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Optical imaging methods for the study of disease models
from the nano to the mesoscale

Pedro Pablo Vallejo Ramirez

Abstract

The visualisation of disease phenotypes allows scientists to study fundamental mech-
anisms of disease. Optical imaging methods are useful not only to observe anatomical
features of biological samples, but also to infer interactions between molecular species using
fluorescence labelling. This thesis presents the development of imaging and analysis tools
to study biological questions in three models of disease, with samples ranging from the
sub-cellular to the organ scale.

First, the role of the alpha-synuclein (a-syn) protein, whose dysfunction is a hallmark of
Parkinson’s Disease, was studied with respect to vesicle trafficking at the synapse. Synaptic
vesicles are ~40 nm in diameter; imaging vesicles therefore requires methods with resolution
below the diffraction limit. Single-molecule localisation microscopy (SMLM), which circum-
vents the diffraction limit by separating fluorophore emission in time to localise individual
molecules in space with ~20 nm precision, was thus implemented to study a-syn in purified
synaptic boutons. A software package was developed to analyse the colocalisation of a-syn
with internalised vesicles, and the clustering of a-syn under differing synaptic calcium levels.
The colocalisation of a-syn and internalised vesicles was found to be temperature indepen-
dent, suggesting that a-syn is involved in non-canonical trafficking mechanisms. Ground
truth simulations from a synaptosome model were used to benchmark two cluster analysis
methods. Both methods applied on the experimental data showed that a-syn becomes less
clustered at low synaptic calcium levels.

Second, the spatiotemporal association of ESCRT-II, a protein complex whose role in the
budding of the human immunodeficiency virus (HIV) was previously considered dispensable,
and the HIV polyprotein Gag was studied during viral egress using novel image analysis
tools. A nearest-neighbour analysis showed the ESCRT-II protein EAP45 colocalises with
Gag similarly to ALIX, a protein well known to be involved in HIV budding. However,
upon deletion of EAP45’s N-terminus, its colocalisation with Gag was significantly impaired,
highlighting the importance of this EAP45 domain in linking to Gag. Single particle tracking
was used to trace the trajectories of EAP45 and Gag in live cells, and an algorithm was
developed to visualise the simultaneous motion of two particles; these analyses revealed
three types of potential dynamic interaction between EAP45 and Gag.
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Finally, an open-source instrument to visualise phenotypes from large organs in 3D was
developed for the study of chronic obstructive pulmonary disease (COPD) models. The
instrument implements Optical Projection Tomography, a technique which can reconstruct
cross-sectional slices of a transparent object from its orthographic projections, using off-the-
shelf components and novel ImageJ plugins for artefact correction and volume reconstructions.
Excised and cleared mouse lungs were imaged in which high order airways can be discerned
with 50 µm resolution. The raw lung data, instructions for building the instrument, the
free ImageJ plugins, and a detailed software manual are available in an online repository to
encourage the widespread use of OPT for imaging large samples.
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Chapter 1

Introduction

The objective of my doctoral work was to develop quantitative imaging and analysis tools for
visualising phenotypes in models of disease. A large part of this work focused on imaging
molecular level events that lead to disease, such as the clustering of a protein involved in
Parkinson’s Disease, and the role of a protein unit in the budding of the human immunodefi-
ciency virus (HIV). At the macroscopic level, diseases can cause physical phenotypes that
affect the appearance of entire organs; the damage that the COVID19 virus does on lung
tissue is one such example. The length scales, optical properties of tissue, and sample prepa-
ration challenges for mesoscale (1-20 mm) imaging are vastly different, and other techniques
are required to address them. In the second part of my work, I describe a method which
permits the 3D visualisation of organ-scale phenotypes via tomographic reconstruction.

Because the parts of my thesis work are different in technology and application, I have
organised the thesis into two parts: Part I describes the development of single-molecule
imaging and analysis methods to examine the colocalisation of membrane proteins in cellular
models of Parkinson’s Disease and HIV. Part II describes the development of a low-cost,
open-source 3D imaging tool to investigate phenotypes at the organism scale. The focus
of the thesis is on technology and software developments driven by biological questions,
as part of various collaborations. This thesis assumes familiarity with the fundamentals of
fluorescence microscopy.

In Chapter 2, the use of fluorescence microscopy to infer biomolecular interaction is
briefly introduced, followed by the background to single-molecule imaging techniques. A
historical description of how advances in the detection of single molecules and the spreading
of fluorescent emissions in time led to single-molecule localisation microscopy (SMLM)
is provided. The background to the image processing and analysis tools used to examine
colocalisation and clustering of proteins from single-molecule imaging data is then presented,
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including a review on colocalisation methods for both conventional and single-molecule
imaging techniques.

Chapter 3 describes the use of SMLM to investigate the role of alpha-synuclein (a-syn)
in vesicle recycling mechanisms. A-syn and its controversial role at the presynapse are
introduced, and synaptosomes are presented as an effective model to image synaptic proteins.
A software package developed to automatically detect synaptosomes from SMLM data, and
to perform colocalisation and cluster analysis is described in detail. A-syn was found to
colocalise with internalised vesicles in a temperature independent manner, suggesting it
could be associated with non-canonical vesicle recycling mechanisms. Additionally, both the
clusters of related synaptic protein VAMP-2, and those of a-syn were found to increase in
size in calcium-starved conditions.

Chapter 4 presents a study on the colocalisation of HIV and the ESCRT-II protein EAP45
during viral egress from the cell. HIV is known to recruit the ESCRT-I and -III complexes
during egress, but ESCRT-II was hitherto considered dispensable. Building on biochemical
work from collaborators showing the necessity of ESCRT-II for efficient viral budding, an
imaging and analysis workflow was developed to quantify the colocalisation between HIV
and truncated EAP45 mutants at the plasma membrane. The N-terminus of EAP45 was found
to be necessary for colocalisation with the HIV protein Gag. The dynamics of the interaction
between Gag and EAP45 were then explored using single particle tracking, and a method
to visualise the correlated motion of two moving particles was developed. Three types of
interaction were observed between EAP45 and Gag, lasting from 10 seconds up to 6 minutes.

Chapter 5 begins with a review of volumetric bioimaging techniques. Optical Projection
Tomography (OPT) is introduced as a bridging method between medical imaging approaches
commonly used with organs and large organisms, and 3D light microscopy techniques
applied to image tissue slices or cells. OPT can generate cross-sectional 3D reconstructions
of transparent, mesoscale objects (~1-20 mm) with micrometre resolution; both anatomical
and fluorescently labelled features can be imaged. The working principles of OPT and the
reconstruction process are described, along with applications and advances in the field.

Chapter 6 describes the development of a low cost, open source OPT system to image
large organ samples, with freely available software plugins to reconstruct the acquired data.
The characterisation of the hardware and software components is described, with examples of
usage and demonstrations on how to correct common OPT artefacts. The system was applied
to image cleared mouse lung samples in a proof-of-concept study of chronic obstructive
pulmonary disease (COPD). Two different epithelial cell staining strategies were compared
for visualizing high order airways. Detailed instructions for reproducing the set up are
provided, to foster a wider adoption of OPT by future researchers.



Part I

Imaging at the nanoscale





Chapter 2

Tools for studying protein colocalisation
at the nanoscale

2.1 Motivation

In biology, interactions amongst different proteins are the basis for most cellular structures
and activities [1]. Biologists often investigate whether two or more proteins inside a cell
interact, in order to understand pathways of cellular function. Knowledge of these pathways
can be used to design and test therapeutics against disease.

Experiments using biochemical assays [2, 3] and mass spectrometry [4] can provide
evidence for protein-protein interactions. Different experimental methods are often used
in conjunction to provide multiple indications of association between proteins. The spatial
proximity between proteins and other sub-cellular structures is considered a hallmark of many
types of physical and chemical interactions [5], although spatial proximity does not warrant
molecular interaction. Regardless, visual evidence of spatial correlations together with
biochemical and physical assays can provide strong evidence for interactions. Fluorescence
microscopy is a common method to image two sub-cellular structures of interest and produce
visual evidence of their spatial proximity, or colocalisation. In fluorescence microscopy,
proteins are tagged with fluorescent dyes. Upon excitation at the appropriate wavelength,
these dyes emit photons, which are then recorded by a detector that registers the positions of
the emitters in space. The colocalisation between the recorded signal for each fluorescent
label can be quantified using image processing and analysis algorithms. These algorithms,
often arranged in groups known as workflows [6], are used to determine the likelihood that
two or more fluorescently labelled structures are in contact.



6 Tools for studying protein colocalisation at the nanoscale

Biological questions require tailored microscopy and analysis workflows; there is no one
approach to address all questions [6]. The first part of this thesis comprises the development
of two novel imaging and analysis toolkits designed to understand how sub-cellular structures
colocalise in Parkinson’s Disease and HIV in-vitro models. In the Parkinson’s Disease model,
the colocalisation of two synaptic proteins with synaptic vesicles is studied in the context
of vesicle endocytosis (membrane uptake), whereas in the HIV model the colocalisation
between a cytosolic protein, EAP45, and the main HIV protein, Gag, is studied in the context
of viral egress from the cell (membrane budding and release).

This introductory chapter provides the background to the imaging and analysis tech-
niques used in both colocalisation studies. First, single-molecule localisation microscopy is
introduced as a method to study colocalisation at nanometre-scale resolution in fixed cells,
followed by single particle tracking to study the dynamic interactions between objects in live
cells. The image processing and analysis methods used in both studies are then introduced,
including the correction of chromatic aberrations resulting from using multiple fluorescent
labels with different emission spectra, segmentation to separate regions of interest from
background and noise, and colocalisation analysis.

2.2 Background to single-molecule imaging

2.2.1 Early single-molecule imaging experiments

In the early 1990s, thanks to advances in labelling methods for biological structures, sensitiv-
ity of imaging detectors, and brightness of fluorescent probes, single-molecule imaging was
first attained with the detection of single emitters in crystals at cryogenic temperatures [7, 8].
Experiments detecting single fluorescent molecules [9] and proteins at room temperature
[10, 11] closely followed. These early studies leveraged the knowledge that the centre posi-
tion of a single fluorophore can be localised much more precisely than the diffraction-limited
image of the fluorophore captured by a pixelated detector. If a single emitter is considered a
point source, then its blurred image on a detector (Fig. 2.1) corresponds to the point spread
function (PSF) of the imaging system. The detected PSF can be fitted to a model function,
such as an Airy Disk pattern (a Bessel function of the first kind) or a 2D Gaussian of the
form:

f (x,y) = Aexp

 
�
 
(x� x0)2

2s2
x

+
(y� y0)2

2s2
y

!!
(2.1)
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where (x0,y0) are the centre coordinates, A is the amplitude, s2
x ,s2

y are the variances in x
and y, respectively. The centre of the Gaussian fit provides an estimate for the centre position
of the emitter, with a localisation uncertainty estimated by sx and sy, as demonstrated with
the diagram in Fig. 2.1. These centroid-finding methods were developed and first applied
in video microscopy, to localise beads attached to motor proteins with nanometre precision
[12]. The ability to video track the motion of single particles, coupled with the detection of
single molecules at room temperature by Betzig [10] and later Dickson [11], were important
milestones in the development of single particle tracking (SPT) techniques, which will be
described later in this chapter.

σx

Centroid (x,y)

Single point emitter

Fitting

x

Intensity

y

σy

Fig. 2.1 The centre position of a point emitter can be localised with very high precision by
fitting the image of the emitter to a model function, such as a 2D Gaussian.

Later in the early 2000s, Thompson et al. [13] derived an equation which describes the
limit to how precisely the centroid of a single molecule can be localised. This localisation
precision is largely determined by the number of photons collected in each area; the more
photons collected, the better the precision of the fit. With negligible noise (shot-noise limited),
this localisation precision Dx is roughly given by:.

Dx ⇡ sp
N

(2.2)

where s is the width of the diffraction-limited spot and N is the number of photons collected
[13].
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2.2.2 Isolating single molecules inside a diffraction-limited spot

The molecular resolution approach to fluorescence microscopy was further developed by
Betzig in 1995, by proposing that individual molecules clustered within the diffraction-limited
spot of an imaging instrument could be isolated by one or more defining optical characteristics
such as fluorescence spectra, lifetime, or photochromic state, and then localised with a much
higher precision [14]. The random fluorescent emission oscillation, or blinking, of fluorescent
molecules turned out to be a promising measure to separate the emission from neighbouring
molecules in time. Fluorophores had been previously observed to exhibit frequent transitions
between different energy states [9, 7, 8], however it was Dickson et al. [11] who first reported
the reversible photo-switching of single fluorophores and fluorescent proteins. A diagram of
the photo-activation and photo-switching principle of fluorophores is shown in Fig. 2.2.

kon

konPhoto-activatable
probe

Off state

405 nm 488 nm

On state bleached

Photo-switchable
probe koff

kbleach

kbleach

Fig. 2.2 The principle of photo-activatable (PA) and photo-switchable (PS) probes. PA probes
are activated from a dark off state to a bright on state by low intensity illumination with a
UV laser, and can be subsequently imaged with a readout laser (e.g. a 488 nm laser) until
photo-bleached. PS probes reversibly transition between a dark off state and a bright on state
for multiple cycles (blinking) until photo-bleached.

Centroid localisation applied to single-molecule biophysics

While the development of new and improved photo-activatable and photo-switchable fluores-
cent probes continued, centroid localisation techniques were being applied to track and image
an increasing number of single, sparse molecules. Early applications of centroid localisation
for single molecules included the dynamic imaging of single cyanine dyes attached to a
molecular motor protein, Myosin V, with nanometre accuracy (~1.5 nm lateral) [15], and
single quantum dots (QDs) attached to glycine receptors at the synapse [16]. The QDs were
distinguished by their blinking properties, and their centroids were localised to 5-10 nm pre-
cision. Following this work, other groups applied centroid localisation to image several (two
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to five) fluorescent dye molecules tethered to DNA scaffolds within a diffraction-limited area.
Nanometre localisation accuracy was achieved by sequentially localising and photobleaching
each dye on the scaffold [17, 18]. In 2005, Lidke et al. were the first to apply the temporal
separation of fluorophore emission to precisely localise the emitter positions in space, and
subsequently reconstruct an image consisting of individually localised points [19]. This
technique was termed “pointillism”, and it was demonstrated using the blinking properties
of QDs to accurately locate single molecules in groups of up to four emitters within 30 nm
of each other [19]. None of these methods could yet translate into an increase in traditional
imaging resolution, since it was still unfeasible to resolve more than a few emitters within a
diffraction-limited region. Nevertheless, having optimised the imaging and sub-diffraction
localisation of sparse, isolated single molecules, the next step was to detect single molecules
at high molecular density.

2.2.3 Single-molecule localisation microscopy

Spreading fluorescent emission in time to circumvent the spatial density problem

To resolve biological structures using fluorescence microscopy, dense labelling of a sample’s
fine features with fluorophores is often required such that a complete image of the sample
structure can be recorded. Lidke et al.’s [19] insight to spread the fluorescent emission from
multiple sources in time was essential to circumvent the spatial density problem; by keeping
the number of active (on state) probes at any point in time sufficiently low, this sparse subset
could be imaged as isolated single molecules. A full molecular image of the sample structure
could then be reconstructed by imaging a sparse subset of fluorophores in each frame over
thousands of frames. Figure 2.3 illustrates the concept of separating emissions in time to
address the spatial density problem. To implement this concept, the remaining challenge was
to reliably switch fluorophores between the on and off state.

The photo-switching and photo-activation properties observed in fluorescent proteins
and organic dyes during the single-molecule experiments in the 90s and early 2000s were
leveraged to control the number of active probes at any point in time. In the case of
fluorescent proteins, the characterisation of the photo-switching behaviour of the green
fluorescent protein (GFP) [11] led to the optimisation of many fluorescent protein alternatives
for better efficiency, longevity, and brightness in the blinking process [20]. In the case
of organic dyes, experiments to improve fluorophore photo-stability in single-molecule
Förster Resonance Energy Transfer (smFRET) [21, 22] led to the discovery of thiol-induced
Cy5 switching off [23]. Cy5 could be subsequently reactivated using a second laser line
enhanced by the proximity of a donor probe, such as Cy3 [24], or by ultraviolet (UV)
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Densely-
labelled
sample

a b c d

Diffraction-
limited
image

Spreading emissions in time to reduce
spatial density in each frame

Frame 1 Frame 2 Frame n....

"Pointillist"
reconstruction
of the sample

Fluorophores Blurred images of fluorophores Localised (x,y) coordinates

Fig. 2.3 Diagram showing how the spatial density problem can be addressed by separating
fluorescent emission in time. (a) A structure densely labelled with fluorophores can result in
a diffraction-limited image with overlapping fluorophores, such as the blurred blob shown in
(b). By spreading the emission of the different fluorophores such that only a sparse subset is
on in any given frame (c), a pointillist reconstruction of the sample (d) can be assembled by
sequentially localising the centroids of the sparse molecules and superposing them.

excitation. Many other conventional organic dyes have now been demonstrated to photo-
switch controllably under suitable buffer chemistry and irradiation [25]. The challenge of
localising multiple emitters in a diffraction-limited area was addressed nearly simultaneously
in 2006 by three different techniques [26, 27, 28]. These techniques combined active control
of fluorophore blinking to separate the signal from individual probes in time with highly
precise centroid localisation methods to circumvent the resolution limit in space. This
mechanism is now widely applied in a series of SMLM techniques, which are photo-activated
localisation microscopy (PALM) [26], fluorescence PALM (fPALM) [27], stochastic optical
reconstruction microscopy (STORM) [28], direct STORM (dSTORM) [29, 25, 30], ground-
state depletion microscopy followed by individual molecule return (GSDIM) [31], and point
accumulation for imaging nanoscale topography (PAINT) [32, 33, 34, 35, 36, 37]. Table 2.1
summarises the main SMLM techniques, their working principle, and some advantages and
disadvantages of each.
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The names of the techniques denote the specific constraint mechanism used to keep
the active emitter concentration sparse, and thus avert emitter overlap in any one frame
(e.g. photo-activation, photo-switching using intrinsic dark states, or transient binding from
collisions in solution). Aside from SMLM, there are other fluorescent super-resolution
microscopy techniques which also circumvent the diffraction limit, such as stimulated
emission depletion (STED) microscopy and structured illumination microscopy (SIM) [38].
STED microscopy can achieve 50 nm resolution by depleting the fluorescence of emitters
around a diffraction-limited region, thereby confining the effective fluorescent emission
volume to a sub-diffractive spot [39]. SIM can achieve up to 100 nm lateral resolution by
acquiring multiple frames containing spatial frequency information outside the passband of
the optical system, and combining them in Fourier space to achieve double the resolution of
the raw images. In this thesis, SMLM was chosen specifically because it offers the largest
resolution improvement of all super-resolution techniques, and the SMLM microscope
available in our laboratory offered the necessary laser excitation lines (488, 568, and 647
nm) for performing multi-colour imaging. For further background on SMLM, Sauer et al.
[40] and Deschout et al. [41] provide comprehensive reviews. Li and Vaughan [42] provide
an excellent review on switchable probes for SMLM. The following section describes the
general working principles for most SMLM techniques, encapsulating the building blocks
presented above.

Working principles of SMLM

Unlike in traditional fluorescence microscopy, in which the fluorescent emission of all flu-
orophores in a sample is collected simultaneously or by raster scanning across the sample,
in SMLM, images are assembled by collecting numerous frames containing sparse, single
emitters, and precisely determining the centre position of each emitter over multiple on/off
switching cycles. A super-resolution image is then generated as a computational reconstruc-
tion of the localised fluorophore density. This fundamental concept is illustrated in Fig. 2.4.
The temporal separation of fluorescent emission is achieved by using probes which exhibit
photo-switching properties, or reversibly bind to target structures.

In practice, SMLM is achieved by first acquiring several thousands of frames of the
blinking fluorophores (Fig. 2.4 a), and then processing frames with a localisation algorithm
to determine the centre coordinates of each emitter with high precision. The algorithm first
detects local maxima in each frame to get approximate localisations of bright emitters (on
state) [43] (Fig. 2.4 b). These approximate localisation candidates are extracted, and the sub-
diffractive localisation of the emitter centroid is accomplished by fitting each candidate’s 2D
photon distribution to a suitable PSF model, e.g. a 2D Gaussian (Eq. 2.1, Fig. 2.4 c), using
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Blinking movie

time

a

c d

b

Spot finding and candidate selection

Model fitting for localisation 1 µmSMLM reconstruction

Widefield

Fig. 2.4 Image processing pipeline for SMLM. (a) Images of sparse fluorescent emitters are
segmented to detect bright spots (b), and each bright spot is then fitted to a model function
such as a 2D Gaussian to locate its centre position (c). The localisation density map is
then plotted to reconstruct a super-resolution image, shown in (d) with an overlay of the
diffraction-limited equivalent image. HFF cells stained for microtubules with Alexa Fluor
647 are shown in this figure.
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non-linear least-squares methods or maximum-likelihood estimation [44]. These elements of
image processing for localisation microscopy are summarised in Fig. 2.4. Although Eq. 2.2
provides a good estimate in cases with negligible noise, the uncertainty in the localisation
precision sx is generally calculated using Mortensen’s correction [44] of Thompson et
al.’s original formula [13], which accounts for dipole (anisotropic) photon emissions and
properties of both CCD and EMCCD detectors, written below:

s2
x =

s2
ps f +

a2

12
N

0

BBB@
16
9
+

8pb2(s2
ps f +

a2

12
)

Na2

1

CCCA
(2.3)

where s2
ps f is the variance of the fitted PSF, N is the number of photons detected from

the emitter, a2 is the pixel area, and b2 represents the assumed background photons per
pixel. Thompson et al. [13] reported a 30% excess error in localisation precision when
using Gaussian masks to fit experimental images of fluorescent beads, compared to the
expected localisation value from computer simulations of Gaussian-distributed photons.
The factor 16/9 in Eq. 2.3 was empirically determined to compensate for this excess error
((16/9)2 = 133%). Additionally, Eq.2.3 also treats the assumed background b2 per pixel
exactly by including its product with the pixel area (a2) term, unlike Thompson et al.’s
formula which neglects this correction factor in the background term. The result of this
procedure is a table containing the (x,y) coordinates of each emitter, the integrated signal
density (in units of photons), the width of the PSF fit, and the localisation uncertainty sx. A
variety of reconstruction algorithms have been developed, and multiple software packages
have been produced and are readily available [45, 46, 47]. A super-resolved image can be
then reconstructed by generating a 2D histogram from the localisation table with a pixel size
in the range of the localisation precision. Alternatively, each localisation can be plotted as
a single point convolved with a Gaussian blur function whose standard deviation is equal
to the localisation precision [40]. This concludes the general acquisition and reconstruction
process for SMLM, after which image or spatial point pattern analysis techniques can be
used to extract further information from the data.

Image resolution in SMLM

The resolution in an SMLM data set depends on both the localisation precision achieved, the
labelling density, and the kinetics of the dye photoswitching [41]. The localisation precision
calculated from Mortensen et al.’s formula [44] provides a measure of how well the signals
from two neighbouring emitters can be distinguished, similar to the Abbe limit for diffraction-
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limited imaging. SMLM techniques regularly achieve localisation precision on the order of
~5-10 nm assuming 1000 detected photons per switching cycle and moderate background
noise [40]. At this length scale, the fluorescent probe distribution may significantly differ
from the target structure [48]. The target structure must be properly sampled by fluorophores
such that it can be faithfully reproduced in the reconstructed image, as demonstrated with the
illustrations in Fig. 2.5. The labelling density must be determined depending on the sample
structure. For samples with continuous boundaries, e.g. microtubules or mitochondrial mem-
branes, the Nyquist criterion [49] can be applied such that the distance between neighbouring
probes must be smaller than half the size of the smallest feature that can be resolved. For
samples without continuous boundaries, such as proteins attached to lipid membranes which
are only expressed in low copy numbers, or cytoplasmic proteins that are free floating, the
labelling density dictated by the Nyquist criterion might not be a useful metric. Regarding
photoswitching kinetics, the photoswitching ratio r = ko f f /kon, which is ratio between the
off and on states, needs to be high, as this ensures only a small number of fluorophores will
be in the on state at any given frame, ensuring only single fluorophores will be localised.

Other, more complex metrics of SMLM resolution have been reported such as the
information transfer function and Fourier Ring Correlation (FRC). The information transfer
function is derived using Fisher information theory [50], and it provides an estimate of how
much information a parameter X (e.g. the emitter intensity) can provide about an unknown
parameter Y (e.g. the emitter centre position) [51]. This theoretical framework requires a
priori knowledge of the sample structure and thus may be impractical for some applications
[41]. FRC is based on evaluating the spatial frequency correlation between two independently
recorded images of the same region and reporting a cut-off spatial frequency based on the
correlation decay. FRC has been used for decades in electron microscopy to estimate image
resolution, and it was recently adapted for optical nanoscopy [52, 53]. In FRC applied to
SMLM data, localisation data tables are divided in two halves, and the correlation between
the Fourier transform of each half’s reconstruction is calculated over a series of concentric
rings in Fourier space. This results in a graph of decaying correlation as a function of
spatial frequency. The image resolution can then be obtained as the inverse of the spatial
frequency for which the FRC curve drops below a pre-set threshold value. The FRC value
should not be used indiscriminately, as it is not an absolute measure of resolution; rather
it should be reported along with the localisation precision and the estimated probe density
(nearest-neighbour distance) to give an overall estimate of the reconstructed image resolution.
Comprehensive reviews are provided by Chao et al. [51] on Fisher information theory, and
by Nieuwenhuizen et al. [53] on using FRC for resolution estimation in SMLM.
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Fig. 2.5 Drawings showing the effect of labelling density, localisation precision, and long
linker lengths in SMLM reconstructions. Column (a) shows a densely labelled structure
with fluorophores localised with high precision yields a faithful reconstruction of the sample.
Reconstruction quality and resolution deteriorates with sparse labelling (b), low localisation
precision during reconstruction (c), and long linker lengths between the target molecules and
the fluorophores used (d). Figure inspired by Deschout et al. [41].
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The historical background and working principles of SMLM have now been described.
This thesis specifically applied dSTORM to examine nanoscale protein distributions in
Chapters 3 and 4, therefore a brief explanation of the specific constraint mechanisms to
temporally separate fluorescent emissions in dSTORM is included in the following section.

dSTORM working principle

In dSTORM, photo-switchable organic dyes are used to achieve temporal separation of
fluorescent emission. Target molecules are labelled, and all fluorophores are transferred to a
reversible off state at the start of the experiment by irradiating the sample with high laser
intensity at the peak of the fluorophore’s excitation spectrum. A sparse subset of fluorophores
will return to the on state either stochastically, or after irradiation with a UV source. If the
reactivation probability is sufficiently low, then it is highly unlikely that any two fluorophores
in the on state will be closer together than the diffraction limit. In other words, the lifetime
of the off state must be substantially longer than that of the on state to keep the active emitter
concentration sparse. This cycle of activation, localisation, and deactivation is repeated
hundreds of times until the dyes are photo-bleached.

Altogether, unlike in STORM in which an activator/reporter dye pair is necessary to
switch between on/off states (Table 2.1), in dSTORM single organic dyes are reversibly
photo-switched making use of:

1. High laser irradiation to achieve an inter-system crossing between energy states [30].

2. A reducing agent and an oxygen scavenger in buffer solution to control the return rate
from the off to the on state, and ensure a long off state lifetime [30].

dSTORM photo-switching mechanism Upon illumination at its absorption maxima, an
organic dye will be cycled multiple times between its ground state (1F0, Fig. 2.6) and its
excited singlet state (1F1, Fig. 2.6), emitting fluorescence photons with every decay from the
singlet to the ground state with a lifetime of a few nanoseconds. The dye can then undergo an
inter-system crossing (ISC, Fig. 2.6) either stochastically [54] or induced by high irradiation
[30] into a triplet state (3F1, Fig. 2.6). From the triplet state, the dye can either be quenched
(Q, Fig. 2.6) by molecular oxygen back to the ground state, or further reduced by a thiol
such as mercaptoethylamine (MEA) to generate a stable off state of up to a few seconds
[40]. Both of these reactions are necessary. The occasional quenching of the triplet state
by molecular oxygen prevents the dye from being reduced into a dark state every time it
reaches the triplet state, thereby allowing for repeated fluorescent emission cycles. Hundreds
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Fig. 2.6 Photo-switching of organic dyes in the presence of a reducing agent. (a) Upon
fluorescent excitation, a dye can either cycle between its singlet ground 1F0 and excited
1F1 state, emitting fluorescent photons, or it can undergo an intersystem crossing (ISC) to
populate the triplet state 3F1. (b) The triplet state can either be quenched (Q) by molecular
oxygen back to the ground state or reduced (red) by a thiol to produce the fluorophore radical
(R). Some dyes can accept a second electron to form the fully reduced leuco form of the dye
(L). Both the reduced (R) and leuco (L) forms can return to the ground state by collisions
with molecular oxygen, i.e. oxidation (ox).

to several thousands of photons can then be detected prior to reduction of the triplet state by
a thiol into a long-lived off state.

The reduction of the triplet state can result in either a fluorophore radical (R, Fig. 2.6) or a
fully reduced leuco form of the dye (L, Fig. 2.6), which are oxidised to repopulate the singlet
ground state 1F0. For most rhodamine derivatives (e.g. Atto 647N, Alexa Fluor 568, etc.) the
formation of a fluorophore radical R is accompanied by an additional blue-shifted absorption
band for the fluorophore around 400 nm. This allows for a photo-induced recovery of the
singlet ground state by irradiation with a UV (~405 nm) laser. In the absence of a reducing
thiol, the lifetime of the dark triplet state is only a few microseconds [30], and is therefore
impractical for SMLM.

In summary, the photo-switching of organic dyes depends on high irradiation to drive
inter-system crossings, and a balance of reduction-oxidation (redox) reactions to control the
lifetime of the off state. The redox reactions depend on the thiol concentration to reduce the
triplet state and enable a long-lived off state, and on the molecular oxygen concentration
not only to quench the triplet state and ensure high photon yield, but also to repopulate the
singlet ground state by oxidising the reduced form of the dye. The photo-switching rate
also depends on the buffer solution, the use of a UV laser to repopulate the singlet state,
and the type of dye, e.g. rhodamine, oxazine, or carbocyanine. Different dyes have distinct
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redox properties, and therefore require tailored thiol and oxygen scavenger concentrations
to achieve stable, long-lived off states and high photon yield. Nevertheless, Dempsey et al.
[55] have previously reported that most dyes perform best using both a glucose oxidase and
catalase oxygen scavenger, and a thiol such as MEA.

A thorough explanation of the photo-switching chemistry behind dSTORM can be found
in [56, 30, 40, 54]. Additionally, Dempsey et al. [55] report a methodical characterisation of
over 20 popular fluorophores for localisation microscopy, and present guidelines for choosing
photo-switchable dyes depending on the application. van de Linde et al. [30] provide a
meticulous protocol for dSTORM imaging, with discussions on how to adjust the ratio of
fluorophores in the on and off states, as well as best practices for labelling samples and
acquiring dSTORM data sets.

2.2.4 Single particle tracking

The centroid-finding algorithms developed for video microscopy [12], coupled with the
detection of single molecules at room temperature [10, 11] as described in the previous
section were fundamental to the development of SPT techniques over the past three decades.
SPT comprises a family of methods used to record and analyse the dynamics of particles
either in isolation or in ensembles. Particle tracking is an important tool for biology, enabling
discoveries such as the observation of the motion of motor proteins along the cytoskeleton
[15], or the entry, transport, and egress of viruses in cells [57], among many others [58].
SPT can be generally divided into two stages: spatial detection (Fig. 2.7 a-b), and temporal
tracking (Fig. 2.7 c-d), both of which share common elements with localisation microscopy.

Spatial detection involves identifying single, sparse molecules at high resolution, and
localising their centres with sub-pixel accuracy over multiple frames by fitting the image
of each emitter to a model function, e.g. a 2D Gaussian. This is analogous to the spot
finding and candidate selection process described for SMLM in Fig. 2.4 b-c, assuming
that point-like particles with symmetric images are being observed. In SPT however, the
particles observed are dynamic, and therefore localised emitters over each frame will trace
displacement trajectories that can be isolated and analysed. The temporal tracking step
involves linking detected particles in neighbouring frames to trace their displacement tra-
jectories. The simplest method for particle linking is the nearest-neighbour, which assigns
a link to the nearest detected particle in the following frame, as illustrated in Fig. 2.4 c.
More sophisticated, multi-frame association methods include multi-hypothesis tracking [60],
which is approximated by Jaqaman’s popular linear assignment problem (LAP) tracker [61],
and combinatorial approaches such as that proposed by Sbalzarini et al. [62]. To illustrate a
basic SPT experiment, Fig. 2.7 shows the process of tracking Cy5-tagged mRNA molecules



20 Tools for studying protein colocalisation at the nanoscale

0 20 40 60
x (µm)

20

40

60

y
(µ
m
)

Spot detection

time

a

c d

b

Fitting to infer particle positions

Temporal tracking Plot tracks

Nearest-neighbour
search

Trajectory linking

Fig. 2.7 Schematic diagram showing the two main stages of SPT: particle detection (a-b),
and temporal tracking (c-d). (a) Pixels with local brightness maxima in a time-series stack
are identified as candidates, and subsequently fitted with a model function to estimate their
centroid (b). (c) The centre coordinates corresponding to the same particle at different times
are linked using methods such as the nearest-neighbour. (d) The resulting displacement
trajectories, or tracks, can be plotted. The ImageJ plugin TrackMate [59] was used to detect
the particles and generate the tracks in this demonstrative experiment.
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diffusing in water, imaged using a 1.49NA oil immersion objective. Individual molecules
diffusing in and out of the focal plane were detected and fitted (Fig. 2.7 a-b), and their
trajectories were linked using Jaqaman’s LAP tracker. The resulting tracks were plotted in
Fig. 2.7 d, as an illustration of typical random walks by diffusing particles in solution.

The resulting displacement trajectories can then be used to study physical properties
of the sample, such as diffusion, transient interactions, trapping, and velocity in time and
space. Extensive reviews on SPT can be consulted for further details on specific methods and
applications [58, 63]. In this thesis, SPT was specifically applied in Chapter 4 to measure
and analyse the transient interaction between HIV and a cytosolic protein, EAP45, during
viral egress from the cell.

2.3 Components of image analysis workflows

The single-molecule imaging methods described above provide the necessary resolution
and sensitivity to examine protein distributions at the nanoscale, both in fixed and dynamic
samples. Measuring the colocalisation between different protein distributions, however,
requires specialised image analysis methods. This section provides the background to the
image processing and analysis methods applied in Part 1 of this thesis.

2.3.1 Image processing

This subsection introduces image processing methods to correct for chromatic shifts in the
acquisition process (registration), and discern between regions of interest and background or
noise (segmentation).

Chromatic registration

Chromatic aberrations are wavelength-dependent errors in light propagation often caused by
the variation in refractive index with wavelength of refractive optical elements [64]. For ray
bundles of different wavelengths traveling in an optical system, axial chromatic aberration,
or axial colour, is the variation in focal position along the optical axis with wavelength (Fig.
2.8 a), whereas lateral chromatic aberration, or lateral colour, is the change in magnification
as a function of field angle for each wavelength (Fig. 2.8 b) [64]. In microscopy, commonly
used plan apochromat objectives are designed to correct for spherical aberration, coma, field
curvature, and chromatic aberrations for up to five wavelengths [64]. In practice, small
residual aberrations are often present even in well-corrected microscope systems due to tilt
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of the coverslip, misalignment in the imaging optics between the objective and the detector,
and/or refractive index mismatch between the sample media and the objective [65].
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Fig. 2.8 Chromatic aberrations can bias SMLM colocalisation studies. (a) Ray diagram
showing axial (a) and lateral (b) chromatic aberrations and their effect on the image of a
point emitter at infinity. (c-d) 100 nm beads imaged in two colours to demonstrate lateral
chromatic offset. A region was extracted at the edge of the field of view to highlight how,
although the beads overlap in the diffraction-limited overlay (e), the localised centres of the
cyan and orange emitters may actually appear more than 100 nm away from each other (f).
(g) Representative field of view containing sub-diffractive beads as fiducials, which can be
corrected to yield the image in (h).

In the context of SMLM, chromatic aberrations are especially problematic, as objective
lenses are designed to have “diffraction-limited” performance, which means aberrations are
minimised for imaging spatial frequencies the size of, or larger than the diffraction limit.
For SMLM systems in which imaging resolution of 20-30 nm is achieved, even the best
objective lenses will exhibit pronounced chromatic aberrations for multi-colour imaging
[66, 67]. These chromatic offsets can introduce biases or errors in colocalisation studies,
therefore they must be corrected or minimised prior to analysing multi-colour SMLM data.

Lateral colour, which has the most prominent effect on multi-colour localisation data for
2D imaging, is illustrated using 100 nm multi-colour beads in Fig. 2.8 c-f. The images were
captured using 488 and 647 nm lasers, and an Olympus UAPON 100x 1.49 NA objective,
which is corrected for five colours at diffraction-limited performance. Assuming the optical
axis is in the centre of the field of view, lateral colour will cause the image of point emitters
away from the optical axis to deviate from its true location (Fig. 2.8 b,e,f). For widefield,
diffraction-limited imaging, even at the edge of the field of view (Fig. 2.8 e), the images of
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the emitters still overlap, however the localised centres of the emitters are distinctly separated
by more than 100 nm (Fig. 2.8 f).

Chromatic offset is generally corrected by imaging fiducials, e.g. 50 to 100 sub-diffractive
multi-colour fluorescent beads as shown in Fig. 2.8 g, and subsequently generating a mapping
function between a chosen reference colour channel and the warped (offset) channel to register
the two-colour images, resulting in an image with no chromatic offset as demonstrated in
Fig. 2.8 h. This mapping function can be a geometric transformation which compensates
for aberrations, e.g. distortions, shifts, or shears, between the positions of the reference
and warped fiducial images. For SMLM data sets, the figure of merit for the mapping
function is the registration error between the reference and the warped channels. In practice,
a registration algorithm is effective when the registration error is smaller than the localisation
precision of the data. Registration algorithms have been previously proposed for SMLM
by Annibale et al. [66] and Erdélyi et al. [67], which inspired the algorithms developed in
Chapter 3 of this thesis to register multi-colour SMLM data sets. The computational intensity
of this procedure is relatively low, taking at most a few minutes to register localisation data
sets.

Segmentation

Segmentation partitions images into labelled sub-regions that share similar characteristics.
In microscopy, segmentation discriminates between useful regions in a cell (e.g. organelles,
membranes, or distinct protein clusters) and background signal. In Chapters 3 & 4, segmen-
tation was used to detect protein distributions of interest and remove unwanted signals that
could bias colocalisation analysis. The segmentation operations used in this thesis involved
two key steps:

1. Thresholding an image to discern between specific signals and background.

2. Applying morphological operations to remove unwanted regions in the thresholded
image.

Thresholding Thresholding involves partitioning images into regions based on intensity
values. For an image f (x,y), pixels above a threshold value T are assigned a value of 1
(white), and those below a value of 0 (black), as in the equation below:

f (x,y) =

8
<

:
1, if f (x,y)� T

0, if f (x,y)< T
(2.4)
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If T remains fixed for the entire image, it is a global threshold, whereas if T changes
depending on the pixel region, it is a local threshold. Thresholding can also be understood
as a classification problem in which the objective is to minimise the average error incurred
in asigning pixels to two or more classes. In this thesis, two different solutions to the
classification problem were used for segmentation: Otsu’s method [68] in Chapter 3, and
Weka segmentation [69] in Chapter 4.

Otsu’s method Otsu’s method provides an optimal solution to divide pixels into two
classes by calculating a threshold that maximises the variance between two groups of pixels
(the between-class variance) [68]. Otsu’s method is entirely based on calculations performed
on an image’s histogram, which is an easily obtainable 1-D array. For an image with M⇥N
pixels with L distinct intensity levels, let ni denote the number of pixels with intensity i. The
total number of image pixels is MN = n0 +n1 +n2 + · · ·+nL�1, and the normalised image
histogram has components pi =

ni
MN . It follows then that:

L�1

Â
i=0

pi = 1, pi � 0 (2.5)

For a threshold T (k),0 < k < L�1, the input image can be divided into two classes, C1

and C2, encompassing all pixels with intensity values in the ranges [0,k], and [k+1,L�1],
respectively. With this threshold k, the probability P1(k) that a pixel assigned to class C1

(probability of C1 occurring) is given by the cumulative sum:

P1(k) =
k

Â
i=0

pi (2.6)

Similarly, the probability of C2 occurring is:

P2(k) =
L�1

Â
i=k+1

pi = 1�P1(k) (2.7)

It follows from Eq. 2.6 that the mean intensity value m1(k) of the pixels assigned to class C1:

m1(k) =
k

Â
i=0

iP(i/C1) (2.8)

where the term iP(i/C1) is the probability of value i, given that i comes from class C1. From
Bayes’ formula:

P(A/B) =
P(B/A)P(A)

P(B)
(2.9)
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applied to iP(i/C1), Eq. 2.8 becomes:

m1(k) =
k

Â
i=0

iP(C1/i)P(i)
P(C1)

(2.10)

The probability of C1 given i, iP(C1/i) in Eq. 2.10 is 1, since m1(k) only considers values
i from class C1. Additionally, Pi is the probability of the ith value, which is just the ith

component of the histogram, pi. Finally, P(C1) is the probability of class C1, which is equal
to P1(k) (Eq. 2.6), so we can rewrite Eq. 2.10 as:

m1(k) =
1

P1(k)

k

Â
i=0

ipi (2.11)

Following the same reasoning, the mean intensity value of the class C2 pixels is:

m2(k) =
1

P2(k)

k

Â
i=0

ipi (2.12)

The cumulative mean intensity up to k is then given by:

m(k) =
k

Â
i=0

ipi (2.13)

and the average, or global intensity of the entire image is:

mG =
L�1

Â
i=0

ipi (2.14)

To asses how well the threshold at level k separates pixels into two classes, the between-class
variance can be calculated:

s2
B = P1(k)(m1 �mG)

2 +P2(k)(m2 �mG)
2 (2.15)

The more separated the two mean intensity values m1 and m2 are from each other, the
larger the between-class variance s2

B. Therefore, algorithms implementing Otsu’s method
evaluate s2

B over all possible values of k to find the value k⇤ that maximises s2
B. If several

values of k are found for which s2
B is at a maximum, then the average of the k values is used.

When the optimal threshold level k⇤ is found, the image can be segmented as specified in Eq.
2.4:
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f (x,y) =

8
<

:
1, if f (x,y)� k⇤

0, if f (x,y)< k⇤
(2.16)

for x = 0,1,2, . . . ,M�1 and y = 0,1,2, . . . ,N �1.
Otsu’s method performs best for images with a bimodal intensity distribution containing

a deep valley between the two peaks, as shown in the histogram for the camera man image
in Fig. 2.9 a. Images with other pixel intensity distributions, such as the cat image in Fig.
2.9 b may require local thresholding or filtering to extract features of interest such as edges,
lines, and circles in the image. The derivation of Otsu’s method, along with an outline for its
algorithmic implementation can be found in Gonzalez and Woods, Ch.10, Section 3.3 [70].
Since Otsu’s method only performs computations on 1D vectors, it is computationally very
quick and can segment images in a few seconds at most.

Original OtsuHistogram
a

b

Fig. 2.9 Otsu’s threshold (orange line) applied to an image with a bimodal (a) and unimodal
(b) histogram. The open-source images "camera man", and "Chelsea the cat" from the Sci-kit
image data module were thresholded using Otsu’s method for this figure.

Weka segmentation As an alternative to traditional intensity-based image segmentation,
the Trainable Weka Segmentation (TWS) plugin in ImageJ was created by Arganda-Carreras
et al. [69] to combine machine learning algorithms with selected image features to generate
pixel-based segmentations. In TWS segmentation is also treated as a pixel classification
problem. Users can annotate images using a graphical user interface in ImageJ, adding traces
of pixel regions to the specified classes. The annotated images are used as a training set for a
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classifier which, once trained, can be used to categorise the remainder of the data set, or a
completely new set of images. Any supervised classification or regression algorithm from
the Waikato Environment for Knowledge Analysis (Weka) [71] can be used as a classifier.

Conventional segmentation methods such as Otsu’s method [68] use the intensity or
spatial relationship among pixels to discern regions of interest. Conversely, manual segmen-
tation by humans leverages knowledge about the shapes, textures, local intensity gradients,
etc. in images. TWS aims to leverage part of that user knowledge to generate segmentations
using a rich space of image features, most of which are extracted using common filters before
being used in the classifier. TWS was implemented in Chapter 4 to distinguish fluorescent
puncta of HIV proteins and the associated ESCRT proteins from background signals at the
cell membrane. The filters to extract features include:

• Edge detectors to indicate boundaries of objects in an image (e.g. Sobel filter).

• Noise reduction filters (e.g. Gaussian blur filter).

• Membrane detectors which enhance membrane-like features in an image using direc-
tional filters.

The default classifier in TWS, the Fast Random Forest algorithm, was used in this thesis.
This classifier is based on the Random Forest, a supervised machine learning algorithm
which constructs multiple decision trees based on input features, and outputs the mode of
the resulting classes from all the trees. Decision trees for classification are models which
repeatedly split an input data source (the root of the tree) into subsets based on input features
at each node (branches), until all node results have been assigned a class label (leaves). By
pooling together the most popular classification results from multiple decision trees, and
using random input features for each node, the Random Forest algorithm provides a robust,
accurate classification method. In TWS, the default classifier uses 200 decision trees with 2
random input features per node. The details of the Fast Random Forest algorithm are beyond
the scope of this thesis; the reader can find a detailed introduction to Random Forests in
Chapter 15 of Hastie et al. [72]. A detailed description of the available features and classifiers
for the TWS can be found in the plugin repository [73]. For the work performed in this thesis
in Chapter 4 in which less than 10 images were segmented per experimental condition, the
TWS annotation for training could take between 5-10 minutes to complete, and the training
itself required less than 10 seconds to produce a segmented data set.

Morphological operations Morphology describes pixel-wise operations, often on binary
images, based on shapes of features in the image. Morphological operations (MOs) work



28 Tools for studying protein colocalisation at the nanoscale

by probing an image with a small shape or template called a structuring element. The
structuring element is scanned over all pixels in the image and compared to the corresponding
neighbourhood of pixels. MOs examine if the structuring element fits within, intersects with,
or neither fits nor intersects with the neighbourhood of non-zero value pixels. A new binary
image is then created with non-zero values in the pixels in which the structuring element
fulfilled the tested condition (fit, intersection, etc.). Structural elements in MOs are analogous
to convolution kernels in digital image filtering. The two fundamental MOs are erosion and
dilation. In these operations, a layer of pixels is either stripped away or added, respectively,
from the inner and outer boundaries of the image. Erosion removes small elements in an
image and enlarges the gaps between regions but reduces the size of the regions of interest.
Dilation, on the other hand, fills in small holes and gaps between regions. Both erosion and
dilation were applied in this thesis to remove unwanted signals or elements in images, or to
generate accurate masks around bright regions of interest.

This concludes the brief introduction to the segmentation techniques used in the first part
of this thesis. A comprehensive covering of image segmentation methods can be found in
Gonzalez and Woods, Ch.10 [70].

2.3.2 Colocalisation analysis

Fluorescence image colocalisation analysis is a widespread method to search for clues of
interaction or association between two molecules or structures in biological samples. If
two or more structures are associated or interact, they are likely to have overlapping spatial
distributions. However, the reverse is not true; co-presence does not guarantee association or
molecular interaction [5]. Even if two probes appear in the same location, this could either
be due to random chance or to being pushed by the crowded field of unlabelled structures
in the sample which are invisible to the microscope [5]. Only nearfield techniques such
as FRET [74] can directly measure probe-probe interactions. Nonetheless, the repeated
colocalisation of two probes in multiple samples/cell regions increases the confidence that
the two could be potentially associated or interacting [75], and allow researchers to infer
such interactions. Colocalisation analyses are widely used because they can be easily applied
on existing multi-colour fluorescence images obtained using standard microscopes and
fluorescent probes.

Conventional colocalisation measures

Colocalisation can be divided into two different measurements: correlation and co-occurrence
[75]. Correlation measures the intensity relationship between two overlapping fluorophore



2.3 Components of image analysis workflows 29

distributions. It can be used to compare the relative abundance between two species, or to
find a functional or stoichiometric relationship between species. Co-occurrence measures the
extent of spatial overlap or proximity between two fluorescent distributions, generally using
object segmentation methods. In Chapters 3 and 4, the colocalisation analyses specifically
measured the co-occurrence of fluorescent distributions, therefore unless specified, the terms
colocalisation and co-occurrence will be used interchangeably. An overview of the methods
used to test colocalisation now follows, in order of increasing complexity.

Dye overlap measurement The simplest implementation of colocalisation is to measure
the area of signal overlap between two images. In Fig. 2.10, the images of two simulated
blob patterns were binarised using Otsu’s method [68] to select the shapes of the blobs from
the background; the intersection and the union can then be used to calculate the degree of
overlap between the two different channels as given by the following equations:

Areaintersect

AreaCh1

= 0.24 (2.17)

Areaintersect

AreaCh2

= 0.19 (2.18)

Areaintersect

Areaunion
= 0.12 (2.19)

where the fractional overlap of channel 1 with channel 2 is given by the quotient of the
intersection and channel 1 areas (Eqs. 2.17), and vice versa (Eq. 2.18). An overall overlap
metric can be expressed as the fraction of the intersection over the union (total area) (Eq.
2.19).

This area overlap analysis can be expanded, as the segmentation step applied in Fig. 2.10
b allows discrete objects (contiguous pixel areas) to be identified with specific properties
such as centroid, area, ellipticity, etc. These properties can be leveraged to compare the
relative proximity of objects between colour channels. The nearest-neighbour algorithm [76]
is a common implementation of this object-based analysis, which considers two objects to be
colocalised if the distance between their centroids falls within a threshold distance given by:

d12 =
q
(x1 � x2)2 +(y1 � y2)2 (2.20)

where d12 is the distance between a spot with centre (x1,y1) in channel 1, and a spot with
centre (x2,y2) in channel 2. A nearest-neighbour algorithm was implemented in Chapter 3 to
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Channel 2

Channel 1

Segment using Otsu's method

a b c

Intersection

Union

Fig. 2.10 The area overlap between two colour channels is the simplest form of measuring
colocalisation. (a) Two images of blobs with differing intensities and noise were simulated in
ImageJ to represent two colour channels in a microscopy experiment. (b) The images were
segmented using Otsu’s method, and their union and intersection were computed (c).

apply a density filter on localisation data, and in Chapter 4 to compare the proximity between
objects from two colour channels in different experimental conditions.

Manders’ coefficients The dye overlap and object-based analyses described in the previous
section do not take into account the signal densities of the examined fluorophore distributions.
Manders et al. [77] devised a method which accounts for signal intensities when calculating
the overlap between colour channels [77] in the form of two coefficients M1 and M2:

M1 =
Ân

i=1 xicoloc

Ân
i=1 xi

(2.21)

where

xicoloc =

8
<

:
xi, if yi > 0

0, if yi = 0
(2.22)

and

M2 =
Ân

i=1 yicoloc

Ân
i=1 yi

(2.23)

where
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yicoloc =

8
<

:
yi, if xi > 0

0, if xi = 0
(2.24)

In these equations, xi and yi refer to the ith pixel value above an intensity threshold for
colour channels 1 and 2, respectively, for a total of n pixels analysed. Thus, xicoloc and yicoloc

will only be non-zero when the corresponding xi and yi are also above the intensity threshold.
The M1 coefficient therefore measures the co-occurrence fraction of colour channel 1 on
channel 2, and M2 measures the reverse [77]. Manders et al. also proposed an intensity-
weighted overall overlap coefficient (Manders Overlap Coefficient, or MOC) between two
channels, expressed as:

MOC =
Ân

i=1 xiyiq
Ân

i=1 x2
i

q
Ân

i=1 y2
i

(2.25)

where xi and yi are the same as defined above. The MOC is an improvement over the area
overlap calculation described previously, as it takes into account intensity per area (signal
density), giving larger weight to bright pixels than to dim background pixels. This causes the
MOC to be susceptible to large background signal contributions, such as those originating
from high non-specific labelling, strong autofluorescence, saturated pixels, or bright out-
of-focus contributions [77]. These non-biologically relevant sources can bias the MOC to
appear larger than its true value. Adequate thresholding, background subtraction, and/or
masking are necessary to remove unwanted signal contributions and minimise their effect
on the MOC [78]. Notwithstanding, the MOC is robust against variations in signal-to-noise
ratio (SNR) [77], as random pixel intensity fluctuations due to noise have little effect when
summing over a large number of pixels to calculate M1, M2, and the MOC [78]. Manders
coefficients operate on the image as a matrix of pixels, and can therefore be computed within
less than a second for a simple image.

Testing colocalisation against a random chance distribution of fluorophores When
analysing the MOC, it is important to determine whether or not the observed co-occurrence
is due to a random chance distribution of the labelled species. A simple, yet coarse method
to test this was proposed by Dunn [75] in which one of the colour channel images is rotated
90°to act as a negative control, and its MOC is calculated with each of the original images.
A more sophisticated method was proposed by Costes [79] in which PSF-sized groups of
neighbouring pixels are randomly scrambled in one of the colour channels to simulate a
random distribution of fluorophores. The MOC is then calculated between the scrambled
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and the unaltered channel. This process of scrambling and calculating an MOC value is
repeated over ~100 to 1000 iterations to obtain a confidence interval for the mean MOC
value in the case of a pseudo-random distribution of markers. If the MOC value from the
experimental data exceeds 95% of the MOC values from the randomisation trials, then the
colocalisation is deemed statistically significant and unlikely to be due to random chance
[78]. Costes’ method, although more computationally intensive, is statistically more robust
than Dunn’s method [78]. For a single 256x256 pixel2 region (which is the size of all images
acquired in Part I of this thesis), Costes’ method can take up to a minute to compute for 1000
iterations, whereas Dunn’s method can be computed within a second for a single image. A
more detailed review on different colocalisation methods and their application can be found
in Bolte and Cordelieres [80], Cordelieres and Bolte [81], Dunn et al. [75], and Aaron et al.
[78].

Coordinate-based colocalisation analysis

The emergence of super-resolution microscopy changed the way researchers think about
colocalisation, since structures that previously appeared to overlap in diffraction-limited
images could be revealed to be in distinct, separate locations in space [82], as demonstrated
with the localised bead images in Fig. 2.8. The emergence of SMLM methods in particular,
which can distinguish single molecules which are ~10-20 nm apart, led scientists to reassess
how to infer interactions between sub-cellular structures [5]. The proximity threshold to
determine colocalisation between two species then depends on the biological question.

Traditional colocalisation methods based on intensity overlap or correlation depend on the
microscope PSF and are therefore generally not applicable to localisation data [83], however
they can be applied to reconstructed SMLM images in which the pixel values in an image
represent the binned number of localisations within that pixel [84]. As mentioned in section
2.2.3, the output from an SMLM experiment is not a conventional image, i.e. a pixelated
array of intensity values. Rather, it is a table of x,y coordinates of individual molecules,
each with an associated uncertainty and signal density, and can therefore be treated as a
spatial point pattern. Colocalisation analysis becomes then the search for spatial associations
between point patterns originating from different fluorophore distributions. Spatial statistics
and correlation analysis methods have been developed to extract information about the spatial
association (coupling or tethering) of localisations based on their relative positions.

Spatial statistics Spatial descriptive statistics are often used to summarise a point pattern,
test hypotheses about the pattern, and fit models [85]. In spatial statistics, moments are
used to describe quantitative parameters about a probability distribution. The first moment
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property of a spatial point pattern is the number of points per area, and the second moment
property is the expected number of points N within a distance r of another point. Ripley’s
K-function [86], a common spatial statistic tool for analysing point patterns, is the second
moment property normalised by the number of points per area l :

K(r) =
1
n

n

Â
i=1

Npi(r)
l

(2.26)

where pi is the ith point and the sum is taken over n points. The expected K(r) value for
a random Poisson distribution is pr2, also defined as complete spatial randomness (CSR)
[85]. Any deviations from this expectation indicate either clustering or dispersion for a point
pattern. Besag [87] proposed a normalisation of the K-function so that its expected value for
CSR is linear with r:

L(r) =

r
K(r)

p
(2.27)

Besag’s function was further normalised so that the expected value for CSR yields 0, in the
form of the H-function [88]:

H(r) = L(r)� r (2.28)

Ripley’s K-function is most commonly used to test whether an observed point pattern
is consistent with a random Poisson distribution (the null hypothesis). Positive values of
the H(r) function indicate clustering over that spatial scale whereas negative values indicate
dispersion, as demonstrated with a simulated clustered and random pattern in Fig. 2.11.

The value of the search radius r which maximises the value of H(r) indicates the radius
of maximum aggregation, i.e. the radius of a disk centred on a sample point which on average
contains the most points per area. This radius has been used as an estimate for cluster size
in point patterns, however it has been reported to overestimate size of the clusters by up to
a factor of twice the true radius [89]. Bivariate or multivariate generalisations of Ripley’s
K, L, and H-function can be used to describe relationships between two or more spatial
point patterns; this is useful for performing colocalisation studies with localisation data.
Depending on the density of points in the pattern at hand, as well as on the radius chosen for
analysis, Ripley’s K function calculation can take up to a few minutes for a single 256x256
pixel2 region, and over an hour for analysing multiple fields of view (> 15).

Correlation analysis Correlation analysis is useful to calculate spatial scales of density
fluctuations in a spatial point pattern [90, 91, 92]. The Pair Correlation Function (PCF)
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a

Ripley's K function is
calculated over concentric
disks within a search
radius r.

ri

ri+1

ri+2

b c d

Fig. 2.11 Using Ripley’s K-function to analyse spatial point patterns. (a) Illustration of
how Ripley’s K-function is computed over concentric circles centred on each point in the
pattern, for a maximum search radius rn. (b) Uniformly clustered point pattern. (c) Random
point pattern (d) Ripley’s L(r)-r function computed for the clustered pattern in (b) (blue
line), and the random pattern in (c) (orange line). The black dotted line represents the null
hypothesis, the L(r)-r curve for a Poisson distribution. The code for this simulation can be
found in the supplementary code repository for this thesis https://github.com/pedropabloVR/
supplementary-code-thesis.

https://github.com/pedropabloVR/supplementary-code-thesis
https://github.com/pedropabloVR/supplementary-code-thesis
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is similar to Ripley’s K-function, however it measures the probability of finding another
point at a distance R away from a given point, compared to that expected from a random
distribution of points [91] for concentric rings instead of disks. Both Ripley’s K-function
and the PCF are more descriptive than a regular nearest-neighbour calculation, as they can
point out properties of a spatial point pattern at different size scales e.g. regularity at a
small scale and clustering at large scales. Several implementations of Ripley’s K-function
[89, 83, 93, 94] and correlation analysis [83, 93, 95, 96, 90, 91, 97] have been applied to
measure colocalisation in SMLM data sets.

Segmentation, followed by spatial association Other methods apply segmentation on
SMLM data sets to identify clusters, followed by spatial association metrics to measure inter-
cluster proximity. One technique uses Voronoi diagrams to compartmentalise localisations
into polygons and create density maps [98, 99, 100]. A Voronoi diagram is a tessellation
in which a polygon corresponding to a data point represents the locus of all points in space
closest to this data point [101] (Fig. 2.12). Tessellation does not require a priori knowledge
of the clustering in the data, i.e. a search radius, and the properties of the Voronoi tiles can be
readily used to describe the physical properties of clusters. A similar technique was extended
to 3D data, in which convex hulls are fitted to localisation data to determine the 3D overlap
of clusters [102].

Clustered pattern Random pattern

Fig. 2.12 Voronoi diagrams for the clustered and random patterns in Fig. 2.11.

A number of tools previously developed by other groups to apply some of these point
pattern analysis methods are summarised in Table 2.2. In-depth reviews and analysis of the
currently available colocalisation techniques for SMLM can be found in Deschout et al. [84]
and Lagache et al. [83].
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Table 2.2 Software tools developed to analyse SMLM data as spatial point patterns for
colocalisation and cluster analysis.

Tool Method Implemented in Reference
ClusDoC Correlation-based analysis

(CBC, Malkusch et al. 2012)
Matlab Pageon et al. 2016

[103]
Icy-SODA Ripley’s K Function, PCF

(Lagache et al. 2015)
Icy Lagache et al.

2018 [83]
LAMA Ripley’s K Function, PCF,

DBScan, OPTICS,
Nearest-neighbour

Python Malkusch et al.
2016 [96]

MOSAIC IA Spatial interaction analysis ImageJ/Fiji
plugin

Shivandanan et al.
2013 [97]

ClusterViSU Voronoi Tessellation Matlab Andronov et al.
2016 [98]

SR-Tesseler Voronoi Tessellation C++ Levet et al. 2015
[99]

STORM-RLA Convex-hull fitting for 3D Matlab Veeraraghavan and
Gourdie, 2016
[102]

2.4 Summary

This chapter introduced the background to the imaging and analysis methods used in Part I
of this thesis. First, the historical background to the detection of single fluorescent molecules
was introduced. A description of the fundamentals of localisation microscopy techniques
ensued, with details on image acquisition, photoswitching, and reconstructions for dSTORM.
Subsequently, the working principles for SPT methods to analyse dynamic interactions
between single molecules were presented. Finally, an introduction to chromatic offset
correction, image segmentation, and colocalisation analysis methods was provided.

The following two chapters describe the individual application of these methods to
examine the colocalisation of membrane-bound fluorescently labelled protein clusters at
the nanoscale, in in-vitro models for Parkinson’s Disease (Chapter 3) and HIV (Chapter
4). In each chapter, the techniques introduced here serve as building blocks for integrated
image acquisition and analysis pipelines tailored to the constraints and requirements of each
biological question. A number of the introduced image processing and analysis methods
were implemented in newly-developed software packages; all the source code for these
algorithms can be found in Github repositories and will be specified accordingly in each
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chapter. Other methods were applied using existing open-source software, which will also be
clearly acknowledged.
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Chapter 3

A single-molecule method to study the
role of alpha-synuclein at the synapse

Alpha-synuclein (a-syn) is a protein whose dysfunction is associated with Parkinson’s Disease
and is primarily localised at the pre-synapse of neurons. The pre-synapse contains vesicles
~40 nm in diameter, which enable communication between neurons by fusing to the plasma
membrane to release neurotransmitters. A-syn is proposed to have role in vesicle recycling,
however it is unclear if it is involved in SNARE/clathrin-mediated (CM) exo/endocytosis or
in non-canonical mechanisms such as kiss-and-run, in which a vesicle transiently opens and
closes a small pore when in contact with the plasma membrane [1]. In this study we used
dSTORM to clarify a-syn’s spatial relationship to endocytosed vesicles in purified synaptic
boutons, called synaptosomes. The proximity of VAMP-2, a protein linked to SNARE/CM
mediated exo/endocytosis, to internalised vesicles was used as a control, and compared to
that measured for a-syn. A software tool for colocalisation and cluster analysis of SMLM
data from synaptosomes was developed, including routines for automatic synaptosome
detection, chromatic registration, and density filtering to remove false positives. Ground truth
models of a synaptosome were created, from which synthetic SMLM data was generating for
benchmarking the colocalisation and cluster analysis scripts.

A-syn’s colocalisation with internalised vesicles was found to be temperature independent,
whereas VAMP-2’s colocalisation with vesicles decreased significantly at sub-physiological
temperatures. This suggests a-syn has a significant association with vesicles internalised via
recycling mechanisms which are temperature independent and occur even when membranes
are rigid, such as kiss-and-run. Furthermore, both a-syn and VAMP-2 clusters were shown to
increase in size upon calcium depletion, potentially due to a link between a-syn and VAMP-2
in calcium-dependent clustering of synaptic vesicles.
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3.1 Introduction to alpha-synuclein

In the brain, the protein a-syn is primarily localised at the pre-synapse of neurons in both
a structurally disordered form and a partially ordered membrane-bound form [2]. The
dysfunction of a-syn leads to the formation of protein aggregates, which in turn form the
main component of so-called Lewy Bodies and Lewy Neurites in neurons. These are dense
protein deposits which have been identified as the hallmarks of Parkinson’s Disease [3].
A-syn is not an essential protein [2] and therefore its physiological role at the pre-synapse is
unclear. The models used to study its role have led to continued scientific debate, as different
cell types and expression systems have resulted in conflicting findings.

3.1.1 Structure and function

A-syn is a 140 amino acid (aa) protein composed of three distinct regions illustrated in Fig.
3.1: the N-terminus (aa 1-60) which has been shown to mediate binding to lipid membranes
[4], the non-amyloid-b component (NAC) (aa 61-95) which is hydrophobic and prone to
aggregation, and the C-terminus (aa 96-140) which is highly negatively charged and can also
bind lipids in a calcium-dependent manner [5].

a

b

α-helix form

NAC

Lipid binding
domain

Upon lipid binding

Aggregation-
prone domain

Calcium-mediated lipid
binding domain

CN

N

C

14
0

61 951

Fig. 3.1 Diagram of a-syn’s structure showing the lipid-binding domains and the aggregation
prone NAC region. (a) The N-terminus (aa 1-60) can bind lipids such as vesicles and
membranes [4], and the C-terminus can also bind lipids but in a calcium-dependent manner
[5]. (b) Cartoon of a-syn’s helical shape after binding lipids either via its N or C terminus.
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3.1.2 A-syn and lipid vesicles

As an unbound protein in the cytosol, a-syn is intrinsically disordered, however upon lipid
binding a-syn becomes a-helical [6] as illustrated by the cartoon in Fig. 3.1 b. Due to its
N-terminus (aa 1-90) lipid-binding capacity, many studies have investigated the interaction
between a-syn and synthetic lipid mono- and bilayers [7, 8, 9, 10, 11, 12, 13], and show that
a-syn can sense curvature and preferentially binds to small vesicles [14, 11, 15, 16]. A-syn
favours binding to highly curved surfaces such as those of small vesicles in which the spacing
between each phospholipid unit is larger, as illustrated by the drawings in Fig. 3.2.

Small micelle
High local
curvature

Flat

df < <dL dH

Curvature
Low High

Large micelle
Low local
curvature

a b c

Fig. 3.2 Cartoon of micelle-based membranes to illustrate how curvature affects packing of
phospholipid groups. The spacing between adjacent phospholipid is smallest (d f and dL) for
surfaces with flat or low curvature (a-b), and largest (dH) for surfaces with high curvature (c)
such as small micelles or vesicles. This allows certain proteins to “sense curvature”, i.e. to
bind to membranes which have a larger spacing between their phospholipid units.

Furthermore, a series of studies from our group have recently showed that a-syn can bind
physiological vesicles isolated from rat brains via its N-terminus and in a calcium-dependent
manner at the C-terminus, leading to the formation of an extended double-anchor mechanism
[17, 18, 5] (Fig. 3.3). This mechanism indicates a-syn can bind two vesicles together, or a
vesicle to the plasma membrane (Fig. 3.3), suggesting a-syn’s physiological role could be to
act as a calcium-dependent modulator of vesicle homeostasis and/or vesicle recycling [5].

3.1.3 A-syn and membrane trafficking

Vesicle recycling is a well-documented membrane trafficking pathway at synapses, which
are the essential communication junctions between neurons. Vesicles filled with neurotrans-
mitters dock to the plasma membrane in a region called the active zone, and then fuse with
the membrane (exocytosis) releasing the neurotransmitters. Vesicle components are later
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a-syn as a double anchor

Synaptic vesicle

Plasma membrane

VAMP-2

Fig. 3.3 Drawing showing a-syn’s potential double anchor mechanism between two vesicles,
or a vesicle and the plasma membrane, through its lipid binding properties at its N and C
termini. The dotted rectangles show how a-syn can bind either two vesicles together or a
vesicle to the plasma membrane.
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retrieved from the plasma membrane (endocytosis) and are refilled with neurotransmitters to
repeat the cycle.

A-syn knockouts (KOs) have been previously shown to affect the size of the synaptic
vesicle pool [19, 20], i.e. the vesicle group readily available for recycling, suggesting a-syn
acts as a modulator of vesicle homeostasis at the presynapse. This potential modulatory
behaviour, along with a-syn’s ability to bind vesicles, suggests a-syn may have a role in
vesicle recycling. Furthermore, a-syn is not present in all vesicles, but only in sub-populations,
which suggests it might have a specific function in vesicle recycling [21].

A-syn’s role, however, is difficult to pinpoint, as there are multiple mechanisms involved
in vesicle recycling in neurons [22, 23]. Understanding these mechanisms is complicated by
the presence of multiple pathways of exo/endocytosis, such as the canonical clathrin-mediated
endocytosis (CME) (Fig. 3.4 a), SNARE regulated membrane fusion (Fig. 3.4 b), or the non-
canonical activity-dependent bulk transport, fast compensatory, ultrafast, and kiss-and-run
mechanisms [22] (Fig. 3.4 c). CME is a scaffolded inward budding of the plasma membrane
which uses a complex coat of over 50 endocytic proteins, including clathrin, to induce
membrane curvature [24] and take in neurotransmitters. SNARE regulated membrane fusion
is the opposite topological process, whereby a vesicle comes into contact with the plasma
membrane and a multi-protein complex known as the SNARE complex promotes the creation
of a fusion pore between the two lipid membranes. Both of these canonical methods involve
energy expensive processes, requiring ATP [25] to mobilise complex protein machineries,
and take from 10-20 seconds to complete. In contrast, non-canonical mechanisms such
as kiss-and-run, in which a fusion pore is transiently opened between a vesicle and the
plasma membrane for quick uptake or release of neurotransmitters, or ultrafast endocytosis,
in which a vesicle is formed independent of clathrin within 200-300 ms [22], occur in time
scales of milliseconds. Specifically, kiss-and-run events have been reported to still occur
at sub-physiological temperatures (e.g. 4°C), whereas canonical endocytosis mechanisms
such as CME, as well as ultrafast, are inhibited at sub-physiological temperatures [25]. This
temperature dependency in vesicle recycling mechanisms provides a way to observe the effect
of different mechanisms by incubating samples either in physiological or sub-physiological
temperatures.

Morevoer, differences in cell type used, method and frequency of stimulation to induce
trafficking events, and methods to observe exo/endocytosis, e.g. biochemical, fluorescence
microscopy, electrophysiology, etc., make it difficult to determine the identity of membrane-
trafficking mechanisms [22]. Moreover, the speed of neurotransmitter release (~millisecond
scale [26]) and the size of the vesicle pores (~1-2 nm across in neuronal cell types [27]) make
it difficult to image vesicle recycling events in real time.
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Dynamin
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opens and closes

Exocytosis via SNARE complex

Fig. 3.4 Drawing showing several mechanisms of vesicle recycling. (a) Clathrin mediated
endocytosis, (b) Exocytosis via the SNARE complex, and (c) kiss-and-run.

Exocytosis

The role of a-syn in exocytosis and endocytosis is controversial, as different studies of
a-syn’s influence on membrane trafficking events report contrasting views. Regarding
exocytosis, the modest overexpression of wild type a-syn has been shown to inhibit synaptic
vesicle exocytosis in PC12 cells and chromaffin cells [28], in neurons [29, 30], and in mice
[31, 32, 33]. Conversely, an increase in neurotransmitter release (exocytosis) was determined
in neurons injected with a-syn [34]. A-syn knockouts (KO) on the other hand have been
reported to show decreased exocytosis in neurons [34] and in mice [35, 31, 36]. Other studies
using a-syn KO mice have reported both no effect on exocytosis [2, 37], as well as an increase
in exocytosis [38, 39, 40].

The contrasting views presented above indicate a-syn may be implicated in an exocytosis
mechanism. A-syn has been shown to bind VAMP-2, a member of the SNARE complex (Fig.
3.4 b), at its C-terminus and to promote SNARE complex assembly [41]. This link between
a-syn and VAMP-2 has recently been suggested to help in the physiological clustering
of synaptic vesicle pools, thereby restricting their egress to the plasma membrane and
attenuating vesicle recycling and exocytosis [42]. Another recent study found overexpressed
and endogenous a-syn promotes cargo discharge and reduce the closure of the fusion pore in
adrenal chromaffin cells and neurons [43], suggesting a-syn has a potential role in kiss-and-
run (Fig. 3.4 c).
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Endocytosis

Recent studies using models with a-syn overexpression suggest a-syn promotes clathrin-
mediated endocytosis (CME) of synaptic vesicles. These studies reported an increase in
membrane uptake after measuring increased internalization levels of surface receptors such
as transferrin [44], NMDAR subunit NR1 [45], and dopamine transporter [46] in neurons.
During CME, clathrin is the main component of the coating over the budding vesicle which
supports and promotes membrane curvature, and dynamin is a key protein which coils around
the neck of the budding membrane to achieve membrane scission and detachment of the
vesicle [47] (Fig. 3.4 a). A study in which dynamin 1,3 were knocked out in synapses,
resulting in vesicle buds that did not fully detach from the membrane, showed that a-syn
and clathrin clusters colocalised with the membrane in similar abundance [20]. This study
suggests a-syn potentially acts at the very beginning of CME to induce membrane curvature
before fission of the vesicle by dynamin in CME [20].

The incomplete picture for the role of a-syn in synaptic vesicle recycling likely stems from
the variety of cell types, stimulation techniques, and analysis methods used in the studies
mentioned above which may not capture all release and recycling events. Furthermore,
different expression systems of a-syn, i.e. overexpression or single, double, or triple KO can
complicate interpretations. A detailed review on a-syn’s potential role in vesicle recycling
mechanisms is provided by Lautenschlager et al. [6].

3.1.4 The role of a-syn at the presynapse

A-syn and non-canonical vesicle trafficking mechanisms

In the context of the contrasting views presented above on the role of a-syn in synapses,
we were interested in studying the role of endogenous a-syn at the presynapse to clarify its
relationship to vesicle trafficking mechanisms. This is important, as a better understanding
of a-syn’s function at the synapse could lead to new insights on how it then misfolds and
becomes part of Parkinson’s Disease pathology. We examined the spatial relationship between
a-syn and endocytosed vesicles and compared it to that of VAMP-2 and endocytosed vesicles.
VAMP-2 is an abundant synaptic protein which is known to be involved in exocytosis as a
member of the SNARE complex [41], and to be taken up during CME [23, 20]. Therefore,
VAMP-2 will likely overlap with vesicles recycled via these two bulk mechanisms. We
investigated if a-syn colocalised with internalised vesicles via CME or the SNARE complex
like VAMP-2, or if it colocalised with vesicles internalised via different (non-canonical)
mechanisms.
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Calcium mediates vesicle recycling in dopaminergic neurons

Dopaminergic neurons (DN) are the most vulnerable neurons in the substantia nigra pars
compacta (SNc), one of the primary brain regions affected in Parkinson’s Disease. Calcium
is an important regulator of DN activity, as these neurons have voltage-gated calcium (Ca2+)
channels which mediate autonomous pace making [48, 49] i.e. the oscillatory generation of
action potentials. Calcium is also one of the key molecules involved in vesicle release and
recycling along with ATP, as it provides cues for the release or uptake of neurotransmitters
via synaptic vesicles [50]. Since the vesicle-binding properties of a-syn at the C terminus
are mediated by calcium [5], we applied cluster analysis methods to investigate how the
single-molecule distribution of a-syn was affected by the presence or absence of calcium
compared to that of VAMP-2.

3.2 Experimental Methods

3.2.1 Synaptosome preparation and stimulation

Synaptosomes were obtained by homogenising two WT Sprague-Dawley rat brains and then
separating pinched-off synapses from neurons in a size-exclusion gradient. The preparation
was performed by Dr. Amberley Stephens from the Molecular Neuroscience Group, and it is
illustrated in Fig. 3.5. The detailed protocol for preparing synaptosomes can be found in [5].

3.2.2 Fluorescent labelling to visualise synaptic proteins and vesicle up-
take

Synaptosomes were stimulated for 30 min at 37°C or 4°C (Fig. 3.5) with extracellular
solution containing a final concentration of 0.05 nM mCLING, which is a fixable lipid
intercalating dye labelled with Atto 647N (#710 006AT1, SYnaptic SYstems, Göttingen,
Germany) made at either 5 mM KCl + 2 mM CaCl2 (mimicking a physiological extra cellular
buffer), 5 mM KCl + 1 mM EGTA (a calcium depleted extracellular buffer), 70 mM KCl +
1 mM EGTA (mimicking stimulation without a calcium buffer). Synaptosomes were then
fixed with 4% formaldehyde and 0.2% glutaraldehyde (Sigma-Aldrich) in PBS. Fixation
was quenched by washing with 0.1 M glycine in PBS for 5 min. To chemically quench
the mCLING bound to the outer membrane of the plasma membrane of the synaptosomes,
i.e. to eliminate its fluorescent emission and to allow us to visualise internalised mCLING,
0.75 mM bromophenol blue was added for 5 min and washed off with PBS three times [51].
Synaptosomes were stained for alpha-synuclein (D37A6 XP, 1:500 dilution, rabbit, Cell
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Incubate with endocytosis marker mCLING Quench outer
membrane

...

37°C

Neuronal synapses are pinched off and reseal
into synaptosomes
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Pick synaptosomes from
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Fig. 3.5 Illustration of the synaptosome preparation procedure. The brain from a rat was
extracted and homogenised to pinch off the synaptic ends of neurons, which reform into
synaptosomes. These were incubated at 37°C and 4°C with a membrane intercalating dye
(mCLING) to tag internalised vesicles, and then fixed and stained for imaging.
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Signalling, Danvers, US) and VAMP2 (104211, 1:500 dilution, mouse, SYnaptic SYstems,
Göttingen, Germany). The secondary antibodies anti-rabbit Alexa Fluor 568 (ab150067,
1:500 dilution, Abcam) and anti-mouse Alexa Fluor 488 (ab175700, 1:500 dilution, Abcam)
were used to visualise protein localisation. The fluorescent staining of the synaptosomes was
also performed by Dr. Amberley Stephens and is illustrated in the second row of Fig. 3.5. At
this point, the synaptosome samples were plated on coverslips, ready for imaging, which is
where my responsibility and contribution in the project began. Onwards, all the experiments,
analysis, and simulations were performed by me unless otherwise specified.

3.2.3 Multi-colour dSTORM to study synaptic proteins in synaptosomes

TIRF/HILO microscope used for dSTORM

A custom-built wide field microscope based on an Olympus (Center Valley, PA) IX-73 frame
was used to perform dSTORM. The system included a 488-nm laser (Coherent Sapphire
488-300 CW CDRH), a 561-nm laser (Cobolt Jive 500 561 nm), and a 647-nm laser (MPB
Communications Inc. VFL-P-300-647-OEM1-B1). Laser light entering the microscope
frame was reflected from a dichroic mirror (Chroma ZT488/561/647rpc) into a 100x 1.49 NA
oil objective lens (Olympus UAPON100XOTIRF), and then onto the sample. Light emitted
by the sample passed through the dichroic and a set of 25 mm band-pass filters (Semrock
FF01-525/45-25, Semrock FF01-600/37-25, and Semrock FF01-680/42-25 respectively for
the 488, 561, and 647-nm laser lines) before reaching the microscope side port. Images were
then relayed onto a camera (Andor iXon Ultra 897) by a 1.3x magnification Cairn Twincam
image splitter. The reflective arm of the splitter was not used for these experiments. The
optical layout for this setup is illustrated in the schematic shown in Fig. 3.6.

The illumination profile in most conventional microscopes, including the one showed in
Fig. 3.6 is Gaussian, which implies a trade-off between illumination uniformity and photon
efficiency. Typically, microscope users crop the camera field of view (FOV) to use only
the center of the Gaussian beam, however this wastes precious photons at the edges of the
field. Alternatively, the full FOV can be used, at the cost of under-exposing the edges. To
ensure a uniform rate of fluorophore activation across the FOV during dSTORM experiments,
a Gaussian-to-top-hat beam shaper (Topag Lasertechnik GmbH GTH-5-250-4-VIS) was
implemented and characterised (Fig. 3.7), as described by Rowlands et al. [52]. This top-hat
beam shaper is compatible with the multi-colour implemented in this chapter, and unlike
other reported beam homogenisers using micro-lens arrays [53] which can be cumbersome
to align, this system only uses a single element which is easy to align. During experiments,
multi-colour images were acquired sequentially, starting with the 647-nm excitation channel,
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Fig. 3.6 Optical layout of the widefield microscope used for single-molecule localisation.
The layout includes 4 laser lines, a half-wave plate for intensity modulation, a gaussian-to-top
hat beam shaper as described in Rowlands et al. [52], a 100X oil-immersion TIRF lens with
1.49 NA, and an electron-multiplying charge-coupled detector (EM-CCD).
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Flat field (top hat) Histogram
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Fig. 3.7 Demonstration of the improvement in pixel uniformity when using a top hat beam
shaper, compared to a Gaussian. Images in a 60.4x60.4 µm2 field of view of a Chroma test
slide. The display range is identical for both the Gaussian and the top-hat image; the lower
limit is the dark level, and the upper limit is 1.2 x the 95th percentile value for each image.
Figure adapted from Rowlands et al. [52], a 100X oil-immersion TIRF lens with 1.49 NA,
and an electron-multiplying charge-coupled detector (EM-CCD).

followed by the 561 and the 488 nm channels. This order was chosen to avoid crosstalk,
namely the excitation of a dye by laser lines other than its corresponding excitation line,
as well as to avoid bleaching of the far-red dye by the 488 and 568 nm laser lines. Highly-
inclined illumination and laminated optical sheet (HILO) [54] was used to minimise the
signal contribution from the inhomogeneous background in the synaptosomes, as this not only
allows for a better signal-to-background ratio than epi-illumination, but also for a larger axial
excitation range compared with total internal reflection fluorescence (TIRF) illumination
(albeit with a lower signal-to-background ratio)[54]. HILO is achieved by translating the
collimated beam exiting the telescope in Fig. 3.6 laterally across the tube lens, which in turn
laterally shifts the excitation spot in the back focal plane of the objective towards the edge of
the clear aperture. This results in a collimated, off-axis beam exiting the objective towards
the sample at a steep angle, as illustrated in Fig. 3.8. The inset in the sample plane on Fig. 3.8
shows a cartoon comparing the epi illumination scheme (green) in which the entire sample is
flooded with light and therefore the background is high, and the HILO scheme (purple) in
which a thin sheet of light exits the objective at an angle and selectively illuminates only a
slanted plane ~6-15 µm thick in the sample [54].

For the dSTORM experiments, 16000 frames were acquired per colour channel, with an
exposure time of 10 ms per frame and an electron-multiplying (EM) gain of 200. The number
of frames was chosen to be the largest number of frames the camera would capture before
splitting the acquired frame stacks into two, as a practical way to keep the reconstruction



3.2 Experimental Methods 61

Tube lensTranslation
stage

Optical axis

Objective

Sample

Dichroic
cube

100x
UAPOn
TIRF

Epi
HiLo

Coverslip

background
synaptosomes

Fig. 3.8 Schematic of the HILO implementation in the microscope setup from Fig. 3.6. The
epi-illumination beam is translated away from the optical axis before entering the telecentric
tube lens, such that the laser focus spot is translated in the back focal plane of the objective.
This results in an inclined light sheet exiting the objective towards the sample, as illustrated
in the zoomed inset.

step simple. This number of frames also proved sufficient to properly sample our structures,
as they were densely labelled. The exposure time was chosen as the minimal time required to
capture at least 1000 photons per frame on average for the 647 nm channel, and at least 500
photons per frame on average for the 568 and 488 nm channels, determined experimentally by
calculating the number of photons obtained per frame as a function of exposure time. Prior to
imaging, samples were placed on the microscope stage for ~40 minutes to allow any thermal
or mechanical fluctuations of the system to reach a steady-state, and therefore minimise
sample drift during the acquisitions. This settling time was determined empirically as well,
by visualising the drift in the image plane of the camera as a function of time and recording
the time at which the focus did change over a 10-minute span. Additionally, an Olympus
nosepiece (Olympus IX2-NPS) was used to decouple the objective from the mechanical stage
during fine focusing to minimise mechanical and thermal drift. The irradiance at the sample
plane used for the dSTORM experiments was measured to be approximately 10 kW/cm2 for
all laser lines, as recommended in the seminal protocol for dSTORM [55]. The microscope
was designed and built by Dr. Romain Laine and Dr. Florian Ströhl in 2015, and it was
rebuilt in 2017 by Dr. Ströhl, Dr. Christopher Rowlands, and me.

Photoswitching buffer used for dSTORM experiments

The adequate photo switching of fluorescent dyes for dSTORM requires not only high laser
excitation to drive the fluorophores into a dark state, but also a buffer solution with oxygen
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scavengers and a reducing thiol to ensure a low duty cycle for high localisation precision, as
discussed in Chapter 2. The recipe in Table 3.1 was used for all our dSTORM experiments,
adapted from Van de Linde et al. [55]:

Table 3.1 Ingredients for photo switching buffer used in dSTORM experiments.

Amount Reagent Comments
Enzyme Stock Solution
100 µL Catalase
200 µL TCEP 1 mol/L
25 mL Glycerine
22.5 mL Distilled water
1.25 mL KCl 1 M
1 mL Tris-HCl pH 7.5 1 mol/L
50 mg Glucose oxidase
Glucose stock solution (50 mL). Make 1 mL aliquots and store at -20°C
5 g Glucose
45 mL Distilled water 1 mol/L
5 mL Glycerine
MEA stock solution (10 mL). Make 200 µL aliquots and store at -20°C
1,136 g MEA-HCl Dissolve for 1 mol/L soln. Adjust pH to 8.
10 mL Distilled water
dSTORM buffer (1.5 mL). Volume for single LabTek well
543 µL Glucose Oxygen scavenger
69 µL Enzymes Oxygen scavenger
105 µL MEA Reducing thiol
783 µL PBS
24 µL KOH 1 M for pH 8

Reconstruction of SMLM data sets

The reconstruction of the acquired frames was done in thunderSTORM [56], using the
default parameters for filtering (Wavelet filter, order 3, scale 2), approximate and sub-pixel
localisation of molecules (Gaussian PSF with a 3 pixel fitting radius and a 1.6 pixel initial
sigma), and visualisation (Average Shifted Histograms, 10x pixel magnification). The camera
parameters used were: 117 nm pixel size measured at the image plane, 15.76 photoelectrons
per A/D count [57], 200 A/D count base level [57], EM Gain of 200.
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3.2.4 Statistical analysis

The colocalisation and cluster analysis results in this chapter were presented using estimation
graphics [58]. In the analysis of two data groups, individual data points are displayed in
bee swarm plots, and the effect size, or difference of means between groups, is plotted
on a separate axis with its origin aligned with the mean of the test group. A 95% confi-
dence interval calculated with bootstrap resampling is plotted as a sampling distribution
around the difference of means and used as an indicator of precision. This is referred to
as a Gardner-Altman plot. Summary statistics (mean and standard deviation) are displayed
as a gapped line to the right of each bee swarm plot. Two biological replicate experi-
ments per temperature condition and per calcium condition were conducted, and in each
replicate over 10 images were acquired and reconstructed. For each condition analysed
in the results section, N represents the number of extracted and analysed synaptosomes.
The number of individual localisations analysed in each data set was not quantified, since
dSTORM experiments suffer from overcounting of localisations and therefore the number
of localisations varies widely and is not representative of the stoichiometry of the sample,
especially in dense data sets like the synaptosomes. Estimation graphics were generated
using the dabestr package from Ho et al. [58]. The scripts for generating estimation plots
from the colocalisation (part1Ch3_results_synaptoAnalysis_colocalisation_ripleysK.R) and
cluster analysis (part1Ch3_results_synaptoAnalysis_clusterSize_RMSD.R) results can be
found in the supplementary code repository for this thesis https://github.com/pedropabloVR/
supplementary-code-thesis.

3.3 Synaptosomes as a model to study vesicle recycling

Synapses are abundant in cultured neurons, and these have been previously examined using
SMLM [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72]. However, in-vitro neuronal
imaging can suffer from a strong background signal contribution from the cell body, and
synapses might be partially obscured or concealed by other cellular structures. Instead, we
used pinched-off synapses from rat brains, called synaptosomes (Fig. 3.9), to study the
distribution of a-syn and VAMP-2 inside synapses with minimal background contribution
from cellular structures. Moreover, isolating synaptosomes directly from rat brains to observe
the role of a-syn is faster than culturing primary neurons from rat brains, which takes weeks.
Synaptosomes are a well established model, which remain metabolically active and can
be stimulated to trigger vesicle release shortly after preparation [73]. Synaptosomes can
also be easily treated with drugs and differing temperature to allow observation of different
endo/exocytosis mechanisms.

https://github.com/pedropabloVR/supplementary-code-thesis
https://github.com/pedropabloVR/supplementary-code-thesis
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Fig. 3.9 Synaptosome model to visualise colocalisation of mCLING-stained internalised
vesicles with a-syn and VAMP-2. (a) Synaptosomes are pinched-off synapses from neu-
rons which reseal into vesicle-filled spheroids. (b) Zoomed-in drawing of a section of the
synaptosome membrane, showing how the membrane-intercalating mCLING dye is trapped
during vesicle uptake. The proteins a-syn and VAMP-2 reside on the vesicle outer membrane,
fluorescently labelled with conventional antibodies.

A-syn and VAMP-2 were stained with antibodies to visualise their spatial distribution in
synaptosomes. The membrane-intercalating marker mCLING tagged with an Atto 647N dye
[51], was used to label the internalisation of vesicles. mCLING was added to the extracellular
media during incubation, exposing the plasma membrane to the dye. When the plasma
membrane was internalised during endocytosis, the mCLING dye was also taken up and
encapsulated in vesicles. Fig. 3.9 illustrates the labelling for a-syn and VAMP-2, and how
mCLING is used to visualise vesicle uptake in synaptosomes.



3.4 Development of SynaptoAnalysis 65

3.4 Development of SynaptoAnalysis, software tool to anal-
yse single-molecule data from synaptosomes

dSTORM experiments were performed on the synaptosomes, and the acquired data sets were
reconstructed in ThunderSTORM [56]. To process and analyse the resulting localisation
data tables, a bespoke software toolkit, SynaptoAnalysis, was developed to extract quanti-
tative information from localisation microscopy data sets. SynaptoAnalysis was written in
Matlab; it includes pre-processing routines to remove chromatic aberrations, automatically
detect synaptosomes, and filter the localisation data to remove artefacts and false positives.
Additionally, SynaptoAnalysis incorporates scripts to characterise the spatial distribution
of different fluorescent markers and measure colocalisation and cluster size. For colocal-
isation analysis, both an overall overlap coefficient and Manders M1 and M2 coefficients
were used to assess the fractional overlap between fluorophores. For cluster size analysis, a
root-mean-square distance from centroid (RMSD) measure was proposed as an alternative to
using Ripley’s K-function to characterise the spread of spatial point patterns.

An overview of the data processing pipeline using the SynaptoAnalysis scripts is shown
as a flowchart in Fig.3.10. Readers mainly interested in the biological results can jump to
Section 3.6. For researchers who want to use or further develop the software, this section
describes each component of SynaptoAnalysis in detail, with demonstrations of usage and
characterisation using test data sets. The source code for SynaptoAnalysis can be found in
this repository https://github.com/pedropabloVR/Synaptosome-Analysis, where it can be
forked and modified by future users.

Synaptosome_Analysis.m

Filtering
Automatic region detection
Colocalisation analysis

Ripley's K cluster analysis

RMSD measurement

Comparisons between
experimental repeats

Registered
loc. files

Compare_conditions.m

RMSD_analysis.m

.csv file with
all measured
features for
each detected
synaptosome

Synapto-registration
Raw
data

Bead
images

InputsInputs OutputOutputSynaptoAnalysis

Reconstruct in
thunderSTORM

Loc. files

... ... ...

Fig. 3.10 Data processing pipeline using SynaptoAnalysis. The localisation files from
reconstructed bead images and raw data files in thunderSTORM are used as inputs. The
processing and analysis routines (grey rectangles) can be used sequentially, resulting in a
.csv file with a list of identified synaptosomes and measured features as output.

https://github.com/pedropabloVR/Synaptosome-Analysis


66 A single-molecule method to study the role of alpha-synuclein at the synapse

The routines included in SynaptoAnalysis were developed specifically to solve problems
encountered either during data acquisition, or with the reconstructed localisation data in the
initial stages of analysis. For example, visible chromatic aberration between the different
channels was observed during image acquisition, and therefore a chromatic registration rou-
tine was developed as a first pre-processing step after reconstruction. The synaptosomes were
also observed to have a high density of localisations across all three channels during dSTORM
acquisitions, therefore a density threshold was applied to remove sparse, background local-
isations, as well as an intensity threshold using Otsu’s method [74]. Upon reconstruction
of the data, the first few regions of interest containing synaptosomes were cropped by hand
to perform preliminary analyses, however this manual procedure was deemed unfeasible
for large data sets. Therefore, an automated synaptosome detection routine was developed
which uses the spatial overlap between the three colour channels as a requirement for a
cluster to be classified as a synaptosome. These processing routines, which were developed
separately over time, were integrated together into SynaptoAnalysis to create a streamlined
data processing pipeline. These routines were validated either with error functions computed
pre- and post-validation (chromatic registration) and percentages of detected candidates as
a function of a given threshold (spatial overlap threshold), or empirically by observing the
effect of the applied routine on the data and testing different parameters (e.g. filter radius,
localisation density per area, intensity threshold, etc.). The colocalisation and cluster analysis
routines were included specifically to address the two experimental objects outlined in section
3.1.4, i.e. to measure the colocalisation of a-syn and VAMP-2 with synaptic vesicles, and
to measure the cluster size of a-syn and VAMP-2 in physiological and calcium-depleted
conditions. Both analysis routines were validated using simulated, ground truth data.

3.4.1 Registration of multi-colour single-molecule data

To prepare the multi-colour channel single-molecule data for colocalisation analysis, chro-
matic offset as described in Chapter 2 Section 2.3.1 had to be minimised using registration.
During the acquisition procedure, chromatic offset was minimised by imaging the three
channels sequentially, such that all wavelengths traveled the same optical path onto the same
detector. This also ensured the three colour channels had similar monochromatic aberrations
across the FOV and the residual aberrations were primarily chromatic.

A registration method was implemented based on Annibale et al.’s approach [75], in
which a mapping function is determined between the localised coordinates of fluorescent
fiducials at the different desired wavelengths, relative to the coordinates from a fiducial
imaged at a reference wavelength. The coordinates from the reference channel act as a
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ground truth location of the fiducial positions. This mapping function can then be applied to
register the experimental data.

Several images from sparse distributions of 100-nm fluorescent beads were captured
at the end of each imaging session to serve as fiducials, with the same laser lines used for
the biological sample. These images were then localised with high precision using thun-
derSTORM [56]. To sample the chromatic aberrations over the entire FOV, the coordinates
of several images of bead distributions were superposed to simulate dense sampling of the
available coordinate space, removing any overlapping coordinates. A function was then
used to map the localised coordinates of the warped colour channels (561 and 488 nm)
to the reference channel (647 nm) using the local weighted mean algorithm proposed by
Goshtasby [76], and first applied by Churchman et al. [77] in the context of single-molecule
localisation microscopy. This algorithm uses a set of control points spread uniformly across
the FOV to locally determine polynomial functions that map each control point in the warped
channel to its corresponding control point in the reference channel. The mapping function,
represented in Fig. 3.11 d as a normalised vector field, was determined using the Matlab
function fitgeotrans, which calculates polynomial transforms between two matrices.

The total registration error (TRE) was implemented as a figure of merit for the mapping
function, which is defined prior to registering the reference and the warped channel as
follows:

T REpre = Â
i

q
(xi

r � xi
w)

2 +(yi
r � yi

w)
2 (3.1)

where (xr ,yr) are the coordinates for the reference channel control points, and (xw ,yw) are
the coordinates for the warped channel control points. The TRE post-registration is defined
as:

T REpost = Â
i

q
(xi

r �ui)2 +(yi
r � vi)2 (3.2)

where (u,v) are the resulting coordinates after applying the mapping function to the warped
channel control point coordinates (xw ,yw). The resulting mapping function was saved for
each of the warped channels (561, 488 nm) and then applied to the experimental data sets.
The results for a representative calibration are shown in Fig. 3.11, with a mean TRE pre and
post correction of 35 and 8 nm for the 561 nm channel, respectively, and 57 and 13 nm for the
488 nm channel. The improvement in the TRE pre- to post-registration is ~4-fold for both the
561 nm and the 488 nm channel. Figures 3.11 c illustrates the raw registration error between
the reference and the warped channel in the form of a vector field, and Fig. 3.11 d illustrates
the polynomial mapping function used to correct for the shift in Fig. 3.11 c. A number of
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Fig. 3.11 Localisation registration procedure to correct for chromatic aberrations in SMLM
data. The total registration error (TRE) in nanometres before correction and after correction
was plotted for the (a) 561 nm channel and (b) the 488 nm channel, where each data point
represents the TRE for the location of an individual bead. (c) Vector field representation of
the raw optical offset between the warped and the reference channel. (d) Normalised vector
field representation of a sample correction transform.
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outliers are present post-correction in Fig. 3.11 a and b, likely due to interpolation errors in
the computation of the polynomial transform at the edge of the field of view between the
reference and the warped coordinates.

The registration scripts were written by me and Ezra Bruggeman, using previous code
written by Dr. Romain Laine as a starting point and guide. The code is available at https:
//github.com/pedropabloVR/SR-registration.

3.4.2 Automatic detection of synaptosomes

After applying chromatic registration, a method was needed to discern between useful
regions of interest containing synaptosomes, and background noise from loose dye or random
cellular debris in our experimental data. The homogenisation and fractionation steps (Fig.
3.5) during the synaptosome preparation protocol outlined in Section 3.2.1 were prone
to including brain tissue debris such as membrane structures of the same density as the
synaptosomes [78], making it difficult to distinguish between useful and spurious signals.
An automatic synaptosome detection algorithm was developed based on filtering of single-
molecule localisation data sets followed by segmentation to detect localisation clusters.
These clusters were then classified as synaptosomes or debris based on their size, shape, and
localisation content. The filtering steps are described below:

Constraints on single-molecule localisation parameters

Spurious localisations with low intensity or high uncertainty can often arise from either
background or out-of-focus signal contributions in the sample. SynaptoAnalysis imports
the registered localisation files for the three colour channels and filters them based on frame
number, intensity in photon units, sigma value of the Gaussian fit, and uncertainty of the
centroid localisation to reduce the incidence of spurious localisations. The constraint values
for each parameter, summarised in Table 3.2, were either chosen empirically by looking at
histograms of the parameter value distributions for a number of samples or following from
examples in the literature [79]. The number of localisations removed due to these filters
varied widely depending on the density of emitters in the field of view and the amount of
background signal from the coverslip. The filters removed anywhere between a few thousand
localisations for a FOV with a few synaptosomes, up to hundreds of thousands of localisations
for crowded fields of view. Although large, these estimates are not representative of the true
useful number of localisations, since most rejected localisations were from background and
noise contributions.

https://github.com/pedropabloVR/SR-registration
https://github.com/pedropabloVR/SR-registration
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Table 3.2 Filtering values for single-molecule localisation parameters.

Parameter Value Comments
Minimum
number of
frames

500 Remove first 500 frames to avoid overly dense
localisations

Minimum
intensity
AF568,AF488

500
photons

Min. photons per switching cycle expected from an
AF568 and 488 dye [79]

Minimum
intensity Atto
647N

1000
photons

Min. photons per switching cycle expected from an Atto
647N dye [79]

Minimum
uncertainty

5 nm Points localised with an uncertainty smaller than 5 nm
are likely spurious, or emitters which didn’t leave the on
state.

Maximum
uncertainty

40 nm The upper limit to our desired localisation precision is
the diameter of a synaptic vesicle.

Density filtering

A density filter based on a nearest-neighbour search was applied to remove sparse locali-
sations in the 647 nm channel (mCLING), which were likely non-specifically bound Atto
647N dye clusters. The Matlab function rangesearch was used, which finds all neighbours
within a specified distance using Eq. 2.20. Localisations with fewer than N neighbouring
localisations within a specified radius R were discarded. The search radius R was chosen
from the maximum radius of a synaptosome, ~1500 nm [80], and the minimum number of
neighbours N was chosen from the average number of synaptic vesicles inside a synaptosome,
~300 [80]. The effect of the two filtering steps described above can be visualised in Fig.
3.12, in which only localisation clusters of a given size and density are preserved and all
other localisations are discarded. The filtered localisation data tables were used to generate
a reconstructed image for each channel, with each localisation drawn as a point on a black
canvas convolved with a Gaussian kernel with width proportional to the localisation precision
of the spot.

Segmentation

Following the localisation parameter and density filtering steps, reconstructed images were
segmented to remove candidate clusters too small to be synaptosomes. The filtered recon-
structed images for each channel (2D histograms) were binarised using Otsu’s method [74]
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Fig. 3.12 Effect of filtering SMLM data by constraints on the fit parameters and the density of
localisations. (a) Unfiltered 2D histogram representation of a sample data set reconstructed in
thunderSTORM. (b) 2D histogram representation after applying constraints on the number of
frames, intensity, sigma, and uncertainty of the localised points, as well as a nearest-neighbour
density filter to remove sparse localisations.

to create masks, as shown in Fig. 3.13 a. Objects with fewer than 200 connected pixels were
removed from the mask of the 647 channel. From the masks created, the Matlab function
regionprops was used to label the clusters in the binary mask, and to extract the centroid and
area for each cluster. No further filtering was applied on the 561 (a-syn) or the 488 (VAMP-2)
channels, as we had no a-priori knowledge of the size or distribution of the a-syn or VAMP-2
markers in our samples.

Colour overlap thresholding

The final step for synaptosome detection was to verify if the candidate clusters contained all
the fluorescent markers required for analysis. A minimum amount of overlap between the 647
and the 561 nm channels (mCLING and a-syn) and the 647 and 488 nm channels (mCLING
and VAMP-2) was necessary to test for colocalisation. This was accomplished by cropping
an 80x80 pixel2 region around every synaptosome candidate in the binary masks and finding
its intersection with the masks of the respective cropped regions in the 561 and the 488 nm
channels. The intersection, as described in the Colocalisation section in Chapter 2, is the
percentage of spatial overlap between the non-empty regions in the masks. To determine a
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Fig. 3.13 Segmentation to remove small elements from reconstructed images (a) Representa-
tive mask from the 647 nm channel, after removal of elements with fewer than 200 pixels in
area. (b) Three-channel overlay of the masks for the 647 (red), 561(green), and 488 (blue)
nm channels.

suitable overlap threshold, the percentage of detected synaptosomes was plotted as a function
of the spatial overlap threshold for all the data sets collected as shown in Fig. 3.14.

To avoid discarding a large number of potentially useful candidates, the threshold was
chosen based on the overlap values (x-axis) for which the rate of change in the percentage of
detected synaptosomes started to flatten out in Fig. 3.14 a-d. A 10% minimum area overlap
threshold was implemented to select candidates which contained both a-syn and VAMP-2.
The localisation precision for each colour channel could also have a significant effect on
their spatial overlap, as the dyes exhibit different photon yields in each acquisition and will
therefore have different localisation precisions. A low photon yield for any dye will result in
a wider spread of its measured single molecule distribution (lower localisation precision),
than for a dye with a high photon yield, potentially causing an artificial spatial overlap
between the dye distributions. To mitigate the effect of this artificial overlap, localisations
with a precision larger than 40 nm for all channels were discarded as specified in 3.2. Finally,
a proximity filter was implemented to discard candidates which were closer than 300 nm
centre-to-centre from a neighbouring candidate to avoid analysing synaptosome clumps. The
coordinates of the 80x80 pixel2 regions corresponding to the selected synaptosomes were
then extracted from the localisation data tables. A summary of the detection procedure, from
the registered reconstruction, to the filtering steps for automatic detection is illustrated in Fig.
3.15.
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the 37°C experiment (a-b) and the 4°C experiment (c-d) were analysed.
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Fig. 3.15 Summary of synaptosome detection steps from localisation data using Synapto-
Analysis. (a) Reconstruction of dSTORM data from a representative FOV. (b) The registered
localisations are filtered based on localisation fit parameters and localisation density. A seg-
mentation step followed by a channel overlap threshold, and a nearest-neighbour proximity
filter allow us to automatically detect synaptosomes as shown in (c).
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Up to this point the SynaptoAnalysis algorithm to detect synaptosomes can be summarised
as follows:

1. Superpose localisation files from multiple bead images as fiducials, and compute a
geometric transformation to register warped channels (568 and 488 nm) to a reference
(647 nm),

2. Compute T REpre and T REpost (Eqs. 3.1 3.2). If T REpost < 20 nm, save transform and
apply on experimental data to reduce chromatic offset,

3. Filter localisations by frame number, intensity, Gaussian fit sigma, and localisation
precision to remove poor-quality data,

4. Apply a density filter using a nearest-neighbour search (Eq. 2.20) to remove localisa-
tions from loose dye particles or tissue debris,

5. Segment reconstructed images using Otsu’s method, and remove objects with fewer
than 200 connected pixels,

6. Compute the overlap between mCLING/a-syn and mCLING/VAMP-2 channels in all
detected synaptosome candidates, and only select those with a minimum 10% channel
overlap,

7. Apply a proximity filter using a nearest-neighbour search to remove candidates located
within 300 nm of another candidate,

8. Finally, extract coordinates of the 80x80 pixel2 region around each synaptosome
candidate, and store invididual localisation tables as .csv files for each synaptosome
detected.

After removal of spurious localisations and false positives, and extraction of the relevant
image regions containing synaptosomes, colocalisation and cluster analysis can now be
applied on each individual region. A typical analysis using SynaptoAnalysis could take
between 30 and 90 minutes, depending on the number of synaptosomes detected in each field
of view. The most computationally intensity step was the density filter, as it iterates over every
localisation and counts its nearest neighbours, which can be significantly time-consuming for
high-density data sets such as synaptosomes.

3.4.3 Colocalisation analysis

A robust metric was needed to quantify the co-occurrence between the spatial distributions
of mCLING/a-syn, and mCLING/VAMP-2. Multiple software tools exist to test for colocali-
sation in SMLM, as described in Table 2.2 of Chapter 2. Using existing colocalisation tools
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requires running independent scripts to obtain results, breaking the workflow of our software
pipeline. This is reasonable for one-time uses; however, it becomes cumbersome for running
analyses multiple times on large datasets such as those in SMLM, e.g. when evaluating
the sensitivity of the synaptosome detection on parameters such as the overlap threshold
(Fig. 3.14). Therefore, routines were integrated into SynaptoAnalysis to calculate both the
localisation and pixel-based co-occurrence between the localised marker distributions. A
pixel-based co-occurrence indicator was first chosen to analyse the synaptosome data sets,
since we were interested in understanding how the point distributions overlapped, weighted
by their relative density. A density-weighted overlap coefficient (WOC) was calculated
between the binned localisation distributions of the mCLING and a-syn, and mCLING and
VAMP-2, as specified in the equation below:

WOC =
Ân

i=1 L1,i ⇥L2,iq
Ân

i=1 L2
1,i ⇥

q
Ân

i=1 L2
2,i

(3.3)

where L1 and L2 represent the number of localisations in channel 1 and 2, respectively, for
a total of n pixels analysed. This indicator is the overall overlap coefficient in Eq. 2.25
from Manders et al. [81], as described in Chapter 2. Although the WOC does not provide
an absolute quantitative measure of colocalisation [82], it is a useful indicator to compare
relative measures of co-occurrence between two markers. To deliver more quantitative results
on the fractional co-occurrence between colour channels, Manders’ individual M1 and M2

coefficients (Eqs.2.21 and 2.23) were also applied on the binned localisations.

Validating spatial co-occurrence measurement using Manders’ coefficients

The colocalisation routines were validated with a sample synaptosome data set in a series of
extreme cases. Validation is important, as it ensures the software produces expected results
with test data sets. To generate a test data set, the localisation table of a sample FOV was
split into even and odd halves to simulate two independent single-molecule measurements of
the same underlying structure, as shown in the diagram on Fig. 3.16 a and b. Images (2D
histograms) were reconstructed using the even and odd data sets (Fig. 3.16 b), and yellow
insets show the point distribution of the same underlying structure, but reconstructed using
distinct sets of localisations. This test data set simulated a dual-colour label on the same
structure, and allowed us to test the maximal experimentally available colocalisation.

The spatial co-occurrence was measured with the WOC, and Manders’ M1 and M2

coefficients between the even data set with itself, the odd data set, and the odd data set rotated
90 degrees to simulate a random distribution of localisations following Dunn’s method [83].
The even-odd data set demonstrated the maximal experimentally available colocalisation,
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yielding high but not complete colocalisation from two simulated independent measurements
of the same underlying structure Fig. 3.16 c. The even-even, and even-rotated odd data
sets expectedly yield complete and zero co-occurrence, respectively. This validation using
extreme cases in which perfect, high, and zero co-occurrence was expected verified the
implemented WOC and Manders’ individual M1 and M2 coefficients deliver sensible results
for comparing the spatial co-occurrence of two point distributions. By effectively splitting
the localisation data into two subsets, each with half the localisations, we are reducing the
total effective information about the sample and therefore increasing the influence of noise
and background contributions to the overall signal. For high density, punctate samples such
as the synaptosomes this approach can be satisfactory as demonstrated here, however for
continuous structures such as microtubules or actin this approach would be inadequate. An
alternative to Dunn’s method to test for colocalisation could be to use Costes’ method applied
to SMLM data, in which pixel regions on the order of the average localisation precision are
scrambled and their overlap is tested with an unscrambled image. This approach is robust
and could be applied in the future to validate colocalisation for the synaptosome data.

3.4.4 Cluster analysis using the RMSD from centroid

A-syn and VAMP-2 clusters from SMLM data have been previously measured using Ripley’s
H-function (Eq. 2.28) [5]. Although Ripley’s H-function has become widespread to measure
cluster size in SMLM [84], it has been reported to overestimate the cluster radius by up to
a factor of two [85]. We decided to introduce an alternative metric, the root mean square
distance (RMSD) from centroid, to provide an estimate of a cluster’s size. The RMSD from
centroid of a spatial point pattern can be defined as:

RMSD =
1
n

s
n

Â
i=1

(xi � xc)2 +(yi � yc)2 (3.4)

where (xc,yc) are the coordinates of the centroid, and (xi,yi) for i 2 1 : n are the coordinates
of all other n points in the pattern. The RMSD provides an interpretable measure of cluster
size, i.e. the average distance of any point from the centre of the cluster, and unlike Ripley’s
H-function, does not require an input search radius. The two following sections describe
simulations performed to examine the influence of point density and localisation uncertainty
on the RMSD measurement.
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Fig. 3.16 Validation test for the colocalisation of two point distributions using the WOC
and Manders individual coefficients. (a) A sample synaptosome localisation data set was
split into even/odd localisations to simulate independent measurements of the same structure.
(b) Reconstructed images for the split localisation tables, with insets displaying the same
underlying structure but reconstructed with different subsets of localisations. (c) The spatial
co-occurrence is plotted for all synaptosomes identified in the FOV for comparison between
the even data set with itself, with the odd data set, and with the odd data set rotated by 90°.
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Simulations using a circle with jittered localisations to determine sensitivity of RMSD

To validate the RMSD as a measure of cluster size, simulations were performed to measure
how closely the RMSD approximates the theoretical average distance of any point from the
centre of mass of a spatial point pattern. Further, the effects of large localisation uncertainty
and high point density on the RMSD were also examined, as these parameters could bias
cluster size measurements. Localisation uncertainty was modelled as a random jitter or shift
from the true position of a point.

First, a circle was chosen as the simplest shape with a closed-form equation for the
average distance from any point inside the shape to its centre, given below:

< R >=
2R
3

(3.5)

where R is the radius of the circle. A circle with a true radius R of 100 nm was simulated
and a set of N random points were placed within the boundary of the circle to simulate
localisations from a 2D circular object, as shown in Fig. 3.17 a. Each localisation was then
jittered in a random direction in 10 nm increments by a maximum amount Jmax, with Jmax
ranging from 0 to R. The RMSD was calculated during each iteration, and the percentage
error between the RMSD and average distance < R > from Equation 3.5 was plotted as a
function of the maximum jitter size for N=1000 (Fig. 3.17 a,c), and N=50000 (Fig. 3.17 b,d).

With zero jitter, the RMSD differs by ~5% from < R > in both Fig. 3.17 c and d. As the
jitter in the point pattern increases, the discrepancy between the RMSD and < R > increases
as the magnitude of the jitter in the point pattern gets closer to the value of the radius of the
underlying shape. This is a reasonable result; as the uncertainty in the measurement (the
jitter) becomes close to the magnitude of the actual measurement (the radius of the circle),
the expected error for the size estimate will be large. In addition to this, the RMSD was not
very sensitive to the density of localisations, as the error curve between the calculated RMSD
and < R > as a function of jitter was similar for the case a dense point pattern than for a
sparse one (Fig. 3.17 c and d).

Simulations using an arbitrary shape with jittered localisations

The previous simulation using a circular point pattern was useful to examine how localisa-
tion uncertainty and density affected the RMSD. However, localisation distributions from
synaptosomes are not perfect circles, but rather arbitrary shapes with inhomogeneous point
distributions. Another simulation was performed to evaluate the influence of localisation un-
certainty on the RMSD for asymmetric, inhomogeneous point patterns. Instead of simulating
synaptosomes, the shapes of real synaptosomes from experimental data were extracted from



80 A single-molecule method to study the role of alpha-synuclein at the synapse

300200100-100 0

300200100-100 0 300200100-100 0

300200100-100 0

300

300

200

200

100

100
Size (nm)

Size (nm)

Jitter = 0

Jitter = 0

Jitter = 50

Jitter = 50

Jitter = 100

Jitter = 100

-100
-100

0

0

a

b

c d

300

300

200

200

100

100
-100

-100

0

0

0 20 40 60 80 100
Maximum jitter (nm)

0

10

20

30

40

50

R
M
SD

vs
th
eo
ry
%
er
ro
r

Number of points: 1000

0 20 40 60 80 100
Maximum jitter (nm)

0

10

20

30

40

50

R
M
SD

vs
th
eo
ry
%
er
ro
r

Number of points: 50000

Fig. 3.17 Simulation of a circle with jittered points to calculate the discrepancy between the
RMSD metric and < R >. A circle with 100 nm radius was filled with 1000 (a) and 50000 (b)
points with a jitter in a random direction increasing from 0 to 100. The percentage difference
between the calculated RMSD and the average radius was plotted as a function of maximum
jitter introduced, for the case of 1000 (c) and 50000 (d) points.
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the segmented mCLING masks in section 3.4.2 (Fig. 3.13 a). Each particle in the binary
mask was cropped out in a square window, and artificially filled with points to simulate a
spatial point pattern in the shape of the particle (Fig. 3.18 a and b).

Jitter = 0 Jitter ~ 110 nm Jitter ~ 230 nmc

a b

Fill mask
with points
(blue crosses)

Choose
particle mask

Jitter points in
a random
direction (red
crosses)

Fig. 3.18 Simulation using binary masks from synaptosome data to study the influence of
localisation uncertainty on the RMSD measurement of cluster size. (a) Binary mask from the
mCLING channel with an inset zooming into one of the particles detected. (b) Illustration of
how masks were filled sequentially with points within their boundaries, and then the points
were jittered in a random direction. (c) Filled-in mask for jitter magnitudes of 0, 110, and
230 nm. The blue dots inside the mask represent the unjittered points, and the red crosses
represent the jittered points.

In the absence of a closed-form equation for the average distance from the centre of any
point within a randomly-shaped distribution, the RMSD was calculated for the unjittered
point patterns in every cluster (blue crosses in Fig. 3.18 b and c) as ground truth estimates of
the average distance of any point from their centroid. In a similar fashion to the previous
simulation with the circle, the points inside the shapes were jittered in 2-pixel (~23 nm)
increments, with a maximum jitter of 20 pixels (~230 nm) in the reconstructed images to
simulate localisation uncertainty in SMLM. This jitter was also useful to test extreme cases,
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since the largest acceptable localisation uncertainty in the experimental data was only 40 nm
(Table 3.2), and a jitter almost 6 times as large was introduced here.

First, the RMSD was measured for all the jittered points in the particle shown in Fig. 3.18
b and c, and the percentage error between the unjittered and the jittered RMSD was plotted
as a function of the jitter size (Fig. 3.19 a). The error in the RMSD calculation increases
proportional to the jitter, although the error remains small, less than 2%, for a maximum
jitter of up to 50 nm. The area of this representative cluster was 1.83x105 nm2, roughly
corresponding to an equivalent circle radius of ~250 nm. From the previous result with the
circle simulation, it was clear that the influence of the jitter on the RMSD error depended
on the area of the particles analysed. Therefore, the RMSD percentage error was plotted in
Fig. 3.19 b as a function of the area in nm2 of all the particles found in Fig. 3.18 a, for a
maximum allowed jitter of 40 (red crosses) and 110 (blue circles) nm.
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Fig. 3.19 Errors in the RMSD calculation as a function of jitter magnitude, and cluster size.
(a) Plot of the RMSD percentage error between the jittered and the unjittered points as a
function of the jitter magnitude for the particle shown in Fig. 3.18 c. (b) Plot of the RMSD
percentage error between the jittered and the unjittered points for a maximum jitter of 40 nm
(red crosses) and 100 nm (blue circles) for all particles in Fig. 3.18 a, as a function of the
area of the particles.

The 40 nm jitter magnitude was selected from the upper bound in the localisation
uncertainty allowed in our data (Table 3.2). The 110 nm magnitude was used to test and
visualise the effect of an extreme jitter on the RMSD calculation. Using a 110 nm max
jitter, the RMSD error is large (~40%) for particles with an area smaller than 1x105 nm2,
which correspond to equivalent circles with radii < 170 nm. For clusters with a larger
area, the RMSD error is smaller than 10%. Using a 40 nm max jitter (upper uncertainty
bound for experimental data), the RMSD error remains below 10% even for the smallest
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particle analysed. This indicates the localisation uncertainty in our experiments is unlikely to
influence or bias the RMSD measurement of cluster size.

The two validation simulations performed indicate the RMSD is a robust measure of
cluster size, even for small point patterns with a large localisation uncertainty. Additionally,
the RMSD was shown to not be very sensitive to point density. Note that the RMSD is not an
absolute measure of cluster size, but rather an indicator of the spread of a point pattern that can
be useful to compare between different fluorescent distributions. These simulations were per-
formed in Matlab, using the script part1ch3_validation_SynaptoAnalysis_rmsdSimulations.m
which can be found in the supplementary code repository for this thesis https://github.com/
pedropabloVR/supplementary-code-thesis.

In summary, a bespoke software package was developed to detect synaptosomes from
localisation microscopy experiments, with filters to remove background contributions, and
methods to analyse colocalisation and cluster size for multiple colour channels.

3.5 Computer model of a synaptosome for generating syn-
thetic SMLM validation data

Concurrent with the development of SynaptoAnalysis and the acquisition of experimental
data, a model of a synaptosome stained for mCLING, a-syn, and VAMP-2 was developed in
silico. Detailed descriptions of the physical features and protein composition of an average
synaptosome have previously enabled scientists to build complex 3D synaptosome models
[86, 80]. Here, a simplified model was created to generate synthetic SMLM data, which were
used to validate the colocalisation and cluster analysis routines included in SynaptoAnalysis.
Readers interested in the experimental results of this study can skip this section and go
directly to Section 3.6.

The software package testSTORM [87] was used to build this simulation with accurate
parameters on dye photo-physics, noise and background contributions, and the pixelated
detector. testSTORM simulates the experimental imaging process in localisation microscopy,
generating 3D coordinates for fluorescent molecules and simulating their random attachment
to a geometrical structure. The blinking behaviour of each molecule is then simulated using
known dye parameters [79], and a stack of diffraction-limited images with single emitters is
generated, which can then be reconstructed using localisation software.

This section describes the design of the synaptosome model and the simulations per-
formed using testSTORM to validate the results from SynaptoAnalysis. This work was

https://github.com/pedropabloVR/supplementary-code-thesis
https://github.com/pedropabloVR/supplementary-code-thesis
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performed in collaboration with the developers of testSTORM, Tibor Novak and Dr. Miklos
Erdélyi, from the University of Szeged, Hungary.

3.5.1 Computer model of a synaptosome

The physical characteristics and protein composition of an average synaptosome and synaptic
vesicle have been previously measured by Wilhelm et al. [80] and Takamori et al. [86],
respectively, to generate a “library” of features about the synaptic bouton. Based on the
parameters measured in these studies, a model of an average synaptosome was created in
testSTORM. A 4x4 grid of synaptosomes, each with a 500 nm radius was simulated (Fig.
3.20 b). Each synaptosome was randomly filled with ~380 spherical vesicles with a 20 nm
radius. Each vesicle was individually filled with randomly generated coordinates indicating
the position of fluorophores, to simulate tagging of mCLING, a-syn, and VAMP-2. This
latter “labelling procedure” is illustrated in Fig. 3.20 c, where a zoomed-in density map for a
single synaptosome shows the fluorophore positions inside individual vesicles.
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Fig. 3.20 Computer model for a synaptosome. (a) Cartoon of a synaptosome showing vesicles
labelled with mCLING, a-syn, and VAMP-2 markers. (b) Equidistant grid of synaptosomes,
shown both as a label density map, and as a reconstructed SMLM image. (c) Close up view
of a synaptosome filled with vesicles, each in turn filled with the three fluorescent markers.
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To keep the model simple, all synaptosomes were assumed to be spherical and of the
same size, and to contain the same number of vesicles. Furthermore, all fluorescent emitters
in the synaptosomes were assumed to be in focus, and a 1:1 labelling ratio was assumed
between the proteins of interest and the dyes simulated (assuming a single binding site per
protein). A 2D Gaussian PSF model was used [87].

The red markers for the mCLING were placed close to the centre of the vesicle, since the
mCLING intercalates into the inner membrane of vesicles and is short (~2 nm). The green
and blue markers for a-syn and VAMP-2 have long linker lengths, resulting from the primary
and secondary antibodies used for labelling which are ~10-15 nm in length each along their
longest dimension [88]. Therefore, they appear farther away from the vesicle boundary
compared to mCLING (Fig. 3.20 c). Previous studies have reported the average number
of copies per cell is ~70 for both a-syn [86] and VAMP-2 [89]. However, it is unlikely for
antibody-conjugated dyes to reach all 70 copies of both VAMP-2 and a-syn on the surface
of a 40 nm diameter vesicle due to steric hindrance. To account for this, and based on the
testSTORM constraints on the maximum possible number of labels in a given space, the
model only uses 30 copies of a-syn, and 30 copies of VAMP-2 per vesicle. Following the
input of the sample parameters, the experimental settings from the microscope (Section 3.2.3)
were also fed into the testSTORM simulation to imitate a real experimental acquisition. All
parameters used are summarised in Table 3.3.

3.5.2 Simulating extreme cases of spatial co-occurrence in synthetic
synaptosome data

The synaptosome model was used to perform two simulations of extreme cases in the
distribution of the mCLING, a-syn, and VAMP-2 markers: model 1 in which all vesicles
contain all fluorescent markers and model 2 in which three distinct vesicle populations are
labelled separately. The two models were simulated in testSTORM, and the resulting image
stacks were reconstructed in thunderSTORM [56] and processed using SynaptoAnalysis.
Figure 3.21 a shows the label density map for model 1, along with a composite image of its
single-molecule reconstruction. Figure 3.21 b shows model 2, with three separate vesicle
populations each containing only a marker for a single fluorescent channel, such that the
composite reconstruction shows three spatially separated signals for each channel.

Both models were analysed using the WOC (section 4.c) and Manders’ M1 and M2

coefficients, and the results were plotted in Fig. 3.21 c. For all metrics, model 1 shows
almost complete spatial co-occurrence for both CLING/a-syn and mCLING/VAMP-2, while
the results for Model 2 show near zero co-occurrence. These simulations corroborate the
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Table 3.3 Parameters used to simulate SMLM data from an average synaptosome with
fluorescent labels on internalised vesicles, a-syn, and VAMP-2.

Sample parameter Value Comments
Synaptosome radius 500 ± 10 nm Wilhelm et al. 2014 [80]
# vesicles/synaptosome 384 ± 38 Wilhelm et al. 2014 [80]
Vesicle radius 20 nm Takamori et al. 2006 [86]
A-syn copies/vesicle 30 Fahkree et al. 2016 [89]
VAMP-2 copies/vesicle 30 Takamori et al. 2006 [86]
Epitopes/protein 1 Assume 1:1 labelling
mCLINGs/synaptosome 3000 Estimated from image data
Linker length 20 nm Primary+secondary antibody
Experimental parameter
Acquisition time 20 ms Value used in experiments
Number of frames 5000 For quick simulations
Pixel size 117 nm Measured at the image plane
Numerical aperture 1.49 UAPON100X TIRF objective
EM gain 200 ANDOR performance sheet [57]
Camera baseline 200 ANDOR performance sheet [57]
Quantum efficiency 95% ANDOR performance sheet [57]
Electrons/count 15.76 ANDOR performance sheet [57]
Ref. index of media 1.518 Immersion oil ref. index
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Fig. 3.21 Testing colocalisation in synthetic synaptosome SMLM data. (a) Model 1 in which
all vesicles contain all markers, such that their fluorescent distributions overlap completely.
(b) Model 2 in which vesicles are divided into three separate populations, one labelled
only for mCLING, one for a-syn, and one for VAMP-2, to simulate a case of zero overlap
between channels. A 2D density label map, an isometric view of the density map, and
a composite of the reconstructed single-molecule data are shown. (c) Plots of the spatial
co-occurrence measured with the WOC and Manders M1 and M2 coefficients. Each data
point shows an overlap coefficient for a single synaptosome. The script used to generate this
plot (part1Ch3_results_SynaptoSimulations_colocalisation.R) can be found in the repository
for this thesis https://github.com/pedropabloVR/supplementary-code-thesis.

https://github.com/pedropabloVR/supplementary-code-thesis
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capabilities of SynaptoAnalysis to measure extreme conditions in the colocalisation of
fluorescent markers in synaptosomes. It is difficult to predict the proportions of fluorescent
dyes that will reach each of the three species we are studying. Even though it is well
documented that 95% of all vesicles in a synaptosome contain VAMP-2 [86], the amount of a-
syn and mCLING in a synaptosome is unknown. This makes it difficult to compare the results
from the simulations to the experimental results obtained in real synaptosomes. There are too
many steps in the synaptosome preparation, fluorescent labelling, and imaging/reconstruction
procedure that can influence the colocalisation results reported from our dSTORM experiment.
It would be unfeasible to attempt to model these, therefore we did not create further models
using testSTORM.

3.5.3 Measuring cluster size in synthetic synaptosome data using Rip-
ley’s H-function and the RMSD metric

The simulation from model 1 in Fig. 3.21 was used to compare results using the Ripley’s
H-function and the RMSD metric to measure cluster size differences. Localisation density
cross sections through the reconstructed images were fitted to Gaussian functions to provide
coarse estimates of each colour channel’s distribution size (Fig. 3.22 a & b). The RMSD and
Ripley’s H-function were subsequently applied to the localisations, and the resulting values
for cluster size were plotted in Fig. 3.22 c for each colour channel.

On one hand, the cluster radius estimated from Ripley’s H-function for mCLING (mean
~516 nm) was very close to the true radius of 500 ± 10 nm for the synthetic synaptosome.
The mCLING has a short linker length (~2 nm) and it resides in the inner membrane of
vesicles, therefore its distribution will remain within the synaptosome bounds; this makes
mCLING an accurate reference for synaptosome size. The cluster sizes for a-syn (mean ~596
nm) and VAMP-2 (mean~593 nm) were larger, likely due to the simulated linker length of the
dyes (~20 nm) introduced by using primary and secondary antibodies, and the uncertainty in
localisation during reconstruction of the synthetic data. On the other hand, the RMSD values
for mCLING (mean ~192 nm), a-syn (~228 nm), and VAMP-2 (~226 nm) all significantly
underestimated the true synaptosome radius. However, the relative cluster size differences
between mCLING and a-syn or VAMP-2 of ~36 nm are closer to the expected difference
between these markers due to the extra linker lengths.

In summary, testing Ripley’s H-function and the RMSD on a ground truth synaptosome
model to measure cluster size demonstrated Ripley’s H-function provides a closer estimate
to the true radius of a cluster than the RMSD, although the RMSD is sensitive to differences
in dye locations due to the long linker lengths used.
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Fig. 3.22 Simulated cluster size measurements on synthetic synaptosome data from model 1
in Fig. 3.21 a. (a) Representative reconstructed image from a synthetic model 1 synap-
tosome, with a line profile (green line) taken through its center. (b) Line profiles for
each of the three colour channels from the synaptosome in panel (a) were fitted to Gaus-
sian functions and plotted. (c) Scatter and box plots for the cluster size values measured
using both Ripley’s H-function and the RMSD, for the mCLING, a-syn, and VAMP-2
channels of 16 simulated synaptosomes. Each data point represents a cluster size mea-
surement for a single simulated synaptosome. The script used to generate these plots
(part1Ch3_results_SynaptoSimulations_clusterSize_GaussianFit.R) can be found in the
repository for this thesis https://github.com/pedropabloVR/supplementary-code-thesis.

https://github.com/pedropabloVR/supplementary-code-thesis


90 A single-molecule method to study the role of alpha-synuclein at the synapse

3.6 Experimental results

The use of dSTORM and the development of a specialised software tool were driven by
the two biological questions set out in Section 3.1.4: (1) How does the colocalisation of
a-syn and internalised vesicles compare to that of VAMP-2? (2) How is the clustering of
a-syn and VAMP-2 affected by calcium levels at the synapse? This section describes the
results obtained by using dSTORM to image a-syn, VAMP-2, and mCLING in synaptosomes
(Fig. 3.23), and applying SynaptoAnalysis on the reconstructed data sets. The colocalisation
between mCLING/a-syn and mCLING/VAMP-2 was measured at different temperatures to
visualise uptake by different recycling mechanisms, and the clustering behaviour for a-syn
and VAMP-2 was analysed in the presence and absence of calcium. The findings from these
two analyses are presented, which partially answer the research questions stated above.

a-syn

Overlay

mCLING

VAMP-2

250 nm

Fig. 3.23 Reconstructed images of synaptosomes detected with SynaptoAnalysis. Single-
molecule distributions are shown for the mCLING, a-syn, and VAMP-2 colour channels, as
well as an overlay of all three in the bottom row.

3.6.1 A-syn’s co-occurrence with internalised vesicles is temperature
independent, compared to that of VAMP-2

Vesicle homeostasis at the synapse is maintained by multiple membrane recycling mecha-
nisms, which are likely to be active at the same time and to act in collaboration. It is often
difficult to identify which recycling mechanisms are active, because dominant CME and
SNARE (exocytosis) processes at physiological temperatures can conceal other mechanisms.
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To visualise uptake via different mechanisms, synaptosomes were incubated at 37°C to
visualise canonical CME events, and at 4°C, temperature at which membranes become more
rigid and both CME and full fusion are inhibited [25], to visualise membrane uptake events
from non-canonical mechanisms.
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Fig. 3.24 Colocalisation between mCLING/a-syn, and mCLING/VAMP-2 in synaptosomes
using the weighted overlap coefficient (WOC). (a) Representative SMLM reconstructions
of the mCLING/a-syn, and mCLING/VAMP-2 channels. (b) Plot of the WOC for two
temperature conditions. Each data point represents the WOC for a single synaptosome.

For each detected synaptosome (Fig. 3.24 a), the weighted overlap coefficient (WOF)
(Eq. 3.3) was calculated between mCLING/a-syn, and mCLING/VAMP-2, as shown in Fig.
3.24 b. On one hand, the WOC indicated the co-occurrence of mCLING-stained vesicles and
VAMP-2 is higher at 37°C than at 4°C. On the other hand, the opposite trend was observed
for mCLING/a-syn, with co-occurrence increasing at 4°C. This result provided a useful
first indication that indeed, a-syn and VAMP-2 colocalised differently with endocytosed
vesicles. However, the WOC (Eq. 3.3) is only a relative indicator of colocalisation, as it
provides a number between 0 and 1 which indicates a relative degree of overlap between
the channels, without distinguishing the overlap of channel 1 relative to channel 2, and
vice versa. Therefore, the WOC is not an absolute metric for colocalisation and is only
useful as a relative indicator as specified by Cordelieres and Bolte [82]. To perform a more
quantitative colocalisation measurement, Manders’ individual coefficients were measured for
each synaptosome.

The co-occurrence fraction (Manders M1) between mCLING and a-syn (Fig. 3.25
a) shows no significant difference between the two temperature conditions, whereas for
mCLING and VAMP-2 (Fig. 3.25 b) the co-occurrence fraction significantly decreased at
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Fig. 3.25 Colocalisation between mCLING/a-syn, and mCLING/VAMP-2 in synaptosomes
using Manders’ individual coefficients. (a) Manders’ M1 coefficient for the fractional overlap
of mCLING on a-syn, (b) Manders’ M1 coefficient for the fractional overlap of mCLING on
VAMP2. Gardner-Altman estimation plots display the measured colocalisation in a scatter
plot, and the effect size with its 95% confidence interval between temperature conditions is
displayed as a point estimate and vertical bar, on a separate axis. Each data point represents
the Manders coefficient for a single synaptosome.

4°C compared to that at 37°C. The high co-occurrence fraction between internalised mCLING
vesicles and VAMP-2 at 37°C could be explained by VAMP-2’s necessary uptake during
CME, so that it can be later used for SNARE exocytosis. The subsequent decrease at 4°C is
likely due to a reduction in the number of CME/SNARE events due to decreased membrane
fluidity and lower propensity at low temperatures of CME and full fusion exocytosis [25].
The temperature insensitive co-occurrence between mCLING and a-syn may be due to its
involvement in non-canonical membrane uptake mechanisms which can be observed even at
sub-physiological temperatures, regardless of membrane fluidity [25].

3.6.2 A-syn and VAMP-2 clusters increase in size in calcium-depleted
conditions

Calcium has been reported to mediate the lipid binding properties of a-syn at its C-terminus,
and to influence the clustering behaviour of a-syn at the presynapse [5]. To investigate the
effect of differing calcium levels on a-syn, compared to that on VAMP-2, synaptosomes were
incubated with physiological and calcium-depleted (EGTA) buffers.

The cluster sizes for a-syn and VAMP-2 were measured using both Ripley’s H-function
and the RMSD metric in SynaptoAnalysis, and the results were visualised using Gardner-
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Altman plots in Fig. 3.26 a (a-syn) and c (VAMP-2), with the unpaired mean difference
(m.d.), or effect size between conditions shown in a separate axis. For Ripley’s H-function,
a search radius of 1 µm was applied, this being twice the expected radius for an average
synaptosome. The peak of the L(r)-r curve was used to estimate the domain radius [85, 90],
and the resulting values were plotted as a function of calcium condition in Fig. 3.26 b (a-syn)
and d (VAMP-2). In both a-syn (m.d.~62 nm) and VAMP-2 (m.d. ~73 nm) an increase in
cluster size was observed when calcium was depleted from the incubation buffer. VAMP-2
clusters measured with Ripley’s H-function were larger (mean phys ~496 nm) on average
than a-syn clusters (mean phys ~451 nm), likely due to VAMP-2 being present in a larger
proportion of vesicles than a-syn [86]. Using the RMSD from centroid, an increase in cluster
size for both a-syn and VAMP-2 was also observed in the calcium-depleted condition. Again,
the effect size was slightly more pronounced for VAMP-2 (m.d. ~28 nm) than for a-syn (m.d.
~22 nm) between conditions. Similarly to the measurement with Ripley’s H function, the
VAMP-2 clusters (mean phys ~180 nm) were measured to be larger than the a-syn clusters
(mean phys ~158).

Note that these two cluster analysis tools measure different properties of the localisation
data: Ripley’s H-function provides an estimate of the radius of maximal aggregation [85],
whereas the RMSD is a measure of the average distance of any point in a pattern from the
centre of the pattern. Therefore, the reported values for cluster size were not expected to
match between the two metrics, as demonstrated by the validation data in Section 3.5.3.
Ripley’s H-function once again provided a cluster size estimate closer to the average expected
radius of a synaptosome (~500 nm, [86]). Nonetheless, both metrics showed an increase in
cluster size in both a-syn and VAMP-2 when calcium was depleted from the incubation buffer.

3.7 Summary and Discussion

A-syn is a hallmark of Parkinson’s Disease, as it aggregates to form part of characteristic
Lewy bodies and neurites found in patients with advanced forms of this disease. Despite its
link to Parkinson’s pathogenesis, a-syn’s function remains unclear.

We set out to investigate if a-syn colocalised with internalised vesicles at the synapse via
CME or the SNARE complex like VAMP-2, or if it colocalised with vesicles internalised
via different (non-canonical) mechanisms. Furthermore, we aimed to test the influence
of calcium on the distributions of a-syn/VAMP-2 positive vesicles. Synaptic vesicles are
much smaller than the diffraction-limit, so conventional imaging and analysis tools were
not sufficient to explore the nanoscale distributions of the markers of interest. To address
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Fig. 3.26 Cluster size measurements for a-syn (a-b) and VAMP-2 (c-d) localisation data in
synaptosomes, using the RMSD (a,c) and Ripley’s L(r)-r function (b,d) in physiological and
calcium depleted conditions. Calcium was depleted using the chelator EGTA. The number
of synaptosomes analysed for each calcium condition is shown on the y-axis. 4 repeats
were imaged and analysed for each condition. Each data point represents the cluster size
measurement for a single synaptosome.
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this imaging challenge, imaging experiments implementing dSTORM were performed and
optimised, and a complete SMLM analysis package, SynaptoAnalysis, was developed and
characterised to quantitatively examine our imaging data.

Our results show a-syn colocalises with internalised vesicles independent of temperature,
contrary to what was observed for VAMP-2. This suggests a-syn could be associated
with vesicle recycling mechanisms which occur at sub-physiological temperatures. In
addition, both a-syn and VAMP-2 clusters were found to increase in size in the absence of
calcium, which could be due to an interaction between the two proteins. This new evidence
advances our understanding of a-syn’s role at the presynapse, however further studies and
experiments are necessary to determine the recycling mechanisms a-syn is involved in, and
to clarify its relationship to VAMP-2. Incidentally, the simulations performed to benchmark
SynaptoAnalysis proved useful to gauge the performance of cluster analysis algorithms.
The following sections provide a more detailed discussion on the results obtained, with
suggestions for future work.

3.7.1 A-syn and VAMP-2 associate with different vesicle recycling mech-
anisms

At the synapse, multiple pathways may be active simultaneously, and acting in concert, to
maintain vesicle homeostasis. It is difficult to observe the role of a-syn at the presynapse
because dominant SNARE (exocytosis) and CME processes at physiological temperatures
can mask other recycling mechanisms which don’t contribute to vesicle uptake/release to the
same extent but may also be important.

A high spatial co-occurrence between VAMP-2 and mCLING was observed at 37°C (Fig.
3.25 b), which could be explained by the binding of VAMP-2 to the adaptor protein AP180
during CME, a dominant recycling process at 37°C. This binding ensures VAMP-2 is taken
back up into vesicles ready for refilling with neurotransmitters and subsequent rerelease, as
VAMP-2 is crucial for SNARE-mediated exocytosis [91]. To investigate other mechanisms
which are not dependent on membrane fluidity, the synaptosome incubation temperature was
lowered to 4°C and a significant decrease in the co-occurrence of VAMP-2 and mCLING
was observed (Fig. 3.25 b).

The colocalisation of a-syn and mCLING, on the other hand, did not change between the
37 and 4°C conditions (Fig. 3.25 a). A-syn has been previously implicated in several steps of
vesicle recycling mechanisms [41]; this work shows a-syn colocalises with vesicles recycled
via non-temperature dependent mechanisms. The lack of sensitivity to low temperature in the
colocalisation between a-syn and internalised vesicles suggests a-syn might be associated with
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mechanisms such as kiss-and-run, which are the only known to occur at sub-physiological
temperatures [25]. A recent study found overexpressed and endogenous a-syn promotes
dilation of the fusion pore in adrenal chromaffin cells and neurons [43], which shows
preliminary evidence for a-syn’s potential role in kiss-and-run. A-syn’s involvement in
vesicle recycling remains unknown, however several speculative models could be proposed
to argue for its involvement in kiss-and-run. A-syn could potentially tether a vesicle to the
plasma membrane via its double-anchor mechanism (Fig. 3.3) to allow the vesicle to open a
fusion pore to release or uptake cargo and reseal the pore. Alternatively, a-syn could also act
as a restraining tether between two vesicles (3.3), preventing full fusion and collapse prior to
delivering neurotransmitter cargo, as previously proposed by Alabi and Tsien [1].

Future work

Our results suggest a-syn’s relation to vesicle recycling mechanisms which are more likely to
be observed at sub-physiological temperatures, but the identity of the mechanism remains a
mystery. To lend weight to our preliminary results and really understand the relation between
a-syn and vesicle recycling mechanisms, further imaging experiments must be performed.
To further explore the location of a-syn clusters relative to fusion pore sites, a two-colour
3D imaging experiment could be performed using stimulated emission depletion STED
microscopy to observe the formation of large fusion pores (~400 nm) in chromaffin cells,
similar to the method reported by Shin et al. [92]. In this way, a-syn’s position with respect
to the pore could be explored at different stages of pore formation, to elucidate its potential
role as a mediator for recycling events. Alternatively, the resolution improvement could be
achieved using expansion microscopy [93], a technique in which the sample is artificially
enlarge using a polymer matrix to separate fluorophores otherwise too close to each other to
be resolved, instead of STED. Fusion pores in chromaffin cells could then be imaged using a
traditional confocal microscope with up to a 4x [93] or 16x [94] resolution improvement. To
explore the dynamics of the relationship between a-syn and vesicle trafficking, a fast super-
resolution technique such as structured illumination microscopy (SIM) could be implemented
to visualise in up to three colours the location of a-syn relative to VAMP-2 and endocytosed
vesicles at the synapse in live cells. This would require a stable cell line with large, sparse
synapses (such as chromaffin cells as reported in Logan et al. [43]) and fast imaging on the
order of 50 Hz to capture fleeting recycling events such as kiss-and-run. In addition to the
use of mCLING as a vesicle endocytosis marker, these imaging experiments could also be
performed using FM dyes, which have been successfully used to image endo and exocytosis
events in cells [95]. FM dyes are captured from the plasma membrane during vesicle uptake,
and they diffuse into the extracellular space during exocytosis where they can be washed
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away with saline. Observing a-syn’s and VAMP-2’s colocalisation with internalised vesicles
labelled with FM dye could validate the results presented in this chapter, confirming it is not
an effect specific to mCLING labelling.

3.7.2 A-syn and VAMP-2 clusters increase in size in the absence of cal-
cium

Dopaminergic neurons, the most vulnerable neurons in Parkinson’s Disease, undergo calcium
fluctuations throughout their lifetime [48, 49]. Calcium is a key regulator of vesicle recycling,
as it provides cues for the release or uptake of neurotransmitters [50]. Calcium has been
shown to mediate the lipid-binding activity of a-syn’s C terminus [17, 18, 5], and to affect
a-syn’s clustering behaviour in synaptosomes [5]. Lautenschlager et al. [5] argued that in the
presence of calcium, a-syn may act as an extended double anchor to tether synaptic vesicles
together, causing them to cluster 3.3. In their study, a-syn clusters increased in size upon
calcium depletion using EGTA, whereas VAMP-2 clusters showed no difference in size in
the presence or absence of calcium. In this study, both a-syn and VAMP-2 distributions were
observed to increase in size in the absence of calcium, with a slightly larger increase for
VAMP-2 than for a-syn (Fig. 3.26). The analysis presented in this chapter includes more
than twice as many synaptosomes as in [5], and corroborates the observed effect using two
cluster analysis methods.

Burre et al. [41] have previously shown that a-syn, via its C-terminus, binds to the
N-terminus of VAMP-2 on synaptic vesicle surfaces. More recently, Sun et al. [42] proposed
an “inter-locking” model in which a-syn binds to VAMP-2 in adjacent vesicles to maintain
physiological synaptic vesicle clustering. This interaction between a-syn and VAMP-2
could potentially explain the cluster size increase observed here for both proteins, upon
calcium depletion. Alternatively, this could be due to both a-syn and VAMP-2 having a
calcium-dependent localisation at the presynapse.

3.7.3 SynaptoAnalysis is a useful tool for analysing multi-colour SMLM
data from synaptosomes

SMLM data sets can be very large, occupying a few gigabytes per imaged FOV. When
imaging 5-10 different FOVs for multiple experimental conditions (temperature, or calcium),
each with two or three repeats, data sets can occupy hundreds of gigabytes. The recon-
struction and analysis of these data sets can be time and computationally intensive, and it
can be cumbersome to analyse with available colocalisation or cluster analysis software.
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Instead, a specialised processing (chromatic correction, filtering, segmentation) and analysis
(colocalisation and cluster size) software pipeline was built, SynaptoAnalysis, which allowed
us to detect hundreds of synaptosomes from dSTORM imaging data, and to analyse the
colocalisation and clustering behaviour of fluorescent markers using either spatial point
pattern or image methods.

Perspectives and future work

As an alternative to the multi-step filtering and segmentation steps in SynaptoAnalysis,
Voronoi tessellation could be applied as described by Levet et al. [96] to compartmentalise
and classify localisations. Correlations can be determined between the different polygons in
the Voronoi diagram, and then used to perform colocalisation and cluster analysis.

To verify the results provided by the Manders individual coefficients during colocal-
isation analysis, Ripley’s bivariate H-function will be implemented in a future Synapto-
Analysis release to define an average interaction distance between the mCLING/a-syn and
mCLING/VAMP-2 clusters.

Regarding cluster analysis, the simulations performed on circular point patterns and
inhomogeneous point patterns from experimental synaptosome outlines showed the RMSD is
insensitive to cluster density and point jitter from localisation uncertainty. In the benchmark-
ing experiments using ground truth synaptosomes (Fig. 3.22) the RMSD underestimated the
true radius by a factor of ~2, whereas Ripley’s H-function provided a much more accurate
estimate of cluster radius. Both metrics were sensitive enough to detect size differences
between mCLING clusters closer to the inner membrane of vesicles and a-syn and VAMP-2
being tethered with long antibody linkers to the outer membranes. The differences detected
by the RMSD were closer to the true difference expected from the antibody linkers, than that
from Ripley’s H-function.

In summary, it is useful and important to corroborate cluster size measurements using
multiple methods to highlight the shortcomings and advantages of each. For future work
with large data sets comparing multiple experimental conditions, i.e. temperature and
calcium levels, a machine learning approach as proposed by Williamson et al. [97] could
be implemented to classify single-molecule clusters and extract features with no a priori
knowledge of cluster size, shape, or density.
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3.7.4 Synthetic SMLM data from a model synaptosome is useful to
benchmark cluster analysis methods

Synthetic SMLM data from synaptosomes were generated using the software testSTORM,
which allowed us to input parameters to accurately simulate the experimental image acquisi-
tion process, and to model a synaptosome stained for mCLING, a-syn, and VAMP-2 using
physical characteristics from literature.

As mentioned in the previous section, the simulated synaptosome data sets highlighted
important differences between the RMSD and Ripley’s H-function in their accuracy to
measure cluster sizes (Fig. 3.22). Ripley’s H-function approximated more closely the true
value (~500 nm) of the modelled synaptosome radius, however the RMSD was more sensitive
to the differences in distribution size of the mCLING to that of a-syn and VAMP-2 due to
their antibody linker lengths. Moreover, the cluster radius from Ripley’s H-function in the
synthetic data (a-syn ~596 nm VAMP-2 ~593 nm) were within the standard deviation of
the cluster sizes calculated from the experimental data (a-syn = 451 ± 142 nm, VAMP-2 =
496 ± 160 nm), indicating the size distributions in the model are a valid approximation to
our experimental data. Contrary to what was previously reported by Kiskowski et al. [85]
as mentioned in section 2.3.2 of Chapter 2, Ripley’s H-function did not overestimate the
cluster radius in either the experimental or simulated data sets measured in this chapter. The
bias reported by Kiskowski et al. in measuring domain size with Ripley’s H-function could
likely stem from their analysis only on low-density patterns, as mentioned in the discussion
section of their seminal paper [85]. The high accuracy of Ripley’s H-function in estimating
a mean cluster radius for our data sets is likely due to the high localisation density in all
clusters analysed, as well as to the large number of clusters analysed which compensates for
variations in individual measurements.

For colocalisation analysis, it was more difficult to generate representative models of
the experimental data set. The simulation assumes perfect spheres with homogenous back-
ground, when synaptosomes are really asymmetric spheroid-like blobs with inhomogeneous
background signals. Moreover, the measurement of a 2D projection from a 3D simulated
structure introduces potential errors, e.g. two structures which are spatially separated in
the z direction but share the same x,y coordinates will appear colocalised. This apparent
2D colocalisation of non-overlapping objects in 3D will artificially inflate the measured 2D
colocalisation values. A 3D imaging method would be required to access the z information
from the fluorescent emitters and examine their colocalisation in 3D, such as that used in
Dani et al. [62]. Alternatively, another way to discriminate between fluorescent emitters in
the z-direction would be to illuminate the sample using TIRF, thereby reducing the excitation
and imaging volume to a 100 nm region above the focal plane (which is equivalent to the axial
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penetration depth of the evanescent wave present in TIRF). Additionally, several parameters
in the simulation are approximations, such as the number of mCLING molecules per vesicle,
or the percentage of successfully labelled binding sites on the vesicles. These quantities are
unknown and were impractical to measure with our available instrumentation.

3.7.5 Limitations of multi-colour dSTORM to study protein distribu-
tions in synaptosomes

The resolution required to study single synaptic vesicles and their protein content in synapto-
somes is currently beyond that offered by super-resolution fluorescence microscopy tech-
niques, due to the dense clustering of the vesicles, leading to too many overlapping fluo-
rophores within a diffraction-limited region. However, in this study SMLM was useful for
imaging clusters of vesicles, and their sub-diffractive distributions.

In dSTORM, the photo switching properties of dyes depend strongly on buffer com-
position; therefore, buffers are often optimised for specific dyes to achieve the best image
quality for a single colour channel [79]. In the multi-colour dSTORM experiments in this
chapter, the 488 and 561 nm dyes exhibited less optimal switching than the 647 nm channel,
even though the buffer used has been reported to work best across all fluorescent dyes [79].
Sub-optimal photo switching reduces the localisation precision achieved and worsens the
image quality of reconstructions in our experiments. To account for these shortcomings,
strict filters were implemented in our software SynaptoAnalysis post-reconstruction to re-
move sub-optimal localisations prior to analysis. For some data sets, this resulted in a large
rejection rate of the captured localisations as exemplified in Fig. 3.14 a and c, in which
~50% and ~75% of the detected synaptosome candidates were rejected by the spatial overlap
filter, respectively. These two rejection rates are representative for synaptosome analysis,
as they describe the rejection of potentially useful synaptosome candidates after noise and
background contributions had already been removed with previous filters. This rejection rate
was considered acceptable in these experiments, as we deemed it more important to remove
false positives that could bias our biological interpretation than to keep a larger percentage of
our data.

Future work

In future studies, to address the shortcomings of dSTORM for multi-colour imaging of
protein distributions in synapses, DNA-PAINT could be implemented to decouple the lo-
calisation procedure from the individual dye photo physics [98]. This would ensure that
the blinking properties and the localisation precision would be similar for all markers and
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would reduce the rejection rate of sub-optimal localisations due to unequal photo switching.
Moreover, additional colour channels could be added for markers that could further inform
our experiments, e.g. a fluorescent calcium channel marker could be added to ascertain if
a-syn clusters near or away from calcium channels at physiological vs calcium depleted
levels, or an active zone marker such as bassoon to confirm a-syn’s location at the active zone.
DNA-PAINT, which uses transiently binding oligonucleotide chains to generate the blinking
effect required for SMLM, also offers the possibility of performing stoichiometric counting
on fluorescent markers in its qPAINT version [99]. Since the blinking effect is only dependent
on the binding kinetic of the oligonucleotide pairs, it is independent of dye photophysics and
can therefore be used for quantitative measurements of molecule numbers across multiple
wavelengths. Implementing DNA-PAINT for this study would require optimization of the
labelling procedure for a-syn, VAMP-2, and mCLING using DNA oligomers as docking
strands.

To accurately map the location of a-syn and VAMP-2 at the synapse with respect to
internalised vesicles, 3D SMLM could be implemented with dSTORM or DNA-PAINT. The
high density of emitters in a small area would make it difficult to obtain information from
large 3D engineered PSFs such as the tetrapod [100] or the double helix [101]; therefore,
an astigmatic PSF would likely be the best solution to implement. To reduce the density of
emitters per volume, and increase the imaging resolution, expansion microscopy [93] could
be combined with SMLM as shown by Zwettler et al. [102] to produce 3D reconstructions
of a-syn and VAMP-2 in synaptosomes with single vesicle level resolution.
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Chapter 4

A study of the colocalisation between
HIV and the ESCRT-II protein EAP45

This chapter describes the study the interaction between the endosomal sorting complex
required for transport (ESCRT)-II, and the human immunodeficiency virus (HIV) during
viral egress using TIRF microscopy and novel imaging analysis tools. The scission of lipid
membranes is a common biological process, often mediated by a family of proteins known
as the ESCRTs assembling around the separation point. The functions of ESCRT-I and
ESCRT-III are well established in certain of these cellular processes, e.g. HIV budding,
cytokinesis, and late endosome recruitment; however, the function of ESCRT-II remains
unclear. In this study, the main component of ESCRT-II, the protein EAP45, was labelled
with a SNAP-tag and imaged using TIRF microscopy to measure its colocalisation with
the HIV structural polyprotein Gag. Gag was found to colocalise with EAP45 comparably
to ALIX, a protein well-known to be involved in HIV budding, but this colocalisation was
significantly reduced upon deletion of the EAP45 N-terminus. These findings strengthen
previous evidence showing the importance of the N-terminus of EAP45 for linking to ESCRT-
I during HIV budding. In addition, single particle tracking was applied to visualise the
dynamic association between EAP45 and Gag, and a method to visualise the concurrent
motion of two particles revealed three distinct classes of EAP45 movement relative to Gag.
EAP45 particles were found to associate with Gag particles for ~2 mins on average. A
preprint of this work is available on bioRxiv [1], and it has been submitted for consideration
to a peer-reviewed journal.
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4.1 Background to HIV and the ESCRT machinery

4.1.1 ESCRT proteins are used for membrane remodelling

ESCRTs (endosomal sorting complexes required for transport) are protein complexes involved
in a variety of cellular functions, from the scission of the intercellular bridge during cell
division (cytokinesis), to the formation of multi-vesicular bodies (MVB) and the budding of
HIV. ESCRT activities involve the topological remodelling of membranous structures. The
core of the ESCRT machinery is composed of three sub-complexes, ESCRT-I,-II, and -III,
which act in a sequentially coordinated manner during membrane scission [2].

Many viruses take advantage of the ESCRT proteins during their life cycle, primarily
by hijacking the ESCRT machinery to exit the cell via budding at the plasma membrane
[3]. In the case of HIV, Gag polyproteins form clusters in the cytosol before they travel to
the plasma membrane, where further Gag molecules accumulate and a bud begins to form
[4, 5, 6] (Fig. 4.1 b-d).
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Fig. 4.1 Sequential recruitment of the ESCRTs and ALIX by the polyprotein Gag during
HIV budding. (a) The canonical view of ESCRT recruitment involves either recruitment
of ESCRT-III via ESCRT-I or ALIX, however the role of ESCRT-II is unclear. (b-d) HIV
budding process from the initial accumulation of Gag at the plasma membrane (b), to the
recruitment of the ESCRTs at the bud neck to perform the membrane scission (c), followed
by the successful budding of the virion from the membrane (d).
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4.1.2 HIV sequentially recruits ESCRTs during budding

Two distinct motifs of Gag which are active late in the viral budding process, PTAP and
YPXL, interact with the early ESCRT-I protein TSG101 and the ESCRT-associated protein
ALIX, respectively. These then recruit ESCRT-III for the final scission to occur [6]. This
canonical view of the sequential recruitment of the ESCRTs and ALIX by Gag during
budding is illustrated in Fig. 4.1 a. Extensive work has been carried out to understand the
function of ESCRT-I and ESCRT-III in HIV budding and in other cellular processes [7, 8],
however the role of ESCRT-II remains unclear.

ESCRT-II comprises one copy of EAP30 and EAP45 and two copies of EAP20 forming
a Y shaped structure [9] (Fig. 4.1 a). Structural studies have shown ESCRT-II interacts with
ESCRT-I via the N-terminus of the EAP45 Glue and H0 linker domains, and the C-terminus
of the ESCRT-I protein VPS28 [10, 9, 2]. A similar binding region in EAP45 was also shown
to interact with the ESCRT-I protein TSG101 [11]. The remaining domains of EAP45, and
EAP30, form the core structure of the ESCRT-II complex with EAP20 [12, 9], which is
responsible for recruiting ESCRT-III [9].

4.1.3 The role of ESCRT-II in HIV budding is unclear

Although its role in linking to ESCRT-I in MVB formation [13] and cytokinesis [14, 15]
is accepted, the same linkage has been controversial in HIV budding. An earlier siRNA
knockdown (KD) study of EAP20 suggested ESCRT-II is dispensable for HIV budding in
293T cells [11]. However, researchers from the Lever Group (Department of Medicine,
Cambridge University) using HAP1 and T cells in which EAP45 had been knocked out
(KO) using CRISPR-Cas9 [16] showed that EAP45 is required for efficient HIV budding
and spreading [17, 18]. The specificity of this effect was demonstrated by the ability of
EAP45 in trans to rescue viral budding in EAP45 KO cells, and by its dependency on the
H0 linker region in linking to ESCRT-I. The discrepancy between the siRNA KD and the
CRISPR/EAP45 KO studies may have arisen from a minor amount of residual ESCRT-II
in the siRNA KD study being sufficient for supporting functional budding. Notably in
these studies, cell proliferation was largely unperturbed by the depletion of EAP45 and yet
there was up to a 10-fold decrease in virus spread, suggesting that EAP45 is redundant for
cell growth but critical for viral multiplication and spread. This strongly emphasises the
importance of understanding the mechanistic roles of ESCRT-II in HIV budding.

Building on previous biochemical evidence [17, 18] from our collaborators in the Lever
Group demonstrating the importance of ESCRT-II in efficient viral budding, we used TIRF
microscopy [19] to visualise and quantify the spatial proximity of a SNAP-labelled EAP45
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with Gag at the plasma membrane in fixed cells. We deleted parts of the interacting region
between EAP45 and Gag and compared the co-occurrence of these functionally compromised
mutants with that of the full length EAP45. Furthermore, live HeLa cells were also imaged
using TIRF to visualise the dynamics of the interaction between EAP45 and Gag. Single
particle tracking was used to obtain quantitative information from live cell movies, and the
spatial proximity and dwell time of the particles were measured as indicators of interaction.
The following sections describe the development of the imaging and analysis workflows
used to measure colocalisation of EAP45 and Gag, the challenges encountered with different
fluorescent labels, and the results obtained.

4.2 Imaging and analysis methods to study Gag and EAP45
at the plasma membrane

To provide visual evidence of the reported interaction between EAP45 and Gag, two imaging
strategies were implemented: First, dSTORM was implemented with EAP45 and Gag
labelled with commercial antibodies, however, this labelling strategy was shown to be highly
unspecific, as the antibodies had not been previously validated. Conventional, diffraction-
limited TIRF microscopy was employed instead using a SNAP-tag to label EAP45, and an
endogenous GFP tag for Gag; both tags were compatible with live-cell imaging and were
shown to be highly specific. A nearest-neighbour algorithm was developed for colocalisation
analysis in fixed cells, along with a workflow for removing chromatic offset from the dual-
colour images and segmenting EAP45 and Gag puncta from TIRF images of the plasma
membrane. Finally, a single particle tracking workflow was developed for analysing the
dynamic interaction between EAP45 and Gag in live cell movies.

4.2.1 dSTORM imaging using conventional antibodies for Gag and
EAP45

SMLM has been previously implemented to measure the proximity of Gag clusters to other
ESCRT components [7, 8]. We implemented dSTORM using the same microscope described
in Section 3.2.3 of Chapter 3 to measure the inter-cluster distance between EAP45 and Gag
puncta at the plasma membrane. HeLa cells were transfected with wild type HIV provirus,
and subsequently fixed and immunostained using commercial antibodies for Gag (Anti-HIV-1
p24 Hybridoma 183-H12-5C, NIH AIDS Reagents) and EAP45 (HA Tag Antibody 14-6756-
81, ThermoFisher). The antibodies were conjugated to an Alexa Fluor 647 (AF647) dye for
EAP45 , and an Alexa Fluor 488 (AF488) dye for Gag. These two dyes were chosen to avoid
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spectral overlap. Bright and sparse puncta were visualised near the plasma membrane for
both EAP45 and Gag upon widefield TIRF screening (4.2 a). Dr. Bo Meng performed all
sample preparation steps (cell culture, transfection, and staining), and my contribution began
when the samples were prepared and arrived at the microscope. All the imaging and analysis
results shown this point onward were my responsibility.

dSTORM image stacks were acquired sequentially for the 647 and 488 channels using
a single camera, to avoid excitation of the red dye with the 488 nm laser. The time stacks
obtained were reconstructed using thunderSTORM [21] and registered to remove chromatic
offset using the same procedure as described in the Section 3.4.1 of Chapter 3 (Fig. 4.2). The
resulting localisation data tables were filtered to remove localisations with an uncertainty
larger than 40 nm, and intensities lower than 500 photons to avoid false positives. Two-colour
composite images were generated from the reconstructed images, with multiple regions
showing overlapping Gag and EAP45 clusters, as shown in the insets in Fig. 4.2 b.

The intercluster (centre-to-centre) distance between EAP45 and Gag clusters was cal-
culated as a measure of colocalisation. First, a square region of interest (ROI) was chosen
inside the cell to avoid detecting loose dye particles on the coverslip. The clusters in the
cropped ROIs were segmented (Fig. 4.2 c) and their centroids were obtained for each channel.
The centroid for every Gag cluster was used to calculate the intercluster distance to every
EAP45 cluster. To compare the measured intercluster distance from the data to a random
chance distribution of markers in the ROIs, the segmented clusters were randomly shuffled
and their intercluster distances were measured in 1000 trials following Costes’ method
[20]. The cumulative distribution functions (CDF) of the intercluster distances from the
experimental data and the random shuffling trials were plotted in Fig. 4.2 d. The CDF from
the experimental data showed no significant difference with the CDF for a random chance
distribution of markers. This experiment indicated that the measured proximity between
Gag and EAP45 clusters was no different from the proximity from a simulated random
arrangement of clusters.

This result could have been due to a low number of true colocalisation events in the
sample, or to the high density of clusters at the membrane leading to many overlapping events
during the random shuffling process. However, many bright Gag and EAP45 puncta had been
observed outside the cell boundaries during the imaging experiments, which were suspected
to be non-specifically bound antibodies. To verify the specificity of the antibodies used,
widefield TIRF was used to screen cells stained with isotype control antibodies for Gag and
EAP45, which lack specificity to the target and therefore provide a reference for unspecific
binding. Both specific and isotype control antibodies for EAP45 (Fig. 4.3 a-c) exhibited



120 A study of the colocalisation between HIV and the ESCRT-II protein EAP45

Registration
Correct for
chromatic offset

a

d

b

c

Single molecule time stacks dSTORM reconstruction

Gag-EAP45maskscropped ROIs

4 µm

Gag-AF488
EAP45-AF647

EAP45

Gag
Reconstruction

Filtering
Remove spurious
localisations and
artefacts

Fig. 4.2 dSTORM imaging and analysis to measure the co-occurrence between Gag and
EAP45. (a) dSTORM image acquisition and reconstruction steps (b) Representative dual-
colour super-resolution image of the cells stained for Gag (cyan) and EAP45 (magenta). (c)
ROIs were selected inside the cells for intercluster distance analysis and Costes [20] shuffling
(d) Cumulative distribution function of the likelihood of finding EAP45 clusters at a given
distance from a Gag cluster, calculated with the results from both our experiments and the
random chance simulations displayed with a 95% confidence interval.
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puncta with similar intensities, suggesting there were a large number of fluorescently labelled
false positives.
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Fig. 4.3 Images of HeLa cells immunostained for EAP45 (a) and Gag (b) with specific and
isotype control antibodies. Yellow insets show line profiles traced for EAP45 specific (b) and
isotype (c), and Gag specific (e) and isotype (f) puncta, to demonstrate the similarity in peak
signal (S) levels for both antibody types.

This was also the case for the Gag antibodies (Fig. 4.3 d-f). To compare the fluorescent
signal between specific and isotype control antibodies, line profiles were traced through
bright features as shown in the yellow insets for Fig. 4.3 a-c (Eap45) and Fig. 4.3 d-f (Gag).
These experiments confirmed the antibody specificity was low, and therefore the dyes were
likely non-specifically bound to cellular structures other than our desired species.

4.2.2 Validation of a SNAP-tag label for EAP45

Following the negative results from the dSTORM experiments with conventional antibodies,
more specific fluorescent labels were necessary, ideally compatible with live-cell imaging.
A GFP construct previously validated for producing GFP-Gag intracellularly [22] was used
to label Gag, and a SNAP-tag was used to label EAP45. The SNAP-tag is a polypeptide
that can be fused to any protein of interest, and further conjugated with high specificity to
a fluorescent dye. SNAP-tag (~20 kDa) provides similar molecular specificity to that of
fluorescent proteins, and it is widely used for imaging both fixed and live cells due to the
versatility of the commercially available substrates [23]. GFP, a slightly larger tag with ~27
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kDa, had been previously inserted at the N-terminus of EAP45 without adversely affecting
its cellular localisation [24], so we decided to SNAP label EAP45 at the same site (Fig. 4.4
a). The following section details the transfection of GFP and SNAP-tag for Gag and EAP45.
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Fig. 4.4 Verification of the SNAP EAP45 labelling in cytokinesis. (a) Schematic showing
the full length (FL) EAP45 construct used in this study tagged with a SNAP-tag at the
N-terminus. (b) Confocal images of HeLa cells expressing YFP-TSG101 stained with DAPI
for nuclei and a-tubulin show TSG101 is recruited to the intercellular bridge. (c) Images of
HeLa cells transfected with SNAP-FL EAP45 followed by staining with DAPI, a-tubulin and
AF647-conjugated SNAP substrate also show EAP45 is recruited to the intercellular bridge
during cytokinesis. The SNAP-tag immunostaining and confocal imaging experiments were
performed by Dr. Bo Meng. This figure is courtesy of Dr. Bo Meng.

4.2.3 Transfection of GFP and SNAP-tag to label Gag and EAP45

HeLa cells were transfected with Fugene HD (E2311 Promega) and HAP1-EAP45 KO
cells with Turbofectin (TF81001 Origene), as detailed by Meng et al. [17]. For the fixed
cell imaging experiments, HeLa cells were co-transfected with 100 ng piGFP and 60 ng of
SNAP-FL-EAP45. A HeLa cell line stably expressing mCherry-ALIX was transfected with
100 ng piGFP, for the ALIX experiments. HAP1-EAP45 KO cells were co-transfected with
200 ng piGFP and 72 ng of SNAP-FL-EAP45. At 24 hours post transfection, cells were
fixed, permeabilised, and stained with 4 µM SNAP-Surface AlexaFluor647 (S9136S New
England Biolabs) for 1 hour. For live cell experiments, 120 ng of piGFP and HVPgagpro-
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[17] plasmids at a 1:5 ratio were co-transfected with 72 ng of SNAP-FL-EAP45. At 10
hours post-transfection, cells were stained with 3 µM cell-permeable live SNAP-cell 647 SiR
(S9102S New England Biolabs) for 30 minutes prior to imaging. All cell culture, transfection,
and staining were performed by Dr. Bo Meng.

Fusion of a SNAP-tag at the N-terminus of EAP45 does not affect its normal cellular
localisation

A full length (FL) SNAP-EAP45 was transfected into HeLa cells, and a confocal microscope
was used to verify the recruitment of EAP45 to the intercellular bridge during cytokinesis.
This is one of the activities well known to involve ESCRT-II, in cooperation with ESCRT-I
and ESCRT-III [25, 26]. HeLa cells expressing YFP-TSG101, the ESCRT-I protein known
to be recruited early in the membrane scission process, were used as a control [25]. Fig. 4.4
b shows TGS101 was recruited to the intercellular bridge, as expected. Following SNAP
staining with an AF647-conjugated substrate, the SNAP-labelled EAP45 was also recruited
as shown in Fig. 4.4 c. This suggests the normal cellular localisation of EAP45 is not affected
by the insertion of an N-terminal SNAP-tag.

SNAP-tag is a highly specific label for EAP45

To confirm the specificity of the SNAP-tag label, HeLa cells were imaged in TIRF illumina-
tion both with (Fig. 4.5 b) and without (Fig. 4.5 a) the SNAP substrate added. The images
of the cells without substrate showed predominantly background signal close to the camera
baseline (~200 counts) as shown in Fig. 4.5 a. The images of the cells with the substrate
were bright, with a discernible cell outline and bright puncta near the plasma membrane (Fig.
4.5 b). Line profiles were traced over the brightest features of both the cells without substrate
and with substrate, and the ratio of signal to background (SBR) was estimated for each using
the peak value and the average background value from the line profiles. The cells with the
SNAP substrate had an SBR approximately seven times higher than that of the cells without
substrate. To account for differing background fluorescence levels, the mean intensity over
a square ROI without any bright features shown with a red square in Fig. 4.5 a and a blue
square in Fig. 4.5 b was plotted in Fig. 4.5 e. The mean intensity in the ROI of the cells with
the SNAP substrate was over 4-fold higher than that of the cells with no substrate. Both of
these measures indicate the SNAP-tag label yielded specific and bright labelling, suitable for
testing colocalisation with GFP-Gag.
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Fig. 4.5 Verifying the specificity of the SNAP-tag label for EAP45. (a) Cells with no SNAP
substrate added. A line profile was drawn across a bright feature and plotted in (c), showing
the mean signal (~270 a.u.) is predominantly background, and the SBR is ~1. (b) Cells with
SNAP substrate added. The mean signal from a line profile through a bright feature plotted
in (d) is well over 1000 a.u., and the SBR is ~7. (e) Comparison of the mean signal inside a
square ROI taken both in the case of no substrate and substrate. The contrast levels in images
(a) and (b) are different to allow us to visualise the much lower intensity features in (a). Each
data point in (e) represents the mean intensity computed over a region of interest in an image,
for four total images acquired, each corresponding to a separate technical replicate.

4.2.4 Nearest-neighbour distance analysis to measure spatial co-occurrence
from TIRF images

Dual-colour diffraction limited images were acquired in TIRF on the same widefield micro-
scope described in Chapter 3, this time using both cameras with a dichroic beam splitter
(T565spxr-UF3) for simultaneous two-colour imaging. The co-occurrence between SNAP-
EAP45 and GFP-Gag was measured using a nearest-neighbour distance analysis [27, 28] to
search for EAP45 particles in the vicinity of Gag particles. Based on the average diameter of
HIV budding virions (~120 nm) [29] and the diffraction-limited resolution of our microscope
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(2 pixels=234 nm), a 1-pixel perimeter was selected as a constraint for defining potential
interactions between the two species. Any Gag particles found to have a neighbouring EAP45
within this threshold were labelled as “associated”. To account for different densities of Gag
particles in each cell, the number of associated particles was expressed as a percentage of the
total number of detected particles. Fig. 4.6 a-b show a visual summary of the implemented
imaging set up and workflow.
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Fig. 4.6 Imaging EAP45 and Gag at the plasma membrane using TIRF microscopy. (a)
Illumination configuration used to image Gag and EAP45 at the plasma membrane in cells.
(b). Workflow for evaluation the spatial proximity between EAP45 and Gag, including steps
for chromatic offset correction using multi-fluorescent sub-diffractive beads, segmentation,
and nearest-neighbour analysis.

In the workflow shown in Fig. 4.6 b, the raw dual-colour images were first registered
to correct for chromatic offset using the DoM Utrecht plugin v1.1.6 [30] in Fiji [31], then
segmented using the Trainable Weka Segmentation (TWS) plugin [32] from Fiji. For TWS,
the first 3 images in each data set were manually annotated to identify three object classes:
single fluorescent spots in focus (small blobs), large aggregates of spots (large blobs), and
background; the Random Forest algorithm with 200 decision trees and 2 random features per
set up was then used to classify the remaining images in the data set. Binary masks were
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then created from the top 30th percentile of the class probability maps output by the TWS
plugin for the small blob class. The large blob and background classes were discarded.

A nearest-neighbour algorithm was developed in Matlab from the ground up to check, for
each segmented spot in the masks, the distance from its nearest neighbours in the opposite
colour channel using the formula given by Eq. 2.20 from Chapter 2. Channel 1 spots found
within the association distance threshold defined above of channel 2 spots were labelled as
“associated”, and vice-versa. The algorithm developed can be summarised as follows:

1. Import binary masks for both colour channel 1 and channel 2.

2. For each mask, classify the segmented spots using the Matlab function regionprops to
obtain their centroid.

(a) For each spot in channel 1, calculate its centre-to-centre distance to every spot in
channel 2.

(b) Count the number of channel 1 spots which have at least one neighbour in channel
2 closer than R = 1 pixel.

3. Repeat for all masks and export results in .csv file

In terms of computational intensity, the most time-consuming step in the colocalisation
workflow described was the Trainable Weka Segmentation, as manual annotation for each
data set could take up to 10 mins. All other steps could be completed within a few minutes,
leading the entire workflow to employ less than an hour for completion. The source code for
colocalisation analysis can be found in the repository for this project at https://github.com/
pedropabloVR/Meng_VallejoRamirez_EAP45_supportingCode.

4.2.5 Single particle tracking of Gag and EAP45 particles in HeLa cells

Concurrent with the experiments to measure the spatial co-occurrence of Gag and EAP45 in
fixed cells, we also sought to analyse the temporal interaction between these two proteins
in live cells. The assembly of Gag particles at the cell membrane during HIV budding has
been reported to occur within a time frame of ~10 mins [33, 34]. Subsequent recruitment
of ESCRT proteins by Gag has been reported for TSG101 [34], VPS4A [35, 7, 4], some
ESCRT-III proteins [4, 34], and ALIX [36], with an association time at the membrane varying
from a few seconds up to ~12 minutes [37].

To visualise the dynamic association between GFP-Gag and SNAP-FL EAP45 at the
plasma membrane, 20-min movies of live HeLa cells were captured using TIRF illumination.

https://github.com/pedropabloVR/Meng_VallejoRamirez_EAP45_supportingCode
https://github.com/pedropabloVR/Meng_VallejoRamirez_EAP45_supportingCode
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A single particle tracking workflow was developed to analyse the amount of time EAP45
spends within the defined distance association threshold (~117 nm) to a Gag particle. First,
dual-colour live cell movies were registered to correct for chromatic offset using the DoM
Utrecht plugin [30] in Fiji. ~80x80 pixels2 (~1.3x1.3 µm2) regions in which EAP45 particles
were found in the vicinity of a Gag particle were then manually extracted. Gag and EAP45
particles were tracked separately using TrackMate v4.0.0 [38], which detects spots in each
frame with sub-pixel precision, links their positions from frame to frame with Jaqaman’s
linear assignment problem (LAP) tracker [39], and outputs tracks. Using TrackMate, the
tracks from a single movie could be generated within a few minutes, after optimising
parameters for spot detection and trajectory linking using the graphical user interface. Finally,
a custom Matlab script for nearest neighbour analysis was written from scratch to calculate
the distances between the centre positions of the Gag and EAP45 tracks. The algorithm used
for this script can be summarised as follows:

1. Import track files a 3-column array format, containing frame number and the x and y
coordinates, for each colour channel.

2. Check for non-consecutive frames in each array, e.g. instances in which the tracked
particle skips one or more frames. Fill in the frame gap using the particle’s previous
location.

3. Calculate the distance between the x,y centre coordinates of the particle in channel 1
to that in channel 2 using Eq. 2.20.

4. Store results in a .csv file for export.

The detector used in the live cell experiments was a Hamamatsu Orca Flash v4.0 with
a pixel pitch of 6.45 µm, which translated into ~50 nm pixels at the image plane after
accounting for the objective (100x) and relay lens (1.3x) magnification. The association
distance threshold used for the results from the live cell experiments was thus a minimum of
2 pixels. The source code for the track analysis can be found in the code repository for this
project at https://github.com/pedropabloVR/Meng_VallejoRamirez_EAP45_supportingCode.

4.2.6 Co-moving frame analysis to visualise proximity between two
moving particles

In the live cell movies acquired, Gag and EAP45 particles move simultaneously, making it
difficult to see how their positions are correlated over time. To visualise a correlated motion
of the particles more clearly, an algorithm was developed in Matlab that tracked the position

https://github.com/pedropabloVR/Meng_VallejoRamirez_EAP45_supportingCode
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of a Gag particle and repositioned the field of view such that the detected particle remained in
the centre of the image from frame to frame. We used the Gag particle position as a reference
point against which the relative motion of the EAP45 particle could be visualised. We call
this algorithm a “co-moving frame analysis”, and its steps are summarised in Fig. 4.7. First,
a region of interest (ROI) is chosen in the live cell movie (Fig. 4.7 a), and the centroid of
both the Gag particle (cyan cross) and the EAP45 particle (magenta circle) are detected using
a sub-pixel fitting routine from TrackMate [38], as shown in Fig. 4.7 b. The output tracks are
imported into Matlab, and a square region around the Gag particle is cropped and extracted,
such that the Gag particle is always in the center (dotted cyan rectangle, Fig. 4.7 b). The
position of the EAP45 particle is then plotted relative to the new position of the Gag particle
(Fig. 4.7 c and d). The result is the track of the EAP45 particle motion, colour-coded for
time, plotted over the average image of the immobilised Gag particle in the center of the field
of view (Fig. 4.7 d). This helps visualise the dwell times of the moving particle around the
fixed particle.

10:05 s

Gag
EAP45 0.5 µm

10:05 s 10:05 sa b c d

EndStart

Fig. 4.7 Co-moving frame analysis to analyse the temporal interaction between Gag and
EAP45 (a) Dual colour frame from a live cell movie showing a single EAP45 particle moving
in the vicinity of a Gag particle. (b) The centre position of the tracks for Gag (cross) and
EAP45 (circle) were overlaid on a grey scale frame of the Gag channel. A dotted rectangle
indicates a region around the centre position of the Gag particle which is extracted as a new
frame of reference. (c) The position of the EAP45 molecule is then plotted relative to the
new frame of reference. (d) Track of the EAP45 particle motion colour-coded from start to
finish of the track duration, overlaid on an average image of the Gag channel.

4.2.7 Statistical analysis

For the case in which only two experimental data sets were compared, such as in Fig. 4.9 for
ALIX and FL EAP45, and Fig. 4.12 for FL EAP45 and DGDH, Welch’s two sample t-test
was used with ns: non-significance, * for p < 0.05, ** for p <0.01, and *** for p < 0.001.
Boxplots were overlaid on the raw data points, with the bold horizontal line showing the
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mean, and whiskers represent the largest and smallest value within 1.5 times the interquartile
range above 75th and 25th percentile, respectively. For the case in which more than two
conditions were compared (Fig. 4.11), a One-Way ANOVA with Dunnett Comparison
was used to compare the FL EAP45 condition to each of the functionally compromised
mutants (DGDH, DPTAP, DPTAP-DGDH) with ns: non-significance, * for p < 0.05, ** for
p <0.01, and *** for p < 0.001. At least three biological replicates were tested for all
experimental conditions imaged, and the number n reported for the association of Gag and
EAP45 represents the number of cells in which colocalisation was evaluated. All statistical
tests were performed using R using ggplot2 [40]. The code and the data files to replicate
all figures and analysis performed can be found in the code repository for this project at
https://github.com/pedropabloVR/Meng_VallejoRamirez_EAP45_supportingCode.

4.3 Results

The nearest-neighbour analysis to study colocalisation in fixed cells described above was
validated using two control experiments: First, an anti-GFP fluorescent nanobody was used
to test the maximal experimentally attainable co-occurrence with GFP-Gag; Next, the co-
occurrence of Gag and the ALIX protein, which is known to be recruited to the budding
site during viral egress and to colocalise with Gag [36], was compared to that of Gag and
FL EAP45. Having validated the nearest-neighbour analysis, it was applied to measure the
co-occurrence of Gag and EAP45 mutants with a functionally compromised N-terminus.
In addition, the temporal interaction between Gag and FL EAP45 was examined using the
single particle tracking and co-moving frame analysis workflow.

4.3.1 Testing maximal experimentally available colocalisation using anti
GFP nanobody with Alexa Fluor 647 dye

GFP-Gag was immunostained with an anti-GFP nanobody labelled with AF647 in HeLa
cells. The nanobody binds to GFP with a small linker length (~2 nm) such that all the
GFP fluorescent spots would also have an AF647 spot in practically the same location. A
representative dual-colour image of the GFP-Gag (cyan) and the AF647-nanobody (magenta)
is shown in Fig. 4.8 a, with a blended-in image of the segmented mask towards the bottom
right corner. The results from the nearest-neighbour analysis are shown in Fig. 4.8 b, with
the percentage of associated GFP-Gag particles plotted as a function of search radius, in
pixel-wise increments (1 pixel = 117 nm). A maximum search radius of 3 pixels was used, as
particles farther apart than 3 pixels were unlikely to be associated. Despite expecting every

https://github.com/pedropabloVR/Meng_VallejoRamirez_EAP45_supportingCode
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GFP-Gag detected to have an attached nanobody, nanobody binding is not 100% efficient
and only ~75% of the detected GFP-Gag particles have a nanobody within 1 pixel (117 nm),
and ~87% within 2 pixels (234 nm). This discrepancy may in addition be due to an error
in the centroid estimation after segmentation, introducing a bias into the nearest-neighbour
analysis and causing partially overlapping particles to be not counted as “associated”.

4 µm

GFP-Gag
AF647-nanobody

Weka-segmented image

Raw image ba

0

25

50

75

100

117 234 351

%
As
so
ci
at
ed

G
ag

pa
rti
cl
es

Search radius (nm)

Fig. 4.8 Using an anti-GFP AF647 nanobody to test the maximal experimentally attainable
colocalisation with GFP-Gag. (a) Representative dual-colour image of GFP-Gag and the
AF647-nanobody, with a faded-in composite towards the lower right corner showing the
resulting dual-colour mask after segmentation. (b) Percentage of associated Gag particles
from nearest-neighbour analysis. Each data point corresponds to the measured associated
Gag particles for a single cell. A total of five cells from three different replicates were
analysed.

4.3.2 FL EAP45 and ALIX show similar co-occurrence with Gag

A HeLa cell line expressing mCherry-ALIX was transfected with GFP-Gag to test the co-
occurrence between these two proteins. ALIX is known to be transiently recruited to the
budding site by Gag for subsequent recruitment of other ESCRT components during viral
egress [36]. The colocalisation of Gag assembly sites and ALIX clusters has been previously
reported by other groups, both as a centre-to-centre distance measurement using dSTORM
(89±61 nm) [7], and as a percentage of Gag assembly sites with a neighbouring ALIX over
the total number of Gag assembly sites (3.4%) [8]. Despite a very low expression of the
mCherry-ALIX, i.e. there were very few cells which had bright ALIX puncta which we
could analyse, the images for 8 cells were analysed. On average, ~2.5% of the total Gag
particles had an ALIX particle within a 1-pixel distance (Fig. 4.9 b). This colocalisation
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rate is similar to the 1-4% reported previously by Prescher et al. for ALIX and other ESCRT
components [8].

The colocalisation rate between Gag and ALIX was compared to that between Gag and
FL EAP45 in a HeLa cell line transfected with SNAP-EAP45 stained with an AF647 dye.
After analysing 12 cells, ~3% of the total Gag particles had a FL EAP45 particle within
a 1-pixel distance, which is similar to the association rate observed for Gag and ALIX.
This similarity suggests that in Hela cells, both EAP45 and ALIX might be recruited to the
budding sites close to the plasma membrane in a similar abundance. The results from the
co-occurrence analysis are shown in Fig. 4.9 b. A representative cell with GFP-Gag and
mCherry-ALIX is shown in Fig. 4.9 a, with yellow-boxed insets highlighting overlapping
Gag and ALIX particles.
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Fig. 4.9 Co-occurrence analysis between ALIX/Gag and SNAP-FL EAP45/Gag. (a) HeLa
mCherry-ALIX (magenta) cells transfected with GFP-Gag (cyan). Yellow insets highlight
regions with visible co-occurrence of ALIX and Gag spots. (b) Co-occurrence analysis of
Gag/ALIX compared to that of Gag/FL EAP45 (separate HeLa cells were co-transfected
with SNAP-FL EAP45 and GFP). Each data point represents a cell (n = 8 cells for ALIX,
and n = 12 cells for FL EAP45) processed with the pipeline illustrated in Fig. 4.6.

4.3.3 FL EAP45 shows a higher co-occurrence with Gag than function-
ally compromised EAP45 mutants

Having observed a similar co-occurrence of Gag with ALIX and FL EAP45 (Fig. 4.9 b),
we examined how deleting a part of the linker region between Gag and EAP45 would affect
their co-occurrence. The Glue and H0 domains of EAP45 have been shown to interact with
ESCRT-I [10]; their deletion(DGDH, Fig. 4.10 a), has been demonstrated to impair efficient
viral budding in experiments using biochemical and virological methods [18].

To probe the effect of truncated Glue and H0 domains, we imaged HeLa cells transfected
with GFP-Gag and SNAP-FL EAP45 (Fig. 4.11 a), and cells transfected with GFP-Gag and
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Fig. 4.10 Functionally compromised mutants of EAP45 and Gag. (a) Diagram of the FL
EAP45 and the construct with a deleted Glue and H0 domain, DGDH-EAP45. (b) Diagram
of the Gag polyprotein with a deleted PTAP domain. These diagrams are courtesy of Dr. Bo
Meng.

SNAP-DGDH EAP45 (Fig. 4.11 b). Both were stained with an AF647-conjugated SNAP
substrate. The nearest-neighbour analysis workflow showed the spatial proximity between
the DGDH EAP45 and Gag (n=15 cells) was lower (Fig. 4.11 e) than that measured for the
FL EAP45 and Gag (n= 12 cells, p = 0.026 between FL EAP45 and DGDH EAP45).

The PTAP domain in Gag (Fig. 4.10 b) is involved in recruiting TSG101 (ESCRT-I),
likely initiating the recruitment cascade of ESCRT-II and -III in HIV budding [6]. We
hypothesised the removal of the PTAP domain (DPTAP) would decrease the co-occurrence
of Gag and EAP45. Our data however show that even though there is a decrease in the
average co-occurrence between DPTAP Gag (n = 11 cells) and FL EAP45, this was not
significantly different from that of wildtype Gag and FL EAP45 (Fig. 4.11 e, p = 0.36). This
suggests EAP45 co-occurs with Gag independently of PTAP. This observed co-occurrence
with DPTAP relies on an intact Glue and H0 linker region, as the removal of this region
(DPTAP + DGDH) significantly reduces the observed co-occurrence (n = 14 cells, Fig. 4.11
e, p = 0.018 between FL EAP45 and DPTAP DGDH).

To further explore the effect observed, the co-occurrence between EAP45 and Gag was
also examined in HAP1-EAP45 KO cells, with supplementation in trans of FL EAP45. The
HAP1-EAP45 KO cell line was developed in a previous study by Meng et al. [17, 18],
and used to demonstrate the arrest of HIV budding when all endogenous EAP45 is deleted
using CRISPR-CAS9 [41, 42]. The nearest-neighbour analysis workflow showed the spatial
proximity between Gag and FL EAP45 (n = 8 cells, Fig. 4.11 a and c) was significantly
higher (p = 0.018) than that between Gag and DGDH EAP45 (n = 9 cells, Fig. 4.11 b and d).
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Fig. 4.11 Co-occurrence of GFP-Gag and different functionally compromised SNAP-EAP45
mutants in fixed HeLa cells. Representative TIRF images for cells expressing FL EAP45
(a) with numbered insets showing regions of high spatial overlap between markers (c), and
DGDH EAP45 (b) with numbered insets showing regions with little spatial overlap between
markers (d). (e) Comparison of the percentage of associated Gag particles between FL
EAP45 and DGDH EAP45 expressing HeLa cells, as well as those with DPTAP-Gag mutants.
Each data point corresponds to the measured associated Gag particles for a single cell. Three
different biological replicates were analysed for each condition.
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Fig. 4.12 Co-occurrence of GFP-Gag and SNAP-EAP45 in fixed HAP1 EAP45 KO cells.
Representative TIRF images for cells expressing FL EAP45 (a) with numbered insets show-
ing regions of high spatial overlap between the two markers (c), and DGDH EAP45 (b)
with numbered insets showing regions with little spatial overlap between markers (d). (e)
Comparison of the percentage of associated Gag particles, i.e. those which have an EAP45
particle within 1 pixel, between FL EAP45 and DGDH EAP45 expressing HAP1 EAP45 KO
cells. Each data point corresponds to the measured associated Gag particles for a single cell.
Three different biological replicates were analysed for each condition.
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The findings from the nearest-neighbour analysis in HeLa and HAP1 EAP45 KO cells
suggest the Glue domain and the H0 linker region play an important role in linking EAP45
to HIV budding [17, 18].

4.3.4 Single particle tracking of live HeLa cells shows transient co-
occurrence of Gag and EAP45

The recruitment of ESCRTs by Gag at the plasma membrane to achieve viral egress from the
cell is a sequential process lasting up to 30 minutes [37]. Individual recruitment events for
ESCRT-I and III proteins have been reported to last between a few seconds and 12 minutes
[35, 7, 4, 34, 36]. To visualise the temporal interaction between Gag and ESCRT-II, live
HeLa cells were transfected with GFP-Gag, similarly to previous reports imaging ESCRT
component recruitment by Gag in live cells [7, 36], and with SNAP-FL EAP45. The SNAP-
EAP45 substrate was added at >10 hours post-transfection, when enough Gag molecules
had assembled at the plasma membrane to be detected as bright puncta. 20-min movies with
frames every 5 to 10 seconds were recorded, and 14 regions of interest were extracted and
analysed using the single particle tracking and co-moving frame analysis methods described
in the Methods section. Three representative regions from the live cell recordings are shown
in Fig. 4.13 a at different time points, along with the results from the co-moving frame
analysis in Fig. 4.13 b. The extracted ROIs represent areas in the videos in which EAP45
was observed to be in close proximity to Gag and were chosen manually. For each ROI, the
distance between the two tracks was plotted as a function of time (Fig. 4.13 b). The number
of consecutive frames in which EAP45 particles were found to stay within the association
threshold of Gag were counted, resulting in dwell times ranging from 10 seconds to 6 mins,
as as shown in the kernel density distribution in Fig. 4.13 c). From this distribution, the mean
consecutive association time between EAP45 and Gag was estimated to be ~2 mins. This
co-occurrence time frame agrees with that reported for other ESCRT proteins [34]. Within
all the 14 analysed ROIs (Fig. 4.14) there appear to be three classes of movements observed
between EAP45 and Gag:

• EAP45 approaches Gag within the two-pixel threshold multiple times (Fig. 4.14 a; 7
out of 14 events).

• EAP45 approaches Gag within the two-pixel threshold and moves away (Fig. 4.14 b,;
4 out of 14 events).

• EAP45 approaches Gag and remains within the two-pixel threshold during the time of
the recording (Fig. 4.14 c ; 3 out of 14 events).
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The percentage of the total observation time the EAP45 and Gag particles spent within a
given distance of each other was plotted in Fig. 4.13 d). For all regions analysed, EAP45
particles spend ~30% percent of the total observation time within the diffraction-limited
association threshold from a Gag particle.

4.4 Summary and Discussion

The canonical view on membrane scission via the ESCRT complexes during HIV budding
considered ESCRT-II to be unnecessary [11]. However, recent studies of ESCRT-II in
cytokinesis [14, 43] and HIV budding [17, 18] revise this view and implicate ESCRT-II in a
bridging role between ESCRT-I and ESCRT-III, as originally reported in cargo sorting [44, 9].
Previous biochemical analyses by our collaborators in the Lever group reported significantly
impaired HIV budding and egress in HAP1 cells in which EAP45 had been knocked out
using CRISPR-Cas9 [41, 42]. By expressing EAP45 in trans, efficient HIV budding and
egress could be recovered. This effect was attributed to the H0 linker domain in EAP45 [17].
Building on their biochemical work, this chapter provides new evidence on the colocalisation
of ESCRT-II with Gag during viral budding using TIRF microscopy. More specifically, this
work sheds light on the domain requirements of the linker region between EAP45 and Gag
for efficient viral budding, as well as the interaction dynamics between these two proteins.

4.4.1 SNAP-tag and a GFP fusion provide higher specificity than con-
ventional antibodies to fluorescently label EAP45 and Gag, re-
spectively

The experiments using dSTORM produced co-occurrence results between Gag and EAP45
which were no different from those obtained from a random distribution of the two markers;
this was likely due to the use of highly unspecific antibodies during immunostaining. Despite
looking like promising samples with the right shape, brightness, and distribution at the
plasma membrane, the images with specific antibodies were shown to be no different from
those of isotype control antibodies. As an alternative, a SNAP-tag label was used for EAP45
and a GFP construct to label Gag, both providing high molecular specificity and brightness in
fixed and live cells. Our collaborators in the Lever lab verified the SNAP-tag would not affect
the normal cellular location of the EAP45 by visualising its recruitment to the intercellular
bridge during cytokinesis (Fig. 4.4 b and c). Because the GFP-Gag was not compatible with
dSTORM, diffraction-limited widefield imaging with TIRF illumination was implemented
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Fig. 4.13 Co-moving frame analysis on single particle tracking data shows transient co-
occurrence of EAP45 and Gag. (a) Four time points for different representative ROIs. Yellow
arrowheads point out Gag and EAP45 spots selected for tracking. (b) Results from the
co-moving frame analysis for the three regions in (a). The path traced by the EAP45 particle
is color-coded for time, overlaid on an average image of the stabilised Gag channel. Plots
of the distance in pixels between the centroids of the Gag and EAP45 particles versus time
are shown, with the dotted line representing the association threshold of 2 pixels (~100 nm).
(c) Kernel density distribution showing the maximum consecutive association time between
Gag and EAP45 over 14 ROIs.(d) Percentage of total observation time as a function of the
distance between centroids of Gag and EAP45, plotted over 2-pixel increments (n = 14).
Each data point in (d) represents an analysed region in which a single EAP45 and a Gag
particle were tracked, for a total of 14 regions analysed.
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Fig. 4.14 Co-moving frame analysis reveals three classes of EAP45 movement relative to
Gag: (a) EAP45 particles which hover in the vicinity of the Gag cluster for short spans of
time, and either oscillate in and out of proximity, or move away from the Gag cluster, (b)
EAP45 particles which approach the virus from a distance and remain in the 2-pixel vicinity
of the virus particle for several minutes, and (c) EAP45 particles which remain within 2
pixels of the virus particle throughout the observation time interval.
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for the rest of the experiments. The loss in imaging resolution and sensitivity was traded off
for the high specificity provided by the new labels.

4.4.2 The EAP45 N-terminus is necessary for colocalisation with Gag

The co-occurrence of Gag and FL EAP45 was significantly higher than that of Gag and
EAP45 constructs with a deleted Glue and H0 domain ( DGDH Fig. 4.11 e and Fig. 4.12
e), confirming the N terminal region of EAP45 is important in interacting with Gag at the
plasma membrane. A higher co-occurrence rate between FL EAP45 and Gag was measured
in HAP1-EAP45 KO cells compared to that in HeLa cells (Fig. 4.12 e and Fig. 4.11 e). This
could be explained by EAP45’s necessary involvement in HIV budding in HAP1 EAP45
KO cells, in which only externally supplemented SNAP-EAP45 is present. In HeLa cells,
endogenously expressed EAP45, which is unlabelled and therefore cannot be detected, could
also function de novo thereby explaining the lower co-occurrence rate measured in HeLa
cells.

The co-occurrence of Gag and EAP45 appears to have a weak dependence on the PTAP
motif in Gag, as its deletion does not significantly reduce the measured co-occurrence
compared to wild type Gag (Fig. 4.11 e). Given that the level of recruitment and dynamics
at the plasma membrane between wild type and DPTAP Gag are similar [35, 34, 45], this
weak dependence could be explained by the recruitment of EAP45 by ALIX via its known
interaction with the ESCRT-I TSG101 protein [46] as a compensatory pathway in the absence
of the PTAP motif.

Altogether, the results from the nearest-neighbour analysis provide the first visual ev-
idence of the spatial association between ESCRT-II and Gag, which strengthens previous
work showing the H0 region in EAP45 is critical for successful viral budding [17] via its
link to ESCRT-I [12, 11]. Fig. 4.15 a shows ESCRT-II’s proposed position in the sequential
ESCRT recruitment sequence by Gag first presented in Fig. 4.1.

The low co-occurrence rate (~1 to 5%) measured between FL EAP45 and Gag (Fig. 4.11
e and Fig. 4.12 e) and ALIX and Gag (Fig. 4.9 c) is similar to the previously reported
co-occurrence rates of other ESCRT components and Gag (1.5 to 3.4%) using dSTORM
[8]. The low co-occurrence observed in our study may to some extent be due to errors in
the centroid estimation after segmentation of the particles. For instance, in regions where
particles were too densely clustered, the centroid of a particle could be wrongly estimated
due to the presence of bright neighbouring particles. This could introduce a bias into the
nearest-neighbour analysis, causing partially overlapping particles to be not counted as
“associated”. The low number of cells in the ALIX experiments (n = 8) was due to a very
low incidence of bright cells in the mCherry-ALIX cell line; it was very difficult to find
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recruitment. (f) Final stage before membrane scission in which the polymerised ESCRT-III
is recruited to the budding neck and acts in combination with VPS4 to achieve membrane
scission and bud egress (g).
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cells which expressed both mCherry-ALIX and GFP-Gag and had bright puncta in both
colour-channels. Similarly, the low fluorescent signal from SNAP-EAP45 and GFP-Gag in
both the HeLa and HAP1 cells made it difficult to find cells which had bright, discernible
signal in both colour channels, resulting in a low number of cells for colocalisation analysis.

4.4.3 Three potential dynamic interactions between EAP45 and Gag
were observed

The measured proximity between EAP45 and Gag in the live imaging experiments could
be indicative of a dynamic interaction between these two proteins at viral assembling sites
(Fig. 4.13 and 4.14). Since the excitation region due to the TIRF illumination was confined
to a thin volume above the coverslip, and the illumination intensity decreases exponentially
outside this region, any motion of the cells or drifting of the sample holder in a direction
perpendicular to the imaging plane had a large effect on the intensity measurements of the Gag
and EAP45 puncta at the membrane. The focus over time was maintained manually, therefore
the position of the focal plane was not maintained deterministically and the intensity of the
puncta fluctuated due to the focusing motion. Therefore, the changes in the intensity of the
puncta over time [7] were not considered a reliable measure of accumulation or recruitment.
Instead, the centre-to-centre distances of Gag and EAP45 puncta were calculated and plotted
(Fig. 4.13) to visualise how the motion of EAP45 changed relative to its proximity to Gag as
way to infer a potential interaction.

For 30% of the total recording time in all ROIs, EAP45 was located within ~100 nm
of Gag. Three potential classes of EAP45 movement relative to Gag were observed (Fig.
4.14 a-c). Based on these preliminary data sets, the possible cases for ESCRT-II’s dynamic
interaction with Gag were illustrated in Fig. 4.15 c-e. However, these data are not sufficient
to predict or infer any mechanistic function of EAP45 during HIV budding. Future studies
are necessary to pinpoint which class of dynamic interaction(s) is necessary and responsible
for forming of infectious virus particles as well as the recruitment kinetics of ESCRT- II in
the context of other ESCRT proteins.

4.5 Future work

Additional studies are necessary to determine the exact interactions of ESCRT-II with
ESCRT-I and -III, and find out the mechanism of sequential recruitment by which ESCRT-II
contributes to viral egress. A sensible follow-up experiment to the work in this Chapter
could explore the spatial co-occurrence of TSG101/EAP45 using the same imaging and
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analysis tools presented here, to corroborate previous biochemical evidence showing the
link between ESCRT-I and -II [12, 11]. In addition, a multi-colour live cell imaging study
with labels for Gag, TSG101, EAP45, and an ESCRT-III protein could be performed to
record the sequential recruitment of Gag and all ESCRTs to the budding site. This would
require a TIRF microscope with an autofocus system to maintain focus at the membrane,
and a scanning stage to image many cells and increase the likelihood of observing ESCRT
recruitment events. Another option would be to use a light-sheet microscope to observe
HIV egress at the membrane in 3D, similarly to the study by Scherer et al. [47] in which
light-sheet is used to examine different stages of herpes simplex virus 1 (HSV-1) replication.
The gentle illumination, large field of view, and optical sectioning capabilities of this imaging
modality could be very beneficial to study the spatiotemporal association of EAP45 with
Gag, TSG101, and ESCRT-III proteins.

To improve on the sensitivity and accuracy of the colocalisation results presented in this
chapter, dual-colour dSTORM could be readily performed using the SNAP-AF647 EAP45,
and an Alexa Fluor 568-conjugated anti-GFP nanobody to tag GFP-Gag. This would allow
us to precisely measure the average interaction distance between EAP45 and Gag using the
dSTORM method described in section 4.2.1, adding to the library of known Gag-ESCRT
interaction distances [7].

To further explore the effect of deleting parts of the EAP45 N-terminus on HIV egress,
the number of succesfully detached viral particles from live infected cells could be quantified.
This could be accomplished by imaging Gag assembly sites with TIRF illumination in live
cells, and artificially detaching the cells using Trypsin > 10 hours post-transfection to only
detect released virus particles. A similar experiment has been reported by Bendjennat and
Saffarian [48] to count virus-like particles attached to the coverslip as a measure of viral
release. Alternatively, a fluorogenic dye which becomes bright only upon contact with a
coverslip coating with a specific pH could be used to label Gag. This would cause only
mature virions which exit the cell to be detected by TIRF illumination, allowing us to quantify
the number of maturing virions in real time.

The challenges in understanding the role of ESCRT-II in HIV budding are numerous.
Concerning the biological work, this involves culturing cells with the necessary constructs for
Gag and ESCRT members, and the reliable fluorescent labelling of the species to be imaged,
among other challenges. Concerning the imaging work, this involves high-throughput
imaging using multiple colour channels both at the diffraction limit and using super resolution,
as well as reliable image analysis methods to avoid false positives during registration,
segmentation, and the co-occurrence analysis. Nonetheless, understanding the mechanistic
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roles of ESCRT-II in HIV budding is important, as further insights into these protein-protein
interactions could help in developing a potential new class of antivirals to treat HIV.

4.6 Conclusion

To conclude, we used a SNAP-tag label to visualise the spatial and temporal co-occurrence
of the ESCRT-II protein EAP45 with the HIV polyprotein Gag in HIV budding. A nearest-
neighbour analysis was developed to study the spatial co-occurrence of Gag and EAP45,
and how it was affected by deleting parts of the putative interacting region between them.
Deletion of the Glue and the H0 domains significantly reduced the co-occurrence between
Gag and EAP45, highlighting the importance of this region in linking to Gag potentially via
its link to ESCRT-I. Single particle tracking was applied to study the temporal co-occurrence
of Gag and EAP45, and a co-moving frame analysis was newly developed to visualise the
simultaneous movement of two particles more easily. EAP45 particles were found to dwell
within 100 nm of Gag for as little as 10 seconds and up to 6 mins, suggesting a potential
transitory association between Gag and EAP45 during viral egress. This study presented the
first visual evidence of the association between ESCRT-II and Gag, and it paves the way for
further experiments to investigate the mechanistic role of ESCRT-II in HIV budding.
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Part II

Imaging at the mesoscale





Chapter 5

Introduction to Optical Projection
Tomography

The first part of this thesis described the implementation of single-molecule imaging and
analysis methods in in vitro models of Parkinson’s Disease and HIV. The second part of
this thesis describes the development of an open-source, low-cost toolkit with which to
image samples at the opposite end of the size spectrum, namely millimetre-scale tissues.
The first chapter introduces the volumetric imaging technique applied in this toolkit, Optical
Projection Tomography (OPT), to image millimetre-scale objects. A general introduction
to volumetric imaging methods and the principles of OPT imaging and reconstruction are
presented, along with previous biological applications and recent technology developments
in OPT. The second chapter describes the development of OptiJ, an OPT system with off-the-
shelf hardware for image acquisition and open-source software for reconstruction. OptiJ was
applied to image dissected mouse lung samples in a proof-of-concept chronic obstructive
pulmonary disease (COPD) study in collaboration with AstraZeneca.

5.1 Volumetric imaging techniques for biological tissue

The three-dimensional imaging of anatomical and functional features in mesoscopic (milli-
to centimetre dimensions) samples provides valuable data for biomedical research. Common
uses of 3D imaging in biomedical research include detecting abnormalities such as tumours in
body parts and tissue samples, as well as recognizing disease phenotypes in model organisms.
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5.1.1 Biomedical tomographic imaging techniques

In medical and clinical applications, whole body 3D imaging techniques such as computed
tomography (CT) [1], which generates 3D reconstructions from 2D images acquired using
x-rays, and magnetic resonance imaging (MRI) [2], which applies strong magnetic fields
to map the location of water and lipids in tissue, are ubiquitous. CT and MRI are routinely
used to visualise morphology in large tissues and organs on the scale of tens of centimetres.
Both of these techniques are non-invasive, non-destructive, and highly effective at measuring
morphological characteristics such as volume, shape, and density of opaque tissue, e.g. skin,
muscle, and bone, in live samples. Micro-CT [3] can achieve micrometre-scale isotropic
resolution [4] using contrast agents [5]. However, the benchtop instrumentation is very
expensive (> £100,000) [6] and the high doses of radiation used make this unsuitable for
repeated experiments on a biological sample, e.g. in longitudinal studies of embryonic
development. Micro-MRI can also achieve micrometre-scale isotropic resolution [7] with
excellent tissue contrast and no ionizing radiation. Similarly, the cost and size of MRI
instruments can be prohibitive for many applications in research labs [7].

5.1.2 3D optical imaging techniques

Radiation in the visible spectrum (400-700 nm) has also been used extensively to image
tissue either in vivo or ex vivo for medical diagnosis or biological research, however it has
historically been limited to small penetration depths on the order of 10 µm. When light travels
through tissue, or any opaque medium, it is attenuated due to both absorption and scattering.
Absorption occurs when the wavelength, or frequency of incoming photons matches the
frequency associated with the medium molecules’ energy transitions, and the photon energy
is absorbed by the medium molecules. Absorption can either result in the emission of a lower
frequency photon, or in energy dissipation in the form of heat, thereby reducing the number
of available photons. Scattering is an elastic interaction between photons and biological
tissue in which a photon is absorbed and re-emitted without energy loss but with a possible
change in direction [8]. Although the changes in direction can be small for single scattering
events, multiple scattering events can lead to a randomisation of the photon propagation
direction [8]. This in turn causes image blur, thereby reducing image resolution. To quantify
the influence of absorption and scattering on the propagation of photons through tissue, a
physical parameter called the mean free path (MFP) is used. The MFP quantifies the average
distance a photon travels between two consecutive scattering events, and it can be expressed
as:
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MFP =
1

µs +µa
(5.1)

where µs and µa are the scattering and absorption coefficients, respectively, which describe the
probability of photon scattering and absorption in tissue per unit path length. For biological
tissue, µs >> µa, therefore the MFP can be approximated by:

MFP =
1
µs

(5.2)

The MFP and its analog for describing multiple scattering events, the transport MFP (TMFP)
are useful standards to compare the tissue penetration capabilities of different optical imaging
techniques. The MFP not only depends on the optical properties of tissue, i.e. highly opaque
tissue such as muscle or skin will scatter strongly, whereas semitransparent tissue such as the
skin of zebrafish will scatter weakly, but also on the wavelength used for imaging. Longer
wavelengths (the near infrared) generally scatter less than shorter wavelengths (UV and the
visible spectrum). A detailed description of the MFP for different imaging techniques can be
found in Ntziachristos’ review [8].

Fluorescence microscopy techniques

Despite being limited in their penetration depth into tissue, 3D light microscopy techniques
address some critical shortcomings of medical tomographic methods described in the previous
section by imaging samples at a smaller scale (tens of micrometres), with higher resolution
(hundreds of nanometres) in 3D, by making use of sectioning to differentiate between objects
separated along the optical axis. These techniques achieve sectioning either by physical
means, such as using a microtome to cut thin tissue slices that can later be examined with a
microscope [9]; or by optical means, which involve the rejection of any out-of-focus signal
to acquire high contrast images of specific focal planes inside a thick sample [10]. In both
cases, these individual slices are computationally combined into a 3D reconstruction of the
sample.

An example of imaging using physical sectioning is High Resolution Episcopic Mi-
croscopy (HREM) [11]. In HREM, a thick tissue sample, up to 5x5x7mm3, is first embedded
in a solid resin block. Images of the block face are captured with a widefield microscope as
the block is sectioned by a microtome. The images of each slice are then stacked together to
generate a 3D reconstruction of the sample [12]. The resultant images are inherently aligned
and therefore require no digital transformations in post-processing, as they are acquired from
the block face. The depth resolution in HREM is determined by the number of sections,
which can be as thin as 1 µm [13], and the lateral resolution is determined by the NA of the
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objective lens used to capture the images, with a value as low as 1 µm previously reported
[13]. HREM requires histological-type sample preparation and is therefore destructive and
cannot be implemented with live samples. Additionally, the instrumentation required is
expensive and not widely available (see Table 5.1).

Imaging using optical sectioning is far more common, and the most widespread and
frequently used technique is Laser Scanning Confocal Microscopy (LSCM). LSCM enables
the high resolution imaging of fluorescently labelled specimens by rejecting out-of-focus
signal from the region of interest using a pinhole in a plane conjugate to the image plane [14].
The image quality and optical sectioning resulting from LSCM depends directly on the size
of the pinhole used. The smaller the pinhole, the better the optical sectioning; however, this
leads to a lower total signal collected which either degrades the signal-to-noise ratio, or results
in long per-pixel dwell times. The larger the pinhole, the higher the resulting image contrast
but both the lateral resolution and the optical sectioning deteriorate. Furthermore, since the
acquisition process involves raster-scanning a laser spot across the sample at different focal
planes, LSCM is slow, prone to causing photobleaching (elimination of a dye’s ability to
emit photons), and is typically limited to thicknesses of up to 100 micrometres [15].

To address the speed and photobleaching issues in LSCM, Selective Plane Illumination
Microscopy (SPIM) [16] is an alternative fluorescence microscopy technique with optical
sectioning. SPIM can generate high resolution 3D data from biological specimens up to
a few millimetres in size, non-invasively. Optical sectioning is achieved by illuminating
the sample with a thin sheet of light generated by a cylindrical lens or by a set of dithering
mirrors [17], such that only fluorescence from this thin section is recorded on the detector.
3D images are then generated by scanning the sample laterally through the light sheet and
imaging the fluorescent emission from the excited region in an orthogonal direction to the
propagation of the illumination. The lateral resolution in SPIM is limited by the NA of
the imaging objective, and the axial resolution is determined by the thickness of the light
sheet. When using Gaussian beams to generate the light sheet, diffraction determines how
thin the sheet can be, and as such, there is a trade-off between light sheet thickness and
sample size. A larger sample requires either a thicker light sheet, which reduces the axial
resolution, or additional scanning through the sample, which increases acquisition times.
This trade-off has been addressed by using swept Bessel beams in the lattice light sheet
design [18] or by the elegant field synthesis theorem to generate scanned light sheets [19],
although both methods have been optimized to image groups of cells at high-resolution
rather than large tissues. Moreover, both methods require beam-shaping elements, such as a
spatial light modulator (SLM) to generate their light sheets, adding complexity and cost to
their design. The penetration depth of SPIM is fundamentally limited by scattering, which



5.1 Volumetric imaging techniques for biological tissue 155

can be partially overcome by introducing additional excitation and detection optics [20].
This also increases the complexity and cost of implementation for imaging large and thick
samples. An open-source implementation of SPIM, the mesoSPIM, uses tunable lenses to
scan the thinnest portion of the light sheet across the sample and stitches the resulting images,
allowing centimetre-scale samples to be scanned with near isotropic resolution [21]. The
mesoSPIM is expensive (> £100,000), requires technical expertise to build and operate, and
only 10 systems exist worldwide (https://mesospim.org/). Both LSCM and SPIM work by
exciting fluorescent molecules with a focused laser beam; therefore, neither technique can
detect signals from unlabelled tissue surrounding the fluorescent area.

Hybrid imaging techniques

Two alternative optical imaging techniques which employ hybrid modalities to achieve much
larger penetration depths, from a few millimetres up to centimetres, are Optical Coherence
Tomography (OCT) and Photoacoustic Imaging (PAI).

OCT is a hybrid between light microscopy and tomographic techniques which allows
non-invasive cross-sectional imaging of in-vivo biological samples by using low-coherence
interferometry with gentle illumination in the near infrared [22]. In OCT, a fibre optic
Michelson interferometer is used to illuminate the sample using near-infrared light (~1300
nm) and collect the reflected light from tissue, which is then combined with the reflection
from the reference mirror. An interference signal is only detected when the group delay of
the sample and the reference arm are almost matched (close to equal time-of-flight), and this
signal falls off steeply with the delay mismatch due to the low-coherence nature of the light
source. This allows the longitudinal location of the reflected tissue signal to be detected with
high resolution. Volumetric images can then be built up after collecting neighbouring depth
scans of the sample. OCT allows for lateral resolutions of 10-20 µm and axial resolution
of ~7 µm [23], however it only permits a limited penetration depth (1-3 mm) [23] due to
strong absorption and scattering events beyond this length. This technique is routinely
used for retinal imaging in both clinical and research settings. Its limited penetration depth
makes it unsuitable for whole organism imaging except in the very early stages of embryonic
development [24].

PAI is a hybrid between optical and ultrasound imaging in which tissue is irradiated
with short (nanosecond) laser pulses either in the visible or the NIR, leading to absorption
by chromophores (e.g. water, lipids, haemoglobin, etc.) or exogenous contrast agents
[25]. The absorbed radiation is rapidly dissipated in the form of heat, which creates a
pressure differential that results in the emission of broadband, low-amplitude acoustic waves.
These acoustic waves propagate to the sample surface, where they can be detected using

https://mesospim.org/
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ultrasound transducers and can be used to reconstruct a 3D map of the absorbed optical
energy distribution[26]. Unlike in traditional ultrasound, in which image contrast depends
on the mechanical properties of tissue, in PAI contrast depends on the optical absorption
properties of tissue. Since differences in optical absorption between different tissues are often
much larger than those in mechanical properties, PAI offers greater specificity than traditional
ultrasound to differentiate different types of tissue [27]. PAI can achieve imaging depths
of several centimetres when operating in the NIR window (620-950 nm), with resolution
of a few hundred micrometres, although higher resolution can be achieved by reducing the
imaging depth. This technique has been primarily applied in cancer research, as it is useful
for tumour detection [28] and assessment of therapeutics against cancer progression [29],
among other uses.

Applicability to living systems

The techniques introduced above have varying compatibilities with live organism imaging.
Medical tomography techniques such as CT and MRI are routinely used to image whole
live animal and human bodies. Although exogenous contrast agents can be used to improve
image contrast, these are not required, and both techniques can image dense tissue non-
invasively. Fluorescence microscopy techniques can image live cells and small, semi-
transparent organisms such as fruit fly embryos, zebrafish embryos, or C. elegans, however
for imaging thicker samples (> 100 µm) such as brain or lung tissue, optical clearing is
required to reduce the influence of scattering on image quality. Optical clearing is a chemical
process in organic solvents are used to make biological tissue transparent by matching the
refractive index of the tissue layers to that of the solvent [30, 31, 32]. For clearing, tissue is
first fixed to hold the proteins of interest in place, and delipidised to reduce scattering. The
fixed tissue is then dehydrated, as the refractive index of water is significantly lower than that
of cellular structures with proteins and lipids. Following dehydration, the tissue is immersed
in an organic solvent, such as a solution containing benzyl alcohol and benzyl benzoate
(BABB), which chemically matches the refractive index of the remaining tissue structures
with the solvent. This results in the sample being effectively transparent, such that incoming
photons can excite fluorescent emitters deep within the sample, and the emitted fluorescence
can reach the detector [32]. Clearing is a highly destructive process; therefore, it cannot be
performed with live samples. For more information on different tissue clearing protocols and
the underlying chemistry of the process, Tainaka et al. [33] offer a comprehensive review.
OCT and PAI, on the other hand, use laser excitation in the NIR, where light toxicity is low
and penetration depth is highest for biological tissue, and can therefore be used in living
samples. OCT is routinely used to image cross-sectional slices of retinas in live animal and
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human eyes [23]. PAI can achieve even higher penetration depths in dense tissue than OCT,
as the acoustic signal collected scatters ~1000 times less than visible light and can therefore
propagate longer distances in tissue with minimal attenuation [27]. PAI has been used to
image tissue both in live small organisms [29, 34, 35, 36, 37], and in humans [27, 38].

In summary, the medical tomography techniques (micro-CT and micro-MRI) introduced
above can visualise morphology in large samples (tens of centimetres) with micrometre-level
resolution and are therefore useful for whole-body imaging, however they are prohibitively
expensive for most research labs and cannot match the high resolution and specificity available
to fluorescence microscopy. 3D fluorescence microscopy techniques (LSCM, SPIM) can
visualise features at sub-micrometre resolution, but they cannot image samples thicker than
a few hundred micrometres due to tissue scattering. The penetration depth of fluorescence
microscopy can be extended by optically clearing the sample, which can only be done with
inert, fixed tissue. HREM can handle larger specimens than LCSM and SPIM (5x5x5 mm3)
with similar resolution, however its sample preparation protocol is complicated, invasive, and
destructive. OCT can also achieve micrometre-level isotropic resolution, with penetration
depths in the range of 1-3 mm, whereas PAI can achieve penetration depths of centimetres, at
a resolution of a few hundred micrometres. Table 5.1 below shows a summarising comparison
of the techniques introduced above.

5.1.3 Optical Projection Tomography

A bridging technique between the tomographic and microscopy techniques presented above
which can both examine morphological features and use fluorescence labelling in a sample is
Optical Projection Tomography (OPT). OPT was first proposed by Sharpe et al. in 2002 [42];
it is a 3D imaging technique designed for transparent mesoscopic samples which enables the
visualization of micrometre-scale features. OPT addresses the sample scale gap between the
tomographic techniques (samples > 20-30 mm), and light microscopy techniques (samples <
1 mm), to image biological samples in the 1-20 mm regime.

OPT is based on computerized tomography techniques [43] in which 2D images, called
projections, are acquired at different sample orientations, and then used to obtain a 3D
volume of the sample using a reconstruction algorithm, such as filtered-back projection
(FBP). Sample clearing [33] is often necessary to allow light propagation and imaging
through the thickness of the sample. OPT can operate using either fluorescence (emission
OPT, eOPT [42]), or absorption/scattering of the sample (transmission OPT, tOPT [42])
to generate image contrast. In eOPT, a fluorescent sample is excited using a wide-field
illumination source. The photons emitted by a fluorophore of interest are collected by a
detector with an appropriate filter to reject the incident illumination. In tOPT, a source directs



158 Introduction to Optical Projection Tomography

Table 5.1 Comparison of volumetric imaging techniques.

Method Sample size (width · height ·
depth)

Resolution Live Cost (£) Comments
& Source

micro-CT 140 x 88 x 140 mm3* ~45 µm isotropic Yes > 100K Bruker
SkyScan2214

micro-MRI 160 x 72 x 160 mm3* ~60-120 µm
(isotropic)

Yes > 100K Bruker
PharmaScan
7T

HREM 5 x 5 x 7 mm3 ~1-5 µm (isotropic) No > 100K Chapter 3,
Geyer et al.
2017 [13]

LSCM 160 x 110 x 0.28 mm3 (with a
scanning stage), 135 x 135 x
280 µm3 (still), depth up to 5
mm for cleared sample

~240 µm (lateral),
~700 nm (axial)

Yes > 100K Zeiss
LSM980

SPIM
(home built)

1 x 1 x 1 mm3 ~1 µm (lateral), ~6
µm (axial)

Yes < 100K Power and
Huisken
2017 [39]

SPIM (com-
mercial)

10 x 10 x 20 mm3 (cleared
sample)

~1.8 µm (lateral), ~7
µm (axial)

Yes > 100K Zeiss
Lightsheet 7

OCT 12 x 9 x 3 mm3 ~10-20 µm (lateral),
~7 µm (axial)

Yes > 50K Chapter 3,
Aumann et al.
2019 [23]

PAI 15 x 15 x 3 cm3 (large FOV,
commercial), 1 x 1 x 3 mm3

(small FOV)

large FOV: ~150 µm
(isotropic), small
FOV: ~45-120 µm
(lateral), ~15 µm
(axial)

Yes ~470K Binte et al.
2019 [27],
iThera
MSOT
inVision 128

macro-OPT 60 x 45 x 45 mm3 (cleared
sample)

~50 µm** No < 5K Lee et al.
2017 [40]

OptiJ (this
thesis)

8 x 8 x 13 mm3 (cleared
sample)

~50 µm** No < 5K Vallejo
Ramirez et al.
2019 [41]

* Max sample diameter is determined by bore size; ** Resolution in OPT is spatially variant, and is discussed
in Section 5.3.2.
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quasi-collimated, uniform illumination onto the sample, as shown in Fig. 5.1. The intensity
collected at the camera is a function of the amount of light absorbed by the sample. In other
words, the image recorded by the detector is a projection of the attenuated radiation that
traverses the sample. These two modalities can work together to display fluorescent signals
in the context of the whole sample. The comparison between two OPT implementations,
macro-OPT [40] and OptiJ [41], the latter of which is presented in Chapter 6 of this thesis, is
shown in Table 5.1.

Collimated
Light

Rotation stage

Detector

Thick,
transparent
sample

Axis of rotation

DOF

Focal plane

Optical
axis

c

Objective
lens

b

a

Fluorescent
source

Sample DetectorLens

White
light
source

x

zy

φ

Fig. 5.1 (a) Schematic of a general OPT setup. The sample is embedded in a clear, solid
medium and only rotated, not translated, as sequential projections are acquired on a fixed
detector. Collimated light which is transmitted through the sample is collected by an objective
lens and focused onto a detector. (b) Top view of the schematic in (a) showing the illumination
path for eOPT with a fluorescent source, and tOPT with a white light source. (c) The focal
plane of the objective lens is placed halfway between the axis of rotation and the front of
the sample. The NA of the lens, represented here by the half angle of the imaging cone j ,
is small such that the depth of field is sufficiently large to span the front half of the sample.
This ensures at least one half of the sample will always be in focus at the detector.
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5.2 Principles of Optical Projection Tomography

This section provides an explanation of the working principles behind OPT and a brief
overview of the mathematical basis of tomographic reconstructions. Artefacts resulting from
the reconstruction process that affect image quality are discussed, as well as strategies with
which to mitigate their effects. There will also be an overview of studies carried out by
different research groups on optimizing the acquisition speed, reconstruction resolution, and
reconstruction speed for OPT, along with some interesting biological applications.

5.2.1 Overview of OPT working principle

OPT uses a finite conjugate imaging system with an objective lens and a detector – similar to
a microscope— which means detected ray bundles have a finite angular spread as shown in
Fig. 5.1 b and c. This angular spread defines the depth of field (DOF), which is the acceptable
movement range of the detector or the object along the optical axis such that a small enough
blur is produced in the recorded image. For objectives requiring a large DOF, the angular
spread of a ray bundle will be small. Therefore, the light rays collected at the detector will
approximate parallel lines through the sample. This approximation only works when the
sample volume is within the DOF of the imaging system. The DOF is labelled in Fig. 5.1
c for a set of ray bundles traversing a horizontal cross-section of the sample. There is an
important trade-off between imaging resolution and DOF, i.e. between the smallest features
which can be detected and the thickness of the sample that can be imaged. This trade off can
be seen directly from the equations relating the NA of the objective lens to the resolution of
the system by the Abbe limit [44] for incoherent imaging:

Dx =
l

2NA
(5.3)

and to the DOF:

DOF =
2l

NA2 (5.4)

where Dx is the transverse size of the smallest feature that can be resolved in the sample
and l is the wavelength of the light. As the NA increases (Dx becomes smaller), the DOF
decreases, and subsequently the point spread function (PSF) invariance decreases along the
optical axis. It is common practice in OPT systems to balance this trade-off by locating the
focal plane a quarter of the way into the sample such that the DOF covers the front half of
the sample [45], as shown in Fig. 5.1 c. In this way, the whole extent of the sample will be
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imaged in focus through a full rotation. This also means every projection will contain an
out-of-focus contribution from the second half of the sample.

In tOPT, rays originating from the illumination source are collimated by a lens and
travel through the sample, scattering or attenuating as they traverse the volume and reach
the detector. This modality is similar to conventional x-ray CT, in which non-diffracting
beams travel through the sample in straight lines to reach the detector. For OPT, light rays do
indeed diffract, however the sample features intended to be resolved are much larger than
the wavelength of the light (tens of micrometres) and therefore diffraction is not dominant.
In eOPT, the light sources are the fluorescent emission regions inside the sample that emit
incoherent photons in all directions, some of which are focused onto the detector. The
image formation process in OPT is incoherent, either with light transmission in tOPT or with
fluorescence emission in eOPT. In addition to having ray bundles with a small angular extent
by limiting the NA of the objective lens, a telecentric lens can be used in both tOPT and
eOPT to capture photons travelling approximately parallel to the axis, such that their path
approximates straight lines. This approximation allows the use of the same equations for
reconstruction of traditional x-ray tomography images to be used in both tOPT and eOPT. The
following section will describe the most commonly used reconstruction method, filtered back-
projection (FBP), as it is also the method used to reconstruct the tomographic data presented
in Chapter 6. Other reconstruction techniques using iterative methods, convolutional neural
networks, or deconvolution will be briefly mentioned in section 5.3.

Reconstruction via filtered back-projection

The reconstruction of the cross-sectional slices of an object from its projections is analogous
to solving the inverse problem of determining the shape of an object using its shadows when
illuminated at different angles. In the case of OPT, orthographic projections are used to
reconstruct cross-sectional slices of a sample, which can be stacked up to recover the 3D
volume of the sample. FBP is the most common algorithm used to achieve this reconstruction.
This section describes the principles behind FBP and its implementation.

In OPT, if the axis of rotation of the sample is parallel to the imaging plane of the camera,
then a single horizontal slice from the object will map directly onto a single row of pixels for
every angle through a full rotation . Projections are then intensity profiles for a given angle
of rotation q , essentially a collection of line integrals for a constant q . These line integrals
represent the total attenuation experienced by an illumination ray as it travels through the
object. Mathematically, a projection for an object f (x,y) can be expressed as

P(I,q) =
Z •

�•

Z •

�•
f (x,y)d (xcosq + ysinq � I)dxdy (5.5)
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where P(I,q) is known as the Radon transform of the function f (x,y) [43], as illustrated
in Fig. 5.2 a, and d (xcosq + ysinq � I) defines a set of parallel lines (representing rays)
normal to the detection plane. The plot of the Radon transform data is known as a sinogram,
since the Radon transform of an off-center point source is a sinusoid. To create a sinogram,
every pixel row corresponding to the same horizontal 2D plane in the sample is grouped
vertically as a function of angular step, as shown in Fig. 5.2 b. This results in a plot of
n projection slices with c pixels stacked adjacent along the horizontal axis, where c is the
number of original pixel columns in the detected image.

y
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P(I,ϴ)
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c
nn
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c

Raw projections
(r ∙ c ∙ n)

Sinogram
(c ∙ n ∙ r)Source

Detector

x

a b

Fig. 5.2 Schematic illustrating the Radon transform operation. (a) Orthographic projections
of an object are obtained at the Detector by collecting parallel rays that are attenuated as they
traverse through the object. (b) Schematic of the permutation operation to create a sinogram.
From the stack of n raw projections with dimensions r⇥ c (corresponding to the height and
width of the detector in pixels), every row in the stack that corresponds to the respective
horizontal plane in the sample (horizontal dark grey bars) is grouped vertically as a function
of angular step. This results in a plot of n projection slices with c pixel rows stacked one
next to the other along the horizontal axis (dark grey bars). The output is then a stack of r
images with dimensions c⇥n, in which each slice represents a sinogram corresponding to
one horizontal 2D plane in the sample.

In practice, a finite set of n projections are acquired over a full rotation with an angular
step given by

Dqn =
360°

n
(5.6)

such that a given row in a projection contains information from a single horizontal 2D plane
at the corresponding angle of projection. The recovery of the cross-sectional slices of the
object from its projections using FBP is possible due to the Fourier Slice Theorem.
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Fourier slice theorem as a basis for reconstructions

The Fourier Slice Theorem is a fundamental concept in the reconstruction of tomography
data, as it relates the one-dimensional Fourier transform of a projection of an object function
f (x,y), to the two-dimensional Fourier transform of f (x,y) which we will define here as
F(u,v), where u,v are the frequency domain variables corresponding to the space domain
variables x,y. The Theorem states that the Fourier transform of a projection, which is the line
integral of the attenuation profile at an angle q , is equal to a slice through the 2D Fourier
transform of the original object at the same angle q through the origin (from Kak and Slaney,
Ch. 3 p.56 [43]). Therefore, by collecting a set of projections P(I,q), their individual 1-D
Fourier transforms can be assembled together to fill the uv-plane (frequency domain) with
radial slices that can then be inverse Fourier transformed to recover the original shape of the
object. The Fourier Slice theorem is illustrated in Fig. 5.3. Kak and Slaney, Ch.3, p.63 [43]
provide a thorough explanation of the Fourier Slice Theorem.

Space domain

Object f(x,y) 2D Fourier transform F(u,v) of Object

Frequency domain

FT(P)

FT(f)= F(u,v)
u

b vy

ϴ ϴ

Object f(x,y)

P(I,ϴ)

Source

Detector
Projection

x

a

Fig. 5.3 Illustration of the Fourier Slice Theorem, which relates the 1D Fourier transform
of a projection to a slice in the 2D Fourier transform of the original object. (a) Projection
obtained at angle q from the Object f (x,y), which is a line integral of the attenuation profile
of the illumination rays through the sample. The 1D Fourier transform of the projection is
equivalent to a radial slice at the same angle q through the 2D Fourier transform F(u,v) of the
Object f (x,y), as shown in (b), where u,v are the frequency domain variables corresponding
to space domain variables x,y. That is, the Fourier transform of P(I,q) gives the values of
F(u,v) along the dashed line in the u,v plane.

In other words, a 2D reconstruction of an object can be obtained by acquiring projections
over a full rotation, taking the 1-D Fourier transform of each projection, using the Fourier
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Slice Theorem to assemble them in the correct order in frequency space, and inverting the as-
sembled points from the frequency domain back to the space domain. The 2D reconstructions
obtained for each cross-sectional slice of an object can then be stacked up to recreate a 3D
volume of the object. In practice, since only a finite number of projections are acquired, the
assembly of 1D Fourier transforms of projections as radial slices into the uv-plane requires
interpolation steps prior to performing an inverse Fourier transform to recover the object
shape. This process is computationally intensive and may lead to unstable solutions, as
stipulated by Rosenfeld and Kak, Ch. 8 p.367 [46]. Instead, most tomography applications
implement a very accurate and fast algorithm for reconstruction: filtered back-projection.

Filtered back-projection

Before exploring the two main steps in FBP, a conceptual explanation can be put forth from
the premise that each projection acquired represents an almost independent measurement
of the object. This is apparent in the frequency domain following from the Fourier Slice
Theorem, since the only common information in the Fourier transforms of two projections at
different angles is the DC term [43]. The generation of a single projection can be thought of
as a 2D filtering operation, since the Fourier Slice Theorem states that you can multiply by a
line through frequency space to get a 2D projection, which is the equivalent to convolving
by the FFT of a line. As a result, a distorted reconstruction can be produced by assuming
all other projections are zero, positioning the values of the Fourier transform of the single
projection in their respective place in the object’s 2D transform, and performing an inverse
Fourier transform. This procedure is equivalent to multiplying the original Fourier transform
of the object by a line filter at the same angle with the coordinate axes as the projection ([43]
Ch.3 pp.60-62), and it is illustrated in Fig. 5.4 a.

A simulation was performed in Matlab in which the Fourier transform of the 2D Shepp-
Logan phantom [47], a standard test image for image reconstruction algorithms, was mul-
tiplied by a horizontal line filter in frequency space, and then inverse Fourier transformed
to recover a distorted smear of the object (Fig. 5.4 a). The result of this operation was
compared to a standard FBP reconstruction using the Matlab function iradon with only the
first projection (q = 0) of the Shepp-Logan phantom (Fig. 5.4 b). The results of these two
operations in the right-most top and bottom row are very similar, save for the differences in
contrast due to the discrete Fourier transform procedure for the top-row operation, and the
extra filtering step performed during FBP in the bottom-row. This simulation demonstrates
the conceptual explanation for FBP, and now we can consider the main steps involved in this
reconstruction algorithm.
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Fig. 5.4 The measurement of a single projection can be understood as a 2D filtering operation.
The Shepp-Logan phantom is used to demonstrate how both the FBP reconstruction from a
single projection (a) is analogous to multiplying the original Fourier transform of the object
by a line filter at the same angle with the coordinate axes as the projection (b). This simulation
was performed using the script part2Ch4_FBP_simulations.m, which can be found in the
code repository for this thesis https://github.com/pedropabloVR/supplementary-code-thesis.

https://github.com/pedropabloVR/supplementary-code-thesis
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FBP consists of two parts: a filtering operation, which involves a weighting of each
projection in the frequency domain to avoid oversampling of the low spatial frequency
information, and a back-projection part, which involves a summation of the inverse Fourier
transforms of the weighted projections in the object space domain. The effect of the filtering
step is illustrated in Fig. 5.5, in which a back-projection of the Shepp-Logan phantom is
shown with and without filtering. Filters in both FBP for OPT and traditional x-ray CT seek
to accomplish the same goal: to accentuate high-spatial frequency features and mitigate the
effect of pixel "smearing" during back-projection. In the noiseless case, the ramp filter (Ram-
Lak [48]) ideally compensates for the oversampling of the slices near the axis of rotation
and yields a high-quality reconstruction. In practice, real tomography data has noise, and
thereby any high-pass filter will also accentuate the noise components in the reconstruction.
The ramp filter is sensitive to noise; therefore, it can be multiplied by a sinc function
(Shepp-Logan filter) or a Hamming window (Hamming filter) to reduce accentuation of
high-frequency noise. In principle, OPT and CT can use the same filters for FBP. In practice,
however, modern CT systems use iterative reconstruction (IR) methods instead of FBP, which
either iteratively try different filters to reduce noise in image space after back-projection, or
iteratively cycle between forward and back projections until a continuously-updated filter
attenuates the noise under a given threshold [49]. OPT systems still largely use FBP and
common filters (Shepp-Logan, Hamming, etc.), however new reconstruction methods which
reduce noise have recently been reported and will be discussed in Section 5.3.

a b

Fig. 5.5 Reconstruction of the Shepp-Logan phantom with back-projection over 256 angles
without (a) and with (b) a ramp filter.
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The latter step is known as back-projection because it can be thought of as “smearing”
each of the acquired projections back through the image plane to reconstruct the image of
the object, as shown in the first image panel of Fig. 5.6 a.

ϴ1
ϴ2

ϴ5

5 angles

16 projections

FBP "smears" the filtered projections back through
object space to generate reconstructions

a

b

256 projections

10 angles

10 angles

16 angles

64 angles 256 angles

Fig. 5.6 OPT reconstruction via FBP can be visualised as smearing the filtered projections
back through the image plane. (a) Image panels show different junctures in the FBP recon-
struction of a Shepp-Logan phantom using 16 projections. Junctures for 5, 10, and the full 16
angles are shown. The first panel illustrates how the projection data for each qn orientation
are sequentially added back onto the image plane in order to recover a faithful image of
the original object, similar to smearing the projection values across the image plane.(b)
Reconstruction using 256 projections with junctures at 10, 64, and the full 256 angles to
demonstrate how a larger number of projections leads to better quality images. This simula-
tion was performed using the script part2Ch4_FBP_simulations.m, which can be found in the
code repository for this thesis https://github.com/pedropabloVR/supplementary-code-thesis.

Mathematically, the filtering and back-projection steps can be expressed as:

https://github.com/pedropabloVR/supplementary-code-thesis
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1. Filtering in frequency space by multiplying the Fourier transform of each projection
by an appropriate filter (e.g. Ramp, Shepp-Logan, or Hamming):

f f ilt(x,y) = FT{P(I,qn)} ·H(w) (5.7)

where P(I,qn) is a projection for angle qn and H(w) is a ramp filter in frequency space,
with w having units of spatial frequency. w is related to the u,v plane (Fig. 5.3 and 5.4)
by u = wcosq and v = wsinq (Kak and Slaney, Ch.3, p.63 [43]).

2. Performing back-projection over the full rotation of the sample:

R f bp(x,y) =
Z 2p

0
f 0 f ilt(xcosq + ysinq ,q)dq (5.8)

where f 0 is the inverse Fourier transformed filtered projection data and R f bp is the
back-projected image (Kak and Slaney, Ch.3, p.63 [43]).

Since the data are only sampled at intervals of n, which leads to discrete sampling of
the Fourier space representation of the object by the Fourier Slice Theorem, an additional
interpolation step is needed before back-projection [43]. A complete explanation of FBP can
be found in Chapter 3 of Kak and Slaney [43], along with rigorous derivations and proofs of
the mathematics of tomographic reconstruction. Now that a description for the reconstruction
procedure for tomographic data has been introduced, the practical shortcomings and resulting
artefacts from this reconstruction procedure will be discussed.

Artefacts during reconstructions

OPT reconstructions often suffer from artefacts which degrade image quality and distort the
resulting cross-sectional slices of the sample. The most common reconstructions artefacts
and their cause will be briefly discussed here, along with strategies to mitigate their effects.

For OPT imaging of large mesoscopic samples, in the range of tens of millimetres,
uniform illumination can be a challenge. Uneven illumination, due to an intensity fall-off
at the edges of the field from the collimated light source, can lead to shadowing and dark
corners in the tOPT projections. The Beer-Lambert Law [50] can be used to correct for
uneven illumination artefacts; each projection is normalised by a low-noise estimate of the
illumination profile obtained by averaging a set of calibration brightfield images acquired
without a sample [41]. An example of this correction will be shown in the following chapter,
as part of the open-source software developed. For eOPT, uneven illumination results in
reduced fluorescence excitation (and therefore less signal being collected) away from the
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illumination’s optical axis, such that features in off-axis positions are dimmer than features
close to the axis. This can be addressed using oversized optics to collimate the light source
such that the dark corners fall outside the field of view [41], at the cost of reduced throughput.

Due to the radial nature of the acquisition process, correlated noise within the detector
can also cause artefacts in the reconstructions. Sensor blemishes such as “hot” pixels, which
appear completely white (pixels with a high dark current, often in an uncooled detector),
and “dead” pixels, which appear completely dark, can cause concentric ring artefacts in OPT
reconstructions, such as those shown in Fig. 5.7 c and d. These blemishes can also be easily
detected in the sinogram for the projections, as they appear as solid black or white lines
as shown in Fig. 5.7 b. These artefacts can be corrected for by replacing the intensity of
the bad pixels by the mean of its 8 neighbours, or another similar interpolation procedure
[51]. Alternatively, a cooled sensor may be used to mitigate the occurrence of these sensor
blemishes.

An incorrect estimation of the axis of rotation during reconstruction can lead to halo-like
artefacts in the reconstructed cross-sectional slices (Fig. 5.8 b and c). If the position of
the axis of rotation of the sample is not well calibrated prior to acquisition, then it must
be estimated during the reconstruction to mitigate the effects of its misalignment. Users
can make an educated guess of the position of the rotational axis during reconstruction
of a sinogram and refine their guess by choosing the highest quality image, subsequently
reconstructing the sinogram many times until the best reconstruction is found empirically.
This iterative process is time-consuming, and becomes infeasible for large data sets, therefore
two computational approaches are available: Walls et al. [51] use an autofocus-style measure
in which a set of images is reconstructed with a range of positions for the axis of rotation, and
the global variance in pixel grey-levels is calculated for each reconstruction. The resulting
image with the highest variance (least blurring) is the closest to the ideal reconstruction.
Vallejo-Ramirez et al. [41] fit the trajectory of a fiducial glass bead embedded close to the
sample to determine the position of the axis of rotation, and to measure how misaligned it
is from the ideal position perpendicular to the optical axis and parallel to the plane of the
camera. The advantage of Walls et al.’s image variance method [51] is that it does not require
a fiducial marker in the sample, which makes sample preparation easier and allows more of
the field of view to be used for the sample, however reconstructions are more time-consuming,
as each slice is reconstructed multiple times. The glass bead method adds a step to the sample
preparation method, however the estimation of the axis of rotation position can be used for
the entire sample so it does not lengthen reconstruction times.

This subsection described the most prevalent artefacts found in OPT reconstructions.
A more comprehensive explanation of artefacts in OPT reconstructions can be found in
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a

c

b

d

Fig. 5.7 Hot or dead pixels on the sensor cause ring artefacts in the reconstructions. (a) A
projection of a murine lung with an artificially induced dead (red arrowhead in red box) and
hot (yellow arrowhead in yellow box) pixel to simulate the effect of detector imperfections
on the reconstructions. (b) The sinogram corresponding to the horizontal row of pixels
containing the “bad” pixel will exhibit a solid black (red arrow) or solid white (yellow arrow)
line through it, as the location of the pixel does not vary as the sample rotates. When the
sinogram undergoes FBP, this “bad” pixel results in a ring artefact in the sample, almost
identical for the case of the dead (c) and the hot (d) pixel. The images were reconstructed in
ImageJ using the OptiJ plugins [41].
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a b c

Fig. 5.8 An incorrect estimation of the sample’s axis of rotation during sinogram reconstruc-
tion leads to halo-like artefacts. A murine lung sample from the freely-available Vallejo-
Ramirez et al. [41] data set is reconstructed with a correct estimate of its rotational axis (a),
an incorrect estimation by 4 pixels (b) and 8 pixels (c) to demonstrate the degradation of
image quality as the error increases.

Walls et al. [51]. These artefacts and other shortcomings of OPT, such as long acquisition
times, small fields of view, and low resolution have been addressed by multiple groups
[52, 53, 54, 55, 56, 57, 58, 59, 60] in an effort to scan larger volumes faster and with better
resolution; some of these advances are described in the next section.

5.3 Advances in OPT

Since the first OPT publication by Sharpe et al. [42], there have been several efforts to apply
OPT to many samples beyond mouse embryos, and to improve technological aspects of the
technique in terms of resolution, acquisition speed, and image processing and reconstruction.
A few of these efforts from other groups are briefly described in this section.

5.3.1 Acquisition time reduction and compressed sensing

The acquisition of a sufficient number of projections to produce a high-quality reconstruction
in OPT, as well as the camera acquisition times required to capture the fluorescent signal
specifically in eOPT can be time consuming and therefore inadequate for high-throughput
imaging applications, or in-vivo samples. This is problematic, since one of the most exciting
applications of OPT in its early days was its application in characterising morphological
phenotypes in large knockout lines of mouse embryos for the International Mouse Pheno-
typing Consortium [61]. It is tempting to acquire fewer projections in order to reduce the
acquisition time, however this introduces streaking artefacts during reconstruction via FBP,
such as those present in Fig. 5.6 which only used 16 projections of the Shepp-Logan phantom
for reconstruction.
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One approach to minimize these streak artefacts involves using an experimentally deter-
mined modulation transfer function (MTF) mask for filtering during back-projection. This
was reported to produce high-quality reconstructions with only 90 projections (a quarter
of the acquisition time compared to traditional filtered back-projection) [53]. A different
approach uses compressed sensing, a method to reconstruct a significantly under sampled
signal, to reconstruct sparse OPT data sets without compromising image quality [54]. This
implementation uses an iterative reconstruction method based on the well-documented TwiST
algorithm [62] to solve the inverse problem of finding an object from a sparse number of
projections. As few as 30 projections acquired in a few seconds were used to produce
reconstructions with comparable quality to those of a much more densely sampled data set
with 800 projections using FBP. Reducing acquisition times in OPT allows researchers to
perform longitudinal studies on embryos during early development stages, decreases the
probability of sample motion during acquisition for in-vivo experiments, and reduces the light
dose to avoid phototoxicity and photobleaching of fluorescent proteins in the sample. This
reduction in acquisition time allowed by compressed sensing comes at the cost of increased
computation time, as iterative algorithms for compressed sensing could take over an hour
compared to a few minutes for FBP with GPU acceleration [55].

5.3.2 Resolution improvement

In OPT, the resolution in the reconstructions depends on: the imaging resolution dictated by
the NA of the objective lens used to acquire the projections; the pixel size which determines
the thickness of the cross-sectional slices used to reconstruct the object; and the number of
projections acquired, since an inadequate number of projections leads to image artefacts and
reduces image quality. Furthermore, the residual invariance in the transfer function caused
by the NA of the objective lens yields a spatially-variant post-reconstruction resolution, with
components both in the radial direction from the rotational axis of the sample, and in the
tangential direction from each radial position [57]. This is a result of the discrepancy between
the straight-line geometry for projection acquisitions required by FBP, as is the case in X-ray
CT, and the Gaussian-shaped ray bundle in OPT, which causes blurring on features separated
from the focal plane. This blurring is manifested as a deterioration of the radial resolution
with increased radius in the reconstructions.

Several approaches exist to improve the resolution in OPT, both during acquisition and
post-processing. From the hardware perspective, to maximise the resolution during the
acquisition of projections, a high NA lens can be used by limiting the imaging volume to less
than a few millimetres, or an electrically tunable liquid lens can be used to scan the focal
plane across the sample with a high NA while maintaining an effective depth of field covering
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the first half of the sample with large volumes [52]. In post-processing, a deconvolution
approach has been proposed which uses a spatially-varying PSF model as a function of
the properties of the imaging optics which successfully recovers isotropic resolution in the
reconstruction of a zebrafish [57]. This approach is advantageous, as the experimental PSF
of the imaging system will vary significantly as a function of the field aberrations within the
imaging volume. Whereas deconvolution with an invariant PSF is computationally simpler,
this approximation can only be used when imaging small regions close to the optical axis. In
the case of millimetre scale samples in OPT, the PSF will have contributions from both axial
and transverse components which degrade the PSF shape away from the axis. A more recent
approach uses a stretched Gaussian beam model to account for the discrepancy between
ray geometry in x-ray CT and tOPT, and demonstrate higher contrast using their iterative
reconstruction method compared to standard FBP for a non-sparse data set of a zebrafish
head [58]. A novel method was also recently reported on the use of convolutional neural
networks (CNNs) to produce streak-free reconstructions of under-sampled OPT data, faster
and with fewer projections than in compressed sensing approaches. The CNN was trained
with high-quality FBP reconstructions of densely sampled OPT data. This latter approach is
promising for longitudinal and high-throughput 3D imaging of small organisms [55].

5.3.3 Applications of OPT

The use of OPT has been widely reported and its applications include the visualisation of
3D anatomy in mouse embryos [63, 64, 65, 56, 66, 67, 68, 69, 59, 24, 70, 60], zebrafish
[71, 72, 73, 54, 74, 56, 75, 76, 60], fruit flies [77, 78, 79, 80], plants [81, 40], C.elegans [82],
animal organs [83, 84, 67, 85, 59] and other mesoscopic samples [86, 87, 88]. In addition to
undergoing improvements in resolution and acquisition speed, OPT has also been applied
in combination with other imaging modalities such as SPIM [72, 59] to span a larger range
of spatial scales that can be imaged, and FLIM [71, 89] to extract functional information
from groups of fluorescent cells in a whole organism context. Despite its growing use,
most OPT applications require advanced technical expertise to design and build the system
[52, 40, 76, 90], expensive equipment [90], and bespoke software for reconstructions [90].

5.4 Summary

Large sample volumetric techniques such as micro-CT and micro-MRI are useful for explor-
ing morphology in 20-160 mm sized samples such as organs, body parts, and small animals.
Volumetric fluorescence microscopy techniques such as LSCM and SPIM can scan samples



174 References

from a few micrometres up to 2 millimetres, such as cell cultures and thin tissue slices with
sub-cellular resolution, however they cannot image unlabelled structures and are limited in
their penetration depth due to scattering.

OPT is a hybrid between the tomographic and fluorescence microscopy techniques
discussed, as it can access information from both fluorescently labelled and unlabelled
structures in sample, such that it can explore molecular-specific information in the context of
the sample anatomy. Further, it fills the scale gap between the tomographic and microscopy
techniques, imaging samples in the 1-20 mm size regime. A commercial OPT system,
the Bioptonics 3001 OPT scanner was developed by Sharpe and over 30 units were sold
worldwide [91] before the product and its support were discontinued in 2013 [90]. Most
existing custom-built implementations are expensive, require specialized equipment, and
do not include software for reconstruction. To enable a wider uptake of this technique and
address the issues with cost and easy access to hardware and software, the following chapter
describes the development and characterisation of a low-cost, open source OPT system for
imaging large organ samples.
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Chapter 6

Development of a low-cost, open-source
OPT system to image large organ
samples

This chapter describes the development, characterisation, and implementation of a low-cost,
open-source OPT system, OptiJ, with which to image large organ samples.

OptiJ was designed to be accessible and easy to reproduce for other researchers. It was
built using off-the-shelf optical components, and it includes an open-source ImageJ plugin
library for OPT data reconstruction. The capabilities of the system were demonstrated by
imaging full-sized adult mouse lungs that were cleared and immunostained; their study is
relevant in the context of chronic obstructive pulmonary disease (COPD), which is a type of
lung disease characterised by heterogeneously distributed emphysema (alveolar cell death)
and bronchoconstriction (narrowing of airways). OptiJ allowed us to explore the morphology
of the airway tree and visualise, in 3D, the tertiary airways, bronchioles, and alveolar sacs
in mouse lung lobes. Fig. 6.1 summarises the end-to-end workflow of OptiJ, from sample
preparation to imaging and reconstruction. This project was performed in collaboration
with the 2015 cohort of the EPSRC Centre for Doctoral Training in Sensor Technologies
and Applications (Sensor CDT), a group of doctoral students who conceived the idea of an
open-source OPT system and built a working prototype, and two scientists from AstraZeneca
who first devised the use of OPT to examine mouse lungs in a COPD model. My contribution
to the project was to improve on both the hardware and software components of the prototype,
characterise the system performance, and prepare, image, and reconstruct the adult mouse
lung samples. Individual contributions to each portion of the work are specified accordingly.
This work was published by Vallejo Ramirez et al. in [1], and this chapter is based on that
publication.
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Fig. 6.1 Schematic showing the OptiJ workflow. An excised sample is embedded in agarose
(Fig. 6.2) and mounted on a rotation stage; projections are then acquired over a full rotation
of the sample using the hardware set up shown in Fig. 6.3. The OptiJ plugins are used for
calibration and pre-processing, and subsequent 3D reconstruction of the sample (Fig. 6.4).
Figure adapted from [1].

6.1 Motivation

The availability of open-source software and hardware tools allows the widespread adoption
of technologies which are otherwise too expensive or unavailable for users worldwide.
As discussed in Chapter 5, volumetric imaging techniques, including most existing OPT
implementations, often require expensive equipment and technical expertise to build, and
are therefore not easily accessible for many research labs. Furthermore, most techniques are
limited to imaging samples up to a few millimetres in size. The motivation behind OptiJ
was to enable a more widespread uptake of OPT, particularly for imaging large organs or
organisms on the 5-20 mm scale. A fully-custom OPT has been previously described by
Wong et al. [2], however its components are expensive (> £70,000) and it uses commercial
software (LabView and Matlab) for its instrument control and reconstructions. To address
the cost and technical complexity of the Wong et al. implementation, Watson et al. [3]
developed an open-source adapter that fits any commercial inverted widefield microscope
stage and allows for the sample alignment and rotation necessary for OPT. This modular
implementation makes use of a microscope’s existing components to perform OPT, therefore
it is inexpensive and easy to implement. However, the sample size is limited by the plastic
tubing used to hold the sample horizontally over the objective, which is at most two or
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three millimetres in diameter [3]. OptiJ was inspired by the OpenSPIN microscope [4], a
low-cost open-source OPT built with off-the-shelf components used to image small embryos.
This implementation allowed for imaging large samples; however, it did not include its own
software for image calibration and reconstruction (Bruker’s nrecon software was used). To
address the issues in previous open-source OPT implementations, a fully integrated OPT
system with open-source software and hardware was developed specifically for imaging large
tissue samples.

6.2 Materials and Methods

6.2.1 Animal perfusion and tissue preparation

For the immunostaining of the lungs, the mice were perfused through the right ventricle
with phosphate-buffered saline (PBS) to remove blood from the tissue. The lungs were
subsequently inflated with 4% PFA and fixed overnight at room temperature in fixative. Over
the next three days, the lungs were rinsed in PBS and permeabilised through two cycles of
dehydration-rehydration in a gradient of methanol, and in a solution of PBS and detergent
(1% Triton X-100) to ensure antigens from the deepest part of the tissue were rendered
accessible. All immunostains were then performed in 1% Triton X-100 in PBS (PBST)
containing 10% of donkey serum. Two different immunostains were tested in separate lung
samples with primary: i) anti-Surfactant C protein antibody to target membrane antigen
secreted from airway type 2 epithelial cells in alveoli, or ii) anti-thyroid transcription factor-1
(TTF-1) antibody (Dako Agilent Products, mouse monoclonal, clone 8G7G3/1, Cat #M3575)
to target nuclear antigen also present in airway type 2 epithelial cells. The lungs were
incubated in primary antibody solution for one hour at room temperature and for 48 hours
at 4°C, followed by extensive washes with PBST and 1% foetal calf serum. Fluorescent
labelling of the primary antibody was achieved with anti-IgG Alexa Fluor 488 (AF488)
secondary antibody in 1:500 dilution for 48 hours at 4°C followed by extensive washes with
PBS for three hours to overnight. This procedure was performed by Dr. Xiao-Hong Zhou. A
detailed version of the perfusion and immunostaining protocol can be found in OptiJ online
repository: https://lag-opt.github.io. The stained and dehydrated lung samples were delivered
to Cambridge, where my contribution to the project began for all subsequent sample clearing,
mounting, imaging, and analysis steps.

https://lag-opt.github.io
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6.2.2 Clearing and mounting whole lungs for imaging

Fixed and immunostained samples were embedded in a 2% low-melting-point agarose
(Thermofisher Part #R0801) solution as a holding medium for sample clearing and image
acquisition. 10 mL syringes were cut, using a razor blade, at the 1 mL and 6 mL mark. The
syringe plunger was inserted from the 6 mL end just so the rubber tip was completely inside
the cropped syringe tube; a pipette was then used to fill approximately three quarters of the
available volume in the tube with molten agarose. The agarose was left to cool for 3-10
minutes before samples were carefully transferred into the agarose-filled tube using smooth
tweezers, and were oriented close to the centre of the tube (Fig. 6.2 a).
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Fig. 6.2 Sample embedding and mounting for OPT imaging. (a-d) Embedding of the lung
lobes in agarose. (e-h) Mounting of the cleared lobes on a magnetic stage ready for imaging.

A 1 mm diameter spherical glass bead (Sigma-Aldrich Part #Z250465-1PAK) was
immediately inserted close to the sample, but not in the same horizontal plane to avoid
occlusions, as a tracking fiducial for alignment and calibration during post-processing. The
exposed end of the tube was sealed with parafilm to avoid dehydration of the agarose during
storage. Samples were placed in a fridge at 4°C for one hour to allow the solution to fully
cross-link into solid agarose cylinders. The embedded lung lobes were pushed out of the
syringes (Fig. 6.2 b-d), and dehydrated using 50% methanol for 24 hours and 100% methanol
for 48 hours. Embedded samples were subsequently immersed in a 1:2 mixture of Benzyl
alcohol and Benzyl benzoate (BaBB) for 72 hours, changing the BaBB solution every 24
hours (Fig. 6.2 f). Prior to OPT acquisition, the agarose-embedded tissue cylinders were
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glued onto bright-zinc plated (BZP) penny washers (M5x25, Fixmart Part #402203217) using
quick-dry epoxy (Loctite Epoxy Quick Set 0.85-Fluid Ounce Syringe, Henkel Corporation,
Part# 1395391). After the glue was cured, the penny washer was coupled to a magnetic
kinematic mount (Thorlabs Part #SB1), ready to be inserted into the system for imaging (Fig.
6.2 g-h). This procedure was performed by me and Dr. Francois-Xavier Blé. A detailed
step-by-step procedure for sample embedding and mounting can be found in the OptiJ online
repository: https://lag-opt.github.io.

6.2.3 Experimental set-up

A 3D-printed flexure stage for open-source microscopy [5] was chosen for x,y,z translation
and rotation of the sample because of its low cost (cost of printing material only, ~£5) and
modular design. An Andor CLARA CCD camera with 6.45x6.45 µm2 pixels was initially
used for acquisition of the OPT projections in this study, but a lower-cost camera can be
implemented in a future release. A 0.5x telecentric objective (Edmund Optics Part #63-741)
with a 65 mm working distance and 0.028 NA was chosen to acquire the maximum field of
view possible with the camera. Two white light LEDs (Thorlabs Part #MWWHD3) were
chosen to provide even illumination with minimal flicker in both tOPT and eOPT. These
were fitted in small cage systems with an optical diffuser (Thorlabs Part#DG10-600), an
adjustable iris (Thorlabs #SM1D12D), and a condenser lens (Thorlabs Part #LA1401-A). A
GFP excitation and emission filter pair was used for eOPT (Excitation: 482/25 Part #FF01-
482/25-25, Emission: 515/LP Part #FF01-515/LP-25, Semrock). A Hellma glass cuvette
(Z805750-1EA, Scientific Laboratory Supplies) was used as the immersion chamber for the
sample during imaging (Fig. 6.2 h). The filled chamber was raised using a Swiss Boy lab
jack (Sigma-Aldrich Part #2635316-1EA) to completely cover the agarose gel containing the
sample during the acquisitions with the immersion media.

The acquisition software was written in Java by Pelumi Oluwasanya from the Sensor
CDT and packaged as an independent executable file. eOPT and tOPT projections were
acquired with exposure times of 300 ms and 1 ms, respectively. The integration time and
powers used for the fluorescence acquisition typically facilitated the capturing of signals of
which the maximum and a mean signal correspond to ~20% and ~1.5% of the camera’s full
well capacity, respectively. Pictures of the set-up (Fig. 6.3), a list of parts, instructions for
assembly, information about the acquisition software, and the characterization of the x, y, and
z motion of the stage can be found in the OptiJ online repository: https://lag-opt.github.io. I
received a functional version of the OPT hardware prototype and acquisition software and
used it for all experiments shown in this chapter.

https://lag-opt.github.io
https://lag-opt.github.io
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6.3 Characterisation of the software and hardware compo-
nents

6.3.1 OptiJ hardware

OPT relies on the rotation of a sample to acquire 2D projections at different angles. As
discussed in Chapter 5, assuming the thickness of the sample is smaller than the depth of
field of the system, projections acquired over half a revolution are theoretically sufficient to
recover an accurate 3D reconstruction of the sample structure. However, acquisitions over a
full rotation typically lead to higher quality reconstructions [6, 7]. To miminise hardware
errors prone to cause reconstruction artefacts, the OptiJ hardware design focused on the
following considerations:

1. Ensuring the axis of rotation is parallel to the imaging plane of the camera,

2. Aligning the sample to the field of view of the camera

3. Robustly and repeatably performing the rotation of the sample and acquisition of the
projections.

The OptiJ hardware enables the mounting, alignment, and rotation of thick biological
samples for the acquisition of 2D projections in both eOPT and tOPT modalities. Figure
6.1 a shows the implemented set-up, which includes a monolithic 3D-printed, rotation and
translation stage; a telecentric objective lens; a camera; two broadband LEDs; fluorescence
excitation and emission filters; and collimating and diffusing optics.
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Fig. 6.3 OptiJ hardware set up. (a) Picture of the set up with labels on the main components.
(b) Top-view illustration of the OptiJ hardware. Figure adapted from [1].
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The main criteria guiding the component choices were widespread availability and low
cost. The 3D-printed stage was adapted from the open-source Flexscope design [5] to
accomplish the movement necessary for both linear alignment and rotation of the sample
with stepper motors (Part #28BYJ-48). These motors were chosen specifically for their
compatibility with the open-source stage and their low cost. The downside of using a low-
cost motor for sample rotation is the presence of a larger amount of jitter (Fig. 6.4 b iii) than
that attainable with more expensive motors. Two approaches were adopted to mitigate this
drawback: the use of a bearing system to compensate for mechanical jitter from the motor,
and a post-acquisition jitter correction during the image processing stage.

The stage achieves sub-micron steps in the x, y, and z direction (Fig. 6.3 b), with a
maximal hysteresis of 58 µm over a 3 mm travel range, and a maximum of 1024 steps per
motor revolution corresponding to a minimum angular step size of 0.35°. The hysteresis was
characterised by tethering a metal pin to the bottom of the translation stage, and subsequently
moving the pin laterally across the FOV. This lateral motion was detected on the camera
and the leading edge of the pin was tracked through multiple scans across the FOV. The
tracked position of the pin was used to calculate the hysteresis over the travel range of the
stage; the details on the stage characterisation can be found in [1] or in the OptiJ repository
https://lag-opt.github.io. This characterisation was performed by Oliver Vanderpoorten and
Fergus Riche. In practice, the center of the stage was aligned to the center of the FOV only
once, and the stage was not translated again for any further experiments. A telecentric lens
with low NA and 0.5x magnification was chosen to match the typical volume of adult mouse
lungs. The low NA allows a depth of field of ~4 mm, which upon sample rotation, allows
for a maximum field of view (FOV) of 13x8x8 mm3. The focal plane of the objective was
placed midway between the axis of rotation and the front face of the sample such that only
one half of the sample was in focus at any projection angle (as shown with the dashed line
in Fig. 6.3 c). The telecentricity of the lens allowed us to use FBP for reconstruction, as
only approximately parallel rays from the sample reached the camera. White light LEDs
were chosen for their brightness, long life, and low-cost, and a custom circuit board was
designed to minimise output flicker. The LED output was homogenised and collimated with
off-the-shelf optics to ensure uniform illumination across the FOV.

The stage, the camera, and the LEDs were controlled with a Raspberry Pi 2B, which
connected via USB to a computer which controlled the acquisition process and stored the
captured images. Alternative choices for motors or stages to accomplish the rotation required
in OPT, and for objective lenses compatible with OptiJ are provided in the OptiJ repository
https://lag-opt.github.io or in [1]. This allows future users to choose which components
best suit their application based on their desired cost to performance ratio, and the desired

https://lag-opt.github.io
https://lag-opt.github.io
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specifications of their system, e.g. magnification (and resulting FOV), resolution, working
distance, and sample thickness. The hardware set up was first built by the Sensor CDT student
cohort as a proof-of-concept project in 12 weeks. I characterised, rebuilt, and improved
the OptiJ hardware by redesigning the collimation assembly for the two illumination arms,
adding a telecentric objective, and adding fluorescence filters. This allowed for fluorescence
imaging (eOPT), and more uniform illumination over a larger FOV.

6.3.2 OptiJ software

The reconstruction of high-quality 3D volumes from OPT projections requires data pre-
processing to avoid artefacts during FBP, as discussed in Chapter 5 Section 5.2.1. To mitigate
the effect of artefacts, a library of open-source ImageJ/Fiji plugins to pre-process OPT data
were developed, as well as a GPU-accelerated FBP algorithm for reconstruction [8]. A
suggested workflow for using the plugins is shown in Fig. 6.4, along with examples of
corrected OPT artefacts.

The Beer-Lambert correction plugin calibrates each tOPT projection using an average
bright field image to obtain linear attenuation coefficients corrected for non-uniform pixel
intensities, following the Beer-Lambert Law [9] and demonstrated in Fig. 6.4 b.i. A back-
ground image stack without the sample is acquired to obtain an average bright field image,
and then each projection is divided by the average background image. Typical attenuation
factors between dark and bright regions as shown in Fig. 6.4 b.i. range between two and three.
A common artefact in OPT arises from the axis of rotation of the sample not being parallel to
the plane of the FOV during acquisitions, which leads to the appearance of a shadow artefact
around sharp features (Fig. 6.4 b.ii). The Estimate Tilt and Offset plugin tracks a fiducial
marker (such as a 100 µm glass bead) in the projections to determine if the axis of rotation is
parallel to the plane of the FOV and produces correction values for the projection stack if this
condition is not satisfied. These values can be used at the reconstruction step to minimise
any shadow artefacts, as demonstrated in the corrected image in Fig. 6.4 b.ii. The Create
Sinogram plugin displays a Radon Transform (sinogram) of the projections and uses the
correction values for tilt and offset produced by the previous plugin to account for residual
deviations, relaxing the need for a precise alignment of the system prior to acquisitions.
Small sample wobble caused by mechanical jitter from low-cost stepper motors without a
bearing system can be observed as jagged edges in an otherwise smooth sinogram (Fig. 6.4
b.iii). The Dynamic Offset Correction plugin calculates a sinusoidal fit of the motion of
a fiducial marker and uses the difference between the ideal fit coordinates and the actual
motion of the bead to produce a jitter-free sinogram as shown in the corrected image in Fig.
6.4 b.iii. This correction shown in the sinograms (Fig. 6.4 a-b) is similar to that obtained
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Fig. 6.4 OptiJ plugin library workflow for the correction of common OPT artefacts. (a)
Suggested workflow for the use of the OptiJ plugins. (b) Correction of common OPT
artefacts using OptiJ plugins. The top row represents images without correction applied
(w/o). The bottom row shows images after correction (w). (i) Uneven illumination in raw
tOPT projections resulting from the optics used to collimate the light source, and absorption
and scattering from the sample. (ii) shadow artefact originating from a misalignment of
the sample’s axis of rotation. (iii) jittered sinogram of a marker bead rotated by a low-cost
stepper motor. Figure adapted from [1].



194 Development of a low-cost, open-source OPT system to image large organ samples

using a high-quality bearing system that produces a smooth rotation of the sample, as shown
in Fig. 6.5.

Using Dynamic
Offset Correction
plugin

No correction Correction with
Bearings

a b c

Fig. 6.5 Comparison of Dynamic Offset Correction plugin and bearing system to compensate
for mechanical jitter from low-cost motors. (a) Sinogram from raw projections of a glass bead
in agarose showing jitter, visualised as jagged edges. (b) Correction of the jittered sinogram
using the Dynamic Offset Correction plugin. (c) Correction of jitter using a high-quality
bearing system coupled to the rotation motor and the sample holder.

This step concludes the pre-processing required to minimise artefacts in the reconstruction.
The 2D reconstruction plugin implements FBP to reconstruct a 3D cross-sectional stack
of the original object using the corrected sinogram. To improve reconstruction times via
FBP, the plugin allows for GPU-enabled acceleration using OpenCL [10], which is an open-
source, platform-independent framework for parallel computing. This plugin also allows
the user to choose from a variety of filters (Ramp, Hamming, Shepp-Logan, or no filter) for
back-projection [11]. The OptiJ plugin library improves upon a previous implementation
of the Radon transform in ImageJ/Fiji, which did not include calibration nor accelerated
reconstruction algorithms [12]. A detailed description of the OptiJ plugin library, its functions
and methods, usage and sample data for testing can be found in the OptiJ online repository
at https://lag-opt.github.io. The code for the plugins was written and packaged by Joseph
Zammit from the Sensor CDT cohort. I received a working version of the software and
applied in this thesis for the reconstruction of the mouse lung data. My responsibility in
this project began with the clearing and mounting of samples and included all subsequent
imaging experiments and analyses performed.

https://lag-opt.github.io
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6.4 Results

The non-destructive 3D imaging of whole lung lobes can be very useful in the study of
COPD models in mice, as it allows for the identification of characteristic phenotypes such as
bronchoconstriction (narrowing of airways), and the investigation of the extent of the struc-
tures affected in different lung areas. The OptiJ hardware and software tools described were
applied to image fluorescently labelled and cleared mouse lungs. Two different antibodies
were used to tag epithelial cells, and the resulting contrast and visible feature size with each
label were analysed. The resolution achieved after OPT reconstruction was characterised
using Fourier Ring Correlation (FRC), and the results obtained were corroborated using
standard resolution measurements.

6.4.1 Visualisation of primary and higher order airways in different
mouse lung lobes using eOPT

The superior, medial, and accessory lobes of the right lung, and the entire left lung of two
adult mice were imaged using the OptiJ framework. 512 raw projections were acquired over
a full rotation of each lobe to obtain high-fidelity reconstructions, as fewer projections lead to
streak artefacts which degrade image quality and worsen the post-reconstruction resolution
of the sample (Fig. 6.11). To obtain a morphological readout of the structures critical to
studying COPD, such as the bronchioles and alveolar sacs, two different immunolabelling
strategies which targeted proteins expressed in lung epithelial type 2 cells were tested and
compared. In both strategies, a secondary antibody conjugated with an AF488 dye was used
to visualise the airway tree through eOPT.

Surfactant protein C labelling

The lobes of the first mouse lung were immunostained with a primary antibody targeting the
Surfactant protein C (Fig. 6.6 a-d). This labelling strategy revealed only gross features in the
lobes’ eOPT reconstructions, as demonstrated in the orthogonal views of the reconstructed
stack from a large left lobe in Fig. 6.6 a-d. The primary bronchus and some secondary and
tertiary airways are indicated by red arrows in Fig. 6.6 a-b, and the region in which the
indiscernible finer features would be located, the parenchyma (lobe edge), is indicated by red
arrowheads. The fluorescent signal collected with this labelling strategy likely originated
from a combination of tissue autofluorescence, mostly from collagen, non-specific labelling,
and the specific fluorescent signal from the structure of interest.
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Fig. 6.6 eOPT reconstructions of a left lobe labelled with anti-Surfactant Protein C AF488.
Orthogonal views, xy (a), xz (b), and yz (c) and a 3D rendering (d) are shown. (a-d) The red
arrows and insets indicate the primary airways visualised in the orthogonal cross-sections.
The 3D rendering in (d) displays a clipping plane through the lung, highlighting secondary
and tertiary bronchi in the inset. Interactive 3D renderings of the reconstructions can be
found at https://lag-opt.github.io.. The acquisition time for this data set was 20 minutes,
which includes a two second delay between each projection to avoid motion artefacts from
the wobbling agarose gel. Figure adapted from [1]. Scale bars = 2 mm

https://lag-opt.github.io.
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TTF-1 protein labelling

The lobes from the second mouse were immunostained with a primary antibody against the
thyroid transcription factor-1 (TTF-1, see Fig. 6.7 a-d). In comparison to the label targeting
Surfactant protein C, the labelling strategy targeting the TTF-1 protein produced significantly
higher quality reconstructions which allowed for the visualisation of both large airways
(~200-300 µm in diameter) and minute bronchioles (~60-100 µm in diameter) through the
centre and periphery of the lobes. The orthogonal views of the reconstructed stack from a
medial lobe show both the primary and secondary bronchi (red arrows in Fig. 6.7 a-b) and
the higher order airways and tiny air sacs in the parenchyma (red arrowheads in Fig. 6.7 a-b).
Figure 6.7 d shows a 3D rendering of the entire medial lobe; a zoomed inset directs attention
to the intricate network of higher order airways that can be visualised inside the volume.

6.4.2 Brightness and signal-to-noise ratio comparison between the two
labelling strategies

To compare the post-reconstruction image quality resulting from the two labelling strategies,
and to characterise the effect of non-specific labelling and autofluorescence on the total
signal, we estimated the brightness ratio (BR) and the signal-to-noise ratio (SNR) between
specifically labelled and background regions in the lung lobes shown in Fig. 6.6 and 6.7.
Representative slices were chosen from the reconstructed stacks for the anti-surfactant C-
labelled lobe (Fig. 6.8 a) and the anti-TTF1-labelled lobe (Fig. 6.8 b) and the ratio of specific
fluorescent signal and non-specific signal was measured in two ways. The mean fluorescence
intensity in Fig. 6.8 a-b was calculated in regions in which the signal was expected to be
highly specific, such as alveolar cell clusters in higher order airways (yellow inset), and
regions in which epithelial cells were less abundant and therefore the signal was expected to
originate predominantly from autofluorescence and non-specific labelling (red inset). The
mean intensities for regions exhibiting specific (I1) and non-specific (I2) signal were used
to calculate the signal-to-noise ratio (SNR), using the standard deviation of the intensity
measurements (s ) as an estimate for the noise as defined below:

SNR =
I1 � I2

s
(6.1)

The resulting SNR for the anti-TTF-1 lobe was ~4, and that for the anti-Surfactant C lobe
was ~1.6. Similarly, the brightness ratio (BR) was calculated between regions with signal
and with background, as defined below:
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Fig. 6.7 eOPT reconstructions of a medial right lobe labelled with anti-TTF-1 AF488.
Orthogonal views, xy (a), xz (b), and yz (c) and a 3D rendering (d) are shown. (a-d) The red
arrows indicate a set of main airways (secondary and tertiary bronchi) in the medial lobe,
and red arrowheads indicate high-order airways inside or close to the parenchyma. Small
airways close to the primary bronchi are highlighted in the insets in (a) and (b). The 3D
rendering in (d) with a clipping plane on one of the lobe faces shows a thick meshwork of
higher order airways (quaternary bronchi and bronchioles). Interactive 3D renderings of the
reconstructions can be found at https://lag-opt.github.io.. The acquisition time for this data
set was 20 minutes, which includes a two second delay between each projection to avoid
motion artefacts from the wobbling agarose gel. Figure adapted from [1]. Scale bars = 2 mm

https://lag-opt.github.io.
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BR =
I1

I2
(6.2)

The resulting BR for the anti-TTF-1 lobe was ~4 and that for the anti-surfactant protein
C lobe was ~3. From this analysis, the TTF-1 labelling was shown to provide a 2.5-fold
increase in SNR compared to Surfactant protein C. Additionally, the BR suggests that the
background contributed between 25% and 33% of the total signal for both the TTF-1 and the
Surfactant C labelling, respectively. However, no further repeats were analysed, therefore a
more comprehensive study would be necessary to determine the effectiveness of these two
labelling strategies for imaging epithelial tissue in whole lungs.

6.4.3 Histogram matching for volumetric data visualisation

During reconstruction via FBP of eOPT data, sharp edges or small features in the sample
may cause streak artefacts in the reconstruction, particularly if these features exhibit a strong
fluorescent signal. These streak artefacts result in very bright or dim cross-sectional slices
in the reconstructions, as indicated by red arrows in the volumetric visualisation of the
anti-Surfactant C left lung in Fig. 6.9 a. These are similar but not equal to the streak artefacts
resulting from under sampling Radon space during reconstructions mentioned in Chapter 5,
as these appear even with densely-sampled data sets such as the mouse lungs explored here.
A histogram matching algorithm was implemented to account for these intensity variations,
and visualisation without excessively bright or dim cross-sectional slices were obtained (Fig.
6.9 b). Essentially, the histogram matching algorithm reads in the volume data slice per
slice, identifies the modal group in each slice’s histogram, and shifts the modal peak to the
origin. This reduces the discrepancies in brightness among slices and allows us to choose
appropriate contrast thresholds to visualise the full volume.

6.4.4 Quantifying resolution using Fourier Ring Correlation

The resolution in OPT reconstructions depends on the optical resolution dictated by the
imaging lens with which the raw data were collected. It is further affected by the number of
projections, as an insufficient number of projections leads to image artefacts (such as streaks)
and thus degrades image quality. FRC is a well-established standard to measure resolution in
electron microscopy [13], and more recently SMLM [14], as introduced briefly in Chapter 2
in Part I of this thesis. FRC analyses the similarity of two independent reconstructions of the
same object in spatial frequency space to determine the feature size threshold at which both
reconstructions are consistent. This threshold provides an estimate for the resolution limit of
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Fig. 6.8 Brightness and signal-to-noise ratio comparison between the two epithelial cell
labelling strategies for mouse lungs. Representative slices from both the anti-Surfactant
protein C labelled left lobe (a) and the anti-TTF-1 labelled right medial lobe (b) with yellow
insets representing regions of specific signal and red insets representing regions with non-
specific signal. (c-d) Representative line intensity profiles from (a) and (b) with labels on the
mean intensities from regions in which the signal is specific (I1) and non-specific (I2), where
the standard deviation is s . Figure adapted from [1].
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a b

Fig. 6.9 Histogram matching of cross-sectional slices is useful for volumetric visualisation
of lung data. (a) eOPT reconstruction of anti-Surfactant C left lung in which bright or dim
cross-sectional slices after FBP are highlighted with red arrowheads. (b) The whole lung
volume after histogram matching.

the image. FRC was implemented here to measure post-reconstruction resolution in OPT
(Fig. 6.10 a) with the medial lobe labelled with anti-TTF-1 AF488.

The raw data set with 512 projections was split into even and odd slice stacks; each
half was reconstructed separately using the OptiJ 2D reconstruction plugin to simulate two
independent reconstructions of the same object. 20 cross-sectional slices were chosen in the
middle of the sample, and the FRC calculation was performed using the NanoJ-SQUIRREL
FRC plugin [15], resulting in a mean FRC value of 49 ± 16 µm. This FRC value and its
uncertainty were obtained by averaging over the centre portion (blue squares) of the FRC
heatmaps output by the plugin (Fig. 6.10 a), representing the pixel area occupied by the
reconstructed lung cross-section. The default number of 10 spatial blocks per axis was used
in SQUIRREL.

This novel approach to estimate resolution in OPT was compared to two standard res-
olution estimation methods: measuring cross-sections of fine sample features (Fig. 6.10
b) and measuring the cross-section of fluorescent beads (Fig. 6.10 c). The cross-sectional
profiles in both cases were fitted to Gaussian functions, and the full width at half-maximum
(FWHM) for the Gaussians was calculated as an estimate of the finest detail discernible. The
FWHMs for the fine lung features in an arbitrary slice of the right medial lobe reconstruction
in Fig. 6.10 b were ~52 µm (bottom) and ~46 µm (top). The FWHM for the fluorescent bead
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Fig. 6.10 Characterisation of OptiJ post-reconstruction resolution using three different meth-
ods. (a) Resolution estimate using FRC results in a resolution of 49 ± 16 µm. (b) Resolution
estimate obtained by fitting Gaussian functions to the intensity cross sections of fine features
in an arbitrary slice of the right medial lobe reconstruction. The FWHM for each Gaussian fit
provides a measure for the size of the finest discernible features: (top) FWHM ~52 µm, (bot-
tom) FWHM ~46 µm (c) Resolution estimate using fluorescent beads: a Gaussian function
was fitted to the intensity cross section of a 15 µm-diameter fluorescent bead reconstructed
using OptiJ, yielding a FWHM of ~26 µm.
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cross-section was ~26 µm. 256 projections of 15 µm-diameter fluorescent beads immersed in
agarose were acquired and reconstructed using OptiJ for the latter measurement.

The resolution estimates obtained with both methods are consistent with the output
from FRC, confirming FRC is a reliable metric for estimating resolution in OPT. The FRC
value for resolution is computed over the entire reconstructed slice, therefore it does not
depend on user-drawn line profiles, and it provides an unbiased, quantitative estimate of
resolution for OPT data sets. However, by effectively down sampling the data set from
512 to 256 projections to perform the independent object reconstructions for FRC, the
resulting FRC value is an underestimate of the resolution of the original data set. This
is due both to the decrease in the total signal contribution for any slice and therefore a
higher noise component post-reconstruction, and to the streak artefacts resulting from having
fewer projections for reconstruction. The effect of the number of projections used for OPT
reconstruction on the FRC resolution estimate was quantified and illustrated in Fig. 6.11.
The data set for the right medial lobe with 512 projections was down sampled into data sets
with 256, 128, 64 and 32 projections and the FRC resolution estimate described in Fig. 6.10
was applied to 20 representative slices. Fewer projections lead to severe streak artefacts
(Fig. 6.11 b) which degrade image quality and worsen the post-reconstruction resolution
of the data set. The artefacts from the data splitting procedure are a major disadvantage
of this method to evaluate resolution in OPT, compared to the more traditional methods of
using sub-diffractive fluorescent beads which can provide an unbiased estimate of the true
post-reconstruction lateral resolution. However, FRC does not require imaging an agarose
phantom with embedded fluorescent beads and can therefore be considered a "calibration-
free" method to evaluate resolution in already existing OPT data sets. Another advantage of
FRC over traditional bead measuring methods is that FRC evaluates resolution over each
lung slice for the entire volume and can therefore provide a resolution estimate as a function
of distance away from the rotation axis, unlike bead phantoms in which fluorescent beads are
sparsely distributed and therefore only sample a sparse subsection of the imaging available
volume.

Considering the estimates from all three methods, in the presence of noise and sample
jitter the post-reconstruction resolution of the system is likely to be between 25 and 50 µm.

6.5 Summary and Discussion

This chapter described a low-cost, open-source hardware and software implementation of
OPT for the examination of large volumetric samples. The imaging of whole organs in 3D
with OptiJ at ~50 µm resolution was demonstrated. The method revealed the structure of
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Fig. 6.11 FRC resolution as a function of the number of projections acquired. (a) Plot
of the FRC resolution estimate as a function of the number of projections available. (b)
Representative images showing a reconstructed slice for each of the down-sampled data sets.
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adult murine lungs, from the large primary bronchi to the minute bronchioles at the lung
periphery. An open-source toolbox for OPT reconstructions, including a novel workflow
for artefact correction and volume reconstruction was developed all in ImageJ, along with
detailed characterisation and instructions for use.

The hardware challenges introduced by low-cost OPT solutions were addressed. In
particular, the sensitivity to sample alignment was compensated for by tracking a marker
glass bead and correcting for the estimated sample tilt using the OptiJ plugins provided.
The jitter introduced by low-cost stepper motors used for sample rotation was addressed
using two strategies. In one strategy, a bearing system was introduced to improve rotational
stability on the motor used for sample rotation. In the other strategy, a novel software-based
correction method was used, the Dynamic Offset Correction plugin, which can correct for
jitter from low-cost motors in cases where high-quality motors or bearings are unaffordable
or difficult to source. These measures ensure both accuracy and repeatability in the recording
of high-fidelity OPT data. Furthermore, Fourier Ring Correlation (FRC) was implemented
for the first time as a resolution measure for reconstructed OPT data sets. Consistent results
were obtained with FRC compared to standard practices for measuring resolution.

The 3D imaging of intact lungs from COPD mouse models could be useful to visualise
alveolar cell clusters in a whole-organ perspective, where the involvement of specific cell
types in pathophysiological processes could be tracked and quantified. This could be a com-
plementary approach to recent studies of COPD pathophysiology with confocal microscopy
[16]. The immunostaining against the Surfactant protein C led to a diffuse signal, indicating
a low specificity of the labelling in this context, potentially due to a deterioration of the
Surfactant protein C by fixation, dehydration, or detergent treatment of the lobes during
preparation. Nonetheless, the autofluorescence from elastin and collagen in epithelial cells,
and extracellular matrix from the large airway wall likely boosted the fluorescent signal,
such that images of the large airway tree with good contrast were obtained (Fig. 6.6). The
anti-TTF-1 labelling proved more effective to visualise small airways with a better SNR
compared to the Surfactant protein C label, especially in the lobe edges (Fig. 6.7). More
generally, the 3D imaging data of intact mouse organs enabled with OptiJ could be useful in
tracking specific cell types, visualising the heterogeneous distribution of disease, or assessing
the effects of therapeutics in animal models of respiratory diseases.

In summary, a complete set of calibration and reconstruction routines in ImageJ/Fiji was
described, along with an easy to build hardware set up for a complete OPT system. OptiJ
implements both CPU and GPU acceleration for reconstructions, which yields reconstructions
in tens of minutes rather than multiple hours. This is a key feature, as reconstruction of the
substantial data sets resulting from imaging large organ samples is highly time-consuming
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when performed sequentially with no acceleration. Furthermore, a larger field of view
(13x8x8 mm3) than most other OPT implementations [17, 18, 19, 20, 3] was demonstrated,
which typically range from 1x1x1 mm3 to 5x5x5 mm3. The larger field of view of OptiJ
could be useful for future studies examining 3D anatomical structures and fluorescent signals
from large model organisms, organ samples from small animals, or even organoids grown
from pluripotent stem cells.

6.6 Future work

OptiJ is still in early stages of its development, and improvements to its hardware and
software components would make it easier to adopt and use. Future work on the hardware
could include automation of the tilt and offset calibration routines with a direct feedback loop
to the hardware after correction with the OptiJ plugins. Alternatively, a simpler manual stage
for the sample with a more accurate and stable motor for rotation could be used instead. A list
of alternative motor choices for OPT rotation can be found in the Supplementary Information
in [1]. Sample alignment is generally performed at the start of an imaging session, and
minimal re-tuning is required during experiments so a manual stage would be adequate.

Improvements on software are perhaps more pressing, as the OptiJ plugins are readily
available for researchers with existing tomography data sets and can be adopted faster than
the hardware components. To speed up reconstructions, the OptiJ GPU acceleration kernel
could be optimised and improved using new OpenCL libraries. To improve reconstruction
quality, the deconvolution model proposed by Van der Horst [21] could be implemented to
reduce the effect of the spatially-variant PSF. Another option would be to use the Gaussian-
beam model for FBP reconstructions from Koskela et al [22] to provide higher quality
reconstructions with better contrast. To reduce acquisition times, a compressed sensing
approach as proposed by Correia et al. [6] could be adopted to allow for sparser data sets,
and could be reconstructed with sufficient quality using only Fiji plugins. Alternatively, the
use of convolutional neural networks to remove streak artefacts from sparsely sampled data
could be applied to increase the throughput of the system as demonstrated by Davis et al.
[23]. In order to improve the analysis of lung volumes reconstructed with OPT, an algorithm
could be developed to quantify the physical volume of the detected airways as a way to
evaluate the degree of bronchoconstriction, one of the hallmarks of COPD. This could be
accomplished by thresholding areas with low contrast within the lung (empty airways) and
adding their enclosed areas across all lung slices. Another algorithm could be developed to
characterise the number and distribution of alveolar sacs at the lung parenchyma as a way
to diagnose lung health, since healthy lungs will have fewer collapsed or destroyed air sacs
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compared to diseased lungs. A future study using a higher NA objective lens during imaging,
and therefore better resolution, could be performed to quantify the relative distribution of
alveolar cell clusters in small lung regions for control vs COPD lungs, as a way to assess
disease spread in the lung, and to perhaps evaluate the effect of drugs on alveolar cell
recovery. New algorithms for the analysis of 3D lung imaging data, whether obtained with
OPT or with other 3D imaging modalities [24, 25] could be of special interest to the scientific
community for studies of COVID19, which primarily affects the lungs, and leaves significant
lung damage post recovery. Regarding the lung imaging experiments, sample preparation
could be improved by implementing newer tissue-clearing methods such as 3DISCO [26]
and CLARITY [27] instead of the current approach based on BaBB, which is known to
introduce loss of fluorescent signal from certain dyes [28] and may cause linear shrinking of
tissue [29]. In terms of labelling, far-red dyes could be implemented in the future instead
of AF488 for deeper penetration into tissue. In future experiments, it would be useful to
image cleared, unlabelled lung lobes to properly characterise the signal contribution from
autofluorescence in different lung regions. This could not only help our choice of fluorescent
label for visualising small structures, but also it would allow us to better understand the
available dynamic range of our system.

6.7 Perspectives

In order to harness the advantages of OPT and integrate this technique easily into existing
imaging workflows in other laboratories, it is key to develop new tools to easily acquire,
reconstruct, and analyse OPT data. The OptiJ hardware included useful tools such as
the bearing system for sample wobble correction, and the Flexscope stage for sample
alignment and automation of the acquisition procedure. However, building a specialised
set up for OPT requires time and some engineering expertise to troubleshoot. A more
widespread access of the technique could be achieved using a much simpler sample rotation
system that can be readily adapted to existing widefield microscopes, similar to Watson et
al.’s OPTiM [3]. Scientists working with large transparent biological samples (zebrafish,
cleared organs, or cleared plants) could acquire OPT data with minimal modifications to
their existing widefield microscopes, and subsequently process and reconstruct their data
using OptiJ’s open-source ImageJ plugins. Alternatively, OPT could be combined with
expansion microscopy [30], a recently reported technique in which a fluorescently-labelled
sample is physically enlarged, thereby increasing the effective resolution in a imaging
system. In expansion microscopy, a specimen is embedded in a fine polymer matrix which
covalently anchors any fluorescent labels within the specimen. Labels located closer than the
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diffraction limit can then be isotropically separated and optically resolved with a conventional
microscope. The physical structure of the specimen is destroyed; however, the relative
location of the labelled fluorescent species remains intact, allowing previously unresolvable
structures to be discerned. Expansion factors of 4 [30], 10 [31], 16 [32] have been reported;
larger expansion factors remain available by iteratively expanding the sample at the cost of
reduced fluorescent signal per sample volume [32]. By implementing expansion microscopy
on a sample prior to imaging with OptiJ, a post-reconstruction resolution of up to 7 (4X
expansion) and 2 (16X expansion) µm could be achieved. Challenges in gel mounting and
sample labelling ould need to be addressed, however this would represent a novel imaging
modality which could be useful for imaging whole tissue slices in 3D with high resolution.

6.8 Acknowledgement of contributions

This project was a collaborative effort between the Sensor CDT 2015 cohort, two scientists
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Conclusions

The objective of the work presented in this thesis was to develop optical imaging and
analysis methods to answer biological questions in models of disease. Questions in three
disease models were explored, with biological samples ranging from sub-cellular protein
clusters (Part I) to adult mouse lungs (Part II). This variation in length scales, optical
properties, resolution, and sensitivity requirements presented unique challenges for each
project, requiring tailored combinations of state-of-the-art imaging techniques and analysis
methods.

At the nanoscale, the aim was to quantify the proximity between nanoscale distributions
of proteins in Parkinson’s Disease and HIV in vitro models. In Chapter 3, dSTORM was
used successfully to measure nanometre synaptic protein distributions, whereas in Chapter 4
the labelling for dSTORM was found to be highly unspecific, and instead conventional TIRF
microscopy was used to examine viral and ESCRT protein clusters at the membrane. Novel
image analysis software tools were developed for both applications which allowed us to
remove noise and background signals, select regions of interest, and quantify colocalisation
of two labelled species.

At the mesoscale, the goal was to visualise disease phenotypes in large organ samples in
3D. Optical projection tomography was introduced as a bridging technique between medical
tomography and conventional 3D light microscopy techniques, as OPT can image both
unlabelled anatomical features and fluorescently labelled molecular species in mesoscopic
samples. An OPT prototype built by a Masters student cohort was optimised, characterised,
and applied to imaging adult mouse lungs in a COPD model.

In summary, the main results from this thesis are:

Development of SynaptoAnalysis, a software tool for the detection and analysis of
synaptosmes from SMLM data.

SynaptoAnalysis is a software package developed to measure the clustering of a-syn, and its
colocalisation with internalised synaptic vesicles in synaptosomes. SynaptoAnalysis, written
in Matlab, contains routines to automatically identify synaptosomes from background in
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SMLM data, correct chromatic offset, filter out false positives, and measure colocalisation and
cluster size with multiple methods. A model synaptosome was created to generate synthetic
SMLM data, which were used to characterise and validate SynaptoAnalysis. Synthetic data
sets were useful to benchmark the performance of Ripley’s H-function and the RMSD from
centroid to measure cluster size.

A-syn colocalises with non-canonically trafficked vesicles.

A-syn’s colocalisation with internalised vesicles was shown to be temperature-independent,
which suggests it could be associated with vesicle trafficking mechanisms more likely to
be observed at low temperatures when membranes are rigid [1], such as kiss and run. In
comparison, VAMP-2’s colocalisation with internalised vesicles decreased significantly at
sub-physiological temperatures, reinforcing its well established association with SNARE/CM
exo/endocytosis. These results provide new insights into the role of a-syn at the pre-synapse,
and invite further experiments to determine the identity of the recycling mechanisms in which
a-syn could be involved.

A-syn and VAMP-2 clusters increase in size in the absence of calcium.

Two cluster analysis methods, the RMSD from centroid and Ripley’s H-function, showed
that a-syn and VAMP-2 clusters imaged by dSTORM become larger in calcium-depleted
levels at the synapse, compared to physiological calcium levels. This is a novel result which
could support the hypothesis that a-syn and VAMP-2 interact to tether vesicles together [2].

TIRF microscopy showed EAP45 colocalisation with Gag is dependent on an intact
N-terminus.

SNAP-tag labelled EAP45 and GFP-fused Gag clusters were imaged using TIRF at the cell
membrane, and a workflow for performing a nearest-neighbour colocalisation analysis was
developed. EAP45 was shown to colocalise with Gag similar to the ALIX protein, which is
known to be recruited by Gag during viral egress. Upon deletion of EAP45’s N terminus,
this colocalisation was significantly decreased. This effect was confirmed using two different
cell lines, with similar results. These results provide the first visual evidence of the spatial
association between HIV and the ESCRT-II complex, and strengthen previous biochemical
evidence [3, 4] showing ESCRT-II is necessary for efficient viral budding.
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A method for visualising co-moving particles revealed three potential classes of dy-
namic interaction between EAP45 and Gag.

A novel algorithm for visualising the relative motion of two particles was developed, which
allowed us to observe three movement classes of EAP45 clusters relative to Gag clusters: (1)
EAP45 oscillates in and out of proximity to Gag; (2) EAP45 comes in close proximity to
Gag transiently before moving away; (3) EAP45 remains in close proximity to Gag during
the entire observation time. EAP45 particles were found to dwell within ~100 nm of Gag
between 10 seconds and 6 mins for all particles analysed. This is the first reported observation
of the dynamic interaction between Gag and EAP45; future biophysical studies are necessary
to further understand the mechanistic role of ESCRT-II in viral egress.

Development of a low-cost, open-source OPT system to image large organ samples.

A low-cost, open-source OPT system, OptiJ, was developed and characterised for the study
of disease phenotypes in large organs. 3D reconstructions of excised and cleared mouse lung
lobes from a COPD study show high order airways can be visualised within the lung at 50
µm resolution. OptiJ was built using off-the-shelf components, and it uses freely available
ImageJ plugins for data pre-processing and reconstruction. A repository containing the raw
and reconstructed lung data, instructions for building the instrument, and a detailed software
manual was made available to promote the widespread adoption of OPT for imaging large
samples.
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