromatic registration, and density filtering to remove false positives. Ground truth
models of a synaptosome were created, from which synthetic SMLM data was generating for
benchmarking the colocalisation and cluster analysis scripts.

A-syn’s colocalisation with internalised vesicles was found to be temperature independent,
whereas VAMP-2’s colocalisation with vesicles decreased significantly at sub-physiological
temperatures. This suggests a-syn has a significant association with vesicles internalised via
recycling mechanisms which are temperature independent and occur even when membranes
are rigid, such as kiss-and-run. Furthermore, both a-syn and VAMP-2 clusters were shown to
increase in size upon calcium depletion, potentially due to a link between a-syn and VAMP-2
in calcium-dependent clustering of synaptic vesicles.
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3.1 Introduction to alpha-synuclein

In the brain, the protein a-syn is primarily localised at the pre-synapse of neurons in both
a structurally disordered form and a partially ordered membrane-bound form [2]. The
dysfunction of a-syn leads to the formation of protein aggregates, which in turn form the
main component of so-called Lewy Bodies and Lewy Neurites in neurons. These are dense
protein deposits which have been identified as the hallmarks of Parkinson’s Disease [3].
A-syn is not an essential protein [2] and therefore its physiological role at the pre-synapse is
unclear. The models used to study its role have led to continued scientific debate, as different

cell types and expression systems have resulted in conflicting findings.

3.1.1 Structure and function

A-syn is a 140 amino acid (aa) protein composed of three distinct regions illustrated in Fig.
3.1: the N-terminus (aa 1-60) which has been shown to mediate binding to lipid membranes
[4], the non-amyloid-B component (NAC) (aa 61-95) which is hydrophobic and prone to
aggregation, and the C-terminus (aa 96-140) which is highly negatively charged and can also
bind lipids in a calcium-dependent manner [5].

a Lipid binding Aggregation- Calcium-mediated lipid
domain prone domain  binding domain
N Q" o Ry
[ - -
~—

Upon lipid binding

NIUUUUUUULULULULL
a-helix form

C

Fig. 3.1 Diagram of a-syn’s structure showing the lipid-binding domains and the aggregation
prone NAC region. (a) The N-terminus (aa 1-60) can bind lipids such as vesicles and
membranes [4], and the C-terminus can also bind lipids but in a calcium-dependent manner
[5]. (b) Cartoon of a-syn’s helical shape after binding lipids either via its N or C terminus.
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3.1.2 A-syn and lipid vesicles

As an unbound protein in the cytosol, a-syn is intrinsically disordered, however upon lipid
binding a-syn becomes «-helical [6] as illustrated by the cartoon in Fig. 3.1 b. Due to its
N-terminus (aa 1-90) lipid-binding capacity, many studies have investigated the interaction
between a-syn and synthetic lipid mono- and bilayers [7, 8, 9, 10, 11, 12, 13], and show that
a-syn can sense curvature and preferentially binds to small vesicles [14, 11, 15, 16]. A-syn
favours binding to highly curved surfaces such as those of small vesicles in which the spacing

between each phospholipid unit is larger, as illustrated by the drawings in Fig. 3.2.
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Fig. 3.2 Cartoon of micelle-based membranes to illustrate how curvature affects packing of
phospholipid groups. The spacing between adjacent phospholipid is smallest (ds and d; ) for
surfaces with flat or low curvature (a-b), and largest (dg) for surfaces with high curvature (c)
such as small micelles or vesicles. This allows certain proteins to “sense curvature”, i.e. to
bind to membranes which have a larger spacing between their phospholipid units.

Furthermore, a series of studies from our group have recently showed that a-syn can bind
physiological vesicles isolated from rat brains via its N-terminus and in a calcium-dependent
manner at the C-terminus, leading to the formation of an extended double-anchor mechanism
[17, 18, 5] (Fig. 3.3). This mechanism indicates a-syn can bind two vesicles together, or a
vesicle to the plasma membrane (Fig. 3.3), suggesting a-syn’s physiological role could be to

act as a calcium-dependent modulator of vesicle homeostasis and/or vesicle recycling [5].

3.1.3 A-syn and membrane trafficking

Vesicle recycling is a well-documented membrane trafficking pathway at synapses, which
are the essential communication junctions between neurons. Vesicles filled with neurotrans-
mitters dock to the plasma membrane in a region called the active zone, and then fuse with

the membrane (exocytosis) releasing the neurotransmitters. Vesicle components are later
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Fig. 3.3 Drawing showing a-syn’s potential double anchor mechanism between two vesicles,

or a vesicle and the plasma membrane, through its lipid binding properties at its N and C

termini. The dotted rectangles show how a-syn can bind either two vesicles together or a
vesicle to the plasma membrane.



3.1 Introduction to alpha-synuclein 53

retrieved from the plasma membrane (endocytosis) and are refilled with neurotransmitters to
repeat the cycle.

A-syn knockouts (KOs) have been previously shown to affect the size of the synaptic
vesicle pool [19, 20], i.e. the vesicle group readily available for recycling, suggesting a-syn
acts as a modulator of vesicle homeostasis at the presynapse. This potential modulatory
behaviour, along with a-syn’s ability to bind vesicles, suggests a-syn may have a role in
vesicle recycling. Furthermore, a-syn is not present in all vesicles, but only in sub-populations,
which suggests it might have a specific function in vesicle recycling [21].

A-syn’s role, however, is difficult to pinpoint, as there are multiple mechanisms involved
in vesicle recycling in neurons [22, 23]. Understanding these mechanisms is complicated by
the presence of multiple pathways of exo/endocytosis, such as the canonical clathrin-mediated
endocytosis (CME) (Fig. 3.4 a), SNARE regulated membrane fusion (Fig. 3.4 b), or the non-
canonical activity-dependent bulk transport, fast compensatory, ultrafast, and kiss-and-run
mechanisms [22] (Fig. 3.4 ¢). CME is a scaffolded inward budding of the plasma membrane
which uses a complex coat of over 50 endocytic proteins, including clathrin, to induce
membrane curvature [24] and take in neurotransmitters. SNARE regulated membrane fusion
is the opposite topological process, whereby a vesicle comes into contact with the plasma
membrane and a multi-protein complex known as the SNARE complex promotes the creation
of a fusion pore between the two lipid membranes. Both of these canonical methods involve
energy expensive processes, requiring ATP [25] to mobilise complex protein machineries,
and take from 10-20 seconds to complete. In contrast, non-canonical mechanisms such
as kiss-and-run, in which a fusion pore is transiently opened between a vesicle and the
plasma membrane for quick uptake or release of neurotransmitters, or ultrafast endocytosis,
in which a vesicle is formed independent of clathrin within 200-300 ms [22], occur in time
scales of milliseconds. Specifically, kiss-and-run events have been reported to still occur
at sub-physiological temperatures (e.g. 4°C), whereas canonical endocytosis mechanisms
such as CME, as well as ultrafast, are inhibited at sub-physiological temperatures [25]. This
temperature dependency in vesicle recycling mechanisms provides a way to observe the effect
of different mechanisms by incubating samples either in physiological or sub-physiological
temperatures.

Morevoer, differences in cell type used, method and frequency of stimulation to induce
trafficking events, and methods to observe exo/endocytosis, e.g. biochemical, fluorescence
microscopy, electrophysiology, etc., make it difficult to determine the identity of membrane-
trafficking mechanisms [22]. Moreover, the speed of neurotransmitter release (~millisecond
scale [26]) and the size of the vesicle pores (~1-2 nm across in neuronal cell types [27]) make

it difficult to image vesicle recycling events in real time.



54 A single-molecule method to study the role of alpha-synuclein at the synapse

Clathrin-mediated endocytosis (CME) Exocytosis via SNARE complex

AN . ™ VAMP-2
Clathrin ) \—Syntaxm
AL \ coat A \ C—3NAP-25
K N \ - \ \1'
) =" / / : A
X—7 D i
ynamin J

Kiss and run

Fusion pore
T opens and closes

Fig. 3.4 Drawing showing several mechanisms of vesicle recycling. (a) Clathrin mediated
endocytosis, (b) Exocytosis via the SNARE complex, and (c) kiss-and-run.

Exocytosis

The role of a-syn in exocytosis and endocytosis is controversial, as different studies of
a-syn’s influence on membrane trafficking events report contrasting views. Regarding
exocytosis, the modest overexpression of wild type a-syn has been shown to inhibit synaptic
vesicle exocytosis in PC12 cells and chromaffin cells [28], in neurons [29, 30], and in mice
[31, 32, 33]. Conversely, an increase in neurotransmitter release (exocytosis) was determined
in neurons injected with a-syn [34]. A-syn knockouts (KO) on the other hand have been
reported to show decreased exocytosis in neurons [34] and in mice [35, 31, 36]. Other studies
using a-syn KO mice have reported both no effect on exocytosis [2, 37], as well as an increase
in exocytosis [38, 39, 40].

The contrasting views presented above indicate a-syn may be implicated in an exocytosis
mechanism. A-syn has been shown to bind VAMP-2, a member of the SNARE complex (Fig.
3.4 b), at its C-terminus and to promote SNARE complex assembly [41]. This link between
a-syn and VAMP-2 has recently been suggested to help in the physiological clustering
of synaptic vesicle pools, thereby restricting their egress to the plasma membrane and
attenuating vesicle recycling and exocytosis [42]. Another recent study found overexpressed
and endogenous a-syn promotes cargo discharge and reduce the closure of the fusion pore in
adrenal chromaffin cells and neurons [43], suggesting a-syn has a potential role in kiss-and-
run (Fig. 3.4 ¢).
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Endocytosis

Recent studies using models with a-syn overexpression suggest a-syn promotes clathrin-
mediated endocytosis (CME) of synaptic vesicles. These studies reported an increase in
membrane uptake after measuring increased internalization levels of surface receptors such
as transferrin [44], NMDAR subunit NR1 [45], and dopamine transporter [46] in neurons.
During CME, clathrin is the main component of the coating over the budding vesicle which
supports and promotes membrane curvature, and dynamin is a key protein which coils around
the neck of the budding membrane to achieve membrane scission and detachment of the
vesicle [47] (Fig. 3.4 a). A study in which dynamin 1,3 were knocked out in synapses,
resulting in vesicle buds that did not fully detach from the membrane, showed that a-syn
and clathrin clusters colocalised with the membrane in similar abundance [20]. This study
suggests a-syn potentially acts at the very beginning of CME to induce membrane curvature
before fission of the vesicle by dynamin in CME [20].

The incomplete picture for the role of a-syn in synaptic vesicle recycling likely stems from
the variety of cell types, stimulation techniques, and analysis methods used in the studies
mentioned above which may not capture all release and recycling events. Furthermore,
different expression systems of a-syn, i.e. overexpression or single, double, or triple KO can
complicate interpretations. A detailed review on a-syn’s potential role in vesicle recycling
mechanisms is provided by Lautenschlager et al. [6].

3.1.4 The role of a-syn at the presynapse
A-syn and non-canonical vesicle trafficking mechanisms

In the context of the contrasting views presented above on the role of a-syn in synapses,
we were interested in studying the role of endogenous a-syn at the presynapse to clarify its
relationship to vesicle trafficking mechanisms. This is important, as a better understanding
of a-syn’s function at the synapse could lead to new insights on how it then misfolds and
becomes part of Parkinson’s Disease pathology. We examined the spatial relationship between
a-syn and endocytosed vesicles and compared it to that of VAMP-2 and endocytosed vesicles.
VAMP-2 is an abundant synaptic protein which is known to be involved in exocytosis as a
member of the SNARE complex [41], and to be taken up during CME [23, 20]. Therefore,
VAMP-2 will likely overlap with vesicles recycled via these two bulk mechanisms. We
investigated if a-syn colocalised with internalised vesicles via CME or the SNARE complex
like VAMP-2, or if it colocalised with vesicles internalised via different (non-canonical)

mechanisms.
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Calcium mediates vesicle recycling in dopaminergic neurons

Dopaminergic neurons (DN) are the most vulnerable neurons in the substantia nigra pars
compacta (SNc), one of the primary brain regions affected in Parkinson’s Disease. Calcium
is an important regulator of DN activity, as these neurons have voltage-gated calcium (Ca>")
channels which mediate autonomous pace making [48, 49] i.e. the oscillatory generation of
action potentials. Calcium is also one of the key molecules involved in vesicle release and
recycling along with ATP, as it provides cues for the release or uptake of neurotransmitters
via synaptic vesicles [50]. Since the vesicle-binding properties of a-syn at the C terminus
are mediated by calcium [5], we applied cluster analysis methods to investigate how the
single-molecule distribution of a-syn was affected by the presence or absence of calcium
compared to that of VAMP-2.

3.2 Experimental Methods

3.2.1 Synaptosome preparation and stimulation

Synaptosomes were obtained by homogenising two WT Sprague-Dawley rat brains and then
separating pinched-off synapses from neurons in a size-exclusion gradient. The preparation
was performed by Dr. Amberley Stephens from the Molecular Neuroscience Group, and it is
illustrated in Fig. 3.5. The detailed protocol for preparing synaptosomes can be found in [5].

3.2.2 Fluorescent labelling to visualise synaptic proteins and vesicle up-
take

Synaptosomes were stimulated for 30 min at 37°C or 4°C (Fig. 3.5) with extracellular
solution containing a final concentration of 0.05 nM mCLING, which is a fixable lipid
intercalating dye labelled with Atto 647N (#710 006AT1, SYnaptic SYstems, Gottingen,
Germany) made at either 5 mM KCI + 2 mM CaCl2 (mimicking a physiological extra cellular
buffer), 5 mM KCI + 1 mM EGTA (a calcium depleted extracellular buffer), 70 mM KCI +
1 mM EGTA (mimicking stimulation without a calcium buffer). Synaptosomes were then
fixed with 4% formaldehyde and 0.2% glutaraldehyde (Sigma-Aldrich) in PBS. Fixation
was quenched by washing with 0.1 M glycine in PBS for 5 min. To chemically quench
the mCLING bound to the outer membrane of the plasma membrane of the synaptosomes,
i.e. to eliminate its fluorescent emission and to allow us to visualise internalised mCLING,
0.75 mM bromophenol blue was added for 5 min and washed off with PBS three times [51].
Synaptosomes were stained for alpha-synuclein (D37A6 XP, 1:500 dilution, rabbit, Cell
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Fig. 3.5 Illustration of the synaptosome preparation procedure. The brain from a rat was
extracted and homogenised to pinch off the synaptic ends of neurons, which reform into
synaptosomes. These were incubated at 37°C and 4°C with a membrane intercalating dye
(mCLING) to tag internalised vesicles, and then fixed and stained for imaging.
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Signalling, Danvers, US) and VAMP2 (104211, 1:500 dilution, mouse, SYnaptic SY stems,
Gottingen, Germany). The secondary antibodies anti-rabbit Alexa Fluor 568 (ab150067,
1:500 dilution, Abcam) and anti-mouse Alexa Fluor 488 (ab175700, 1:500 dilution, Abcam)
were used to visualise protein localisation. The fluorescent staining of the synaptosomes was
also performed by Dr. Amberley Stephens and is illustrated in the second row of Fig. 3.5. At
this point, the synaptosome samples were plated on coverslips, ready for imaging, which is
where my responsibility and contribution in the project began. Onwards, all the experiments,
analysis, and simulations were performed by me unless otherwise specified.

3.2.3 Multi-colour dSTORM to study synaptic proteins in synaptosomes
TIRF/HILO microscope used for diSTORM

A custom-built wide field microscope based on an Olympus (Center Valley, PA) IX-73 frame
was used to perform dSTORM. The system included a 488-nm laser (Coherent Sapphire
488-300 CW CDRH), a 561-nm laser (Cobolt Jive 500 561 nm), and a 647-nm laser (MPB
Communications Inc. VFL-P-300-647-OEM1-B1). Laser light entering the microscope
frame was reflected from a dichroic mirror (Chroma ZT488/561/647rpc) into a 100x 1.49 NA
oil objective lens (Olympus UAPON100XOTIRF), and then onto the sample. Light emitted
by the sample passed through the dichroic and a set of 25 mm band-pass filters (Semrock
FF01-525/45-25, Semrock FF01-600/37-25, and Semrock FF01-680/42-25 respectively for
the 488, 561, and 647-nm laser lines) before reaching the microscope side port. Images were
then relayed onto a camera (Andor iXon Ultra 897) by a 1.3x magnification Cairn Twincam
image splitter. The reflective arm of the splitter was not used for these experiments. The
optical layout for this setup is illustrated in the schematic shown in Fig. 3.6.

The illumination profile in most conventional microscopes, including the one showed in
Fig. 3.6 is Gaussian, which implies a trade-off between illumination uniformity and photon
efficiency. Typically, microscope users crop the camera field of view (FOV) to use only
the center of the Gaussian beam, however this wastes precious photons at the edges of the
field. Alternatively, the full FOV can be used, at the cost of under-exposing the edges. To
ensure a uniform rate of fluorophore activation across the FOV during dSTORM experiments,
a Gaussian-to-top-hat beam shaper (Topag Lasertechnik GmbH GTH-5-250-4-VIS) was
implemented and characterised (Fig. 3.7), as described by Rowlands et al. [52]. This top-hat
beam shaper is compatible with the multi-colour implemented in this chapter, and unlike
other reported beam homogenisers using micro-lens arrays [53] which can be cumbersome
to align, this system only uses a single element which is easy to align. During experiments,

multi-colour images were acquired sequentially, starting with the 647-nm excitation channel,
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Fig. 3.6 Optical layout of the widefield microscope used for single-molecule localisation.
The layout includes 4 laser lines, a half-wave plate for intensity modulation, a gaussian-to-top
hat beam shaper as described in Rowlands et al. [52], a 100X oil-immersion TIRF lens with
1.49 NA, and an electron-multiplying charge-coupled detector (EM-CCD).
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Fig. 3.7 Demonstration of the improvement in pixel uniformity when using a top hat beam
shaper, compared to a Gaussian. Images in a 60.4x60.4 um? field of view of a Chroma test
slide. The display range is identical for both the Gaussian and the top-hat image; the lower
limit is the dark level, and the upper limit is 1.2 x the 95th percentile value for each image.
Figure adapted from Rowlands et al. [52], a 100X oil-immersion TIRF lens with 1.49 NA,
and an electron-multiplying charge-coupled detector (EM-CCD).

followed by the 561 and the 488 nm channels. This order was chosen to avoid crosstalk,
namely the excitation of a dye by laser lines other than its corresponding excitation line,
as well as to avoid bleaching of the far-red dye by the 488 and 568 nm laser lines. Highly-
inclined illumination and laminated optical sheet (HILO) [54] was used to minimise the
signal contribution from the inhomogeneous background in the synaptosomes, as this not only
allows for a better signal-to-background ratio than epi-illumination, but also for a larger axial
excitation range compared with total internal reflection fluorescence (TIRF) illumination
(albeit with a lower signal-to-background ratio)[54]. HILO is achieved by translating the
collimated beam exiting the telescope in Fig. 3.6 laterally across the tube lens, which in turn
laterally shifts the excitation spot in the back focal plane of the objective towards the edge of
the clear aperture. This results in a collimated, off-axis beam exiting the objective towards
the sample at a steep angle, as illustrated in Fig. 3.8. The inset in the sample plane on Fig. 3.8
shows a cartoon comparing the epi illumination scheme (green) in which the entire sample is
flooded with light and therefore the background is high, and the HILO scheme (purple) in
which a thin sheet of light exits the objective at an angle and selectively illuminates only a
slanted plane ~6-15 pum thick in the sample [54].

For the dSTORM experiments, 16000 frames were acquired per colour channel, with an
exposure time of 10 ms per frame and an electron-multiplying (EM) gain of 200. The number
of frames was chosen to be the largest number of frames the camera would capture before

splitting the acquired frame stacks into two, as a practical way to keep the reconstruction
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Fig. 3.8 Schematic of the HILO implementation in the microscope setup from Fig. 3.6. The
epi-illumination beam is translated away from the optical axis before entering the telecentric
tube lens, such that the laser focus spot is translated in the back focal plane of the objective.
This results in an inclined light sheet exiting the objective towards the sample, as illustrated
in the zoomed inset.

step simple. This number of frames also proved sufficient to properly sample our structures,
as they were densely labelled. The exposure time was chosen as the minimal time required to
capture at least 1000 photons per frame on average for the 647 nm channel, and at least 500
photons per frame on average for the 568 and 488 nm channels, determined experimentally by
calculating the number of photons obtained per frame as a function of exposure time. Prior to
imaging, samples were placed on the microscope stage for ~40 minutes to allow any thermal
or mechanical fluctuations of the system to reach a steady-state, and therefore minimise
sample drift during the acquisitions. This settling time was determined empirically as well,
by visualising the drift in the image plane of the camera as a function of time and recording
the time at which the focus did change over a 10-minute span. Additionally, an Olympus
nosepiece (Olympus IX2-NPS) was used to decouple the objective from the mechanical stage
during fine focusing to minimise mechanical and thermal drift. The irradiance at the sample
plane used for the ZSTORM experiments was measured to be approximately 10 kW/cm? for
all laser lines, as recommended in the seminal protocol for dSSTORM [55]. The microscope
was designed and built by Dr. Romain Laine and Dr. Florian Strohl in 2015, and it was
rebuilt in 2017 by Dr. Strohl, Dr. Christopher Rowlands, and me.

Photoswitching buffer used for ASTORM experiments

The adequate photo switching of fluorescent dyes for dISTORM requires not only high laser

excitation to drive the fluorophores into a dark state, but also a buffer solution with oxygen



62 A single-molecule method to study the role of alpha-synuclein at the synapse

scavengers and a reducing thiol to ensure a low duty cycle for high localisation precision, as
discussed in Chapter 2. The recipe in Table 3.1 was used for all our SSTORM experiments,
adapted from Van de Linde et al. [55]:

Table 3.1 Ingredients for photo switching buffer used in ZSTORM experiments.

Amount | Reagent Comments

Enzyme Stock Solution
100 uL. | Catalase
200 uL | TCEP 1 mol/L.
25 mL Glycerine
22.5 mL | Distilled water

1.25 mL | KCI 1M

I mL Tris-HCl1 pH 7.5 | 1 mol/L

50 mg Glucose oxidase

Glucose stock solution (50 mL). Make 1 mL aliquots and store at -20°C
5¢g Glucose

45 mL Distilled water | 1 mol/L
SmL Glycerine
MEA stock solution (10 mL). Make 200 L aliquots and store at -20°C
1,136 g | MEA-HCI Dissolve for 1 mol/L soln. Adjust pH to 8.
10 mL Distilled water
dSTORM buffer (1.5 mL). Volume for single LabTek well

543 uL | Glucose Oxygen scavenger
69 uL Enzymes Oxygen scavenger
105 L. | MEA Reducing thiol
783 uL | PBS

24 uL KOH 1 M for pH 8

Reconstruction of SMLM data sets

The reconstruction of the acquired frames was done in thunderSTORM [56], using the
default parameters for filtering (Wavelet filter, order 3, scale 2), approximate and sub-pixel
localisation of molecules (Gaussian PSF with a 3 pixel fitting radius and a 1.6 pixel initial
sigma), and visualisation (Average Shifted Histograms, 10x pixel magnification). The camera
parameters used were: 117 nm pixel size measured at the image plane, 15.76 photoelectrons
per A/D count [57], 200 A/D count base level [57], EM Gain of 200.
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3.2.4 Statistical analysis

The colocalisation and cluster analysis results in this chapter were presented using estimation
graphics [58]. In the analysis of two data groups, individual data points are displayed in
bee swarm plots, and the effect size, or difference of means between groups, is plotted
on a separate axis with its origin aligned with the mean of the test group. A 95% confi-
dence interval calculated with bootstrap resampling is plotted as a sampling distribution
around the difference of means and used as an indicator of precision. This is referred to
as a Gardner-Altman plot. Summary statistics (mean and standard deviation) are displayed
as a gapped line to the right of each bee swarm plot. Two biological replicate experi-
ments per temperature condition and per calcium condition were conducted, and in each
replicate over 10 images were acquired and reconstructed. For each condition analysed
in the results section, N represents the number of extracted and analysed synaptosomes.
The number of individual localisations analysed in each data set was not quantified, since
dSTORM experiments suffer from overcounting of localisations and therefore the number
of localisations varies widely and is not representative of the stoichiometry of the sample,
especially in dense data sets like the synaptosomes. Estimation graphics were generated
using the dabestr package from Ho et al. [58]. The scripts for generating estimation plots
from the colocalisation (part1Ch3_results_synaptoAnalysis_colocalisation_ripleysK.R) and
cluster analysis (part1Ch3_results_synaptoAnalysis_clusterSize_RMSD.R) results can be
found in the supplementary code repository for this thesis https://github.com/pedropabloVR/

supplementary-code-thesis.

3.3 Synaptosomes as a model to study vesicle recycling

Synapses are abundant in cultured neurons, and these have been previously examined using
SMLM [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72]. However, in-vitro neuronal
imaging can suffer from a strong background signal contribution from the cell body, and
synapses might be partially obscured or concealed by other cellular structures. Instead, we
used pinched-off synapses from rat brains, called synaptosomes (Fig. 3.9), to study the
distribution of a-syn and VAMP-2 inside synapses with minimal background contribution
from cellular structures. Moreover, isolating synaptosomes directly from rat brains to observe
the role of a-syn is faster than culturing primary neurons from rat brains, which takes weeks.
Synaptosomes are a well established model, which remain metabolically active and can
be stimulated to trigger vesicle release shortly after preparation [73]. Synaptosomes can
also be easily treated with drugs and differing temperature to allow observation of different

endo/exocytosis mechanisms.
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Fig. 3.9 Synaptosome model to visualise colocalisation of mCLING-stained internalised
vesicles with a-syn and VAMP-2. (a) Synaptosomes are pinched-off synapses from neu-
rons which reseal into vesicle-filled spheroids. (b) Zoomed-in drawing of a section of the
synaptosome membrane, showing how the membrane-intercalating mCLING dye is trapped
during vesicle uptake. The proteins a-syn and VAMP-2 reside on the vesicle outer membrane,
fluorescently labelled with conventional antibodies.

A-syn and VAMP-2 were stained with antibodies to visualise their spatial distribution in
synaptosomes. The membrane-intercalating marker mCLING tagged with an Atto 647N dye
[51], was used to label the internalisation of vesicles. mCLING was added to the extracellular
media during incubation, exposing the plasma membrane to the dye. When the plasma
membrane was internalised during endocytosis, the mCLING dye was also taken up and

encapsulated in vesicles. Fig. 3.9 illustrates the labelling for a-syn and VAMP-2, and how
mCLING is used to visualise vesicle uptake in synaptosomes.
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3.4 Development of SynaptoAnalysis, software tool to anal-

yse single-molecule data from synaptosomes

dSTORM experiments were performed on the synaptosomes, and the acquired data sets were
reconstructed in ThunderSTORM [56]. To process and analyse the resulting localisation
data tables, a bespoke software toolkit, SynaptoAnalysis, was developed to extract quanti-
tative information from localisation microscopy data sets. SynaptoAnalysis was written in
Matlab; it includes pre-processing routines to remove chromatic aberrations, automatically
detect synaptosomes, and filter the localisation data to remove artefacts and false positives.
Additionally, SynaptoAnalysis incorporates scripts to characterise the spatial distribution
of different fluorescent markers and measure colocalisation and cluster size. For colocal-
isation analysis, both an overall overlap coefficient and Manders M| and M, coefficients
were used to assess the fractional overlap between fluorophores. For cluster size analysis, a
root-mean-square distance from centroid (RMSD) measure was proposed as an alternative to
using Ripley’s K-function to characterise the spread of spatial point patterns.

An overview of the data processing pipeline using the SynaptoAnalysis scripts is shown
as a flowchart in Fig.3.10. Readers mainly interested in the biological results can jump to
Section 3.6. For researchers who want to use or further develop the software, this section
describes each component of SynaptoAnalysis in detail, with demonstrations of usage and
characterisation using test data sets. The source code for SynaptoAnalysis can be found in
this repository https://github.com/pedropabloVR/Synaptosome- Analysis, where it can be
forked and modified by future users.

Inputs SynaptoAnalysis Output
Bead Raw } i
images data Synapto-registration
- ~v—— r +»{Compare_conditions.m H
Reconstruct in IRegﬁtered o with
thunderSTORM oc. files - , .csv file wi
e oo™ | @l measured
5 Synaptosome_Analysis.m expeFr)imentaI repeats » features for
Loc. files each detected
: Filtering synaptosome
Automatic region detection Ly RMSD analysis.m i
Colocalisation analysis B

RMSD measurement

Fig. 3.10 Data processing pipeline using SynaptoAnalysis. The localisation files from
reconstructed bead images and raw data files in thunderSTORM are used as inputs. The
processing and analysis routines (grey rectangles) can be used sequentially, resulting in a
.csv file with a list of identified synaptosomes and measured features as output.
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The routines included in SynaptoAnalysis were developed specifically to solve problems
encountered either during data acquisition, or with the reconstructed localisation data in the
initial stages of analysis. For example, visible chromatic aberration between the different
channels was observed during image acquisition, and therefore a chromatic registration rou-
tine was developed as a first pre-processing step after reconstruction. The synaptosomes were
also observed to have a high density of localisations across all three channels during SSTORM
acquisitions, therefore a density threshold was applied to remove sparse, background local-
isations, as well as an intensity threshold using Otsu’s method [74]. Upon reconstruction
of the data, the first few regions of interest containing synaptosomes were cropped by hand
to perform preliminary analyses, however this manual procedure was deemed unfeasible
for large data sets. Therefore, an automated synaptosome detection routine was developed
which uses the spatial overlap between the three colour channels as a requirement for a
cluster to be classified as a synaptosome. These processing routines, which were developed
separately over time, were integrated together into SynaptoAnalysis to create a streamlined
data processing pipeline. These routines were validated either with error functions computed
pre- and post-validation (chromatic registration) and percentages of detected candidates as
a function of a given threshold (spatial overlap threshold), or empirically by observing the
effect of the applied routine on the data and testing different parameters (e.g. filter radius,
localisation density per area, intensity threshold, etc.). The colocalisation and cluster analysis
routines were included specifically to address the two experimental objects outlined in section
3.1.4, i.e. to measure the colocalisation of a-syn and VAMP-2 with synaptic vesicles, and
to measure the cluster size of a-syn and VAMP-2 in physiological and calcium-depleted

conditions. Both analysis routines were validated using simulated, ground truth data.

3.4.1 Registration of multi-colour single-molecule data

To prepare the multi-colour channel single-molecule data for colocalisation analysis, chro-
matic offset as described in Chapter 2 Section 2.3.1 had to be minimised using registration.
During the acquisition procedure, chromatic offset was minimised by imaging the three
channels sequentially, such that all wavelengths traveled the same optical path onto the same
detector. This also ensured the three colour channels had similar monochromatic aberrations
across the FOV and the residual aberrations were primarily chromatic.

A registration method was implemented based on Annibale et al.’s approach [75], in
which a mapping function is determined between the localised coordinates of fluorescent
fiducials at the different desired wavelengths, relative to the coordinates from a fiducial

imaged at a reference wavelength. The coordinates from the reference channel act as a
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ground truth location of the fiducial positions. This mapping function can then be applied to
register the experimental data.

Several images from sparse distributions of 100-nm fluorescent beads were captured
at the end of each imaging session to serve as fiducials, with the same laser lines used for
the biological sample. These images were then localised with high precision using thun-
derSTORM [56]. To sample the chromatic aberrations over the entire FOV, the coordinates
of several images of bead distributions were superposed to simulate dense sampling of the
available coordinate space, removing any overlapping coordinates. A function was then
used to map the localised coordinates of the warped colour channels (561 and 488 nm)
to the reference channel (647 nm) using the local weighted mean algorithm proposed by
Goshtasby [76], and first applied by Churchman et al. [77] in the context of single-molecule
localisation microscopy. This algorithm uses a set of control points spread uniformly across
the FOV to locally determine polynomial functions that map each control point in the warped
channel to its corresponding control point in the reference channel. The mapping function,
represented in Fig. 3.11 d as a normalised vector field, was determined using the Matlab
function fitgeotrans, which calculates polynomial transforms between two matrices.

The total registration error (TRE) was implemented as a figure of merit for the mapping
function, which is defined prior to registering the reference and the warped channel as

follows:

TREpe = Y1/ (6 —,)2 4 (3 — 34, )2 G3.1)
i

where (x, ,y,) are the coordinates for the reference channel control points, and (x,, ,y,,) are
the coordinates for the warped channel control points. The TRE post-registration is defined
as:

L N P

where (u,v) are the resulting coordinates after applying the mapping function to the warped
channel control point coordinates (x,, ,y,,). The resulting mapping function was saved for
each of the warped channels (561, 488 nm) and then applied to the experimental data sets.
The results for a representative calibration are shown in Fig. 3.11, with a mean TRE pre and
post correction of 35 and 8 nm for the 561 nm channel, respectively, and 57 and 13 nm for the
488 nm channel. The improvement in the TRE pre- to post-registration is ~4-fold for both the
561 nm and the 488 nm channel. Figures 3.11 c illustrates the raw registration error between
the reference and the warped channel in the form of a vector field, and Fig. 3.11 d illustrates

the polynomial mapping function used to correct for the shift in Fig. 3.11 c. A number of
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Fig. 3.11 Localisation registration procedure to correct for chromatic aberrations in SMLM
data. The total registration error (TRE) in nanometres before correction and after correction
was plotted for the (a) 561 nm channel and (b) the 488 nm channel, where each data point
represents the TRE for the location of an individual bead. (c) Vector field representation of
the raw optical offset between the warped and the reference channel. (d) Normalised vector
field representation of a sample correction transform.
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outliers are present post-correction in Fig. 3.11 a and b, likely due to interpolation errors in
the computation of the polynomial transform at the edge of the field of view between the
reference and the warped coordinates.

The registration scripts were written by me and Ezra Bruggeman, using previous code
written by Dr. Romain Laine as a starting point and guide. The code is available at https:
//github.com/pedropabloVR/SR-registration.

3.4.2 Automatic detection of synaptosomes

After applying chromatic registration, a method was needed to discern between useful
regions of interest containing synaptosomes, and background noise from loose dye or random
cellular debris in our experimental data. The homogenisation and fractionation steps (Fig.
3.5) during the synaptosome preparation protocol outlined in Section 3.2.1 were prone
to including brain tissue debris such as membrane structures of the same density as the
synaptosomes [78], making it difficult to distinguish between useful and spurious signals.
An automatic synaptosome detection algorithm was developed based on filtering of single-
molecule localisation data sets followed by segmentation to detect localisation clusters.
These clusters were then classified as synaptosomes or debris based on their size, shape, and
localisation content. The filtering steps are described below:

Constraints on single-molecule localisation parameters

Spurious localisations with low intensity or high uncertainty can often arise from either
background or out-of-focus signal contributions in the sample. SynaptoAnalysis imports
the registered localisation files for the three colour channels and filters them based on frame
number, intensity in photon units, sigma value of the Gaussian fit, and uncertainty of the
centroid localisation to reduce the incidence of spurious localisations. The constraint values
for each parameter, summarised in Table 3.2, were either chosen empirically by looking at
histograms of the parameter value distributions for a number of samples or following from
examples in the literature [79]. The number of localisations removed due to these filters
varied widely depending on the density of emitters in the field of view and the amount of
background signal from the coverslip. The filters removed anywhere between a few thousand
localisations for a FOV with a few synaptosomes, up to hundreds of thousands of localisations
for crowded fields of view. Although large, these estimates are not representative of the true
useful number of localisations, since most rejected localisations were from background and

noise contributions.
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Table 3.2 Filtering values for single-molecule localisation parameters.

Parameter Value Comments
Minimum 500 Remove first 500 frames to avoid overly dense
number of localisations
frames
Minimum 500 Min. photons per switching cycle expected from an
intensity photons AF568 and 488 dye [79]
AF568,AF488
Minimum 1000 Min. photons per switching cycle expected from an Atto
intensity Atto photons 647N dye [79]
647N
Minimum 5 nm Points localised with an uncertainty smaller than 5 nm
uncertainty are likely spurious, or emitters which didn’t leave the on
state.
Maximum 40 nm The upper limit to our desired localisation precision is
uncertainty the diameter of a synaptic vesicle.
Density filtering

A density filter based on a nearest-neighbour search was applied to remove sparse locali-
sations in the 647 nm channel (mCLING), which were likely non-specifically bound Atto
647N dye clusters. The Matlab function rangesearch was used, which finds all neighbours
within a specified distance using Eq. 2.20. Localisations with fewer than N neighbouring
localisations within a specified radius R were discarded. The search radius R was chosen
from the maximum radius of a synaptosome, ~1500 nm [80], and the minimum number of
neighbours N was chosen from the average number of synaptic vesicles inside a synaptosome,
~300 [80]. The effect of the two filtering steps described above can be visualised in Fig.
3.12, in which only localisation clusters of a given size and density are preserved and all
other localisations are discarded. The filtered localisation data tables were used to generate
a reconstructed image for each channel, with each localisation drawn as a point on a black
canvas convolved with a Gaussian kernel with width proportional to the localisation precision

of the spot.

Segmentation

Following the localisation parameter and density filtering steps, reconstructed images were
segmented to remove candidate clusters too small to be synaptosomes. The filtered recon-

structed images for each channel (2D histograms) were binarised using Otsu’s method [74]
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reconstruction filtered reconstruction

Fig. 3.12 Effect of filtering SMLM data by constraints on the fit parameters and the density of
localisations. (a) Unfiltered 2D histogram representation of a sample data set reconstructed in
thunderSTORM. (b) 2D histogram representation after applying constraints on the number of
frames, intensity, sigma, and uncertainty of the localised points, as well as a nearest-neighbour
density filter to remove sparse localisations.

to create masks, as shown in Fig. 3.13 a. Objects with fewer than 200 connected pixels were
removed from the mask of the 647 channel. From the masks created, the Matlab function
regionprops was used to label the clusters in the binary mask, and to extract the centroid and
area for each cluster. No further filtering was applied on the 561 (a-syn) or the 488 (VAMP-2)
channels, as we had no a-priori knowledge of the size or distribution of the a-syn or VAMP-2
markers in our samples.

Colour overlap thresholding

The final step for synaptosome detection was to verify if the candidate clusters contained all
the fluorescent markers required for analysis. A minimum amount of overlap between the 647
and the 561 nm channels (mCLING and a-syn) and the 647 and 488 nm channels (mCLING
and VAMP-2) was necessary to test for colocalisation. This was accomplished by cropping
an 80x80 pixel® region around every synaptosome candidate in the binary masks and finding
its intersection with the masks of the respective cropped regions in the 561 and the 488 nm
channels. The intersection, as described in the Colocalisation section in Chapter 2, is the

percentage of spatial overlap between the non-empty regions in the masks. To determine a
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filtered mask overlay of masks

Fig. 3.13 Segmentation to remove small elements from reconstructed images (a) Representa-
tive mask from the 647 nm channel, after removal of elements with fewer than 200 pixels in
area. (b) Three-channel overlay of the masks for the 647 (red), 561(green), and 488 (blue)
nm channels.

suitable overlap threshold, the percentage of detected synaptosomes was plotted as a function
of the spatial overlap threshold for all the data sets collected as shown in Fig. 3.14.

To avoid discarding a large number of potentially useful candidates, the threshold was
chosen based on the overlap values (x-axis) for which the rate of change in the percentage of
detected synaptosomes started to flatten out in Fig. 3.14 a-d. A 10% minimum area overlap
threshold was implemented to select candidates which contained both a-syn and VAMP-2.
The localisation precision for each colour channel could also have a significant effect on
their spatial overlap, as the dyes exhibit different photon yields in each acquisition and will
therefore have different localisation precisions. A low photon yield for any dye will result in
a wider spread of its measured single molecule distribution (lower localisation precision),
than for a dye with a high photon yield, potentially causing an artificial spatial overlap
between the dye distributions. To mitigate the effect of this artificial overlap, localisations
with a precision larger than 40 nm for all channels were discarded as specified in 3.2. Finally,
a proximity filter was implemented to discard candidates which were closer than 300 nm
centre-to-centre from a neighbouring candidate to avoid analysing synaptosome clumps. The
coordinates of the 80x80 pixel® regions corresponding to the selected synaptosomes were
then extracted from the localisation data tables. A summary of the detection procedure, from
the registered reconstruction, to the filtering steps for automatic detection is illustrated in Fig.
3.15.
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Fig. 3.14 Percentage of detected synaptosomes as a function of the overlap threshold value
set for the mCLING/VAMP-2 and mCLING/a-syn channels. Both experimental repeats of
the 37°C experiment (a-b) and the 4°C experiment (c-d) were analysed.
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Fig. 3.15 Summary of synaptosome detection steps from localisation data using Synapto-
Analysis. (a) Reconstruction of dSTORM data from a representative FOV. (b) The registered
localisations are filtered based on localisation fit parameters and localisation density. A seg-
mentation step followed by a channel overlap threshold, and a nearest-neighbour proximity
filter allow us to automatically detect synaptosomes as shown in (c).
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Up to this point the SynaptoAnalysis algorithm to detect synaptosomes can be summarised

as follows:

1.

Superpose localisation files from multiple bead images as fiducials, and compute a
geometric transformation to register warped channels (568 and 488 nm) to a reference
(647 nm),

. Compute TRE,,. and TRE ;5 (Egs. 3.1 3.2). If TRE,,; < 20 nm, save transform and

apply on experimental data to reduce chromatic offset,

. Filter localisations by frame number, intensity, Gaussian fit sigma, and localisation

precision to remove poor-quality data,

. Apply a density filter using a nearest-neighbour search (Eq. 2.20) to remove localisa-

tions from loose dye particles or tissue debris,

. Segment reconstructed images using Otsu’s method, and remove objects with fewer

than 200 connected pixels,

. Compute the overlap between mCLING/a-syn and mCLING/VAMP-2 channels in all

detected synaptosome candidates, and only select those with a minimum 10% channel

overlap,

. Apply a proximity filter using a nearest-neighbour search to remove candidates located

within 300 nm of another candidate,

Finally, extract coordinates of the 80x80 pixel® region around each synaptosome
candidate, and store invididual localisation tables as .csv files for each synaptosome
detected.

After removal of spurious localisations and false positives, and extraction of the relevant

image regions containing synaptosomes, colocalisation and cluster analysis can now be

applied on each individual region. A typical analysis using SynaptoAnalysis could take

between 30 and 90 minutes, depending on the number of synaptosomes detected in each field

of view. The most computationally intensity step was the density filter, as it iterates over every

localisation and counts its nearest neighbours, which can be significantly time-consuming for

high-density data sets such as synaptosomes.

3.4.3 Colocalisation analysis

A robust metric was needed to quantify the co-occurrence between the spatial distributions
of mCLING/a-syn, and mCLING/VAMP-2. Multiple software tools exist to test for colocali-
sation in SMLM, as described in Table 2.2 of Chapter 2. Using existing colocalisation tools
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requires running independent scripts to obtain results, breaking the workflow of our software
pipeline. This is reasonable for one-time uses; however, it becomes cumbersome for running
analyses multiple times on large datasets such as those in SMLM, e.g. when evaluating
the sensitivity of the synaptosome detection on parameters such as the overlap threshold
(Fig. 3.14). Therefore, routines were integrated into SynaptoAnalysis to calculate both the
localisation and pixel-based co-occurrence between the localised marker distributions. A
pixel-based co-occurrence indicator was first chosen to analyse the synaptosome data sets,
since we were interested in understanding how the point distributions overlapped, weighted
by their relative density. A density-weighted overlap coefficient (WOC) was calculated
between the binned localisation distributions of the mCLING and a-syn, and mCLING and
VAMP-2, as specified in the equation below:

Y LiixLy;

\/Z?:l L%,i X \/Z?:l L%,i

where L and L, represent the number of localisations in channel 1 and 2, respectively, for

WOC = (3.3)

a total of n pixels analysed. This indicator is the overall overlap coefficient in Eq. 2.25
from Manders et al. [81], as described in Chapter 2. Although the WOC does not provide
an absolute quantitative measure of colocalisation [82], it is a useful indicator to compare
relative measures of co-occurrence between two markers. To deliver more quantitative results
on the fractional co-occurrence between colour channels, Manders’ individual M; and M»

coefficients (Eqs.2.21 and 2.23) were also applied on the binned localisations.

Validating spatial co-occurrence measurement using Manders’ coefficients

The colocalisation routines were validated with a sample synaptosome data set in a series of
extreme cases. Validation is important, as it ensures the software produces expected results
with test data sets. To generate a test data set, the localisation table of a sample FOV was
split into even and odd halves to simulate two independent single-molecule measurements of
the same underlying structure, as shown in the diagram on Fig. 3.16 a and b. Images (2D
histograms) were reconstructed using the even and odd data sets (Fig. 3.16 b), and yellow
insets show the point distribution of the same underlying structure, but reconstructed using
distinct sets of localisations. This test data set simulated a dual-colour label on the same
structure, and allowed us to test the maximal experimentally available colocalisation.

The spatial co-occurrence was measured with the WOC, and Manders’ M| and M;
coefficients between the even data set with itself, the odd data set, and the odd data set rotated
90 degrees to simulate a random distribution of localisations following Dunn’s method [83].

The even-odd data set demonstrated the maximal experimentally available colocalisation,
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yielding high but not complete colocalisation from two simulated independent measurements
of the same underlying structure Fig. 3.16 c. The even-even, and even-rotated odd data
sets expectedly yield complete and zero co-occurrence, respectively. This validation using
extreme cases in which perfect, high, and zero co-occurrence was expected verified the
implemented WOC and Manders’ individual M| and M, coefficients deliver sensible results
for comparing the spatial co-occurrence of two point distributions. By effectively splitting
the localisation data into two subsets, each with half the localisations, we are reducing the
total effective information about the sample and therefore increasing the influence of noise
and background contributions to the overall signal. For high density, punctate samples such
as the synaptosomes this approach can be satisfactory as demonstrated here, however for
continuous structures such as microtubules or actin this approach would be inadequate. An
alternative to Dunn’s method to test for colocalisation could be to use Costes” method applied
to SMLM data, in which pixel regions on the order of the average localisation precision are
scrambled and their overlap is tested with an unscrambled image. This approach is robust

and could be applied in the future to validate colocalisation for the synaptosome data.

3.4.4 Cluster analysis using the RMSD from centroid

A-syn and VAMP-2 clusters from SMLM data have been previously measured using Ripley’s
H-function (Eq. 2.28) [5]. Although Ripley’s H-function has become widespread to measure
cluster size in SMLM [84], it has been reported to overestimate the cluster radius by up to
a factor of two [85]. We decided to introduce an alternative metric, the root mean square
distance (RMSD) from centroid, to provide an estimate of a cluster’s size. The RMSD from
centroid of a spatial point pattern can be defined as:

RMSD =

S| =

\/Z(xi_xc)2+(yi_YC)2 (3.4)
i=1

where (x.,y.) are the coordinates of the centroid, and (x;,y;) for i € 1 : n are the coordinates
of all other n points in the pattern. The RMSD provides an interpretable measure of cluster
size, i.e. the average distance of any point from the centre of the cluster, and unlike Ripley’s
H-function, does not require an input search radius. The two following sections describe
simulations performed to examine the influence of point density and localisation uncertainty
on the RMSD measurement.
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Fig. 3.16 Validation test for the colocalisation of two point distributions using the WOC
and Manders individual coefficients. (a) A sample synaptosome localisation data set was
split into even/odd localisations to simulate independent measurements of the same structure.
(b) Reconstructed images for the split localisation tables, with insets displaying the same
underlying structure but reconstructed with different subsets of localisations. (c) The spatial
co-occurrence is plotted for all synaptosomes identified in the FOV for comparison between
the even data set with itself, with the odd data set, and with the odd data set rotated by 90°.
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Simulations using a circle with jittered localisations to determine sensitivity of RMSD

To validate the RMSD as a measure of cluster size, simulations were performed to measure
how closely the RMSD approximates the theoretical average distance of any point from the
centre of mass of a spatial point pattern. Further, the effects of large localisation uncertainty
and high point density on the RMSD were also examined, as these parameters could bias
cluster size measurements. Localisation uncertainty was modelled as a random jitter or shift
from the true position of a point.

First, a circle was chosen as the simplest shape with a closed-form equation for the

average distance from any point inside the shape to its centre, given below:

2R

where R is the radius of the circle. A circle with a true radius R of 100 nm was simulated
and a set of N random points were placed within the boundary of the circle to simulate
localisations from a 2D circular object, as shown in Fig. 3.17 a. Each localisation was then
jittered in a random direction in 10 nm increments by a maximum amount Jmax, with Jmax
ranging from O to R. The RMSD was calculated during each iteration, and the percentage
error between the RMSD and average distance < R > from Equation 3.5 was plotted as a
function of the maximum jitter size for N=1000 (Fig. 3.17 a,c), and N=50000 (Fig. 3.17 b,d).

With zero jitter, the RMSD differs by ~5% from < R > in both Fig. 3.17 c and d. As the
jitter in the point pattern increases, the discrepancy between the RMSD and < R > increases
as the magnitude of the jitter in the point pattern gets closer to the value of the radius of the
underlying shape. This is a reasonable result; as the uncertainty in the measurement (the
jitter) becomes close to the magnitude of the actual measurement (the radius of the circle),
the expected error for the size estimate will be large. In addition to this, the RMSD was not
very sensitive to the density of localisations, as the error curve between the calculated RMSD
and < R > as a function of jitter was similar for the case a dense point pattern than for a
sparse one (Fig. 3.17 ¢ and d).

Simulations using an arbitrary shape with jittered localisations

The previous simulation using a circular point pattern was useful to examine how localisa-
tion uncertainty and density affected the RMSD. However, localisation distributions from
synaptosomes are not perfect circles, but rather arbitrary shapes with inhomogeneous point
distributions. Another simulation was performed to evaluate the influence of localisation un-
certainty on the RMSD for asymmetric, inhomogeneous point patterns. Instead of simulating
synaptosomes, the shapes of real synaptosomes from experimental data were extracted from
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Fig. 3.17 Simulation of a circle with jittered points to calculate the discrepancy between the
RMSD metric and < R >. A circle with 100 nm radius was filled with 1000 (a) and 50000 (b)
points with a jitter in a random direction increasing from 0 to 100. The percentage difference
between the calculated RMSD and the average radius was plotted as a function of maximum
jitter introduced, for the case of 1000 (c) and 50000 (d) points.
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the segmented mCLING masks in section 3.4.2 (Fig. 3.13 a). Each particle in the binary
mask was cropped out in a square window, and artificially filled with points to simulate a

spatial point pattern in the shape of the particle (Fig. 3.18 a and b).

Choose
particle mask

Fill mask
with points
(blue crosses)

!

Jitter points in
a random
direction (red
crosses)

L.

Fig. 3.18 Simulation using binary masks from synaptosome data to study the influence of
localisation uncertainty on the RMSD measurement of cluster size. (a) Binary mask from the
mCLING channel with an inset zooming into one of the particles detected. (b) Illustration of
how masks were filled sequentially with points within their boundaries, and then the points
were jittered in a random direction. (c) Filled-in mask for jitter magnitudes of 0, 110, and
230 nm. The blue dots inside the mask represent the unjittered points, and the red crosses
represent the jittered points.

In the absence of a closed-form equation for the average distance from the centre of any
point within a randomly-shaped distribution, the RMSD was calculated for the unjittered
point patterns in every cluster (blue crosses in Fig. 3.18 b and c) as ground truth estimates of
the average distance of any point from their centroid. In a similar fashion to the previous
simulation with the circle, the points inside the shapes were jittered in 2-pixel (~23 nm)
increments, with a maximum jitter of 20 pixels (~230 nm) in the reconstructed images to

simulate localisation uncertainty in SMLM. This jitter was also useful to test extreme cases,
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since the largest acceptable localisation uncertainty in the experimental data was only 40 nm
(Table 3.2), and a jitter almost 6 times as large was introduced here.

First, the RMSD was measured for all the jittered points in the particle shown in Fig. 3.18
b and c, and the percentage error between the unjittered and the jittered RMSD was plotted
as a function of the jitter size (Fig. 3.19 a). The error in the RMSD calculation increases
proportional to the jitter, although the error remains small, less than 2%, for a maximum
jitter of up to 50 nm. The area of this representative cluster was 1.83x10° nm?, roughly
corresponding to an equivalent circle radius of ~250 nm. From the previous result with the
circle simulation, it was clear that the influence of the jitter on the RMSD error depended
on the area of the particles analysed. Therefore, the RMSD percentage error was plotted in
Fig. 3.19 b as a function of the area in nm? of all the particles found in Fig. 3.18 a, for a
maximum allowed jitter of 40 (red crosses) and 110 (blue circles) nm.
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Fig. 3.19 Errors in the RMSD calculation as a function of jitter magnitude, and cluster size.
(a) Plot of the RMSD percentage error between the jittered and the unjittered points as a
function of the jitter magnitude for the particle shown in Fig. 3.18 c. (b) Plot of the RMSD
percentage error between the jittered and the unjittered points for a maximum jitter of 40 nm
(red crosses) and 100 nm (blue circles) for all particles in Fig. 3.18 a, as a function of the
area of the particles.

The 40 nm jitter magnitude was selected from the upper bound in the localisation
uncertainty allowed in our data (Table 3.2). The 110 nm magnitude was used to test and
visualise the effect of an extreme jitter on the RMSD calculation. Using a 110 nm max
jitter, the RMSD error is large (~40%) for particles with an area smaller than 1x10° nm?,
which correspond to equivalent circles with radii < 170 nm. For clusters with a larger
area, the RMSD error is smaller than 10%. Using a 40 nm max jitter (upper uncertainty

bound for experimental data), the RMSD error remains below 10% even for the smallest
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particle analysed. This indicates the localisation uncertainty in our experiments is unlikely to
influence or bias the RMSD measurement of cluster size.

The two validation simulations performed indicate the RMSD is a robust measure of
cluster size, even for small point patterns with a large localisation uncertainty. Additionally,
the RMSD was shown to not be very sensitive to point density. Note that the RMSD is not an
absolute measure of cluster size, but rather an indicator of the spread of a point pattern that can
be useful to compare between different fluorescent distributions. These simulations were per-
formed in Matlab, using the script partlch3_validation_SynaptoAnalysis_rmsdSimulations.m
which can be found in the supplementary code repository for this thesis https://github.com/
pedropabloVR/supplementary-code-thesis.

In summary, a bespoke software package was developed to detect synaptosomes from
localisation microscopy experiments, with filters to remove background contributions, and

methods to analyse colocalisation and cluster size for multiple colour channels.

3.5 Computer model of a synaptosome for generating syn-
thetic SMLLM validation data

Concurrent with the development of SynaptoAnalysis and the acquisition of experimental
data, a model of a synaptosome stained for mCLING, a-syn, and VAMP-2 was developed in
silico. Detailed descriptions of the physical features and protein composition of an average
synaptosome have previously enabled scientists to build complex 3D synaptosome models
[86, 80]. Here, a simplified model was created to generate synthetic SMLM data, which were
used to validate the colocalisation and cluster analysis routines included in SynaptoAnalysis.
Readers interested in the experimental results of this study can skip this section and go
directly to Section 3.6.

The software package testSTORM [87] was used to build this simulation with accurate
parameters on dye photo-physics, noise and background contributions, and the pixelated
detector. testSTORM simulates the experimental imaging process in localisation microscopy,
generating 3D coordinates for fluorescent molecules and simulating their random attachment
to a geometrical structure. The blinking behaviour of each molecule is then simulated using
known dye parameters [79], and a stack of diffraction-limited images with single emitters is
generated, which can then be reconstructed using localisation software.

This section describes the design of the synaptosome model and the simulations per-
formed using testSTORM to validate the results from SynaptoAnalysis. This work was
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performed in collaboration with the developers of testSTORM, Tibor Novak and Dr. Miklos
Erdélyi, from the University of Szeged, Hungary.

3.5.1 Computer model of a synaptosome

The physical characteristics and protein composition of an average synaptosome and synaptic
vesicle have been previously measured by Wilhelm et al. [80] and Takamori et al. [86],
respectively, to generate a “library” of features about the synaptic bouton. Based on the
parameters measured in these studies, a model of an average synaptosome was created in
testSTORM. A 4x4 grid of synaptosomes, each with a 500 nm radius was simulated (Fig.
3.20 b). Each synaptosome was randomly filled with ~380 spherical vesicles with a 20 nm
radius. Each vesicle was individually filled with randomly generated coordinates indicating
the position of fluorophores, to simulate tagging of mCLING, a-syn, and VAMP-2. This
latter “labelling procedure” is illustrated in Fig. 3.20 c, where a zoomed-in density map for a
single synaptosome shows the fluorophore positions inside individual vesicles.

a S b Label density map Reconstructed density map
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Fig. 3.20 Computer model for a synaptosome. (a) Cartoon of a synaptosome showing vesicles
labelled with mCLING, a-syn, and VAMP-2 markers. (b) Equidistant grid of synaptosomes,
shown both as a label density map, and as a reconstructed SMLM image. (c) Close up view
of a synaptosome filled with vesicles, each in turn filled with the three fluorescent markers.
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To keep the model simple, all synaptosomes were assumed to be spherical and of the
same size, and to contain the same number of vesicles. Furthermore, all fluorescent emitters
in the synaptosomes were assumed to be in focus, and a 1:1 labelling ratio was assumed
between the proteins of interest and the dyes simulated (assuming a single binding site per
protein). A 2D Gaussian PSF model was used [87].

The red markers for the mCLING were placed close to the centre of the vesicle, since the
mCLING intercalates into the inner membrane of vesicles and is short (~2 nm). The green
and blue markers for a-syn and VAMP-2 have long linker lengths, resulting from the primary
and secondary antibodies used for labelling which are ~10-15 nm in length each along their
longest dimension [88]. Therefore, they appear farther away from the vesicle boundary
compared to mCLING (Fig. 3.20 c). Previous studies have reported the average number
of copies per cell is ~70 for both a-syn [86] and VAMP-2 [89]. However, it is unlikely for
antibody-conjugated dyes to reach all 70 copies of both VAMP-2 and a-syn on the surface
of a 40 nm diameter vesicle due to steric hindrance. To account for this, and based on the
testSTORM constraints on the maximum possible number of labels in a given space, the
model only uses 30 copies of a-syn, and 30 copies of VAMP-2 per vesicle. Following the
input of the sample parameters, the experimental settings from the microscope (Section 3.2.3)
were also fed into the testSTORM simulation to imitate a real experimental acquisition. All

parameters used are summarised in Table 3.3.

3.5.2 Simulating extreme cases of spatial co-occurrence in synthetic

synaptosome data

The synaptosome model was used to perform two simulations of extreme cases in the
distribution of the mCLING, a-syn, and VAMP-2 markers: model 1 in which all vesicles
contain all fluorescent markers and model 2 in which three distinct vesicle populations are
labelled separately. The two models were simulated in testSTORM, and the resulting image
stacks were reconstructed in thunderSTORM [56] and processed using SynaptoAnalysis.
Figure 3.21 a shows the label density map for model 1, along with a composite image of its
single-molecule reconstruction. Figure 3.21 b shows model 2, with three separate vesicle
populations each containing only a marker for a single fluorescent channel, such that the
composite reconstruction shows three spatially separated signals for each channel.

Both models were analysed using the WOC (section 4.c) and Manders’ M; and M»
coefficients, and the results were plotted in Fig. 3.21 c. For all metrics, model 1 shows
almost complete spatial co-occurrence for both CLING/a-syn and mCLING/VAMP-2, while

the results for Model 2 show near zero co-occurrence. These simulations corroborate the
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Table 3.3 Parameters used to simulate SMLM data from an average synaptosome with
fluorescent labels on internalised vesicles, a-syn, and VAMP-2.

Sample parameter Value Comments

Synaptosome radius 500 £+ 10 nm | Wilhelm et al. 2014 [80]

# vesicles/synaptosome | 384 £ 38 Wilhelm et al. 2014 [80]
Vesicle radius 20 nm Takamori et al. 2006 [86]

A-syn copies/vesicle 30 Fahkree et al. 2016 [89]
VAMP-2 copies/vesicle | 30 Takamori et al. 2006 [86]
Epitopes/protein 1 Assume 1:1 labelling
mCLINGs/synaptosome | 3000 Estimated from image data
Linker length 20 nm Primary+secondary antibody
Experimental parameter

Acquisition time 20 ms Value used in experiments
Number of frames 5000 For quick simulations

Pixel size 117 nm Measured at the image plane
Numerical aperture 1.49 UAPON100X TIRF objective
EM gain 200 ANDOR performance sheet [57]
Camera baseline 200 ANDOR performance sheet [57]
Quantum efficiency 95% ANDOR performance sheet [57]
Electrons/count 15.76 ANDOR performance sheet [57]

Ref. index of media

1.518

Immersion oil ref. index
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Fig. 3.21 Testing colocalisation in synthetic synaptosome SMLM data. (a) Model 1 in which
all vesicles contain all markers, such that their fluorescent distributions overlap completely.
(b) Model 2 in which vesicles are divided into three separate populations, one labelled
only for mCLING, one for a-syn, and one for VAMP-2, to simulate a case of zero overlap
between channels. A 2D density label map, an isometric view of the density map, and
a composite of the reconstructed single-molecule data are shown. (c) Plots of the spatial
co-occurrence measured with the WOC and Manders M; and M, coefficients. Each data
point shows an overlap coefficient for a single synaptosome. The script used to generate this
plot (part1Ch3_results_SynaptoSimulations_colocalisation.R) can be found in the repository
for this thesis https://github.com/pedropabloVR/supplementary-code-thesis.
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capabilities of SynaptoAnalysis to measure extreme conditions in the colocalisation of
fluorescent markers in synaptosomes. It is difficult to predict the proportions of fluorescent
dyes that will reach each of the three species we are studying. Even though it is well
documented that 95% of all vesicles in a synaptosome contain VAMP-2 [86], the amount of a-
syn and mCLING in a synaptosome is unknown. This makes it difficult to compare the results
from the simulations to the experimental results obtained in real synaptosomes. There are too
many steps in the synaptosome preparation, fluorescent labelling, and imaging/reconstruction
procedure that can influence the colocalisation results reported from our dSTORM experiment.
It would be unfeasible to attempt to model these, therefore we did not create further models
using testSTORM.

3.5.3 Measuring cluster size in synthetic synaptosome data using Rip-
ley’s H-function and the RMSD metric

The simulation from model 1 in Fig. 3.21 was used to compare results using the Ripley’s
H-function and the RMSD metric to measure cluster size differences. Localisation density
cross sections through the reconstructed images were fitted to Gaussian functions to provide
coarse estimates of each colour channel’s distribution size (Fig. 3.22 a & b). The RMSD and
Ripley’s H-function were subsequently applied to the localisations, and the resulting values
for cluster size were plotted in Fig. 3.22 ¢ for each colour channel.

On one hand, the cluster radius estimated from Ripley’s H-function for mCLING (mean
~516 nm) was very close to the true radius of 500 & 10 nm for the synthetic synaptosome.
The mCLING has a short linker length (~2 nm) and it resides in the inner membrane of
vesicles, therefore its distribution will remain within the synaptosome bounds; this makes
mCLING an accurate reference for synaptosome size. The cluster sizes for a-syn (mean ~596
nm) and VAMP-2 (mean~593 nm) were larger, likely due to the simulated linker length of the
dyes (~20 nm) introduced by using primary and secondary antibodies, and the uncertainty in
localisation during reconstruction of the synthetic data. On the other hand, the RMSD values
for mCLING (mean ~192 nm), a-syn (~228 nm), and VAMP-2 (~226 nm) all significantly
underestimated the true synaptosome radius. However, the relative cluster size differences
between mCLING and a-syn or VAMP-2 of ~36 nm are closer to the expected difference
between these markers due to the extra linker lengths.

In summary, testing Ripley’s H-function and the RMSD on a ground truth synaptosome
model to measure cluster size demonstrated Ripley’s H-function provides a closer estimate
to the true radius of a cluster than the RMSD, although the RMSD is sensitive to differences

in dye locations due to the long linker lengths used.
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Fig. 3.22 Simulated cluster size measurements on synthetic synaptosome data from model 1
in Fig. 3.21 a. (a) Representative reconstructed image from a synthetic model 1 synap-
tosome, with a line profile (green line) taken through its center. (b) Line profiles for
each of the three colour channels from the synaptosome in panel (a) were fitted to Gaus-
sian functions and plotted. (c) Scatter and box plots for the cluster size values measured
using both Ripley’s H-function and the RMSD, for the mCLING, a-syn, and VAMP-2
channels of 16 simulated synaptosomes. Each data point represents a cluster size mea-
surement for a single simulated synaptosome. The script used to generate these plots
(part1Ch3_results_SynaptoSimulations_clusterSize_GaussianFit.R) can be found in the
repository for this thesis https://github.com/pedropabloVR/supplementary-code-thesis.
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3.6 Experimental results

The use of dSTORM and the development of a specialised software tool were driven by
the two biological questions set out in Section 3.1.4: (1) How does the colocalisation of
a-syn and internalised vesicles compare to that of VAMP-2? (2) How is the clustering of
a-syn and VAMP-2 affected by calcium levels at the synapse? This section describes the
results obtained by using dSTORM to image a-syn, VAMP-2, and mCLING in synaptosomes
(Fig. 3.23), and applying SynaptoAnalysis on the reconstructed data sets. The colocalisation
between mCLING/a-syn and mCLING/VAMP-2 was measured at different temperatures to
visualise uptake by different recycling mechanisms, and the clustering behaviour for a-syn
and VAMP-2 was analysed in the presence and absence of calcium. The findings from these

two analyses are presented, which partially answer the research questions stated above.

Fig. 3.23 Reconstructed images of synaptosomes detected with SynaptoAnalysis. Single-
molecule distributions are shown for the mCLING, a-syn, and VAMP-2 colour channels, as
well as an overlay of all three in the bottom row.

3.6.1 A-syn’s co-occurrence with internalised vesicles is temperature
independent, compared to that of VAMP-2

Vesicle homeostasis at the synapse is maintained by multiple membrane recycling mecha-
nisms, which are likely to be active at the same time and to act in collaboration. It is often
difficult to identify which recycling mechanisms are active, because dominant CME and

SNARE (exocytosis) processes at physiological temperatures can conceal other mechanisms.
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To visualise uptake via different mechanisms, synaptosomes were incubated at 37°C to
visualise canonical CME events, and at 4°C, temperature at which membranes become more
rigid and both CME and full fusion are inhibited [25], to visualise membrane uptake events

from non-canonical mechanisms.
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Fig. 3.24 Colocalisation between mCLING/a-syn, and mCLING/VAMP-2 in synaptosomes
using the weighted overlap coefficient (WOC). (a) Representative SMLM reconstructions
of the mCLING/a-syn, and mCLING/VAMP-2 channels. (b) Plot of the WOC for two
temperature conditions. Each data point represents the WOC for a single synaptosome.

For each detected synaptosome (Fig. 3.24 a), the weighted overlap coefficient (WOF)
(Eq. 3.3) was calculated between mCLING/a-syn, and mCLING/VAMP-2, as shown in Fig.
3.24 b. On one hand, the WOC indicated the co-occurrence of mCLING-stained vesicles and
VAMP-2 is higher at 37°C than at 4°C. On the other hand, the opposite trend was observed
for mCLING/a-syn, with co-occurrence increasing at 4°C. This result provided a useful
first indication that indeed, a-syn and VAMP-2 colocalised differently with endocytosed
vesicles. However, the WOC (Eq. 3.3) is only a relative indicator of colocalisation, as it
provides a number between 0 and 1 which indicates a relative degree of overlap between
the channels, without distinguishing the overlap of channel 1 relative to channel 2, and
vice versa. Therefore, the WOC is not an absolute metric for colocalisation and is only
useful as a relative indicator as specified by Cordelieres and Bolte [82]. To perform a more
quantitative colocalisation measurement, Manders’ individual coefficients were measured for
each synaptosome.

The co-occurrence fraction (Manders M) between mCLING and a-syn (Fig. 3.25
a) shows no significant difference between the two temperature conditions, whereas for
mCLING and VAMP-2 (Fig. 3.25 b) the co-occurrence fraction significantly decreased at



92 A single-molecule method to study the role of alpha-synuclein at the synapse

a b
1.0 — N 1.0
c
? < 0.00
® c < c
~ =] >
O] ° < °
z 00 2 S 0.8 o
3 @ £ @
Q 0.8 o = ; o
£ 3 (é) —-0.25 3
g 3 :
< 5 § 06 5
g 02 2 & =
=% S =%

T 0.6 g < 0.50 %
c U o < — -0. o
2 8 5 04 3
o S
w o

—-0.4 o

37C 4C 4C 37C 4C 4C
N =44 N =154  minus 37C N =44 N =154 minus 37C

Fig. 3.25 Colocalisation between mCLING/a-syn, and mCLING/VAMP-2 in synaptosomes
using Manders’ individual coefficients. (a) Manders” M coefficient for the fractional overlap
of mCLING on a-syn, (b) Manders’ M coefficient for the fractional overlap of mCLING on
VAMP2. Gardner-Altman estimation plots display the measured colocalisation in a scatter
plot, and the effect size with its 95% confidence interval between temperature conditions is
displayed as a point estimate and vertical bar, on a separate axis. Each data point represents
the Manders coefficient for a single synaptosome.

4°C compared to that at 37°C. The high co-occurrence fraction between internalised mCLING
vesicles and VAMP-2 at 37°C could be explained by VAMP-2’s necessary uptake during
CME, so that it can be later used for SNARE exocytosis. The subsequent decrease at 4°C is
likely due to a reduction in the number of CME/SNARE events due to decreased membrane
fluidity and lower propensity at low temperatures of CME and full fusion exocytosis [25].
The temperature insensitive co-occurrence between mCLING and a-syn may be due to its
involvement in non-canonical membrane uptake mechanisms which can be observed even at

sub-physiological temperatures, regardless of membrane fluidity [25].

3.6.2 A-syn and VAMP-2 clusters increase in size in calcium-depleted

conditions

Calcium has been reported to mediate the lipid binding properties of a-syn at its C-terminus,
and to influence the clustering behaviour of a-syn at the presynapse [5]. To investigate the
effect of differing calcium levels on a-syn, compared to that on VAMP-2, synaptosomes were
incubated with physiological and calcium-depleted (EGTA) buffers.

The cluster sizes for a-syn and VAMP-2 were measured using both Ripley’s H-function
and the RMSD metric in SynaptoAnalysis, and the results were visualised using Gardner-
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Altman plots in Fig. 3.26 a (a-syn) and ¢ (VAMP-2), with the unpaired mean difference
(m.d.), or effect size between conditions shown in a separate axis. For Ripley’s H-function,
a search radius of 1 um was applied, this being twice the expected radius for an average
synaptosome. The peak of the L(r)-r curve was used to estimate the domain radius [85, 90],
and the resulting values were plotted as a function of calcium condition in Fig. 3.26 b (a-syn)
and d (VAMP-2). In both a-syn (m.d.~62 nm) and VAMP-2 (m.d. ~73 nm) an increase in
cluster size was observed when calcium was depleted from the incubation buffer. VAMP-2
clusters measured with Ripley’s H-function were larger (mean phys ~496 nm) on average
than a-syn clusters (mean phys ~451 nm), likely due to VAMP-2 being present in a larger
proportion of vesicles than a-syn [86]. Using the RMSD from centroid, an increase in cluster
size for both a-syn and VAMP-2 was also observed in the calcium-depleted condition. Again,
the effect size was slightly more pronounced for VAMP-2 (m.d. ~28 nm) than for a-syn (m.d.
~22 nm) between conditions. Similarly to the measurement with Ripley’s H function, the
VAMP-2 clusters (mean phys ~180 nm) were measured to be larger than the a-syn clusters
(mean phys ~158).

Note that these two cluster analysis tools measure different properties of the localisation
data: Ripley’s H-function provides an estimate of the radius of maximal aggregation [85],
whereas the RMSD is a measure of the average distance of any point in a pattern from the
centre of the pattern. Therefore, the reported values for cluster size were not expected to
match between the two metrics, as demonstrated by the validation data in Section 3.5.3.
Ripley’s H-function once again provided a cluster size estimate closer to the average expected
radius of a synaptosome (~500 nm, [86]). Nonetheless, both metrics showed an increase in

cluster size in both a-syn and VAMP-2 when calcium was depleted from the incubation buffer.

3.7 Summary and Discussion

A-syn is a hallmark of Parkinson’s Disease, as it aggregates to form part of characteristic
Lewy bodies and neurites found in patients with advanced forms of this disease. Despite its
link to Parkinson’s pathogenesis, a-syn’s function remains unclear.

We set out to investigate if a-syn colocalised with internalised vesicles at the synapse via
CME or the SNARE complex like VAMP-2, or if it colocalised with vesicles internalised
via different (non-canonical) mechanisms. Furthermore, we aimed to test the influence
of calcium on the distributions of a-syn/VAMP-2 positive vesicles. Synaptic vesicles are
much smaller than the diffraction-limit, so conventional imaging and analysis tools were

not sufficient to explore the nanoscale distributions of the markers of interest. To address
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Fig. 3.26 Cluster size measurements for a-syn (a-b) and VAMP-2 (c-d) localisation data in
synaptosomes, using the RMSD (a,c) and Ripley’s L(r)-r function (b,d) in physiological and
calcium depleted conditions. Calcium was depleted using the chelator EGTA. The number
of synaptosomes analysed for each calcium condition is shown on the y-axis. 4 repeats
were imaged and analysed for each condition. Each data point represents the cluster size
measurement for a single synaptosome.
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this imaging challenge, imaging experiments implementing dSTORM were performed and
optimised, and a complete SMLM analysis package, SynaptoAnalysis, was developed and
characterised to quantitatively examine our imaging data.

Our results show a-syn colocalises with internalised vesicles independent of temperature,
contrary to what was observed for VAMP-2. This suggests a-syn could be associated
with vesicle recycling mechanisms which occur at sub-physiological temperatures. In
addition, both a-syn and VAMP-2 clusters were found to increase in size in the absence of
calcium, which could be due to an interaction between the two proteins. This new evidence
advances our understanding of a-syn’s role at the presynapse, however further studies and
experiments are necessary to determine the recycling mechanisms a-syn is involved in, and
to clarify its relationship to VAMP-2. Incidentally, the simulations performed to benchmark
SynaptoAnalysis proved useful to gauge the performance of cluster analysis algorithms.
The following sections provide a more detailed discussion on the results obtained, with

suggestions for future work.

3.7.1 A-synand VAMP-2 associate with different vesicle recycling mech-

anisms

At the synapse, multiple pathways may be active simultaneously, and acting in concert, to
maintain vesicle homeostasis. It is difficult to observe the role of a-syn at the presynapse
because dominant SNARE (exocytosis) and CME processes at physiological temperatures
can mask other recycling mechanisms which don’t contribute to vesicle uptake/release to the
same extent but may also be important.

A high spatial co-occurrence between VAMP-2 and mCLING was observed at 37°C (Fig.
3.25 b), which could be explained by the binding of VAMP-2 to the adaptor protein AP180
during CME, a dominant recycling process at 37°C. This binding ensures VAMP-2 is taken
back up into vesicles ready for refilling with neurotransmitters and subsequent rerelease, as
VAMP-2 is crucial for SNARE-mediated exocytosis [91]. To investigate other mechanisms
which are not dependent on membrane fluidity, the synaptosome incubation temperature was
lowered to 4°C and a significant decrease in the co-occurrence of VAMP-2 and mCLING
was observed (Fig. 3.25 b).

The colocalisation of a-syn and mCLING, on the other hand, did not change between the
37 and 4°C conditions (Fig. 3.25 a). A-syn has been previously implicated in several steps of
vesicle recycling mechanisms [41]; this work shows a-syn colocalises with vesicles recycled
via non-temperature dependent mechanisms. The lack of sensitivity to low temperature in the

colocalisation between a-syn and internalised vesicles suggests a-syn might be associated with
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mechanisms such as kiss-and-run, which are the only known to occur at sub-physiological
temperatures [25]. A recent study found overexpressed and endogenous a-syn promotes
dilation of the fusion pore in adrenal chromaffin cells and neurons [43], which shows
preliminary evidence for a-syn’s potential role in kiss-and-run. A-syn’s involvement in
vesicle recycling remains unknown, however several speculative models could be proposed
to argue for its involvement in kiss-and-run. A-syn could potentially tether a vesicle to the
plasma membrane via its double-anchor mechanism (Fig. 3.3) to allow the vesicle to open a
fusion pore to release or uptake cargo and reseal the pore. Alternatively, a-syn could also act
as a restraining tether between two vesicles (3.3), preventing full fusion and collapse prior to

delivering neurotransmitter cargo, as previously proposed by Alabi and Tsien [1].

Future work

Our results suggest a-syn’s relation to vesicle recycling mechanisms which are more likely to
be observed at sub-physiological temperatures, but the identity of the mechanism remains a
mystery. To lend weight to our preliminary results and really understand the relation between
a-syn and vesicle recycling mechanisms, further imaging experiments must be performed.
To further explore the location of a-syn clusters relative to fusion pore sites, a two-colour
3D imaging experiment could be performed using stimulated emission depletion STED
microscopy to observe the formation of large fusion pores (~400 nm) in chromatffin cells,
similar to the method reported by Shin et al. [92]. In this way, a-syn’s position with respect
to the pore could be explored at different stages of pore formation, to elucidate its potential
role as a mediator for recycling events. Alternatively, the resolution improvement could be
achieved using expansion microscopy [93], a technique in which the sample is artificially
enlarge using a polymer matrix to separate fluorophores otherwise too close to each other to
be resolved, instead of STED. Fusion pores in chromaffin cells could then be imaged using a
traditional confocal microscope with up to a 4x [93] or 16x [94] resolution improvement. To
explore the dynamics of the relationship between a-syn and vesicle trafficking, a fast super-
resolution technique such as structured illumination microscopy (SIM) could be implemented
to visualise in up to three colours the location of a-syn relative to VAMP-2 and endocytosed
vesicles at the synapse in live cells. This would require a stable cell line with large, sparse
synapses (such as chromaffin cells as reported in Logan et al. [43]) and fast imaging on the
order of 50 Hz to capture fleeting recycling events such as kiss-and-run. In addition to the
use of mMCLING as a vesicle endocytosis marker, these imaging experiments could also be
performed using FM dyes, which have been successfully used to image endo and exocytosis
events in cells [95]. FM dyes are captured from the plasma membrane during vesicle uptake,

and they diffuse into the extracellular space during exocytosis where they can be washed
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away with saline. Observing a-syn’s and VAMP-2’s colocalisation with internalised vesicles
labelled with FM dye could validate the results presented in this chapter, confirming it is not
an effect specific to mCLING labelling.

3.7.2 A-syn and VAMP-2 clusters increase in size in the absence of cal-
cium

Dopaminergic neurons, the most vulnerable neurons in Parkinson’s Disease, undergo calcium
fluctuations throughout their lifetime [48, 49]. Calcium is a key regulator of vesicle recycling,
as it provides cues for the release or uptake of neurotransmitters [S0]. Calcium has been
shown to mediate the lipid-binding activity of a-syn’s C terminus [17, 18, 5], and to affect
a-syn’s clustering behaviour in synaptosomes [5]. Lautenschlager et al. [S] argued that in the
presence of calcium, a-syn may act as an extended double anchor to tether synaptic vesicles
together, causing them to cluster 3.3. In their study, a-syn clusters increased in size upon
calcium depletion using EGTA, whereas VAMP-2 clusters showed no difference in size in
the presence or absence of calcium. In this study, both a-syn and VAMP-2 distributions were
observed to increase in size in the absence of calcium, with a slightly larger increase for
VAMP-2 than for a-syn (Fig. 3.26). The analysis presented in this chapter includes more
than twice as many synaptosomes as in [5], and corroborates the observed effect using two
cluster analysis methods.

Burre et al. [41] have previously shown that a-syn, via its C-terminus, binds to the
N-terminus of VAMP-2 on synaptic vesicle surfaces. More recently, Sun et al. [42] proposed
an “inter-locking” model in which a-syn binds to VAMP-2 in adjacent vesicles to maintain
physiological synaptic vesicle clustering. This interaction between a-syn and VAMP-2
could potentially explain the cluster size increase observed here for both proteins, upon
calcium depletion. Alternatively, this could be due to both a-syn and VAMP-2 having a

calcium-dependent localisation at the presynapse.

3.7.3 SynaptoAnalysis is a useful tool for analysing multi-colour SMLM
data from synaptosomes

SMLM data sets can be very large, occupying a few gigabytes per imaged FOV. When
imaging 5-10 different FOV's for multiple experimental conditions (temperature, or calcium),
each with two or three repeats, data sets can occupy hundreds of gigabytes. The recon-
struction and analysis of these data sets can be time and computationally intensive, and it

can be cumbersome to analyse with available colocalisation or cluster analysis software.
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Instead, a specialised processing (chromatic correction, filtering, segmentation) and analysis
(colocalisation and cluster size) software pipeline was built, SynaptoAnalysis, which allowed
us to detect hundreds of synaptosomes from dSTORM imaging data, and to analyse the
colocalisation and clustering behaviour of fluorescent markers using either spatial point

pattern or image methods.

Perspectives and future work

As an alternative to the multi-step filtering and segmentation steps in SynaptoAnalysis,
Voronoi tessellation could be applied as described by Levet et al. [96] to compartmentalise
and classify localisations. Correlations can be determined between the different polygons in
the Voronoi diagram, and then used to perform colocalisation and cluster analysis.

To verify the results provided by the Manders individual coefficients during colocal-
isation analysis, Ripley’s bivariate H-function will be implemented in a future Synapto-
Analysis release to define an average interaction distance between the mCLING/a-syn and
mCLING/VAMP-2 clusters.

Regarding cluster analysis, the simulations performed on circular point patterns and
inhomogeneous point patterns from experimental synaptosome outlines showed the RMSD is
insensitive to cluster density and point jitter from localisation uncertainty. In the benchmark-
ing experiments using ground truth synaptosomes (Fig. 3.22) the RMSD underestimated the
true radius by a factor of ~2, whereas Ripley’s H-function provided a much more accurate
estimate of cluster radius. Both metrics were sensitive enough to detect size differences
between mCLING clusters closer to the inner membrane of vesicles and a-syn and VAMP-2
being tethered with long antibody linkers to the outer membranes. The differences detected
by the RMSD were closer to the true difference expected from the antibody linkers, than that
from Ripley’s H-function.

In summary, it is useful and important to corroborate cluster size measurements using
multiple methods to highlight the shortcomings and advantages of each. For future work
with large data sets comparing multiple experimental conditions, i.e. temperature and
calcium levels, a machine learning approach as proposed by Williamson et al. [97] could
be implemented to classify single-molecule clusters and extract features with no a priori

knowledge of cluster size, shape, or density.
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3.7.4 Synthetic SMLM data from a model synaptosome is useful to
benchmark cluster analysis methods

Synthetic SMLM data from synaptosomes were generated using the software testSTORM,
which allowed us to input parameters to accurately simulate the experimental image acquisi-
tion process, and to model a synaptosome stained for mCLING, a-syn, and VAMP-2 using
physical characteristics from literature.

As mentioned in the previous section, the simulated synaptosome data sets highlighted
important differences between the RMSD and Ripley’s H-function in their accuracy to
measure cluster sizes (Fig. 3.22). Ripley’s H-function approximated more closely the true
value (~500 nm) of the modelled synaptosome radius, however the RMSD was more sensitive
to the differences in distribution size of the mCLING to that of a-syn and VAMP-2 due to
their antibody linker lengths. Moreover, the cluster radius from Ripley’s H-function in the
synthetic data (a-syn ~596 nm VAMP-2 ~593 nm) were within the standard deviation of
the cluster sizes calculated from the experimental data (a-syn = 451 £ 142 nm, VAMP-2 =
496 £ 160 nm), indicating the size distributions in the model are a valid approximation to
our experimental data. Contrary to what was previously reported by Kiskowski et al. [85]
as mentioned in section 2.3.2 of Chapter 2, Ripley’s H-function did not overestimate the
cluster radius in either the experimental or simulated data sets measured in this chapter. The
bias reported by Kiskowski et al. in measuring domain size with Ripley’s H-function could
likely stem from their analysis only on low-density patterns, as mentioned in the discussion
section of their seminal paper [85]. The high accuracy of Ripley’s H-function in estimating
a mean cluster radius for our data sets is likely due to the high localisation density in all
clusters analysed, as well as to the large number of clusters analysed which compensates for
variations in individual measurements.

For colocalisation analysis, it was more difficult to generate representative models of
the experimental data set. The simulation assumes perfect spheres with homogenous back-
ground, when synaptosomes are really asymmetric spheroid-like blobs with inhomogeneous
background signals. Moreover, the measurement of a 2D projection from a 3D simulated
structure introduces potential errors, e.g. two structures which are spatially separated in
the z direction but share the same x,y coordinates will appear colocalised. This apparent
2D colocalisation of non-overlapping objects in 3D will artificially inflate the measured 2D
colocalisation values. A 3D imaging method would be required to access the z information
from the fluorescent emitters and examine their colocalisation in 3D, such as that used in
Dani et al. [62]. Alternatively, another way to discriminate between fluorescent emitters in
the z-direction would be to illuminate the sample using TIRF, thereby reducing the excitation

and imaging volume to a 100 nm region above the focal plane (which is equivalent to the axial
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penetration depth of the evanescent wave present in TIRF). Additionally, several parameters
in the simulation are approximations, such as the number of mCLING molecules per vesicle,
or the percentage of successfully labelled binding sites on the vesicles. These quantities are
unknown and were impractical to measure with our available instrumentation.

3.7.5 Limitations of multi-colour dASTORM to study protein distribu-

tions in synaptosomes

The resolution required to study single synaptic vesicles and their protein content in synapto-
somes is currently beyond that offered by super-resolution fluorescence microscopy tech-
niques, due to the dense clustering of the vesicles, leading to too many overlapping fluo-
rophores within a diffraction-limited region. However, in this study SMLM was useful for
imaging clusters of vesicles, and their sub-diffractive distributions.

In dSTORM, the photo switching properties of dyes depend strongly on buffer com-
position; therefore, buffers are often optimised for specific dyes to achieve the best image
quality for a single colour channel [79]. In the multi-colour dSTORM experiments in this
chapter, the 488 and 561 nm dyes exhibited less optimal switching than the 647 nm channel,
even though the buffer used has been reported to work best across all fluorescent dyes [79].
Sub-optimal photo switching reduces the localisation precision achieved and worsens the
image quality of reconstructions in our experiments. To account for these shortcomings,
strict filters were implemented in our software SynaptoAnalysis post-reconstruction to re-
move sub-optimal localisations prior to analysis. For some data sets, this resulted in a large
rejection rate of the captured localisations as exemplified in Fig. 3.14 a and c, in which
~50% and ~75% of the detected synaptosome candidates were rejected by the spatial overlap
filter, respectively. These two rejection rates are representative for synaptosome analysis,
as they describe the rejection of potentially useful synaptosome candidates after noise and
background contributions had already been removed with previous filters. This rejection rate
was considered acceptable in these experiments, as we deemed it more important to remove
false positives that could bias our biological interpretation than to keep a larger percentage of
our data.

Future work

In future studies, to address the shortcomings of dSTORM for multi-colour imaging of
protein distributions in synapses, DNA-PAINT could be implemented to decouple the lo-
calisation procedure from the individual dye photo physics [98]. This would ensure that

the blinking properties and the localisation precision would be similar for all markers and
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would reduce the rejection rate of sub-optimal localisations due to unequal photo switching.
Moreover, additional colour channels could be added for markers that could further inform
our experiments, e.g. a fluorescent calcium channel marker could be added to ascertain if
a-syn clusters near or away from calcium channels at physiological vs calcium depleted
levels, or an active zone marker such as bassoon to confirm a-syn’s location at the active zone.
DNA-PAINT, which uses transiently binding oligonucleotide chains to generate the blinking
effect required for SMLM, also offers the possibility of performing stoichiometric counting
on fluorescent markers in its qPAINT version [99]. Since the blinking effect is only dependent
on the binding kinetic of the oligonucleotide pairs, it is independent of dye photophysics and
can therefore be used for quantitative measurements of molecule numbers across multiple
wavelengths. Implementing DNA-PAINT for this study would require optimization of the
labelling procedure for a-syn, VAMP-2, and mCLING using DNA oligomers as docking
strands.

To accurately map the location of a-syn and VAMP-2 at the synapse with respect to
internalised vesicles, 3D SMLM could be implemented with dSTORM or DNA-PAINT. The
high density of emitters in a small area would make it difficult to obtain information from
large 3D engineered PSFs such as the tetrapod [100] or the double helix [101]; therefore,
an astigmatic PSF would likely be the best solution to implement. To reduce the density of
emitters per volume, and increase the imaging resolution, expansion microscopy [93] could
be combined with SMLM as shown by Zwettler et al. [102] to produce 3D reconstructions
of a-syn and VAMP-2 in synaptosomes with single vesicle level resolution.
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Chapter 4

A study of the colocalisation between
HIV and the ESCRT-II protein EAP45

This chapter describes the study the interaction between the endosomal sorting complex
required for transport (ESCRT)-II, and the human immunodeficiency virus (HIV) during
viral egress using TIRF microscopy and novel imaging analysis tools. The scission of lipid
membranes is a common biological process, often mediated by a family of proteins known
as the ESCRTs assembling around the separation point. The functions of ESCRT-I and
ESCRT-III are well established in certain of these cellular processes, e.g. HIV budding,
cytokinesis, and late endosome recruitment; however, the function of ESCRT-II remains
unclear. In this study, the main component of ESCRT-II, the protein EAP45, was labelled
with a SNAP-tag and imaged using TIRF microscopy to measure its colocalisation with
the HIV structural polyprotein Gag. Gag was found to colocalise with EAP45 comparably
to ALIX, a protein well-known to be involved in HIV budding, but this colocalisation was
significantly reduced upon deletion of the EAP45 N-terminus. These findings strengthen
previous evidence showing the importance of the N-terminus of EAP45 for linking to ESCRT-
I during HIV budding. In addition, single particle tracking was applied to visualise the
dynamic association between EAP45 and Gag, and a method to visualise the concurrent
motion of two particles revealed three distinct classes of EAP45 movement relative to Gag.
EAP45 particles were found to associate with Gag particles for ~2 mins on average. A
preprint of this work is available on bioRxiv [1], and it has been submitted for consideration
to a peer-reviewed journal.
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4.1 Background to HIV and the ESCRT machinery

4.1.1 ESCRT proteins are used for membrane remodelling

ESCRTs (endosomal sorting complexes required for transport) are protein complexes involved
in a variety of cellular functions, from the scission of the intercellular bridge during cell
division (cytokinesis), to the formation of multi-vesicular bodies (MVB) and the budding of
HIV. ESCRT activities involve the topological remodelling of membranous structures. The
core of the ESCRT machinery is composed of three sub-complexes, ESCRT-L,-11, and -III,
which act in a sequentially coordinated manner during membrane scission [2].

Many viruses take advantage of the ESCRT proteins during their life cycle, primarily
by hijacking the ESCRT machinery to exit the cell via budding at the plasma membrane
[3]. In the case of HIV, Gag polyproteins form clusters in the cytosol before they travel to
the plasma membrane, where further Gag molecules accumulate and a bud begins to form
[4, 5, 6] (Fig. 4.1 b-d).
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Fig. 4.1 Sequential recruitment of the ESCRTs and ALIX by the polyprotein Gag during
HIV budding. (a) The canonical view of ESCRT recruitment involves either recruitment
of ESCRT-III via ESCRT-I or ALIX, however the role of ESCRT-II is unclear. (b-d) HIV
budding process from the initial accumulation of Gag at the plasma membrane (b), to the
recruitment of the ESCRTs at the bud neck to perform the membrane scission (c), followed
by the successful budding of the virion from the membrane (d).
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4.1.2 HIV sequentially recruits ESCRTSs during budding

Two distinct motifs of Gag which are active late in the viral budding process, PTAP and
YPXL, interact with the early ESCRT-I protein TSG101 and the ESCRT-associated protein
ALIX, respectively. These then recruit ESCRT-III for the final scission to occur [6]. This
canonical view of the sequential recruitment of the ESCRTs and ALIX by Gag dur