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used in the comparison are Naïve Bayes Classifier and Ran-
dom Forest. The comparison is done in terms of area under 
the ROC curve, accuracy and execution time, using tenfold 
stratified cross-validation. The results indicate that the pro-
posed SERA algorithm has a potential to be used successfully 
to estimate the probability of success in medical treatment.
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1 Introduction

Assisted reproductive technologies (ART) give infertile 
couples a chance to have a baby. The first baby born using 
in vitro fertilization (IVF) was in 1978. Since 1978, differ-
ent techniques, including intracytoplasmic sperm injection, 
pre-implantation genetic diagnosis, gamete and embryo 
cryopreservation, have been used as new treatment options 
for clinicians to achieve greater success.

Widespread use of the Internet provides information to 
infertile couples and raises their awareness of treatment 
options. Couples with infertility problems want to know 
their chances of having a baby when selecting the best 
treatment options that are based on their underlying pathol-
ogy. Since the cost of IVF treatment per cycle is very high, 
estimating the chance of success rate per treatment cycle 
by using patients’ personal parameters constitutes a great 
advantage in the field of reproductive medicine.

Machine learning techniques can be used to analyze a 
clinical database, including patient characteristics, all avail-
able data for ovarian hyperstimulation and pregnancy out-
come. The models learned by these techniques can be used 
to estimate the probability of success for an infertile couple.

Abstract In medicine, estimating the chance of success for 
treatment is important in deciding whether to begin the treat-
ment or not. This paper focuses on the domain of in vitro fer-
tilization (IVF), where estimating the outcome of a treatment 
is very crucial in the decision to proceed with treatment for 
both the clinicians and the infertile couples. IVF treatment is 
a stressful and costly process. It is very stressful for couples 
who want to have a baby. If an initial evaluation indicates a 
low pregnancy rate, decision of the couple may change not 
to start the IVF treatment. The aim of this study is twofold, 
firstly, to develop a technique that can be used to estimate 
the chance of success for a couple who wants to have a baby 
and secondly, to determine the attributes and their particular 
values affecting the outcome in IVF treatment. We propose 
a new technique, called success estimation using a ranking 
algorithm (SERA), for estimating the success of a treatment 
using a ranking-based algorithm. The particular ranking algo-
rithm used here is RIMARC. The performance of the new 
algorithm is compared with two well-known algorithms that 
assign class probabilities to query instances. The algorithms 
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In this paper, we propose a new technique, called SERA, 
for success estimation using ranking algorithms, which can 
be used for estimating the probability of success for a treat-
ment cycle. The SERA algorithm can be used with any rank-
ing algorithm that assigns each instance a score value to be 
used for ranking. We exemplify the proposed method using 
a dataset collected from IVF treatment records in a hospital. 
For a new patient couple, such a ranking method assigns a 
score to the couple and determines its rank among the train-
ing instances. Then, the chance of the treatment success for 
the new couple can be estimated as the ratio of successful 
training instances among those with similar score values.

The SERA algorithm, proposed in this study, is imple-
mented using the RIMARC (ranking instances by maxi-
mizing the area under ROC curve) algorithm [11]. There 
are several reasons for choosing the RIMARC algorithm 
for SERA. Firstly, the model constructed by the RIMARC 
algorithm is a set of human interpretable rules that indi-
cate the attributes and their particular values affecting the 
outcome. Therefore, the medical experts can validate the 
risk factors affecting the outcome in the IVF treatment. 
Another important characteristic of RIMARC is that it has 
no parameters that need to be tuned for the optimum per-
formance. Therefore, there is no need for a parameter opti-
mization step after the edition of new training data. Finally, 
the RIMARC algorithm is robust to missing feature values; 
in that, it does not require imputation of artificial values 
nor removal of cases or features with missing values; and it 
uses whatever data are available.

In IVF treatment, couples would like to know the 
chance of success considering their underlying pathol-
ogy. An infertile couple would like to decide whether to 
go on with treatment considering the chance and the risks 
they are willing to take. We measure the success of such a 
chance estimation algorithm mainly in terms of AUC (area 
under ROC curve). We compared SERA with some well-
known algorithms that assign class probabilities to query 
instances. The algorithms used in the comparison are Naïve 
Bayes Classifier [8] and Random Forest [2]. The compari-
son is done in terms of both AUC and accuracy, using ten-
fold stratified cross-validation. The results indicate that the 
proposed SERA algorithm is successful in estimating the 
probability of success in a medical treatment.

Another aim of this study is to determine the attributes 
and their particular values that affect the outcome of an IVF 
treatment. This is done by executing the RIMAC algorithm 
using the whole cohort as the training data. RIMARC learns 
a rule for each feature. The rules are in a form interpretable 
by experts in the domain. These results help the experts to 
validate the model constructed for predicting the outcome.

The remainder of the paper is organized as follows: 
Sect. 2 introduces the IVF dataset used in this study. In 
Sect. 3, the proposed SERA algorithm is described. The 

SERA algorithm is compared with four well-known clas-
sification algorithms. The results of the experiments and 
some of the rules learned by RIMARC are given in Sect. 4. 
These rules and related work are discussed in Sect. 5. 
Finally, Sect. 6 concludes with future research directions.

2  Dataset

A dataset of 1456 patients has been compiled by the IVF 
Unit at Etlik Zubeyde Hanim Women’s Health, Teaching 
and Research Hospital, located in Ankara, Turkey. This study 
was approved by the Local Education Planning Committee 
of the hospital. For each patient, the dataset contains demo-
graphic and clinical parameters, as independent features. We 
formed the dataset for the experiments by taking only the 
features that are potentially relevant for the algorithms. The 
dataset has one dependent feature, called Result, that has the 
value P (for success) if the woman had a clinical pregnancy 
which is defined as the detection of fetal heart beat on the 
ultrasound examination, and the value N (for failure) if the 
patient had only a chemical pregnancy or no pregnancy, at 
all. The number of P labeled cases is 423, and the N labeled 
cases is 1033. Therefore, the default accuracy is 0.709, pre-
dicting the class label of all query instances as N.

The IVF dataset contains only the clinical features 
that are known before making a decision to proceed with 
the IVF treatment. The dataset contains 64 independent 
features; 52 of them are related to the female, and 12 are 
related to the male. The independent features included in 
the IVF dataset are summarized in Table 1. Among the 
independent features, 43 of them take on categorical val-
ues and 21 of them are numerical. Categorical features are 
indicated with a (C), binary (categorical feature with only 
two values) ones with a (B) and numerical ones with a (N). 
Features that take on only binary values, such as Yes/No or 
True/False, are treated as categorical. About 13.5 % of the 
feature values in the dataset are missing.

3  Proposed estimation algorithm

The proposed success estimation algorithm in this study, 
SERA, uses RIMARC as its ranking algorithm. Therefore, 
we first sketch the RIMARC algorithm with an example 
of computing the score for a patient couple, and then the 
SERA algorithm is described.

3.1  The RIMARC algorithm

RIMARC is a supervised algorithm that learns a scor-
ing function to rank instances [11]. It does not make any 
assumptions about the data and has no parameters to tune 
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for optimizing the performance. The RIMARC algorithm 
aims to maximize the AUC value, since the area under 
the ROC curve (AUC) has become a widely accepted 
performance evaluation metric in evaluating the quality 
of ranking. It learns a ranking function which is a lin-
ear combination of nonlinear score functions constructed 
separately for each feature. Each of these nonlinear score 
functions aims to maximize the AUC by considering 
only the corresponding feature in ranking. It has been 
shown that, for a single categorical feature, it is possible 
to derive a scoring function that achieves the maximum 
possible AUC. Therefore, the RIMARC algorithm first 
discretizes all continuous features into categorical ones, 
in a way that optimizes the AUC, by using the MAD2C 
algorithm proposed by Kurtcephe and Güvenir [18].

A categorical feature f has a finite set of values. Let 
Vf = {v1, v2, …, vk} be the set of values for a given categor-
ical feature f. Consider a dataset that includes only this fea-
ture and a class value for each instance. That is, an instance 
is represented by two values: f value and class label. A 
scoring function sf() can be defined to rank the elements 

of Vf. According to this scoring function, vi� vj if and only 
if sf (vi) ≤ sf

(

vj
)

. Note that the problem of ranking the 
instances in a dataset is reduced to the problem of ranking 
the values of a feature. Güvenir and Kurtcephe showed that 
a scoring function has to satisfy the following condition in 
order to achieve the maximum AUC [11]:

Here Pi is the number of positive (P labeled) instances 
and Ni is the number of negative (N labeled) instances, for 
the value vi of feature f. Note that any scoring function that 
satisfies this condition will result in the maximum possi-
ble AUC in ranking the dataset with a single feature. It is 
important to note that, for some values of i, Ni may be 0. 
In such cases, the ranking function will have an undefined 
value. In order to overcome this problem, the RIMARC 
algorithm defines the ranking function as follows:

(1)sf (vi) ≤ sf
(

vj
)

iff
Pi

Ni

<
Pj

Nj

(2)sf (vi) =
Pi

Pi + Ni

Table 1  Features in IVF dataset (N: numeric, C: Categorical, B: Binary)

* BMI body mass index, FSH follicle-stimulating hormone, LH luteinizing hormone, E2 estradiol, G gravida, A abortus, Y living children, DM 
diabetes mellitus, HT hypertension, PCOS polycystic ovary syndrome, HSG hysterosalpingography, TESE testicular sperm extraction

Variables related to female Variables related to male

Female_Age (N) Laparoscopy (C) Male_Factor (B)

Female_Blood_Type (C) Hysteroscopy (C) Male_Age (N)

Height (N) Laparoscopic_Surgery (C) Male_Blood_Type (C)

Weight (N) Hysteroscopic_Surgery (C) Male_Genital_Surgery (C)

BMI* (N) Abdominal_Surgery (C) Semen_Analysis_Category (C)

Tubal_Factor (B) Abdominal_Surgery_Category (C) Male_FSH (N)

Age_Related_Infertility (B) Gynecologic_Surgery (C) Sperm_Count (N)

Ovulatory_Dysfunction (B) Ovarian_Surgery (C) Sperm_Motility(N)

Unexplained_Infertility (B) Tubal_Surgery (C) Total_Progressive_Sperm_Count (N)

Severe_Pelvic_Adhesion (B) Uterine_Surgery (C) Sperm_Morphology (N)

Endometriosis (B) Duration_Infertility (N) Testicular_Biopsy (C)

Cycle_No. (N) PCOS* (B) TESE*_Outcome (C)

Baseline_FSH* (N) HSG*_Cavity (C) Male_Karyotype (C)

Baseline_LH* (N) HSG*_Tubes* (C)

Baseline_E2* (N) Hydrosalpinx (C)

G* (N) Office_Hysteroscopy(C)

A* (N) Office_Hysteroscopic_Incision (B)

Y* (N) Office_Hysteroscopic_Procedure (C)

DM* (C) Total_Antral_Follicle_Count (N)

HT* (B) Right_Ovarian_Antral_Follicle_Count (N)

Thyroid_Disease (C) Left_Ovarian_Antral_Follicle_Count (N)

Anemia (B) Hyperprolactinemia (B)

Laparotomy (C) Hepatitis (C)

Cyst_Aspiration (B) Endometrioma_Surgery (C)

Embryocryo (B) Localization_Myoma_Uteri (C)
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This newly defined scoring function satisfies the condi-
tion in Eq. (1) and furthermore is interpretable by medi-
cal doctors, since it is simply the probability of the p label 
among all instances with value vi. This probability value is 
easily interpretable by humans. The instances of the data-
set, which has a single categorical feature f, are sorted by 
the scoring function sf(), and the AUC is computed. The 
AUC obtained by this scoring function is guaranteed to be 
between 0.5 and 1.0 [11]. If the feature f is irrelevant, the 
AUC will be 0.5. On the other hand, if the single feature f is 
sufficient to predict the class label, all positive and negative 
instances will be separated by the scoring function sf(), and 
the AUC will be 1.0. The RIMARC algorithm uses the AUC 
value to measure the weight (relevancy) of the feature f as:

where AUCf is the AUC obtained for feature f. Therefore, 
the weight of a feature will be in the range of [0, 1]. The 
RIMARC algorithm computes the weight of each feature 
by setting up a sub-dataset, which is composed of only that 
feature and the class.

As an example, suppose that the AUC computed for the 
feature f is 1. This means perfect ordering, and this is the max-
imum value that AUC can have. That is, all instances in the 
training set can be ranked by using only the values of feature 
f. Therefore, we expect that query instances can be ranked cor-
rectly among the training set by using only feature f.

The rule model learned by the RIMARC algorithm is 
used to compute the score for a given query patient q as:

Here wf represents the weight of the feature f, and sf(q) 
represents the score associated with the value of feature f 
for patient couple q, queried. The RIMARC algorithm is 
robust to missing feature values. The features whose val-
ues in query q are missing are simply ignored when com-
puting the score for that query. For example, consider a 
25-year-old female, whose BMI is 25.7, she does not have 
age-related infertility, the semen analysis category for her 

(3)wf = 2
(

AUCf−0.5
)

,

(4)
score(q) =

∑

f w
q
f .sf (q)

∑

f w
q
f

w
q
f =

{

wf qf is known

0 qf is missing

partner is asthenospermia, and the values of all other fea-
tures are missing. Then the score of the treatment for this 
couple can be computed as shown in Table 2.

In summary, the RIMARC ranking algorithm does not 
have parameters that have to be tuned after the addition 
of new records about existing or new patients. Further, 
the ranking knowledge constructed by RIMARC includes 
information about the importance of features as weights 
and effects of particular values or ranges in the success of 
the treatment in terms of scores. This form of knowledge 
can be analyzed and verified by the domain experts.

Another important characteristic of the REMARC algo-
rithm is its robustness to missing feature values. Since it 
processes each feature individually, missing feature val-
ues are simply ignored when processing the corresponding 
feature. Therefore, instead of ignoring a complete patient 
record with missing feature values, or imputing them with 
artificial values, it uses all data available about a patient.

3.2  The SERA algorithm

The SERA algorithm is designed to estimate the chance 
of a treatment as the probability of success of the treatment 
for a patient couple. It uses the score assigned to the couple 
by a ranging algorithm to determine the similar past cases. 
Although it can be any ranking algorithm that assigns score 
values for the instances, it uses the RIMARC algorithm for the 
reasons given above. The ranking score value is used to locate 
the query patient among the training cases. However, what we 
need is the chance of success for a new infertile couple. On the 
other hand, semantically, the word “chance” refers to the prob-
ability. In order to calculate the chance of success of IVF treat-
ment for a query patient q, we select the first k (e.g., k = 100) 
past (training) patients whose ranking scores are closest to 
score(q), the score computed by the query couple. If the num-
ber of successful cases among these k similar training cases is 
Pcount, then the chance of success for q is reported as

That is, chance(q) represents the probability of suc-
cess considering the most similar k past cases in terms of 

(5)chance(q) =
Pcount

k

Table 2  An example of 
computing score using 
RIMARC

Bold values indicate the results

Feature Feature weight wf Feature value Score value sf(q) Weighted score wf·sf(q)

Female_Age 0.1753 25 0.2375 0.0416

BMI 0.1443 25.7 0.2169 0.0313

Semen_Analysis_Category 0.1407 Astheno 0.3571 0.0503

Age_Related_Infertility 0.1178 No 0.2245 0.0264

Sum 0.5781 0.1496

Score(q) = 0.1496/0.5781 = 0.2587
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the score values. An alternative approach, to determine 
the neighbors, is to fix the radius r, and select all train-
ing instances p, such that |score(q)− score(p)| < r, as the 
neighbors of q.

It should be noted that the chance(q) is the probability 
among the past instances with similar score values. In real-
ity, one would be interested in patient similarity in terms of 
metrics such as Euclidean distance. Similar instances have 
similar score values, whereas instances with similar score 
values may look different. This might appear to be a limita-
tion. However, using a successful scoring function, it leads 
to efficient searches for similar cases. The block diagram of 
the SERA algorithm is given in Fig. 1.

The SERA algorithm can also be used for binary clas-
sification, where the class labels are P and N. As shown in 
Eq. (6), the class label of a query instance q can be pre-
dicted as P if the chance(q) is higher than 50 %.

4  Results

In this section, we present a comparison of the SERA 
algorithm with some well-known classification algorithms 
that assign class probabilities to query instances. The 
algorithms used in the comparison are Naïve Bayes Clas-
sifier [8] and Random Forest [2]. Despite their simplicity, 
Naïve Bayes Classifiers have worked well in many com-
plex real-world situations. Further, they are suited when 
the dimensionality of the inputs is high. The choice of 
Random Forest is due to the fact that they cope with the 
problem of overfitting the training data by averaging mul-
tiple deep decision trees, trained on different parts of the 

(6)prediction(q) =

{

P chance(q) > 0.5

N otherwise

same training set, with the goal of reducing the variance 
[13].

The comparison is performed in terms of area under the 
ROC curve and accuracy, using tenfold stratified cross-val-
idation, over 200 random datasets obtained by shuffling the 
original dataset. Tests for these algorithms are performed 
using the Weka toolbox, which is a collection of machine 
learning algorithms, implemented in the Java language 
[12]. The Naïve Bayes Classifier and Random Forest algo-
rithms are implemented as java classes as Naive Bayes and 
Random Forest. These classes replace all missing values 
for nominal and numeric attributes in a dataset with the 
modes and means from the training data, respectively. In 
our experiments, all parameters for the algorithms are set 
to their default values. Although, in general, classification 
algorithms are badly affected from the curse of dimension-
ality, we did not apply any technique to reduce the number 
of features, since one of the aims of this study is to deter-
mine the attributes and their particular values that affect the 
outcome of an IVF treatment.

The SERA algorithm is also implemented in the Java 
language. The number of nearest neighbors considered by 
SERA is set to 100 (default). Table 3 displays the results of 
the experiments1 conducted using the IVF dataset. As seen 
from the table, SERA outperforms the other classifiers in 
terms of both AUC and accuracy. Also SERA is the second 
fasted algorithm in terms of the execution time.

We further experimented with the choice of k (number 
of similar instances considered) on the AUC and accu-
racy with the IVF dataset. Both AUC and accuracy remain 

1 Experimented are performed on a PC with 64-bit Windows 7 OS, 
3 GHz, Core2Duo CPU and 4 GB RAM.

Fig. 1  Block diagram of the SERA algorithm
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almost constant for values k > 40. The accuracy slightly 
drops when k > 230. The graph is shown in Fig. 2.

Another aim of this study is to determine the attributes 
and their particular values that affect the outcome of an 
IVF treatment. This is done by executing the RIMAC algo-
rithm using the whole cohort as the training data. RIMARC 
learns a rule for each feature. The rules are in form inter-
pretable by experts in the domain. These rules help the 
experts to validate the model constructed for predicting 
the outcome. The feature weights learned by RIMARC, 
using the whole cohort as the training set, are shown in 
Table 4. For continuous attributes, the threshold values over 
or below which the chances of success change drastically 
are very valuable. The RIMARC algorithm determines 
these threshold values by discretizing the continuous attrib-
utes using the MAD2C algorithm [18]. Some of the rules 
learned for some of the features, using the whole cohort as 
the training set to RIMARC, are shown in Fig. 3.

Reproductive aging occurs as a consequence of the 
decrease in the quantity and quality of the ovarian follicles 
[34]. Approximately 1000 follicles are depleted per month 
during the reproductive period, and this depletion increases 
significantly after the age of 35 [9]. The antral follicle 
count is a reliable diagnostic test for the evaluation of ovar-
ian reserve. Ovarian reserve tests reflect the quantitative 
aspect of the ovarian reserve status. These tests are mainly 
used to predict the response of the ovarian hyperstimula-
tion. However, prediction of the success of IVF treatment 
is mainly based on the quality of the oocytes. Recently, a 
meta-analysis by Broer et al. [3] assessed the additional 
value of the ovarian reserve test in predicting IVF success. 
According to the results of the RIMARC, female age and 
total antral follicle count are significant predictors of IVF 
success. Clinical pregnancy rates significantly decrease 
after the age of 34.5 and when the total antral follicle count 
falls below 10.5.

The impact of obesity on the outcome of infertility treat-
ment is a contentious issue. While some studies associate 
obesity with the need for higher doses of gonadotropins, 
increased cycle cancellation rates, fewer oocyte yield and 
higher miscarriage rates [10, 24, 32], other studies have 

been unable to find any negative effect of obesity on IVF 
outcome [7, 20]. In experiments with RIMARC, an impor-
tant decrease in the clinical pregnancy rate was observed 
when the BMI was higher than 27.9.

5  Discussion

Infertility is defined as the failure to conceive after 
12 months or more of regular unprotected intercourse [29]. 
In 2010, among women 20–44 years of age who were 
exposed to the risk of pregnancy, 1.9 % were unable to 
attain a live birth (primary infertility) [25]. Of the women 
who had had at least one live birth and were exposed to the 
risk of pregnancy, 10.5 % were unable to have another child 
(secondary infertility). The major causes of infertility are 
as follows: ovulatory dysfunction (15 %), tubal and perito-
neal pathology (35 %), male infertility (35 %), unexplained 
infertility (10 %) and unusual reasons (5 %) [4, 15].

IVF involves a sequence of coordinated procedures that 
begin with controlled ovarian hyperstimulation (COH), fol-
lowed by retrieval of oocytes from the ovaries under the 
guidance of transvaginal ultrasonography, fertilization of 
the oocytes and spermatozoa at the embryology laboratory, 
and finally, embryo transfer into the uterine cavity.

Table 3  Results of AUC, 
accuracy and execution time on 
the IVF dataset

The values are mean (±SD) over 200 runs with random shuffling of the dataset (p < 0.0005 for all algo-
rithms)

Algorithm AUC Area under ROC curve Accuracy Execution
time (s)

SE 95 % Confidence interval

Lower bound Upper bound

SERA 0.833 (±0.003) 0.012 0.809 (±0.003) 0.857 (±0.004) 0.844 (±0.004) 1.4 (±0.2)

NBC 0.794 (±0.002) 0.014 0.767 (±0.002) 0.822 (±0.002) 0.783 (±0.002) 0.8 (±0.1)

Random forest 0.769 (±0.009) 0.014 0.741 (±0.010) 0.797 (±0.008) 0.792 (±0.008) 2.0 (±0.1)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300 400 500

k (number of similar instances considered)

AUC

Accuracy

Fig. 2  Effect of k on AUC and accuracy
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Controlled ovarian hyperstimulation is used to induce 
the growth of multiple follicles. Numerous treatment regi-
mens have been described; the most preferred agents are 
gonadotropins in combination with a gonadotropin-releas-
ing hormone (GnRH) agonists or antagonists. GnRH ago-
nists or antagonists are mainly used to prevent a premature 
LH surge. COH protocols are described according to the 
use of oral contraceptives, timing and duration of GnRH 
agonists such as the long, short, micro-dose flare up, and 
stop protocol. The selection of the COH protocols in clini-
cal practice is based mainly on the patient’s age and ovar-
ian reserve (poor or hyperresponder).

FSH-containing gonadotropins are used for ovar-
ian stimulation. Human menopausal gonadotropins are 
extracted from the urine of postmenopausal women. Highly 
purified urinary FSH preparations with no contaminating 

urinary proteins are produced. Advanced technology is 
used to produce recombinant gonadotropins that are free 
of contamination of proteins and viruses. All gonadotro-
pins are orally inactive [1]. Ovarian reserve and body mass 
index are important parameters in the determination of the 
daily gonadotropin dosage.

Oocyte retrieval is generally performed approximately 
34–36 h after hCG administration. The standard technique of 
oocyte retrieval is performed under the guidance of the trans-
vaginal ultrasonography with intravenous sedation anesthesia.

To as close as possible to the time of the oocyte retrieval, 
a semen sample is obtained by masturbation. If a patient 
has no sperm in the ejaculate (azoospermia), a variety of 
surgical approaches is used for sperm extraction. Micro-
scopic testicular sperm extraction is the most complicated 
procedure among them.

Table 4  Feature weights 
learned by RIMARC

Feature Weight Feature Weight

Laparoscopic_Surgery 0.6455 Laparotomy 0.0909

Total_Antral_Follicle_Count 0.5498 Male_Karyotype 0.0834

Right_Ovarian_Antral_Follicle_Count 0.5163 HSG_Tubes 0.0783

Left_Ovarian_Antral_Follicle_Count 0.4934 Myoma_Uteri 0.0737

Hysteroscopic_Surgery 0.457 Uterine_Surgery 0.0711

TESE_Outcome 0.4254 Sperm_Morphology 0.0708

Female_Age 0.3957 Abdominal_Surgery 0.053

Male_FSH 0.3484 Cycle_No 0.0508

Male_Blood_Type 0.3118 Tubal_Factor 0.0496

Male_Age 0.2777 Cyst_Aspiration 0.0384

Baseline_FSH 0.2764 Ovarian_Surgery 0.0354

PCOS 0.2258 Male_Factor 0.0332

Total_Progressive_Sperm_Count 0.2151 Endometrioma_Surgery 0.0276

Sperm_Count 0.2098 Abdominal_Surgery_Category 0.0274

Localization_Myoma_Uteri 0.2021 Thyroid_Disease 0.0273

Age_Related_Infertility 0.1959 Testicular_Biopsy 0.0256

Ovulatory_Dysfunction 0.1791 Laparoscopy 0.0231

Gynecologic_Surgery 0.1779 Hysteroscopy 0.0197

Semen_Analysis_Category 0.1777 DM 0.0141

Unexplained_Infertility 0.1775 Tubal_Surgery 0.0125

Duration_Infertility 0.1567 HT 0.0122

BMI 0.1534 Y 0.012

Height 0.1339 Endometriosis 0.0118

Weight 0.1333 Embryocryo 0.0117

Female_Blood_Type 0.127 Hydrosalpinx 0.0104

Office_Hysteroscopic_Procedure 0.1245 G 0.0101

Office_Hysteroscopy 0.1238 Office_Hysteroscopic_Incision 0.01

Baseline_LH 0.1196 A 0.0093

HSG_Cavity 0.1048 Hyperprolactinemia 0.0085

Male_Genital_Surgery 0.1039 Hepatitis 0.0079

Sperm_Motility 0.096 Severe_Pelvic_Adhesion 0.0047

Baseline _E2 0.095 Anemia 0.0004
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In the IVF procedure, an oocyte is incubated with 
100,000–200,000 motile spermatozoa in vitro. If the 
selected spermatozoa is injected into the ooplasm using 
an injection pipette under a microscope, this procedure is 
called intracytoplasmic sperm injection.

The main important factors affecting the success rate 
of IVF are woman’s age and the cause of infertility. Other 
prognostic factors are as follows: hydrosalpinx, uterine 
myomas, smoking and obesity.

Clinical pregnancy is defined as the presence of an 
intrauterine gestational sac with fetal cardiac activity as 
confirmed by transvaginal ultrasonography. Chemical preg-
nancy is accepted as low level of βhCG that is not con-
firmed through visualization of the gestational sac.

We showed that machine learning systems could help to 
determine the relative weights of the risk factors and the 
relative effects of the particular values of these risk factors. 
Most importantly, machine learning systems could predict 

Total_Antral_Follicle_Count (weight: 0.5498)  
If Total_Antral_Follicle_Count="<2.5" Then Score=0.0619 
If Total_Antral_Follicle_Count="2.5..6.5" Then Score=0.1276 
If Total_Antral_Follicle_Count="6.5..8.5" Then Score=0.2129 
If Total_Antral_Follicle_Count="8.5..10.5" Then Score=0.2455 
If Total_Antral_Follicle_Count="10.5..11.5" Then Score=0.3125 
If Total_Antral_Follicle_Count="11.5..13.5" Then Score=0.3235 
If Total_Antral_Follicle_Count="13.5..14.5" Then Score=0.5 
If Total_Antral_Follicle_Count="14.5..15.5" Then Score=0.8462  
If Total_Antral_Follicle_Count="15.5<" Then Score=1.0 
Female_Age (weight: 0.3957) 
If Female_Age="<20.5" Then Score =1.0 
If Female_Age="20.5..23.5" Then Score=0.675  
If Female_Age="23.5..24.5" Then Score =0.5238 
If Female_Age="24.5..26.5" Then Score =0.5176 
If Female_Age="26.5..29.5" Then Score =0.3875 
If Female_Age="29.5..34.5" Then Score =0.3075 
If Female_Age="34.5..36.5" Then Score =0.2185 
If Female_Age="36.5..38.5" Then Score =0.1655 
If Female_Age="38.5..39.5" Then Score =0.1648 
If Female_Age="39.5..40.5" Then Score =0.0769 
If Female_Age="40.5..41.5" Then Score =0.0476 
If Female_Age="41.5<" Then Score =0.0 

BMI (weight: 0.1534) 
If BMI="<15.86" Then Score =0.0 
If BMI="15.86..17.7627" Then Score =0.6667 
If BMI="17.7627..18.5955" Then Score =0.4285 
If BMI="18.5955..18.9399" Then Score =0.375 
If BMI="18.9399..20.0346" Then Score =0.3593 
If BMI="20.0346..21.6387" Then Score =0.344 
If BMI="21.6387..22.6614" Then Score =0.3333 
If BMI="22.6614..25.6948" Then Score =0.3224 
If BMI="25.6948..26.5865" Then Score =0.3163 
If BMI="26.5865..27.9333" Then Score =0.303 
If BMI="27.9333..36.0197” Then Score =0.2189 
If BMI="36.0197..41.6197" Then Score =0.2 
If BMI="41.6197..50.2" Then Score =0.1667 
If BMI="50.2<" Then Score =0.0 

TESE_Outcome (weight: 0.4254) 
If TESE_Outcome="motil" Then Score =0.30769232 
If TESE_Outcome="immotil" Then Score =0.3026316 
If TESE_Outcome="no sperm" Then Score =0.0 

Male_FSH (weight: 0.3484) 
If Male_FSH="43.96<" Then Score =0.0 
If Male_FSH="3.4450002..14.35" Then Score =0.43396 
If Male_FSH="14.35..21.7" Then Score =0.2413793 
If Male_FSH="21.7..23.75" Then Score =0.2222 
If Male_FSH="2.0900002..3.4450002" Then Score =0.1875 
If Male_FSH="23.75..43.96" Then Score =0.15151516 
If Male_FSH="<2.0900002" Then Score =0.0 
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the personalized chance of the outcome related to these fac-
tors to help decide whether to start the complex IVF treat-
ment procedure.

IVF treatment is a long, complex and costly process. 
It is very stressful for couples who want to have a baby. 
Although there many machine learning applications for 
clinical decision support systems in the literature [6, 19, 
22, 27], systems related to obstetrics is limited [28]. The 
literature shows that in early studies, case-based reasoning 
systems and neural networks have been constructed to pre-
dict the outcome of IVF [16, 17]. Subsequently, decision 
tree models are constructed to predict the outcome of IVF 
treatment [33, 34]. The most recent studies on IVF propose 
Naive Bayes, Bayesian Classification and Support Vec-
tor Machines to increase the chance of having a baby after 
IVF treatment. Uyar et al. [35] studied for implantation 
prediction on IVF embryos using Naive Bayes classifica-
tion. In another study, the embryo implantation prediction 
is defined. In this study, embryo-based prediction is identi-
fied in order to predict the outcome of IVF treatment and 
an SVM-based learning system is used [37]. In addition, 
there is a study related to predicting implantation poten-
tials of IVF embryos [36]. Predicting the IVF outcome is a 
considerably challenging process, so much research aims to 
address this problem [5, 26].

The area under the ROC curve (AUC) is a widely 
accepted performance measure for evaluating the quality of 
ranking [21]. It has become a popular performance measure 
in the machine learning community after it was discovered 
that accuracy is often a poor metric to evaluate classifier 
performance [13, 14, 23, 30, 31].

6  Conclusions

In vitro fertilization is a common infertility treatment 
method in which female oocytes are inseminated by sperm 
under laboratory conditions. Given a new candidate for 
IVF, the first important consideration is whether to apply 
the IVF treatment or not. The decision is made mainly 
by the clinician and the couple. Since the IVF treatment 
involves an application of several hormones and medicines 
to both female and male patients, it is a difficult and stress-
ful process. If the chances of success are low, the couple 
may choose not to start the treatment. However, as in many 
areas of medicine it is not possible to construct a mathe-
matical model that, given the values of relevant parameters 
for a couple, returns the outcome of the IVF treatment.

In this paper, we showed that it is possible to learn a 
model, from a set of past cases of IVF treatment, which 
can estimate the outcome of the treatment for a given cou-
ple. We tested three such score-based ranking algorithms, 
namely SERA, Naïve Bayesian Classifier and Random 

Forest. These supervised machine learning algorithms 
applied to a dataset of cases learn a model that can be used 
to estimate the likelihood of success. We applied these 
algorithms to a dataset of cases, where each case, called a 
cycle, represents the values of parameters that are measured 
before applying the IVF treatment, along with the outcome 
of the treatment.

The RIMARC algorithm, used by SERA, has three 
important characteristics for medical applications. Firstly, it 
learns rules about the data, which can be further analyzed by 
medical practitioners. Secondly, it does not have parameters 
that need to be optimized after the addition of new patient 
records. Finally, it is robust to missing feature values, which 
is common in medical datasets. Further, the results of our 
experiments showed that the SERA algorithm outperformed 
the others in terms of both AUC and accuracy.

Further, the RIMARC algorithm calculates feature 
weights and creates rules that are in a human-readable 
form and easy for clinicians to interpret. This character-
istic of RIMARC enables clinicians to validate the model 
constructed.

As a future work, we plan to collect similar datasets 
from other IVF clinics and apply the SERA algorithm. We 
will investigate whether the models agree with the one con-
structed in this study. If the models differ to a large extent, 
then the possible difference in the patient profile should be 
investigated. Further, we plan to apply the SERA algorithm 
to datasets from other disciplines of medicine.
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