339 research outputs found

    Estimating the chance of success in IVF treatment using a ranking algorithm

    Get PDF
    In medicine, estimating the chance of success for treatment is important in deciding whether to begin the treatment or not. This paper focuses on the domain of in vitro fertilization (IVF), where estimating the outcome of a treatment is very crucial in the decision to proceed with treatment for both the clinicians and the infertile couples. IVF treatment is a stressful and costly process. It is very stressful for couples who want to have a baby. If an initial evaluation indicates a low pregnancy rate, decision of the couple may change not to start the IVF treatment. The aim of this study is twofold, firstly, to develop a technique that can be used to estimate the chance of success for a couple who wants to have a baby and secondly, to determine the attributes and their particular values affecting the outcome in IVF treatment. We propose a new technique, called success estimation using a ranking algorithm (SERA), for estimating the success of a treatment using a ranking-based algorithm. The particular ranking algorithm used here is RIMARC. The performance of the new algorithm is compared with two well-known algorithms that assign class probabilities to query instances. The algorithms used in the comparison are Naïve Bayes Classifier and Random Forest. The comparison is done in terms of area under the ROC curve, accuracy and execution time, using tenfold stratified cross-validation. The results indicate that the proposed SERA algorithm has a potential to be used successfully to estimate the probability of success in medical treatment. © 2015, The Author(s)

    Estimating the chance of success and suggestion for treatment in IVF

    Get PDF
    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent Univ., 2013.Thesis (Master's) -- Bilkent University, 2013.Includes bibliographical references leaves 90-98.In medicine, the chance of success for a treatment is important for decision making for the doctor and the patient. This thesis focuses on the domain of In Vitro Fertilization (IVF), where there are two issues: the first one is the decision on whether or not go with the treatment procedure, the second one is the selection of the proper treatment protocol for the patient. It is important for both the doctor and the couple to have some idea about the chance of success of the treatment after the initial evaluation. If the chance of success is low, the patient couple may decide not to proceed with this stressful and expensive treatment. Once a decision for treatment is made, the next issue for the doctors is the choice of the treatment protocol which is the most suitable for the couple. Our first aim is to develop techniques to estimate the chance of success and determine the factors that affect the success in IVF treatment. So, we employ ranking algorithms to estimate the chance of success. The ranking methods used are RIMARC (Ranking Instances by Maximizing the Area under the ROC Curve), SVMlight (Support Vector Machine Ranking Algorithm) and RIkNN (Ranking Instances using k Nearest Neighbour). All of these three algorithms learn a model to rank the instances based on their score values. RIMARC is a method for ranking instances by maximizing the area under the ROC curve. SVMlight is an implementation of Support Vector Machine for ranking instances. RIkNN is a k Nearest Neighbour (kNN) based algorithm that is developed for ranking instances based on similarity metric. We also used RIwkNN, which is the version of RIkNN where the features are assigned weights by experts in the domain. These algorithms are compared on the basis of the AUC of 10-fold stratified cross-validation. Moreover, these ranking algorithms are modified as a classification algorithm and compared on the basis of the accuracy of 10-fold stratified cross-validation. As a by-product, the RIMARC algorithm learns the factors that affect the success in IVF treatment. It calculates feature weights and creates rules that are in a human readable form and easy to interpret. After a decision for a treatment is made, the second aim is to determine which treatment protocol is the most suitable for the couple. In IVF treatment, many different types of drugs and dosages are used, however, which drug and the dosage are the most suitable for the given patient is not certain. Doctors generally make their decision based on their past experiences and the results of research published all over the world. To the best of our knowledge, there are no methods for learning a model that can be used to suggest the best feature values to increase the chance that the class label to be the desired one. We will refer to such a system as Suggestion System. To help doctors in making decision on the selection of the suitable treatment protocols, we present three suggestion systems that are based on well-known machine learning techniques. We will call the suggestion systems developed as a part of this work as NSNS (Nearest Successful Neighbour Based Suggestion), kNNS (k Nearest Neighbour Based Suggestion) and DTS (Decision Tree Based Suggestion). We also implemented the weighted version of NSNS using feature weights that are produced by the RIMARC algorithm. Moreover, we propose performance metrics for the evaluation of the suggestion algorithms. We introduce four evaluation metrics namely; pessimistic metric (mp), optimistic metric (mo), validated optimistic metric (mvo) and validated pessimistic metric (mvp) to test the correctness of the algorithms. In order to help doctors to utilize developed algorithms, we develop a decision support system, called RAST (Risk Analysis and Suggestion for Treatment). This system is actively being used in the IVF center at Etlik Z¨ubeyde Hanım Woman’s Health and Teaching Hospital.Mısırlı, GizemM.S

    Informative predictors of pregnancy after first IVF cycle using eIVF practice highway electronic health records

    Get PDF
    The aim of this study is to determine the most informative pre- and in-cycle variables for predicting success for a first autologous oocyte in-vitro fertilization (IVF) cycle. This is a retrospective study using 22,413 first autologous oocyte IVF cycles from 2001 to 2018. Models were developed to predict pregnancy following an IVF cycle with a fresh embryo transfer. The importance of each variable was determined by its coefficient in a logistic regression model and the prediction accuracy based on different variable sets was reported. The area under the receiver operating characteristic curve (AUC) on a validation patient cohort was the metric for prediction accuracy. Three factors were found to be of importance when predicting IVF success: age in three groups (38-40, 41-42, and above 42 years old), number of transferred embryos, and number of cryopreserved embryos. For predicting first-cycle IVF pregnancy using all available variables, the predictive model achieved an AUC of 68% + /- 0.01%. A parsimonious predictive model utilizing age (38-40, 41-42, and above 42 years old), number of transferred embryos, and number of cryopreserved embryos achieved an AUC of 65% + /- 0.01%. The proposed models accurately predict a single IVF cycle pregnancy outcome and identify important predictive variables associated with the outcome. These models are limited to predicting pregnancy immediately after the IVF cycle and not live birth. These models do not include indicators of multiple gestation and are not intended for clinical application.IIS-1914792 - National Science Foundation; N00014-19-1-2571 - Office of Naval Research Global; GM135930 - Office of Extramural Research, National Institutes of HealthPublished versio

    Modeling three sources of uncertainty in assisted reproductive technologies with probabilistic graphical models

    Full text link
    Embryo selection is a critical step in assisted reproduction: good selection criteria are expected to increase the probability of inducing a pregnancy. Machine learning techniques have been applied for implantation prediction or embryo quality assessment, which embryologists can use to make a decision about embryo selection. However, this is a highly uncertain real-world problem, and current proposals do not model always all the sources of uncertainty. We present a novel probabilistic graphical model that accounts for three different sources of uncertainty, the standard embryo and cycle viability, and a third one that represents any unknown factor that can drive a treatment to a failure in otherwise perfect conditions. We derive a parametric learning method based on the Expectation-Maximization strategy, which accounts for uncertainty issues. We empirically analyze the model within a real database consisting of 604 cycles (3125 embryos) carried out at Hospital Donostia (Spain). Embryologists followed the protocol of the Spanish Association for Reproduction Biology Studies (ASEBIR), based on morphological features, for embryo selection. Our model predictions are correlated with the ASEBIR protocol, which validates our model. The benefits of accounting for the different sources of uncertainty and the importance of the cycle characteristics are shown. Considering only transferred embryos, our model does not further discriminate them as implanted or failed, suggesting that the ASEBIR protocol could be understood as a thorough summary of the available morphological features

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations

    Recent developments in genetics and medically assisted reproduction: from research to clinical applications

    Get PDF
    Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved
    corecore