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ABSTRACT 

In vitro fertilisation (IVF) comprises a sequence of interventions delivered to the treated woman 

and her embryos. Typically, IVF begins with a period of stimulation, where a patient’s ovaries will 

be stimulated with drugs. This encourages the growth of follicles, which contain eggs. When the 

follicles are sufficiently developed, a trigger is given which causes eggs to be released. These are 

collected in a clinical procedure, and are fertilised with sperm, to produce embryos. The embryos 

are graded on the basis of morphological features, and an embryologist will select the best to be 

transferred to the patient’s uterus. Once embryos are transferred, the hope is that the patient will 

have a successful pregnancy, culminating in the birth of one or more children. 

The multistage treatment structure complicates measurement and modelling of IVF data. First, 

since patient responses to each of these interventions can be measured, outcome reporting is 

complicated by the sheer variety of outcome measures on offer.  Second, since each intervention 

influences not only the immediate patient response, but also responses to interventions delivered 

subsequently, it is difficult to untangle the causal web underlying the IVF process. This in turn 

obfuscates the mechanisms by which IVF interventions ultimately influence the birth outcome, 

representing a barrier to the design of new treatment strategies. Routine statistical models are 

not capable of addressing this challenge. Bespoke approaches are required. 

Our aims were to address methodological issues relating to the measurement and modelling of 

multistage IVF data. After reviewing the existing literature, we investigated outcome reporting 

practices on IVF clinic websites and randomised controlled trials (RCTs). This highlighted the 

multiplicity of measures in use. We identified 815 distinct outcomes in use in IVF RCTs and 51 on 

clinic websites. In relation to trials, this represents a barrier to both data synthesis and 

comparison between treatments. In relation to clinic websites, there is a concern that prospective 

patients will struggle to interpret the different measures, rendering truly informed decision-

making impossible. Selective reporting is another inevitable consequence of outcome 

heterogeneity, common to both research and advertising of IVF. While recognising that different 

measures are suitable for different purposes, we argue for greater standardisation of outcome 

reporting.  National reporting schemes offer one route to clear and consistent reporting for 

consumers.    

Next, we adapted and extended joint modelling approaches used in econometrics, education, and 

toxicity research, to develop methods for the joint analysis of multistage outcomes. These 

methods can accommodate mixed response types (eg: count, ordinal, binary) measured at 

different levels of a multilevel data structure (eg: women and their embryos). We represented 

each response variable by a standard regression submodel, and linked these by specifying an 

underlying multivariate latent structure. Finding that this did not yield useful estimates of effects 

of upstream events on downstream responses, we extended the approach by introducing 

response variables as covariates in downstream submodels.  

Throughout, we emphasise real datasets and research questions. We conclude by building a 

model to estimate the effects of ovarian stimulation on uterine receptivity, which is complicated 

by the fact that stimulation also contributes to the pool of embryos available for transfer. Our 

results suggest deleterious effects of stimulation on embryo implantation and live birth.  
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Chapter 1.  Introduction and literature review 

 

Infertility affects around one in six heterosexual couples in the UK and while IVF is the 

treatment recommended by NICE, success rates are low (ranging from around 32% for 

women under 35 to less than 2% for women over 44, (NHS Choices, 2017)). IVF is a 

complex treatment with multiple stages, and patients may undergo the process several 

times before they are successful. As a result, treatment for infertility is often lengthy and 

both psychologically and financially burdensome, with many patients giving up without 

having a child (Roberts, et al., 2010a, Verberg, et al., 2008). The combination of high 

emotional stakes and low chances of success can make for a discouraging patient 

experience. 

How can we make life better for people undergoing IVF? One way would be to reliably 

predict outcomes of IVF treatment, so that patients could be counselled regarding the 

likelihood of a successful outcome and how long it is likely to take to achieve it. A second 

way would be to increase that likelihood, by improving the treatment delivered. Both of 

these objectives require us to answer the same question: what should we consider to be 

a successful outcome of IVF? We can’t predict success if we don’t know what success 

looks like, and we can’t improve treatment if we don’t know the desired result. Even if 

there is broad agreement that the desired outcome of treatment is the birth of a healthy 

child, there remains considerable scope for disagreement between stakeholders: 

clinicians emphasise safety (eg: Min, et al., 2004); patients prefer expediency and a 

reduction in overall burden (Roberts, et al., 2010a); clinics have commercial interests and 

favour outcome definitions that cast their performance in a favourable light (Abdalla, et 

al., 2010). Since these perspectives may not coincide, there is a need to consider the 

implications of the choice of endpoint for the inferences we make about IVF. 

 

 IVF is a multistage treatment 1.1

 

IVF is a complex, multistage process consisting of stimulation of the ovaries, retrieval and 

fertilisation of eggs and the transfer of some or all of the resulting embryos to the 

patient’s uterus (Van Voorhis, 2007). Some of these embryos may implant, resulting in 
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pregnancy, and any of those implanted may result in a live birth. Those embryos not used 

for the initial ‘fresh’ transfer may be cryopreserved, so that they can later be thawed and 

transferred in subsequent attempts (Van Voorhis, 2007). A patient may repeat this entire 

sequence of stimulation followed by the transfer of fresh and then frozen embryos 

multiple times before achieving a live birth. Alternatively, a patient may abandon 

treatment without managing to have a child (Pelinck, et al., 2007, Soullier, et al., 2008, 

Verberg, et al., 2008, Verhagen, et al., 2008). Figure 1 shows the multistage and 

potentially cyclical nature of IVF treatment.  

Due to the multistage nature of IVF, the treatment is heterogeneous in nature. Clinics 

differ in the specific techniques and algorithms they use at each stage of the process, 

including how a patient's ovaries are stimulated and how embryos are cultured, selected 

and frozen (whether or not these variations actually impact clinical outcomes is beyond 

the scope of the present discussion). They also differ in relation to `higher-level' policies 

including how they select which patients to treat and how many cycles they will offer 

before refusing to provide further treatment (Sharif and Afnan, 2003). In addition to 

differences between centres, treatment will vary between patients within the same 

centre. The stimulation protocol may be to some extent personalised on the basis of 

presumed predictive markers of ovarian response, for example (La Marca and Sunkara, 

2014). Moreover, the treatment delivered is to some extent dynamic or reactive, with the 

outcome at earlier stages determining what is done subsequently. In particular, the 

number and maturity of eggs retrieved post-stimulation restricts the available options in 

the next stages of treatment. Small numbers or immaturity of eggs will result in fewer 

good embryos available for transfer, and this will dictate the number and quality of 

embryos transferred as well as the number of spare embryos available for frozen 

transfers. Conversely, if the patient has a hyper-response to stimulation, resulting in the 

release of an excessive yield of eggs, it might be necessary to freeze them all for later 

transfer as a precaution against ovarian hyper stimulation syndrome (OHSS) (Fiedler and 

Ezcurra, 2012).  Part of the challenge of measuring IVF responses lies in understanding 

these sources of variation and working out how they should be accommodated in 

outcome measures and statistical analyses. 
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Figure 1: IVF as a multistage treatment. The ovaries are stimulated to produce oocytes (eggs), which are collected and 

fertilised to make embryos. The embryos are cultured for several days and the best are selected for transfer. The 

remainder may be frozen for future use. If the embryo transfer fails (or results in a pregnancy which is not carried to 

term) then some of the frozen embryos might be thawed and transferred. Alternatively (or sometimes additionally, 

following a failed frozen transfer attempt) the patient may undergo another round of ovarian stimulation, starting a 

new cycle. 

 

 Measuring the outcome of IVF. What does the literature say? 1.2

Couples undergo IVF to have a baby. However, the simplicity of this goal belies the 

complexity of measuring success. As a result, there is an extensive literature pertaining to 

outcome definition in IVF, cataloguing an array of discordant perspectives. Much of this 

was triggered by a proposal made by Min and colleagues (2004) that the success of a 

particular IVF treatment should be evaluated according to whether or not it resulted in 

the birth of a singleton (as opposed to twin or triplet), term gestation (as opposed to 

premature) baby.  Their assertion was that performance of an IVF clinic should be 

evaluated by the proportion of treatments that, once initiated, resulted in a birth meeting 
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these criteria. They called this measure ‘Birth Emphasising a Successful Singleton at 

Term’, or ‘BESST’. BESST serves as an example of some of the things we have to consider 

when choosing an outcome measure for IVF. The authors specified the event that they 

thought should be taken as the target of treatment (singleton, term birth - the numerator 

of the measure). They also specified which treatments should be included when 

calculating the proportion (all treatments initiated – the denominator of the measure). In 

the article, they also explained the thinking behind the measure:  BESST was designed to 

encourage patient safety (for reasons discussed later, singleton births are considered to 

be safer than twin births). We will see that the numerator and denominator have been 

chosen with this purpose in mind. These three elements (purpose, numerator and 

denominator) must be considered whenever we construct an IVF outcome measure. 

 

 What is the outcome measure for? 1.2.1.

 IVF outcome measures are used for different purposes. They are used to evaluate 

interventions, to convey information to patients regarding the likelihood of success, and 

to describe the performance of IVF clinics. It is important to recognise that any particular 

outcome measure may be more or less appropriate for one of these purposes compared 

to the others. For example, outcomes which are appropriate for trials and observational 

treatment studies may not be well suited for the purposes of national assessment of clinic 

performance. The primary reason for this is that once the outcome for measuring clinic 

performance has been set, there is scope for clinics to game the system by being selective 

over the patients they treat and the manner in which they treat them (Bird, et al., 2005, 

Sharif and Afnan, 2003). In the UK, clinics compete for patients who are encouraged by 

the Human Fertilisation and Embryology Authority (HFEA) to consider performance when 

choosing a clinic. In light of this competition, clinics can be expected to tailor practices to 

some degree in order to give a flattering impression to patients. The definition of the 

national performance indicator therefore has scope to influence the treatment that is 

delivered, a consequence which must be anticipated when selecting the measure to be 

employed. This is distinct from the case of trials and some observational studies designed 

to estimate the effectiveness of treatment regimens, where the assumption would be 

that treatment is delivered in a standardised way.  
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An example of how the self-interest of clinics could be manipulated for patient benefit is 

given by Abdalla and colleagues (2010). Here, the authors discuss the outcome `live births 

per oocyte retrieval', where any live births resulting from all of the fresh and frozen 

transfers arising from a single episode of ovarian stimulation are counted (later we will 

describe this as a ‘cumulative’ measure). The use of this outcome measure would 

encourage clinics to make greater use of frozen transfers, because this would increase the 

number of live births (the numerator) without increasing the number of oocyte retrievals 

(the denominator). Since a fraction gets bigger if we increase the numerator while holding 

the denominator fixed, this would translate to a higher ranking for any clinic that played 

along. The benefit for patients would be safer treatment, since greater use of frozen 

embryos is considered less hazardous than transferring large numbers of fresh embryos 

or commencing another episode of ovarian hyperstimulation. BESST was intended to have 

a similar effect, by counting only singleton, not twin, births in the numerator (the latter 

becomes more likely when multiple embryos are transferred at once). Different outcome 

measures may also have differential utility for the purposes of providing prognostic 

information as opposed to evaluating clinic performance (Abdalla, et al., 2010) or for 

representing clinician as opposed to patient opinion (Min, et al., 2004, Roberts, et al., 

2010a). The intended function and audience for an outcome measure must be central to 

any assessment of its merits. 

 

 IVF outcomes as a numerator and a denominator 1.2.2.

As we saw in our discussion of BESST (section 1.2), IVF outcomes are typically expressed 

as a numerator, representing a count of some event of interest, and a denominator, 

representing the unit of analysis and providing the context for the measurement (Abdalla, 

et al., 2010, Heijnen, et al., 2004). In this framework, the choice of outcome reduces to 

the selection of an appropriate numerator and denominator, or equivalently, an 

appropriate clinical event and unit of observation. 

 The choice of numerator 1.2.3.

The prevailing view is that the clinical event or numerator that should be used to evaluate 

IVF is a live birth (or live birth event, see below) owing to the fact that the birth of a baby 

is the goal of any initiated treatment (eg: Abdalla, et al., 2010, Garrido, et al., 2011, 
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Germond, et al., 2004, Heijnen, et al., 2004, Maheshwari, et al., 2015, Min, et al., 2004, 

Moragianni and Penzias, 2010). In relation to trials, the recommendation that live birth 

should be reported in all infertility studies has been included in a recent extension to the 

CONSORT (Consolidated Standards of Reporting Trials) statement (Moher, et al., 2010), 

known as IMPRINT (Improving the Reporting of Clinical Trials of Infertility Treatments 

(Legro, et al., 2014). This position isn't universally held; Griesinger and colleagues (2004) 

argue that ongoing pregnancy is a more relevant measure for the purpose of treatment 

evaluation. They argue that, once an ongoing pregnancy has been established, a live birth 

is dependent on prenatal diagnosis, antenatal and obsetric care, which they consider to 

be distinct from the core treatment delivered by a clinic and which may represent a 

source of post-intervention confounding in comparative studies. Braakhekke and 

colleagues (2014) repudiate these premises but arrive at the same conclusion; they argue 

that ongoing pregnancy should be used on pragmatic grounds, precisely because the 

correlation with live birth is so strong. Other appeals for an emphasis on outcomes other 

than live birth have been motivated by an interest in treatment or clinic performance 

rather than providing prognostic information to patients regarding the likelihood of 

success. For example, (Pinborg, et al., 2004) express concern that live birth alone is 

insufficient to evaluate the various stages of treatment, and suggest that the number of 

oocytes and ongoing pregnancies should also be reported. These intermediate, or 

‘procedural’, endpoints convey information about the success of the stimulation and 

laboratory phases of treatment, respectively. 

We return to the question of the intended function of the measure. As far as the intended 

audience comprises prospective patients, the argument for live birth as the numerator of 

the IVF outcome remains strong. If a course of treatment does not result in a baby, then a 

patient will consider this to represent a failure, no matter how good a response was 

achieved at the stimulation and implantation stages. Similarly, a pregnancy isn’t a good 

outcome if it ends in miscarriage. There are no partial successes in IVF. To the extent that 

the outcome is intended to be prognostic (as might be used when counselling couples 

regarding their chance of success), the prediction that matters to patients relates to the 

likelihood that they will have a child. Similarly, the objectives of clinicians are to counsel 

patients about their chances of having a child through IVF and to treat patients in such a 

way that this goal is realised (with supplementary duties of minimising risk of harm and 
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psychological burden). Whenever interest lies in measuring how effective an IVF clinic or 

treatment is therefore, live birth appears to be the mandatory choice of numerator.  

We should make a distinction between questions relating to the effectiveness of IVF and 

questions relating to efficacy and mechanism however. While we acknowledge that these 

terms are used quite heterogeneously, for current purposes we consider effectiveness to 

relate to pragmatic questions about whether or not a treatment works in practice, while 

efficacy relates to explanatory questions about whether or not the treatment has the 

desired effect under controlled circumstances (Ernst and Pittler, 2006). We consider 

questions of efficacy to precede questions of effectiveness in the sense that they might 

illustrate how a treatment may work in principle or put a hypothesised mechanism of 

action to the test, but cannot generally replace a pragmatic evaluation of whether or not 

a treatment improves clinical outcomes when implemented in unselected populations 

and realistic settings. An exception might be cases where a treatment is clearly 

demonstrated not to be efficacious; if an intervention doesn’t display the intended effect 

under experimental conditions, then the plausibility of it improving outcomes if 

implemented in clinical practice is low.  Our understanding of these terms is more general 

than that described by Stewart and colleagues (2011a), who defined ‘efficacy’ as the birth 

rate after some predefined number of IVF attempts and ‘effectiveness’ as the probability 

of having a baby if a patient starts IVF. We consider this usage to be both unusual and 

restrictive. IVF is really a sequence of interventions, each of which could be probed for 

efficacy, and live birth may not be the best measure for these inquiries. This was the 

argument made by Pinborg and colleagues, for example, when they suggested that 

number of oocytes should be used to evaluate the ovarian stimulation stage of treatment 

(2004). 

To the extent that efficacy is a topic of interest in IVF then (and, as we shall show in 

Journal Article 2 (Chapter 4), it certainly appears to be), we should acknowledge the fact 

that not all measurement in IVF needs to be targeted at patients, and does therefore not 

need to convey information that is directly relevant to that group. Accordingly, we should 

be willing to entertain the possibility that alternative outcome measures are more 

appropriate for evaluating mechanistic questions about IVF. This might include procedural 

responses relating to the different stages of treatment, such as number of oocytes or 

measures of embryo quality. We are not making the dubious point here that these 
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procedural outcomes can obviate clinical endpoints such as live birth by acting as 

surrogate outcomes (eg: Sunkara, et al., 2011). Rather, we are open to the possibility that 

different questions might require different standards of success, and therefore different 

numerators.  

 

The choice of denominator 

Audience and purpose are equally important for the choice of denominator. As we saw 

was the case with the choice of numerator, it is generally possible to categorise proposals 

for the denominator according to an emphasis on clinic performance or on more patient-

centred information. Proposals falling in the former category include measuring events 

per transfer performed (Davies, et al., 2004, Heijnen, et al., 2004), per embryo transferred 

(Abdalla, et al., 2010, Heijnen, et al., 2004) or per oocyte retrieval (Chetkowski, 2014, 

Davies, et al., 2004, Heijnen, et al., 2004). As an example, Abdalla et al (2010) endorsed 

live birth event per embryo transferred as a measure of IVF clinic performance. 

Denominators in this category exclude earlier stages of the treatment from consideration, 

thereby restricting focus to a segment of the IVF process and to the subgroup of patients 

who actually reached a certain point in the sequence. Using ‘oocyte retrieval’ as the 

denominator leaves out patients whose treatment was cancelled for poor stimulation 

response, while using ‘transfer performed’ or ‘embryo transferred’ leaves out any 

patients who didn’t make it as far as the transfer procedure. Restricting the measurement 

to a portion of the process that is directly under the control of clinics may be appropriate 

for the purposes of assessing the competence of IVF centres in relation to particular 

components of treatment (Abdalla, et al., 2010). However, the exclusionary nature of 

these denominators make them useless for the purposes of providing prognostic 

information to patients and clinicians, as they essentially presuppose successful 

‘upstream’ treatment responses. Accordingly, they offer limited information to patients 

prior to starting IVF, many of whom will not complete all of the stages of treatment due 

to outright failure early on (9% of treatments in the US in 2016 did not reach the egg 

collection, for example, Society for Assisted Reproductive Technologies, 2016). The desire 

to report more patient-oriented outcomes motivates a second group of proposals for the 

denominator. This includes proposals to count events per episode of ovarian stimulation 

started (Griesinger, et al., 2004, Min, et al., 2004, Schieve and Reynolds, 2004), per 
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patient (Vail and Gardener, 2003), per course of treatment initiated (Daya, 2005, Heijnen, 

et al., 2004), per ‘full cycle’, including all fresh and frozen embryo transfers from one 

episode of stimulation (Veleva, et al., 2009), or per some defined period of time or 

number of treatment attempts (Gnoth, et al., 2011, Heijnen, et al., 2004, Malizia, et al., 

2009). These suggestions move the beginning of the observation period to coincide with 

the start of treatment, thereby including all patients who actually begin IVF. By way of 

illustration, until recently HFEA reported live birth rates per cycle started, where the start 

of a ‘cycle’ coincides with the commencement of ovarian stimulation for fresh transfers 

(see Journal Article 3, Chapter 5). Consequently, the success rates reported by HFEA for 

fresh cycles included those patients for whom the cycle was cancelled (due to poor or 

excessive stimulation response, for example) as having failed treatments. These rates are 

clearly more informative to a patient prior to the start of treatment in relation to the 

likelihood that they will have a successful outcome.  

There is some concern that outcomes with inclusive denominators are susceptible to 

under-reporting of cancelled cycles by clinics in order to boost apparent performance 

(Abdalla, et al., 2010, Sharif and Afnan, 2003). Abdalla et al (2010) remark that substantial 

variation between centres and an increase in the number of centres in the UK reporting 

no or few cancelled cycles between 2002 and 2007 are suggestive of such behaviour. 

HFEA attempt to prevent this by requiring Intention to Treat forms to be completed upon 

commencement of treatment (Human Fertilisation and Embryology Authority, 2017). 

Even if these measures are successful, outcomes with denominators that include all 

patients starting treatment can still effectively be manipulated through patient selection 

(Sharif and Afnan, 2003). The fact that clinics may choose to select patients with 

reasonable or good prognosis means that patients with poor prognosis may be 

underrepresented in IVF datasets. This presents a concern about the generalisability of 

reported results to patients starting treatment. 

Another difficulty relating to use of ‘per cycle started' as denominator is how to define 

the start of a ‘cycle’ for the transfer of frozen embryos. In the UK, HFEA consider a frozen 

transfer cycle to have started at the point of embryo thaw rather than at the point of drug 

administration, which occurs in the majority of these treatments. An implication of this is 

that cycles where stimulation was performed but the patient did not respond in a 

satisfactory manner (for example, the endometrium did not thicken sufficiently) are 
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cancelled prior to thawing but are not reported as failed cycles. The implications of this 

are that some patients are excluded from the ‘per cycle started' figures for frozen 

transfers on the basis of prognosis. This is one reason why the rates for fresh and frozen 

transfers reported by the HFEA are not commensurable. 

The remaining denominator options presented in the inclusive, patient-friendly category 

do not share this particular difficulty, because in addition to moving the start of the 

observation period to an earlier point in the IVF process, they also extend the scope of 

the observation period to cover full cycles (all fresh and frozen transfers from an episode 

of stimulation), or complete courses of treatment (which may include multiple 

stimulation episodes). Heijnen et al (2004) argued that measuring live birth over full 

courses of treatment (or in practice, over some defined extended period of time) is the 

most relevant way to evaluate IVF programmes (Figure 2, reproduced from Heijnen, et al., 

2004). This reasoning motivates the use of ‘cumulative’ outcomes for IVF. 

 

 Cumulative outcomes over courses of IVF treatment 1.2.4.

It can be argued that the most relevant piece of information for a patient about to start 

IVF is the probability that they will one day take home a child (Stewart, et al., 2011b). As 

previously noted, patients may undertake multiple attempts at treatment before having a 

child or giving up. To this end, some researchers have presented success rates 

‘cumulatively’ over some maximum number of treatment attempts (Gnoth, et al., 2011, 

Luke, et al., 2012, Olivius, et al., 2002, Pelinck, et al., 2007, Soullier, et al., 2008, Stern, et 

al., 2010, Stewart, et al., 2011b, Sundstrom and Saldeen, 2009, Witsenburg, et al., 2005), 

(although several of these reported on pregnancy rather than birth outcomes). The term 

‘cumulative’ may be misleading here, since it most usual for counting to cease at the first 

instance rather than to admit the possibility of subsequent births. However, given its 

prevalence in the literature, we adopt the term for the present discussion. Cumulative 

success rates share the property of having a denominator that exceeds a single cycle of 

treatment. However, there is variation in how cumulative outcomes are defined in 

relation to the number of treatment attempts included and the handling of cancelled 

treatments. For example, a 2010 review of cumulative live birth rates in IVF did not 

provide a definition of what the authors considered to constitute a cumulative live birth 
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rate and included rates obtained from studies with heterogeneous designs (Moragianni 

and Penzias, 2010). This included a five-year retrospective cohort study of up to 10 cycles 

(mean (SD) = 2.3 (1.5) cycles) with nondonor oocytes, where cancelled cycles were 

included but patients who recieved treatment for less than 1 year were not (Malizia, et 

al., 2009), a two-year retrospective cohort study of up to 11 cycles (mean (SD) = 1.9 (1.2) 

cycles) which included donor oocyte transfers , where it was assumed that the first cycle 

recorded was the first cycle received (Stern, et al., 2010) and a systematic review of trials 

of elective single embryo transfer versus double embryo transfer where up to two cycles 

were considered (Gelbaya, et al., 2010). It is apparent that the cumulative rates will vary 

with the number of cycles considered and that it is not meaningful to compare rates from 

studies with different measures. The review authors do not appear to appreciate these 

points when they conclude that typical cumulative live birth rates following IVF are 

around 50%. 

 

 

Figure 2: Possible choices for numerator and denominator for IVF outcomes. Reproduced from Heijnen et al., 2004, pg 

1937. 
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In practice, calculating cumulative outcomes presents methodological challenges induced 

by the fact that patients drop out for reasons that are unlikely to be independent of 

prognosis and the counterfactual outcome (that is to say, how things would have turned 

out had the patient continued treatment) (Daya, 2005). Existing approaches for dealing 

with this informative censoring are discussed below. 

If interest lies in calculating rates over full courses of treatment, several practical 

challenges also exist. Firstly, given that some patients may undertake many cycles of 

treatment, the observation period has to be lengthy. If these rates are calculated 

prospectively, this means that there will be a delay before they can be reported. 

Secondly, a decision needs to be made regarding when to consider the observation 

period closed and to report the outcome. Given that a patient could in principle always 

return for further treatment, this decision will always be to some extent arbitrary and 

may not actually capture complete courses of IVF. Finally, patients may receive treatment 

at multiple centres. Given that most datasets come from single clinics, they do not 

contain information about treatment received prior to or following the cycles attempted 

at one centre. Although HFEA does share data on all treatment cycles performed in the 

UK, the present format does not allow for linkage of repeated cycles undertaken by a 

single patient across multiple centres. In the US, the feasibility of linking repeated cycles 

appearing in the national database in order to calculate cumulative rates has been 

demonstrated  (Luke, et al., 2012, Stern, et al., 2010). The researchers made use of 

identifiable information to do this however (including name, date of birth and social 

security number), which isn't generally available to researchers. 

As a result of these logistical and conceptual restrictions, it is unclear that developing 

general analytic models for outcomes following full courses of IVF treatment is a feasible 

or even coherent ambition. Patients may attend multiple centres and the decision to 

switch must be seen as informative (owing, for example, to a clinic's refusal to continue to 

treat patients with a certain number of failed attempts). Given the single-centre nature of 

most available IVF datasets (or the inability to follow patients between centres in 

collaborative multi-clinic datasets (Roberts, et al., 2010a), a more realistic ambition may 

lie in the development of analytic models for single-centre courses of IVF which can 

incorporate the informative censoring due to switching centres or dropping out 
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completely. We anticipate that cumulative outcomes may be more relevant whenever we 

are interested in effectiveness rather than efficacy, since these measures are intended to 

capture patient-relevant event rates in realistic scenarios.  

 Multiple births and healthy babies 1.2.5.

We’ve already encountered the proposal of Min and colleagues (2004) that the singleton, 

term gestation live birth rate per cycle started is the most relevant measure of the 

success of an IVF programme (the ‘BESST’ endpoint, discussed in 1.2). In endorsing BESST 

as the most suitable endpoint, the study authors were motivated by concerns over high 

rates of multiple births owing to the ubiquitous practice of transferring multiple embryos 

in each cycle. It is known that multiple births are associated with health complications for 

both the mother and children and the prevailing clinician opinion is that they should be 

avoided (Coetsier, et al., 2001, Stillman, et al., 2013). Accordingly, the authors argued that 

an appropriate outcome should penalise multiple births and reward the births of 

singleton babies. However, the BESST endpoint does not represent the perspective of 

many patients regarding what constitutes a successful result. Patients tend to emphasise 

the physical and psychological burden of treatment (Roberts, et al., 2010b). 

Consequently, many patients express a preference for a shorter treatment duration and 

for twins, removing the need to undergo further IVF treatment to have a second child (eg: 

Hojgaard, et al., 2007, Stillman, et al., 2013). This illustrates the point that it might not be 

possible to reconcile the diverse perspectives of stakeholders in a single outcome 

measure.  

Even with increasing use of ‘one at a time’ elective single embryo transfer (eSET) as a 

measure to reduce multiple births, the question of how multiples should be handled in an 

outcome definition is likely to remain material for the foreseeable future; in the UK 51.3% 

of transfer cycles in 2014 involved two or three embryos and the multiple pregnancy rate 

(per pregnancy) was 15.9% (Human Fertilisation and Embryology Authority, 2016). In 

addition to proposals such as BESST that treat multiple births as failures, alternative 

possibilities include using ‘live birth event' as the numerator of the outcome (thereby 

treating a singleton and multiple birth as equivalent), counting the number of babies born 

(thereby favouring multiples, reflecting common patient preferences but at the cost of 

encouraging unsafe stimulation and transfer practices) or scoring multiple birth events 
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lower than singleton birth events, while still acknowledging this as a superior outcome to 

no birth (for example, scoring the birth of multiples as 0.5 compared to 1 for a singleton 

birth and 0 for no birth). The latter proposal runs contrary to our assertion that partial 

successes do not occur in IVF, although this is not a reason for dismissal in itself. 

In addition to the classification of multiple births as treatment failures, the second 

controversial suggestion within BESST is that only live births following a term gestation 

should be counted as successes (Min, et al., 2004). The motivation for this suggestion is 

that the goal of IVF is to have a healthy baby, and so births of preterm babies, who might 

display low birthweight and otherwise have worse health outcomes, should be penalised. 

Arguments against this suggestion include the assertion that preterm birth may be 

outside of the control of the clinic and should not be counted against an IVF programme, 

and the observation that a preterm baby might be perfectly healthy (Griesinger, et al., 

2004). Schieve & Reynolds (2004) are sympathetic to the idea of taking the health of the 

baby into account but question the utility of incorporating this information directly into 

an outcome measure owing to the fact that the risk of preterm birth is multifactorially 

determined. Instead, they suggest that singleton birth rates should be presented, 

stratified by risk factors for preterm birth (stratification in this way is discussed below). 

They also note that it would be desirable to consider early-life health information when 

determining whether a treatment is successful, but note the practical difficulties of linking 

information between different data sources and delayed outcome reporting. 

 

 Incorporating patient characteristics into outcome measures 1.2.6.

Marginal live birth rates calculated on the basis of heterogeneous cohorts offer some 

information to a patient regarding their chances of success. These figures represent 

average or expected outcomes for patients undergoing IVF. However, success rates vary 

considerably between subgroups of patients defined on the basis of prognostic factors, 

and it is clearly more informative to present a patient with outcomes for similar patients 

undergoing treatment. 

The approach formerly adopted by HFEA was to present results stratified by prognostic 

factors (age, infertility diagnosis and infertility duration), thereby allowing prospective 

patients to see success rates for people who are similar to them in relation to that 



 

37 
 

particular factor. A patient's prognosis depends on multiple characteristics however, and 

patients within a particular stratum may be heterogeneous with respect to factors other 

than the stratification variable. Additionally, stratification requires the categorisation of 

continuous variables, so that some prognostic information is lost. Approaches based on 

multivariable models do not have these limitations. Using a modelling approach, 

predictions can be made on the basis of a multifactorial prognostic index and modelled 

relationships between outcome and predictor variables can be complex (Cai, et al., 2011, 

Nelson and Lawlor, 2011, Templeton, et al., 1996). The relative complexity of conducting 

and translating these analyses for lay audiences may prove to be prohibitive outside of a 

research context however. 

An interesting question is how this prognosis can be updated on the basis of the 

outcomes of previous cycles or on the basis of intermediate outcomes of earlier stages 

within the same cycle. This will be discussed in the context of existing models in section 

1.3 

 

 Should we be using time to event outcomes to measure IVF success? 1.2.7.

We noted above that IVF treatment can be physically and psychologically burdensome, 

with many patients expressing a preference for twins so that there is no need for further 

treatment to have a second child (Roberts, et al., 2010b). Evidently, the overall probability 

of having a healthy baby is not the only consideration for a patient deciding whether or 

not to begin or continue treatment (Verberg, et al., 2008). An approach to outcome 

measurement that incorporates some of this additional information might be desirable. 

One possibility would be to present time to event outcomes for IVF. By presenting the 

expected time to success for patients with particular combinations of characteristics, 

patients and clinicians could consider not only the anticipated cumulative result of 

treatment but also the reality of what the journey is likely to entail.  

There are several challenges that must be addressed in a time to event framework for 

IVF, some of which are general difficulties which arise when considering outcomes over 

multiple cycles of treatment and were discussed above in the context of cumulative 

outcomes. Most notably, the fact that censoring in IVF datasets is likely to be informative 

must be addressed. Additionally, there is the question of what scale should be used to 
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measure the passage of time (Daya, 2005). One possibility would be to adopt a discrete 

time approach, whereby time is incremented by one unit with each initiated treatment 

attempt (or even at each stage within an attempt, (eg: Maity, et al., 2014). To the extent 

that treatment protocols vary however, this approach has the potential to be 

uninformative or misleading; providing an expected number of cycles needed does not 

convey how long this will actually take in a particular case. An approach based on real 

time might therefore be more appropriate (Daya, 2005).  

Additional challenges relate to the issue of incorporating time-varying covariates and 

stage-specific intermediate outcomes across potentially multiple cycles when modelling 

the outcome. In relation to the outcome definition, in a time to event framework, it might 

be necessary to define the event of interest differently compared to those we have 

considered up to this point. It would not be appropriate to measure or report on time to 

live birth, for example, because this would favour shorter pregnancies and premature 

births. A more appropriate survival endpoint might be time to pregnancy leading to a live 

birth, or time to pregnancy leading to a term live birth.  

Finally, the issue of how to emphasise patient and child safety with a time to event 

outcome must be considered. It would be perverse to reward hazardous treatment 

strategies including aggressive stimulation regimens and the transfer of large numbers of 

embryos because they achieve live birth in fewer attempts. As an example, if we use a 

time to event outcome and consider singleton and twin live birth events to be equivalent, 

double embryo transfer will be favoured over elective single embryo transfer; the latter 

strategy requires the subsequent transfer of frozen embryos to compensate for the 

reduced success rate in the initial cycle (McLernon, et al., 2010, Roberts, et al., 2010b). As 

noted above, this runs contrary to the concerns of many clinicians, and represents a 

considerable objection to the use of time to event outcomes in IVF. 

 

 A summary of section 1.2 1.2.8.

A review of the literature relating to the choice of IVF outcome suggests that any measure 

of effectiveness should incorporate the probability of attaining a live birth while 

conditioning on patient characteristics in an appropriate and transparent way. Presenting 

outcomes over full courses of treatment would be of considerable value to prospective 
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patients faced with the decision of whether or not to undergo treatment. However 

conceptual, methodological and practical difficulties lead to doubts about this as a 

realistic goal. Predicting outcomes over extended periods of time is likely to represent a 

more coherent endeavour. These extended courses of treatment can be emotionally and 

physically testing, and confer a certain degree of risk, with the implication that there are 

relevant considerations surplus to the question of how likely it is that a treatment will 

produce a baby. To this end, the importance of handling multiple birth events 

appropriately has been discussed (if not settled). A time to event framework has been 

suggested as an alternative mode of measuring success, although concerns over the 

implications of a ‘quicker is better’ approach to delivering treatment might rule this out.  

We have also noted that the most appropriate outcome measure is likely to vary 

according to the intended audience and objective. In particular, we have drawn a 

distinction between questions of effectiveness and efficacy, and have noted that 

mechanistic questions relating to interventions at different stages of IVF might be more 

suitably answered using stage-specific outcomes of treatment.  

 

 

 How should we analyse IVF outcomes? Methods and models in use. 1.3

If our goal is to predict IVF outcomes for different kinds of patients under different 

treatment variants, identifying suitable measures of IVF response is only one half of the 

story. The second challenge is to work out what to do with them. We turn here to the 

question of how to analyse IVF data, with an informal review of methods employed in the 

literature. In a clear parallel with our discussion of IVF outcomes, the choice of analytic 

method will depend on what it is we want to show or find out using data, and who our 

target audience is. Just as we delineated efficacy and effectiveness in our discussion of 

outcome measures in section 1.2, we recognise here that different study designs and 

analysis strategies will be appropriate according to the flavour of our questions. Another 

distinction that we make is between methods for predicting outcomes of IVF and those 

for estimating causal effects of patient and treatment characteristics. We will refer to the 

latter group with the label of ‘explanatory’ models. We will see that the multistage, 

repetitious nature of IVF results in a complex multilevel data structure. In the following, it 
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will be necessary to identify where this might represent an obstacle and where it can be 

leveraged to improve our understanding of IVF. While we will discuss some subtle and 

challenging methodological features of IVF data, we are equally interested in simple 

descriptive methods for IVF. The question of how to summarise IVF response data is 

closely related to the question of the appropriate outcome measure however (once we 

know which numerator and denominator we are interested in, it is trivial to calculate a 

proportion), and we have covered many of the relevant considerations in section 1.2. 

Following the literature, we will use the term ‘cycle’ to refer to an IVF attempt beginning 

with the stimulation of the ovaries and ending at treatment failure up to and including 

the first fresh embryo transfer, or the birth of a child from that embryo transfer. 

Wherever we discuss frozen transfer cycles, we explicitly refer to these as such. 

 

 Models for single treatment attempts 1.3.1.

Many researchers present predictive or explanatory models for individual treatment 

cycles, thereby avoiding (or at least, ignoring) some of the methodological issues arising 

from the multiplicity of treatment attempts. Baker et al (2010), Templeton et al (1996) 

and Nelson and Lawlor (2011) all present multivariable logistic regression models for 

individual cycles, with pregnancy or live birth as the cycle-level outcome. Although their 

datasets include multiple transfers per patient, these are treated as independent 

observations. For each of these, frozen transfers are excluded from the analysis. 

Although these approaches have the virtue of simplicity, they are not useful for the 

purposes of predicting or estimating effects on the outcome after a realistic course of 

treatment. Given that patients are likely to be interested in outcomes over multiple 

treatment cycles, models based on single cycles of treatment may not be particularly 

relevant. The exclusion of frozen transfer cycles raises additional doubts about their 

applicability to treatment programmes as actually realised. Furthermore, wherever 

participants contribute multiple cycles to the dataset, treating the observations as 

independent has implications for the validity of inferences made from the models (Vail 

and Gardener, 2003). To the extent that we are interested in using the models to make 

point predictions, this may not be particularly worrisome, as we would expect regression 

coefficients to be generally unaffected. Predictive intervals, which are used to quantify 
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the degree of certainty in the model predictions, may however be too narrow as a result 

of ignoring the correlation between repeated cycles. Similarly, the confidence intervals 

we use to make inferences about the model parameters will be incorrect. 

Some of the techniques presented as models of treatment cycles would more accurately 

be described as models for segments of treatment cycles. For example, (Baker, et al., 

2010) include intermediate outcomes (such as number of embryos transferred, with a 

minimum value of 1) as predictors in the model. This restricts the analysis to those 

patients who actually reached the transfer stage, having had a successful response at the 

stimulation and fertilisation stages (see also Sunkara et al., (2011), for an example 

including only cycles where eggs were retrieved but not necessarily fertilised). This might 

be a reasonable strategy where there is an interest in efficacy, as focusing on part of the 

process will reduce noise introduced at the other stages.  By contrast, Templeton et al.,  

(1996) and Nelson and Lawlor, (2011) included only pre-stimulation variables as 

predictors, as their purpose was to create prognostic models for patients and clinicians 

prior to the start of treatment.  

 

 Modelling the multiple stages 1.3.2.

As we saw earlier, a single cycle of IVF treatment consists of several stages (Figure 1, 

section 1.1). The treatment is necessarily dynamic, with outcomes of earlier stages 

determining the range of options available subsequently. Outright failure at an earlier 

stage (eg: due to poor ovarian response, failure to fertilise oocytes) is critical, resulting in 

the end of the cycle. There are three common approaches to handling the multistage 

nature of IVF: using only baseline and start-of-cycle treatment variables as predictors of 

cycle outcome (avoiding the issue of how to model the multiple stages); presenting 

conditional models that assume successful outcomes in earlier stages and adjusting for 

intermediate outcomes in the analysis. 

The first of these represents a black box approach, where the dependencies between the 

different treatment stages are not modelled. Such approaches can be used to predict 

outcomes of cycles on the basis of baseline and initial treatment variables. If we are 

interested in questions of efficacy and mechanism however, ignoring the multistage 

nature of IVF treatment in this way may be disadvantageous for several reasons. Explicit 
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modelling of IVF as a multistage process may elucidate the relationships between 

treatment stages as well as the differential effects of patient characteristics at different 

points in the sequence. A multistage model of this sort would allow for the investigation 

of hypothetical modifications at each stage of the treatment process through simulation. 

Additionally, an explicit model of the multiple stages might allow for stage-specific 

modelling of the dropout process. Ultimately, a model incorporating intermediate stages 

of treatment might allow for better predictions of eventual clinical outcomes. 

Accordingly, multistage methods may have applications beyond mechanistic 

investigations. The second approach of the three listed above conditions on success in 

earlier stages of treatment by leaving out patients who failed early on. As noted above, 

this restricts the applicability of any estimates and predictions obtained from the model 

to patients who have reached a certain point in the process. It may be possible however 

to develop a series of stage-specific and possibly conditional models, and to combine 

these in a larger framework in order to capture the complete treatment cycle. This 

approach would require competent models for each stage in the process.  

The third approach involves adjusting for intermediate treatment outcomes in the 

analysis. For example, Cai et al., (2011)used logistic regression to investigate predictors of 

clinical pregnancy following IVF. They used a bootstrap stepwise variable selection 

technique to identify a predictive set of variables from an initial set of 27. This set 

included information about the stimulation protocol, patient characteristics, and 

intermediate outcomes such as counts of follicles, number of eggs retrieved and fertilised 

and the number of good quality embryos. However, adjusting for mediating variables may 

obfuscate the relationship between the outcome and predictors appearing earlier in the 

causal pathway. For example, both a patient's age and the stimulation protocol used act 

upon the eventual outcome via the stimulation response. If we wanted to estimate the 

effect of the stimulation protocol on pregnancy, it would be inappropriate to adjust for 

variables measuring the stimulation response by including them as covariates in 

regression models. Techniques from the causal inference literature, such as marginal 

structural models (Robins, 2000), or structural equation models may be better suited to 

the task of modelling the complex relationships between patient characteristics, 

treatment and both intermediate and clinical outcome variables. A sketch of a structural 

equation modelling representation of the IVF process is presented later in this section.  
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Several models have however been developed specifically for the purpose of 

accomodating the multistage nature of IVF. Maity et al., (2014) present two such 

approaches. The first is a discrete time-to-event model with observations at the level of 

‘failure opportunities'. They allow for up to three failure opportunities in each cycle; there 

can be failure of embryo implantation, failure to achieve chemical pregnancy and then 

there can be spontaneous abortion of the fetus. Consequently, this particular example 

again assumes a successful stimulation response. Only those patients who did not fail at 

the previous opportunity feature in the risk set for the next. A patient-specific random 

scalar is used to account for the nesting of failure opportunities within patients. The 

authors note however that parameter estimates obtained from the model may be biased 

due to the fact that the cluster sizes are associated with the outcomes. The second 

approach presented by the authors is a transition model in which each failure opportunity 

is modelled as a function of what has happened to the patient previously. This consists of 

using a fixed effect logistic regression model with failure at the present stage as the 

binary outcome. Patient history is captured by covariates, including failure type (current 

stage in the process) and cycle number, so that multiple cycles can be incorporated. One 

limitation common to both of these methods is that they do not allow for different 

covariates for each failure type. They do however allow for covariates to have differential 

effects across stages through the inclusion of interaction terms between the covariates 

and failure type. 

Penman et al., (2007) describe an extended continuation ratio model for an IVF cycle. In 

this framework, the maximum stage reached by the patient is treated as an ordinal 

outcome, and the probability of failing at a particular stage given that failure does not 

occur in the preceding stages is modelled. This approach can therefore be understood as 

equivalent to a discrete time-to-event model, so that exponentiated coefficients can be 

interpreted as discrete hazard ratios (Harrell, 2014). As for the techniques presented by 

Maity and colleagues, the different stages must share covariates, but can incorporate 

interaction terms between stage and covariate. The five stages included in the model are 

egg collection, fertilisation, transfer, pregnancy and live birth. This model therefore 

incorporates the earlier stages of the process and allows for cycle cancellation due to 

inadequate ovarian response. However, the response to ovarian stimulation is reduced to 

a binary outcome according to whether or not eggs were collected. This omits prognostic 
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information relating to the number and quality of the eggs retrieved. A superior approach 

might be to model the response to stimulation as a count of eggs retrieved, or as a 

prognostic index incorporating information on number and quality of oocytes. 

This latter point raises the possibility that models capable not only of incorporating 

intermediate outcomes, but moreover outcomes of different response types (eg: count, 

binary and continuous responses) may be needed to adequately capture the multistage 

nature of IVF. Models for mixed outcomes do not appear to exist in the IVF literature, but 

have been developed and applied in other research areas. Dunson (2000) described a 

class of Bayesian latent variable models for clustered mixed outcomes in reproductive 

toxicity. This approach can accommodate correlations between lower-level units nested 

within higher-level units in a multilevel data structure, and between multiple mixed 

outcomes for each lower-level unit. An application is presented where breeding pairs of 

mice (higher-level units) have up to five litters (lower-level units), and interest is in two 

related outcomes: whether or not the time to birth is abnormal (a binary outcome) and 

the number of pups in the litter (a discrete count outcome). The outcomes are related to 

underlying Poisson variables, with means depending on shared latent variables, inducing 

dependency. Dunson et al.,  (2003) would later extend this work to allow for the problem 

of informative cluster sizes. A general framework for multilevel models containing 

multivariate mixed responses had previously been outlined by Goldstein (2003) and was 

later developed by Goldstein et al., (2009). These methods raise the possibility of jointly 

modelling the various intermediate and final outcomes of IVF cycles across multiple levels 

of the data structure while accounting for the fact that the number of lower-level units 

(which may be eggs, stages or cycles) within a cluster (stimulation episodes, cycles, 

patients) is related to those outcomes. 

Other methods for modelling multistage processes exist, such as methods for the 

estimation of dynamic treatment regimes (Chakraborty and Murphy, 2014). While these 

techniques appear superficially applicable to multistage IVF treatment, a brief review of 

the literature in this area suggests that they are best suited to short sequences of binary 

treatment decisions and responses. We do not consider them further here. 
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 Structural equation modelling approaches 1.3.3.

Limitations of the models described above include the inability to accommodate or 

investigate the complex dependency structure between patient characteristics, different 

stages of the treatment process and the multiple mixed outcomes occurring during the 

process. A structural equation modelling (SEM) approach allows for complex relationships 

between covariates and outcomes, including the possibility that covariates may act upon 

outcomes indirectly (Bielby, et al., 1977, Fox, 2006). Furthermore, outcomes may follow 

different distributions and depend upon each other (Rabe-Hesketh, et al., 2004). This 

framework might be sufficiently flexible to accommodate the complexities of IVF. We 

present a sketch of what this might look like here. It should be stressed that the example 

presented here is intended to be expository (and exploratory), in order to show how SEM 

methodology might be used to capture the structural complexity arising from the multiple 

stages constituting a single cycle. 

A SEM contains ‘exogenous’ and ‘endogenous’ variables (Fox, 2006). The former appear 

only as explanatory variables in the model. Each endogenous variable appears as the 

response variable of a structural equation, but may appear as an explanatory variable in 

others. Accordingly, traditional outcome variables may act as predictors of other 

outcomes. Variables in the model may be observed or latent, representing unobserved or 

postulated constructs (Rabe-Hesketh, et al., 2004).  

 

Figure 3 shows a simple example of an SEM for an IVF cycle, represented by a path 

diagram (Greenland, et al., 1999, Pearl, 1995). The path diagram contains the exogenous 

variables age and stimulation protocol (although in reality, stimulation protocol might be 

partially selected on the basis of age), and the endogenous variables stimulation 

response, pregnancy and live birth. Bidirectional arrows represent covariances, which are 

not given causal interpretations. Unidirectional arrows represent direct effects of one 

variable (at the origin) on another (at the head). In this example, a patient's age and the 

stimulation protocol have direct effects upon the stimulation response, representing the 

fact that a patient's ovarian reserve may deplete with age and that the specific regimen 

used may influence the number of eggs retrieved. Age and stimulation protocol affect 

pregnancy indirectly via the response to stimulation. They also act directly on pregnancy, 

representing a possible diminishing uterine receptivity with age and the fact that ovarian 
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stimulation may render the uterus inhospitable to transferred embryos. Similarly, age is 

allowed to act upon live birth outcome indirectly via the intermediate outcomes 

stimulation response and pregnancy, and also directly, representing the fact that a 

patient's capacity to carry a pregnancy to birth may diminish as they get older. By 

contrast, stimulation protocol does not affect live birth rate in the model, other than 

through indirect effects via the intermediate outcomes. Additionally, stimulation 

response, which incorporates the quality of oocytes retrieved, is allowed to act directly 

upon live birth, representing the possibility that better quality oocytes may produce 

superior embryos that are more likely to be carried to term. A single latent error term 

exists for each endogenous (response) variable, representing the effects of unmeasured 

variable and measurement error. Covariance between the errors for the endogenous 

variables is posited. 

An SEM can then be represented as a set of simultaneous equations, and model 

coefficients can be estimated using a number of approaches. As noted above, this 

presentation is intentionally simplistic and some of the details have been left deliberately 

vague. Notably, the forms of the predictor and response variables and the distributions of 

corresponding error terms have not been specified. A particular challenge may arise from 

the fact that censoring occurs due to failure at earlier outcomes. However, the framework 

offers scope for considerable expansion and improvement. Count and binary outcomes 

can be incorporated in a generalised SEM framework (Rabe-Hesketh, et al., 2004). 

Additional exogenous and endogenous variables can be incorporated to more fully 

describe the treatment process and the patient characteristics influencing the outcome at 

each stage. Models can also be specified in a multilevel framework, in order to 

accommodate clustering of repeated observations. Given that the emphasis in this 

framework lies in estimating the relationships between variables, we anticipate that this 

approach would be more suitable for answering causal questions relating to efficacy and 

mechanism rather than those related to prediction.  Although these comments are 

necessarily tentative at this stage, an SEM approach to modelling the multistage IVF cycle 

would appear to warrant further attention. 
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Figure 3: Sketch of a possible structural equation modelling approach for an IVF cycle. Rectangles represent observed 

variables, while circles represent  latent variables. Unidirectional arrows denote causal relationships with the affected 

variable at the head. Bidirectional arrows denote covariances, which are not given a causal interpretation. 
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 Models for the stimulation stage of IVF 1.3.4.

Several of the aforementioned approaches to modelling the IVF treatment cycle as a 

multistage process require the explicit modelling of the outcomes at each stage. For 

example, the simple SEM example described in the preceding section would require 

adequate models for each of the stimulation response, the odds of achieving pregnancy 

and the odds of achieving a live birth, in terms of patient and treatment characteristics 

and the preceding outcomes. The second and third of these may be modelled quite 

straightforwardly using standard models for binary outcomes (although complexity arises 

once we distinguish multiple births, see 1.2.5). The matter of how to model the 

stimulation response is potentially more challenging, as both the number and quality of 

retrieved oocytes may be relevant as predictors of success in later stages. Treating the 

stimulation response as a binary success/ failure outcome (Penman, et al., 2007) or 

omitting this stage from consideration entirely (Maity, et al., 2014) omits prognostic 

information and is likely to reduce the relevance and predictive validity of the model. 

Furthermore, the stimulation stage appears to be particularly important, as the response 

determines not only the outcome of the fresh cycle but also the number and outcome of 

subsequent frozen transfers. In this section, we will review the models that have been 

presented for the ovarian response to stimulation. 

The ovarian response is sometimes categorised on the basis of the number of eggs 

retrieved. Mohiyiddeen et al., (2013b) categorised the response as poor (fewer than 4 

eggs), normal (4 to 20 eggs) or overresponse (more than 20 eggs). They then fitted two 

logistic regression models looking at predictors of each of over and poor response 

compared to normal response. The usual criticisms of categorisation are applicable here; 

information contained in the original variable is lost and the arbitrary division into 

discrete categories is unlikely to provide a good representation of the underlying reality 

(Altman and Royston, 2006). La Marca and Sunkara, (2014) presented a review of markers 

of ovarian reserve for predicting stimulation response. They restricted their review to 

studies reporting cut-offs for the markers, so it is unsurprising that the included studies 

categorised ovarian response; this is a necessary step in calculating the predictive 

accuracy of a marker using a method such as a ROC curve (although again this approach 
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wastes information). They noted considerable variation in the cut-off used to define poor 

response, highlighting the lack of consensus around this topic. Number of eggs retrieved 

is not always categorised; for example, (Gaskins, et al., 2014) modelled this as a count 

variable using Poisson regression. Where the raw egg count is used as the measure of 

stimulation response however, a common statistical error in IVF trials is to exclude 

participants who had their stimulation cancelled due to an anticipated poor response (eg: 

Arce, et al., 2014, Cavagna, et al., 2006, Jayaprakasan, et al., 2010, Nyboe Andersen, et al., 

2017). This is fatal to the estimation of a treatment effect, both because it undermines 

the balance produced by randomisation and because it omits those participants who 

were on course to have a low number of eggs. An instructive example of this error is 

provided in a trial of a personalised dosing algorithm versus a standard dose of drug for 

ovarian stimulation (Nyboe Andersen, et al., 2017). The authors claimed an advantage of 

the algorithm in achieving an optimal egg yield, even though the rate of anticipated poor 

responders (who they excluded from the calculation) was higher in this arm of the trial. 

This illustrates the fact that censored egg counts must be considered when modelling the 

stimulation response, and more generally the scope for methodological error introduced 

by inappropriate denominator selection. 

In 2011, ESHRE presented the Bologna criteria for defining poor response to stimulation 

(Ferraretti and Gianaroli, 2014). Their actual focus was more on defining a ‘poor 

responder’ rather than what should be considered a poor response to a particular 

stimulation episode. They describe the stimulation as a test of the ovarian reserve (the 

dormant eggs which are the target of the procedure) noting that an ideal test would 

capture both the size of the primordial follicle pool and the reproductive competence of 

the oocytes. This perspective emphasises the point that both the number and quality of 

oocytes harvested following the stimulation procedure are relevant components of the 

outcome. A good model of stimulation response might capture both of these aspects, 

prompting the question of how this could be achieved. An argument could be made that 

number of oocytes retrieved might adequately capture egg quality, as larger numbers of 

eggs might be expected to result in larger numbers of embryos, the best of which can be 

selected for transfer. However, the relationship between number and quality of oocytes 

retrieved is unclear, so that it may be possible that large numbers of low quality oocytes 

could be obtained (or even that the production of greater numbers of oocytes in response 
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to stimulation has detrimental consequences for egg quality). Another complication is the 

fact that the desirable number of oocytes will vary according to the characteristics of the 

patient and the stimulation regime used; a low number of oocytes might be considered a 

success following a mild stimulation protocol (Ferraretti and Gianaroli, 2014). As a result, 

it might not be possible to standardise the measurement of optimal egg yields across 

patient populations. 

If quality is to be explicitly modelled in addition to quantity of eggs, a further question is 

how this can be measured. Systems based on morphology exist, but remain controversial 

and are only applicable when the eggs are stripped and fertilised by injection with sperm 

(intracytoplasmic sperm injection, or ICSI, Mohiyiddeen, et al., 2013a). One possibility is 

to use maturity of the oocytes for this purpose: Guerif, et al., (2009) reported the 

proportion of metaphase-II (mature) oocytes in the yield; Mohiyiddeen, et al., (2013a) 

used the metaphase-II oocyte output rate (MOR), defined as the ratio of metaphase-II 

oocytes to the pre-stimulation antral follicle count, where antral follicles house the eggs 

within the ovaries.  

One possible approach to modelling stimulation response is to combine information 

about number and quality of oocytes into a single prognostic index, obtained from a 

multivariable model including measures of ovarian response as predictors of clinical 

outcomes (pregnancy, live birth). Several studies have looked at the association between 

clinical outcomes and stimulation response. One study looked at characteristics of the 

stimulation procedure (the total gonadotrophin dose per cycle, the number of oocytes 

retrieved and the gonadotrophin dose per oocyte) as predictors of pregnancy and 

implantation rate (Kailasam, et al., 2004). Other, similar studies have related number of 

eggs to live birth (Sunkara, et al., 2011), and the ratio of preovulatory to antral follicle 

count to clinical pregnancy (Gallot, et al., 2012). Multivariable predictive models of this 

sort would be required to obtain regression coefficients which could be used to calculate 

the prognostic index. Combining a multivariate response into a single index is likely to 

have detrimental consequences for efficiency, however. 

Another possible approach would be to model the response to stimulation as a 

multivariate outcome, with components describing each of quality and quantity. Several 

of the techniques discussed above can accommodate such multiple, mixed outcome 

variables. In particular, the method of Dunson, et al., (2003) can be used to 
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simultaneously model the number of eggs retrieved with a measure of the quality of each 

egg. This is similar to an example given by Dunson where the overall size of a litter of mice 

is modelled jointly with the birthweight of each fetus. 

Whichever solution turns out to be appropriate, it seems clear that the development of a 

model capturing the information provided by this crucial stage of treatment is a necessary 

precursor to modelling the IVF cycle as a multistage process. 

 

 

 Extending to multiple treatment cycles 1.3.5.

The methods described above are applicable to single cycles of treatment, possibly 

broken into component stages. Since patients typically undergo multiple cycles of 

treatment, there is a need for methods that can handle this repetition. 

The fact that repeated cycles undertaken by a patient can be expected to be correlated 

has been widely recognised (Missmer, et al., 2011, Penman, et al., 2007, Roberts and 

Stylianou, 2012, Hogan and Blazar, 2000, Maity, et al., 2014, Vail and Gardener, 2003, 

Gaskins, et al., 2014, Hirst, et al., 2011, Jonsdottir, et al., 2011). Failure to account for this 

correlation may result in erroneous inferences and predictions. If multiple treatment 

cycles are being modelled, it is therefore necessary to employ techniques that can handle 

the clustering of repeated observations on a single patient. 

One approach to modelling the correlation between cycles is to include a patient-specific 

random effect in the model, representing unexplained heterogeneity between patients. 

This multilevel modelling approach has been used to extend logistic regression models 

(Gaskins, et al., 2014, Hirst, et al., 2011, Hogan and Blazar, 2000, Missmer, et al., 2011), a 

multistage continuation ratio model (Penman, et al., 2007), a multistage discrete time 

survival model (Maity, et al., 2014) and embryo-uterine models (Roberts and Stylianou, 

2012) to multiple treatment cycles. An alternative approach is to use a method based on 

generalised estimating equations (GEE), which allows for the correlation structure 

between repeated measurements to be specified. Logistic GEE models with compound 

symmetric correlation structure have been used to model repeated IVF treatments 

(Jonsdottir, et al., 2011, Missmer, et al., 2011). Although there are subtle differences in 

the interpretations of parameters obtained from conditional random effects models 



 

52 
 

compared to marginal GEE approaches, both represent valid approaches for the analysis 

of multiple-cycle IVF data. 

Methods using a patient-specific random effect or a compound symmetric correlation 

structure tacitly assume that the correlation between multiple cycles on a single patient 

remains constant, or equivalently that unexplained differences between patients are 

attributable to time-invariant unmeasured characteristics. This is described by Penman et 

al., (2007) as an `infertility index'. This assumption of constant correlation between 

treatment cycles regardless of temporal proximity is questionable. More realistic models 

may incorporate techniques from the longitudinal data analysis and growth curve 

modelling literatures, including the inclusion of random slopes to allow for a patient's 

likelihood of success to follow an individual trajectory over time and the specification of 

more nuanced correlation structures; for example an autoregressive structure allowing 

correlation between cycles to decrease as a function of increasing time (Diggle, et al., 

1994). It is unclear exactly why these techniques have not been employed in the analysis 

of IVF data. One reason may be that IVF data hasn't been recognised or conceptualised as 

longitudinal data, although as an explanation this begs the question. Another explanation 

might be the complexity of implementing time-varying correlation structures with binary 

endpoints. And a third might relate to unavailability of repeated-cycle data. Whatever the 

reason, little has been done to incorporate ordering effects into models for repeated 

cycles, beyond the inclusion of a covariate representing the number of previous attempts 

(Nelson and Lawlor, 2011, Roberts and Stylianou, 2012, Templeton, et al., 1996). The fact 

that number of attempts appears to be predictive of cycle outcome even after adjusting 

for other prognostic characteristics might suggest that there are unmeasured time-

varying factors or selection effects that contribute to the chance of success. A 2010 

review article considered the supposition that repeated ovarian stimulation diminished 

ovarian reserve (Luk and Arici, 2010). The authors concluded that there was limited 

evidence on this topic, but that there did not appear to be declines in ovarian response 

over three cycles of treatment. Beyond three cycles of treatment, the authors noted 

difficulties separating effects of repeated stimulation from effects of increasing age. 

Elsewhere, it has been argued that the decrease in odds of success with increasing cycle 

number appears to be small (Roberts and Stylianou, 2012) and that apparent reduction in 

success with increasing cycle number may be attributable to a selection effect resulting 
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from the fact that patients with the worst prognosis are those who require the largest 

number of attempts (Dias, et al., 2008). Longitudinal models of IVF treatment may 

provide a framework to investigate these points further. 

Prognostic characteristics may vary over time. This presents a particular problem where 

interest lies in using multiple cycle data to estimate the effect of a treatment or exposure. 

If exposure probability depends on these characterisics, then time-varying confounding 

may occur. Hogan & Scharfstein, (2006) presented a model to estimate the causal effect 

of hydrosalpinx on embryo implantation in the presence of time-varying confounding. 

Their method is based on inverse weighting of observations by propensity scores. A 

further complication arises from the fact that adequate modelling of frozen cycles may 

require the inclusion of different covariates compared to fresh cycles. This matter has not 

been addressed to date; existing methods include use of common covariates for fresh and 

frozen transfers, or excluding frozen transfers entirely. 

An interesting recent approach to prediction of the cumulative IVF outcome after 

multiple treatment attempts was provided by McLernon and colleagues (2016a). They 

presented two models. In the first, they used only pre-treatment variables as covariates, 

to provide a prediction to prospective patients deciding whether to commence 

treatment. In the second, they used information about the responses in the first 

treatment attempt to predict outcomes in subsequent attempts. This second model can 

be used to counsel patients considering whether to undergo additional treatment. As 

discussed in section 1.2.4 the cumulative outcome of treatment over multiple attempts is 

probably the most relevant measure for patients, making it an appropriate choice of 

endpoint in a prediction model freely available online (McLernon, et al., 2016b).  

 

 Partial observability of transferred embryos 1.3.6.

When multiple embryos are transferred simultaneously and only some of these implant, 

it is unknown which of the embryos were successful. When covariates are measured at 

the level of embryos, an additional challenge stems from the fact that the outcomes of 

interest occur at the patient, rather than at the observation, level (Roberts, 2007). 

Embryo-uterine (EU) models were developed in order to address this issue of partial 

observability and to allow for the inclusion of embryo-level covariates (Zhou and 
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Weinberg, 1998). Briefly, EU models assume that for an embryo to implant, the embryo 

must be viable and the uterus must be receptive. Covariates are entered into one of two 

logistic sub-models, with viability of the embryo and receptivity of the uterus as binary 

responses. Maximum likelihood (Roberts, 2007, Roberts and Stylianou, 2012) and 

Bayesian (Corani, et al., 2013, Dukic and Hogan, 2002) approaches to fitting these models 

have been developed. In any situation where embryo-level covariates are of interest and 

multiple embryos are transferred simultaneously, EU models represent the preferred 

method of analysis. It is possible to use a Logistic-Normal mixed effects model (Roberts, 

2007), although interpretation of coefficients is complicated by the fact that cycle 

outcomes do not occur at the embryo level. It is possible that concern over multiple births 

will lead to the adoption of elective single embryo transfer as the default treatment 

strategy, which would render this a moot point. At present however, transfer of multiple 

embryos occurs in the majority of cycles in the UK, so that this issue is likely to remain 

relevant for the foreseeable future (Human Fertilisation and Embryology Authority, 2016). 

 Dealing with drop out 1.3.7.

Many couples discontinue treatment before achieving a successful result. Due to the 

multistage and multi-cycle nature of IVF, discontinuation may occur midway through a 

cycle or following the completion of a cycle that resulted in failure. It has been noted, 

usually in relation to the calculation of cumulative live birth or pregnancy rates, that this 

drop out presents a challenge when analysing IVF datasets. The estimation of success 

rates using the Kaplan-Meier method produces biased estimates, as an underlying 

assumption of this approach is that censoring is independent of outcome. A considerable 

literature exploring the reasons for drop out in IVF has emerged, and active censoring of 

the patient due to poor prognosis is commonly noted to be prevalent (Brandes, et al., 

2009, Olivius, et al., 2004, Verberg, et al., 2008). Studies investigating predictors of drop-

out have identified factors which are also prognostic for treatment outcome, such as age 

(Luke, et al., 2013, Troude, et al., 2014) and stimulation response (Marcus, et al., 2011, 

Pelinck, et al., 2007, Troude, et al., 2014). The supposition that those patients who 

abandon treatment would, if they did choose to proceed, have the same chance of 

success as those who do continue therefore appears to be implausible.  
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Recognising this point, several researchers have calculated rates based on alternative 

assumptions. A ‘pessimistic’ approach assumes that patients who drop out would have a 

zero probability of success if they continued treatment (Stewart, et al., 2011a, Malizia, et 

al., 2009, Verhagen, et al., 2008). This is clearly overly conservative, and some researchers 

have adopted the approach of presenting this conservative rate together with the rate 

based on the assumption of independent censoring, reasoning that the true rate will lie 

somewhere between these two bounds (Lintsen, et al., 2007, Malizia, et al., 2009, 

Stewart, et al., 2011a). Another approach is to assume that those who were censored for 

medical reasons had zero chance of success, while those who were censored for other 

reasons were as likely to succeed as those who continued (Verhagen, et al., 2008). This 

latter approach therefore makes separate unrealistic assumptions for those who were 

actively and passively (voluntarily) censored, and is not obviously an improvement on the 

methods hitherto described.  

Several attempts have been made to accommodate censoring that occurs in IVF. Soullier, 

et al., (2008) used multiple imputation (MI) to estimate cumulative live birth rates in the 

presence of drop out. An assumption of this approach is that missing outcome data are 

missing-at-random (MAR) (Rubin, 1976). This means that differences between missing 

and observed outcomes can be explained using observed data (Sterne, et al., 2009). The 

authors included the variables IVF unit, age at aspiration, number of oocytes retrieved, 

and total number of embryos (transferred plus frozen) as predictors in the imputation 

model, on the grounds that these are frequently cited as predictors of outcome in the 

literature. It is unclear that a model with so few predictors would be sufficient to provide 

reasonable predictions of the missing values. The literature pertaining to predictors of IVF 

outcome and reasons for drop out might enable superior missing data models to be 

constructed. This might highlight relevant variables to include and whether or not these 

are likely to be sufficient to account for systematic differences between patients who do 

and do not abandon treatment. For example, if a common reason for drop out is financial 

expense (which was cited as a reason by 46% of respondents to an internet survey of 80 

users of an independent infertility website, Marcus, et al., 2011), then differences may 

exist between those who abandon treatment and those who do not in terms of socio-

economic status. This might prompt us to consider whether or not such differences could 

be accounted for by the available variables. We should be wary of unvalidated prediction 
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models appearing in the literature however, as reported associations may be spurious or 

otherwise non-generalisable. For example, a systematic review of 22 studies of reasons 

for and predictors of drop out in fertility treatment found that no predictors were 

consistently associated with drop-out (Gameiro, et al., 2012). 

Another attempt to address the drop-out over multiple treatment cycles was made by 

Hogan and Scharfstein, (2006), who noted that attrition depends heavily on prior 

outcome. They presented a causal model with per-embryo implantation rate as the 

outcome, based on a propensity weighting method. This approach again assumes that 

outcome data are MAR, so that missingness is fully explained by observed data. As for the 

preceding MI example, this approach therefore requires a good understanding of the 

reasons for drop out and the availability of variables needed to produce a satisfactory 

missing data model. 

Concerns over informative censoring also arise when considering models for the multiple 

treatment stages within a cycle. Patients may abandon treatment mid-cycle. Poor 

response at an earlier stage may preclude completion of the treatment cycle. At present, 

little attention has been paid to the issue of missing data for multistage prediction 

models, with most researchers either ignoring or acknowledging and dismissing the 

problem. For example, when discussing the continuation ratio model for IVF, Penman et 

al., (2007) made the (weak) argument that patients drop out for a variety of reasons, and 

that missingness could therefore be considered ignorable. Maity, et al., (2014) 

acknowledged that estimates from their discrete time-to-event model for the multiple 

stages of IVF could be biased due to the fact that the number of observations made on a 

given patient was itself informative. 

Methods for dealing with informative censoring have been developed in other topic 

areas, and are likely to be applicable or modifiable for the case of the multistage IVF 

cycle. Dunson, et al., (2003) presented a method for the case where the number of 

observations is informative, involving the joint modelling of several mixed outcomes 

together with the cluster size. This was extended by Goldstein, et al., (2009) to provide a 

general class of models capable of handling missing data in multilevel contexts with 

multiple mixed outcome types. This approach might allow for missingness to be modelled 

at the level of stages within a multiple-cycle framework. A model for longitudinal binary 

response data with informative missingness that makes use of the continuation ratio 
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model to represent the drop out process has been described by Ten Have, et al., (1998). A 

method for relaxing the independent censoring assumption in the Cox proportional 

hazards model has been presented by Jackson, et al., (2014). These latter two examples 

may be useful for modelling the drop-out process over full or extended courses of 

treatment. 

 

 Time-to-event models 1.3.8.

As has been discussed in section 1.2.7, the distressing nature of subfertility and IVF 

treatment means that the expected time to achieve success is likely to be an important 

piece of information for patients. This motivates the use of survival models for time-to-

event outcomes in IVF. As noted in the previous section, Kaplan-Meier methods are 

commonly used to estimate cumulative live birth or pregnancy rates over several cycles of 

treatment. Typically, cycle started or completed is used as the unit of time in these 

analyses. Similarly, Missmer, et al., (2011) use cycle completed as the unit of time in a 

discrete time survival model, which they note to be equivalent to performing 

unconditional logistic regression with cycle number as a covariate. In reality the time 

taken to undergo a set number of cycles may vary drastically between patients, so that 

results presented using cycle number as the unit of time may be difficult to interpret. 

Moreover, due to the lack of a common timescale in these approaches, comparisons 

between treatment programmes are not meaningful (Daya, 2005). These problems are 

compounded in discrete time-to-event models for handling the multistage nature of IVF, 

where treatment stages are the unit of time1 (Maity, et al., 2014, Penman, et al., 2007). 

Models based on real time are therefore likely to be more relevant to patients (Daya, 

2005). 

Although not as common as analyses based on discrete-time approaches, analyses using 

real-time survival methods do appear in the IVF literature. For example, Verhagen, et al. 

(2008) presented cumulative pregnancy rates based on real-time over a 9 month period. 

Lintsen, et al., (2007) used the Cox proportional hazards model with time from 

commencement of treatment to ongoing pregnancy as the outcome of interest. They 

                                                           
1
 It should be noted however, that these models were not intended for the purpose of forecasting expected 

times to a successful result. 
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included baseline covariates and appear to have treated drop outs as failures. This 

highlights the need for time-to-event methods capable of incorporating more realistic 

drop-out assumptions and possibly time-varying covariates. Another possible area for 

development lies in methods for the joint modelling of repeated measures data and event 

times (eg: Hogan and Laird, 1997). These can be used to estimate the effect of a 

longitudinal measure on a time to event outcome while allowing for unmeasured 

confounding between the two (Rizopoulos, 2012). 

 Summary of section 1.3 1.3.9.

Attempts have been made to develop models capable of accommodating the multistage 

and multicycle structure of IVF treatment. Methods for multiple cycles generally assume 

that correlation between cycles is constant, or that unexplained heterogeneity is 

attributable to time-invariant unmeasured factors. Methods from the longitudinal data 

literature may offer ways to relax this assumption, although it is worth questioning 

whether or not this is likely to produce substantively different clinical conclusions. If not, 

such an exercise would have little practical benefit. Given the finding of Roberts and 

Stylianou, (2012), that correlation due to unmeasured factors across repeated cycles of 

IVF was modest, the value of pursuing this matter further is somewhat doubtful. 

The matter of how to model the multiple stages of an IVF cycle has received relatively 

little attention. The methods that have been proposed have limitations, most notably in 

the treatment of the critical stimulation stage. Adequate modelling of the stimulation 

response would seem to represent an important first step in modelling the full treatment 

cycle. Several strategies for modelling the ovarian response have been outlined in brief. 

Once adequate stage-specific models have been established, the question of how to 

incorporate these into a model for a complete (fresh) cycle requires consideration. 

Although it has received relatively little attention to date, the idea of developing 

multistage models including the various stages of IVF treatment is interesting, particularly 

in relation to questions of efficacy. Existing methods dichotomise the stage-specific 

responses, representing a waste of information. Methodological areas have been 

identified which may be useful for this purpose, including joint modelling and SEM 

approaches.  
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Although discrete time to event methods appear in the IVF literature, these have the 

potential to be misleading due to variation between patients and between centres in the 

timings involved. Survival models based on real-time are occasionally used, but more 

consideration is needed in relation to time-varying covariates and unrealistic censoring 

assumptions. 

Appropriate methods for handling informative drop-out have been discussed for multiple 

cycle models, but these are rarely implemented. Where methods are used, for example in 

the calculation of cumulative rates, the underlying assumptions are dubious. The matter 

of modelling the drop-out process in the multistage context has yet to be considered in 

the literature. Methods for the joint modelling of cluster size and outcomes derived in 

other topic areas may be modifiable for the purpose of describing attrition within a cycle.  

 

 Conclusions of the literature review 1.4

The objectives of the present literature review were to establish and summarise areas of 

consensus and dissent on the topic of outcome measurement in IVF, and to critically 

review analysis strategies appearing in the literature. On the basis of this informal review, 

we believe that the search for a single measure of success is a castle in the air. The 

appropriate choice of measure will depend on the purpose and intended audience, and in 

fact it might be necessary to use a suite of several measures to capture different aspects 

of treatment (effectiveness and safety, for example). The appropriate approach to 

analysis is also likely to be context-dependent and closely related to the appropriate 

choice of outcome measure(s). 

Wherever a measure is intended to inform current or prospective patients about the 

likelihood of success, the literature generally supported the view that live birth rates over 

full courses of treatment are the most relevant outcomes to patients. We believe that this 

is likely to be true for effectiveness trials in general, although the practicalities of 

following patients over several cycles might preclude this. Despite its attractiveness as a 

pragmatic measure, the review highlighted substantial logistical and conceptual 

difficulties with the use of cumulative birth rate as an outcome. In the absence of long-

term datasets linking patients between multiple centres, a more realistic ambition would 

be to develop models over some prespecified period of time based on single-centre data. 
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While it might be possible to develop methods that could incorporate multicentre 

treatment courses, the application would probably have to remain hypothetical. Where 

cumulative live birth rates cannot be obtained, recording live birth after a single cycle 

probably takes second place prize (although this will not be suitable for the evaluation of 

policies based on the number of attempts to offer, eg: McLernon, et al., 2010). If live birth 

rates cannot be obtained, the ongoing pregnancy rate (for example, after 12 weeks of 

gestation) is a reasonable surrogate measure (Braakhekke, et al., 2014), provided that the 

(small numbers) of patients who are observed to have a miscarriage later in the 

gestational period are not then reclassified as having failed treatment.  

Given that methods for multiple treatment cycles already exist (section 1.3.5.) this line of 

research would only be worth pursuing if those existing models had substantial 

limitations. Simplistic assumptions relating to correlation structure and missing data 

mechanisms have been identified as possible weaknesses in analyses generally 

conducted. However, it is unclear that either of these represent enough of a problem to 

justify a targeted program of research. The first might not matter in practice (Roberts and 

Stylianou, 2012) and the second appears to be a matter of raising awareness of existing 

missing data methods (Soullier, et al., 2008, Sterne, et al., 2009, Ten Have, et al., 1998). 

An alternative way to analyse multicycle data might be to use time-to-event methods, 

using realistic censoring assumptions. This might capture the burden of treatment, by 

rewarding interventions that shorten the route to birth. One concern with survival 

analyses however is the risk of rewarding aggressive and unsafe treatment strategies, 

which may result in shorter times to pregnancy and birth. Adverse outcomes such as 

hyperstimulation syndrome should always accompany time to event effectiveness 

measures. Given that adverse event rates are generally relatively low in comparison to 

birth rates however, there is a risk that harmful effects of treatments will go 

unrecognised due to low power.  

While questions of IVF effectiveness and clinical outcome prediction are most vital to 

patients, most of the challenges we encounter in practice can be tackled using existing 

statistical methods for answering pragmatic research questions, handling repeated 

measures and reducing bias due to missing data. The question of how to investigate the 

internal structure of an IVF cycle is more enticing. Using multistage models might 

elucidate the effects of treatment decisions and patient characteristics on responses at 
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different stages of the process and possibly result in superior predictions of birth 

outcomes. Several proposals have been made, although these have severe limitations, 

including inadequate handling of the stimulation stage, reductionist dichotomisation of 

response variables, and inability to accommodate informative censoring. In practice, the 

simplistic treatment of the stimulation stage is probably a symptom of the complexity of 

representing the ovarian response, as well as the difficulty of combining mixed response 

types in a single model. Both the matter of how to model the stimulation stage, and how 

to subsequently combine the sequence of stages into a coherent model for the IVF cycle 

present substantial challenges, although methods for handling complex relationships 

between covariates and multiple mixed outcomes have been described. An aspiration for 

this line of work would be to produce something that could be extended or embedded 

into a model for multiple treatment cycles. 

This literature review has limitations. The relevant body of literature was both disparate 

and abundant, so that a finite population of studies and research papers could not be 

identified. The implication of this is that the review cannot be conceived of as ‘complete’ 

in any sense: the identification and assimilation of relevant research will be an ongoing 

process which will continue to inform the project strategy. However, the primary purpose 

of this review was to develop an understanding of the work that has been done to date 

and to generate ideas for subsequent development. Several avenues of investigation have 

been opened, and several areas of literature that merit further consideration have been 

identified. In light of this, a multi-faceted strategy based on the research ideas presented 

here suggests itself as a suitable programme to adopt from this point. 

 

 Next steps and outline of the thesis structure 1.5

Our intention for the remainder of the thesis is to develop statistical methods for the 

purpose of answering mechanistic questions relating to the internal structure of the 

multistage IVF cycle. While we have seen some literature discussing which outcome 

measures should be used to evaluate IVF, the bulk of this literature was concerned with 

patient-facing outcome measures, such as national performance indicators and endpoints 

for effectiveness research. The literature on measurement of stage-specific responses for 

answering mechanistic research questions has not been so well-represented in this 



 

62 
 

review, which could be a product either of sparsity of work in this area or a deficiency in 

our search, which was conducted in an informal manner. Another way to establish 

stakeholders’ attitudes towards IVF outcome measures would be to see what they are 

actually using. To this end, we will conduct reviews of the outcomes measures actually in 

use in different contexts. We anticipate this exercise will have several benefits. First, it 

will allow us to systematically establish the outcome measures in use for different 

purposes, which will inform the response variables to include in our models. Second, 

given the complex structure of IVF, we anticipate that there will be different ways in 

which we could divide the cycle into discrete stages. A review of the numerators and 

denominators in use will give some insight into common and natural strategies to carry 

out this partitioning. Finally, we anticipate that there will be scope to comment on 

current reporting practices by publishing our reviews. Accordingly, this preparatory 

exercise might have some direct benefit.  

We will require good statistical models for the different stages of the IVF cycle (with the 

set of stages still to be identified from the review of outcome measures just described). 

We begin by focussing on modelling strategies for the stimulation stage, which the 

literature review has identified as a weakness in existing multistage models. We explore 

this matter by way of an application to real data. Subsequently, and as we identify a 

suitable set of stages to be modelled, we will investigate how to model and then combine 

stage-specific responses in order to answer mechanistic research questions.  

This program of work comprises two coalescing strands, and this is reflected in the 

structure of the thesis. In Part II, we detail our research into outcome measurement in 

IVF, while in Part III we turn our attention to the matter of developing multistage models 

for IVF. Each of these parts is divided into methods and results sections. Our results are 

presented in journal article format, and so in our methods sections we present and 

critically motivate our methodology in greater detail than is permitted given publishing 

restrictions.  
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Chapter 2.  Methods for reviews of outcome measurements 

in use in IVF 

 

Our reviews of outcome measures used in IVF are presented as journal articles 1,2, and 3 

(Chapters 3, 4 and 5). Each of these journal articles contains methods sections, 

articulating the factual details of the searches, data extraction and analysis. To avoid 

repetition and tedium, the following methods chapter will focus on the thinking behind 

the approaches employed in those articles. 

 Motivation 2.1

What outcomes are actually used for evaluation of IVF treatments? A review of the 

outcome measures reported for IVF would be informative. Specifically, this would 

indicate the reporting standards in the field and would identify the principle treatment 

stages to include in our models. We have already seen that different outcome measures 

will be needed in different contexts. Although our intention is to focus on models for 

mechanism and efficacy, clinical endpoints remain within our scope; we would be 

interested in investigating how procedural outcomes of treatment relate to birth 

outcomes, for example. Moreover, even in settings where the primary audience is 

prospective or current patients, we can get a sense of how clinicians partition the cycle 

into chunks by looking at the variety of denominators they use (an outcome reported ‘per 

transfer’ represents a severing of the cycle at the transfer procedure, for example). On 

the basis of these considerations, we decided that it would be appropriate to review 

outcome reporting in two rather different settings. First, we conducted a review of 

outcome reporting in RCTs of IVF. Second, we looked at reporting of success rates on IVF 

clinic websites, which are targeted at prospective patients. In the case of RCTs, we 

included both efficacy and effectiveness trials, so as to capture as much of the variation in 

outcome reporting as possible.  
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 The relevance of core outcome sets 2.1.1.

Concern over the lack of consistency in reported outcome measures in women's health 

research has led to the formation of the CROWN (CoRe Outcomes in WomeN's health) 

Initative, comprising the editors of over 50 women's health journals (Khan, 2014). 

CROWN has noted that the lack of core outcome sets in women's health research hinders 

comparisons between studies and the synthesis of evidence, and have called for efforts to 

plug the gap. A systematic review of primary outcomes reported in trials and systematic 

reviews of interventions for preventing preterm birth has been given as an example; the 

review authors found seventy-two different primary outcomes reported in 103 RCTs and 

29 different primary outcomes in 33 Cochrane reviews (Meher and Alfirevic, 2014). In 

that review (of trials and Cochrane reviews), the authors noted the need for reviews of 

outcomes within each specialty as a precursor to the development of a core outcome set. 

Although it is not our concern to establish a core outcome set for infertility research, a 

review of outcomes used in IVF research would constitute a useful contribution to this 

ongoing endeavour.  

 Redundancy check in literature databases 2.2

As has been noted above, the appropriate choice of outcome is likely to be context 

dependent, so that different endpoints might be suitable for summarising clinic 

performance and for research. Regardless of suitability, we might expect that different 

outcomes might be used in each of these domains. A review of IVF outcomes should 

distinguish between these settings by reporting on both separately. In the remainder of 

this section, I will outline the considerations for conducting reviews within both of these 

domains. In order to preclude duplication of work that may have been completed or 

ongoing elsewhere, a search was conducted in the MEDLINE and COMET (Core Outcome 

Measures in Effectiveness Trials) databases. The search string used in a MEDLINE search is 

shown in 2.7. In COMET, searches can be made by condition. Searches were made for 

each of ‘infertility’ and ‘subfertility’. The COMET search returned one article (Dapuzzo, et 

al., 2011). The MEDLINE search returned 32 articles; abstracts and titles were screened 

and one was considered to be directly relevant (Kushnir, et al., 2013). A search for articles 

citing either of these was made in the Web of Science database. None of the citing 

articles constituted reviews of outcomes in use. 
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The first of the two identified articles was a review of outcomes reported in 294 RCTs 

published between 2004 and 2010 in the top 10 Obstetrics and Gynecology journals 

according to 2008 ISI Rankings (Dapuzzo, et al., 2011). The authors only included trials 

with pregnancy as one of the outcomes. Furthermore, they restricted their focus to 

outcomes relating to pregnancy (including live birth), pregnancy loss and adverse events. 

Around 40% of the included trials reported on live birth. The second article attempted to 

assess the transparency of reporting by clinics using the surveillance reports of the 

Society for Assisted Reproductive Technologies and Centres for Disease Control and 

Prevention. The authors compared the numbers of started cycles with the numbers of 

cycles for which outcomes were reported, and noted an increasing proportion of 

excluded cycles between 2005 and 2010 (Kushnir, et al., 2013). The analysis may be 

critically flawed however, as the authors appear to have included embryo-banking cycles, 

where stimulation is performed with the intention of freezing embryos for future use 

(Kissin, et al., 2013). Increasing use of embryo-banking cycles enabled by improvements in 

cryopreservation technology may therefore account for much of this trend.  

Clearly, neither of these articles would render our review (really, reviews) redundant. In 

the remainder of this section, I will outline the relevant considerations for reviews of 

reported outcomes in IVF research and on IVF clinic websites. 

 

 Methodological considerations for a review of outcome measures in IVF 2.3

research  

 Which studies should we include? 2.3.1.

While we noted above that we believe our scope should be fairly broad, so as to capture 

response measures employed at all different stages and to different ends, some 

narrowing down of the eligibility criteria from ‘any IVF research’ would clearly be 

appropriate. One way to reduce the number of eligible studies would be to focus solely 

on randomised trials. This might be justified by noting that ‘observational study’ is a 

vague designation, and would potentially open the door to pieces of work that are not 

obviously research. The line between a routine audit and a retrospective cohort study 

might turn out to be thin. Moreover, whereas for trials, the population of studies is 

delineated by a well-understood and quite clearly defined class of study designs, it is not 
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clear which research designs should be eligible in the observational scenario. This is 

largely because this group of studies is defined by the lack of allocation of groups to 

treatment by researchers and therefore incorporates a heterogeneous collection of 

designs. 

 

The decision to review outcome measures in IVF RCTs prompts the question of which 

RCTs to include. For systematic reviews of interventions, this entails deciding upon a 

definition for the intervention, or interventions, and a patient population. Randomised 

controlled trials testing this intervention in the chosen population are then eligible for 

inclusion in the review. In the present case, interest lies in the outcomes that are in use in 

trials in IVF, and the relevant considerations may differ slightly compared to a review of a 

particular intervention. If all trials of interventions for subfertile patients were considered 

eligible, then this would include alternative but sometimes similar treatments, such as 

intrauterine insemination (IUI), where sperm is selected and placed into the uterus during 

the ovulation period, and intra-cytoplasmic sperm injection (ICSI), which differs from 

usual IVF in that the sperm is injected directly into the egg to create the embryo. 

Arguments for including these treatments include general coincidence of purpose and 

patient populations, with many clinics offering these as alternatives to IVF. Indeed, ICSI is 

often considered as a variant of IVF and ICSI cycles are often included in analyses of IVF 

programmes. Arguments against include the fact that some of these treatments will be 

too dissimilar to be directly relevant to the present project and the fact that increasing 

the scope of the review may render the exercise infeasible. A solution may lie in 

prespecifying those treatments that are sufficiently similar to be considered eligible (so 

that, for example, trials in patients undergoing ICSI may be included, but trials in patients 

undergoing IUI may not). Such decisions must be to some extent arbitrary. Similar 

decisions must be made in relation to trials of interventions delivered alongside IVF as 

opposed to interventions consisting of modifications to the process itself. For example, a 

recent systematic review of psychological and educational interventions for subfertile 

men and women included trials in which patients were given some psychological 

intervention before, during or after IVF (Verkuijlen, et al., 2016). Although this does not 

constitute direct modification of the IVF process, it can be argued that the outcomes 

reported in such trials are relevant both to patients undergoing IVF and to the present 
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review. Moreover, in some cases, the matter of whether an intervention constitutes a 

supplement or a modification to the IVF treatment may be unclear. 

It would be necessary to define a time period during which a study must have been 

published in order to be eligible. A key reason for this is again feasibility of conducting the 

review. However, it can be argued that a review of more recent studies may be more 

informative and relevant on two grounds. Firstly, we anticipate that recent trials will be of 

a higher standard in comparison to earlier work. A review of subfertility RCTs published in 

2001 highlighted poor standards of study design and reporting (Vail and Gardener, 2003). 

A review of subfertility RCTs published in 1990, 1996 and 2002 also highlighted the 

historically poor methodological quality and standard of reporting in this field, although 

the authors noted that there was evidence of improvement over the period (Dias, et al., 

2006). However, methodological quality might not matter in the present review (see 

2.3.2, below). Furthermore, poor standards of outcome reporting would constitute a 

valuable finding in this context. A second argument for focussing on recent studies is that 

much of the debate around the appropriate outcome for IVF research was triggered by 

the proposal of BESST in 2004 (Min, et al., 2004). Research published following this 

discussion is more likely to reflect the current trends relating to outcome reporting, which 

are the focus of the review. 

 

 What should we extract? 2.3.2.

A review of outcomes would differ from a review of trials of an intervention in that, in the 

case of the former, there is no interest in estimating the effectiveness or safety of a 

treatment through data synthesis. The methodological quality of the studies is not 

directly relevant to the question of what outcomes are reported, so no assessment of risk 

of bias in the included studies would need to be made. The focus should be on extracting 

the outcomes that are actually reported in the trials. Outcome definitions should include 

both the numerators and denominators used in the study. Some additional characteristics 

of the trials should be extracted so that results can be presented separately for studies 

with different features (which is not to say that any inferential comparisons are 

intended). Characteristics that could be extracted include information about the patients, 

intervention, setting, objectives, study design, duration, sample size, rates of attrition, 
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analysis, funding source and the actual results of the trial. It might be necessary to prune 

this list to a relevant subset for the purposes of practicability. 

 

  Search strategy 2.3.3.

Although the interest in Cochrane Reviews is usually in evaluation of an intervention, the 

general search strategy recommended by Cochrane might also be suitable for a review of 

outcomes. In a Cochrane review, the central concern of the search strategy is to minimise 

publication bias arising from the fact that ease of access to trial reports is related to their 

results (Higgins and Green, 2011). For a review of reported outcomes, the concern is not 

related to bias but rather to ensuring that the findings are representative of and 

generalisable to the population of trials defined by the review inclusion criteria. It is not 

clear whether or not ease of access to trial reports is related to the outcomes reported 

within, although such a relationship would be plausible due to within-study selective 

reporting of significant results. However, an exhaustive search would protect against both 

sources of concern by identifying all trials in the population defined by the eligibility 

criteria of the review. Given that this is precisely what the Cochrane search strategy is 

intended to do, it would appear to be reasonable to employ a similar search 

methodology. 

Briefly, the search strategy recommended by Cochrane consists of a search of large 

databases of trials (MEDLINE, EMBASE, CENTRAL) supplemented by searches of 

specialised registers of trials and of the grey literature. In MEDLINE, searches should be 

highly sensitive (in the sense of returning large numbers of potentially relevant studies) 

even at the expense of precision (in the sense that very few of the studies returned by the 

search will actually be eligible for inclusion). The reasoning is that it is important to 

capture all relevant studies and that the time taken to screen a study for eligibility is short 

(possibly as low as 30 seconds) (Lefebvre, et al., 2008). 

Using the published search strategies in systematic reviews of the Cochrane Gynaecology 

and Fertility Editorial Group as a guide, MEDLINE search strings were constructed and 

piloted in order to explore the number of trials that would have to be screened initially, 

and therefore the feasibility of the review. The strings were designed to be broad enough 

to capture assisted reproductive technologies other than IVF, and explicitly included 
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terms relating to IUI and ICSI. The searches are shown in 2.7. The MEDLINE search 

returned 2621 results, of which 1422 were published in the last 10 years. Assuming a rate 

of screening of 30 seconds per returned study, this translates to around 12 hours of 

screening. It is unclear exactly how many of the studies would be eligible for subsequent 

data extraction; this would depend on the exact inclusion criteria used. Searches of other 

databases were not conducted as part of this initial scoping exercise. 

 

 Methodological considerations for a review of outcomes reported by IVF 2.4

clinics 

 

 Inclusion criteria 2.4.1.

We would like to know the outcomes reported by IVF clinics in the UK. As such, inclusion 

criteria in this case could be defined as UK clinics performing IVF (or possibly related 

treatments such as ICSI). In relation to this and other aspects, a review of outcomes 

reported by clinics should be more straightforward than the corresponding review of 

trials.  

 What should we extract? 2.4.2.

In relation to clinics, possible information to extract includes the outcomes reported 

(numerator and denominator), the results themselves, the sample sizes and stratification 

variables (potentially including time periods and results for different treatments). 

 Search strategy 2.4.3.

Particular interest lies in the outcomes that clinics use in direct communication with 

prospective and existing patients, rather than in the outcomes that are presented 

collectively by HFEA. This information is held on the websites of clinics. These websites 

were listed on the HFEA's ‘Choose a Fertility Clinic’ database2. A search of this database 

revealed 72 clinics in the UK offering IVF or ICSI (one clinic offers IVF but not ICSI, no 

clinics offer ICSI but not IVF). A review of outcomes reported by clinic websites would not 

therefore be prohibitively difficult. 

                                                           
2
This website has now been superseded by the new Choose a Clinic website  

https://www.hfea.gov.uk/choose-a-clinic/  

https://www.hfea.gov.uk/choose-a-clinic/
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 Summary of Chapter 2.   2.5

Although a review of outcomes used in IVF would seem to be warranted, considerable 

thought needs to be given to the matter of what kinds of studies to incorporate. A key 

judgement relates to whether or not it is essential or even desirable to include hard to 

find studies in order to answer the review question. Aside from this, it may not be 

feasible to conduct the review of research sketched above due to the large numbers of 

studies that would need to be screened and subsequently interrogated for relevant data. 

Feasibility of the exercise could be improved by reducing the scope of the review. For 

example, the review of trials could be dropped, on the grounds that a similar review was 

conducted in 2011 (Dapuzzo, et al., 2011). The focus on pregnancy and live birth 

outcomes, the failure to report on denominators and the restriction to the top 10 journals 

may be seen as notable limitations of that study however. Another key decision is 

whether to include studies of treatments related or similar to IVF (such as IUI, ICSI) and of 

treatments delivered as supplementary to IVF. A review of outcomes reported on the 

websites of UK clinics promises to be more straightforward, with a clearly defined 

population and free access to the required information. 

In the remainder of Part II, we present three journal articles on the topic of outcome 

measures in IVF.  The first two of these comprise the reviews of trials and clinic websites 

described above. In the third, we challenge the decision of HFEA to switch the 

performance indicator they present to patients on their website to the measure ‘live birth 

per embryo transferred’.  As a debate article, there are no methods to report as such. The 

objections we present are based on arguments formulated during our review studies. We 

suggest that no single measure is a sufficient performance indicator, and that a suite of 

measures should be reported instead.  
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 Supplementary Material for Chapter 2.   2.7

Search string used for redundancy search in MEDLINE 

 

Keywords CONTAINS “IVF” or “in vitro fertilization” or “in-vitro fertilisation” or “ICSI” or 

“intracytoplasmic sperm injection” or “Embryo” or “in-vitro fertilization” or “ART” or 

“assisted conception” or “assisted reproduction” or “artificial insemination” or “IUI” or 

“IVF-ET” or “subfertility” or “Infertility” or Title CONTAINS “IVF” or “in vitro fertilization” 

or “in-vitro fertilisation” or “ICSI” or “intracytoplasmic sperm injection” or “Embryo” or 

“in-vitro fertilization” or “ART” or “assisted conception” or “assisted reproduction” or 

“artificial insemination” or “IUI” or “IVF-ET” or “subfertility” or “Infertility” AND 

Keywords CONTAINS core outcome or core outcomes or outcome reporting or Title 

CONTAINS core outcome or core outcomes or outcome reporting 

 

 

Search string used to investigate approximate number of eligible trials in MEDLINE 

 

Search (((((“ovarian stimulation”[MeSH Terms] OR “ovarian hyperstimulation”[MeSH 

Terms])) OR (“ovarian stimulation”[Title] OR “ovarian hyperstimulation”[Title]))) OR 

(((“IVF”[MeSH Terms] OR “in vitro fertilization”[MeSH Terms] OR “in-vitro 

fertilisation”[MeSH Terms] OR “ICSI” or“intracytoplasmic sperm injection”[MeSH Terms] 

OR “Embryo”[MeSH Terms] OR “in-vitro fertilization”[MeSH Terms] OR “ART”[MeSH 

Terms] OR “assisted conception”[MeSH Terms] OR “assisted reproduction”[MeSH Terms] 

OR “artificial insemination”[MeSH Terms] OR “IUI”[MeSH Terms] OR “IVF-ET”[MeSH 

Terms] OR “subfertility”[MeSH Terms] OR “Infertility”[MeSH Terms])) OR (“IVF”[Title] OR 

“in vitro fertilization”[Title] OR “in-vitro fertilisation”[Title] OR “ICSI” or“intracytoplasmic 

sperm injection”[Title] OR “Embryo”[Title] OR “in-vitro fertilization”[Title] OR “ART”[Title] 

OR “assisted conception”[Title] OR “assisted reproduction”[Title] OR “artificial 

insemination”[Title] OR “IUI”[Title] OR “IVF-ET”[Title] OR “subfertility”[Title] OR 

“Infertility”[Title])))) AND (((randomised controlled trial[MeSH Terms] OR randomized 

controlled trial[MeSH Terms] OR randomized[MeSH Terms] OR randomised[MeSH Terms] 



 

84 
 

OR placebo[MeSH Terms] OR clinical trials as topic[MeSH Terms] OR randomly[MeSH 

Terms] OR trial[MeSH Terms] OR crossover[MeSH Terms] OR cross-over[MeSH 

Terms] OR cross over[MeSH Terms])) OR (randomised controlled trial[Title] OR 

randomized controlled trial[Title] OR randomized[Title] OR randomised[Title] OR 

placebo[Title] OR clinical trials as topic[Title] OR randomly[Title] OR trial[Title] OR 

crossover[Title] OR cross-over[Title] OR cross 

over[Title])). 
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for medically assisted reproduction: a review of 

national clinic websites. 
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to be published. All other authors contributed to the design of the study, the 

interpretation of data, drafting and revision of the manuscript and gave final approval of 

the version to be published. JW is acting as guarantor for the study. 

Preamble Our primary motivation for reviewing the IVF outcomes in use was to inform 

subsequent method development (specifically, to identify the stages and interventions to 

include in our models). However, it became apparent during this review of clinic websites 

that the multiplicity of potential outcome measures in IVF could be abused when 

employed for the purposes of marketing a clinic’s services. Accordingly, we felt that it was 

important to report the outcome heterogeneity we found and to describe the 

implications for consumers.  

Outputs and Impact of the research Oral presentations relating to this work were 

delivered at the University of Manchester Institute for Population Health Student 

Showcase, the Cochrane Gynaecology and Fertility 20 year anniversary conference, and 

by invitation to a meeting of the North of England Reproductive Medicine Group, and at 

an internal seminar of Central Manchester NHS Foundation Trust Department of 

Reproductive Medicine. In addition, the study received some media coverage, appearing 

in national newspapers (eg: The Daily Mail, The Telegraph, The Sun, The Independent). 

JW was interviewed for Irish national radio (Newstalk) and local television (That’s 

Manchester) about the study. On the basis of this work, JW was invited by the Human 
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Fertilization and Embryology Authority (HFEA) to discuss their plans for reporting of IVF 

success rates on their website. At the time of writing, the authors have received 

assurances from HFEA that they will address the issues raised in the study. 

Finally, the publication of the study has garnered interest from patient representatives, 

particularly on social media. This has led to an invitation to JW to act as an advisor on a 

new patient information initiative ( www.ReproTechTruths.org ). 

http://www.reprotechtruths.org/
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 Abstract 3.1

 

Objectives 

To establish how medically assisted reproduction (MAR) clinics report success rates on 

their websites. 

Setting 

Websites of private and NHS clinics offering in vitro fertilisation in the United Kingdom. 

Participants 

We identified clinics offering in vitro fertilisation (IVF) using the Choose a Fertility Clinic 

facility on the website of the Human Fertilisation and Embryology Authority (HFEA). Of 81 

clinics identified, a website could not be found for two, leaving 79 for inclusion in the 

analysis. 

Primary and secondary outcome measures 

Outcome measures reported by clinic websites. Both the numerator and denominator 

included in the outcome measure were of interest. 

Results 

53 (67%) websites reported their performance using 51 different outcome measures. It 

was most common to report pregnancy (83% of these clinics) or live birth rates (51%). 

Thirty-one different ways of reporting pregnancy and nine different ways of reporting live 

birth were identified. Eleven (21%) reported multiple birth or pregnancy rates. One clinic 

provided information on adverse events. It was usual for clinics to present results without 

relevant contextual information such as sample size, reporting period, the characteristics 

of patients, and particular details of treatments.  

Conclusions 

Many combinations of numerator and denominator are available for the purpose of 

reporting success rates for MAR. The range of reporting options available to clinics is 

further increased by the possibility of presenting results for subgroups of patients and for 

different time periods. Given the status of these websites as advertisements to patients 

the risk of selective reporting is considerable. Binding guidance is required to ensure 

consistent, informative reporting. 
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 Introduction 3.2

Direct to consumer advertising of prescription drugs is permitted only in the United States 

and New Zealand.  However, concerns that direct advertising drives demand for more 

expensive, rather than more effective, treatments do not extend to bans on direct 

advertising of other medical practices.   

Questionnaires of subfertile patients have indicated that a majority make use of the 

internet to find information relating to their condition (Haagen, et al., 2003, Rawal and 

Haddad, 2006) with a recent survey in Poland suggesting that 93% of respondents used 

online resources for this purpose (Talarczyk, et al., 2012). A key decision for any patient 

seeking treatment for subfertility is where to be treated, and it is expected that patients 

will take performance into account when choosing a fertility clinic. In practice, the 

reporting of success rates for medically assisted reproduction (MAR) is complicated by the 

complex, multi-stage nature of the treatments involved. Taking an in vitro fertilization 

(IVF) cycle as an example, patients will typically undergo a period of ovarian stimulation 

before eggs are recovered and then fertilized. Some of the resulting embryos are then 

transferred to the uterus with the objectives of pregnancy and the subsequent birth of a 

healthy child. Failure may occur at each step in this sequence, so that a considerable 

variety of numerators (such as pregnancy or live birth) and denominators (such as started 

cycles, transfer procedures, or egg collections) may be used (Heijnen, et al., 2004). 

Furthermore, since patients typically undertake multiple attempts at treatment, there is 

the option to report outcomes in a cumulative fashion. For example, live birth rates could 

be reported following several stimulation or transfer procedures.  Consequently, the 

matter of how MAR success rates should be reported has been extensively discussed in 

the literature (Abdalla, et al., 2010, Garrido, et al., 2011, Germond, et al., 2004, 

Griesinger, et al., 2004, Meldrum, 2013, Min, et al., 2004, Pinborg, et al., 2004, Schieve 

and Reynolds, 2004) and has featured in a recent consultation process (‘Information for 

Quality’) by the Human Fertilisation and Embryology Authority ((HFEA) 2014). There is 
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also the question of how to report adverse consequences of treatment. In particular, 

given the HFEA policy of reducing the number of twin births arising from MAR, the 

reporting of multiple pregnancy rates requires attention. 

In addition to informing clinic selection, reported outcomes may also be used by patients 

trying to understand their own chances of success. At present, HFEA present success rates 

in the form of live birth per cycle started and live birth per embryo transferred on its 

online Choose a Fertility Clinic facility, a new version of which is currently being tested 

(Human Fertilisation and Embryology Authority, 2009). This information is presented 

separately for treatments involving fresh and frozen embryos, for patients using their 

own or using donated gametes, and for different age groups. Furthermore, the particular 

treatment variants included in the results, the sample sizes, and the reporting period are 

all presented. In principle, the provision of this contextual information makes it possible 

for patients to identify relevant results and to consider these when making decisions 

about whether and where to commence treatment. Although HFEA provide standardised 

reporting of success rates, no such standardisation is imposed on clinics' own websites. In 

light of this, the consistency and clarity of online reporting is of material interest. 

 In order to investigate the standards of reporting of MAR success rates, we conducted a 

national review of MAR clinic websites. Our aim was to identify the outcomes in use by 

clinics and to examine whether results were presented in a consumer-friendly manner. 

 

 Methods 3.3

 Identification of websites 3.3.1.

We restricted our focus specifically to clinics offering assisted reproductive technology 

(ART), although we extracted information about other MAR treatments, such as intra-

uterine insemination (IUI), which would not be considered ART (Zegers-Hochschild, et al., 

2009). An initial search was made between 26/01/2015 and 29/01/15 on the HFEA 

Choose a Fertility Clinic facility (Human Fertilisation and Embryology Authority, 2009) 

using the search options ‘both’ for the field ‘funding for patients’ and ‘IVF’ for ‘treatments 

offered’. An earlier scoping exercise had suggested that no clinic offered intra-cytoplasmic 

sperm injection (ICSI) but not in-vitro fertilisation (IVF). This search was performed for 

each of the 12 ‘regions’ listed by HFEA. The website addresses of each clinic were 
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recorded. Where the website listed by HFEA was inactive, or where no website was listed, 

the correct address was obtained via Google searching.  It became apparent that this 

method had not produced a complete list of clinics. Accordingly, a further search was 

made using the A to Z listings on the HFEA website on 04/02/15 and 05/02/15. Any clinics 

offering IVF that were not identified during the initial search were added to the dataset. 

Again, missing or defunct website addresses were updated by searching on Google. As a 

final check, the initial search was repeated on 05/02/15 with the ‘funding for patients’ 

field replaced by each of ‘private’ and ‘nhs’. Although this revealed clinics that had not 

been identified during the initial search, it did not reveal any clinics that had not been 

identified after the A to Z search. Where multiple clinics shared a website, we used the 

centre-specific results for analysis, so that the clinic was the unit of analysis.  

 Data extraction 3.3.2.

Data were extracted at both the clinic-level and for each reported result on the clinic's 

website. At the clinic-level, we recorded the type of patients treated (NHS, private or 

both), whether or not an NHS logo was displayed on the front page, whether or not 

patient testimonials were used, and if so whether or not these were featured on the front 

page, whether selection policies relating to body mass index (BMI), age, number of 

previous attempts and smoking status were reported and whether the website reported 

success rates. At the result-level, we extracted the numerator and denominator used, 

together with the definition of the numerator if provided. We further extracted the 

corresponding patient and cycle characteristics for the reported item, including patient 

age range, treatments included, whether donor gametes were included, whether fresh or 

frozen cycles were included (for treatments other than intrauterine insemination (IUI)), 

the sample size, the reporting period as well as the number of cancellations and 

incomplete treatments. For each of these, we recorded instances where the required 

information could not be identified from the presented results.  

 Statistical analysis 3.3.3.

We summarised the characteristics of the clinic websites, tabulating the numerators and 

denominators in use within five categories: pregnancy, live birth, multiple births, pre-

clinical outcomes and adverse events. We calculated the proportion of clinics where 

results were presented in such a way so that each of age range, included treatments, 
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inclusion of donor gametes, inclusion of fresh/ frozen cycles, sample size, number of 

abandoned treatments and reporting period could not be identified. We were particularly 

interested in whether or not clinics achieved the standard of reporting adopted by HFEA. 

To this end, we calculated the proportion of websites reporting the outcomes ‘live birth 

per cycle started’ and ‘live birth per embryo transferred’ together with all of the relevant 

contextual information (that is, all of the factors listed above with the exception of 

number of abandoned treatments, as these cycles are included as failures in rates 

reported per cycle started). 

We calculated the proportion of websites for which patient selection policies were not 

stated. Finally, we made a tentative comparison between NHS and private clinics in 

relation to standards of reporting, although we did not consider statistical inference to be 

particularly meaningful in relation to this. 

 Results 3.4

 Characteristics of clinics 3.4.1.

The search identified 81 clinics in the UK. Of the 81 clinics identified, a website could not 

be found for two, leaving 79 for the present analysis. Fifty-three (67%) reported 

outcomes. Amongst those reporting outcomes, there was considerable variation in the 

number reported; the median (range) was 36 (1 to 127). Sixty-two (78%) stated that they 

treated both NHS and private patients, four (5%) described themselves as treating NHS 

patients only, and 13 (16%) stated that they exclusively treated private patients. Twenty-

three (29%) displayed an NHS logo on the front page. Forty-nine (62%) of the websites 

featured patient testimonials, of which 23 (47%) featured these on the front page. 

 

 Reported outcomes 3.4.2.

A total of 54 different outcome measures were identified during the review. The 

distribution of clinical outcome measures across the clinics is shown in Figure 4 and Figure 

5. 
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Pregnancy outcomes 

Thirty-three different ways of reporting pregnancy were identified (Table 1). The majority 

(81%) of clinics reported clinical pregnancy rates, with most (55%) websites reporting 

these per transfer procedure. A substantial proportion (36%), although fewer than half, 

reported clinical pregnancy per cycle started. Notably, around one in four websites 

reported clinical pregnancy rates without specifying the denominator. Just under a fifth 

(19%) of websites presented biochemical pregnancy rates, and these were most 

commonly reported per transfer (11%), per cycle started (8%), or without specifying the 

denominator (8%). Over a fifth (21%) of clinics presented pregnancy rates without 

explaining what was meant by ‘pregnancy’, with 15% also leaving the denominator 

unspecified. Reporting of cumulative outcomes across multiple transfers or inseminations 

was sparse, with no site reporting biochemical pregnancies and only a small number 

reporting clinical pregnancy rates cumulatively. One site reported continuing pregnancy 

rates. The median reporting period for pregnancy outcomes was 1 year; this ranged from 

3 months to 10 years. Just three clinics reported up to date clinical pregnancy rates 

(covering the end of 2014). Twenty clinics (47% of those reporting clinical pregnancy) 

reported clinical pregnancy rates for multiple time periods, giving some indication of 

trends in performance.  

 

 

Figure 4 (next page): Distribution of clinical outcome measures reported on medically assisted reproduction clinic 

websites. The denominator used is displayed for each numerator.
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Figure 5: Continuation of Figure 4 
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Live birth outcomes 

Just over half (51%) of the clinics reported live birth rates, with 9 different live birth 

outcomes identified (Table 2). In contrast to pregnancy outcomes, it was most common 

to report live birth per cycle started (42% of clinics) as opposed to per transfer procedure 

(21%), perhaps reflecting the use of live birth as a patient-orientated outcome. A small 

number (6%) reported live birth per embryo transferred, although it could not be 

ascertained whether this was genuinely what was being reported or if this phrase had 

been used erroneously. A small number of websites (6%) reported live birth rate without 

defining the denominator. Just one website reported live birth rates cumulatively. These 

were reported ‘per patient’, although it was unclear at what point patients’ data were 

censored. This website also reported the average number of cycles for those who 

achieved live birth (1.6), although this does not convey information about the expected 

number of cycles required to a patient faced with the decision of whether or not to 

commence IVF. 

Only one clinic reported live birth per cycle started in such a way that patient age, sample 

size, included treatments, inclusion of fresh and/or frozen cycles, inclusion of donor 

cycles and reporting period were all clear. Nine (17%) clinics reported live birth per cycle 

started with each of age, sample size and period. Live birth rates were reported for a 

median time period of 1 year. However, this ranged from 3 months to 14 years. It is 

unclear how valid live birth rates can be reported for such short periods (the 3 month 

rates come from one clinic, the only one reporting live birth for a period of less than one 

year). Just three clinics reported live birth rates that were up to date (results from 2013 

would have been available at the time of this review), although one of these stated that 

the results covered the whole of 2014, which is not possible given the follow up period 

required to establish live birth. Ten clinics (37% of clinics reporting live birth rates) 

reported live birth rates for multiple calendar periods, providing evidence of trends in 

performance.
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Table 1: Reported pregnancy outcomes. Number (%) of clinics reporting each outcome. 

Numerator Denominator No (%) of clinics 
reporting item 

Numerator Denominator No (%) of clinics 
reporting item 

Biochemical pregnancy  10  (19% of clinics) Clinical pregnancy (cont)   

 unspecified denominator 4 (8)  per course of inseminations (IUI) 1 (2) 

 per cycle started 4 (8)  per egg collection (cumulative) 1 (2) 

 per egg recovery 2 (4)  per three cycles (cumulative) 1 (2) 

 per frozen cycle 1 (2) Pregnancy (unspecified)  11 (21% of clinics) 

 per insemination (IUI) 2 (4)  per patient (cumulative) 1 (2) 

 per transfer procedure 6 (11)  per three cycles (cumulative) 1 (2) 

Clinical pregnancy  43 (81% of clinics)  unspecified denominator 8 (15) 

 unspecified denominator 14 (26)  per day 5 transfer 1 (2) 

 per day 5 transfer 1 (2)  per cycle started 3 (6) 

 per cycle started 19 (36)  per frozen cycle started 1 (2) 

 per egg recovery 7 (13)  per insemination (IUI) 1 (2) 

 per embryo transferred 2 (4)  per transfer procedure 2 (4) 

 per frozen cycle started 4 (8)  per cycle (ambiguous) 2 (4) 

 per insemination (IUI) 4 (8) Singleton pregnancy  1 (2% of clinics) 

 per transfer procedure 29 (55)  Unspecified denominator 1 (2) 

 per cycle (ambiguous) 3 (6) Continuing pregnancy  1 (2% of clinics) 

 per first cycle (ambiguous) 1 (2)  per cycle started 1 (2) 

 per treatment (ambiguous) 1 (2)  per frozen cycle started 1 (2) 

 unspecified denominator (cumulative) 1 (2)    
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Numerator Denominator No (%) of clinics reporting item. 

Live birth  27 (51% of clinics) 

 Unspecified denominator 3 (6) 

 per day 5 transfer 1 (2) 

 per cycle started 22 (42) 

 per embryo transferred 3 (6) 

 per frozen cycle started 7 (13) 

 per insemination (IUI) 2 (4) 

 per transfer procedure 11 (21) 

 per cycle (ambiguous) 2 (4) 

Cumulative live birth  1 (2% of clinics) 

 per patient 1 (2) 

Table 2: Reported live birth outcomes. Number (%) of clinics reporting each outcome. 

 

 

Multiple Births 

Eleven (21%) clinics reported information on multiple birth or pregnancies. Six (11%) 

clinics reported multiple birth rates. These were reported per live birth (two clinics), per 

cycle (one clinic) or without specifying the denominator (three clinics). Eight (15%) clinics 

reported multiple clinical pregnancy or multiple pregnancy rates. The denominator was 

either unspecified (four clinics) or per pregnancy (four clinics).  

Pre-clinical outcomes 

Just two clinics reported pre-clinical outcomes. Blastocyst achievement (with no 

denominator), implantation (no denominator) and transfer achieved per frozen cycle 

each appeared on one site. 

Adverse events 

Only one clinic reported adverse outcomes. Ectopic pregnancy and miscarriage were 

reported, although denominators were not specified. 

 Reporting of contextual information 3.4.3.

Of the 53 clinics reporting outcomes, 14 (26%) presented (at least some) outcomes 

without specifying the age of the patients, 38 (72%) presented outcomes without 

specifying the treatments, 38 (72%) presented outcomes without specifying the sample 

size and 12 (23%) presented outcomes without specifying the period these related to. 
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Forty-eight (91%) presented outcomes for which it was unclear whether or not donor 

gametes were used. Forty-two (84%) presented outcomes for non-IUI treatments where 

it was unclear whether included cycles were fresh, frozen, or both fresh and frozen. Fifty 

(94%) presented outcomes without specifying how many patents did not complete the 

treatment. 

Inclusion/ exclusion criteria were not consistently reported. Criteria relating to BMI could 

not be found for 64 (82%) of the websites, to age for 67 (85%) of the websites, to 

previous attempts for any website, or to smoking status for 94% of websites. 63 (80%) 

sites did not appear to provide criteria relating to any of these characteristics. 

 

 

 Comparison of NHS and private clinics 3.4.4.

A higher proportion of NHS clinics compared with private centres reported age (89% vs 

66%), sample size (50% vs 17%), use of donor gametes (17% vs 6%), use of fresh or frozen 

embryos (24% vs 12%, excluding IUI treatments) and number of abandoned treatments 

(17% vs 0%) for all outcomes. The proportion of NHS (28%) and private (29%) centres 

specifying the treatments involved for all reported results was similar. More private 

clinics (80%) than NHS clinics (72%) reported the date range for all outcomes.  

 

 Discussion 3.5

The present review confirms inconsistency in clarity and coverage when advertising clinic 

success rates with only one meeting HFEA’s own standards. In addition to selecting from a 

number of numerators and denominators, clinics may also report results for different 

combinations of treatments, fresh and frozen cycles, donor and non-donor cycles and for 

different calendar periods. The large number of numerators and denominators in use 

constitutes an obstacle to consumer-friendly reporting, as patients may struggle to 

understand subtle differences in outcome definitions and may be misled into making 

comparisons between centres on the basis of incommensurable results (Chetkowski, 

2014). Allowance of open reporting without binding guidelines carries a high risk of 

selective reporting; there is scope for clinics to construct more favourable outcomes using 

the variety of building blocks available. These points were highlighted by direct 
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comparisons with other clinics using a `league table' presentation on 9 (11%) of the 79 

websites. League tables are known to be problematic due to differences in patient 

characteristics and imprecision in the results used to create them (Marshall, et al., 1998). 

In addition to choices relating to outcome definition, league tables additionally allow 

clinics to select which other centres to include. These tables were invariably constructed 

so that the comparison was favourable to the reporting clinic. In one case, two websites 

used the outcome `live birth per cycle started' as the basis for a comparative table. 

Despite displaying results for overlapping (but not identical) time periods, one table 

indicated a considerable advantage of the reporting clinic over its competitor, while the 

other indicated that the performance of both clinics was comparable. The results used in 

both tables could not be called inaccurate. 

The review raises concerns relating to clarity of reported results, with implications for 

patient usability. Current reporting trends are to present results in such a way so that the 

included treatments and inclusion or exclusion of frozen or donor gametes are often 

unclear. Given the multiplicity of relevant factors, a plausible rationale for these practices 

is to maintain simplicity. Complexity does represent a concern, as stakeholders may have 

difficulty interpreting conditional risk presented in the form of frequencies and 

percentages (eg: Bramwell, et al., 2006). However, by obscuring the particular patients 

and treatments for which results are presented, omission of such relevant information 

may in fact serve to obfuscate what is being reported. It was also common to report 

outcomes without sample sizes and without indicating the number of cycle cancellations 

or otherwise incomplete treatments, with implications for understanding the precision 

and the prognostic relevance of the results, respectively. 

An emphasis on pregnancy was evident, with pregnancy outcomes representing the most 

common way to report success. The most common denominator used when reporting 

pregnancies was per transfer procedure. Considerably fewer clinics reported live birth 

rates. In contrast to pregnancy results, it was most common for these to be reported per 

cycle started. It has been argued that live birth is the most relevant measure of success of 

MAR to patients owing to the fact that this is the goal of any initiated treatment (Heijnen, 

et al., 2004, Malizia, et al., 2009, Min, et al., 2004, Moragianni and Penzias, 2010, Schieve 

and Reynolds, 2004, Tiitinen, et al., 2004) and that it is more informative to include all 

patients commencing treatment by counting events per cycle started (Heijnen, et al., 
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2004, Min, et al., 2004). Given that patients often undergo multiple attempts as part of 

their treatment, a case may be made for success rates to be presented cumulatively 

across some set time period or number of cycles (Gnoth, et al., 2011, Heijnen, et al., 2004, 

Luke, et al., 2012, Maheshwari, et al., 2015, Olivius, et al., 2002, Pelinck, et al., 2007, 

Soullier, et al., 2008, Stern, et al., 2010, Stewart, et al., 2011, Sundstrom and Saldeen, 

2009, Witsenburg, et al., 2005). We found very few instances of this in the present study. 

This may be due to the practical challenges of calculating these cumulative rates and the 

need for a lengthy delay in reporting. HFEA have indicated that they will include 

cumulative live birth rates on their own website in future however. It is important to 

recognise that different outcomes may be suitable for different purposes, so that no 

single measure of success can be recommended. One proposal is that, whereas live birth 

per cycle started or per course of treatment may hold greater prognostic value, ongoing 

pregnancy may be more relevant for clinic performance evaluation (Griesinger, et al., 

2004). A clear concern when deciding upon an appropriate performance measure is the 

impact that this may have on clinic behaviour. Clinics compete for patients, who are 

encouraged to consider performance when choosing a clinic (Johnson, et al., 2007). There 

is therefore an incentive to potentially modify the treatment delivered in order to 

optimise a particular performance indicator. This sort of gaming can lead to perverse 

behaviour which might not guarantee the best outcomes from a patient perspective (Bird, 

et al., 2005). This could manifest, for example, by clinics imposing tougher selection 

criteria, which we found to be sparsely reported (Sharif and Afnan, 2003). Without clearly 

presented selection policies, it is impossible to understand how much of a clinic’s 

performance to attribute to treatment effectiveness and how much to the reproductive 

competence of their patients. We acknowledge that some centres may not have strict 

selection criteria, instead offering treatment to anyone who is able to pay. Nevertheless, 

it would be useful if these clinics reported that their results were based on relatively 

unselected cohorts.  The desire to manipulate the behaviour of clinics to the advantage of 

patients motivates the proposal of live birth per embryo transferred as a measure of 

success, in order to encourage the transfer of fewer embryos at each attempt and to 

thereby reduce the incidence of multiple births (Abdalla, et al., 2010). On these grounds, 

HFEA plan to make live birth per embryo transferred the headline figure on their own 

website following their Information for Quality consultation (Human Fertilisation and 
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Embryology Authority, 2014). However, such a proposal introduces further complication 

as multiple embryos are not statistically independent. 

Policies to reduce twin rates are ubiquitous outside the United States, and numbers of 

multiple births represent an important measure of clinic performance. Despite this, only 

11 sites reported on multiple birth or pregnancy rates. Only one site reported on other 

adverse events. In the US, omission of information relating to side-effects has been noted 

as a characteristic of direct-to-consumer advertising of prescription drugs, with a 

substantial proportion of regulatory letters sent to manufacturers by the Food and Drug 

Administration (FDA) citing advertisements for minimisation of risks (Donohue, et al., 

2007). It has been suggested that spending on direct to consumer advertising in the US 

increased drastically following changes to FDA regulations in 1997 that allowed 

manufacturers to advertise products without explicitly listing side-effects (Iizuka, 2004) 

although there is some evidence that the trend for increased spending actually preceded 

these changes (Ventola, 2011). In the present study, reporting of cancellations and 

abandoned treatments was also scanty, so that the actual chances of success for patients 

starting treatment could often not be discerned. 

Our findings add to a body of literature highlighting the difficulty of reporting MAR 

outcomes in a consumer-friendly way. A 2007 review assessed US clinic websites 

according to the American Society for Reproductive Medicine/ Society for Assisted 

Reproductive Technology guidelines, and found generally low compliance (Abusief, et al., 

2007). An earlier assessment of US clinic websites suggested generally low quality 

according to a scoring system based on American Medical Association internet health 

information guidelines (Huang, et al., 2005) although the methodology of the study has 

been queried given the status of these websites as advertisements (Epstein and 

Rosenberg, 2005, Jain and Barbieri, 2005). In the UK, a 2008 review of UK websites 

providing information on infertility found the quality of information to be variable, with 

particular concerns about accuracy (Marriott, et al., 2008). Quality control of data is 

essential for reliable performance monitoring (Bird, et al., 2005). At present, there is no 

way to guarantee the quality or accuracy of data presented on clinic websites. 

The present study would appear to represent the first review of outcome reporting by UK 

MAR clinic websites. Strengths of the study include the extraction of item-level data, 

allowing the variety of outcomes in use by UK clinics to be presented. Limitations of the 
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study should be noted. In particular, this review was cross-sectional, meaning that we are 

unable to comment on reporting trends over time. We have also not considered 

alternative ways in which clinics use the internet to communicate results to patients, such 

as social media. Our comparison of NHS and private clinics is also tentative; we used the 

presence or absence of the NHS logo on the front page of the site to distinguish NHS from 

private centres, with one exception (a private clinic where the logo was clearly used to 

illustrate an existing NHS contract). This method is obviously imperfect, and while we 

believe that we managed to correctly categorise clinics, it is possible that some 

misclassification occurred. With these limitations in mind, we conclude that self-

regulation does not appear to guarantee clear, patient-friendly reporting of outcomes. 

Our intention is not accusatory; the matter of how to report MAR outcomes is complex 

and we expect that many clinics present their success rates in good faith. There are clear 

parallels to ongoing discussions about the presentation of online information in other 

areas, such as cosmetic procedures (eg: Light, et al., 2014) or alternative medicine (eg: 

Beutel and Cardone, 2014). There is a tension between ‘open reporting’ in the interests of 

transparency and ‘direct to consumer advertising’, particularly for private providers. One 

method to address this would be binding guidance for consistent content in reporting 

results. Another would be an outright ban on direct advertising of MAR. 
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 Abstract 4.1

 

Study question  

 Which outcome measures are reported in randomised controlled trials (RCTs) for in vitro 

fertilisation (IVF)? 

 

Summary answer  

Many combinations of numerator and denominator are in use, and are often employed in 

a manner that compromises the validity of the study. 

 

What is known already  

The choice of numerator and denominator governs the meaning, relevance and statistical 

integrity of a study’s results. RCTs only provide reliable evidence when outcomes are 

assessed in the cohort of randomised participants, rather than in the subgroup of patients 

who completed treatment. 

 

Study design, size, duration  

Review of outcome measures reported in 142 IVF RCTs published in 2013 or 2014.  

Participants/materials, setting, methods  

 

Trials were identified by searching the Cochrane Gynaecology and Fertility Specialised 

Register. Reported numerators and denominators were extracted. Where they were 

reported, we checked to see if live birth rates were calculated correctly using the entire 

randomised cohort or a later denominator. 

 

Main results and the role of chance 

 Over 800 combinations of numerator and denominator were identified. No single 

outcome measure appeared in the majority of trials. Only 22 (43%) studies reporting live 

birth presented a calculation including all randomised participants or only excluding 

protocol violators. A variety of definitions were used for key clinical numerators.  
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Limitations, reasons for caution 

 Several of the included articles may have been secondary publications. Our 

categorisation scheme was essentially arbitrary, so the frequencies we present should be 

interpreted with this in mind. The analysis of live birth denominators was post-hoc. 

 

Wider implications of the findings  

There is massive diversity in numerator and denominator selection in IVF trials due to its 

multistage nature, and this causes methodological frailty in the evidence base. The twin 

spectres of outcome reporting bias and analysis of non-randomised comparisons do not 

appear to be widely recognised. Initiatives to standardise outcome reporting are 

welcome, although there is a need to recognise that early outcomes of treatment may be 

appropriate choices of primary outcome for early phase studies.  
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 Introduction 4.2

Inconsistency and incompleteness of outcome reporting in infertility trials are barriers to 

understanding and improving treatments (Dapuzzo, et al., 2011, Legro, et al., 2014). In 



 

109 
 

the absence of common standards of reporting, it may be difficult to compare the safety 

and effectiveness of competing interventions, or to synthesise the results of trials in 

meta-analysis (Blazeby, et al., 2012, Clarke and Williamson, 2016, Khan, 2014).  The 

choice of outcome also has implications for both the relevance (Heijnen, et al., 2004, 

Legro, et al., 2014, Min, et al., 2004) and methodological validity (Griesinger, 2016, Vail 

and Gardener, 2003) of a trial’s results. 

Choosing an outcome for trials of in vitro fertilisation (IVF) is particularly complex, owing 

to the multistage nature of the treatment. Treatment comprises stimulation of the 

ovaries, retrieval and fertilisation of oocytes and the culture and transfer of some of the 

resulting embryos  to the uterine cavity (Van Voorhis, 2007). Some of these embryos may 

implant, some of these may result in a clinical pregnancy, and some of these may result in 

a live birth. Those embryos not used for the initial transfer may be cryopreserved, so that 

they can later be thawed and transferred in a subsequent attempt. The response at each 

stage can be quantified: ovarian response by the number and maturity of oocytes; 

fertilisation by the number of zygotes, and subsequently the number and quality of 

embryos produced; the transfer procedure by the implantation of embryos; and the 

clinical outcome of treatment by clinical pregnancy and the birth of a child. Additionally, 

treatment may fail at each stage: stimulation may be cancelled due to poor or 

overresponse; fertilisation failure may occur; embryos may fail to develop, or post 

transfer fail to implant; and pregnancies may be lost before or subsequent to 

identification of a clinical pregnancy. One consequence of this for clinical trials of 

interventions designed to improve IVF is that numerous clinical and procedural events 

that occur during treatment can be reported. A second consequence is that these events 

may be reported in subgroups containing only those patients who reach a certain 

milestone, such as oocyte retrieval or embryo transfer. Further complexity arises due to 

the fact that IVF involves two or more individuals (for example a male and female 

partner), who may undertake multiple treatment cycles, and one or more additional 

individuals (babies) arising from successful treatment (Legro, et al.,2014). When selecting 

which outcomes to report in an IVF trial therefore, many numerators and denominators 

are available (Heijnen et al., 2004).  
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The importance of the choice of numerator is well recognised and has been enshrined in 

the IMPRINT (Improving the Reporting of Clinical Trials of Infertility Treatments) 

statement with a call for live birth to be reported in all infertility trials (Legro, et al., 2014), 

although alternatives, such as ongoing pregnancy, have been proposed on pragmatic 

grounds (Braakhekke, et al., 2014a). The appropriate choice of denominator is a more 

subtle issue. The optimal denominator for IVF evaluation has been widely discussed 

(Abdalla, et al., 2010, Garrido, et al., 2011, Germond, et al., 2004, Heijnen, et al., 2004), 

and is known to have implications for the interpretation of trials, where the exclusion of 

randomised participants may introduce bias to the estimated treatment effect (Montori 

and Guyatt, 2001, Vail and Gardener, 2003, Mastenbroek, et al., 2005, Mastenbroek and 

Repping, 2014). This could occur if, for example, participants are randomised at the start 

of ovarian stimulation, but the outcome is calculated only in those who undergo transfer.  

 

We conducted a review of outcomes reported in IVF randomised controlled trials in 2013 

and 2014. Our aims were to establish the full range of outcomes in use in IVF randomised 

controlled trials (RCTs) and to identify the ramifications for the evidence base.  

 Methods 4.3

 Search strategy 4.3.1.

MS performed a search of the Cochrane Gynaecology and Fertility Group PROCITE 

database on 22/06/15 using the search strategy contained in Appendix 1. This is a 

specialised register of RCTs updated weekly by searching databases, conference abstracts 

and journals. Further details of the database are provided in Appendix 2. Our initial search 

covered the period 2010 to 2014, although we subsequently narrowed our focus to the 

period 2013 to 2014 due to feasibility constraints. We screened the titles and abstracts of 

the identified articles and excluded those not meeting the eligibility criteria. We reviewed 

the full text of all articles not excluded during this initial screening phase and made 

further exclusions as appropriate. 

Eligibility criteria 

English-language publications of randomised controlled trials in peer-reviewed journals in 

the period 1st January 2013 to 31st December 2014 were considered eligible. Conference 

papers were excluded. We did not consider methodological quality to be relevant, as our 



 

111 
 

concerns related to the outcomes reported in this literature and not in the estimation of 

treatment effects. To be eligible, a study had to have had participants undergoing IVF or 

intracytoplasmic sperm injection (ICSI) including a period of ovarian stimulation in at least 

one arm of the trial, or participants undergoing frozen embryo transfer in at least one 

arm of the trial, or partners of patients undergoing IVF or ICSI in at least one arm of the 

trial, or oocyte donors donating to an IVF programme. We included trials where surplus 

oocytes had been obtained as part of IVF or ICSI treatment and an intervention was 

applied to these oocytes even if there was no intention to subsequently transfer any of 

the resulting embryos. Finally, the publication had to report clinical or preclinical 

outcomes to be eligible (which would exclude, for example, purely economic evaluations 

of interventions). 

 

 Data extraction 4.3.2.

Initially, we performed a small pilot extraction of 5 reports to inform the extraction 

process used in the full sample, including the variables to be extracted and the formatting 

of this information. We extracted information at both study-level and at the level of each 

reported outcome in a study. We defined an outcome as any post-randomisation variable 

presented separately for each arm in the study or as a comparison between study arms 

and recorded both the numerator and denominator used in the calculation. We did not 

record a reported outcome multiple times if it was presented for each of several 

subgroups, unless these were defined by excluding patients who did not reach a certain 

stage in the process. We also did not record outcomes multiple times where these 

corresponded to repeated measurements at several timepoints. At the study-level, we 

extracted details of the intervention and the stage in the treatment process at which the 

intervention was applied (pre-stimulation phase, stimulation phase, post-stimulation 

including culture and selection of embryos, transfer, frozen transfer or intervention 

targeted at the male partner, such as manipulation or selection of sperm prior to ICSI). 

Similarly, we extracted the stage of treatment at which randomisation took place. For 

each reported outcome, we extracted the numerator and denominator (for numerical 

variables, the denominator would be the divisor used in the calculation of a mean). 

Where pregnancy or live birth were reported, we extracted the corresponding definition  
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used by the study authors. Data were extracted into two databases, one containing study-

level information and another containing reported-outcome-level information. JW 

performed data extraction for all studies. SR and AV performed double extraction for a 

random sample of 10%, to check data quality and consistency of recording. Furthermore, 

we conducted extensive data validation and cleaning, including manually checking every 

entered item.  

 

 Statistical analysis 4.3.3.

We summarised the characteristics of the sample and tabulated the numerators and 

denominators in use in 9 categories (live birth, pregnancy, stimulation response, transfer, 

fertilisation, multiple births or pregnancies, other preclinical outcomes, adverse events, 

postnatal). These categories are arbitrary and have been selected to facilitate the 

presentation of our results. We note here however that, since our analyses are 

descriptive and these categories are purely presentational, it would not affect our results 

were an outcome measure to be reported under one heading rather than another. Due to 

the large number of outcomes identified, we reported only those appearing in more than 

one study. We simplified the results by combining similar numerators and denominators. 

For example, we combined live birth with take home baby rate, and combined the 

denominators ‘per patient with sufficient embryos’ and ‘per patient with sufficient 

blastocysts’, where ‘sufficiency’ could be defined on the basis of quantity or quality of 

embryos (or both). For this primary analysis, we did not distinguish between subtly 

different definitions of outcomes (for example, clinical pregnancy may have been defined 

as foetal heartbeat on ultrasound at different timepoints in different studies). However, 

at the suggestion of an anonymous peer reviewer, we also present the definitions used by 

trial authors for pregnancy and live birth outcomes. In order to investigate the 

methodological implications of denominator selection, we conducted post-hoc analysis in 

the subgroup of studies reporting live birth. We recorded whether the denominator used 

coincided with the cohort of randomised participants (ignoring exclusions due to protocol 

violations) and if not, the nature and extent of the exclusion. We did not perform 

statistical inference, because we have attempted to summarise all trials within the time 

period and it isn’t clear that inference would be meaningful. 
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 Sample size 4.3.4.

The decision to include all studies in the period 01/01/13 to 31/12/14 was made primarily 

on pragmatic grounds, on the basis that this would be sufficient to assess current 

practices in outcome reporting while proving to be feasible. A post-hoc calculation can be 

made however. A sample of size 142 yields a 76% probability of observing a relatively rare 

outcome (appearing in 1 out of every 100 studies) at least once.  

 Ethical approval 4.3.5.

Ethical approval was not required as the study involved only the review of published 

research. 

 

 Results 4.4

 Results of the search 4.4.1.

Figure 6 shows the results of the search and screening process. The search identified 640 

references published between 2013 and 2014. Following title and abstract screening, 488 

references were discarded without further assessment. The remaining 152 articles were 

assessed further by reviewing the full texts and a further 10 were excluded for the 

reasons shown in Figure 6. 142 RCTs were included in the analysis. Agreement between 

raters was almost universal, with one reviewer erroneously extracting one additional 

outcome from one study due to misreading the text. 



 

114 
 

 

Figure 6: PRISMA Diagram showing flow of studies in the review. 

 

 Stage of intervention and randomisation 4.4.2.

Interventions were delivered prior to ovarian stimulation in 20 (14%) articles, during 

stimulation in 51 (36%), post stimulation or during culture of embryos in 31 (22%), post 

culture but preceding transfer of embryos in 19 (13%) and following the transfer 

procedure in 3 (2%). Five (4%) were trials of interventions targeted at male partners and 

13 (9%) featured interventions designed to improve outcomes after the vitrification and 

warming of oocytes or embryos. Randomisation occurred prior to stimulation in 62 (44%) 

articles, during stimulation in 17 (12%), post stimulation or during culture in 27 (19%) and 

post culture but prior to transfer in 23 (16%). The point of randomisation was unclear in 

13 (9%) articles. 
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 Reported outcomes 4.4.3.

After combining similar items, 361 numerators and 87 denominators were discerned. 815 

distinct combinations of numerator and denominator were identified. 203 combinations 

appeared in more than one study (612 did not). The median (interquartile range) of 

distinct outcomes reported in a study was 11 (7 to 16), with a range of 1 to 36.  

Live birth outcomes 

Fifty-two (37%) articles reported the numerators live birth event or take home baby in 

total, with 14 combinations of numerator and denominator. Figure 7 and S Table 1 show 

combinations of live birth numerators and denominators appearing in more than one 

study.  It was most common to report these per transfer (15% of studies). Only 8 (6%) 

studies reported live birth per cycle started. It was not common (5%) for studies to report 

live birth in a cumulative fashion, across multiple fresh and frozen transfer cycles. No 

study reported cumulative live birth following multiple egg collections. Four (3%) 

reported cumulative live birth per cycle started and 2 (1%) reported time to pregnancy 

leading to live birth, where time was measured across multiple treatment cycles. Four 

(3%) of studies reported preterm birth event with three of these reporting preterm birth 

per baby.  

Of the 52 studies reporting live birth rates, 22 (42%) used the point of randomisation as 

the denominator in the calculation. One study acknowledged that the calculation was not 

based on a randomised comparison and was therefore ‘descriptive’. In six (12%) studies, 

the denominator could not be discerned. The remaining 23 (44%) did not use the 

randomised cohort as the denominator. In seventeen (33%) studies, the denominator 

included only those undergoing transfer (15 studies) or oocyte retrieval (two studies) 

rather than the randomised participant. In these 17 studies, a median (IQR) of 8% (4 to 

14%) of participants were excluded, with a range of (2 to 38%). Seven (13%) studies made 

a unit of analysis error when calculating live birth rates, with six calculating live birth rates 

per embryo transferred. In one trial each woman’s oocytes were randomly split between 

intervention arms, and live birth per transfer was calculated in the subset of procedures 

where all embryos transferred had originated from one of the arms.  
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Pregnancy outcomes 

Table 3 shows pregnancy outcomes appearing in more than one study. 46 (32%) reported 

biochemical pregnancy, with 13 different denominators. It was most common (16%) to 

report these per transfer procedure. Clinical pregnancy rates (with varying definitions) 

were reported in most (67%) studies, with 19 different denominators. Again, it was most 

common to report these per transfer procedure (31%) although the denominator ‘per 

cycle started’ was also reasonably prevalent (17%). Thirty-nine (27%) studies reported 

ongoing pregnancy using 16 different denominators, with 15% reporting ongoing 

pregnancy per transfer procedure. Only 5% reported ongoing pregnancy per cycle started. 

Very few studies reported clinical pregnancy (1%) or ongoing pregnancy (2%) in a 

cumulative fashion. Just under half (43%) reported miscarriages in addition to 6% 

reporting pregnancies that did not progress beyond the biochemical stage. Nineteen 

(13%) reported miscarriages per clinical pregnancy and 11 (8%) reported these per 

biochemical pregnancy.  

 

Figure 7 (opposite): Reported live birth outcomes in IVF RCTs in 2013-2014 by stage of intervention (A to F). Each row 

corresponds to a single study.  Only studies reporting live birth outcome measures appearing in more than one study are 

shown. Blue triangles (▲) indicate that the study authors used a denominator that coincided with the point of 

randomisation in the trial. Red circles (🔴) indicate that the study authors did not use the point of randomisation as the 

denominator, but instead included only patients who reached a certain stage of treatment when calculating live birth 

rates, potentially undermining the random allocation in the study.  Black squircles (🔲) indicate that it is unclear whether 

or not the denominator coincided with the point of randomisation. 

1Authors presented this as a descriptive result 
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Stimulation outcomes 

S Table 2 and S Table 3 show outcomes relating to stimulation response. Number of 

oocytes (46%), of mature oocytes (23%), total gonadotropin dose (27%) and stimulation 

duration (26%) were all commonly reported, each with a variety of denominators. 

Perhaps unsurprisingly, stimulation outcomes were more frequently reported per cycle 

started compared to pregnancy and live birth events; 28 (20%) reported number of 

oocytes, 17 (12%) reported number of mature oocytes, 21 (15%) reported gonadotropin 

dose and 19 (13%) reported stimulation duration per cycle started. However, some 

studies did report stimulation outcomes in the subset of patients reaching later stages in 

the process (S Table 3). Eighteen (13%) studies reported cycle cancellation, 13 (9%) per 

cycle started. 

 

Fertilisation outcomes 

S Table 4 and S Table 5 show fertilisation outcomes. Fertilisation (37%), the attainment of 

good quality embryos as a binary variable (15%), the number of embryos (19%), of good 

quality embryos (12%) and of frozen embryos (14%) were all frequently reported, each 

with a variety of denominators (S Table 4, S Table 5). Other than cleavage (11%), no other 

numerator was reported in more than 8% of studies
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Numerator Denominator No (%) of 
studies  

Numerator Denominator No (%) of 
studies 

Biochemical 
pregnancy 

 46 (32% of 
studies) 

Ongoing 
pregnancy 

 39 (27%) 

 per cycle started 
(or earlier) 

12 (8%)  per cycle started 
(or earlier) 

7 (5%) 

 per transfer  23 (16%)  per oocyte 
retrieval 

5 (4%) 

 per patient 
achieving trigger 

                                  
2(1%) 

 per patient with 
sufficient embryos 

5 (4%) 

 per oocyte 
retrieval 

                                     
2(1%) 

 per transfer 21 (15%) 

 par patient w/ 
sufficient embryos 

                                   
5(4%) 

 per clinical 
pregnancy 

3 (2%) 

 unclear 
denominator 

                                   
2(1%) 

Pregnancy 
(unclear) 

 9 (6%) 

Biochemical 
pregnancy only 

 9 (6% of 
studies) 

 per cycle started 
(or earlier) 

2 (1%) 

 per transfer 2 (1%)  per transfer 4 (3%) 

 per transfer of 
embryos from one 
intervention arm 
only 

2 (1%) Cumulative 
clinical 
pregnancy 

 2 (1%) 

 per chemical 
pregnancy 

2 (1%)  per course of 
treatment started 

2 (1%) 

 unclear                               
2(1%) 

Cumulative 
ongoing 
pregnancy 

 3 (2%) 

Clinical 
pregnancy 

 95 (67% of 
studies) 

 per course of 
treatment started 

2 (1%) 

 per cycle started 
(or earlier) 

24 (17%) Miscarriage  61 (43%) 

 per trigger 4 (3%)  per chemical 
pregnancy 

11 (8%) 

 per oocyte 
retrieval  

11 (8%)  per clinical 
pregnancy 

19 (13%) 

 per patient w/ 
sufficient embryos 

6 (4%)  per cycle started 
(or earlier) 

3 (2%) 

 per transfer 44 (31%)  per oocyte 
retrieval 

3 (2%) 

 per transfer of 
embryos from one 
intervention arm 
only 

3 (2%)  per transfer 9 (6%) 

 unclear 7 (5%)  per transfer of 
embryos from one 
intervention arm 
only 

2 (1%) 

 per clinical 
pregnancy 

19 (13%)  unclear 9 (6%) 

 
Table 3: Pregnancy outcomes reported by more than one study. Frequency (%) of studies reporting each outcome.
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Transfer outcomes 

S Table 6 and S Table 7 display outcomes relating to the transfer procedure. Number of 

embryos transferred (52%) and implantation (52%) were the most commonly reported 

numerators in the review. The denominator used with implantation was often unclear 

(38%) but was otherwise generally reported per embryo transferred (30%) rather than as 

a patient-level outcome. Number of embryos transferred was most commonly reported 

per transfer procedure (17%). Other transfer outcomes appeared in relatively small 

numbers of studies; the next most recurrent was achievement of transfer (8%), reported 

per cycle started (4%) or per oocyte retrieval (2%). 

 

Multiple pregnancies and births 

Relatively few studies reported multiple pregnancies or births or pregnancies (S Table 8). 

17% reported the numerator multiple pregnancy and 4% reported multiple birth rates. 

One study reported multiple pregnancy per cycle started, the only instance of an outcome 

in this category being reported with this denominator.  Where multiple pregnancy was 

reported, it was not uncommon for it to be presented per clinical pregnancy (5%). 

Multiple birth was only reported per live birth event (3%) or per transfer (1%). 

 

Other adverse events 

The most commonly reported adverse event was ovarian hyperstimulation syndrome 

(OHSS) of unspecified severity (17%), with several studies specifying the severity as mild 

(3%), moderate (4%) or severe (4%) (S Table 9). Ectopic pregnancy rates were explicitly 

reported in 13% of studies and general adverse events were described in 6%. 

 

Postnatal outcomes 

Small numbers of studies reported postnatal outcomes, most commonly birthweight 

(6%), congenital abnormalities (4%) and gestational age (2%) (S Table 10). These were 

most frequently reported per baby. 

 

Other procedural outcomes 

Other procedural measurements were reasonably prevalent, such as estradiol levels 

(32%), endometrial thickness (25%) or progesterone levels (12%) (S Table 11). These 
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outcomes were generally reported using denominators including patients in the earlier 

stages of treatment (eg: per cycle started or per oocyte retrieval). 

 

 Definitions of pregnancy and live birth used in the studies 4.4.4.

Note that for these analyses, we have included the definitions used when variants of 

these outcome measures were reported, for example giving the definition of live birth 

used when cumulative live birth was reported. Accordingly, the totals for these analyses 

do not match those in the analyses described above. 

 

Live birth 

Table 4 shows the definitions provided by authors reporting live birth. It was most 

common (27 studies, 51%) for no definition to be given, followed by 19 (36%) defining 

this as a count of live birth events/deliveries. Other definitions, such as counts of 

individual babies, were sparse. 

 

Clinical Pregnancy 

S Table 12 shows the definitions of clinical pregnancy. This was not defined in around one 

fifth (21, 21%) of studies reporting clinical pregnancy. A variety of subtly different 

definitions were used, with the vast majority comprising some combination of ultrasound 

confirmation of gestational sacs and foetal heartbeat at different timepoints. 
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Definition of live birth Frequency (%) of  

studies 

Birth of >=1 neonate 28 weeks or later 1 (2) 

Individual baby born after 24 weeks of 

gestation  

2 (4) 

Individual viable foetus at 24 weeks of 

gestation 

1 (2) 

Live birth event/delivery 19 (36) 

Live birth event and individual baby 

(both given in article) 

1 (2) 

Individual living baby 1 (2) 

Pregnancy > 28 weeks of gestation 1 (2) 

Undefined 27 (51) 

Table 4: Frequency (%) of definitions of ‘live birth’ in IVF trials reporting on this outcome in 2013-2014. 

 

Ongoing pregnancy 

S Table 14 shows the definitions of ongoing pregnancy, with around a third (13 studies, 

33%) not providing any. Definitions were somewhat variable, with considerable 

differences in the gestational age required to declare that the pregnancy was ongoing.  

 

Biochemical pregnancy 

S Table 15 shows the definitions of biochemical pregnancy. These were almost universally 

defined on the basis of positive B-hCG tests, with variations arising from different cut-off 

values of the assay and different timings of testing.  
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 Discussion 4.5

Our review confirms large-scale diversity in outcome reporting in IVF trials and suggests 

several areas of systematic methodological weakness in the evidence base. Over 800 

combinations of numerator and denominator were reported, the majority of which were 

not used in more than one article. No single outcome measure appeared in a majority of 

studies. Subtly different definitions of numerators were employed, increasing the variety 

of reporting options even further. This affirms the concerns highlighted by the Core 

Outcomes in Women’s Health (CROWN) Initiative who noted that a lack of common 

reporting standards was a hindrance to the synthesis of evidence (Khan, 2014). The 

recommendation set out in IMPRINT, that all infertility trials should report live birth and 

cumulative live birth, may go some way to address this matter. This review indicates that 

at present a minority of studies report live birth and few report cumulative live birth, 

although it was not common for studies to include multiple treatment cycles. The rates of 

reporting of live birth and other clinical outcomes are lower than was observed in a 

previous review of infertility trials, because the authors of that study required the 

reporting of a clinical outcome for inclusion (Dapuzzo, et al., 2011). Moreover, we have 

shown that where live birth is reported, a variety of denominators are used. 

Consequently, we suggest that the matter of combining outcomes with different 

denominators in meta-analysis warrants attention. We note that the proposition to have 

live birth as the primary outcome of all infertility trials would require all infertility trials to 

be powered to this end. This would rule out the possibility of smaller, explanatory trials, 

which may prove useful to the development of interventions. We suggest that procedural 

outcomes of treatment may be more appropriate for the evaluation of such trials. Live 

birth could still be reported, if not interpreted, and any intervention should ultimately be 

tested in confirmatory studies with live birth as the primary outcome. It is worth noting 

that using live birth as the primary outcome incurs practical disadvantages such as the 

need for a longer duration of follow up, which delays the release of clinical information 

and may be problematic in the eyes of funding bodies (Braakhekke, et al., 2014a). A 

compromise might be for journals to allow trial reports to be submitted for peer review 

with ongoing pregnancy results and, following acceptance of the manuscript, to require 

study authors to supply live birth results prior to publication. A consensus regarding what 

should constitute an ongoing pregnancy does not appear to exist at present however. We 
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found a variety of definitions in use, with several studies describing pregnancies as 

ongoing prior to 12 weeks post transfer, contrary to the definition appearing in IMPRINT 

(Legro, et al., 2014). It was not usual for studies to contain an explicit description of live 

birth at all, and it was rarer still for studies to include a lower limit of gestation as part of 

the definition (such as the 20 weeks recommended by IMPRINT) (Legro, et al., 

2014).Taking live birth as an example, we investigated denominator selection in more 

detail and found evidence that RCT methodology remains widely misunderstood by 

researchers and peer reviewers. Of those reporting live birth rates, a third of studies used 

the subgroup of patients achieving oocyte retrieval or embryo transfer as the 

denominator, rather than the set of all patients who were randomised earlier in the 

treatment process. The implications of this analytic strategy are more severe than just a 

loss of power. Randomised trials represent the gold standard in treatment evaluation due 

to the fact that random allocation to interventions ensures a balance over confounding 

factors. When outcomes are reported in subgroups of patients who reached a certain 

stage of the treatment process, and this does not coincide with the original randomised 

cohort, the balance is not preserved (Hirji and Fagerland, 2009, Yusuf, et al., 1991). 

Accordingly, any observed differences in outcome may be due to differences in 

prognostic characteristics rather than treatment effects. The comparative groups are 

particularly likely to differ when patients with certain characteristics are more or less 

likely to have a successful stimulation response or to achieve transfer in one arm of the 

trial (Hirji and Fagerland, 2009). Belief in the existence of such differential effects of 

treatment is the cornerstone of personalised IVF (Dewailly, et al., 2014, La Marca and 

Sunkara, 2014, Nelson, 2013). We expect that the issue will be more severe the greater 

the number of participants excluded, although this requires investigation in future 

simulation studies. The percentage of participants excluded in this sample tended to be 

less than 10%. A simple strategy to avoid this issue is that used by the Cochrane 

Gynaecology and Fertility Group, which is to define those participants for whom 

treatment has failed prior to embryo transfer as having an unsuccessful response. We 

also note that while it is valid to analyse results per transfer or per oocyte retrieval 

whenever patients have been randomised at this stage of treatment, reporting outcomes 

per cycle started may be more relevant to patients deciding whether or not to undertake 

IVF (Heijnen, et al., 2004). It may be argued that pragmatic effectiveness studies should 
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therefore randomise prior to the start of the cycle (Mastenbroek and Repping, 2014). 

Other examples of statistical naiveté were identified. Some studies reported live birth per 

embryo transferred, which is problematic since embryos are not statistically independent 

and the outcome is defined at the level of the patient, rather than of the embryo (Vail 

and Gardener, 2003). Other studies randomly divided each patient’s oocytes or embryos 

between intervention arms and compared the clinical outcomes between groups of 

patients who happened to have embryos transferred from only one of the arms. This is 

not a valid comparison, and may reflect the influence of initiatives promoting the 

reporting of clinical endpoints in all studies. We also suggest that the tendency to report 

myriad outcomes carries implications of false effect discovery due to multiple testing and 

selective emphasis or reporting. In theory, the specification of a primary outcome should 

offer some protection against these concerns, although in the absence of prospective trial 

registration there is no guarantee that the primary outcome has been selected in advance 

(Chan, et al., 2004). Moreover, these matters are particularly problematic given the fact 

that any outcome can be constructed in a variety of ways using the building blocks 

available combined with the strong emphasis on statistical significance in these trials. 

Outcome reporting bias would appear to represent an ungovernable potential source of 

bias in this field given that such a plethora of outcome measures are acceptable to peer 

reviewers. 

Our study has limitations. This review was not comprehensive, as we restricted our 

sample to English-language publications in peer-reviewed journals. It is not clear however 

that publication bias represents a concern for a review of outcomes, as the accessibility of 

any particular study may not be related to the outcome measures used. The subgroup 

analysis of trials reporting live birth was not prespecified. It should also be noted that the 

categorisation scheme presented here is entirely arbitrary and was not prospectively 

designed; another review team likely would have made different decisions relating to the 

simplification and presentation of the outcome measures. The exact frequencies we 

present should be interpreted with this in mind. We believe that our conclusions are not 

contingent upon our particular scheme. Finally, due to the practice of reporting a trial’s 

results across multiple publications, a small number of included articles may have been 

secondary publications reporting on particular secondary outcomes. Strictly speaking, the 

article, rather than the trial, is the unit of analysis in this review. We would suggest that it 
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is appropriate to include these publications, as the decision to exclude them would omit 

reported outcomes where investigators had split results across two publications. 

This is the first review to fully detail the outcomes reported across IVF trials. A previous 

review restricted their search to highly ranked journals and to studies reporting clinical 

outcomes (Dapuzzo, et al., 2011). This was suitable for the authors’ aims of highlighting 

inconsistency in defining outcomes and underreporting of adverse events. It does not 

permit the prevalence of each outcome to be calculated however. Additionally, we note 

that high quality of reporting in all journals, not just the best, is a prerequisite for 

systematic review, where there is a need to identify all trials (although this would also 

include older studies, which we have not considered here). A second review found 

modest rates of reporting of neonatal and maternal outcomes in reproductive medicine 

trials (Braakhekke, et al., 2014b). However, that study restricted focus to outcomes in 

these two categories and only included trials appearing in Cochrane reviews. Accordingly, 

the results do not give a complete or representative picture of the current state of 

outcome reporting in IVF trials. There is massive diversity in numerator and denominator 

selection in IVF trials due to its multistage nature, and this causes methodological frailty 

in the evidence base. Existing efforts to improve the situation are certainly useful, 

although we would urge that future extensions to these projects include guidance on the 

definition and use of denominators as well as numerators and acknowledge that clinical 

outcomes may not be appropriate for early phase studies.  
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 Supplementary material for Chapter 4.   4.7

 

Numerator Denominator No (%) of studies reporting item. 

Live birth or take home 

baby 

 52 (37% of studies) 

 per cycle started (or earlier) 8 (6%) 

 

 per patient achieving trigger                                      3 (2%) 

 

 per oocyte retrieval                                      6 (4%) 

 per embryo transferred                                      8 (6%) 

 per transfer                                  21 (15%) 

   

 par patient w/ sufficient embryos                                      5 (4%) 

 

 unclear denominator                                      5 (4%) 

Cumulative live birth  7 (5% of studies) 

 per course of treatment started 4 (3%) 

 

 time to pregnancy leading to live 

birth 

                                     2 (1%) 

 

Preterm birth  4 (3% of studies) 

 per baby 3 (2%) 

S Table 1: Live birth outcomes reported by more than one study. Frequency (%) of studies reporting each outcome. 
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S Table 2: Stimulation outcomes reported by more than one study. Frequency (%) of studies reporting each outcome. 
Continued in S Table 3 

Numerator Denominator No (%) of studies 

reporting item. 

Numerator Denominator No (%) of studies 

reporting item. 

Cycle cancellation  18 (13% of 

studies) 

Number of mature 

oocytes 

 37 (23%) 

 per cycle started 

(or earlier) 

13 (9%)  per batch of 

oocytes 

2 (1%) 

Total gonadotropin 

dose 

 39 (27% of 

studies) 

 per cycle started 

(or earlier) 

17 (12%) 

 per cycle started 

(or earlier) 

21 (15%)  per oocyte 

retrieval 

4 (3%) 

 per oocyte 

retrieval 

                                   

3 (2%) 

 per patient 

achieving 

fertilisation 

2 (1%) 

 per transfer                                    

5 (4%) 

 per patient 

achieving trigger 

2 (1%) 

 unclear                                    

4 (3%)                                       

 per transfer 3 (2%) 

Good quality oocyte  3 (17%)  unclear 2 (1%) 

 per oocyte 2 (1%) Number of mature 

oocytes/number of 

oocytes 

 8 (2%) 

Mature oocyte  8 (6%)  per cycle started 

(or earlier) 

3 (2%) 

 per oocyte 8 (6%) Number of 

degenerative oocytes 

 2 (1%) 

Number of oocytes  65 (46%)  per cycle started 

(or earlier) 

2 (1%) 

 per cycle started 

(or earlier) 

28 (20%) Number of immature 

oocytes 

 2 (1%) 

 per oocyte 

retrieval 

9 (6%)  per cycle started 

(or earlier) 

2 (1%) 

 per patient 

achieving 

fertilisation 

                                   

9 (6%) 

Number of follicles of 

sufficient size 

 14 (8%) 

 per patient 

achieving trigger 

9 (6%)  per cycle started 

(or earlier) 

7 (5%) 

 per patient with 

sufficient follicles 

                                   

9 (6%) 

 per oocyte 

retrieval 

2 (1%) 

 per transfer                                    

5 (4%) 

 unclear                                    

2 (1%) 

 unclear                                    

5 (4%) 
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Numerator Denominator No (%) of studies reporting item. 

Number of inseminated oocytes  3 (2% of studies) 

 per oocyte retrieval 2 (1%) 

Oocyte retrieval achieved  8 (6%) 

 per cycle started (or earlier) 5 (4%) 

Oocyte retrieved  2 (1%) 

 per follicle 2 (1%) 

Stimulation duration  37 (26%) 

 per cycle started (or earlier) 

per oocyte retrieval 

19 (13%) 

 

                                 3 (2%) 

per patient achieving 

downregulation 

                                   2 (1%) 

per transfer 6 (4%) 

unclear                                    3 (2%) 

Survival  4 (3%) 

 per warmed oocyte 3 (2%) 

S Table 3: Continuation of S Table 2. Stimulation outcomes reported by more than one study. Frequency (%) reporting 
each outcome 
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Numerator Denominator No (%) of 
 studies 

reporting 
item. 

Numerator Denominator No (%) of  
studies  

Blastocyst  7 (5%)  unclear 22(16%) 

 per 2PN embryo 2 (1%) Frozen embryo  4 (3%) 

 unclear 2 (1%)  per embryo obtained 2 (1%) 

Blastocyst on day 5  2 (1%)  Good quality embryo 
obtained 

 22 (15%) 

 per embryo 
obtained 

2 (1%)  per cleavage stage 
embryo 

2 (1%) 

Cleavage  16 (11%)  per embryo obtained 6 (4%) 

 per embryo 
obtained 

7 (5%)  per oocyte 2 (1%) 

 unclear 3 (2%)  unclear 8(6%)                                 

Number of cleaved 
embryos 

 7 (5%) Good quality embryo 
on day 5 

 3 (2%) 

 per cycle started (or 
earlier) 

2 (1%)  per embryo 3 (2%) 

 unclear 2 (1%) Number of good 
quality embryos 
obtained 

 17 (12%) 

Embryo quality  11 (8%)  per cycle started (or 
earlier) 

5 (4%) 

 per  embryo 
obtained  

2 (1%)  per oocyte retrieval 2 (1%) 

 per embryo 
transferred 

2 (1%)  per transfer 3(2%)                                    

 unclear 2 (1%)  unclear 3(2%)                                

Fertilisation failure  5 (4%) Number of 2PN 
embryos 

 9 (6%) 

 per cycle started (or 
earlier) 

3 (2%)  per cycle started (or 
earlier) 

6 (4%) 

Fertilisation  53 (37%) Number of cells  3 (2%) 

 per cycle started (or 
earlier)  

5 (4%)  per embryo obtained 2 (1%) 

 per inseminated 
oocyte 

3 (2%) Number of transfers  2 (1%) 

 per mature oocyte 6 (4%)  per group (totals) 2 (1%) 

 per oocyte 8 (6%)    

 per oocyte retrieval                                      
3 (2%) 

   

 per transfer                                       
3 (2%) 

   

S Table 4: Fertilisation outcomes reported by more than one study. Frequency (%) of studies reporting each 
outcome. Continued in S Table 5.
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Numerator Denominator No (%) of studies reporting item. 

Number of embryos obtained  27 (19%) 

 per cycle started (or 

earlier) 

8 (6%) 

 per oocyte retrieval 3 (2%) 

 per transfer                                      3 (2%) 

 per transfer of embryos 

from one intervention arm 

                                     2 (1%) 

 

 unclear                                      5 (4%) 

Number of frozen embryos  20 (14%) 

 per cycle started (or 

earlier) 

3 (2%) 

 per patient with sufficient 

embryos 

3 (2%) 

 per transfer 2 (1%) 

 unclear 7 (5%) 

Survival  9 (6%) 

 per warmed embryo 4 (3%) 

S Table 5: Continuation of S Table 4. Fertilisation outcomes reported by more than one study. Frequency (%) of studies 
reporting each outcome. 
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Numerator Denominator No (%) of studies reporting item. 

Transfer achieved  12 (8%) 

 per cycle started (or 

earlier) 

6 (4%) 

 

 per oocyte retrieval                                     3 (2%) 

Transfer with good quality 

embryos achieved 

  2 (1%) 

 per cycle started (or 

earlier) 

2 (1%) 

                                                  

Day 3 transfer achieved  3 (2%) 

 per transfer 3 (2%) 

Day 5 transfer achieved  4 (3%) 

 per transfer 2 (1%) 

Difficulty of transfer  3 (2%) 

 per transfer 2 (1%) 

Single embryo transfer  4 (3%) 

 per transfer                            3 (2%)   

Double embryo transfer  4 (3%) 

 per transfer 3 (2%) 

S Table 6:  Transfer outcomes reported by more than one study. Frequency (%) of studies reporting each outcome. 
Continued in S Table 7 
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Numerator Denominator No (%) of studies reporting item. 

Implantation  74 (52%) 

 per embryo obtained 3 (2%) 

 

 per embryo transferred                                 42 (30%) 

 per embryo transferred in 
a transfer of embryos from 
one intervention arm 

                                    2 (1%) 

 

 

 per patient achieving 
trigger  

2 (1%) 

 

 per transfer  7 (5%) 

 unclear 19 (38%) 

Number of embryos transferred  74 (52%) 

 per cycle started (or 
earlier) 

12 (8%) 

 per group (totals) 7 (5%) 

 per oocyte retrieval 7 (5%) 

 per patient achieving 
trigger 

2 (1%) 

 per patient with sufficient 
embryos 

7 (5%) 

 per patient with sufficient 
follicles 

2 (1%) 

 per transfer 24 (17%) 

 unclear 14 (10%) 

Number of gestational sacs  2 (1%) 

 per group (totals) 2 (1%) 

Number of transfers  2 (1%) 

 per group (totals) 2 (1%) 

Insemination method  6 (4%) 

 per cycle started (or 
earlier) 

2 (1%) 

S Table 7: Continuation of S Table 6. Transfer outcomes reported by more than one study. Frequency (%) of studies 
reporting each outcome. 
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Numerator  Denominator No (%) of studies reporting item. 

Multiple pregnancy  24 (17%) 

 per biochemical pregnancy 2 (1%) 

 per clinical pregnancy 11 (8%) 

 

 per ongoing pregnancy  

2 (1%) 

 per oocyte retrieval                                      3 (2%) 

 

 per transfer                                      2 (1%) 

 per patient w/ sufficient 

embryos 

2 (1%) 

Multiple birth  6 (4%) 

 per live birth event 4 (3%) 

 per transfer                                      2 (1%) 

S Table 8: Multiple birth and pregnancy outcomes reported by more than one study. Frequency (%) of studies reporting 
each outcome. 
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Numerator Denominator No (%) of studies reporting 

item. 

Ectopic pregnancy  18 (13%) 

 per chemical pregnancy 3 (2%) 

 per clinical pregnancy 2 (1%) 

 per cycle started (or earlier) 2(1%)                                   

 per patient with sufficient embryos 3(2%)                                     

 per transfer 4(3%)                                     

Mild OHSS  4 (3%)  

 per cycle started (or earlier) 2 (1%) 

Moderate OHSS  5 (4%) 

 per patient achieving trigger 2 (1%) 

 

 per transfer 2 (1%) 

Severe OHSS  6 (4%) 

 per patient achieving trigger 2 (1%) 

 

OHSS (unspecified severity)  25 (18%) 

 per cycle started (or earlier) 

per oocyte retrieval 

11 (8%) 

5 (4%) 

per patient with sufficient follicles 2(1%)                                  

per transfer 2(1%)                           

Adverse events (general)  10 (7%) 

 per cycle started (or earlier) 3 (2%) 

S Table 9: Adverse events reported by more than one study. Frequency (%) of studies reporting each outcome. 
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Numerator Denominator No (%) of studies reporting 

item. 

Admission to intensive care  2 (1%) 

 per baby 2 (1%) 

Birthweight  6 (4%) 

 per baby 4 (3%) 

Congenital abnormalities  6 (4%) 

 per baby 4 (3%) 

Gestational age  3 (2%) 

 per baby 2 (1%) 

Low birthweight  2 (1%) 

 per baby 2 (1%) 

Sex  2 (1%) 

 per baby 2 (1%) 

   

S Table 10: Postnatal outcomes reported by more than one study. Frequency (%) of studies reporting each outcome. 

 



 

141 
 

Numerator Denominator No (%) of studies 

reporting item. 

Numerator Denominator No (%) of studies 

reporting item. 

AMH  5 (4%) Estradiol to 

progesterone ratio 

 3 (2%) 

 per cycle started (or 

earlier) 

2 (1%)  per cycle started (or 

earlier) 

2 (1%) 

 per oocyte retrieval 2 (1%) Gene expression  3 (2%) 

AFC  5 (4%)  per cycle started (or 

earlier) 

2 (1%) 

 per cycle started (or 

earlier) 

2 (1%) Kidney-yin 

deficiency 

symptom score 

 2 (1%) 

DHEA  4 (3%)   per cycle started (or 

earlier) 

2 (1%) 

 per cycle started (or 

earlier) 

2 (1%) Progesterone  17 (12%) 

FSH  13 (9%)  per cycle started (or 

earlier) 

6 (4%) 

 per cycle started (or 

earlier) 

3 (2%)  per oocyte retrieval 2 (1%) 

 per oocyte retrieval 4 (3%)  per transfer 2 (1%) 

 per transfer 3 (2%)                                     unclear 2 (1%) 

LH  16 (11%) Testosterone  5 (4%) 

 per cycle started (or 

earlier) 

6 (4%)  per cycle started (or 

earlier) 

2 (1%) 

 per oocyte retrieval 3 (2%) Endometrial 

thickness 

 35 (25%) 

 per transfer 2 (1%)                               per cycle started (or 

earlier) 

16 (11%) 

 unclear 3 (2%)  per oocyte retrieval 5 (4%) 

Estradiol  45 (32%)  per patient with 

sufficient follicles 

2 (1%) 

 per cycle started (or 

earlier) 

16 (11%)  per transfer 6 (4%) 

 per oocyte retrieval 7 (5%)  unclear 2 (1%) 

 per patient achieving 

downregulation 

2 (1%)    

 per patient achieving 

fertilisation 

2 (1%)    

 per transfer 6 (4%)                                      

 unclear 6 (4%)    

S Table 11: Other procedural outcomes reported by more than one study. Frequency (%) of studies reporting each 
outcome
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S Table 12: Frequency (%) of definitions of ‘clinical pregnancy’ in IVF trials reporting on this outcome in 2013-2014. 
Continued in S Table 13 

  

Definition of clinical pregnancy Number of 

studies 

(%) 

Definition of clinical pregnancy Number 

of studies 

(%) 

Confirmed by ultrasound 6-7 weeks of 

gestation 

1 (1) >=1 gestational sac and heartbeat on 

ultrasound 7 weeks of gestation 

1 (1) 

Foetal echoes and pulsations on ultrasound 1 (1) >=1 gestational sac and heartbeat on 

ultrasound 8 weeks of gestation 

1 (1) 

Foetal pole and heartbeat 1 (1) >=1 gestational sac and heartbeat on 

ultrasound 8-12 weeks of gestation 

1 (1) 

Foetus with heartbeat 6 weeks of gestation 1 (1) >=1 gestational sac at 6 weeks 1 (1) 

>=1 gestational sac on ultrasound 14-21 

days post positive B-hCG 

1 (1) >=1 gestational sac on ultrasound 2 (2) 

>=1 gestational sac 2 weeks post positive B-hCG 1 (1) >=1 gestational sac on ultrasound 21 days of gestation 1 (1) 

>=1 gestational sac 5 weeks of gestation 1 (1) >=1 gestational sac on ultrasound 3 weeks of gestation 1 (1) 

>=1 gestational sac and heartbeat 1 (1) >=1 gestational sac on ultrasound 4 weeks of gestation 3 (3) 

>=1 gestational sac and heartbeat 4 weeks 

of gestation 

2 (2) >=1 gestational sac on ultrasound 4-5 weeks of 

gestation 

1 (1) 

>=1 gestational sac and heartbeat 4-6 weeks 

of gestation 

1 (1) >=1 gestational sac on ultrasound 6 weeks of gestation 1 (1) 

>=1 gestational sac and heartbeat 7 weeks 1 (1) >=1 gestational sac on ultrasound 7 weeks of gestation 1 (1) 

>=1 gestational sac and heartbeat at 8-10   

weeks of gestation 

1 (1) >=1 gestational sac on ultrasound 7-14 days post 

positive B-hCG test 

1 (1) 

>=1 gestational sac and heartbeat on ultrasound 4 (4) >=1 gestational sac or embryonic pole 4 weeks post 

OPU 

1 (1) 

>=1 gestational sac and heartbeat on 

ultrasound  at 7 weeks of gestation 

1 (1) >=1 gestational sac or heartbeat on 

ultrasound  

1 (1) 

>=1 gestational sac and heartbeat on 

ultrasound 3 weeks post positive B-hCG test 

1 (1) >=1 gestational sac or heartbeat on 

ultrasound 6 weeks of gestation 

1 (1) 

>=1 gestational sac and heartbeat on 

ultrasound 5 weeks of gestation 

3 (3) >=1 gestational sac with foetal echoes and heartbeat 1 (1) 

>=1 gestational sac and heartbeat on 

ultrasound 5-6 weeks of gestation 

1 (1) >=1 gestational sac, embryo and heartbeat on 

ultrasound 2-4 weeks post positive B-hCG 

1 (1) 

>=1 gestational sac and heartbeat on 

ultrasound 6 weeks of gestation 

2 (2) Heartbeat 4-5 weeks post OPU  1 (1) 
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Definition of clinical pregnancy Number of 

studies (%) 

Heartbeat on ultrasound 3 (3) 

Heartbeat on ultrasound 2 weeks post positive B-hCG test 3 (3) 

Heartbeat on ultrasound 3 weeks post positive B-hCG test 1 (1) 

Heartbeat on ultrasound 30 days of gestation 1 (1) 

Heartbeat on ultrasound 4 weeks of gestation 2 (2) 

Heartbeat on ultrasound 4-5 weeks post OPU 1 (1) 

Heartbeat on ultrasound 5 weeks of gestation 1 (1) 

Heartbeat on ultrasound 5 weeks post positive B-hCG 1 (1) 

Heartbeat on ultrasound 7 weeks of gestation 2 (2) 

Heartbeat on ultrasound 7-8 weeks of gestation 1 (1) 

Heartbeat on ultrasound 7-9 weeks of gestation 1 (1) 

One or more chambers or definitive clinical gestational signs 1 (1) 

Positive B-hCG and ultrasound confirmation 1 (1) 

Positive B-hCG test 11 days of gestation and gestational sac on 

ultrasound 

1 (1) 

Positive B-hCG test 14 days of gestation and gestational sac on ultrasound 1 (1) 

Positive B-hCG test 15 days of gestation 1 (1) 

Positive B-hCG test 2 weeks of gestation 1 (1) 

Positive B-hCG test and gestational sac and Heartbeat on ultrasound 1 (1) 

Positive B-hCG test and gestational sac on ultrasound 2 weeks post positive 1 (1) 

B-hCG test positive B-hCG test and ultrasound confirmation at 6 weeks of gestation 1 (1) 

Ultrasound confirmation 3 weeks post positive B-hCG test 1 (1) 

Ultrasound confirmation 4 weeks of gestation 1 (1) 

Ultrasound confirmation 6 weeks of gestation 1 (1) 

Ultrasound confirmation 6-7 weeks of gestation 1 (1) 

Ultrasound confirmation 7 weeks or 12 weeks of gestation 1 (1) 

Undefined 21 (21) 

S Table 13: Continuation of S Table 12. Frequency (%) of definitions of ‘clinical pregnancy’ in IVF trials reporting on 
this outcome in 2013-2014. 
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Definition of ongoing pregnancy Frequncy (%) of studies 

>=1 foetus with heartbeat on ultrasound 

at 6 weeks 

1 (3) 

>=1 viable foetus 20 weeks of 

gestation 

1 (3) 

Developing embryo 12 weeks of 

gestation 

1 (3) 

Foetus with heartbeat 12 weeks of 

gestation 

1 (3) 

>=1 gestational sac 18 weeks post transfer 1 (3) 

>=1 gestational sac and heartbeat 4 weeks post 

transfer 

1 (3) 

>=1 gestational sac and heartbeat on ultrasound 12 

weeks 

1 (3) 

>=1 gestational sac and heartbeat on ultrasound 12 

weeks of gestation 

1 (3) 

Heartbeat on ultrasound 20 weeks 1 (3) 

Heartbeat on ultrasound 6 weeks of gestation 1 (3) 

Heartbeat on ultrasound 7 weeks of gestation 1 (3) 

Pregnancy 10 weeks post start of 

treatment 

1 (3) 

Pregnancy 12 weeks of gestation 5 (13) 

Pregnancy 16 weeks of gestation 1 (3) 

Pregnancy 20 weeks of gestation 2 (5) 

Pregnancy 24 weeks of gestation 1 (3) 

Pregnancy with heartbeat on ultrasound 

8 weeks of gestation 

1 (3) 

Ultrasound confirmation 10-12 weeks of gestation 1 (3) 

Ultrasound confirmation 22 weeks of 

gestation 

1 (3) 

Ultrasound confirmation 8-10 weeks 1 (3) 

Uncomplicated pregnancy rate 12 weeks 

of gestation 

1 (3) 

Undefined 13 (33) 

S Table 14: Frequency (%) of definitions of ‘ongoing pregnancy’ in IVF trials reporting on this outcome in 2013-2014 
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Definition of biochemical pregnancy Number of studies (%) 

B-hCG>10IU/L 1 (2) 

B-hCG > 10IU/L 12 days post transfer 2 (4) 

B-hCG > 10IU/L 2 weeks post transfer 1 (2) 

B-hCG > 10IU/mL 14-16 days post insemination OR positive B-hCG 

test 21-23 days post OPU 

1 (2) 

B-hCG > 20IU/L 1 (2) 

B-hCG > 20IU/L 14 days post OPU 1 (2) 

B-hCG > 50IU/L 2 weeks post transfer 1 (2) 

B-hCG >= 30IU/L 14 days post transfer 1 (2) 

B-hCG >= 50IU/L 12 days post transfer 1 (2) 

Positive B-hCG test 11 (22) 

Positive B-hCG test 12 days post transfer 4 (8) 

Positive B-hCG test 13-15 days post transfer 1 (2) 

Positive B-hCG test 14 days post OPU 1 (2) 

Positive B-hCG test 14 days post transfer 9 (18) 

Positive B-hCG test 14, 16 and 21 days post OPU 1 (2) 

Positive B-hCG test 15 days post OPU 2 (4) 

Positive B-hCG test 15 days post transfer 1 (2) 

Positive B-hCG test 16 days post transfer 1 (2) 

Positive B-hCG test 18 days post OPU 1 (2) 

Positive B-hCG test or urine pregnancy test 1 (2) 

Positive B-hCG test without gestational sac on ultrasound 1 (2) 

Positive hCG test 1 (2) 

Pregnancy test 1 (2) 

Undefined 4 (8) 

S Table 15: Frequency (%) of definitions of ‘biochemical pregnancy’ in IVF trials reporting on this outcome in 2013-
2014 
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Preamble This piece was a direct response to as announcement by the Human 

Fertilization and Embryology Authority (HFEA) indicating that they intended to change 

the headline performance indicator on their online Choose a Clinic facility to ‘live birth 

event per embryo transferred’. The motivation for this choice is to disincentivise the 

transfer of multiple embryos in a single procedure, which may be harmful to the 

mother and offspring. We presented statistical arguments to show that this measure 

could be misleading to patients, and that it does not have a clear interpretation. In the 

article we suggest that we should not be looking to construct a single measure that 

evaluates (and incourages) both effectiveness and safety simultaneously. Instead, we 

suggested that a set of measures should be presented, and gave an example of one 

such set. 

Outputs and Impact of the research Following the publication of this article, HFEA 

recently launched their new Choose a Clinic website. The arguments advanced in this 

piece have not been taken on board. 
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 Abstract 5.1

 

Recent advances in embryo freezing technology together with growing concerns over 

multiple births have shifted the paradigm of appropriate IVF. This has led to the 

adoption of new performance indicators for ART clinics by national reporting schemes, 

such as those curated by the Society for Assisted Reproductive Technology (SART) and 

the Human Fertilisation and Embryology Authority (HFEA). Using these organisations 

as case studies, we review several outcome measures from a statistical perspective. 

We describe several denominators that are used to calculate live birth rates. These 

include cumulative birth rates calculated from all fresh and frozen transfer procedures 

arising from a particular egg collection or cycle initiation, and live birth rates 

calculated per embryo transferred. Using data from both schemes, we argue that all 

cycles should be included in the denominator, regardless of whether or not egg 

collection and fertilisation were successful. Excluding cancelled cycles reduces the 

impact of confounding due to patient characteristics but also removes policy and 

performance differences which we argue represent relevant sources of variation. It 

may be misleading to present prospective patients with essentially hypothetical 

measures of performance predicated on parity of ovarian stimulation and transfer 

policies. Although live birth per embryo has the advantage of encouraging single 

embryo transfer, we argue that it is prone to misinterpretation. This is because the 

likelihood of live birth is not proportional to the number of embryos transferred. We 

conclude that it is not possible to present a single measure that encompasses both 

effectiveness and safety. Instead, we propose that a set of clear, relevant outcome 

indicators is necessary to enable subfertile patients to make informed choices 

regarding whether and where to be treated.  

 

 

KEYWORDS 

 IVF/ outcome measure / national data/ Live birth /embryo/cumulative live birth/ success 

rates/ multiple pregnancy/ safety/ OHSS 
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 Introduction 5.2

In vitro fertilisation (IVF) is a financially and emotionally burdensome treatment 

which, for the majority of patients, will end in failure.  Most subfertile patients seek 

information about their condition online (Haagen, et al., 2003, Rawal and Haddad, 

2006, Talarczyk, et al., 2012). Meanwhile, direct to consumer advertising of assisted 

reproductive technologies (ART) is ubiquitous (Abusief, et al., 2007, Huang, et al., 

2005, Wilkinson, et al., 2017). Clinics compete for patients, creating a strong incentive 

to selectively report success rates in a manner that presents their performance as 

superior. The situation is particularly troubling, as the multistage nature of IVF 

introduces an extensive menu of numerators (such as live birth, or various stages of 

pregnancy) and denominators (such as the started cycle, transfer procedure, or 

individual embryo transferred) for this purpose (Heijnen, et al., 2004, Wilkinson, et al., 

2016, Wilkinson, et al., 2017). Since individual clinics have no incentive to collaborate 

to provide consistent reporting of success rates, it falls to national reporting schemes 

to meet this challenge. 

Historically, national reporting schemes such as those curated by the Society for 

Assisted Reproductive Technology (SART) in the US or the Human Fertilisation and 

Embryology Authority (HFEA) in the UK have emphasised live birth outcomes 

calculated in all fresh treatment cycles started.  However, the widespread adoption of 

frozen embryo transfer (FET) together with growing concerns over the rate of multiple 

births has led to registries supplementing or changing the measures that they use to 

evaluate IVF programmes. Although the challenge of providing relevant information 

while protecting patients remains the same wherever IVF is offered, different 

strategies have emerged in response. In the following article, we consider these 

strategies and their implications from a statistical perspective.  

 

 Case Study 1: Society for Assisted Reproductive Technology  5.3

SART now present the outcome ‘preliminary cumulative outcome per intended egg 

retrieval’ at the top of the performance report for each of their member clinics on 

their Find a Clinic facility (Society for Assisted Reproductive Technology, 2016). This 

includes live birth events arising from all fresh and frozen transfers of embryos 

resulting from a cycle. The emphasis on this cumulative numerator reduces the 
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incentive to transfer multiple embryos in the initial fresh transfer, because it ensures 

that this practice is not rewarded over the safer, and potentially more successful 

(Roberts, et al., 2011), option of transferring one embryo at a time in a series of 

transfer procedures. Importantly, the denominator includes all intended egg 

retrievals, so that any cycles cancelled prior to egg collection are included as failed 

treatments. Beneath this, the report presents live birth event in the first transfer 

procedure for each intended egg collection (cycle started), live birth per frozen cycle 

started and live birth per patient, which includes the outcome of any treatments 

undertaken by a new patient starting treatment at the clinic in the reporting year. 

SART’s approach then has been to introduce and emphasise outcome measures that 

take into account all of the stages of treatment undertaken by patients, from the start 

of ovarian stimulation to the outcome of any subsequent transfer procedures. 

Consequently, the chosen measures are both clear and relevant to potential patients.  

 

 Case Study 2: Human Fertilisation and Embryology Authority 5.4

    Following an extensive consultation process (Human Fertilisation and Embryology 

Authority, 2014), HFEA have announced changes to the way they report success rates 

through their online Choose a Fertility Clinic facility, a beta version of which is 

currently publically available (Human Fertilisation and Embryology Authority, 2016). 

The headline figure now presented for each clinic is ‘live birth event per embryo 

transferred’. This counts birth events arising from each transfer procedure in the 

numerator, but increases the denominator by one for each individual embryo 

transferred to a patient (Abdalla, et al., 2010). Consequently, there is a penalty for 

multiple embryo transfer. If twins result from a double embryo transfer, live birth 

event per embryo transferred is ½ = 0.5. Patients who do not undergo a transfer 

procedure are excluded from the calculation. Beneath this, HFEA present ‘cumulative 

live birth event per egg collection’. As for the cumulative birth measure reported by 

SART, this counts birth events resulting from the transfer of any embryos created from 

the oocytes obtained in a single egg collection. The two measures differ however in 

the fact that HFEA’s version excludes patients who have their cycles cancelled prior to 

egg collection. Both of the measures emphasised in HFEA’s new reporting standard 

therefore exclude a proportion of patients undergoing unsuccessful treatment.  
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Prospective patients must navigate to separate ‘Detailed Statistics’ pages to find live 

birth events per cycle started, and cumulative birth rates per cycle started are not 

presented. 

 Consequences of excluding cancelled cycles 5.5

The numbers of patients who start ovarian stimulation but do not achieve egg 

collection or embryo transfer are nontrivial relative to the likelihood that treatment 

will be successful. Taking the 2014 figures from SART’s most recent National Summary 

Report as an example, 9247 of 102,982 (9%) cycles started did not reach the egg 

collection stage, and of the 93,730 collections that do take place, 7188 (8%) had no 

embryos available for transfer (Society for Assisted Reproductive Technology, 2016). 

Outcome measures that exclude failed cycles effectively assume successful ovarian 

stimulation and fertilization and therefore exaggerate the chance of success for 

prospective patients.  

Proponents of live birth event per embryo transferred have argued that the exclusion 

of cancelled cycles is actually an advantage of using the measure (Abdalla, et al., 

2010). In particular, it is argued that cycle cancellation is largely driven by the 

prognostic characteristics of patients. Removing the initial stages of treatment from 

consideration removes not only much of the confounding due to differences in patient 

characteristics between centres, but also differences due to the variety of clinic 

embryo transfer policies. The strength of live birth event per embryo transferred as a 

measurer, it is claimed, is that it compares clinics purely in terms of the quality of the 

embryos they produce in their labs (Abdalla, et al., 2010).  

This line of argument can be challenged. First, there is the matter of what should and 

should not be controlled for when comparing treatment programmes. It is indeed 

desirable to take differences in patient characteristics into account, lest confounding 

by indication obfuscate genuine differences in performance (Walker, 1996). It is less 

desirable to control for relevant differences in the treatment programmes themselves 

however, since it is these differences that account for much of the variation in success 

rates between clinics. Secondly, differences in patient characteristics may influence 

the uterine environment in addition to the stimulation and fertilisation stages 

(Roberts, et al., 2010), so are not fully resolved by the embryo selection process. 
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The variation in cancellation rates is demonstrated in Figure 8, which displays the 

proportions of cycles cancelled prior to oocyte retrieval in 62 clinics in the UK. The 

search strategy is contained in the supplementary material for this article, and the 

data are available at goo.gl/lKxQwz . This isn’t an exhaustive list of UK clinics, but is a 

sample of sufficient size to illustrate the point at hand. The left panel shows the data 

for patients of all ages, ordered by cancellation rate. There is clear variation in 

cancellation rates. The right hand panel shows the cancellation rates for patients 

under 35 years of age, using the same ordering as the left hand panel. By limiting our 

attention to patients under 35, we reduce (but do not remove) variation due to 

patient characteristics. Moreover, younger patients will have higher ovarian reserve 

on average, and it is in this group that there is greatest scope for variation in ovarian 

response according to the clinic stimulation strategy (Fleming, et al., 2013). Clearly, 

the right hand panel shows that there remains considerable variation in cancellation 

rates, even after allowing for the increase in uncertainty arising from reduced sample 

sizes.  It is artificial to pretend that these differences do not exist by choosing outcome 

measures that eliminate them from consideration.  
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Figure 8: Proportion of cycles using own eggs cancelled prior to OPU in 64 clinics in the United Kingdom for the year 

ending Q2 2014. Vertical line is the pooled mean in the overall sample estimated using a random effects meta-

analysis. Data extracted from HFEA 

 

 How to interpret live birth per embryo transferred? 5.6

Live birth per embryo transferred, aims to measure clinic performance in embryo 

transfer, were all other differences in treatment to be removed from consideration. 

This may have value for regulators and commissioners of services. However for 

patients this does not represent a comparison between actual treatment outcomes. 

Instead, it provides pseudo-information about a state of affairs that doesn’t actually 

exist. Aside from this, there are other obstacles to interpretation, arising from the fact 

that the outcomes of multiple embryos transferred to the same patient are not 

statistically independent. For example, suppose we have a ‘live birth event per 

embryo transferred’ rate of 26% for some clinic.   A patient might look at this and 
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think that if they have two embryos transferred then the chance of success will be 

52%, indicating that it would be more likely than not that they would have a baby. It is 

wrong, but not unreasonable, for a patient to arrive at this conclusion, because any 

statistic presented ‘per unit’ implies that if you have more units you will have 

proportionally more events. This is clearly not the case for live birth events per 

embryo transferred, because whether or not an embryo implants is partially 

determined by factors that have nothing to do with the embryos themselves. This 

immediately presents a serious concern, as it presents double embryo transfer as an 

attractive option.  A technical consequence of this statistical dependency is that it is 

not possible to calculate valid confidence intervals on the basis of the total number of 

births and the total number of embryos transferred (Vail and Gardener, 2003). 

   

 Do the measures encourage safe treatments? 5.7

One motivation behind such measures as ‘live birth per embryo transferred’ and 

‘cumulative live birth per egg collection’ is to promote patient safety by 

disincentivising multiple embryo transfer.  However, while multiple births are a 

serious concern, they do not represent the only potential adverse consequence of 

treatment. Excessive response to ovarian stimulation is associated with increased risk 

of ovarian hyperstimulation syndrome (OHSS) (Steward, et al., 2014) and of preterm 

birth and low birthweight (Sunkara, et al., 2015). Meanwhile, analyses of large 

national databases have revealed that many stimulation cycles result in the retrieval 

of more than 15 oocytes; the figure has been estimated as 17% in the UK (Sunkara, et 

al., 2011) and 28% in the US (Steward, et al., 2014).  Outcome measures that exclude 

the stimulation phase do not penalise, and may actually encourage, harsh stimulation 

strategies as clinics pursue larger oocyte yields to permit multiple frozen transfer 

procedures.  

The lesson here is  that we should not attempt to devise a single outcome measure 

that quantifies a clinic’s safety and effectiveness because this approach removes the 

ability to consider each of these factors separately (Braakhekke, et al., 2015). Instead, 

it would be more appropriate to require adverse events to be explicitly reported, so 

that this information can be taken into account by potential patients. In Table I, we 
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give an example of a set of outcomes covering effectiveness and safety which could be 

adopted by national reporting schemes. 

 

 

 Conclusion 5.8

Developments to IVF have created new challenges for national reporting schemes. A 

major motivation is to protect patients from unsafe treatments. One strategy to 

address these issues is to introduce innovative outcome measures designed to 

discourage superficially attractive, but ultimately detrimental practices. However, 

some of these measures encourage safe practices at the expense of providing clear, 

relevant information to couples. This is neither desirable nor necessary. A prospective 

patient must decide whether and where to undergo treatment prior to the start of 

ovarian stimulation. Pertinently, psychological and physical burden of treatment 

(Troude, et al., 2014, Verberg, et al., 2008) and of ovarian stimulation in particular 

(Verberg, et al., 2008) have been identified as predictors of treatment discontinuation. 

Outcome measures that ignore the stimulation phase therefore do not assess clinic 

performance in the dimensions that are important to many patients.  

Attempts to adjust for differences in patient characteristics through choice of 

outcome measure are misguided. For example, the measure ‘live birth event per 

embryo transferred’ throws the baby out with the bathwater, by not only reducing the 

impact of patient characteristics but also removing relevant policy and performance 

variation. The ability to quantify relevant variation is a prerequisite of a useful 

performance indicator (Bird, et al., 2005). We would recommend either presenting 

success rates that are statistically adjusted for key confounders, or presenting 

‘headline’ results stratified according to these relevant prognostic variables. This 

raises concerns about small sample sizes within strata, but we would agree with the 

suggestion that results should be presented over longer periods of time to reduce the 

impact of random noise (Chetkowski, 2014).  

 The availability of independently validated clinic-level success rates is a potentially 

powerful resource for patients, and one that is denied to many prospective patients 

around the world who must rely upon  clinics’ own advertising, which may be prone to 
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reporting biases (Wilkinson, et al., 2017). This is not statistical pedantry; the outcomes 

presented are used by vulnerable people facing a potentially life-changing decision. It 

is therefore essential that this information remains relevant and easy to understand, 

so as not to unintentionally mislead prospective patients and thereby deny them the 

opportunity to make a truly informed choice. Emphasising a small set of several 

outcome measures may be one way to achieve this. 
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 Supplementary material for Chapter 5.   5.10

Search method used to extract data for Figure 1. 

• Used HFEA Choose a Fertility Clinic website (http://guide.hfea.gov.uk/guide/). 

• Searched for clinics offering IVF and ICSI. 

• Performed this search separately by each ‘region’ listed on the site. 

• Under birth data, clicked ‘take a closer look’ 

• Looked at IVF/ICSI data. 

• Under ‘Details cycles and cancellations’ looked at Year ending 2014 Q2 (the 

most recent data), Treatment cycles IVF and ICSI, Age group All ages, Embryo source 

fresh embryos, patient’s eggs. 

• Extracted cycles started, no. of cycles reaching OPU stage, no. of cycles 

reaching transfer stage. Total number of embryos transferred during all cycles.  

• Using the same settings, ‘Pregnancies and live births per treatment cycle’ 

• Then went through again and extracted same data for under 35s. 

 

- The search yielded 74 clinics. 8 of these had not been open long enough to 

have results for this period. One clinic had unusual results (with no cycles reaching 

OPU). After making inquiries with HFEA, we established that due to renovation work 

at the clinic, some cycles were started here but completed at another clinic. It was not 

possible to disentangle these cycles from the rest using the summary data available, 

and we excluded both clinics.   
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III. Modelling multistage 

IVF outcomes  



 

160 
 

 

Chapter 6.  Methods for the development of stage-

specific IVF models 

A prerequisite of a holistic IVF model is to establish good representations of each 

stage. We noted in the literature review that previous multistage IVF models had 

treated the response variables as binary indicators denoting success or failure, 

wasting information and providing an unrealistic representation of the underlying 

processes. In this chapter we start by considering the problem of how to model the 

stimulation stage, before turning our attention to embryo culture. The success of the 

embryo culture stage can be measured by embryo quality. Several dimensions of 

embryo quality can be measured (number of cells, evenness of cells, degree of 

fragmentation) and we consider these as a multivariate response. We extend this by 

representing the response variables using a mixture of outcome types (continuous 

and ordinal), and consider the problem of how to jointly model these mixed variables. 

These initial forays into joint modelling will serve as a basis for our multistage models, 

when, in the next chapter, we extend this work to the modelling of sequential 

treatment stages with mixed responses measured at different levels of a multilevel 

data structure. 

 

 How to model responses at the stimulation phase? 6.1

A journal article answering a clinical research question about the stimulation stage of 

treatment is included in the results section of the thesis (Journal Article 4, Chapter 9). 

Here, we detail the methodological considerations behind our modelling of the 

stimulation stage of treatment, which is only briefly covered in the article. 

 

 Motivation 6.1.1.

The literature review highlighted the stimulation phase of the IVF treatment process 

as requiring particular attention, with existing approaches to modelling IVF as a 

multistage treatment either treating the outcome of this phase as binary or omitting it 

entirely. It was suggested in section 1.3.4 that particular aspects of the stimulation 
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response, specifically the number and quality of oocytes obtained, may be important 

determinants of overall treatment outcome. A framework capable of incorporating 

these aspects of the stimulation outcome might therefore be desirable. 

We conducted an analysis of stimulation outcomes, using this to develop our 

understanding of the methodological issues represented by this stage. This analysis 

was focussed on answering a clinical research question relating to the effect of 

gonadotropin dose on stimulation response. However, in the context of the thesis, we 

were equally concerned with the methodological question of how best to model data 

from this phase. 

 

 The clinical research question: what are the sources of variation in 6.1.2.

ovarian response, and what are the implications for ovarian 

stimulation? 

When commencing IVF or ICSI, the patient's ovaries may be stimulated by the 

administration of gonadotropins, with the goal being to obtain a sufficient yield of 

oocytes to permit the creation of several good quality embryos without triggering an 

excessive response (La Marca and Sunkara, 2014). Excessive response represents a risk 

to the patient and offspring, and may result in termination of, or delay to, treatment. 

To this end, the patient's progress is monitored by ultrasound during the stimulation 

phase, and the daily gonadotropin dose may be adjusted accordingly. If it appears that 

the response is likely to be excessive or unsuccessful in the sense of yielding no 

oocytes (eggs), then the cycle may be cancelled, so that subsequent stages of 

treatment cannot be enacted. A current theme in IVF research is the question of 

whether or not a starting dose of gonadotropin can be selected on the basis of 

prognostic markers in such a way so as to optimise the response (personalised ovarian 

stimulation).   

In this study, our interest was to investigate the sources of variation in ovarian 

response to stimulation, and to determine the implications for personalised 

treatment. 
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 Introduction to the dataset 6.1.3.

The dataset used here contains information on patients undergoing ovarian 

stimulation prior to IVF or ICSI (injection of the eggs with sperm) at St Mary's Hospital 

Department of Reproductive Medicine between October 1st 2008 and 8th August 

2012. For the present analysis we excluded patients undergoing surgical interventions 

and patients with polycystic ovaries, as the relationships between prognostic variables 

and treatment outcomes are known to differ in these particular subgroups so that the 

patterns of confounding are distinct. 

In addition to the exclusions noted above, we also excluded six observations for which 

the initial dose of gonadotropin was recorded as zero. It was not possible to identify 

whether these were recorded in error, and if not what was meant by this. 

Subsequently, the dataset contained 1851 treatment cycles on 1430 patients. 1070 

(75%) patients had one cycle, 306 (21%) had two, 56 (4%) had three and 1 (0%) had 

four. We refrain from giving further detail about the characteristics of patients here, 

since this is covered in detail in Journal Article 4 (Chapter 9). 

 

 Representing the response to stimulation 6.1.4.

The question of how to represent the outcome of ovarian stimulation was discussed in 

section 1.3.4, where it was noted that the stimulation response is often dichotomised 

or otherwise categorised. Such approaches waste information. Instead, we opted to 

model the number of oocytes obtained from the stimulation phase. We were also 

interested in the quality of eggs retrieved. This is more difficult to model, as a good 

measure of quality is not available. However, eggs of patients undergoing ICSI are 

stripped prior to the injection of sperm, and it is recorded whether or not each egg 

has matured. We therefore also modelled the number of mature eggs in the ICSI 

subset, as a way to investigate the impact of changing dose on egg quality. We used 

the same model for this as was used for the analysis of egg count, and this is not 

discussed separately here. 
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 Covariate selection 6.1.5.

The variables to be included in the model were selected on the basis of the 

background knowledge of our clinical collaborators and the objectives of the study. 

These variables were age, antimullerian hormone (AMH, a marker of ovarian reserve), 

antral follicle count (AFC, another marker of ovarian reserve), initial dose of 

gonadotropin, stimulation regime (antagonist or long downregulation), protocol (old, 

v1, v2 or v3, v4), type of gonadotropin (HMG or rFSH), USOR practitioner, attempt 

number, BMI and cause of infertility. Although there were considerable amounts of 

missing data for BMI, it was included as it is believed to be predictive of overall 

treatment success, and there is interest in identifying the role it plays in this phase. 

The representation of age, AMH and AFC in the model was determined on the basis of 

exploratory analysis consisting of graphing each variable against egg count and log(egg 

count), and by comparing models featuring competing representations using AIC 

(Akaike’s Information Criterion, a measure of fit that penalizes complexity in the 

model, Akaike, 1972). The candidate representations were linear, quadratic and cubic 

representations on both the original and log transformed scales, splines with varying 

numbers of knots and categorical representations with varying numbers of categories. 

Where alternative representations performed similarly, the decision over which form 

to use was made on the basis of clinical interpretability. As a result of this process, age 

was represented as a quadratic in the final analysis, AMH was log-transformed and 

AFC was categorised into 3 levels on the basis of quantiles. Initial dose of 

gonadotropin was represented as a categorical variable. This decision was made on 

the basis of the distribution of the doses and the desire to obtain an easily 

interpretable answer to the research question. A patient is given one of 12 starting 

doses (so that the initial doses appearing in the data do not constitute a continuous 

scale) and several of these were used very sparingly. Accordingly, some patients were 

combined into dose bands. Interactions between both regime and other variables and 

dose and other variables were considered, using likelihood ratio testing and graphing 

of the predictors against egg count within regime and dose categories. The 

relationships between variables and egg count appeared to be similar for patients 

treated under both regimes on the basis of graphical representations of the data. 

However, dose effect was allowed to vary with regime in the final analysis, owing to 
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the observed significance of this interaction using a likelihood ratio test and the 

inherent plausibility of this relationship. No other interactions were included in the 

final analysis. 

 

 Model selection: lognormal vs count models 6.1.6.

The outcome variable ‘egg count' is discrete and skewed (Figure 9). As such, linear 

regression of the untransformed count variable is unlikely to be appropriate. 

Alternative approaches would be to model the outcome using an appropriate 

distribution for count data or to use linear regression after applying a log 

transformation. Figure 9 shows the log transformed egg counts after first adding 0.5 in 

order to accommodate the small number of zero values. The count model might be 

preferred on a priori grounds, as it does not require the addition of a small constant in 

order to incorporate zero outcomes and maintains the discrete nature of the data. 

O’Hara & Kotze, (2010) present a simulation study suggesting that generalised linear 

models are generally preferable to transformations for count data. In order to 

investigate this point further, two models were compared using AIC and posterior 

predictive checks; a linear regression model with log(eggs + 0.5) as the outcome 

variable and a Poisson model incorporating a gamma-distributed random effect at the 

observation level to account for overdispersion. During this model development stage, 

only complete cases were included and covariates were represented as described 

above; an exception was BMI, which was not included in posterior predictive checking 

due to the missingness in the variable. 
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Figure 9: Histograms of number of eggs obtained (left) and log(number of eggs obtained+0.5) for 1851 IVF treatment 

cycles.  

 

These developmental analyses did not account for the clustering of repeated cycles on 

the same patient. AIC was substantially lower for the log-normal model (2468 compared 

to 8591). However, given that the data have been altered by the addition of a constant in 

the case of the log-normal fit, it is unclear that comparison using AIC is strictly 

appropriate. Posterior predictive checks (Gelman, et al., 1996) might be more useful for 

the purpose of understanding the suitability of the models under consideration, and in 

particular the aspects in which they may be deficient. To perform posterior predictive 

model checking, both models were fit using markov chain monte carlo (MCMC) in order 

to obtain the joint posterior distribution of the model parameters. Weak priors were used 

so that the posterior was determined by the data. Specifically, in the count model, 

regression coefficients were assigned Normal (0, 10002) priors, and the random effects 

were assigned a Gamma(𝛾,𝛾) distribution with 𝛾 ∼ Gamma(0.001, 0.001). In the log-

normal model, regression coefficients were again assigned Normal (0, 10002) priors. A 

uniform prior was considered appropriate for the standard deviation given that we do not 

have particular interest in this parameter here. For the log-normal model, three chains 

were run for 1000 iterations, the first half of which were discarded as burn-in. 

Convergence was assessed using traceplots and the Gelman-Rubin convergence statistic 

(Gelman and Rubin, 1992). The post burn-in draws from the three chains were pooled, 
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resulting in 1500 draws from the posterior distribution. The procedure was similar for the 

count model; two chains were run for 10000 iterations each in order to ensure 

convergence of the random effects.  

Once the posterior distributions had been obtained for the parameters of both models, 

predicted egg counts for patients in hypothetical replications of the study were simulated. 

These constitute the posterior predictive distributions of each model. By comparing the 

predictions generated by the models to the observed data, it is possible to consider the 

extent and manner in which the models are discrepant, indicating a lack of fit. Histograms 

of the observed egg counts and the egg counts from 19 datasets randomly selected from 

the posterior predictive distribution for the two models are shown in Figure 10 and Figure 

11. Noting the differences in axes, the histograms from the overdispersed count model 

bear a closer resemblance to the observed egg counts. In particular, Figure 10 suggests 

that the lognormal model would occasionally predict egg counts that are much higher 

than are actually observed in the data, which does not appear to be the case for the 

overdispersed Poisson replications. Further insight can be gained into how well each 

model captures different aspects of the data by comparing summary statistics (often 

called test or discrepancy statistics) calculated from the observed data to the 

corresponding statistics calculated for each replicated dataset (Gelman, et al., 1996). 

The maximum and minimum egg counts predicted by the models constitute relevant 

discrepancy statistics here. A caveat is that very high values do not appear in the 

observed data due to the fact that some cycles predicted to have excessive response are 

halted. Nonetheless, the biological plausibility of the values generated by the model can 

be considered. Figure 12 shows the maximum values from the predicted datasets 

compared to the maximum value of the observed egg counts, for both the lognormal and 

count models. It can be seen that the log-normal model systematically overpredicts the 
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Figure 10: Observed egg counts (top left) and hypothetical replications drawn from the posterior predictive distribution 

of the lognormal model. Note differences in axes. 

 

maximum egg count. The maximum in the observed data is 38 eggs. The range of 

maximum egg counts in the replicated log-normal datasets is 50 to 238, exceeding 

biological plausibility. Although the count model does tend to overpredict the maximum 

egg count, this is less extreme than is seen for the log-normal model. We would not rule 

out the count model on the basis of a Bayesian p-value, calculated as the proportion of 

replicated maximum egg counts exceeding the observed value (P = 0.86, where large or 

small values would suggest systematic discrepancy). Similarly, the log-normal model 

cannot produce counts of exactly zero, so the minimum egg count in the observed data is 
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never predicted by the model (not shown). The median (IQR) minimum egg count in the 

replicated log-normal datasets is 0.85 (0.72 to 0.97). By contrast, all of the replicated 

datasets drawn from the count model have minimum values of zero. 

 

Figure 11: Observed egg counts (top left) and hypothetical replications drawn from the posterior predictive distribution 

of the overdispersed count model (note differences in axes). 

 

Further posterior predictive checks of the mean, SD, median, IQR and the ratio of mean to 

variance were performed (not shown). These suggest that the count model is consistent 

with the observed data. The log-normal model captures the median and IQR well, but 

systematically overpredicts the mean and SD and underpredicts the mean/variance ratio. 

These checks suggest that the count model is preferable to the log-normal. Consequently, 
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we gave precedence to count models in the final analysis, although we did also fit 

lognormal models in order to investigate the implications for inference. 

 

Figure 12: Posterior predictive checks of log-normal (left) and overdispersed count (right) models using the summary 

statistic max(egg count). The maximum counts from replicated datasets drawn from each model are displayed. The 

vertical blue line shows the maximum egg count in the data. Note that the plots have different scales. 

 

 Multiple imputation of missing values 6.1.7.

Here, the multiple imputation of missing values is briefly outlined. As was noted earlier, 

progress during the stimulation phase is monitored by ultrasound and treatment may 

cease (be ‘cancelled') if poor or excessive response is anticipated. We treated the 

outcomes of these cycles as missing data to be imputed. This would appear to be 

appropriate for the purposes of investigating the dose-response of gonadotropin and 

effects of other predictors. The alternative would be to give these cycles a value of zero, 

which would not distinguish between under and over-responders. We made use of data 

relating to the intermediate measurements used to track progress (follicle counts on days 

8 and 10 of the stimulation phase) and to the total dose of gonadotrophin delivered by 

the end of the period. While it would not be appropriate to adjust for these intermediate 

outcomes as covariates, they are likely to be strongly predictive of egg count, and are 

therefore useful for the purposes of imputation. A caveat is that the follicle counts were 

themselves subject to substantial amounts of missing data. We included these variables 

together with the covariables to be included in the analysis and a categorical variable 

reflecting patient ID in the multiple imputation model. We generated three completed 
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datasets using the chained equations method implemented in the mi package in R (Su, et 

al., 2011). We conducted diagnostics, not displayed here, to investigate the suitability of 

the imputed values. Although we considered that the imputation model could probably 

be improved in some aspects, we did not pursue this due to the relatively low rate of 

missingness. 

 

 Why take a Bayesian approach? 6.1.8.

Our primary motivation for adopting a Bayesian approach was pragmatism. Bayesian 

methods offer great flexibility, which we anticipated would facilitate the subsequent 

extension to multistage models.  

 

 Fitting the model 6.1.9.

Four models were fitted to the completed datasets using MCMC in the software RStan 

(Stan Development Team, 2017). We fitted both lognormal and overdispersed poisson 

models, both with and without allowance for clustering of repeated measurements. 

Allowance for clustering was achieved by the addition of normal and gamma-distributed 

patient-level random effects, respectively. Vague prior distributions were used so that 

inferences would be based on the available data.  

 Model diagnostics 6.1.10.

Diagnostics were performed for the overdispersed repeated-measures count model. Our 

approach was to consider diagnostic checking of the fitted model before making 

inferences from the regression parameters. Model checking was performed by 

conducting posterior predictive checks, similar to those described for complete cases 

above, and by constructing plots of binned residuals (Gelman et al., 2000). We calculated 

both ‘realised’ and ‘replicated’ residuals, where the former are calculated as the 

difference between observed egg counts and the fitted egg counts predicted by the 

model and the latter are calculated as the difference between egg counts from 

hypothetical replicate datasets generated from the posterior predictive distribution and 

the model predictions. The latter were used to construct 95% predictive intervals. 
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Plots of egg counts and of relevant test statistics from the posterior predictive 

distribution did not reveal substantial inconsistencies between the model and data. There 

is a tendency for datasets predicted by the model to contain excessive maximum values, 

although this appears to be consistent with chance (we could summarise the probability 

of the discrepancy using a one-sided Bayesian posterior p-value of 0.93, where values 

close to 1 or 0 would indicate a `statistically significant' discrepancy). The binned residual 

plots are displayed in Figure 13. If the model assumptions hold, the average residuals 

should be scattered around zero, and should not display any pattern. Although the 

residuals for the low to medium fitted values appear to be reasonably scattered about 

zero, there is a clear tendency for negative residuals in the higher bins, suggesting that for 

patients expected to have high egg counts, the model predicts even higher counts. 

However, even for the patients with the higher expected values, the size of the 

overestimation is typically quite small, amounting to an average residual of around -2 or 

smaller. We considered the model to be reasonable for the purposes of inference on the 

basis of these checks. 

 

 Comparison of fitted models 6.1.11.

Estimates and 95% credible intervals (CIs) from the fitted models are displayed in Table 5  

and Table 6. These have been exponentiated for ease of interpretation. It is apparent 

from the tables that estimates from all four models are similar. It should also be noted 

that the interpretation of parameters from the lognormal and Poisson models are similar. 

We would therefore not reach substantively different conclusions in relation to any of the 

parameters under the different models.  

 Discussion of models for stimulation response 6.1.12.

Having investigated two plausible candidate distributions for egg yield, we opted to 

model stimulation response using count models in our subsequent work. While we 

reached similar conclusions regarding effects on the mean response in the present 

example, posterior predictive checks also suggested some discrepancies between the 

lognormal model and the observed egg yields. In particular, overprediction of the mean, 

variance and maximum yields could lead to a surfeit of erroneous predictions. Given that 

the range of egg yields which can be considered both sufficient and safe is relatively 
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narrow, this could have material implications for the clinical utility of the model. 

Accordingly, we use count models to represent stimulation response subsequently.  

 

 

Figure 13: Plots of average realised residuals (y-axis) against average fitted values (x-axis) within bins for 19 draws of 

the posterior distribution of the overdispersed multilevel Poisson model coefficients. Grey lines are 95% predictive 

bounds. 
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Parameter Overdispersed  

repeated- measures  

Poisson 

Overdispersed  

Poisson:  

ignore  

clustering 

Log-normal  

w/o clustering 

Log-normal  

repeated-measures 

model 

 

Intercept 8.91 

(7.79 to 10.22) 

9.08 

(7.94 to 10.37) 

7.30 

(6.08 to 8.73) 

7.33 

(6.22 to 8.64) 

LDR 75-150 IU Ref Ref Ref Ref 

Antagonist 75-150 IU 0.76 

(0.67 to 0.86) 

0.77 

(0.68 to 0.87) 

0.72 

(0.61 to 0.85) 

0.71 

(0.60 to 0.83) 

LDR 187-250 IU 1.12 

(1.01 to 1.25) 

1.11 

(1.00 to 1.24) 

1.12 

(0.96 to 1.31) 

1.12 

(0.97 to 1.30) 

Antagonist 187 – 250 IU 1.08 

(0.90 to 1.30) 

1.07 

(0.89 to 1.28) 

1.12 

(0.87 to 1.45) 

1.12 

(0.87 to 1.44) 

LDR 300 IU 1.17 

(1.03 to 1.33) 

1.14 

(1.01 to 1.30) 

1.17 

(0.99 to 1.40) 

1.18 

(1.00 to 1.41) 

Antagonist 300 IU 1.04 

(0.91 to 1.18) 

1.02 

(0.90 to 1.15) 

1.06 

(0.90 to 1.26) 

1.07 

(0.91 to 1.25) 

LDR 375 IU 1.18 

(0.92 to 1.51) 

1.11 

(0.87 to 1.40) 

1.14 

(0.82 to 1.56) 

1.18 

(0.86 to 1.62) 

Antagonist 375 IU 1.11 

(0.90 to 1.37) 

1.09 

(0.88 to 1.34) 

1.16 

(0.89 to 1.50) 

1.14 

(0.88 to 1.47) 

LDR 450 IU 1.07 

(0.87 to 1.33) 

1.01 

(0.82 to 1.24) 

0.99 

(0.76 to 1.33) 

1.04 

(0.80 to 1.35) 

Antagonist 450 IU 0.94 

(0.76 to 1.17) 

0.90 

(0.73 to 1.12) 

0.85 

(0.65 to 1.12) 

0.89 

(0.67 to 1.18) 

Usor operator: A Ref Ref Ref Ref 

B 0.98 

(0.91 to 1.04) 

0.97 

(0.91 to 1.04) 

1.01 

(0.92 to 1.11) 

1.02 

(0.93 to 1.12) 

C 1.04 

(0.94 to 1.16) 

1.04 

(0.93 to 1.16) 

1.12 

(0.96 to 1.31) 

1.11 

(0.95 to 1.31) 

D 0.68 

(0.51 to 0.89) 

0.70 

(0.53 to 0.93) 

0.72 

(0.52 to 1.03) 

0.72 

(0.52 to 1.01) 

E 0.78 

(0.71 to 0.86) 

0.78 

(0.71 to 0.86) 

0.72 

(0.63 to 0.82) 

0.72 

(0.64 to 0.82) 

F 0.86 

(0.78 to 0.97) 

0.86 

(0.77 to 0.96) 

0.85 

(0.73 to 0.99) 

0.85 

(0.73 to 0.99) 

G 0.95 

(0.87 to 1.05) 

0.95 

(0.86 to 1.04) 

0.95 

(0.82 to 1.09) 

0.95 

(0.83 to 1.10) 

H 0.93 

(0.84 to 1.02) 

0.93 

(0.84 to 1.02) 

0.96 

(0.85 to 1.09) 

0.97 

(0.85 to 1.10) 

I 0.77 

(0.70 to 0.84) 

0.77 

(0.70 to 0.84) 

0.76 

(0.67 to 0.86) 

0.76 

(0.67 to 0.87) 

J 0.70 

(0.56 to 0.88) 

0.69 

(0.54 to 0.88) 

0.46 

(0.33 to 0.63) 

0.46 

(0.33 to 0.63) 

Attempt No: 1st Ref Ref Ref Ref 

2nd 1.05 

(0.99 to 1.11) 

1.05 

(0.99 to 1.11) 

1.11 

(1.02 to 1.20) 

1.10 

(1.02 to 1.19) 

3rd or 4th 1.19 

(1.07 to 1.32) 

1.18 

(1.07 to 1.31) 

1.32 

(1.14 to 1.52) 

1.32 

(1.14 to 1.52) 

Table 5: Posterior means and 95% credible intervals for exponentiated parameter estimates from 
fitted models (rate ratios for Poisson models, multiplicative effects for lognormal models). 
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Parameter Overdispersed  

repeated-measures 

 Poisson 

Overdispersed Poisson 

w/o clustering 

Log-normal w/o 

clustering 

Log-normal  

repeated  

measures 

Antral follicle count: < 10 Ref Ref Ref Ref 

11 to 16 1.16 

(1.11 to 1.23) 

1.16 

(1.10 to 1.23) 

1.20 

(1.11 to 1.30) 

1.20 

(1.11 to 1.30) 

16 to 52 1.29 

(1.20 to 1.38) 

1.29 

(1.20 to 1.38) 

1.34 

(1.22 to 1.47) 

1.34 

(1.14 to 1.52) 

Age (SDs) 0.87 

(0.85 to 0.89) 

0.87 

(0.85 to 0.90) 

0.86 

(0.83 to 0.89) 

0.86 

(0.83 to 0.89) 

Age2 (SDs) 0.96 

(0.94 to 0.99) 

0.96 

(0.94 to 0.99) 

0.96 

(0.94 to 0.99) 

0.96 

(0.94 to 0.99) 

Log(AMH) (SDs) 1.35 

(1.30 to 1.40) 

1.33 

(1.28 to 1.38) 

1.41 

(1.34 to 1.48) 

1.42 

(1.35 to 1.50) 

Gonadotrophin: HMG Ref Ref Ref Ref 

rFSH 1.15 

(1.07 to 1.24) 

1.15 

(1.07 to 1.24) 

1.17 

(1.05 to 1.28) 

1.16 

(1.05 to 1.29) 

Unexplained fertility 1.07 

(1.00 to 1.14) 

1.06 

(1.00 to 1.13) 

1.13 

(1.04 to 1.23) 

1.13 

(1.04 to 1.23) 

Mild tubal 1.01 

(0.94 to 1.08) 

1.00 

(0.93 to 1.07) 

1.02 

(0.94 to 1.11) 

1.02 

(0.93 to 1.12) 

Severe tubal 0.92 

(0.77 to 1.09) 

0.91 

(0.77 to 1.08) 

0.91 

(0.73 to 1.14) 

0.92 

(0.74 to 1.14) 

Mild male factor 0.99 

(0.93 to 1.05) 

0.99 

(0.93 to 1.05) 

1.00 

(0.93 to 1.09) 

1.00 

(0.92 to 1.09) 

Severe male factor 1.11 

(0.88 to 1.40) 

1.11 

(0.88 to 1.40) 

1.09 

(0.77 to 1.51) 

1.08 

(0.78 to 1.50) 

Endometriosis 0.94 

(0.85 to 1.06) 

0.94 

(0.84 to 1.05) 

0.97 

(0.84 to 1.12) 

0.98 

(0.84 to 1.12) 

Endometrioma 0.87 

(0.75 to 1.02) 

0.88 

(0.77 to 1.00) 

0.91 

(0.74 to 1.12) 

0.90 

(0.73 to 1.12) 

Protocol: Old Ref Ref Ref Ref 

New protocol (V1) 0.87 

(0.81 to 0.93) 

0.86 

(0.80 to 0.92) 

0.82 

(0.75 to 0.89) 

0.82 

(0.75 to 0.89) 

New protocol (V2 & V3) 0.90 

(0.79 to 1.02) 

0.88 

(0.77 to 1.00) 

0.88 

(0.74 to 1.05) 

0.89 

(0.75 to 1.05) 

New protocol (V4) 0.84 

(0.74 to 0.94) 

0.83 

(0.74 to 0.94) 

0.80 

(0.68 to 0.94) 

0.80 

(0.68 to 0.93) 

BMI (SDs) 1.01 

(0.99 to 1.04) 

1.02 

(0.99 to 1.04) 

1.02 

(0.98 to 1.05) 

1.02 

(0.98 to 1.05) 

Hyperparameters     

 (rate, shape of patient-

level random effect) 

26.7 

(13.9 to 59.8) 

- - - 

 (rate, shape of cycle-level 

random effect) 

11.4 

(8.40 to 16.4) 

7.56 

(6.70 to 8.53) 

- - 

σ (level 1 SD) - - 0.65 

(0.64 to 0.66) 

0.60 

(0.58 to 0.62) 

σb (level 2 SD) - - - 0.25 

(0.21 to 0.29) 

Table 6: Posterior means and 95% credible intervals for exponentiated parameter estimates from 
fitted models (rate ratios for Poisson models, multiplicative effects for lognormal models). 
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 How to model responses at the embryo culture stage? 6.2

 

 Motivation 6.2.1.

Our review of outcome measures in IVF RCTs (Journal Article 2, Chapter 4) suggested that 

the quality of embryos arising from embryo culture is not reported  in a standardised 

manner, with some authors reporting this in a binary fashion (answering the question ‘is 

this embryo good quality – yes or no?’) and others using esoteric scales (Journal Article 2). 

Previous guidelines for the evaluation of embryo morphology have suggested that three 

dimensions should be taken into consideration: cell number (representing size or growth), 

evenness and fragmentation (Cutting, et al., 2008). A validation exercise suggested that 

growth and fragmentation were strongly predictive of pregnancy (Stylianou 2012). In the 

following, we do not attempt to combine morphology parameters into a single index. 

Instead, we consider the triplet of morphology parameters as a multivariate response. 

This approach allows us to estimate different covariate effects for the different quality 

measures, as well as accommodating (and quantifying) associations between them. 

Importantly, approaches based on the joint modelling of responses of different types can 

then be extended to include other stages of treatment.  

As for the stimulation stage, we attempted to answer a clinical question using real data, 

using this as a vehicle for methodological development. Whereas, for the stimulation 

stage, we wrote a manuscript for publication detailing our clinical findings, we did not 

attempt to do the same here. This is because we were not confident in the quality of the 

dataset used for this analysis. The following analyses of embryo quality parameters 

should not be interpreted as anything other than an exercise in method development. 

Our focus here is on model checking and comparison. 

 

 Introduction to the dataset and the clinical research question:  a 6.2.2.

comparison of two incubators 

A pseudo randomised comparison between two embryo incubators was conducted at St 

Mary’s Hospital Department for Reproductive Medicine. Patients’ embryos were 

allocated (in batches) to either a standard or experimental incubator on the basis of 

availability. In the  
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Variable Summary 

Attempt  

1
st

 530 (77%) 

2
nd

 124 (18%) 

3
rd

 26 (4%) 

ICSI 374 (55%) 

IVF 306 (45%) 

Age (years) 32 

29 to 35 

21 to 42 

Partner Age (years) 34 

31 to 39 

23 to 59 

Transfer Day  

3 420 (62%) 

5 260 (38%) 

Number of oocytes 10 

7.75 to 13 

3 to 26 

Incubator  

Embryoscope 339 (50%) 

Hunter 279  (41%) 

Split 62 (9%) 

Table 7: Summary of cycles in the dataset. Five-number summary for continuous/numeric variables, frequency and 
percentage for categorical variables. 

 

present example, we were interested in the effect of incubator on the three embryo 

morphology parameters described above: number of cells, evenness, and fragmentation. 

There are 4750 embryos in the dataset, from 680 cycles in 610 patients. The cycles were 

conducted between 2013 and 2014. 543 (89%) patients have 1 cycle, 64 (10%) have 2 

cycles, 3 (0%) have 3. The median (IQR) number of embryos per cycle is 6 (4 to 9), range 

(1 to 42). Numerical summaries of the cycle characteristics and embryo outcomes are 

displayed in Table 7 and Table 8. 4605 embryos (97%) had no missing data, so we used 

complete cases to develop our embryo models. 
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Outcome Day2 Day3 

Cell Number 4 

3 to 4 

1 to 11 

0% 

7 

6 to 8 

1 to 16 

1% 

Evenness 2% 2% 

1 116 (2%) 122 (3%) 

2 1186 (26%) 1445 (31%) 

3 2390 (51%) 2561 (55%) 

4 954 (21%) 534 (11%) 

Fragmentation Degree 2% 1% 

1 108 (2%) 119 (3%) 

2 664 (14%) 872 (19%) 

3 1404 (30%) 1617 (35%) 

4 2470 (53%) 2052 (44%) 

Fragmentation Pattern 2% 2% 

A 840 (18%) 630 (14%) 

B 2275 (60%) 2799 (60%) 

C 15 (0%) 17 (0%) 

D 375 (8%) 533 (11%) 

E 568 (12%) 597 (13%) 

F 73 (2%) 84 (2%) 

Table 8: Summary of embryo-level outcomes in the dataset. Five-number summary for continuous/numeric variables, 
frequency and percentage for categorical variables. 

 A multivariate Normal model for embryo morphology parameters 6.2.3.

In our initial embryo morphology model, we represented each of the three response 

variables using linear regression. In order to accommodate and quantify relationships 

between the response variables, we modelled them simultaneously by allowing the 

patient-level random effects to be correlated.  

Mathematical representation 

Let j = 1, … , J index treatment cycles in the dataset and i = 1, …, 𝐼𝑗 index embryos nested 

within cycles.  Here, we do not account for clustering of multiple cycles within patients, 

because only 67 (10%) have as many as 2 cycles.  Let 𝑦𝑖𝑗
𝑁 , 𝑦𝑖𝑗

𝐸and 𝑦𝑖𝑗
𝐹  represent the 
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outcomes cell number, cell evenness and degree of fragmentation for embryo i of cycle j, 

respectively. The outcomes 𝑦𝑖𝑗
𝑁, 𝑦𝑖𝑗

𝐸and 𝑦𝑖𝑗
𝐹   are modelled as functions of covariates and 

random effects: 

 

𝑦𝑖𝑗
𝑁  = 𝑿𝑖𝑗𝜷𝑁 + 𝑧𝑗

𝑁   + 𝑒𝑖𝑗
𝑁 

𝑦𝑖𝑗
𝐸  = 𝑿𝑖𝑗𝜷𝐸 + 𝑧𝑗

𝐸   + 𝑒𝑖𝑗
𝐸  

𝑦𝑖𝑗
𝐹  = 𝑿𝑖𝑗𝜷𝐹 + 𝑧𝑗

𝐹   + 𝑒𝑖𝑗
𝐹  

𝑒𝑖𝑗
𝑁~𝑁(0, 𝜎𝑁

2)    

𝑒𝑖𝑗
𝐸~𝑁(0, 𝜎𝐸

2)    

𝑒𝑖𝑗
𝐹~𝑁(0, 𝜎𝐹

2)    

[

𝑧𝑗
𝑁 

𝑧𝑗
𝐸 

𝑧𝑗
𝐹

] ~ MVN([
0
0
0
] , [

𝜔𝑁
2 𝜌1𝜔𝑁𝜔𝐸 𝜌2𝜔𝑁𝜔𝐹

𝜌1𝜔𝐸𝜔𝑁 𝜔𝐸
2 𝜌3𝜔𝐸𝜔𝐹

𝜌2𝜔𝐹𝜔𝑁 𝜌3𝜔𝐹𝜔𝐸 𝜔𝐹
2

]) 

 

 

The model contains three submodels corresponding to the three aforementioned 

morphology parameters. In the submodels, 𝑿𝑖𝑗 is a 1 x p row-vector of predictor variables 

and 𝜷𝑁 , 𝜷𝐸 and 𝜷𝐹 are p x 1 vectors of fixed regression coefficients for these predictors. 

In this case, the same covariate vector 𝑥𝑖𝑗 appears in all three submodels, but this is not 

required in general. Different covariates and different representations of covariates 

(transformations, interactions) may appear in the different parts of the model. Different 

regression parameters are estimated in each submodel so that the relationships between 

each morphology parameter and covariates are permitted to differ. 𝑧𝑗
𝑁 , 𝑧𝑗

𝐸 and 𝑧𝑗
𝐹  are 

cycle-level random scalars. These account for the correlation between measurements of 

each morphology parameter corresponding to embryos created in the same cycle. A 

multivariate Gaussian distribution is specified for these level 2 residuals. An unstructured 

correlation structure is used, to permit the estimation of associations between the 

variables.  
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 Model fitting 6.2.4.

The joint model was fitted using the MCMC software Stan (Stan Development Team, 

2017). In order to fit the models, it is necessary to specify priors on the model parameters 

and hyperparameters. Normal (0, 10002) priors are placed on each of the regression 

coefficients. Default improper priors over non-negative real numbers are used for each of 

the level 1 and level 2 residual standard deviations. An LKJ Correlation (0.4) prior was 

placed on the correlation matrix (Stan Development Team, 2017). This is an informative 

prior. Specifically, it represents a prior belief that the correlation matrix is unlikely to be 

represented by the identity matrix; or, in other words, that the morphology parameters 

are unlikely to be uncorrelated. 

Three Markov chains were each run for 1000 iterations. The first 500 from each were 

discarded as burn in. The remaining 500 from each were pooled to provide 1500 draws 

from the posterior distribution. Convergence was assessed using traceplots and the 

Gelman-Rubin statistic (Gelman and Rubin, 1992). 

 

 Model checking for the multivariate Normal model 6.2.5.

We have modelled three discrete outcomes using a model for continuous distributions. 

Before using the model to make inferences about these morphology parameters, its 

suitability for this purpose should be assessed. As for our investigation of the stimulation 

stage, we use the posterior predictive distribution for this purpose. Briefly, this involves 

simulating new datasets representing hypothetical replications of the observed 

outcomes, and comparing the characteristics of the simulated data to those of the actual 

data. Systematic discrepancies may highlight a need for model improvement. 

 

Plots of predictions against observed data 

Figure 14  shows histograms of the observed cell numbers together with the cell numbers 

from 19 randomly selected replicated datasets. It is immediately apparent that the 

replicates display considerably greater symmetry than the observed counts, albeit in a 

similar range and with a similar mean. The large spike at 4 is clearly not captured by the 

model. This suggests that alternative models (for example, using log (cell number) might 

be worth considering.  
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The morphology parameters are bounded; cell number has a minimum possible value of 

zero and evenness and fragmentation degree are 1 to 4 ordinal scales. The model, by 

contrast, does not result in a bounded predictive distribution. The extent to which the 

model yields predictions outside of this range therefore warrants inspection.  

We calculated the proportion of replicated datasets containing predictions lying outside 

of the range dictated by the measurement scale. Seventy-one per cent of the replicated 

datasets included predictions of cell numbers below zero, and all of them included values 

less than 1 for evenness and fragmentation degree. However, the actual proportions of 

observations falling below the lower bound were very low. For cell number, the mean 

proportion (rescaled to %) was 0.03%, with a maximum proportion of 0.13%. For 

evenness the mean was 0.57%, with a maximum of 0.98%. For fragmentation degree, the 

mean was 0.26%, with a maximum of 0.63%. We would almost certainly consider this 

level of error to be acceptable. The situation was worse at the upper end of the 

distribution however. None of the replicated datasets contained cell numbers as great as 
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Figure 14: Observed day 2 cell counts (top left) and hypothetical replications drawn from the posterior predictive 

distribution of the multivariate Normal model (note differences in y-axes). 

 

11, the greatest observed in the source data, although it is worth noting that only 5(0.1%) 

observations in the observed data were greater than 8. Only 21% contained predictions 

greater than 8, and no replicate had more than 0.07% of predictions exceeding this. They 

all contained values of fragmentation degree and evenness greater than 4. Nontrivial 

amounts of fragmentation and evenness predictions in each set exceeded 4; the mean 

and minimum proportions were 6.8% and 5.4% for evenness and 21.5% and 18.9% for 

fragmentation. Moreover, while the average (max) proportion of predictions exceeding 5 
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was 0.21% (0.56%) for evenness, the average (min) for fragmentation degree was 1.7% 

(1%).  

Figure 15 shows the means and standard deviations from the predicted datasets together 

with the corresponding values from the observed data. The model captures the means 

and SDs of all three parameters well.  

 

 

Figure 15: Histograms of the means (top row) and standard deviations (bottom row) from the replicated datasets drawn 

from the multivariate Normal model, for cell number, evenness and fragmentation degree. Blue lines are observed 

values from the dataset. 
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Residuals from the fitted model 

Further graphical assessment of the model was conducted using the conditional residuals. 

As we did when evaluating the fit of our stimulation models (see section 6.1.10), we 

computed both realised and replicated residuals (Gelman et al., 1999). As the data are 

discrete, we plotted averaged residuals against averaged fitted values within bins 

(Gelman et al., 1999). These are displayed for each morphology parameter in Figure 16, 

Figure 17, and Figure 18.  

 

Figure 16: Averaged realised residuals plotted against averaged fitted values for day 2 cell number, for 9 randomly 

selected draws from the posterior distribution of the multivariate Normal model. Grey lines show 95% bounds of the 

distribution of averaged replicated residuals. The horizontal line indicates an averaged residual value of zero.    

 

 

The plots for cell number and evenness suggest that the model is reasonable for these 

parameters; averages of realised residuals are close to zero and are generally consistent 

with the replicated residuals. However, the plots for fragmentation degree show 

systematic error, with underestimation for lower values and overestimation at higher 
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values. The inconsistency between the observed and fitted values is thrown into relief by 

the discrepancy between the realised and replicated residuals.   

 

 

Figure 17: Averaged realised residuals plotted against averaged fitted values for day 2 cell evenness, for 9 randomly 

selected draws from the posterior distribution of the multivariate Normal model. Grey lines show 95% bounds of the 

distribution of averaged replicated residuals. The horizontal line indicates an averaged residual value of zero.    

 

 

 Inference from the multivariate Normal model 6.2.6.

The model checks suggest that there may be scope for model improvement, particularly 

in relation to cell fragmentation degree. However, we present the inference from the 

model here. From a methodological perspective, there is interest in whether different 

approaches yield different conclusions.  Posterior means of the effects of the 

conventional versus experimental incubator (95% credible intervals) were -0.15 (-0.22 to -

0.07) for cell number, 0.09 (0.04 to 0.15) for cell evenness, and 0.11 (0.04 to 0.17) for cell 
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evenness. These suggest that there is no practical difference between the incubators in 

terms of morphology. 

We also obtain estimates of the latent correlation between the response variables (Table 

9). We will consider the question of how these can be interpreted in more detail in 

Chapter 7.  For now we simply note the direction and size of the estimates. The 

correlation between cell number and cell evenness is estimated to be very small. The 

correlation between cell number and fragmentation degree is estimated as positive, but 

is at most moderate. There is a strong positive correlation between evenness and 

fragmentation degree. 

 

 

Figure 18: Averaged realised residuals plotted against averaged fitted values for day 2 cell fragmentation degree, for 9 

randomly selected draws from the posterior distribution of the multivariate Normal model. Grey lines show 95% bounds 

of the distribution of averaged replicated residuals. The red line indicates an averaged residual value of zero.    
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 Cell Number Cell Evenness Fragmentation Degree 

Cell Number 1.00 -0.01 

(-0.13 to 0.12) 

0.16 

(0.05 to 0.27) 

Cell Evenness -0.01 

(-0.13 to 0.12) 

1.00 0.84 

(0.78 to 0.89) 

Fragmentation 

Degree 

0.16 

(0.05 to 0.27) 

0.84 

(0.78 to 0.89) 

1.00 

Table 9: Correlation matrix estimated from the joint Normal model. Posterior means and 95% credible intervals are 
displayed. Outcomes measured on day 2. 

 

 A mixed outcome model for embryo morphology parameters 6.2.7.

On the basis of our model checks, there is likely to be scope for improvement of the 

multivariate Normal model. Here, we consider alternative representations of the 

morphology parameters. The observed cell numbers are the product of an underlying 

continuous growth process, whereby cells divide at some rate. We therefore apply a log 

base 2 transformation for cell number, and use a linear submodel. For the ordinal 

outcomes evenness and fragmentation degree, the linear models made predictions 

outside of the scale. We use cumulative logit models here in order to avoid this 

undesirable feature.  

Once again, we connect the submodels by specifying a multivariate Normal distribution 

for the level 2 random effects. Accordingly, this model serves as our first foray into joint 

modelling of mixed response types, which we envision will be extensible for the purposes 

of multistage modelling. We proceed with a mathematical representation of our 

embryonic joint model. For simplicity, we recycle some of the sub- and superscripts 

appearing in our presentation of the multivariate Normal model in 6.2.3. This should not 

be taken to indicate equivalence between the parameters in the two models. 

 

Mathematical representation 

For embryo i nested in cycle j we model 𝑦𝑖𝑗
𝑁, log2 (cell number), using a linear regression model:  

 

𝑦𝑖𝑗
𝑁  = 𝑿𝑖𝑗𝜷𝑁 + 𝑧𝑗

𝑁   + 𝑒𝑖𝑗
𝑁 

𝑒𝑖𝑗
𝑁~𝑁(0, 𝜎𝑁

2)    



 

187 
 

 

We use cumulative logit models for the ordinal outcomes. For k = 1,2,3: 

logit(𝛾𝑘𝑖𝑗
𝐸 ) =  𝛼𝑘𝐸 − 𝑿𝑖𝑗𝜷𝑘𝐸 − 𝑧𝑗

𝐸 

logit(𝛾𝑘𝑖𝑗
𝐹 ) =  𝛼𝑘𝐹 − 𝑿𝑖𝑗𝜷𝑘𝐹 − 𝑧𝑗

𝐹 

[

𝑧𝑗
𝑁 

𝑧𝑗
𝐸

𝑧𝑗
𝐹

]~ 𝑀𝑉𝑁 ([
0
0
0
] , [

𝜔𝑁
2 𝜊1𝜔𝑁𝜔𝐸 𝜊2𝜔𝑁𝜔𝐹

𝜊1𝜔𝐸𝜔𝑁 𝜔𝐸
2 𝜊3𝜔𝐸𝜔𝐹

𝜊2𝜔𝐹𝜔𝑁 𝜊3𝜔𝐹𝜔𝐸 𝜔𝐹
2

] ) 

 

Where 𝑿𝑖𝑗 is a row-vector of regressors, 𝜷𝑁 , 𝜷𝑘𝐸 and 𝜷𝑘𝐹  are each q x 1 vectors of 

regression coefficients, and  𝑧𝑗
𝑁 , 𝑧𝑗

𝐸 and 𝑧𝑗
𝐹, are correlated cycle-level random effects. 𝛾𝑘𝑖𝑗

𝐸  

and 𝛾𝑘𝑖𝑗
𝐹  are cumulative probabilities of embryo i in cycle j having a grade of k or lower for 

evenness and fragmentation degree respectively and  𝛼𝑘𝐸  and 𝑎𝐾𝐹 (𝑘 = 1,2,3) are 

threshold parameters, corresponding to the log-odds of the embryo having this or a lower 

grade. If we set 𝜷1𝐸 = 𝜷2𝐸 = 𝜷3𝐸 (and, similarly, 𝜷1𝐹 = 𝜷2𝐹 = 𝜷3𝐹) then the model is 

subject to the proportional odds assumption, which states that covariate effects are 

constant across gradings. We started out by modelling the data with this assumption in 

place, although exploratory analyses suggested that this was probably a stretch (see S 

Table 16 and S Table 17, displaying ratios of cumulative probabilities for different levels of 

the model covariates). 

 Model checking for the mixed outcome model 6.2.8.

 

Cell number 

 

In the present version of the model, we log transformed cell number using a base value of 

2. This was done to reflect the underlying process of cells doubling as an embryo grows, 

rather than due to any statistical concerns with the model of untransformed cell counts. 

Figure 9 shows the observed cell numbers together with those from 19 random draws 

from the posterior predictive. Figure 20 shows the means, SDs and maximum values from 

the replicated datasets together with the corresponding summary statistics from the 

observed data.  
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Figure 19: Observed cell counts (top left) together with predicted cell counts from 19 random draws from the posterior 

predictive distribution of the mixed outcome joint model. Note differences in y-axes. 

 

 

Figure 20: Histograms of the means (first plot), standard deviations (second plot) and maximum values (third plot)  from  

replicated datasets, for cell number, drawn from the mixed outcome joint model, on the raw scale. Blue lines are 

observed values from the dataset.
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The posterior replications here much more closely resemble the data than did those from 

the multivariate Normal model (Figure 19). This model to some extent captures the skew 

in the data, although it does not reproduce the large spike at a cell count of 4. An analysis 

of a future dataset might incorporate this observation by using a prior distribution that 

places a lot of probability mass at 4. The mean cell count is reasonably well captured by 

the model; most of the replicated datasets have values that are too high, but only by a 

negligible amount (Figure 20). The other two plots are perhaps more worrying. The 

variance is consistently overestimated (100% of the time), which may lead to 

unnecessarily imprecise predictions of cell number. The maximum values in the 

replications are also usually too high, although we would consider this to be consistent 

with chance by conventional standards (Bayesian one-tailed P = 0.78, where P > 0.95 

would indicate incompatibility between model and data). In any case, we might not be 

too concerned if the model makes poor predictions at the extreme top end of the 

distribution, as long as it makes good predictions most of the time. It might be more 

relevant to look at quantiles at the upper end of the distribution. Figure 21  shows the 

observed and predicted 75th and 95th quantiles. The plots show that the predicted 

quantiles are systematically too high compared to the observed quantiles, although not 

by much. We are left with the impression that although the predictions are too diffuse 

compared to the data, that we would expect to see reasonable predictions for most 

embryos. For completeness, we also consider plots of averaged residuals against 

averaged fitted values on the raw scale from the cell number submodel (Figure 22). The 

plots suggest that the model systematically underestimates the cell number for lower 

values, by a negligible amount (on average). There also appears to be some relatively 

minor inconsistency between the 95% bounds of the distribution of replicated residuals 

and the realised residuals, with points falling outside the bounds in all of these plots.
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Fragmentation and evenness 

The multivariate normal model frequently made predictions outside the possible range of 

values for the ordinal responses evenness and fragmentation. This is a consequence of 

treating ordinal responses as continuous. The present mixed response model cannot 

make predictions outside the possible range for the ordinal outcomes, since we use 

cumulative logit submodels to predict the multinomial probabilities of an embryo having 

each grade. We can use the posterior predictive distribution to compare the distribution 

of grades under our model to the observed distribution. Figure 23 and Figure 24 display 

predicted and observed grades for cell evenness and fragmentation degree, for 9 draws 

from the posterior predictive distribution. The plots suggest that the model is a good fit to 

the data – the predicted grades closely resemble the observed grades for both ordinal 

outcomes.  

 

Figure 21: Histograms of the 75
th

 (first plot), and 95
th

 (second plot) percentiles from the replicated datasets drawn from 

the mixed outcome joint model, for cell number, on the raw scale. Blue lines are observed values from the dataset. 
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Figure 22: Averaged realised residuals plotted against averaged fitted values for day 2 cell fragmentation degree, for 9 

randomly selected draws from the posterior distribution of the mixed outcome joint model. Grey lines show 95% bounds 

of the distribution of averaged replicated residuals. The horizontal line indicates an averaged residual value of zero.    

 

 

 Inference from the mixed response model 6.2.9.

Exponentiated parameters (95% CIs) corresponding to the estimated multiplicative effect 

of the experimental compared to the conventional incubator are 1.05 (1.02 to 1.08), 0.78 

(0.68 to 0.91) and 0.70 (0.58 to 0.87) for cell number, evenness and fragmentation, 

respectively. These are means and quantiles from the posterior distribution, and the 
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second and third are odds ratios giving the relative odds of an embryos being in a higher 

rather than a lower grade. Accordingly, the estimates suggest an advantage of the 

experimental incubator in relation to growth rate (cell number) and a disadvantage in 

relation to evenness and fragmentation. Our conclusions are therefore consistent with 

the multivariate Normal model. 

We also consider the estimated latent correlation matrix from the mixed response model 

(Table 10). Reassuringly, the correlation matrices arising from the two approaches are 

similar. Again, we see a strong positive correlation between cell evenness and 

fragmentation degree and a small to moderate positive correlation between cell number 

and fragmentation degree. The level 2 residual SDs in all submodels are rather large. A 

cycle with random effects one standard deviation above the mean would be expected to 

have embryos with 1.16 times the number of cells, 2.8 times the odds of a higher cell 

evenness grade and 1.68 times the odds of a higher fragmentation degree grade. Perhaps 

this is unsurprising; given the fact that the model predictors are estimated to have 

relatively little bearing on the morphology parameters, there remains a lot of variation to 

be explained. This is captured by a diffuse random effects distribution. 

 

 

 Cell Number Cell Evenness Fragmentation Degree 

Cell Number 1.00 0.07 (-0.05 to 0.19) 0.19 (0.09 to 0.30) 

Cell Evenness 0.07 (-0.05 to 0.19) 1.00 0.80 (0.74 to 0.85) 

Fragmentation 
Degree 

0.19 (0.09 to 0.30) 0.80 (0.74 to 0.85) 1.00 

Table 10: Correlation matrix estimated from the mixed response joint model. Posterior means and 95% credible 
intervals are displayed. Outcomes measured on day 2. 
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Figure 23: Distribution of predicted (black bars) and observed (white bars) evenness grades. Predictions are made from 9 

draws from the posterior predictive distribution of the mixed outcome joint model . 
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Figure 24: Distribution of predicted (black bars) and observed (white bars) fragmentation degree grades. Predictions are 

made from 9 draws from the posterior predictive distribution of the mixed outcome joint model. 

 

 Relaxing the proportional odds assumption in the mixed response 6.2.10.

model 

The mixed response model used so far is subject to the proportional odds assumption, 

which corresponds to the assumption that covariate effects are constant across the levels 

of the ordinal grading scales. We conducted a further analysis where we relaxed this 

assumption (so that it was no longer the case that 𝜷1𝐸 = 𝜷2𝐸 = 𝜷3𝐸 , nor that 

𝜷1𝐹 = 𝜷2𝐹 = 𝜷3𝐹). This approach yields estimates of the effect of the experimental 

compared to the conventional incubator on the likelihood of getting a higher grade at 



 

195 
 

each level on the scale. Odds ratios (95%) corresponding to the effect of the experimental 

compared to the conventional incubator on getting a higher evenness grade were 0.89 

(0.60 to 1.39), 0.93 (0.78 to 1.12), and 0.61 (0.50 to 0.75) at grades 1,2 and 3 respectively. 

For fragmentation grade, the values were 0.74 (0.46 to 1.25), 0.74 (0.58 to 0.97) and 0.68 

(0.54 to 0.85). Both the estimates for cell number and of the correlation between 

morphology parameters are completely unchanged compared to the proportional odds 

model. The estimates at grade k=3 for the ordinal scales suggest that the experimental 

incubator considerably decreases the chance of top grade embryos compared to the 

conventional incubator, which could not be discerned using the proportional odds model. 

To understand the practical relevance of these effects we created graphs comparing the 

impact of incubator to other sources of variation, such as age (Figure 25, Figure 26). 

 

 

Figure 25: Distribution of day 2 cell evenness grades under 3 draws from the posterior predictive distribution of the 

mixed response joint model with non-proportional odds (rows), for a patient undergoing their first IVF attempt with a 

partner of mean age. Blue bars show response distribution under the experimental and gold show responses under the 

conventional incubator. Predicted responses are shown for low (-1 SD), medium (mean) and high (+1 SD) ages.  
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Figure 26: Distribution of day 2 cell fragmentation grades under 3 draws from the posterior predictive distribution of the 

mixed response joint model with non-proportional odds (rows) for a patient undergoing their first IVF attempt with a 

partner of mean age. Green bars show response distribution under the experimental and azure show responses under 

the conventional incubator. Predicted responses are shown for low (-1 SD), medium (mean) and high (+1 SD) ages.  

 

Figure 25 suggests that the effects of incubator on cell evenness is substantial compared 

to age effects, with a greater number of grade 4 embryos obtained using the conventional 

incubator. By contrast, Figure 26 shows that effects on fragmentation are less 

pronounced, but certainly not trivial.  

 

 Discussion of embryo culture models 6.2.11.

We considered three joint modelling approaches for the analysis of embryo responses, by 

way of an evaluation of the comparative efficacy of two incubators. Similar conclusions 

arise using all approaches; the conventional incubator performs similarly in terms of cell 

numbers, and improves evenness and fragmentation degree outcomes. Advantages of 

the mixed response models compared to the multivariate Normal include the fact that 

evenness and fragmentation degree are modelled as discrete variables, so that 
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predictions arising from the model are both meaningful and interpretable. By relaxing the 

proportional odds assumption in the ordinal response submodels of the mixed response 

model, covariate effects are allowed to vary across the grades. As a result, the final model 

allowed us to state that the conventional incubator specifically increases the numbers of 

top-grade embryos compared to the experimental incubator. By contrast, the 

proportional odds model only tells us that there is some overall advantage of the 

conventional incubator with respect to these responses. A disadvantage however is the 

fact that the grade-specific covariate effects are estimated with less precision than the 

overall effects in the proportional odds model. Jointly modelling the responses allows us 

to evaluate the latent correlation between morphology parameters using random effects. 

All three models give the same answer in this regard. We observed strong correlation 

between evenness and fragmentation degree, and modest correlation between cell 

number and fragmentation degree. Correlation between cell number and evenness 

appears to be negligible, or at best modest.   

To investigate whether jointly modelling the responses offered any other advantages 

beyond the ability to estimate latent measures of association, we fitted the submodels in 

the mixed response model as three separate regression models (not shown). Both the 

model estimates and their corresponding precision were essentially unchanged. Results 

from simulation studies have arrived at different conclusions in relation to efficiency gains 

from joint modelling, with Lesaffre et al., (1991) and Gueorguieva and Agresti, (2001) 

reporting no substantive gains. By contrast, McCulloch, (2008) and Gueorguieva and 

Sancora, (2001) both reported impressive reductions in standard errors in submodels for 

binary and ordinal response variables when jointly modelled with a continuous response. 

Our results are in line with the former group of studies. One possibility is that the lack of 

efficiency gain stems from the inclusion of the same covariates in each submodel. In the 

case of seemingly unrelated regression (SUR, Zellner, 1962), where linear regression 

models are linked by correlated error terms, it has been shown that no efficiency gains 

are achieved for covariates shared across the submodels (Zellner and Huang 1962, 

Oliveira and Teixeira-Pinto 2015, Breiman, 1997). Our present models differ from the 

typical SUR models in that we accommodate correlation between the responses using 

random effects defined at the level of the treatment cycle (level 2) rather than at the 

level of the embryo (level 1). Intuitively however, the choice of covariates in the 
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submodels may influence the efficiency of joint modelling in an analogous manner to the 

SUR case. 

 Summary of Chapter 6.   6.3

In this chapter, we have developed models for responses at the stimulation and embryo 

culture stages of IVF. In the latter case, we used joint modelling approaches to 

simultaneously analyse several embryo morphology outcome measures, thereby 

permitting the estimation of measures of association between them. In the next chapter, 

we extend these mixed response joint models to multiple stages of the IVF cycle. 
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 Supplementary material for Chapter 6.   6.4

 

Predictor Evenness Grade 

 1 <=2 <=3 <=4 

Incubator 
(Embryoscope/Hunter) 

1.19 1.13 1.11 1 

Fertilization Method 

(ICSI/IVF) 

1.44 1.10 1.06 1 

Attempt No 

(Attempt 1/ Attempt 2) 

(Attempt 1/ Attempt 3) 

 

0.81 

0.75 

 

0.92 

0.83 

 

0.98 

1.05 

 

1 

1 

Age (Quantiles) 

(Q1/Q2) 

(Q1/Q3) 

(Q1/Q4) 

 

1.78 

1.04 

1.02 

 

1.20 

1.20 

1.27 

 

1.02 

1.01 

1.04 

 

1 

1 

1 

Partner Age (Quantiles) 

(Q1/Q2) 

(Q1/Q3) 

(Q1/Q4) 

 

0.93 

0.95 

1.37 

 

0.98 

1.13 

1.17 

 

1 

1 

1.01 

 

1 

1 

1 

S Table 16: Ratios of cumulative probabilities of embryos having a given day 2 evenness grade or lower according to 
predictor variables. The proportional odds assumption requires that values in each row are similar, excluding the final 
column. 
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Predictor Fragmentation Degree 

 1 <=2 <=3 <=4 

Incubator 

(Embryoscope/Hunter) 

1.36 1.32 1.23 1 

Fertilization Method 

(ICSI/IVF) 

1.23 1.13 1.03 1 

Attempt No 

(Attempt 1/ Attempt 2) 

(Attempt 1/ Attempt 3) 

 

0.65 

0.76 

 

0.83 

0.78 

 

0.91 

0.83 

 

1 

1 

Age (Quantiles) 

(Q1/Q2) 

(Q1/Q3) 

(Q1/Q4) 

 

1.30 

1.08 

1.05 

 

1.14 

1.26 

1.11 

 

0.95 

1.02 

0.90 

 

1 

1 

1 

Partner Age (Quantiles) 

(Q1/Q2) 

(Q1/Q3) 

(Q1/Q4) 

 

1.25 

0.95 

1.64 

 

0.93 

1.00 

1.15 

 

0.88 

0.80 

0.94 

 

1 

1 

1 

S Table 17: Ratios of cumulative probabilities of embryos having a given day 2 frag degree grade or lower according to 
predictor variables. The proportional odds assumption requires that values in each row are similar, excluding the final 
column. 
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Chapter 7.  Methods for multistage models 

In this section, we develop multistage methods for IVF data. We describe our thinking in 

developing these approaches more fully here than we do in Journal Article 5 (Chapter 10), 

which is a methodology paper arising from this work, although some overlap is 

unavoidable.  

 

Our goal is to develop a framework for investigating the relationships between the 

responses at different treatment stages, as well as the impact of predictive variables on 

each of these. In the previous chapter, we tackled models relating to the ovarian 

stimulation and embryo culture stages of treatment. In this chapter, we consider the 

problem of how to link stage-specific submodels to produce a model for the full IVF cycle. 

The challenge is exacerbated by the mixed response variables we encounter (for example, 

binary, count and ordinal responses), and the fact that some of these are defined at the 

level of the embryo rather than the patient. We first consider a direct extension of our 

joint embryo models considered last chapter, and link submodels relating to responses at 

different stages using correlated latent variables. As limitations of this approach become 

apparent, we consider alternative approaches, where we allow the stage-specific 

response variables to enter into the downstream response submodels as covariates.  

 

 Motivating schematic 7.1

 

For the purpose of exposition, we begin with the schematic of the fresh IVF cycle 

displayed in Figure 27, where we present the IVF cycle as comprising three distinct stages; 

1) stimulation of the ovaries, 2) fertilization and embryo culture, and finally 3) embryo 

transfer. We use the number of oocytes obtained as a measure of success of ovarian 

stimulation, three embryo quality scores (cell number, fragmentation and evenness) as 

indicators of success of the egg fertilisation and embryo culture stage, and live birth event 

as the standard of success for the embryo transfer stage. Singleton and twin births are 

both considered to be live birth events, and are not differentiated in the model. The 

outcomes number of eggs (count variable) and live birth event (binary) are defined at the 
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level of the cycle, while the embryo gradings (one discrete that we treat as continuous 

and two ordinal measures) are defined for each individual embryo in the cycle.  

This presentation is simplistic, and we anticipate that additional stages and responses will 

have to be included in order to answer real clinical research questions about the IVF cycle 

(see Chapters 10 and 11). For example, egg fertilization and embryo culture are really 

distinct stages, with the response variable ‘number of embryos created’ preceding 

measures of the quality of those embryos. By aggregating these stages, we are effectively 

ignoring the fact that the number of embryos produced is itself informative. Noting its 

practical inadequacy, we proceed with the three-stage representation for the purposes of 

exposition of the methods.  

 

 

Figure 27: Schematic of the fresh IVF cycle for embryo i in cycle j. We jointly model outcomes at each of three stages. 

 

 Joint modelling using correlated latent variables 7.2

Our initial approach is a direct extension of the embryo models employed in the previous 

chapter. Whereas previously we defined regression submodels for the three embryo 

quality parameters, we now define additional submodels for the response variables 

preceding and following embryo culture. We estimate the relationship between 

outcomes by supposing that there is a multivariate Gaussian structure underlying the 

multistage data consisting of latent variables from each submodel (Goldstein, et al., 
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2009).  The correlation matrix of this Gaussian distribution is then estimated along with 

the other model parameters.  

 

 Review of the submodels 7.2.1.

We begin with a narrative description of the submodels, so that the reader may skip the 

subsequent mathematical presentation if desired. In light of the analyses conducted in 

the previous chapter, the cycle-level outcome ‘number of oocytes’ is modelled using an 

overdispersed Poisson regression model, with a cycle-level latent variable (alternatively, 

‘random effect’) representing unmeasured covariables. We represent the embryo-level 

outcomes as in the mixed response models employed in the previous analyses. ‘Cell 

number’ is log transformed using a base of 2 as this can be interpreted as the number of 

doublings.  Since embryos are nested within cycles, log2(cell number) is then modelled 

using a standard two-level linear mixed model, including a random intercept term to 

capture between-cycle heterogeneity. The ordinal embryo gradings ‘evenness’ and 

‘fragmentation degree’ are modelled using cumulative logit models, again with random 

intercept terms representing between-cycle heterogeneity. These random terms can be 

viewed as latent variables, and it is these that are used to model the relationship between 

outcome measures. The cycle-level outcome ‘live birth event’ is modelled using a latent 

variable representation of a probit model, where positive (negative) values of the latent 

variable correspond to a success (failure). The cycle-level latent variable is modelled using 

linear regression. The error term from this latent model is used to estimate the 

correlation with the responses at earlier stages of the cycle. 

 

 Mathematical representation of the submodels 7.2.2.

Stimulation phase 

In the current presentation, we are ignoring any clustering arising from repeated 

treatment cycles as relatively few patients in the dataset (described below) have these. 

For cycle j, we assume the number of oocytes obtained 𝑦𝑗
𝑂 follows a Poisson distribution 

and model the log of the rate parameter 𝜆𝑗
𝑜 in the usual way: 

log(𝜆𝑗
𝑜) = 𝑺𝑗𝜷𝑜 + 𝑧𝑗

𝑜
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where 𝑺𝑗  is a row-vector of cycle-level covariates for cycle j, 𝜷𝑜 is a corresponding vector 

of regression parameters and 𝑧𝑗
𝑜 is a cycle-specific latent variable that models 

overdispersion in the oocyte yield. This latent term is used to capture the relationship 

between the stimulation response and outcomes at later stages, as described below. 

 

Embryo fertilization and culture 

Our embryo submodels display the same form as those employed in the previous chapter, 

and we repeat the specification here because it facilitates the exposition and is quite brief 

in any case. For embryo i (where i =1,…,nj) nested in cycle j we model 𝑦𝑖𝑗
𝑁, log2 (cell 

number), using a two-level linear regression model:  

𝑦𝑖𝑗
𝑁  = 𝑿𝑖𝑗𝜷𝑁 + 𝑧𝑗

𝑁   + 𝑒𝑖𝑗
𝑁 

𝑒𝑖𝑗
𝑁~𝑁(0, 𝜎𝑁

2)    

We use cumulative logit models for the ordinal outcomes. For k = 1,2,3: 

logit(𝛾𝑘𝑖𝑗
𝐸 ) =  𝛼𝑘𝐸 − 𝑿𝑖𝑗𝜷𝑘𝐸 − 𝑧𝑗

𝐸 

logit(𝛾𝑘𝑖𝑗
𝐹 ) =  𝛼𝑘𝐹 − 𝑿𝑖𝑗𝜷𝑘𝐹 − 𝑧𝑗

𝐹 

 

Where 𝑿𝑖𝑗 is a row-vector of covariates, 𝜷𝑁 , 𝜷𝑘𝐸 and 𝜷𝑘𝐹  are each vectors of regression 

coefficients, and 𝑧𝑗
𝑁 , 𝑧𝑗

𝐸 and 𝑧𝑗
𝐹 are cycle-level random effects (latent variables). 𝛾𝑘𝑖𝑗

𝐸  and 

𝛾𝑘𝑖𝑗
𝐹  are cumulative probabilities of embryo i in cycle j having a grade of k or lower for 

evenness and fragmentation degree respectively and 𝛼𝑘𝐸  and 𝑎𝐾𝐹 (𝑘 = 1,2,3) are 

threshold parameters, corresponding to the log-odds of the embryo having this or a lower 

grade.  

 

Live birth event 

We use a latent variable representation of a probit regression model for the clinical 

outcome of the cycle, live birth event. Let 𝑦𝑗
𝐿 = 1 or 0 if cycle does or does not result in a 

live birth, respectively. We define 𝑦𝑗
𝐿∗  as a latent continuous variable underlying the 

binary 𝑦𝑗
𝐿, such that 

𝑦𝑗
𝐿 = {

1 𝑖𝑓𝑦𝑗
𝐿∗  ≥ 0

0 𝑖𝑓 𝑦𝑗
𝐿∗ < 0
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A linear regression model for the latent 𝑦𝑗
𝐿∗  is then used to estimate covariate effects: 

𝑦𝑗
𝐿∗ = 𝑪𝑗𝜷∗ + 𝑧𝑗

∗ 

𝑧𝑗
∗~𝑁(0, 1)    

    

where 𝑪𝑗is a row-vector of cycle-level covariables and 𝜷∗ is a r x 1 vector of regression 

coefficients. Fixing the variance of 𝑧𝑗
∗ to be 1 is mathematically equivalent to specifying a 

probit model for the probability that a single transfer cycle culminates in a live birth 

event. We choose a probit model over the more familiar logistic regression approach in 

order to allow the correlation between LBE and the embryo parameters to be estimated. 

This is achieved by specifying a multivariate normal distribution for the cycle-level 

random terms appearing in the first four submodels and the latent error term in the fifth: 

 

[
 
 
 
 
 
 
𝑧𝑗

𝑂

𝑧𝑗
𝑁  

𝑧𝑗
𝐸

𝑧𝑗
𝐹

𝑧𝑗
∗ 

]
 
 
 
 
 
 

~ 𝑀𝑉𝑁

(

  
 

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

,

[
 
 
 
 
 

𝜃𝑂
2 𝜂1𝜃𝑂𝜃𝑁 𝜂2𝜃𝑂𝜃𝐸 𝜂3𝜃𝑂𝜃𝐹 𝜂4𝜃𝑂

𝜂1𝜃𝑁𝜃𝑂 𝜃𝑁
2 𝜂5𝜃𝑁𝜃𝐸 𝜂6𝜃𝑁𝜃𝐹 𝜂7𝜃𝑁

𝜂2𝜃𝐸𝜃𝑂 𝜂5𝜃𝐸𝜃𝑁 𝜃𝐸
2 𝜂8𝜃𝐸𝜃𝐹 𝜂9𝜃𝐸

𝜂3𝜃𝐹𝜃𝑂 𝜂6𝜃𝐹𝜃𝑁 𝜂8𝜃𝐹𝜃𝐸 𝜃𝐹
2 𝜂10𝜃𝐹

𝜂4𝜃𝑂 𝜂7𝜃𝑁 𝜂9𝜃𝐸 𝜂10𝜃𝐹 1 ]
 
 
 
 
 

 

)

  
 

 

 

The elements 𝜂1, …, 𝜂10 of the vector 𝜼  represent latent correlation coefficients, and act 

as a measure of association between response variables.  

 

 Description of the dataset 7.2.3.

The data used in this example are all fresh IVF cycles started between June 2013 to June 

2014, at St Mary’s Department of Reproductive Medicine, Manchester, where patients 

used their own eggs. In total, this represents 1091 treatment cycles. Embryo outcome 

data were only available for a subset of the cohort (634 cycles). This isn’t ideal but we 

ignore it for present purposes. A small proportion of these cycles are repeated treatments 

on the same patients, but this is also ignored in the present example and we use ‘cycle’ 

and ‘patient’ interchangeably in the following. 

The rate of drop-out at each stage of the cycle was rather low. Eighty-seven (8%) cycles 

did not proceed beyond the stimulation and egg collection stage, 58 (5%) did not proceed 
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beyond the fertilization and embryo culture stage, with the remaining 946 (87%) of cycles 

resulting in transfer. There were 318 live birth events, giving a LBE per cycle started rate 

of 29% and a LBE per transfer procedure rate of 34%. 

 

 Model fitting 7.2.4.

We fit the joint model as a Bayesian hierarchical model. The model is hierarchical due to 

the underlying multivariate Normal distribution which can be thought of as a prior 

distribution on the latent variables, with the parameters of this prior estimated from the 

data. This multivariate Normal prior then has a hyperprior distribution, which we specify 

using a LKJ(1) distribution. This is uniform over all of the correlation matrices of 

appropriate dimension (Stan Development Team, 2017). This may be less efficient than 

placing a prior on the Cholesky factorisation of the correlation matrix (Stan Development 

Team, 2017), but we do not pursue this yet. We place noninformative priors on most 

parameters. Exceptions are the priors for regression coefficients for the LBE submodel. 

The latent variables in this submodel are scaled to have a variance of 1, and it is therefore 

rather unlikely that the coefficient values would be much greater than this. We therefore 

use Normal(0,2) priors for these parameters, which amount to being very weakly 

informative. The primary motivation here is to speed up the algorithm used to fit the 

model. We run two chains for 3000 iterations, discarding the first half as a warm up 

period.  This leaves 3000 draws from the posterior distribution for the purpose of 

inference, and we conduct standard convergence diagnostics before proceeding (not 

shown). In a genuine application, we would run additional chains and conduct extensive 

model checks via the posterior predictive distribution to assess the fit. 

 

 Covariates in the model 7.2.5.

We include three baseline covariables in this example (age, partner age and attempt 

number). We include these in all of the submodels, although there is no requirement for 

each submodel to include the same predictor variables in general. In this simplistic 

example, we include these variables without considering the most appropriate form that 

they should take. For example, the relationship between age and stimulation response is 



 

209 
 

likely to be nonlinear. We do not consider these points here, although appropriate 

representations could be investigated via the usual exploratory data analysis. 

 

 Dropout from the cycle 7.2.6.

We have described dropout resulting from treatment failure as a complicating factor in 

the analysis of multistage IVF data. A patient may have an inadequate ovarian stimulation 

response, for example, preventing progression to subsequent treatment stages. We fit 

our submodels conditional on ‘success’ (which here we use to mean ‘not failure’, rather 

than a good outcome) at the previous stage. For example, a patient who failed (or 

otherwise dropped out) during the stimulation phase would not provide direct 

information on either the embryo outcomes or transfer outcome, as they lack outcome 

data for these stages. They would however provide some information via their available 

data – namely through their covariate data and their response to ovarian stimulation. 

Latent variables corresponding to the unrealised treatment stages are drawn for patients 

who drop out although, as is usual in multilevel modelling, they are shrunken towards the 

mean for patients with similar values for their observed data (Gelman, et al., 2012). One 

could attempt to interpret these uncoupled latent variables as propensities to produce 

embryos of a given size, evenness etc, but this might require too far a stretch of the 

imagination. For now, we note that the latent variables for unrealised stages are drawn 

under the assumption that, whatever they represent, they assume that the relationships 

between stages are the same for those who do and do not drop out. We discuss the 

matter of how to handle dropout in the multistage context in more detail in Chapter 8.   

 

 

 Results of fitting the correlated latent variable model 7.2.7.

We do not go into detail about the estimated values of the regression coefficients from 

the various submodels here, as they have their usual interpretation. We focus instead on 

the estimated correlation matrix and the interpretation of it. The estimated correlation 

matrix is shown in Table 11. It suggests that patients obtaining more eggs after 

stimulation have larger embryos (greater cell number). It also suggests that patients with 

more eggs and larger embryos are more likely to have a successful embryo transfer. 
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Conventional wisdom suggests that an increased number of oocytes increases the chance 

of overall success due to the greater pool of embryos from which to select. However, 

these results could generate the hypothesis that patients with increased oocyte yield 

actually have superior embryos, and this may contribute to transfer success.  

Fragmentation Degree is strongly associated with evenness and weakly (or at most 

moderately) associated with cell number.  

 

 How to interpret latent correlation coefficients? 7.2.8.

Superficially, it appears that an estimated latent correlation coefficient can be given a 

reasonably straightforward interpretation, provided that the two submodels to which it 

refers share the same covariables. If so, the correlation coefficient can be interpreted as a 

measure of association adjusted for those covariables. This can be understood by way of 

analogy with multiple linear regression. Suppose that an outcome variable y is regressed 

on several covariates (x1, x2, x3, say). The regression coefficient corresponding to x1 can 

be recovered by carrying out the following three steps. First, regress y on both x2 and x3  

 

 

 Number of 
oocytes 

Log2(Cell 
Number) 

Evenness Fragmentation 
Degree 

Live Birth Event 

Number of 
oocytes 

1 0.26 

(0.07 to 0.43) 

0.13 

(-0.03 to 0.29) 

0.09 

(-0.05 to 0.24) 

0.31 

(0.16 to 0.46) 

Log2(Cell 
Number) 

0.26 

(0.07 to 0.43) 

1 0.02 (-0.11 to 
0.15) 

0.18  

(0.06 to 0.30) 

0.30 

(0.13 to 0.47) 

Evenness 0.13 

(-0.03 to 0.29) 

0.02 

 (-0.11 to 0.15) 

1 0.86 

(0.81 to 0.91) 

0.05 

(-0.12 to 0.21) 

Fragmentation 
Degree 

0.09 

(-0.05 to 0.24) 

0.18  

(0.06 to 0.30) 

0.86 

(0.81 to 0.91) 

1 0.03 

(-0.13 to 0.18) 

Live Birth Event 0.31 

(0.16 to 0.46) 

0.30 

(0.13 to 0.47) 

0.05 

(-0.12 to 0.21) 

0.03 

(-0.13 to 0.18) 

1 

Table 11: Estimated correlation matrix (posterior means and 95% CIs) from the correlated latent variable model. 
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(including both as covariates in a multiple regression). Second, regress x1 on both x2 and 

x3 (again, including both as covariates in a multiple regression). Finally, regress the 

residuals from the first step on the residuals from the second. The slope of this regression 

line will duplicate the regression coefficient for x1 in the regression of y on x1, x2 and x3, 

and can be interpreted as an estimate of the association between y and x1 after adjusting 

for x2 and x3.  

The joint model of two outcomes (or more accurately for generalized linear submodels, of 

their transformed means) can be similarly construed if the covariates in the two models 

are identical. For example, consider a joint model of log2(cell number) and number of 

oocytes, containing two baseline covariates. The former is modelled using linear 

regression. The latter is modelled using Poisson regression with the log rate parameter 

expressed in terms of the linear predictor and a random (cycle-varying) term representing 

unmeasured covariates. The residuals in the first submodel and the random term in the 

second are analogues of the residuals from the regressions of y and of x1 on the 

covariates x2 and x3 in the multiple linear regression example above. In the multiple 

linear regression example, we regressed one set of residuals on the other. In the joint 

model, we instead estimate the correlation. In both cases, we assess the relationship 

between the unexplained variation from the first submodel and the unexplained variation 

from the second, and can consider this estimate of association to be adjusted for the 

other covariates.     

Although such an interpretation is possible, (and possibly useful), it falls short of a 

measure of association on the scale(s) of the response variables in the model. We return 

to this point later. 

 

   Choosing covariates for causal inference and for prediction 7.2.9.

Thinking about the correlation coefficients from the joint model in this way suggests 

some principles relating to covariate selection. If we hope to assign a causal 

interpretation to the estimates of association, then it would not be appropriate to include 

covariates that lie on a causal pathway intermediate to the conjoined outcome measures 

under consideration. This scenario would essentially be precluded by the requirement 

that both submodels include the same covariates, since it would lead to the inclusion of a 
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covariate that occurred subsequent to the outcome variable in one of the submodels. 

Clearly, this would be nonsensical. If there is interest in interpreting the correlation 

coefficients as causal, then the model covariates should be the same in all submodels and 

must precede each of the outcomes in the model. Yet this might not be enough to permit 

a causal interpretation. Even when the response variables are temporally ordered, and 

have been appropriately adjusted by covariates, the submodels in this framework cannot 

be considered to be adjusted for the other response variables in the joint model. For 

example, the relationship between cell number and live birth in Table 11 could in 

principle be partially or wholly attributable to effects of number of oocytes on both of 

these variables. If so, we would have confounding of the relationship by the number of 

oocytes obtained (here, we are setting aside prior plausibility and noting that this 

interpretation would be consistent with the model). Furthermore, a correlation 

coefficient, even if adjusted, can never be given a meaningful causal interpretation, since 

its magnitude depends on the variation in the sample (Greenland, et al., 1991). As such, it 

cannot be taken as a measure of a stable law of nature. If interest lies in investigating how 

a response at one stage affects what happens next, it isn’t clear that this approach 

provides the means by which to do it. 

On the other hand, the intention may be to use the model for the purposes of prediction. 

The model may be particularly useful specifically for inherently multivariate prediction 

problems. For example, a joint model could be used to predict the chance that a patient 

with certain characteristics treated under a certain stimulation protocol might have a safe 

stimulation response (a yield of eggs falling in an acceptable range) and then go on to a 

successful embryo transfer. This might be useful when trying to design optimal ovarian 

stimulation strategies, where there is a need to balance effectiveness and safety. This is 

likely to offer advantages over approaches based on composite outcomes, which waste 

information and do not allow for differential effects of covariates on safety and 

effectiveness. For pure prediction problems, we are less concerned about violating the 

conditions for valid causal inference, and may choose which covariables to include on 

more pragmatic grounds (such as the availability or feasibility of gathering the measure in 

clinical practice, or the fact that it improves predictive performance of the model, see eg: 

Steyerberg, 2008). 
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  Assumptions of the model  7.2.10.

The most substantial assumption we make in this approach is the assumption that, 

conditional on the covariates and on the latent variables that we use to accommodate 

correlation between the outcome measures, the outcomes being modelled are 

independent (Gueorguieva, 2001, McCulloch, 2008). That is, if we have two response 

variables y1 and y2, with a covariate x and response-specific latent variables z1 and z2, we 

assume that 

𝑝(𝑦1, 𝑦2|𝑥, 𝑧1, 𝑧2) = 𝑝(𝑦1|𝑥, 𝑧1, 𝑧2)𝑝(𝑦2|𝑥, 𝑧1, 𝑧2) 

To understand this point we can make an analogy with longitudinal data analysis, where 

we usually assume that repeated observations on an individual are independent 

conditional on the random effects in a mixed model. In the LDA setting, we can think of 

the random effects as representing unmeasured time-invariant covariates that account 

for the unexplained heterogeneity between participants. A consequence of this for LDA is 

that, unless we introduce greater complexity through the observation-level residuals, we 

assume that the correlation between repeated measures is constant. By contrast our 

approach, where correlation is built in by placing a multivariate Normal distribution on 

the random effects or residuals from each submodel, allows for considerable flexibility in 

the covariance structure underlying the multivariate response; no assumption of constant 

correlation between all of the response variables is required. One inconvenient 

consequence of the conditional independence assumption in our model however relates 

to embryo gradings. In particular, it entails that the correlation between two measures of 

embryo grade for any particular embryo would be the same if we were to take the same 

two measures individually from two embryos belonging to the same patient 

(Gueorguieva, 2001). This is unrealistic, and it would be desirable to relax it.  

The coherence of the conditional independence assumption for two response variables 

can be assessed by including one as a covariate in the submodel for the other 

(Gueorguieva, 2001). A coefficient of zero would correspond to conditional 

independence. In our case, we expect the outcomes at each stage to play an important 

role in determining ‘downstream’ outcomes. It is probably unrealistic to assume that this 

dependence can be fully accounted for through the multivariate Normal distribution we 

specify for the latent variables. The degree of model misspecification is unknown in 

practice. 
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At this point we also note a second assumption of this approach. In the absence of an 

explicit model for drop out, we essentially assume that unobserved outcomes can be 

explained as missing at random (MAR, Rubin, 1976). This means that we assume that the 

missing responses are ignorable given the observed data included in the model. There 

may be some plausibility to this assumption, since the response at each stage largely 

determines whether or not a patient continues the cycle, and response variables 

representing key milestones are included in the joint model. The dependency between 

response variables that throws the conditional independence assumption into doubt 

therefore also increases the plausibility of missingness at random. We return to the 

matter of modelling the dropout process in Chapter 8.     

 

   Improving the correlated latent variable approach 7.2.11.

The latent variable approach outlined here has limitations. Given the anticipated strong 

dependence between response variables, the conditional independence assumption may 

be untenable. Moreover, if our goal is to understand efficacy and mechanism of IVF 

interventions, it would be useful to be able to estimate the effects of upstream outcomes 

on downstream responses. While the correlation coefficients from our approach may be 

adjusted for confounding variables, it would be preferable to obtain measures of 

association on the same scales as the model response variables. In the next section, we 

attempt to overcome these limitations by considering models where response variables 

are included as covariates in the submodels for downstream outcomes.  

 

 Including procedural responses as covariates in submodels for 7.3

downstream responses 

The approach based on estimating the correlation between cycle-level latent variables 

has limitations (section 7.2).  Although it is possible to obtain adjusted estimates of 

association between responses at different stages of the cycle using this approach, the 

interpretation of these estimates is somewhat obscure. An approach that allows valid and 

directly interpretable estimates of relationships between response variables, the 

endogenous response model, is developed here.  

 



 

215 
 

 Motivating example:  a two-stage IVF model 7.3.1.

In order to introduce the endogenous response modelling approach, we begin by 

considering a simple two-stage model of the IVF cycle, featuring only the stimulation and 

transfer stages (so that we do not include the fertilisation and culture stage/stages at 

present). This simplifies the situation compared to the schematic portrayed in 7.1 and 

Figure 27  since it leaves us with responses measured at a single level (the level of the 

cycle). Again, we ignore repeated cycles undertaken by the same patients here and treat 

the cycle as the unit of analysis. As with the previous example, we use the number of 

oocytes retrieved as the outcome measure of stimulation response and live birth event as 

the outcome measure corresponding to embryo transfer. We again consider only a small 

number of baseline covariables (age, partner age and attempt number). 

We are interested in the effects of covariates on stimulation response and on transfer 

success. Moreover, we are interested in the relationship between the oocyte yield and 

the likelihood of a successful embryo transfer.  

 

 Correlated latent variable two-stage model  7.3.2.

We first define a correlated latent variable model for the two-stage scenario. As for the 

three-stage model presented in 7.2, a correlated latent variable model for the two-stage 

schematic might contain an overdispersed Poisson submodel for the number of oocytes 

obtained from ovarian stimulation, and a latent probit model submodel for live birth 

event. The correlation between the two response variables could then be accommodated 

by specifying a bivariate Normal distribution for the latent variables:  

(
𝑧𝑗

𝑜

𝑧𝑗
∗)~𝑀𝑉𝑁((

0
0
) , (

𝜃𝑂
2 𝜂𝜃𝑂

𝜂𝜃𝑂 1
)) 

This allows us to estimate the correlation between the stimulation response and outcome 

of transfer, 𝜂. We include the same covariates in both submodels, so that 𝜂 can be 

interpreted as a measure of association adjusted for these variables. 

 

 Introducing outcome-covariates to the joint model 7.3.3.

The endogenous response model can be thought of as an extension to the latent variable 

approach. In the endogenous response model, we allow procedural response variables to 
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enter into the downstream response submodels as covariates. Wherever a response 

variable features as a covariate for another response, we refer to it as an outcome-

covariate. In the two-stage scenario, we define an endogenous response model by 

including the stimulation response variable ‘number of oocytes’ as an additional covariate 

in the live birth event submodel. We still specify a multivariate Normal distribution for the 

latent terms in the two submodels, so that they are correlated. 

 This formulation is similar to the approach described by Terza (1998), who presented a 

joint model for estimating the effect of car ownership on household trip-taking. In that 

example, a straightforward overdispersed Poisson regression of number of household 

trips on vehicle ownership (and several other covariates) would not give a valid estimate 

of the treatment effect, due to the fact that vehicle ownership is likely to be correlated 

with other unmeasured sources of variation represented by the latent overdispersion 

term. Terza gives the example of the household’s attitude towards public transport as an 

unobserved variable which is likely to be correlated with both the number of trips taken 

and vehicle ownership. In the event that a covariate is correlated with the unobserved 

part of the model, we say that the covariate is endogenous. Terza jointly models the 

binary response ‘car ownership’ by representing this variable using a latent probit 

submodel, and allowing it to be correlated with the overdispersion term in the household 

trips submodel. The variable ‘car ownership’ also appears as an outcome-covariate in the 

latter. Assuming that the model specification is correct, this approach produces a valid 

estimate of the endogenous treatment effect because it incorporates the correlation 

resulting from unmeasured confounders.  

The main difference between the example of Terza and the present case is that our 

interest is in estimating the effect of a count variable upon a binary response, rather than 

the other way around. In our IVF example it is highly plausible that the variable ‘number 

of oocytes’, if included as a covariate in the submodel for live birth event, would be 

endogenous. This is because unobserved variables relating to the health of the patient 

(for example) are expected to be related to both stimulation response and transfer 

success. Standard regression approaches for binary dependent variables would therefore 

not allow for the valid estimation of the effect of number of oocytes upon transfer 

success, because confounding due to unobserved factors is expected. By contrast, the 
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endogenous response joint modelling approach allows for the endogeneity of ‘number of 

oocytes’ to be explicitly accommodated in the model.  

 

 Path diagrams for causal models 7.3.4.

To demonstrate and compare the key features of these approaches, it will be useful to 

introduce path diagrams. We follow the conventions adopted by Skronal and Rabe-

Hesketh (2004). Variables are represented by nodes in the diagram. We use rectangles to 

represent observed variables and circles to represent latent variables. Triangles represent 

constant terms (such as the ‘1’ representing an intercept term in  

Figure 28). Arrows represent directed relations (which we intend to interpret as causal, 

given some assumptions). Bidirectional arrows connecting nodes represent non-directed 

relations (eg: correlations). In some presentations variances are denoted by bidirectional 

arrows originating and terminating at the same node. We supress variances here in an 

attempt to prevent overcrowding as we introduce more complex models. Note that we 

use directional arrows regardless of the distribution of the included variables (see for 

example the arrows describing the nonlinear relationships between covariates and the 

responses number of oocytes (count) and live birth event (binary) in  

Figure 28). Arrows are labelled with the parameter representing the relation in the 

model. The enclosed box and the text ‘Cycle j’ indicate that the variables it contains vary 

between cycles, removing the need to include the ‘j’ subscript (Skrondal and Rabe-

Hesketh, 2004).  

Figure 28 shows a path diagram for the correlated latent variable model representing the 

situation described above, while Figure 29 shows the endogenous response approach. For 

convenience, we use the same parameter names for the corresponding relations in the 

two models, although these will not coincide. The sole difference between the two 

figures is an arrow originating from number of eggs and ending at live birth event, 

corresponding to the inclusion of number of eggs as an outcome-covariate in the live 

birth event submodel.  
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 A comparison of the correlated latent variable and the endogenous 7.3.5.

response methods. 

A comparison of  

Figure 28 and Figure 29 highlight some key implications of treating number of eggs as an 

endogenous response. Firstly, it allows us to obtain an interpretable (or at least standard) 

estimate of the effect of number of eggs upon live birth event, adjusted for the other 

covariates in the submodel (𝛽𝐿6 in Figure 29). The coefficient of a probit regression 

corresponds to the change in Z score (where Z is a standard Normal variate, not to be 

confused with the latent variables denoted by zj throughout the thesis). As for the 

coefficients derived from logistic regression models, they do not represent the ‘marginal’ 

effect of changing the covariate on the response variable and must be translated by 

setting the other covariates in the model to fixed values. Despite the slight effort 

required, the ability to interpret the coefficients in this manner puts the endogenous 

response approach at an advantage over the correlated latent variable approach, where 

we rely on the correlation parameter 𝜂 to represent the relation between the response 

variables.  

 

 

Figure 28: Path diagram showing a joint model of live birth event following embryo transfer and number of eggs 

obtained after ovarian stimulation (correlated latent variables approach). Directional arrows are coloured according to 

their origin for clarity.  
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Figure 29: Path diagram showing a joint model of live birth event following embryo transfer and number of eggs 

obtained after ovarian stimulation (endogenous response approach). Directional arrows are coloured according to their 

origin for clarity. 

 Covariates in the endogenous response model 7.3.6.

One concern in relation to including a response variable as a covariate in a regression 

model for a downstream response variable is that we might invalidate our estimates 

corresponding to upstream variables. For example, the number of oocytes obtained lies 

on the causal pathway from the baseline covariable age to the outcome live birth event3. 

Accordingly, adjusting for number of oocytes in a standard (univariate) probit regression 

model would invalidate the estimate of age. However, this is not the case in the joint 

model presented here, because the baseline covariables appear in both submodels. 

Figure 29 shows the implications of this formulation; in the endogenous response model 

the baseline covariables are permitted to act on live birth event indirectly through their 

effect on number of oocytes, and also ‘directly’ via some other pathway or pathways. 

Age, for example, could influence the probability of a transfer leading to a live birth by 

influencing the uterine environment, which is distinct from effects on eggs and embryos.  

We could include certain covariables in one of the submodels, but not the other. For 

example, we could include age in the stimulation submodel but not in the transfer 

                                                           
3
 We discuss the matter of whether or not it is meaningful to speak of effects of non-manipulable variables 

later in the chapter. 
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submodel. This would imply that 𝛽𝐿2 in Figure 29 is equal to zero, which means that there 

is no effect of age on transfer, other than indirectly by way of an effect on the number of 

oocytes obtained from ovarian stimulation.  An alternative description would be that 

there is no direct effect of age on live birth event in the model (Pearl, 2001). However, 

given the simplistic nature of the model under consideration, this would include any 

effects of age on live birth event which were not mediated through the number of 

oocytes obtained. Given our interest in mechanistic models, the possibility of 

apportioning effects of predictors to different pathways is an attractive one. 

 Application to a three-stage characterization of the IVF cycle 7.4

In order to compare the correlated latent variable approach and the endogenous 

response approach in practice, as well as to investigate the feasibility of conducting the 

latter, we return to the three-stage representation of the IVF cycle presented in 7.1 

(Figure 27). This includes an intermediate stage between ovarian stimulation and embryo 

transfer, corresponding to embryo fertilization and culture, and incorporating the three 

embryo response variables described in section 6.2 (log2(cell number), cell evenness and 

fragmentation degree). The representations of the five response variables in the model 

remain unchanged compared to section 7.2.2. Results of a correlated latent variable 

analysis were presented in Table 11. Here, we add the cycle-level response ‘number of 

oocytes’ as a covariate in the embryo submodels, with the implication that this variable is 

treated as endogenous. We do not include the embryo outcomes as covariates in the 

transfer submodel in this example, since these are only available for a subset of the cycles 

in the present dataset. When we do introduce  embryo responses as outcome-covariates 

in the transfer submodel later on, we will be faced with the question of how exactly this 

should be done; since the embryo parameters are defined at a lower level of a multi-level 

data structure than the outcome of transfer. This point doesn’t concern us here, and we 

note that the embryo responses are treated as being exogenous (that is, not endogenous) 

for now. A path diagram for the model is shown in Figure 30.  

 Fitting the endogenous response model 7.4.1.

We again use rstan to fit the model (Stan Development Team). We place essentially flat 

N(0,10002)  priors on the regression coefficients, with the exception of those in the latent 

probit live birth event submodel, for which we use weakly informative N(0,22) priors. This 
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is as described for previous examples. Here, we use a Cholesky parametrisation of the 

correlation matrix to improve convergence (Stan Development Team, 2017). We again 

use an LKJ Correlation (1) prior, which is uniform over all possible correlation matrices, 

and a weakly informative Cauchy(0,2.5) prior for each of the scale parameters in the 

covariance matrix. We run 3 chains for 2000 iterations each, discarding the first half of 

these as burn in.  

 

 

Figure 30: Path diagram showing a joint model of live birth event following embryo transfer, embryo quality variables 

and number of eggs obtained after ovarian stimulation. Number of eggs is included as a cycle-level covariate in each of 

the submodels for the downstream response variables. Directional arrows are coloured according to their origin for 

clarity. Paths have not been labelled with parameter names to avoid further cluttering an already busy display. 
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 Output and interpretation of the two models 7.4.2.

Journal Article 5 (Chapter 10) discusses differences in parameter interpretation between 

correlated latent variable and endogenous response approaches. Rather than duplicate 

that discussion, we focus here on the technical matter of how to obtain valid draws from 

the joint posterior distribution. 

 Convergence in endogenous response models 7.4.3.

Several authors have noted that identifying and fitting endogenous variable models can 

be challenging in practice (Diggle, et al., 2007, McConnell, et al., 2008, Steele and 

Washbrook, 2013, Xie, 2000). Weak identification of the model parameters typically 

manifests as poor convergence of the sampling algorithm. We assess convergence of the 

model using standard techniques. Although the Gelman-Rubin convergence statistics are 

acceptable for all of the parameters in the model (all less than 1.1), our effective sample 

sizes are low (Gelman and Rubin, 1992). For example, we end up with effective sample 

sizes between 20 and 70 (out of a possible 3000) for the elements of the correlation 

matrix, and similarly low values for several of the regression coefficients in the embryo 

submodels. This suggests that the chains are slow to move around the posterior 

distribution. We can visualise this by looking at autocorrelation plots for the model 

parameters. An example is given in Figure 31, which shows the autocorrelation for the 

elements of the correlation matrix. The correlation remains high after 25 lags. In fact, the 

autocorrelation does not drop to acceptable levels within 150 lags for some of the 

parameters (not shown). This represents a practical obstacle, as it means that the model 

must be run for a long time on standard hardware before we obtain sufficient draws from 

the posterior distribution. It may be possible to improve convergence speed by changing 

the parametrisation of the model.  

 Improving mixing in the responses as covariates model: three possible 7.4.4.

approaches  

Improving mixing through reparameterisation 

One way to improve convergence speed might be to reparameterise the model (Rstan 

manual). To assess this, we adopt a shared parameter approach to joint modelling mixed 

outcomes similar to that discussed by Gueorguieva (2001) and McCulloch (2008). This 

involves including a common latent variable in the submodels for each response variable, 



 

223 
 

and scaling this by a constant (to be estimated from the data) in all but one of these. 

Dunson and colleagues presented Bayesian formulations of shared parameter models 

(Dunson, 2000, Dunson, et al., 2003, Dunson and Herring, 2005) including one example 

where outcomes (birthweight and litter size) were measured at different levels (individual 

mice pups and the litter) of a multilevel data hierarchy (Dunson, et al., 2003). We adopt a 

similar approach here, including a common cycle-level latent variable δ in each of the 

response submodels. The latent variable is scaled in each submodel by a unique factor 

loading (λd, d = 1,2,3,4,5) which is estimated from the data. A path diagram representing 

this approach is displayed in  

Figure 32 
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Figure 31: Autocorrelation plot showing the correlation between parameter draws at lag x, for each element of the 

coefficient matrix in the joint model of ovarian stimulation, embryo culture and embryo transfer which includes the 

variable ‘number of oocytes’, representing response to ovarian stimulation, as a covariate in the submodels for the 

downstream stages of treatment. 

 

.  

 

 

 

Figure 32: Path diagram showing a shared latent variable representation of a joint model of live birth event following 

embryo transfer, embryo quality variables and number of eggs obtained after ovarian stimulation. Number of eggs is 

included as a cycle-level covariate in each of the submodels for the downstream response variables. Directional arrows 

are coloured according to their origin for clarity. Other than those originating from the shared latent variable, paths 

have not been labelled with parameter names to avoid further cluttering an already busy display. 

 

Since a single, scaled latent variable is used to induce dependency, this approach is less 

flexible than one in which in which response-specific latent variables are used. In 

particular, this parameterisation implies a linear dependency between response variables. 
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The estimated factor loadings offer information about the direction of any dependencies 

(after controlling for covariates), but do not directly offer information about the 

magnitude. They can be used to calculate so-called tetrachoric or polychoric correlation 

coefficients however (Skrondal and Rabe-Hesketh, 2004). In practice, we find that 

switching to the shared parameter model offers no advantage in terms of improving 

convergence. Autocorrelation remains high and effective sample sizes after running the 

chain for several thousand iterations is low.  

 

Removing the latent dependency between the number of oocytes submodel and downstream 
responses 

 

An alternative approach we might consider is to remove the dependency between the 

latent variable in the ‘number of oocytes’ submodel and the latent variables from the 

downstream submodels. So that the underlying variance-covariance matrix for the latent 

variables in the model becomes: 

 

Θ = 

[
 
 
 
 
 
𝜃𝑂

2 0 0 0 0

0 𝜃𝑁
2 𝜂5𝜃𝑁𝜃𝐸 𝜂6𝜃𝑁𝜃𝐹 𝜂7𝜃𝑁

0 𝜂5𝜃𝐸𝜃𝑁 𝜃𝐸
2 𝜂8𝜃𝐸𝜃𝐹 𝜂9𝜃𝐸

0 𝜂6𝜃𝐹𝜃𝑁 𝜂8𝜃𝐹𝜃𝐸 𝜃𝐹
2 𝜂10𝜃𝐹

0 𝜂7𝜃𝑁 𝜂9𝜃𝐸 𝜂10𝜃𝐹 1 ]
 
 
 
 
 

 

The improvement in mixing compared to previous versions of the model is considerable. 

We run three chains for 2000 iterations, discarding the first half as burn in. We observe 

excellent convergence on the basis of Gelman-Rubin statistics and traceplots, as well as 

much larger effective sample sizes compared to previous fits based on longer chains.  

An autocorrelation plot of the elements of the correlation matrix (Figure 33) shows the 

drastic reduction compared to the initial fit (as shown in Figure 31). This improvement 

comes at a cost however, since severing the correlation between the number of oocytes 

and the downstream responses corresponds to treating number of oocytes as an 

exogenous variable. Our estimates of the effects of number of oocytes on downstream 

responses from this model therefore rest on an assumption that there is no unmeasured 

confounding. 
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Figure 33: Autocorrelation plot showing the correlation between parameter draws at lag x, for each element of the 

coefficient matrix in the shared latent variable reparametrisation of a joint model of ovarian stimulation, embryo culture 

and embryo transfer which includes the variable ‘number of oocytes’, representing response to ovarian stimulation, as a 

covariate in the submodels for the downstream stages of treatment. 

  



 

227 
 

Using instrumental variables to identify the model 

 

One reason for poor mixing of the chains might relate to identifiability. Although the 

parameters of the model discussed here are theoretically identified, they may only be 

weakly identified by the data. Identification may be particularly difficult due to the fact 

that the same covariates are included in the various submodels (with the exception of the 

variable number of oocytes, which of course does not appear as a covariate in the model 

of itself). It may be possible to improve the identification of the model parameters by 

including covariables which appear in no more than one of the submodels. Such 

covariables can be considered instrumental variables; we suppose that they have an 

effect upon the response ‘number of oocytes’, but do not have any effect on downstream 

responses by any other route. Instrumental variables have been used to improve 

identification in joint models including responses as covariables (for example, the 

endogenous switching models presented by (Kenkel and Terza, 2001, Terza, 1998, 2000, 

Xie, 2000 ).  

This prompts the question of which variables would be appropriate in this role in the 

present example. One possibility would be to restrict the terms relating to attempt 

number to the stimulation stage submodel. The rationale here is that the dose of drug 

(gonadotropin) used for ovarian stimulation is likely to be modified for subsequent 

treatment attempts according to the stimulation response (number of oocytes) in the 

previous cycle. It could be hypothesised that changes to the dose of the drug would 

impact the quantity of oocytes obtained from stimulation, but would not influence the 

quality of embryos or the likelihood of transfer success, other than by virtue of the fact 

that more or less eggs were available for fertilisation, and that this would increase or 

decrease the number of embryos from which to select the best for transfer. In fact, this 

may not be so plausible because it has been suggested (if not demonstrated) that 

increased doses of drug may in fact make the uterine environment less hospitable to 

transferred embryos (eg: Maheshwari and Bhattacharya, 2013); this is the question we 

attempt to answer in Journal Article 6 (Chapter 11). 

In the embryo submodels, an obvious candidate to play the role of instrumental variable 

is the method of fertilization (mixing or injecting with sperm). This is because it is difficult 

to imagine how the fertilization could influence downstream outcomes such as the result 
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of embryo transfer, other than by way of the embryos produced. It is possible that that 

method of fertilization and transfer outcomes could share unmeasured predictive 

variables, such as the cause of infertility (which might cause the clinicians to prefer one 

fertilization protocol over the other, and might also impact on transfer success). In that 

case, the so-called ‘back door criterion’ would be violated, and method of fertilization 

would not be a valid instrument (Emsley, et al., 2010). This would not be problematic 

however, since we are not relying on our ‘instruments’ for causal identification; the 

correlated latent variables in the model serve this function by representing the 

dependence between response variables induced by unmeasured confounding. Instead, 

we use these (possibly invalid) instrumental variables as a way to fit the model. 

We investigate the instrumental variable principle here by setting the parameters relating 

to attempt number to zero in the downstream response models. We also add the binary 

‘method of fertilization’ indicator variable to all three embryo quality submodels. Figure 

34 shows autocorrelation plots for the latent correlation coefficients from this model. 

Although the autocorrelation is still substantial, it decays more rapidly than in the 

endogenous response model without instrumental variables, and reaches zero at 

approximately 60 lags.  

As a strategy to improve convergence, the introduction of instrumental variables is less 

effective, but nonetheless preferable, compared to fixing the latent correlation between 

oocytes and the downstream responses to be zero; if the latter strategy is adopted, the 

benefits of fitting an endogenous response model are sacrificed.  

 

 A note on our use of causal language in relation to endogenous response 7.5

models 

In the preceding sections, we have referred to ‘effects’ and ‘causal effects’ of response 

variables on downstream responses. In the ubiquitous counterfactual formulation of 

causal inference, it is incoherent to speak of effects of variables that are not directly 

manipulable (Greenland, 2017). As such, in that framework, it would not be possible to 

speak of effects of age or of the number of oocytes on other variables. Some authors 

consider this to a reductio ad absurdum of the counterfactual framework; since it is 

clearly  
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Figure 34: Autocorrelation plot showing the average correlation between parameter draws at lag x, for each element of 

the coefficient matrix in the joint model of ovarian stimulation, embryo culture and embryo transfer which includes the 

variable ‘number of oocytes’, representing response to ovarian stimulation, as a covariate in the submodels for the 

downstream stages of treatment. The instrumental variables ‘attempt number’ and ‘method of fertilization’ have been 

included in the ovarian stimulation and three embryo culture submodels. 

 

reasonable (they argue) to speak of an effect of age on patient outcomes, the 

counterfactual framework should be rejected (Krieger and Davey Smith, 2016). The 

objection to our usage might have some merit however. For example, we might speak of 

the ‘direct effect’ of embryo quality on the success of the embryo transfer procedure, for 

fixed values of upstream variables. However, since embryo quality is causally dependent 

upon upstream variables, it doesn’t obviously make sense to speak of increasing it while 
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holding those variables fixed. Indeed, there is no actual (or possibly even hypothetical) 

referent of the phrase ‘increasing embryo quality’, since this is not something which we 

are able to manipulate directly. We might, however, be able to manipulate interventions 

earlier in the IVF cycle which will improve embryo quality, and thereby increase the 

success probability of the embryo transfer. In this case, we should speak of the effects of 

the intervention on embryo transfer being mediated through embryo quality (Emsley, et 

al., 2010). 

Rather than weigh in on this debate, we continue to use the term ‘effect’ for both 

manipulable and non-manipulable variables in our exposition, noting that various 

proposals have been made to legitimise this usage (Pearl, 2011, VanderWeele and 

Hernán, 2012). The models could be redescribed using the language of counterfactuals 

and mediation for nonlinear models (Pearl, 2011), although this would not obviously offer 

any practical advantage when using these models to answer clinical questions.     

 

 Moving from toy examples to real applications: adding submodels 7.6

 

We have described the models presented in this chapter as simplistic, since they exclude 

important components of the IVF cycle and are unlikely to be useful for real applications. 

This prompts the question of which additional response variables should be introduced in 

order to make the model useful for the purpose of tackling real problems. A useful 

thought experiment in this regard is to imagine a patient going through IVF, and to 

consider to what extent our model could predict the patient’s responses at each stage of 

the process. While the exact submodels and covariates to include will depend on the 

particular research question under consideration (and Journal Article 6, Chapter 11, 

provides an example), we can use this exercise to identify important milestones in the IVF 

cycle which we anticipate should feature in most applications. Note that there is no 

contradiction in using a thought experiment based on prediction to inform an explanatory 

model; the responses we would want to predict in an IVF cycle are the very same as those 

we would like to subject to mechanistic inquiry. 

A patient undergoing IVF usually begins with ovarian stimulation. We could predict the 

number of eggs that will be obtained on the basis of baseline characteristics and 
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treatment variables, using the Poisson formulation featured in the toy examples 

presented so far. The patient’s eggs will then be then fertilized with sperm, to produce 

embryos. Our examples to date omit this stage entirely, jumping straight from egg 

collection to the quality of any embryos produced. As a result, we would be unable to 

predict how many embryos the patient would be produced from the patient’s eggs. 

Moreover, since our embryo quality submodels are specified at the level of individual 

embryos, we would be unable to predict the quality of the patient’s embryos without first 

making an arbitrary decision as to how many embryos we should predict for. These 

considerations suggest that a submodel relating to the fertilization of eggs, with the 

response variable ‘number of embryos obtained’, should be included in the model. The 

model could then predict how many of the patient’s eggs will be successfully fertilized, 

and the quality of each of the resulting embryos. To this end, we introduce an 

overdispersed Poisson submodel for number of embryos in Journal Article 5 (Chapter 10), 

including the number of eggs obtained as an offset term. 

 Following the fertilization and culture of embryos, some of these will be transferred to 

the patient’s uterus. The number of embryos transferred is thought to be an important 

predictor of transfer outcome, and in most applications we would probably include this as 

a predictor in our live birth submodel. However, the number of embryos transferred 

depends in part on upstream responses, including the number and quality of embryos 

available following stimulation, fertilization and embryo culture. Patient characteristics 

such as age also determine how many embryos should be transferred, and are often 

explicitly included in standard operating procedures. Accordingly, there is a strong case 

for including the number of embryos transferred as an endogenous response in the 

model. We introduce a binary response variable denoting whether one or two embryos 

are transferred in Journal Article 5 (Chapter 10), and model this using a latent variable 

probit regression submodel, as we have for live birth event in the examples discussed so 

far.  

Our live birth event submodel could be used to predict whether or not the procedure will 

be successful, once the embryos have been transferred. This might be too coarse for 

some applications however, because the procedure could fail for different reasons. For 

example, the transferred embryos could fail to implant in the uterine wall. Alternatively, 

they could implant, but the patient could suffer a subsequent miscarriage. In Journal 
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Article 6 (Chapter 11), we distinguish between embryo implantation, and live birth event 

conditional on embryo implantation, both modelled as binary variables using latent probit 

submodels. This allows us to consider whether increasing gonadotrophin dose has 

deleterious consequences on embryo implantation and on foetal development in the 

uterus separately. 

 Adjusting for unmeasured confounding: proof of principle using simulated 7.7

data 

While they have featured in the econometrics literature for over forty years (Heckman, 

1976), methods to adjust for unmeasured confounding variables are not particularly 

common in the medical literature (although they are not completely unknown, eg: 

Streeter, et al., 2017).  Understandably, the idea that adjusting for unmeasured variables 

is even possible has proven troublesome for some discussants of the present work. 

Accordingly, we present here a small simulation study intended to illustrate how the 

endogenous response method can potentially mitigate unmeasured confounding. 

Given the time they take to fit, it isn’t feasible to carry out simulations using models of 

the full IVF cycle. Here, we emulate a scenario arising in Journal Article 6 (Chapter 11). In 

that article, we attempt to assess the effects of log(dose) of ovarian stimulation drugs on 

outcomes occurring at different stages of the cycle. This includes the effect on the 

number of oocytes obtained following the stimulation period. There is known to be 

counfounding due to the fact that the dose administered depends on the anticipated 

response. The characteristics used for dose selection are not recorded in the database 

used for analysis, however, so we have unmeasured confounding between dose and 

number of oocytes.  

 

 Data generating model 7.7.1.

We simulate datasets corresponding to this scenario. Each contained 2000 IVF stimulation 

cycles, which resembles the size of the datasets we consider in the thesis. In a single 

iteration, for each cycle, we simulate an instrumental variable, a covariate, and a 

confounder, all from Normal(0,1) distributions. We simulate log(dose) from a Normal 

distribution with standard deviation 1.5 and mean equal to  7 + 2*INSTRUMENT + 

0.7*COVARIATE + 0.7*CONFOUNDER. We then simulate number of eggs from a Poisson 
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distribution, with log(mean) equal to log(5) + 0.3*LOG(DOSE) + 0.05*COVARIATE + 

0.3*CONFOUNDER + 0.3*CONFOUNDER2. The values of the coefficients were chosen so 

that the confounding would be of similar magnitude to the treatment effect. We included 

the quadratic term for the confounder to represent misspecification of the latent variable 

distribution in our analysis model.  

 

 Analysis models 7.7.2.

Our target is the effect of log(dose) on number of oocytes (equal to 0.3 in our data 

generating model). We analyse the simulated datasets using a joint model of log(dose) 

and number of oocytes, which includes a linear regression and a Poisson submodel. As in 

this chapter and elsewhere, we join the submodels by specifying a bivariate Normal 

distribution for the latent variables appearing in each (the residual in the log(dose) 

submodel, and an overdispersion term in the oocytes submodel: see Journal Articles 5 

and 6, Chapters 10 and 11). In the linear predictor for the log(dose) submodel, we include 

an intercept, the instrumental variable, and the covariate. In the oocytes submodel, we 

include an intercept, the covariate, and log(dose), making this an endogenous response 

model. For comparison, we also estimate the effect of dose on oocytes by fitting a 

univariate overdispersed Poisson regression to the number of oocytes, again with an 

intercept, the covariate, and log(dose).  

 

 Results of the simulation 7.7.3.

We ran the simulation for 40 iterations. We stress that this is not intended as an 

evaluation of the properties of the endogenous response method, which would require 

data generated under different scenarios and many more iterations for each. We simply 

hope to provide some reassurance to any reader who is wary about the prospect of 

adjusting for unmeasured confounding. Results are presented in Table 12. 

In the scenario considered here, the endogenous response model outperformed simple 

outcome regression with respect to bias, efficiency, and coverage. Bias was 45 times 

greater using outcome regression compared to using the joint model. The maximum error 

in estimation using the joint model was 0.02, compared to 0.24 using outcome regression.  

There was also a substantial efficiency gain from jointly modelling the responses. Finally, 
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coverage was hopeless using outcome regression (only 5% of 95% CIs contained the true 

value). By contrast 95% of the 95% intervals obtained from the joint model contained the 

true value. 

 

 Endogenous Response 

Model 

Poisson, with dose as 

covariate (outcome 

regression) 

Bias 0.002 0.09 

Mean SE 0.006 0.02 

Coverage of 95% CI 95% 5% 

Table 12: Results of small simulation study, including a Normal response and a Poisson response, with unmeasured 
confounding.  

 

 

 

 Summary of Chapter 7.   7.8

In this chapter we have introduced two multistage modelling approaches for mechanistic 

analysis of IVF data. Both approaches involve the specification of submodels for the 

responses included in the model. Each of these are fitted conditional on the patient not 

having outright failure upto that stage. Dependency can be accommodated and 

quantified by introducing correlated latent variables in the response-specific submodels. 

However, the latent correlation coefficients obtained from this approach are not 

obviously interpretable, or of practical use. An extension of this approach, where we 

include response variables as covariates in the submodels for downstream responses, 

offers an advantage in this regard, by providing adjusted estimates of effect on an 

interpretable scale. It is essential that we retain the correlated latent variable structure 

when doing so, since this allows for unmeasured confounding between response 

variables. We call models of the second type endogenous response models. We found 

that estimating the parameters of endogenous response models is difficult in practice, 

requiring long runs of the sampling algorithm in order to obtain a sample from the 

posterior distribution of satisfactory size. The introduction of instrumental variables in 

some of the submodels alleviated, but did not completely eliminate, the convergence 
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issues. In a simple simulation exercise, we illustrated how endogenous response models 

can adjust for unmeasured confounding. 

 

The approaches presented in this chapter all assume that missing data due to drop out 

can be explained as MAR, given the covariates and response variables included in the 

model. In the next section, we discuss the matter of missing data due to drop out in more 

detail, and outline strategies for relaxing the MAR assumption.  
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Chapter 8.  Accounting for drop out in the IVF model 

As patients progress through the stages of the fresh IVF cycle, a nontrivial number drop 

out prior to egg collection and embryo transfer. In Journal Article 3 (Chapter 5), we 

referred to the 2014 National Summary Report of the Society for Assisted Reproductive 

Technology (SART) and noted that 9247 of 102,982 (9%) cycles were terminated prior to 

the egg collection stage. Of the 93,730 egg collections that did occur, 7188 (8%) did not 

result in a transfer procedure due to a lack of embryos. This complicates analysis of IVF 

data. Although it should be straightforward to obtain an intention-to-treat estimate of 

the effect of an intervention on the probability of a live birth event (since we can define 

this outcome to be a failure in patients who drop out or fail earlier stages of treatment), 

in practice researchers struggle with the implications of attrition. For example, in a review 

of outcome measures in IVF RCTs between 2013 and 2014, 87 distinct denominators were 

used, with many of these representing subgroups of patients who achieved a certain 

stage in the treatment (such as egg collection or embryo transfer) (Journal Article 2, 

Chapter 4). Fifty-eight per cent of reported live birth rates were calculated in a post-

randomisation cohort of patients. In relation to our goal of developing multistage 

mechanistic models, there is also the matter of how to treat procedural responses such as 

the number of oocytes obtained or embryo quality given that they are unobserved or 

undefined for patients who exit treatment in the preliminary stages.  

This presentation of the IVF cycle as a sequence of observations on a patient, which may 

not be fully realised as a result of attrition, clearly evokes a longitudinal data analysis 

framework (Diggle, 2002). Consequently, we turn to the literature relating to missing data 

in repeated measures contexts in order to investigate how drop out could be 

incorporated into our modelling framework. In the following, we briefly review the main 

approaches to longitudinal analysis with missing data and discuss the implications for 

analysis of IVF data with drop out, in light of the fact that the repeated measurements in 

the present context comprise a sequence of mixed outcome types occurring at different 

levels of a multilevel hierarchy. 
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 What is the objective of analysis when missing data due to drop out or 8.1

censoring are present? 

Diggle and colleagues (2007) have noted that the objective of missing data analysis is 

often left obscure in practice. When an observation is missing due to drop out, they 

distinguish between two possible targets. The first is the extant (but unobserved) value of 

the response. In principle, we could obtain this given sufficient access to the patient. The 

second is the counterfactual value of the response that would have been obtained had 

the patient not dropped out of the study. In the following we refer to the former as 

‘extant-missing’ and the latter as ‘counterfactual-missing’. These two are conceptually 

distinct and their values may or may not coincide. The authors note that the appropriate 

approach to handling missing data arising from drop-out partially depends on which of 

these quantities is of interest. If the appropriate method of analysis should be governed 

by the scientific objective of a particular study, it follows that no single approach will be 

generally applicable to IVF data. Instead, we must remain open to the prospect that 

different approaches may be appropriate in different settings. An example can be found 

in our investigation of personalised ovarian stimulation (Journal Article 4, Chapter 9). 

There, we were interested in the effect of increasing the dose of ovarian stimulation drug 

on the yield of oocytes collected. Oocyte yields are not observed in patients who have 

their treatments ‘cancelled’ partway through on the basis of ultrasound monitoring. This 

may be due to either an anticipated poor or excessive response. In our analysis, we 

imputed these values using an intermediate response variable (counts of egg-releasing 

follicles) and additional patient and treatment covariables. We decided that this was 

appropriate based on our interest in the dose-response relationship between drug and 

outcome; we were interested in the counterfactual-missing values that would have been 

observed had stimulation not been cancelled in these cycles. However, had our objective 

been to make a more pragmatic evaluation of the impact of different dosing regimens on 

patient outcomes, it may have been more appropriate to define all egg counts in 

cancelled cycles to be zero, regardless of whether the cancellation was due to anticipated 

poor or to anticipated hyperresponse. It is debatable whether this would meet the 

description of ‘extant-missing’ data above; although a value of zero does correspond to 

the actual number of eggs collected for these cycles, there is no additional ‘true’ value of 

the response hidden away. Instead, it may turn out to be conceptually appropriate (as 
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well as intuitively appealing) to declare these egg yields to be strictly undefined, given 

that no egg collections have taken place. We return to this point later. For now, we note 

that the multistage nature of IVF means that decisions relating to the target of inference 

may differ not only from study to study, but also for the different response variables 

being modelled within a study. 

 

 Mechanisms of missingness 8.2

So the objective of the data analysis is one consideration when determining an 

appropriate statistical strategy. A second is the process giving rise to the missing data. 

Following the classifications introduced by Rubin (1976), we consider drop-out to be 

missing completely at random (MCAR) if the probability that an observation is missing is 

unrelated to both the observed and unobserved data (including both covariates and 

response variables), to be missing at random (MAR) if the probability of missingness is 

related to the observed data but, once this has been conditioned on, unrelated to the 

unobserved data4  and missing not at random (MNAR) in the event that the probability of 

missingness is related to the unobserved data and remains so after conditioning on 

observed data. In practice, the missing data mechanism is strictly unknowable and must 

be the subject of assumptions and sensitivity analyses. Immediately then, we can see that 

whichever mechanism we deem to be the most plausible may depend on several factors, 

including which particular variables are incomplete and which are available to the analyst 

as conditioning variables.  

A further consideration is that, since IVF comprises a sequence of distinct stages, the drop 

out mechanism may realistically vary throughout treatment. Consequently, in addition to 

the possible targets of inference at each stage of treatment, it is worth reflecting on the 

plausible mechanisms underlying the main causes of drop out from the IVF cycle. 

 

 

                                                           
4
 A distinction is sometimes made between the case where data are MAR given covariate data and that 

where they are MAR given the observed longitudinal response data. We do not require this distinction in 
the present discussion, and refer to the case where missing data are ignorable given whatever data are 
included in the model, as MAR. 
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 What is (are) the mechanism(s) of missingness in IVF? 8.2.1.

Our methodological focus in this thesis lies in the development of models for the 

multistage IVF cycle. As a result of this and due to a lack of multiple cycle datasets, we 

focus on drop out during the sequence of interventions delivered within a given cycle in 

the following discussion. The question of why patients do not continue courses of 

treatment involving repeated treatment cycles has been discussed elsewhere (Verberg, et 

al., 2008) and several methodological approaches for handling this have been proposed 

(Hogan and Scharfstein, 2006, Soullier, et al., 2008). 

 

Cancellation of ovarian stimulation 

We briefly discussed above (1.1.) the case where the IVF cycle may be cancelled due to 

anticipation of an undesirable outcome to ovarian stimulation, and gave an example in 

which the outcome number of oocytes was imputed in the analysis. As such, we set the 

counterfactual-missing values as the target of inference and considered these to be MAR 

given the covariables in the imputation model. This was probably plausible since 

information on a reasonable surrogate outcome, the number of egg-releasing follicles 

observed on ultrasound, was available for this purpose. We also noted above that a 

pragmatic assessment of predictors of number of oocytes might set the responses of 

cancelled cycles to be zero, since these cycles yield no eggs for the fresh transfer (in the 

case of hyperresponse, the eggs may or may not all be frozen for transfer in a subsequent 

cycle). A third possibility would be to say that the outcome is strictly undefined for these 

cycles, given that no egg collection has taken place. A proponent of this view would 

declare this to be an instance of ‘truncation-by-death’ (Rubin, 2006, Zhang and Rubin, 

2003), with another example being the impossibility of defining marriage quality in 

individuals who have divorced (McConnell, et al., 2008). If so, it doesn’t obviously make 

sense to speak of the missingness mechanism, since there are no underlying missing 

values (either of the extant or counterfactual variety) to be explained. 

 However, some consideration of the process giving rise to the outcome allows us to 

challenge this position. The administration of gonadotropins to the patient causes follicles 

to be recruited, each of which contains an immature oocyte. Recruited follicles will grow 

and produce mature eggs. This process is monitored by ultrasound, and when the follicles 

are ready, a trigger hormone is administered permitting the harvesting of these eggs. If 
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too few or too many follicles are present, the cycle may be cancelled on the grounds of 

futility in the former case and safety in the latter. The implication is that, had the 

stimulation not been cancelled, the eggs could have been collected from the follicles. 

Accordingly, it may be reasonable to consider the value of number of oocytes to be 

censored (in the sense that a value exists but is unknown) rather than truncated (and 

hence, undefined). If so, counts of the numbers of large follicles could be used to impute 

or predict the number of oocytes under the MAR assumption. The prediction will not be 

perfect however, since an egg may not be retrieved from some follicles and there appears 

to be variation in the number collected corresponding to who carries out the procedure 

(Journal Article 4, Chapter 9). Of course, the surgeon conducting the procedure cannot be 

included in the imputation model since for cancelled cycles no procedure has been 

performed. Even if a count of follicles is available therefore, residual confounding might 

guarantee that the missing values of number of oocytes, if we can consider them to be 

censored rather than undefined, are really MNAR.  

 

No embryos for transfer 

A cycle may have to be abandoned because there are no embryos available for transfer to 

the patient. This could be because there were no eggs following ovarian stimulation, or 

because there were no eggs which were fertilised and subsequently developed into 

usable embryos. In the event that no eggs were collected, then neither the number of 

embryos obtained nor the quality of the patient’s embryos are observed or defined. This 

would appear to be a more cut and dry example of truncation-by-death than number of 

oocytes in cancelled cycles. We could try to conceive of counterfactual-missing values for 

these response variables (eg: the number of embryos that would have been obtained, 

and their quality, had eggs been collected) but it is impossible to predict or impute these 

quantities under an MAR assumption without making the strong assumption that the 

effects of covariates on embryo responses in patients who have eggs would be the same 

in the patients who don’t have eggs were they to (counterfactually) have some. One 

proposal would be to investigate (and perhaps relax) this assumption using data relating 

to repeated cycles on the same participants, where some (but not all) of these cycles have 

been cancelled prior to egg collection. In reality, this would not overcome the issue so 

much as relocate it to the level of the cycle; we would still have to assume that the 
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relationships between variables and embryo responses were the same for any given 

patient in cycles where they did and did not have cancellation prior to egg collection. 

Even if we allowed the missing values to be MNAR, we would still have to make 

assumptions about the latent variable distribution in the drop-outs (see section 1.3). 

 If eggs are fertilised, but do not develop into usable embryos (for example, they do not 

survive to the transfer day, or are of insufficient quality for transfer), then both number of 

embryos and measures of quality may be available, provided that these are measured 

sufficiently early following fertilisation (on day 2 for example).  

 

Implantation failure and pregnancy loss 

Embryos transferred to the patient may fail to implant in the uterine wall, precluding 

further development. As such, the patient does not become pregnant in this scenario. It 

would usually be inappropriate to define the clinical outcome of the cycle as missing, 

rather than as a failure. For some research questions however, we may wish to 

distinguish between an embryo failing to implant (resulting in no pregnancy) and the 

implantation not being sustained (resulting in pregnancy loss). We make this distinction in 

Journal Article 6 (Chapter 11), where our interest is to establish the effect of ovarian 

stimulation on embryo implantation and birth. One can also imagine specific situations 

where it would be reasonable to think about the likelihood that a pregnancy would have 

progressed to a live birth had an embryo implanted (for example, in a trial of an 

intervention designed to reduce miscarriage). The prevailing approaches to this in IVF 

RCTs are to either calculate miscarriage rates per woman randomised (such that an 

intervention that results in no pregnancies would result in no miscarriages, (eg: Ferraretti, 

et al., 2014, Gao, et al., 2013, Revelli, et al., 2014) or per pregnancy (discarding the 

benefits of randomisation, eg: Alviggi, et al. (2013) Check, et al. (2013, Friedler, et al. 

(2013)). Similar considerations relate to participants who did not make it as far as the 

transfer stage. Is it reasonable to ask what would have happened in a transfer had the 

patient made it that far? These appear to be further cases of truncation-by-death. We 

note that any approach that attempts to answer these hypothetical questions will be 

forced to rest on strong assumptions concerning similarities between those who did and 

did not have an embryo implantation or a transfer procedure. 
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 Statistical methods for incorporating drop out in longitudinal data 8.3

We briefly review several approaches for modelling drop out in longitudinal data settings. 

In each case, we discuss the features of the approach that make it more or less suitable 

for modelling dropout in the fresh IVF cycle.  

 

 Diggle-Kenward model 8.3.1.

Diggle and Kenward (1994) presented a model for drop out in longitudinal settings. We 

follow the exposition of Skrondal and Rabe-Hesketh (2004) here. To illustrate the model, 

consider the archetypal longitudinal data analysis setting with repeated measurements of 

a single continuous outcome y at time i for unit j :  

𝑦𝑖𝑗 = 𝐗ij𝜷 + 𝑢𝑗 + 𝜖𝑖𝑗 

where 𝑢𝑗  and  𝜖𝑖𝑗 are Gaussian residuals at the level of the participant and of the 

observation respectively, with zero means, and variances (σu
2 and σe

2, say), and 

independence from commensurate residual terms unless their subscripts coincide. 𝜷 is a 

vector of regression coefficients and  𝐗ij is a row-vector of covariates. We define a 

dropout model;  

𝑙𝑜𝑔𝑖𝑡{𝑃(𝑑𝑖𝑗 = 1|𝒀𝒋, 𝛼0, 𝛼1, 𝛼2 )} =  𝛼0 + 𝛼1𝑦𝑖𝑗 + 𝛼2𝑦𝑖−1,𝑗  

 

Where 𝒀𝒋 is the participant’s response-vector, and 𝑑𝑖𝑗 = 1 if 𝑦𝑖𝑗 is unobserved due to 

dropout at time i. If 𝑑𝑖𝑗 does equal 1, then we replace 𝑦𝑖𝑗 in the linear predictor with a 

latent variable 𝑦𝑖𝑗
∗ .  Once drop-out has occurred, we do not model 𝑑𝑖𝑗 for subsequent 

timepoints. This approach allows the probability of dropout to depend on the current 

(possibly unobserved) response, and the previous response (or responses, since we could 

include earlier measurements in the linear predictor if desired). If 𝛼1 is equal to zero, 

drop-out is MAR. If 𝛼2 is also equal to zero, then drop-out is MCAR (Diggle, et al., 2007). 

Otherwise, this can be viewed as a MNAR analysis, where the likelihood that a response is 

observed depends on both its value and on the values of upstream responses. Diggle and 

colleagues (2007) note that a tacit assumption of this approach is that the counterfactual-

missing and extant-missing values are identical. In addition, valid estimation in this 

framework depends on the correct model specification for both the response vector 𝒀𝒋 
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and the drop-out vector 𝑫𝒋. Consequently, this approach may be best employed as a 

sensitivity analysis of the MAR assumption (Skrondal and Rabe-Hesketh, 2004). 

 

Adaptability to the present setting 

A modification of the Diggle-Kenward model could be incorporated into a multistage 

model of the IVF cycle. Instead of the Normally distributed continuous outcome variable 

posited in the example above, we would include the sequence of mixed responses arising 

from each stage of treatment. The probability of dropout at each stage could be modelled 

using a logistic or probit regression. For a MNAR analysis, we could include the response 

at the present stage as a covariate in the logistic regression, together with the upstream 

responses. For a MAR analysis, only the upstream responses would be included. This 

approach would allow the dropout model to vary across stages, by including different 

covariates at each stage. Accordingly, we could model the dropout process at one stage 

as MNAR (for example), while modelling the remainder as MAR. Given our discussion of 

the multiple mechanisms of missingness in the IVF cycle above, this aspect of the 

(modified) Kenward-Diggle approach is attractive. In practice however, this modification 

could not be implemented in Stan. The algorithm does not support discrete parameters 

(not to be confused with regression parameters corresponding to discrete variables). 

Consequently, we would not be able to model 𝑦𝑖𝑗
∗  for our discrete outcomes (number of 

eggs, embryo evenness etc).  

 

 Discrete time-to-event logistic submodel with correlated random effects 8.3.2.

Let’s return to our conventional mixed model for a longitudinal continuous response 

variable, with model at time i for unit j :  

𝑦𝑖𝑗 = 𝐗ij𝜷 + 𝑢𝑗 + 𝜖𝑖𝑗 

With Gaussian random effects and level 1 residuals, covariates and regression coefficients 

as described above. We could specify a discrete time-to-event model for the dropout 

process (Steele, et al., 2009): 

 

𝑙𝑜𝑔𝑖𝑡{𝑃(𝑑𝑖𝑗 = 1|𝛼𝑖, 𝑐𝑖𝑗 , 𝜸𝑖, 𝑣𝒋)} = 𝛼𝑖 + cij 𝜸𝑖 + 𝑣𝑗  
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which now includes a row-vector of covariates cij , a latent variable 𝑣𝑗  that is unique to 

the unit and a vector of regression coefficients 𝜸𝑖. This is a model for the hazard of 

dropping out. The intercept term 𝛼𝑖 now bears an i subscript. This can be interpreted as a 

step function denoting that the baseline hazard is time-varying.  

We can specify a bivariate Normal distribution for the latent variables (u,v) ~ N(0, V) so 

that dependency between the drop-out process and the longitudinal responses are 

represented through the latent covariance matrix: 

 

𝑽 =  (
𝜎𝑢

2 
𝜌𝜎𝑢𝜎𝑣

𝜌𝜎𝑢𝜎𝑣

𝜎𝑣
2 ) 

 

We make the assumption that the responses 𝑦𝑖𝑗 and drop-out indicators 𝑑𝑖𝑗 are 

independent given the latent variables. The correlated latent variable approach is 

discussed by Diggle, et al. (2007), who note that it is a MNAR approach, due to the fact 

that the conditional distribution of the latent variables depends on the values of the 

responses at all timepoints, including counterfactual-missing values.  

 

Adaptability to the present setting 

This approach can be viewed as an extension to the correlated latent variables methods 

we have used to jointly model the stages of the fresh IVF cycle in previous sections, with a 

submodel for the dropout process linked to the response portion of the model through 

random effects. As such, it could be incorporated into the current modelling framework. 

Different covariates can be included at each stage. A major limitation of the approach 

however is the need to include a single latent variable 𝑣𝑗  common to all stages of the 

cycle. Given our discussion of potentially varying drop out mechanisms in the different 

stages of the cycle above (8.2.1), this is likely to make this approach too restrictive for our 

purposes. The assumption of a common random effect across stages could be relaxed 

were we to use multicycle data (that is, where each woman contributes multiple fresh IVF 

cycles).  In that scenario, our dropout submodel would be similar to the model described 

by Maity, et al. (2014). Without repeated cycles however, stage-specific random effects 

are not identified in a logistic dropout submodel.  
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 Sequential probit submodel with correlated random effects 8.3.3.

An alternative to the discrete time-to-event model described above is the sequential 

probit model (Steele and Washbrook, 2013, Waelbroeck, 2005). This can be used when a 

subject must successfully pass through a series of stages in order to enter the next in the 

sequence. We define a binary variable bij which equals 1 if participant j achieves 

timepoint i + 1 and 0 if they do not progress beyond stage i. We define a latent variable 

bij
*, such that bij

* is negative if bij  = 0 and is greater than or equal to zero otherwise. We 

then specify a linear regression submodel for the latent variable: 

 

𝑏𝑖𝑗
∗ = 𝐂ij 𝜸𝑖 + wij 

 

which includes a row-vector of covariates 𝑪ij , a vector of timepoint-specific regression 

coefficients 𝜸𝑖  and a Gaussian residual term wij with mean zero and variance of 1. We 

allow the residual term to be correlated with the latent variables from the longitudinal 

response model, and estimate the covariance parameters from the data.  

 

Adaptability to the present setting 

The sequential probit model for the dropout process can be incorporated into our existing 

joint modelling framework. It is flexible compared to the discrete time-to-event logistic 

approach detailed in 8.3.2 as it permits the identification of stage-specific residual terms. 

When embedded in a larger joint model, this then allows the correlation between each 

stage-specific response and stage-specific dropout probabilities to be estimated. An 

example is a multiprocess model including a sequential probit submodel was developed 

by Steele, et al. (2009), who jointly modelled the stage of education reached by a child 

with the dissolution of the mother’s marriage. They linked the sequential probit model 

and the time to marriage dissolution submodel by simultaneously including correlated 

mother-level random effects in the two submodels and including prior marriage 

dissolution outcomes as endogenous covariates in the education submodel. Returning to 

the case of IVF, dependency between drop out and treatment responses could possibly 

be incorporated both through correlated latent variables and by including upstream 

responses as covariates. As with the discrete time logistic model, this is a MNAR 
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approach, as the counterfactual-missing outcomes contribute to the conditional random 

effects distribution. This may be problematic if we do not wish to represent dropout at 

certain stages by a MNAR mechanism. In particular, we return to the concerns, raised in 

section (8.2.1), that the values should be considered undefined. If so, implicit 

assumptions about the latent variables (specifically, that the latent variable distribution 

will not vary depending on whether or not a patient’s multivariate response vector is fully 

or only partially observed), are not obviously coherent (McConnell, et al., 2008).  

 

 Application of the sequential probit dropout model  8.4

Despite our unresolved reservations about the necessity, or even suitability, of 

incorporating an informative dropout model, we fitted an endogenous response model 

extended to include a sequential probit submodel for the dropout process. The response 

model is a variation of that described in detail in Journal Article 5 (Chapter 10). It includes 

the following outcome variables (regression submodels): number of oocytes (Poisson), 

fertilisation rate (Poisson with number of oocytes as an offset); embryo evenness and 

fragmentation (two-level cumulative logit); double embryo transfer (probit) and live birth 

event (probit). In this simple application, we include age and partner age as covariates in 

the response submodels and additionally include attempt number in both the number of 

oocytes and double embryo transfer models, and method of fertilization (mixing in vitro 

or injection with sperm) in the embryo quality submodels. These take on the role of 

instrumental variables (section 7.4.4) and are included primarily to assist with 

identification of the model. One change we make to the response model compared to 

Journal Article 5 is to fit live birth event in the subset of cycles where one or more 

embryos implanted in the uterine wall, rather than in the subset containing all cycles 

were embryo transfer was performed. This equates to making a distinction between 

failure of the transfer due to the embryo not implanting and due to the foetus not being 

carried to term. This distinction might be important for some research questions (such as 

the one we tackle in Journal Article 6, Chapter 11). We then define a dropout model for 

stages t = 1,2,3, corresponding to successful ovarian stimulation, successful fertilization 

and embryo development, and successful implantation of one or more embryos to the 

uterus. Accordingly, expanding the model to include a dropout component requires us to 
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add three additional latent probit responses. We fit the model conditional on successful 

completion of the previous stages, so that only those completing each stage enter into 

the risk set for the next. We allow the residuals from the dropout model to be correlated 

with the latent variables in the response model. For the purpose of this illustration, we do 

not include any covariates in the dropout model. The dataset we use contains 2973 IVF 

cycles in 2461 women from 2013 to 2015. 12,958 embryos are included. We ignore the 

clustering of repeated cycles within women here. We develop and fit the model in RStan 

(Stan Development Team, 2014). 

 Results of fitting the sequential probit model 8.4.1.

Adding the dropout submodel to the fresh cycle model results in slow mixing of the 

chains used to fit the model (that is, the sampler moves slowly around the posterior 

distribution). This leads to small effective sample sizes and poor convergence diagnostics 

for some parameters after running three chains for 3000 iterations each, and discarding 

the first half as burn in. For example, the regression parameters in the embryo quality 

submodels corresponding to the upstream response variables ‘number of oocytes’ and 

‘fertilisation rate’ have effective sample sizes of around 10 (out of a possible 4500) and 

Gelman-Rubin convergence statistics around 1.2 (where values below 1.1 might be 

interpreted as indicating satisfactory convergence). Convergence of the intercepts in the 

submodels (which include no covariates) is better; effective samples sizes (Gelman-Rubin 

statistics) for the stimulation, fertilization, and implantation submodels are 794 (1), 1313 

(1), and 43 (1.06). The coefficient values correspond to probabilities of 0.9 for progressing 

beyond stimulation, 0.85 for having sufficient embryos to advance to the transfer stage 

(given the patient has advanced beyond the stimulation stage) and 0.43 for implantation 

(given embryo transfer occurs). Dependency between the dropout process and the 

response model is accommodated through the underlying multivariate latent Normal 

structure. Examining several of the latent correlation coefficients highlights the difficulties 

in interpreting the model however. While some of the estimates are coherent (a latent 

correlation of 0.06 between the number of oocytes obtained and the likelihood of 

proceeding beyond stimulation), others are less so. For example, we obtain a latent 

correlation between successful stimulation and achieving embryo transfer (conditional on 

successful stimulation) of 0.98, with good convergence diagnostics; effective sample size 
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and Gelman-Rubin statistic of 448 and 1.01. It is unclear what this might mean, since the 

quantity relating to embryo transfer is undefined if stimulation fails. Estimates of the 

latent correlation between live birth conditional on implantation and both stimulation 

success and achieving transfer are problematic for similar reasons, although these are 

based on much smaller effective sample sizes. These observations leave us doubtful as to 

the utility of jointly modelling a sequential probit model with our fresh cycle model.  

 

 Allowing greater flexibility in the latent variable distribution 8.5

All of the MNAR approaches presented here, as well as the MAR approach (that is, our ‘do 

nothing’ approach, where we consider our response model to be sufficient without any 

additional dropout component) involve estimation of a latent variable structure tying 

observed to unobserved responses in those who dropped out. Whether we allow the 

relationship to depend on dropout (MNAR) or not (MAR), it might be preferable not to 

estimate latent variables corresponding to unrealised responses, nor the corresponding 

relationships with upstream response variables which actually preclude them. To this end, 

we might consider approaches where the latent variable distributions are allowed to vary 

with drop out, so that patients who do not undergo transfer do not have transfer 

outcomes included in their latent variable vector. The relationships between observed 

stages could then vary according to the stage of dropout. This would bear some 

resemblance to the pattern-mixture models described by Little (1993), or, more recently, 

approaches using mixtures of latent variables to allow for different subgroups of patients 

(Komarek, et al., 2010). We return to this in the discussion to the thesis. 

 

 Summary of Chapter 8.   8.6

In this chapter, we discussed the relatively subtle matter of incorporating drop out into 

our models of the fresh IVF cycle. We highlighted the likelihood that the appropriate 

target of missing data modelling is likely to be context-dependent, as well as the fact that 

it might be appropriate to adopt different approaches for treating drop out at different 

stages of the cycle. While we reviewed several methods that would allow missing data 

due to drop out to be MNAR, we queried the suitability of these analyses, on several 

grounds. First, drop out from the cycle is usually due to poor response or outright failure 
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at one of the stages. These responses are included in our model, such that drop out is 

likely to be ignorable given the observed data (MAR). While measurement error and 

model misspecification weakens our ability to assert MAR, under this view the correct 

solution lies in identifying and using good quality measurements and flexible 

representations of them wherever they appear as outcome-covariates (for example, by 

using splines), rather than by using special analysis methods. Another conceptual 

difficulty is the fact that, due to the sequential ordering of the responses in the model, 

once a patient drops out from the cycle, the responses at remaining stages are not 

defined. The patient’s multivariate response vector is therefore truncated rather than 

censored. Under this view, the MNAR methods described here are not appropriate, since 

they assume some underlying relationship between responses pre and post-dropout. This 

was highlighted in an application of the sequential probit model, which yielded 

correlation coefficients that were not obviously interpretable. Approaches exist which 

allow for greater flexibility in the latent variable distribution. It may be possible to adapt 

these to the present setting, so as to alleviate some of this conceptual baggage. This 

remains a topic for future research. 
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Preamble In this article, we use the stimulation model developed in Chapter 6.  to 

investigate the scope for personalisation of ovarian response. We use multilevel models 

to quantify the amount of known and unknown variation in stimulation responses, as well 

as the proportion of variation attributable to modifiable treatment factors. The study 

complements recent RCTs of personalised stimulation algorithms, by illustrating the 

limited scope for prediction and manipulation of ovarian response on the basis of current 

knowledge.  

 

Outputs and Impact of the research This work resulted in a collaboration with Prof. 

Antonio La Marca of the Mother-Infant Department, University of Modena and Reggio 
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Emilia, Modena, Italy. ALM is a leading expert in the area of personalized ovarian 

stimulation. In addition to the present study, JW and ALM are now collaborating on a 

Cochrane Review on this topic. 

 

 Abstract 9.1

Study question 

 How much variation in COS response can be accounted for by known patient and 

treatment characteristics, and what are the implications for individualised stimulation 

protocols? 

 

Summary answer 

 There is substantial variation in the COS responses of similar women and in repeated COS 

episodes undertaken by the same woman, which cannot be accounted for at present. This 

suggests that there is likely to be limited scope for personalised treatment unless 

additional predictors of ovarian response can be identified. 

 

What is known already  

 The goal of individualized COS is to safely collect enough oocytes to maximise the chance 

of success in an ART cycle. Personalisation of treatment rests on the ability to reduce 

variation in response through modifiable factors.  

 

Study design, size, duration 

 Multilevel modelling of a routine ART database covering the period 1st October 2008 to 

8th August 2012 was employed to estimate the amount of variation in COS response and 

the extent to which this could be explained by immutable patient characteristics and by 

manipulable treatment variables. 1851 treatment cycles undertaken by 1430 patients 

were included. The study was not subject to attrition, as cancelled cycles were included in 

the analysis. 

 

Participants/materials, setting, methods 
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Women of 21-43 years of age undergoing ovarian stimulation for IVF (possibly with ICSI) 

using their own eggs at the Reproductive Medicine Department of St Mary’s Hospital, 

Manchester, England. 

 

Main results and the role of chance 

 Substantial unexplained variation in COS response was observed (3.4-fold (95% CI: 3.12 

to 3.61)). Only a relatively small amount of this variation (around 19%) can be explained 

by modifiable factors. A significant, previously undescribed predictor of response was the 

practitioner performing oocyte pickup, with 1.5 fold variation between surgeons with the 

highest and lowest yields.  

 

Limitations, reasons for caution 

 Although a large number of covariables were adjusted for in the analysis, including those 

that were used for dosing and determination of the stimulation regimen, this study is 

subject to confounding due to unmeasured variables and measurement error.  

 

Wider implications of the findings  

The present study suggests that there are limits to the extent that COS response can be 

predicted on the basis of known factors, or controlled by manipulation of treatment 

factors. Moreover, modifiable variation in response appears to be partially attributable to 

differences between surgeons performing oocyte pick up.   Consequently, consistent 

prevention of ineffective or unsafe responses is not likely to be possible at present. Our 

results highlight the importance of blinding surgeons in RCTs.  

 

KEYWORDS 

 Ovarian Stimulation, Assisted Reproductive Technology, Ovarian Response, In Vitro 

Fertilisation. 

 

 Introduction 9.2

The goal of controlled ovarian stimulation (COS) in ART is to safely obtain enough oocytes 

to maximize the chance of success in the treatment cycle. Frequently, this goal proves 
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elusive;   it has been estimated that 17% of ART stimulation cycles in the UK (Sunkara, et 

al., 2011) and 28% in the US (Steward, et al., 2014) result in the collection of over 15 

oocytes, representing increased risk to both the woman (Steward, et al., 2014) and any 

potential offspring  (Sunkara, et al., 2015). In total, around 12% of IVF cycles in the UK are 

cancelled due to poor or excessive ovarian response (Kurinczuk, 2010). If this situation is 

to be improved, methods to predict and prevent ineffective or unsafe COS responses are 

required (La Marca, et al., 2012, La Marca and Sunkara, 2014). To this end, the predictive 

value of two ovarian reserve tests (ORT), anti-mullerian hormone (AMH) and antral 

follicle count (AFC), has been demonstrated in relation to COS response (Broer, et al., 

2011, Broer, et al., 2013). In addition, the dose-responsiveness of COS response to follicle-

stimulating hormone (FSH) has also been established (Arce, et al., 2014), although this is 

likely to be limited to patients with sufficient ovarian reserve to permit tailoring (Klinkert, 

et al., 2005, Lekamge, et al., 2008). The value of ovarian reserve testing for improving 

clinical outcomes of ART is less clear however, with a recent review of RCTs of 

individualized versus standard doses of FSH noting that only one trial in good prognosis 

patients had demonstrated an effect on pregnancy (van Tilborg, et al., 2016). The same 

review concluded that tailoring the dose of FSH on the basis of ORTs may improve safety, 

however. Some support for this is provided by a recent RCT where a multivariable dose 

selection algorithm increased the proportion of participants obtaining an optimal number 

of oocytes, albeit using a definition that was not prespecified (Allegra, et al., 2017). A 

second RCT suggested that dose-selection using AMH may reduce the overall proportion 

of low or excessive responses, although these analyses excluded cycles cancelled for poor 

response (which occurred more frequently in the personalized group) (Nyboe Andersen, 

et al., 2017).  

From a statistical perspective, we contend that the challenge of optimizing COS should be 

viewed as the need to reduce variation in response. This is somewhat different to the 

typical situation we face when designing  and testing interventions, where effectiveness is 

defined as a shift in an outcome in one direction. In this regard, an understanding of the 

sources of variation contributing to the distribution of COS outcomes would be 

advantageous (Senn, 2016).  In particular, the amount of unexplained variation represents 

a limit on our ability to predict response under a given treatment regimen, and the 

degree to which we can manipulate this response depends on the amount of variation 
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attributable to modifiable factors. This in turn motivates the identification of additional 

sources of heterogeneity which may be incorporated into multivariable prediction and 

tailoring algorithms. Moreover, quantifying the degree of variation associated with known 

predictors highlights variables to be controlled in clinical practice and in research. While 

RCTs should, in principle, produce balance over nuisance factors between treatment 

arms, in reality the impracticability of blinding these trials undermines this in the form of 

performance biases (Higgins, et al., 2011).   

Multilevel modelling is a statistical technique that allows us to attribute variation to 

known and unknown factors, whilst estimating and allowing for measured covariate 

effects. The variation of unknown source can be apportioned to ‘between-patient’ 

(factors that are intrinsic to the patient) and ‘within-patient’ (factors which might vary 

between repeated  treatment cycles) components (Snijders and Bosker, 2012). In order to 

investigate the impact of known and unknown sources of variation on COS response, we 

constructed multilevel models using a large routine ART database. We discuss the 

implications for practice and research of individualised COS.   

 

 Materials and methods 9.3

 Population 9.3.1.

Women of 21-43 years of age undergoing ovarian stimulation for IVF (possibly with ICSI) 

using their own eggs at the Reproductive Medicine Department of St Mary’s Hospital, 

Manchester from 1st October 2008 to 8th August 2012 were included. Patients that had 

AMH measured using only the Gen II assay were excluded, given previously reported 

problems with this assay (Rustamov, et al., 2012). Patients with ultrasound features of 

polycystic ovaries, previous history of salpingectomy, ovarian cystectomy and/or 

unilateral salpingoophorectomy were excluded from the analysis as we expected the 

relationships between patient and treatment characteristics and response to be distinct 

in these subgroups. Similarly, small numbers of cycles with ovarian stimulation other than 

GnRH agonist long down regulation or Short GnRH antagonist cycles were not included in 

the study.    
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Patients with a history of unilateral tubal occlusion or unilateral salpingectomy were 

categorized as mild tubal factor infertility and patients with blocked tubes bilaterally or 

with history of bilateral salpingectomy were classified as having severe tubal disease.  

Severe male factor infertility was defined as the partner having azoospermia, surgical 

sperm extraction or severe oligospermia, which necessitated Multiple Ejaculation 

Resuspension and Centrifugation test (MERC) for assisted conception. Mild male factor 

was defined as abnormal sperm count that did not meet the aforementioned criteria for 

severe male infertility.  Diagnosis of endometriosis was based on a previous history of 

endometriosis confirmed using Laparoscopy. Diagnosis of endometrioma was established 

using a transvaginal ultrasound scan prior to IVF treatment. In couples without a definite 

cause for infertility following investigation, the diagnosis was categorized as unexplained.  

 

 Measurement of AMH and AFC 9.3.2.

AMH measurements were performed by the Clinical Assay Laboratory of Central 

Manchester NHS Foundation Trust, and the procedure for sample handling and analysis 

was based on the manufacturer’s recommendations. Venous blood samples were taken 

without regard to the day of women’s menstrual cycle and serum samples were 

separated within two hours of venipuncture. Samples were frozen at -20C until analysed 

in batches using the enzymatically amplified two-site immunoassay (DSL, Active MIS/AMH 

ELISA; Diagnostic Systems Laboratories, Webster, Texas). The intra-assay coefficient of 

variation (CV) (n=16) was 3.9% (at 10pmol/l) and 2.9% (at 56pmol/l). The inter-assay CV 

(n=60) was 4.7% (at 10pmol/l) and 4.9% (at 56pmol/l). Haemolysed samples were not 

included in the study. In patients with multiple AMH measurements, the value closest to 

their IVF treatment cycle was selected. The working range of the assay was up to 

100pmol/L and a minimum detection limit was 0.63pmol/L. Results falling below the 

minimum detection limit were coded as 50% of the minimum detection limit (0.31 

pmol/L) and test results that were higher than the assay ranges were coded as 150% of 

the maximum range (150 pmol/L).  

In our department, the measurement of AFC is conducted as part of an initial clinical 

investigation before the first consultation with clinicians and prior to the IVF cycle. 

Qualified radiographers performed the assessment of AFC during the early follicular 
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phase (Day 0-5) of the menstrual cycle. Measurement of AFC consisted of the counting of 

all antral follicles measuring 2-6mm in longitudinal and transverse cross sections of both 

ovaries using a transvaginal ultrasound scan. The AFC measurement closest to the date of 

the IVF cycle was selected for the analysis.  

 

 Description of COS Protocols 9.3.3.

On the basis of their AMH measurement, patients were stratified into the treatment 

bands for ovarian stimulation using COS protocols. During the study two different COS 

protocols were used and in addition three minor modifications were made in the 2nd 

protocol.  Time periods, AMH bands, down regulation regimes, initial dose of 

gonadotropins and adjustment of daily dose of gonadotropins for each protocol are 

described in S Table 18. Similarly the management of excessive ovarian response was 

tailored to pretreatment AMH measurements, although mainly based on the results of 

oestradiol and scan monitoring during the stimulation period (S Table 18). Assessment of 

transvaginal ultrasound guided follicle tracking and serum oestradiol levels on specific 

days of the stimulation were used for monitoring of COS (S Table 19). The criteria for the 

cycle cancellation for poor ovarian response were consistent across all protocols; fewer 

than 3 follicles >15mm in size on Day 10 of ovarian stimulation. 

 

 Pituitary desensitisation regimes  9.3.4.

Selection of pituitary desensitisation regime was based on the patient’s AMH according to 

the COH protocol at the time of commencement of the IVF cycle (S Table 18). Long agonist 

regimes involved daily subcutaneous injection of 250g or 500 g of the GnRH agonist 

Buserelin acetate (Supercur, Sanofi Aventis Ltd., Surrey, UK) from the mid-luteal phase 

(Day 21) of the preceding menstrual cycle, which continued throughout ovarian 

stimulation. Women treated with Antagonist regime had daily subcutaneous 

administration of GnRH antagonist Ganirelex (Orgalutran, Organon Laboratories Ltd., 

Cambridge, UK) from Day 4 post-stimulation until the day of HCG/GnRH agonist trigger. 

Ovarian stimulation was achieved by injection of daily dose of hMG, Menopur (Ferring 

Pharmaceuticals, UK) or rFSH, Gonal F (Merck Serono) as per the AMH-tailored protocols 

(S Table 18).  Oocyte maturation was triggered using 5000 international units of HCG 
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(Pregnyl, Organon Laboratories Ltd., Cambridge, UK) and the criteria for timing of HCG 

injection was consistent across all protocols: one (or more) leading follicles measuring 

>18mm and two (or more) follicles >17mm.  

 

 Oocyte collection 9.3.5.

Oocyte collection was conducted 34-36 hours following injection of HCG for follicle 

maturation. An ultrasound guided oocyte pick up (OPU) was conducted by experienced 

clinicians under sedation. Practitioners with a small number (<10) of oocyte collection 

procedures were pooled in the analysis (group J). If the cycle was cancelled before oocyte 

recovery, it was categorized under the practitioner who was on-call for oocyte recovery 

on the day of cycle cancellation.  

Oocytes were counted immediately post-OPU by an embryologist. In patients undergoing 

ICSI, the assessment of the quality of oocytes was conducted 4-6 hours post-OPU. 

Oocytes assessed as in Metaphase II stage (MII) of maturation were categorized as 

mature. 

 

 Study outcomes 9.3.6.

We evaluated the outcome number of oocytes recovered and, in the subset of patients 

undergoing ICSI, the number of mature oocytes. However, our estimates relating to 

mature oocytes were so imprecise as to be quite uninformative. Consequently, we 

present these without further comment. 

 

 Statistical analysis 9.3.7.

We used multilevel multivariable Poisson regression to estimate the effects of patient and 

treatment characteristics on stimulation response (Snijders and Bosker, 2012). The 

variables included in the regression models were selected on the basis of background 

knowledge and the objectives of the study. We distinguished patient characteristics (age, 

AMH, AFC, BMI, attempt number and cause of infertility) which cannot be altered from 

treatment variables (initial dose of gonadotropin, stimulation regime (antagonist or long 

agonist), protocol (old version or v1, v2 & v3 or v4 of the new protocol), type of 
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gonadotropin (HMG or rFSH) and OPU practitioner, which could in principle be used to 

tailor treatment. The representation of age, AMH and AFC in the model was determined 

on the basis of exploratory analysis consisting of graphing each variable against egg count 

and log(egg count), and by comparing models featuring competing representations using 

Akaike’s Information Criterion (Akaike, 1972), a measure of fit that penalizes complexity. 

As a result of this process, age was represented as a quadratic in the final analysis, AMH 

was log-transformed and AFC was categorized into 3 levels on the basis of quantiles. 

Initial dose of gonadotropin was represented as a categorical variable; this decision was 

made on the basis of the distribution of the doses and the desire to obtain an easily 

interpretable model (Table 13). Interactions between regime and other variables and dose 

and other variables were considered using likelihood ratio testing and graphing of the 

predictors against egg count within regime and dose categories. Dose effect was allowed 

to vary with regime in the final analysis, owing to the observed significance of this 

interaction using a likelihood ratio test and the inherent plausibility of this relationship. 

We also fitted a version of the final model with an interaction between log(AMH) and 

dose, to investigate whether the relationship between dose and oocyte yield varied with 

AMH level. Continuous variables were mean-centered and standardized by dividing by a 

standard deviation. This was done for the purposes of interpretability and to improve 

computational efficiency in model fitting. 

 

Poisson regression models for oocyte yield and number of mature oocytes (for ICSI cycles 

only) as outcome variables were fitted for the final analysis with multiplicative random 

effects at both the observation and patient-levels included to account for the high 

variability in cycle outcomes and the correlation between repeated cycles undertaken by 

the same patient, respectively. This method produces covariate-adjusted yield ratios and 

95% CIs. For categorical variables, these can be interpreted as relative yields per cycle for 

each level of the predictor compared to a reference category. For continuous variables, 

they can be interpreted as the multiplicative change in the yield per cycle associated with 

a standard deviation increase in the predictor. We used multiple imputation to handle the 

relatively low proportion of missing values in the dataset (see Table 13), including imputed 

egg counts for cancelled cycles. All of the variables included in the analysis were used in 

the imputation process, in addition to variables relating to follicle counts on days 8 and 10 
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of the stimulation phase and the total dose of gonadotropins administered. We examined 

plots of residuals and of predictions arising from the analysis to assess model fit. Analysis 

was conducted using the software packages R (R Core Team, 2014) and RStan (Stan 

Development Team, 2014). Imputation was conducted using the mi package (Su, et al., 

2011). No sample size calculation was performed, as we were not interested in hypothesis 

testing. Instead, we rely on 95% CIs to indicate the precision of our results. We estimated 

the amount of unexplained between and within-patient variation, and of total variation, 

in three models of oocyte yield: 1) no covariates; 2) patient covariates only; and 3) 

treatment and patient covariates. The first of these quantifies the variance in the data. By 

comparing model 1 to model 2 we can estimate the amount of variation attributable to 

patient characteristics and by comparing model 2 to model 3 we estimate the amount 

that could, in principle, be reduced through treatment. We used the distribution of the 

random effects from the fitted models to calculate these measures of unexplained 

variation. Each model yields two random effects for each patient in the analysis, which 

describe how each patient’s responses differ relative to the outcome that would be 

expected according to the model variables (patient and cycle-specific yield ratios). We 

calculated the yield ratio for a random effect one standard deviation above the mean 

(YRSD), the ratio of the 95th to the 5th random effects (YR90), and the variance of the 

random effects for each model, overall and partitioned as within and between patients.  
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 Results 9.4

 Characteristics of the sample 9.4.1.

The dataset contained 1851 treatment cycles (defined as initiation of COS) on 1430 

patients. 1070 (75%) patients had one cycle, 306 (21%) had two, 56 (4%) had three and 1 

(0%) had four. 1236 ICSI cycles on 964 patients were available for the analysis of mature 

oocytes. Table 13 gives a summary of the characteristics of the cycles in the dataset. 

 

 How much variation in COS response is explained by immutable patient 9.4.2.

characteristics? 

Table 14 shows measures of unexplained variation (YRSD, YR90, and the residual variance, 

see Statistical Analysis) in three models of COS response.   

The reduction in these measures between models 1 and 2 tells us how much is explained 

by patient characteristics. It is evident that patient characteristics explain a substantial 

portion of the overall variation; the total unexplained variance (the sum of the between 

and within-patient components) reduces from 0.30 to 0.16 (that is, to 53% of the original 

value) when these are added. This translates to a YRSD of 1.75 in model 1 compared to 

1.51 in model 2. The YR90 is 6.30 in model 1 and 3.89 in model 2. We can see that known 

patient characteristics explain variation through the between-patient rather than the 

within-patient component (as there is no substantive reduction in the latter, Table 14). 

This is unsurprising, since these variables tend not to vary from cycle to cycle. 
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Characteristic Summary 

Total dose of gonadotropins (IU) 3000 
2100 to 3300 
300 to 7650 

0% 

Initial dose of gonadotropins (IU) 0% 
75-150IU 297 (16) 
187-250IU 484 (26) 
300IU 919 (50) 
375IU 62 (3) 
450IU 89 (5) 

Age at start of cycle (years) 33.7 
30.3 to 36.9 
21.5 to 43.7 

0% 

BMI at start of cycle 24.0 
21.5 to 26.8 
16.3 to 36.0 

15% 

AMH at start of cycle (pmol/L) 15.0 
9.4 to 22.7 
1.3 to 150 

0% 

Regime 0% 
Long Agonist 821 (44) 
Antagonist 1030 (56) 

Gonadotrophin 0% 
HMG 1602 
rFSH 233 

AFC 13 
10 to 17 
3 to 52 

10% 

Attempt no 0% 
1 1347 (73) 
2 409 (22) 
3 91 (5) 
4 4 (0) 

Number of eggs recovered  
(cancelled cycles set to missing) 

9 
5 to 14 
0 to 38 

2% 

 
 
 

 

Table 13: Summary of cycle characteristics. Median, IQR and range for continuous variables, frequency and percentage 
for categorical variables. % missing shown in italics. 
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 How much variation in COS response can be explained by manipulable 9.4.3.

treatment factors? 

Similarly, a comparison between models 2 and 3 shows how much variation can be 

accounted for by treatment (Table 14). Adding treatment variables to the model does 

reduce overall variation further, but only modestly. Total variance reduces from 0.16 to 

0.13 (81% of the original). The YRSD are 1.51 and 1.45 in the models 2 and 3 respectively, 

and the YR90 are 3.87 and 3.36. As such, the model implies that there is a limit to the 

extent to which variation in response can be reduced by tailoring treatment, with the 

YR90 of 3.4 implying that  a greater than three-fold difference in yield could reasonably 

be observed between two cycles in which two patients with similar characteristics are 

treated in the same way. If the same patient were to be treated in the same way on two 

occasions, a 2.7-fold difference in yield could reasonably be observed. This can be 

translated to a clinically meaningful scale. Suppose that a patient obtained 9 eggs from a 

cycle. If another patient with similar characteristics were to be treated in the same way, 

we would expect their response to be between 6 and 13 eggs (based on YRSD), although 

any response in the range 4 to 19 (based on YR2SD) would not be surprising. If the same 

initial patient were stimulated in the same way a second time we would expect a 

response between 7 and 12 eggs, but any response between 5 and 17 eggs should be 

anticipated. 

 

 Effects of known patient and treatment characteristics 9.4.4.

Yield ratios with 95% CIs from the fitted models are presented visually in Figure 35 and in S 

Table 20.  The corresponding estimates for the analysis of mature oocytes are displayed in 

S Figure 1 and S Table 20. These refer to the estimated ‘effects’ of the predictor variables 

on COS response, as described in Statistical Analysis, above. Notably, the ratio of the 

greatest to the lowest yield ratio estimated for the practitioners was 1.53, with 

differences between operators apparent on the basis of non-overlapping 95% CIs (Figure 

35). Whilst AMH was a strong predictor of response, we did not find evidence of 

differential effects of AMH across  
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Figure 35: Yield ratios and 95% CIs from the multivariable Poisson regression model of number of oocytes per cycle. 

Continuous predictors have been standardized, so that coefficients display the expected multiplicative increase in the 

yield ratio for a standard deviation change in the variable. Increasing dose effect under a GnRH Antagonist regime is 

shown by the purple connecting line. Increasing dose effect under a GnRH Long Agonist regime is shown by the blue 

connecting line. 



 

270 
 

 

dose groups (Interaction test: p = 0.60), although our power to detect such an effect is 

likely to have been low. Other predictor variables showed effects in the anticipated 

directions, with increased yields for higher AFC values and decreased yields for increasing 

age, for example. The model suggested increased yields when rFSH was used compared 

to an equivalent starting dose of HMG. 

Model Random effect YR for +1 SD vs mean 
(YRSD) 

Random effect variance Ratio of 95th to 5th quantile of 
random effect YRs (YR90) 

 

Between-
patient 

 
Within-
patient 

 
Total Between-

patient 

 
Within-
patient 

 
Total Between-

patient 

 
Within-
patient 

 
Total 

1: No 
covariates 

1.55 
(1.45 to 

1.63) 

1.43 
 (1.36 to 

1.52) 

1.75 
(1.72 to 

1.80) 

0.18 
(0.13 to 

0.22) 

0.12  
(0.09 to 

0.16) 

0.30  
(0.27 to 

0.33) 

4.15 
(3.35 to 

4.90) 

3.29 
 (2.76 to 

3.98) 

6.30 
(5.84 to 

6.83) 

2: Patient 
covariates w 
attempt 

1.19 
(1.08 to 

1.28) 

1.45  
(1.39 to 

1.51) 

1.51 
(1.48 to 

1.54) 

0.03 
(0.01 to 

0.06) 

0.13 
 (0.10 to 

0.16) 

0.16 
 (0.14 to 

0.18) 

1.78 
(1.32 to 

2.25) 

3.39  
(2.89 to 

3.89) 

3.87 
 (3.61 

to 4.15) 

3: Patient plus 
treatment 
covariates 

1.23 
(1.14 to 

1.31) 

1.36 
 (1.30 to 

1.42) 

1.45 
(1.42 to 

1.48) 

0.04 
(0.02 to 

0.07) 

0.10 
 (0.07 to 

0.12) 

0.13 
 (0.12 to 

0.15) 

1.98 
(1.53 to 

2.40) 

2.70  
(2.31 to 

3.16) 

3.36 
(3.12 to 

3.61) 

Table 14: Measures of unexplained variation (95% CIs) in three models of oocyte yield. 

 

 Discussion 9.5

In the present study, we used multilevel modelling of a routine ART database to quantify 

the various sources of variation in response to COS. Our results quantify, and are 

consistent with, the effects of known predictors (Figure 35, S Table 20), while large 

random effects (yield ratios) suggest that there remains substantial variation that we 

cannot currently account for (a 3.4 fold difference Figure 35, Table 14). This holds both for 

differences between the responses of different women and between repeated responses 

of the same woman. Only a relatively small amount of this variation (around 19%) can be 

explained by modifiable treatment factors.  

 

 Patient characteristics 9.5.1.

Patient characteristics explained a substantial portion of variation between women. This 

included strong relationships with known measures of ovarian competence (age, AMH, 

AFC)(La Marca and Sunkara, 2014). Variation in BMI was quite precisely estimated as 

having little to no influence on oocyte yield, possibly because all patients had values in 

the range 19 to 30. There was no evidence to suggest that any particular infertility 
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diagnosis was associated with number of oocytes, with the exception of increased yields 

(estimate of 7%, no higher than 14%) for those with unexplained infertility. Number of 

oocytes appeared to increase with attempt number, with increased yields for 2nd 

attempts and subsequent attempts. This could reasonably be an artefact due to selection 

effects relating to different profiles or treatment strategies for patients undergoing 

multiple treatment attempts, although a sensitivity analysis excluding attempt number 

had no discernible impact on the other model estimates or on the amount of explained 

variance. 

 

 Treatment characteristics 9.5.2.

This appears to be the first study to identify a substantial effect of oocyte recovery 

practitioner on oocyte yield. It is worth noting that the operators were all trained, 

experienced surgeons. Whilst tailoring of the allocation of patients to practitioner lacks 

credibility as a treatment protocol, this variability does suggest that there are as yet 

unmeasured factors which affect COS outcome which if identified may have the potential 

for optimisation.  This finding is important, as variation due to recovery practitioner could 

undermine any attempts to guide a patient to an optimal oocyte yield by tailoring the 

gonadotropin dose. Blinding of the recovery practitioner and recording of the allocation 

of patients to practitioner should be a mandatory feature of RCTs of personalized COS. 

 

In line with previous research in this area (Arce, et al., 2014), the model suggested a dose-

response relationship between initial gonadotropin dose and number of oocytes at lower 

doses. However, this did not appear to be sustained beyond the lowest dose. This 

suggests that, to the extent that tailoring the dose is possible, it should be restricted to a 

lower dose range (Figure 35). Differences between antagonist and long agonist regimens 

were generally unclear, other than for the 75-150 IU dose band where we observed a 

reduced number of oocytes in antagonist cycles. In order to translate dose and regimen 

effects to a more easily interpretable scale, we plotted the observed oocyte yields 

together with the predicted oocyte yields from our model for patients falling in low, 

medium and high AMH bands, using cut-offs of <5pmol/L, 5-15pmol/L and >15pmol/L, 

which have been suggested (Nelson, et al., 2007) and used (Nelson, et al., 2009) 
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elsewhere in the literature (Figure 36). This represents the predicted outcomes for our 

centre, were dose selection performed solely on the basis of AMH. This figure highlights 

the impact of other sources of variation that should be considered in individualised COS, 

because the variation within each AMH/protocol/dose category is large relative to the 

variation between categories , and suggests that multivariable algorithms (La Marca, et 

al., 2012, Popovic-Todorovic, et al., 2003) will be needed to obtain reliable predictions of 

response. However, our models also suggest that many of these contributive variables 

remain unknown.  We did not replicate the finding of Arce and colleagues (2014) that 

dose effects vary according to AMH, although our power to detect an effect of this nature 

is likely to have been low. The predictions appear to be consistent with existing research 

and writing on this topic, indicating in particular that increasing the dose in patients with 

predicted low response is unlikely to increase the oocyte yield (Klinkert, et al., 2005, 

Lekamge, et al., 2008) and that dose-effects on the mean response are modest 

(Sterrenburg, et al., 2011). 

In this case, the effect on the mean response may not represent the most useful measure 

of efficacy however. Given that the goal of individualised COS is to prevent insufficient or 

unsafe responses (La Marca et al., 2012), we believe that it is most useful to focus on the 

effects of interventions on reducing variation in outcome. In this context, an intervention 

could be ‘effective’ even if no effect on the mean was observed.  Our analysis suggests 

that treatment differences account for relatively little of this variation, and this is likely to 

limit the extent to which extreme responses can be prevented by tailoring treatment. A 

unidirectional mean effect will of course be more relevant in populations of expected 

poor or high responders compared to unselected patients, although even then a simple 

‘mean difference’ may conceal deleterious consequences of treatment (if, for example, 

more expected high (low) responders end up having poor (excessive) responses, as 

appears to be the case in Nyboe Andersen, et al., 2017). As a result, many trials quantify 

COS response by categorizing responses as ‘poor’, ’normal’ or ‘high’, and use this as a trial 

endpoint (eg: Allegra, et al., 2017; van Tilborg, et al., 2012; Popovic-Todorovic, et al., 

2003). This is not entirely unreasonable if the criteria are predefined and cancelled cycles 

are included in the denominator, although categorizing measurements in this way 

reduces power in the trial, necessitating larger sample sizes (Altman and Royston, 2006). 
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We note that simple statistical methods exist for comparing variation between treatment 

arms directly, such as Levene’s test (Schultz, 1985).  

 

 

 

Figure 36: Distribution of observed egg counts (box and whisker plots) with those predicted under the model for low (DSL 

assay < 5 pmol/L), medium (5-15 pmol/L) and high (>15 pmol/L) AMH bands for both GnRH Long Agonist (blue) and 

GnRH Antagonist (purple) regimes. Solid line represents the mean response from the posterior predictive distribution. 

Shaded area represents +/- 1 SD. Note that other covariate values are not fixed but reflect the characteristics of the 

sample. Only groups with 5 or more observations are shown. 
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Limitations of the present study should be noted. There may be concerns over the 

generalizability of our findings, since some of the doses administered in the dataset are 

higher than would typically be used, for example, throughout Europe. However, we note 

here that our concern is not in the evaluation of any particular treatment strategy, but 

rather to tease apart the contributions of various predictors on COS response. Regardless, 

we conducted a sensitivity analysis where we fitted a model in the subset of participants 

treated with doses of 225IU or lower (S Figure 2). The estimates are consistent with our 

main analysis, albeit with reduced precision due to the reduction in sample size. While we 

included a large number of predictor variables, there is likely to be confounding due to 

unmeasured predictors as well as ‘residual confounding’ due to measurement error in the 

model covariates (Sterne, et al., 2016). In particular, there may be concern around 

confounding by indication due to selection for treatment on the basis of prognosis 

(Walker, 1996). In this regard, we note that we have included all of the variables that 

were used for treatment allocation in the model (at least in principle), and measures of 

balance between dose groups (McCaffrey, et al., 2013) suggest a reasonable degree of 

balance after adjusting for covariates, other than for the highest versus the lowest dose 

band.  

 

We suggest that an understanding of the degree and determinants of variation in COS 

response is key to improving clinical practice and conducting research in this area. The 

goal of personalized COS is to reduce this variation, and this may be assisted both by 

incorporating a range of predictive patient characteristics into dose algorithms and by 

attempting to standardize aspects of treatment that may introduce noise (Senn, 2016). 

Our results indicate that much of the variation in response cannot be explained by known 

factors however. We have identified the oocyte recovery practitioner as one potential 

source of variation in this study, and recommend that blinding is used in RCTs to reduce 

associated performance biases.  Moreover, we advise that the allocation of participant to 

practitioner is recorded and considered as a covariate in any analysis. We conclude that, 

until additional predictors of variation are identified, consistent prevention of extreme 

responses is unlikely to be achieved. 
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Protocol 1 
(01 Sep 2008-31 Dec 2010) 

Protocol 2 (V1) 
(01 Jan 2011-30 Apr 2011) 

Protocol 2 (v2) 
(01 May 2011-31 Jul 2011) 

Protocol 2 (v3) 
(01 Aug 2011-30 Nov 2011) 

Protocol 2 (v4) 
(01 Dec 2011-08 Aug 2012) 

Initial dose (Day 1-3) 
 
1) <2.2 AMH (DSL) 
 Exclude  
 
2) 2.2-15.6 AMH (DSL) Antagonist:  300 
hMG 
 
3) 15.7-28.5 AMH (DSL) 
Long Agonist: 200 rFSH/225 hMG 
 
4)  >28.6 AMH (DSL) 
 Antagonist: 150 hMG 

 

Initial dose (Day 1-3) 
 
1) <3 AMH (Gen II) 
Co-Flare: 450 hMG 
 
2) 3-10 AMH (Gen II) 
Antagonist: 375 hMG 
 
3) 11-21 AMH (Gen II) 
Long Agonist: 300 hMG 
 
4) 22-30 AMH (Gen II) 
 
Long Agonist: 225 hMG 
 
5) 31-39 AMH (Gen II) 
Long Agonist: 150 hMG 
 
 
6) 40-67 AMH (Gen II) 
without PCO 
Long Agonist: 150 hMG 
 
7) 40-67 AMH (Gen II) 
with PCO 
Long Agonist: 125 rFSH 
 
8) >67 AMH (Gen II) 
Long Agonist: 112.5 rFSH 

Initial dose (Day 1-3) 
 
1) <3 AMH (Gen II) 
Co-Flare: 450 hMG 
 
2) 3-10 AMH (Gen II) 
Antagonist: 300 hMG 
 
3) 11-21 AMH (Gen II) 
Long Agonist: 225 hMG 
 
4) 22-39 AMH (Gen II) 
without PCOS 
Long Agonist: 150 hMG 
 
5) 22-39 AMH (Gen II) 
with PCOS 
Long Agonist: 150 rFSH 
 
6) 40-67 AMH (Gen II) 
without PCOS 
Long Agonist: 150 hMG 
 
7) 40-67 AMH (Gen II) 
with PCOS 
Long Agonist: 112.5 rFSH 
 
8) >67 AMH (Gen II) 
Long Agonist: 112.5 rFSH 

Initial dose (Day 1-3) 
 
1) 2-3 AMH (Gen II) 
Antagonist: 450 hMG 
 
2) 3-10 AMH (Gen II) 
Long Agonist: 300 hMG 
 
3) 11-21 AMH (Gen II) 
Long Agonist: 225 hMG 
 
4) 22-39 AMH (Gen II) 
without PCOS 
Long Agonist: 150 hMG 
 
5) 22-39 AMH (Gen II) 
with PCOS 
Antagonist: 150 rFSH 
 
6) 40-67 AMH (Gen II) 
without PCOS 
Antagonist: 150 hMG 
 
7) 40-67 AMH (Gen II) 
with PCOS 
Antagonist: 112.5 rFSH 
 
8) >67 AMH (Gen II) 
Antagonist: 112.5 rFSH 

Initial dose (Day 1-3) 
 
1) 2-3 AMH (Gen II) 
Antagonist: 300 rFSH 
 
2) 3-10 AMH (Gen II) 
Long Agonist: 225 rFSH 
 
3) 11-21 AMH (Gen II) 
Long Agonist: 187.5 rFSH 
 
4) 22-39 AMH (Gen II) 
without PCOS 
Long Agonist: 150 hMG 
 
5) 22-39 AMH (Gen II) 
with PCOS 
Antagonist: 150 hMG 
 
6) 40-67 AMH (Gen II) 
without PCOS 
Antagonist: 150 hMG 
 
7) 40-67 AMH (Gen II) 
with PCOS 
Antagonist: 112.5 hMG 
 
8) >67 AMH (Gen II) 
Antagonist: 112.5 hMG 

Dose adjustment 
No or minimum change on daily dose of 

gonadotrophin 

Dose adjustment 
Step up or down using Oestradiol levels 
(Day 3&6) and Ultrasound follicle 
tracking (Day 8) 

Dose adjustment 
Step up or down using Oestradiol levels 
(Day 3&6) and Ultrasound follicle 
tracking (Day 8) 

Dose adjustment 
Step up or down using Oestradiol levels 
(Day 3&6) and Ultrasound follicle 
tracking (Day 8) 

Dose adjustment 
Step up or down using Oestradiol levels 
(Day 3&6) and Ultrasound follicle 
tracking (Day 8) 

S Table 18: AMH-tailored stratification protocols for regime, starting dose of hMG/rFSH and adjusting daily dose of gonadotrophins (St Mary’s Hospital).  
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 Protocol 1 
(01 Sep 2008-31 Dec 

2010) 

Protocol 2 (v1) 
(01 Jan 2011-30 Apr 2011) 

& 

Protocol 2 (v2) 
(01 May 2011-31 Jul 

2011) 

Protocol 2 (v3) 
(01 Aug 2011-30 Nov 

2011) 

Protocol 2 (v4) 
(01 Dec 2011-08 Aug 

2012) 

Coasting for excessive 
response on day 8  

Oestradiol >20,000 pg/ml 30-40 follicles larger than 
10mm or 
Oestradiol >18,000 pg/ml 

30-40 follicles larger than 
12mm  

No coasting 

Coasting for excessive 
response once follicle 
maturation meets 
criteria  

Oestradiol >20,000 pg/ml 
 

30-40 follicles larger than 
10mm 
 

25-40 follicles larger than 
10mm 
  

25-30 follicles larger than 
15mm 
 
 
 

Cancellation for  
excessive response 

Day 8 or thereafter  
 
Oestradiol l>20,000 pg/ml 
and symptoms of OHSS 
after >3 days of coasting 

Day 8 or thereafter 
 
More than 40 follicles 
larger than 10mm 
 
 
 

Day 10 or thereafter 
 
More than 40 follicles 
larger than 15mm 
 
 

Day 8 or thereafter 
 
Cancel only if symptoms 
of OHSS 

S Table 19: AMH-tailored stratification protocols for management of suspected excessive response (St Mary’s Hospital). 
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Parameter Number of oocytes Number of MII oocytes 

Intercept  8.91 (7.79 to 10.22) 7.14 (5.27 to 9.64) 

Treatment characteristics   

Long Agonist 75-150 IU 1.00 1.00 
Long Agonist 187-250 IU 1.12 (1.01 to 1.25) 1.02 (0.83 to 1.24) 
Long Agonist 300 IU 1.17 (1.03 to 1.33) 1.14 (0.90 to 1.43) 
Long Agonist 375 IU 1.18 (0.92 to 1.51) 1.01 (0.67 to 1.55) 
Long Agonist 450 IU 1.07 (0.87 to 1.33) 0.83 (0.58 to 1.20) 
Antagonist 75-150 IU  0.76 (0.67 to 0.86) 0.76 (0.61 to 0.96) 
Antagonist 187 – 250 IU 1.08 (0.90 to 1.30) 1.19 (0.86 to 1.67) 
Antagonist 300 IU 1.04 (0.91 to 1.18) 0.98 (0.78 to 1.23) 
Antagonist 375 IU 1.11 (0.90 to 1.37) 1.30 (0.90 to 1.88) 
Antagonist 450 IU 0.94 (0.76 to 1.17) 0.91 (0.63 to 1.33) 

OPU operator: A 1.00 1.00 
B 0.98 (0.91 to 1.04) 0.90 (0.79 to 1.01) 
C 1.04 (0.94 to 1.16) 1.03 (0.85 to 1.24) 
D 0.68 (0.51 to 0.89) 0.79 (0.47 to 1.37) 
E 0.78 (0.71 to 0.86) 0.85 (0.73 to 1.00) 
F 0.86 (0.78 to 0.97) 0.77 (0.62 to 0.97) 
G 0.95 (0.87 to 1.05) 0.91 (0.76 to 1.09) 
H 0.93 (0.84 to 1.02) 0.94 (0.78 to 1.12) 
I 0.77 (0.70 to 0.84) 0.83 (0.70 to 0.98) 
J 0.70 (0.56 to 0.88) 0.56 (0.35 to 0.91) 

   
   
   

Protocol: Old 1.00 1.00 
New protocol (V1) 0.87 (0.81 to 0.93) 0.89 (0.79 to 1.01) 
New protocol (V2 & V3) 0.90 (0.79 to 1.02) 0.99 (0.79 to 1.24) 
New protocol (V4) 0.84 (0.74 to 0.94) 0.85 (0.68 to 1.06) 

Patient characteristics   

Attempt No: 1st 1.00 1.00 
2

nd
 1.05 (0.99 to 1.11) 1.03 (0.92 to 1.15) 

3
rd

 or 4th 1.19 (1.07 to 1.32) 1.08 (0.90 to 1.29) 

Antral follicle count: < 10 1.00 1.00 
11 to 16 1.16 (1.11 to 1.23) 1.14 (1.01 to 1.27) 
16 to 52 1.29 (1.20 to 1.38) 1.22 (1.07 to 1.38) 

Age (SDs) 0.87 (0.85 to 0.89) 0.91 (0.87 to 0.96) 
Age

2 
(SDs) 0.96 (0.94 to 0.99) 0.96 (0.93 to 1.00) 

Log(AMH) (SDs) 1.35 (1.30 to 1.40) 1.29 (1.21 to 1.38) 

Gonadotropin: HMG 1.00 1.00 
rFSH 1.15 (1.07 to 1.24) 1.13 (0.99 to 1.29) 

Unexplained fertility 1.07 (1.00 to 1.14) 1.03 (0.91 to 1.17) 
Mild tubal 1.01 (0.94 to 1.08) 0.96 (0.85 to 1.10) 
Severe tubal 0.92 (0.77 to 1.09) 0.92 (0.66 to 1.30) 
Mild male factor 0.99 (0.93 to 1.05) 1.02 (0.92 to 1.13) 
Severe male factor 1.11 (0.88 to 1.40) 0.96 (0.64 to 1.44) 
Endometriosis 0.94 (0.85 to 1.06) 0.89 (0.72 to 1.12) 
Endometrioma 0.87 (0.75 to 1.02) 0.89 (0.68 to 1.18) 

BMI (SDs) 1.01 (0.99 to 1.04) 1.00 (0.96 to 1.05) 
S Table 20: Yield ratios and 95% CIs from fitted Poisson regression models of number of oocytes and of number of 
mature oocytes, with the covariates shown in the table. Estimates for treatment characteristics relate to total effects 
after holding patient characteristics fixed. Estimates for patient characteristics relate to direct effects on COS response 
(ie: after subtracting the ‘effect’ of characteristics on treatment selection). 
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S Figure 1: Yield ratios and 95% CIs from the multivariable Poisson regression model of number of metaphase II oocytes 

per cycle. Continuous predictors have been standardized, so that coefficients display the expected multiplicative increase 

in the yield ratio for a standard deviation change in the variable. Increasing dose effect under a GnRH Antagonist regime 

is shown by the purple connecting line. Increasing dose effect under a GnRH Long Agonist regime is shown by the blue 

connecting line 
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S Figure 2: Sensitivity analysis. Yield ratios and 95% CIs from a multivariable Poisson regression model of number of 

oocytes per cycle, restricted to low gonadotropin doses. Continuous predictors have been standardized, so that 

coefficients display the expected multiplicative increase in the yield ratio for a standard deviation change in the variable. 

Increasing dose effect under a GnRH Antagonist regime is shown by the purple connecting line. Increasing dose effect 

under a GnRH Long Agonist regime is shown by the blue connecting line. 
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Chapter 10.  Analysis of multistage in vitro fertilization data 

with mixed multilevel outcomes using joint 

modelling approaches 
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Preamble In this paper we present three different approaches to the analysis of 

multistage IVF data (the correlated latent variable approach, the endogenous response 

approach, and outcome regression, where we fit a series of conditional regression models 

for each stage of the cycle). We describe the features of each approach before applying 

all three methods to routine clinical data in a relatively simple example. The target 

audience for this article is applied statisticians, so we provide both a mathematical 

description of the model, as well as Stan code. 
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 Abstract 10.1

In vitro fertilization comprises a sequence of interventions concerned with the creation 

and culture of embryos which are then transferred to the patient’s uterus. While the 

clinically important endpoint is birth, the responses to each stage of treatment contain 
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additional information about the reasons for success or failure. Joint analysis of the 

sequential responses is complicated by mixed outcome types defined at two levels 

(patient and embryo). We develop three methods for multistage analysis based on joining 

submodels for the different responses using latent variables and entering outcome 

variables as covariates for downstream responses. An application to routinely collected 

data is presented, and the strengths and limitations of each method are discussed.  

Keywords: in vitro fertilisation; joint modelling; mixed data; multilevel modelling; 

multistage treatment data; multivariate responses  

 

 Background and motivation 10.2

In vitro fertilization (IVF) is a complex multistage procedure for the treatment of 

subfertility. Typically, a ‘cycle’ of IVF begins with the administration of drugs to stimulate 

the patient’s ovaries and promote the release of oocytes (eggs). The oocytes are collected 

from the patient and are then fertilised either by mixing or injecting them with sperm. 

The resulting embryos are cultured for several days. Finally, one or more of the best 

embryos are selected for transfer to the woman’s uterus, where it is hoped that they will 

implant and develop into a healthy baby. Treatment may fail at any stage of the cycle (if 

no oocytes are recovered from the ovaries, no good quality embryos are produced, or 

those transferred do not implant), in which case the subsequent stages are not 

undertaken.  

The sequential nature of IVF means that the patient’s response can be measured at each 

stage of the treatment (Heijnen et al., 2004): the stimulation of the ovaries can be 

evaluated by the number of oocytes collected; the fertilization and culture stages can be 

evaluated by the number and quality of embryos produced; and the success of the 

transfer procedure can be evaluated according to whether or not a child is born as a 

result. Figure 37 displays a schematic of the IVF cycle. A recent review of outcome 

measures used in IVF RCTs showed that there is considerable interest in these 

‘intermediate’ or ‘procedural’ outcomes of IVF; 361 distinct numerators were identified, 

and the median (IQR) number of distinct outcomes reported per trial was 11 (7 to 16) 

(Wilkinson et al., 2016).      

The interest in procedural outcomes in IVF research is not surprising. While the most 

relevant measure of success for patients is the birth of a child (Min et al. 2004, Heijnen et 
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al. 2004, Legro et al. 2014), establishing the effects of treatments and patient 

characteristics on procedural outcomes might increase our mechanistic understanding of 

how IVF works and how it might be improved. The question of how outcomes at each 

stage of the process relate to one another also appears to be relevant to designing and 

evaluating IVF interventions. In response, two approaches for the analysis of multistage 

IVF data have recently been proposed (Maity et al. 2014, Penman et al. 2007). The first  

 

 

Figure 37: Schematic of the IVF cycle. 

 

is a discrete time-to-event approach that treats the stages of the IVF cycle as a series of 

‘failure opportunities’ (Maity et al. 2014). Each woman’s response data then comprise a 

vector of binary indicator variables denoting whether they failed at this stage, or 

proceeded to the next. The second treats the stage of the cycle reached by the patient as 

an ordinal response, and models this using continuation ratio regression (Penman et al. 
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2007). Both of these approaches allow us to answer research questions relating to the 

effects of baseline treatment and patient characteristics on IVF response, while 

preserving the sequential nature of the data. Both share similar limitations, however. In 

particular, both treat the responses at each stage as dichotomous ‘success or failure’ 

events. This wastes a great deal of information, since it is more informative to measure 

the number of oocytes obtained from the ovaries than merely whether a sufficient 

quantity were available to enable the cycle to continue; and it is more informative to 

measure the quality of any embryos obtained than merely whether there were any 

available for transfer. These methods are also incapable of accommodating outcomes 

defined at different levels of a multilevel structure; some outcomes (eg: number of 

oocytes) may be defined for each patient, while others (eg: embryo quality) are defined 

for the patient’s individual embryos. In addition, while these methods allow for 

differential effects of covariates at each stage through the inclusion of interaction terms, 

they do not allow for different covariates to be included as predictors for the different 

stage-specific responses.  

While methods for the analysis of sequential IVF data exist therefore, it remains to 

identify techniques capable of incorporating the variety of outcome types encountered in 

this setting, and moreover responses which are defined at different levels of a two-level 

data structure (embryos and patients). This includes counts of oocytes, ordinal embryo 

quality scales, binary birth indicator variables, and so on. Methods for the analysis of 

multivariate responses of mixed outcome types are hardly new (eg: Goldstein 2003) but 

have received considerable attention in recent years (see de De Leon and Chough, 2013 

for a comprehensive collection of the state of the art). While much of this work has 

focussed on the joint analysis of time-to-event and longitudinal response data (see 

reviews by Gould et al., 2015 and Tsiatis and Davidian, 2004), approaches capable of 

accommodating different combinations of outcome types have been described 

(McCulloch, 2008, Dunson, 2000, Gueorguieva, 2001, Gueorguieva and Agresti, 2001, 

Dunson and Herring, 2005, Dunson et al., 2003, Goldstein et al., 2009). Typically, these 

involve the inclusion of shared (McCulloch 2008, Dunson 2000, Gueorguieva 2001, 

Dunson, 2000, Dunson and Herring 2005) or otherwise correlated (Gueorguieva and 

Agresti 2001, Goldstein et al., 2009) latent variables in ‘submodels’ for the different 

response variables. These latent variables accommodate dependency between the 
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response variables in the model. Moreover, by estimating the parameters governing the 

distribution of these latent variables, we can examine both the direction and degree of 

association between a patient’s responses. A further attractive feature of latent variable 

approaches is that they can be used to jointly model responses measured at different 

levels of a multilevel data structure  (Goldstein et al. 2009, Dunson et al., 2003). These 

methods do not appear to have been discussed in the context of multistage treatments 

however. 

Given the strict temporal ordering of the stages, an alternative strategy for the analysis of 

IVF data would be to explicitly model the relationships between the patient’s stage-

specific responses using a  series of conditional regression equations (Blalock, 1961). 

Under this sort of approach, each response variable would be included as a covariate in 

the regression equations for each of the subsequent, or ‘downstream’, responses. An 

advantage of these approaches is that they allow direct and indirect effects of the 

procedural responses on downstream outcomes to be distinguished (Pearl, 2001). A third 

strategy we might consider would be to combine the two approaches hitherto described, 

and simultaneously link submodels for each response using latent variables while 

including the response variables as covariates in the downstream response models. This 

would then resemble the endogeneous treatment models employed in the econometrics 

literature (Terza, 1998), or multiprocess models that have been employed in education 

research (Steele et al., 2009).  

In this paper, we develop methodology for the analysis of multistage IVF data, with mixed 

response types (count, ordinal, and binary) defined at different levels of a two-level data 

structure (patients and embryos). We describe three approaches in which distinct 

submodels are used for the various response variables. In the first, we include correlated 

latent variables and estimate the relationships between the responses. In the second, we 

adopt an outcome regression approach where response variables enter into regression 

equations for downstream response variables as covariates. This approach can be 

considered as a set of separate regression models. In the third, we consider an 

endogenous response model where we combine both of these approaches, by including 

upstream response variables as covariates in downstream submodels, and also allowing 

the submodel-specific latent variables to be correlated. The remainder of the manuscript 

is structured as follows. In section 10.3, we describe the models. In section 10.4 we 
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illustrate the use of the methods with an application to a routine clinical database. This is 

followed by a discussion in section 10.5. We conclude with some brief recommendations 

in section 10.6.  

 

 Models 10.3

Here we describe latent variable, outcome regression and endogenous response 

modelling approaches to the analysis of multistage IVF data. The approaches have several 

key features in common. First, they all include distinct submodels for each of the 

response variables considered in the cycle. We include six response variables for patient j 

= 1,…,n and their embryos i = 1,…,nj, and hence six submodels, in the current 

presentation: the number of oocytes (eggs) obtained from ovarian stimulation (a count, 

𝑦𝑗
𝑂); the fertilisation rate when the oocytes are mixed with sperm (𝑦𝑗

𝑀); two measures of 

embryo quality (cell evenness and degree of fragmentation 𝑦𝑖𝑗
𝐸and 𝑦𝑖𝑗

𝐹 , both measured 

using ordinal grading scales); an indicator denoting whether one or two embryos were 

transferred to the patient (denoted by a binary variable 𝑦𝑗
𝐷) and another (𝑦𝑗

𝐿) indicating 

whether or not the transfer of embryos resulted in the live birth of one or more babies (a 

live birth event, or LBE) (Figure 37). These are listed in temporal order, with the exception 

of the two embryo quality scales, which are coincident. We include the decision to 

transfer two embryos (known as double embryo transfer, or DET) in the model because it 

is an important predictor of transfer success which is partially determined by the 

outcomes of the earlier stages. A second feature common to the approaches is that once 

a patient has dropped out of the cycle, they do not appear in the submodels 

corresponding to the downstream responses. In the following, we ignore the possibility 

that each patient may undergo multiple cycles of IVF, noting that the models could be 

extended to three levels (embryos nested within cycles nested within women) by adding 

additional random scalar terms (Goldstein, 2011). 

 

  Correlated latent variable approach 10.3.1.

This approach requires the use of latent variable representations for the various 

submodels constituting the larger model. Each patient j has associated vectors of 
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responses 𝒀𝑗= (𝑦𝑗
𝑂, 𝑦𝑗

𝑀, 𝑦𝑖𝑗
𝐸 , 𝑦𝑖𝑗

𝐹 , 𝑦𝑗
𝐷 , 𝑦𝑗

𝐿) and of underlying latent variables Zj = 

(𝑧𝑗
𝑂 , 𝑧𝑗

𝑀, 𝑧𝑗
𝐸 , 𝑧𝑗

𝐹 , 𝑧𝑗
𝐷 , 𝑧𝑗

𝐿 ). Both of these vectors may be partially observed due to drop-out 

or outright failure before completion of the treatment. We then posit a multivariate 

Normal distribution for the latent variables, and estimate the elements of the correlation 

and variance-covariance matrices. We prefer to use distinct latent variables in each 

submodel to an approach based on a common latent variable which is scaled by  factor 

loadings in each submodel (eg: Dunson, 2000, McCulloch, 2008), as the linearity 

assumption required for the latter is too restrictive for present purposes (Gueorguieva, 

2001). For the latent variable approach, we do not include response variables as 

covariates in any of the submodels. The submodels for each stage are presented below, 

followed by the multivariate distribution of latent variables.  

 

 

Stimulation phase submodel  

 

For patient j, we assume the number of oocytes (eggs) obtained 𝑦𝑗
𝑂 follows a Poisson 

distribution and model the log of the rate parameter 𝜆𝑗
𝑜 in the usual way: 

 

log(𝜆𝑗
𝑜) = 𝑿𝑗

𝑜𝜷𝑜 + 𝑧𝑗
𝑜 (1) 

 

where 𝑿𝑗
𝑜

 is a row-vector of cycle-level covariates for patient j, 𝜷𝑜 is a corresponding 

vector of regression parameters and 𝑧𝑗
𝑜 is a patient-specific latent variable that captures 

overdispersion in the oocyte yield. This submodel is fitted to all patients who start the 

cycle.  

 

Fertilisation submodel 

 

We model the number of embryos obtained when oocytes are mixed with sperm 𝑦𝑗
𝑀 in 

terms of its rate parameter 𝜆𝑗
𝑀, again using a Poisson submodel: 

 

log(𝜆𝑗
𝑀) = log(𝑦𝑗

𝑂) + 𝑿𝑗
𝑀𝜷𝑀 + 𝑧𝑗

𝑀 (2) 
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where  𝑿𝑗
𝑀

, 𝜷
𝑀 and 𝑧𝑗

𝑀 are analogous to the corresponding terms in the stimulation 

model. We now include an offset term corresponding to the logarithm of the number of 

oocytes obtained in the linear predictor. This submodel is fitted to all patients who have 

oocytes mixed with sperm. In some cycles, the number of oocytes mixed with sperm is 

less than the number obtained, so there is an implicit assumption in the model that any 

oocytes which were not mixed could not have been successfully fertilized. The 

assumption is reasonable, since the decision not to mix an oocyte with sperm is almost 

always based on the fact that the oocyte has been identified as being degenerate.  

 

Embryo quality submodels 
 

We include two measures of embryo quality; cell evenness (𝑦𝐸) and degree of 

fragmentation (𝑦𝐹). These are ordinal 1 to 4 grading scales measured at the level of 

individual embryos. We model these using cumulative logit submodels. For embryo i 

(where i = 1,2,…,nj) nested in patient j we have, for k = 1,2,3: 

 

 

logit(𝛾𝑘𝑖𝑗
𝐸 ) =  𝛼𝑘

𝐸 − 𝑿𝑖𝑗
𝐸 𝜷𝑘

𝐸 − 𝑧𝑗
𝐸 

logit(𝛾𝑘𝑖𝑗
𝐹 ) =  𝛼𝑘

𝐹 − 𝑿𝑖𝑗
𝐹 𝜷𝑘

𝐹 − 𝑧𝑗
𝐹 

 

(3) 

 

 

where 𝑿𝑖𝑗
𝐸  and 𝑿𝑖𝑗

𝐹  are row-vectors of covariates, 𝜷𝑘
𝐸 and 𝜷𝑘

𝐹  are vectors of regression 

coefficients which may vary across the levels of k (relaxing the proportional odds 

assumption), and  𝑧𝑗
𝐸 and 𝑧𝑗

𝐹 are patient-level random effects (latent variables) which are 

identified due to the clustering of embryos within patients. 𝛾𝑘𝑖𝑗
𝐸  and 𝛾𝑘𝑖𝑗

𝐹  are cumulative 

probabilities of embryo i in patient j having a grade of k or lower for evenness and 

fragmentation degree respectively and  𝛼𝑘
𝐸  and 𝛼𝑘

𝐹 are threshold parameters, 

corresponding to the log-odds of the embryo having grade k or lower. These submodels 

are fitted to all embryos. 
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Double embryo transfer submodel 

 

In order to jointly model the binary response DET, denoting the number of embryos 

transferred, with the other response variables, we use a latent variable representation of 

a probit regression model (Albert & Chib 1993). Let 𝑦𝑗
𝐷 = 1 or 0 if patient j does or does 

not have DET, respectively. We define 𝑦𝑗
𝐷∗ as a latent continuous variable underlying the 

binary 𝑦𝑗
𝐷, such that:  

𝑦𝑗
𝐷 = {

1 𝑖𝑓𝑦𝑗
𝐷∗  ≥ 0

0 𝑖𝑓 𝑦𝑗
𝐷∗ < 0

 
(4) 

 

A linear regression submodel for the latent 𝑦𝑗
𝐷∗  is then used to estimate covariate effects: 

𝑦𝑗
𝐷∗ = 𝑿𝑗

𝐷𝜷𝐷 + 𝑧𝑗
𝐷 

 

𝑧𝑗
𝐷~𝑁(0, 1)    

 

(5) 

 

where 𝑿𝑗
𝐷 is a row-vector of patient-level covariates and 𝜷𝐷 is a vector of regression 

coefficients. Fixing the variance of 𝑧𝑗
𝐷 to be 1 is mathematically equivalent to specifying a 

probit model for the probability that a patient will have DET. We use this error term to 

link the DET submodel to the others. 

 

 

 Live birth event submodel 

 

As for DET, we use a latent probit representation for 𝑦𝑗
𝐿 = 1 or 0 corresponding to 

whether or not LBE obtains, with an underlying latent variable 𝑦𝑗
𝐿∗ , row vector of patient-

level covariates 𝑿𝑗
𝐿 and vector of regression coefficients 𝜷𝐿 . The error term 𝑧𝑗

𝐿 again has 

a variance of 1, and is used to link the LBE submodel to the others. The DET and LBE 

submodels are fitted to patients who undergo the transfer procedure.  
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Covariates in the latent variable approach 

 

An essential feature of the latent variable method is that none of the covariate vectors 

𝑿𝑗
𝑂

, 𝑿𝑗
𝑀

, 𝑿𝑖𝑗
𝐸

,   𝑿𝑖𝑗
𝐹

, 𝑿𝑗
𝐷

,  𝑿𝑗
𝐿

  include any of the  response variables in 𝒀𝑗 .  

 

Latent variable distribution 

 

We specify a multivariate Normal distribution for the latent variables to connect the 

submodels: 

[
 
 
 
 
 
 
 
𝑧𝑗

𝑂

𝑧𝑗
𝑀

𝑧𝑗
𝐸

𝑧𝑗
𝐹

𝑧𝑗
𝐷 

𝑧𝑗
𝐿 
]
 
 
 
 
 
 
 

~ 𝑀𝑉𝑁

(

 
 
 
 

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

,

[
 
 
 
 
 
 

𝜃𝑂
2 𝜂1𝜃𝑂𝜃𝑀 𝜂2𝜃𝑂𝜃𝐸 𝜂3𝜃𝑂𝜃𝐹 𝜂4𝜃𝑂 𝜂5𝜃𝑂

. 𝜃𝑀
2 𝜂6𝜃𝑀𝜃𝐸 𝜂7𝜃𝑀𝜃𝐹 𝜂8𝜃𝑀 𝜂9𝜃𝑀

. . 𝜃𝐸
2 𝜂10𝜃𝐸𝜃𝐹 𝜂11𝜃𝐸 𝜂12𝜃𝐸

. . . 𝜃𝐹
2 𝜂13𝜃𝐹 𝜂14𝜃𝐹

. . . . 1 𝜂15

𝜂5𝜃𝑂 … . . . . . . . . . 1 ]
 
 
 
 
 
 

 

)

 
 
 
 

 

 

 

 

 

(6) 

 

 

We note that this framework allows us to estimate the relationships between patient and 

embryo-level responses.  

 

 Outcome regression approach  10.3.2.

In the outcome regression approach, we fit the submodels presented for the latent 

variable method as separate regression models, such that we replace the covariance 

matrix (6) by a diagnonal matrix. By contrast to the latent variable approach, we now 

include the response variables in the linear predictors for the downstream submodels. In 

particular: we include the numbers of oocytes and embryos obtained as covariates in the 

submodels relating to embryo quality, DET and LBE; we include aggregated measures of 

embryo quality gradings as covariates in the DET and LBE submodels; and we include DET 

as a covariate in the LBE submodel. We use the shorthand ‘outcome-covariate’ to refer to 

instances of response variables appearing as covariates in downstream submodels. While 

the simplicity of fitting separate regression models makes this an attractive strategy, a 

weakness of this approach is that it rests on the standard regression assumption that 
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covariates are not endogenous, which is to say that they are not correlated with the error 

term in the submodel. This assumption is unlikely to hold if we include outcome-

covariates, due to the likelihood that the different response variables in the submodels 

share unmeasured predictors.      

 

 Combining the latent variable and outcome-regression approaches: an 10.3.3.

endogenous response model. 

A third approach we consider is a combination of the two approaches described above. 

We represent each response variable using a conditional regression equation including 

upstream response variables in the linear predictor, as for the outcome regression 

approach (section 10.3.2). However, we also allow the submodels to be joined through 

multivariate Normal latent variables as for the correlated latent variable method (section 

10.3.1). We estimate the variance-covariance matrix of this distribution, together with 

the regression parameters. This approach allows for the endogeneity of outcome-

covariates, since the correlation between response variables is incorporated through the 

latent variables (Heckman, 1978, Terza, 1998). Consequently, this approach allows for 

valid estimation of the effects of upstream upon downstream response variables 

(Skrondal and Rabe-Hesketh, 2004). Identifying endogenous response models can be 

challenging however (McConnell et al., 2008, Diggle et al., 2007). Standard strategies 

include fixing parameters in the model (for example, fixing elements of the latent 

correlation matrix to be zero) and including instrumental variables in some of the 

submodels (Xie 2000, Steele et al., 2009; Terza, 2009).  These variables should be strongly 

correlated with the response variable of the submodel in which they appear, but should 

not otherwise be associated with downstream responses.  

 

 Application of the methods to routinely collected IVF data. 10.4

 

 St Mary’s Data 10.4.1.

 We utilise the three methods in an application to a routine clinical database from St 

Mary’s Hospital Department of Reproductive Medicine, Manchester, England. Our aim 

was to establish whether the endogenous response model would allow us to infer more 
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about the internal structure of the IVF cycle compared to the simpler latent variable and 

outcome regression methods. The dataset includes 2962 initiated IVF treatments 

undertaken by 2453 women between 2013 and 2015, including quality data on 12,911 

embryos. For present purposes, we ignore the fact that some women underwent multiple 

cycles, noting that the current models could be extended to a three-level setting 

(Goldstein, 2011). Characteristics of the treatment cycles in the dataset are presented in 

Table 15. We include age and partner age in all of the submodels. We standardise these 

by subtracting the mean value and dividing by a standard deviation. The models are 

flexible enough to allow different covariates to be included in different submodels; we 

include attempt number in the number of oocytes and DET submodels, pooling 4th and 5th 

attempts due to small numbers in these categories. In the embryo evenness and 

fragmentation submodels, we also include an indicator variable denoting whether the egg 

was fertilized by injecting it with sperm, or by mixing in vitro. We suppose that covariate 

effects are constant across the levels of the ordinal embryo responses (proportional 

odds), although the methods can accommodate non-proportionality. We fit three models 

as described in section 10.3 (correlated latent variable model, outcome regression model, 

and endogenous response model). Figure 38 shows path diagrams for each of these. Note 

that we do not distinguish between linear and nonlinear relationships in this diagram. 
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Variable Summary 

No of cycles started 2962 

No of cycles where eggs mixed with sperm 2861 

No of gradable embryos 12911 

Number of embryo transfer procedures 2501 

Age (years) 33 

30 to 36 

21 to 43 

Partner Age (years) 35 

32 to 39 

19 to 72 

Attempt Number 

1 

2 

3 

4 

5 

 

2132 (72%) 

659 (22%) 

147 (5%) 

4 (0%) 

20 (0%) 

Number of eggs obtained per cycle started 9 

5 to 13 

0 to 50 

Number of gradable embryos per cycle started 3 

1 to 5 

0 to 19 

Number of embryos transferred per transfer 

procedure 

1 

2 

 

1049 (42%) 

1452 (58%) 

Live birth event per transfer procedure 

No 

Yes 

 

1692 (68%) 

809 (32%) 

Table 15: Characteristics of the clinical dataset analysed in 10.4. Median, interquartile range and range for continuous 
variables. 
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 Fitting the models 10.4.2.

 

We use the R (R Core Team, 2014) implementation of the Bayesian software Stan (Stan 

Development Team, 2014) to fit the models. While the benefits (or drawbacks, depending 

on one’s perspective) of Bayesian methods have been well rehearsed, our use of this 

software is primarily driven by pragmatism; the software is flexible and can accommodate 

complex multilevel models without the need to author custom sampling algorithms. We 

place weak Normal (0,10002) priors on the regression parameters in the submodels, with 

the exception of those included in the latent probit submodels (that is, those 

corresponding to DET, LBE). Given the fact that the latent responses in these submodels 

have a variance of 1, we place Normal (0, 22) priors on the regression parameters. These 

can be considered to be weakly informative prior distributions which improve efficiency 

in fitting the model by restricting the sampler to realistic values for these parameters 

(Gelman et al., 2014). We place weakly informative Cauchy (0,2.5) priors on the free 

variance parameters. Finally, we use an LKJ prior distribution for the latent correlation 

matrix, which is uniform over all possible correlation matrices (Stan Development Team, 

2017). We consider this appropriate given that estimation of this matrix is of particular 

interest in our latent variable models. We run the samplers for between two and three 

thousand iterations in each case, using three chains. We check convergence using the 

Gelman-Rubin convergence diagnostic (Gelman and Rubin, 1992) and using traceplots. In 

practice, we note that fitting the endogenous response model can take around 12 hours 

on an Intel Core i7-4810MQ 2.8 GHz processor with 16 GB of RAM. Stan code is provided 

in the online supplement available at   

https://www.biorxiv.org/content/early/2017/08/10/173534. 

 

 Results and interpretation 10.4.3.

The models produce a large number of parameter estimates relating to the covariates in 

each submodel and the relationships between stage-specific responses. In the following, 

we focus on the information provided by each approach regarding the relationships 

between response variables, and simply note here that estimates relating to other 

covariates were generally similar between the models. 
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Latent variable approach 
 

In the latent variable approach, information regarding the relationships between the 

variables is obtained through the estimated latent correlation structure (Table 2). We 

note that estimates derived from this model are generally consistent with current 

understanding. For example, the model suggests a positive relationship between embryo 

evenness on the one hand, and probability of LBE on the other (transferring higher quality 

embryos makes success more likely), although the association between fragmentation 

and LBE is less clear. The number of oocytes obtained from ovarian stimulation and 

fertilization rate also appear to be associated with LBE (reflecting advantages of having a 

larger pool of embryos from which to select). Upstream measures of success are 

negatively associated with DET, possibly due to the fact that the transfer of multiple 

embryos is usually employed to compensate for poor prognosis. On the other hand, it is 

not immediately obvious why fertilization rate is (quite strongly) negatively related to the 

number of oocytes obtained, and to embryo quality variables.  

More generally, we might ask whether the latent correlations arising from this approach 

can reasonably be given a causal interpretation. In relation to this, we note that the 

estimated correlation coefficients can be adjusted for confounding variables by including 

these in both of the relevant submodels. However, giving correlation coefficients a causal 

interpretation may be problematic even if they are appropriately adjusted, since their 

magnitude is in part determined by the variance of the covariables under consideration, 

which may vary across populations (Greenland et al., 1991). Moreover, the estimated 

correlation between any two response variables is not adjusted for other response 

variables in the model. As a result, it is not possible to distinguish genuine from spurious 

structural relationships attributable to confounding by other outcome variables. 

Consequently, the latent variable approach does not appear to yield interpretable 

estimates of the relationships between response variables. In section 4, we suggest that 

the latent variable approach may be more useful for the purpose of making multivariate 

predictions regarding IVF cycle outcomes. We note here that the latent variable approach 

accommodates both multilevel response data and participants with incomplete response 
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Figure 38: Path diagrams for 

three models of the IVF cycle: a 

latent variable model (top), an 

outcome regression model 

(middle), and an endogenous 

response model (bottom). 
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data. Correlations relating to embryo-level responses can be interpreted as measures of 

association with the patient’s mean values of fragmentation and evenness, while drop out 

is assumed to be ‘missing at random’ (MAR, Rubin 1976) given the observed responses 

and covariate data (McCulloch, 2008). 

 

Outcome regression approach 
 

The outcome regression approach provides information on relationships between 

response variables directly by way of estimated regression coefficients (Table 17). Unlike 

the correlation coefficients  from the latent variable model (Table 16), these are adjusted 

for upstream response variables as well as the other covariates in the submodel. The 

regression coefficients are also easier to interpret compared to the latent correlations 

and, moreover, may be given a causal interpretation. In the outcome regression 

approach, the parameter corresponding to fertilization rate in the LBE submodel is an 

estimate of the effect of increasing fertilization rates on LBE for a fixed number of 

oocytes, after blocking effects acting via the intermediate outcomes embryo quality or 

DET (Westreich and Greenland, 2013). The estimate (95% CI) is 0.14 (0.08 to 0.21), 

indicating a positive effect. For the estimates in the outcome regression model to be valid 

however, we must assume that there is no unmeasured confounding (Westreich and 

Greenland, 2013). For example, for our estimates of the effects of embryo evenness and 

fragmentation in the LBE submodel to be valid, we must assume that there are no 

unmeasured variables which influence both embryo quality and LBE. This is unrealistic in 

practice, as there are likely to be deleterious factors which influence both embryo 

viability and uterine receptivity (Roberts et al., 2010). Even if we believed that this could 

be adequately accounted for by the inclusion of age as a covariate, residual confounding 

due to measurement error and model misspecification (for example, including age as a 

linear term when its relationship with several of the responses may be nonlinear) would 

ensure that this assumption did not hold (Sterne et al., 2016). In the outcome regression 

approach, subgroups of participants enter each submodel according to their progress 

through (and drop out from) the stages of treatment. The model assumes therefore that 



 

301 
 

missing data can be accounted for by the predictor variables in each submodel (and are 

therefore MAR given these covariates). 

Endogenous response modelling approach 

 

The latent correlation matrix from the fitted model is not obviously interpretable (S Table 

21). Instead, we use the regression coefficients to investigate the relationships between 

variables (Table 17). As for the outcome-regression model, the regression coefficient 

corresponding to an outcome-covariate can be interpreted as an estimate of the effect of 

the outcome on the response variable in the submodel. This estimate applies for fixed 

values of any upstream (in relation to our outcome-covariate) variables, after blocking 

indirect effects through intermediate (downstream) response variables. We note that 

several of the estimates are inconsistent with those obtained from the outcome 

regression model. For example, the estimate (95% CI) corresponding to fertilization rate 

in the LBE submodel changes from 0.14 (0.08 to 0.21) in the outcome regression model to 

-0.17 (-0.35 to 0.03) in the endogenous response model. This suggests that the positive 

relationship between fertilization rate and LBE probability observed in the previous 

models might have been an artefact due to measurement error and unmeasured 

confounders; in the endogenous response model we conclude that an increased 

fertilization rate is probably associated with a reduced chance of a successful transfer. 

This might reflect an increased risk of selecting inferior embryos that are not identified by 

the grading scales used here. This contrast highlights the possibility of using endogenous 

response models to explore the extent of unmeasured confounding. In general, the 

estimates of outcome-covariate effects are less precise in the endogenous response 

model compared to the outcome regression model. This is analogous to the impact of 

allowing for, rather than ignoring, clustering of repeated measurements in a mixed 

model. To check the model, we plotted the observed responses in the data against 

replicated data drawn from the posterior predictive distribution (Figure 39). For embryo 

evenness, embryo fragmentation, DET and LBE, we plotted the observed frequency 

distributions with 95% intervals for the predictive distributions from the model. These 

checks suggested that the model was compatible with the study data, with the exception 

of DET, which systematically exceeded the model predictions by a small amount (Figure 
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39). This is because our prior for the DET intercept was too strong, resulting in 

underfitting. We would relax this in future applications. 

The endogenous response model is again a MAR approach, as missing data are assumed 

to be ignorable given observed response and covariate data. Since the endogenous 

response model provides interpretable estimates of effects of procedural responses on 

downstream events (unlike the latent variable model) while allowing the assumption that 

outcome-covariates are not endogenous to be relaxed (unlike the outcome regression 

model) we conclude that this approach is superior for the analysis of multistage IVF 

treatment data.  

 

 

 Number of 

oocytes 

Fertilization 

rate 

Embryo 

evenness 

Embryo 

fragmentation 

DET LBE 

Number  

of oocytes 

1 -0.62 

(-0.68 to -0.56) 

-0.01 

(-0.08 to 0.06) 

0.03 

(-0.03 to 0.09) 

-0.09 

(-0.16 to -0.02) 

0.16 

(0.09 to 0.23) 

Fertilization 

 rate 

-0.62 

(-0.68 to -0.56) 

1 -0.21 

(-0.31 to -0.11) 

-0.28 

(-0.37 to -0.19) 

0.01 

(-0.09 to 0.10) 

0.11 

(0.02 to 0.21) 

Embryo 

evenness 

-0.01 

(-0.08 to 0.06) 

-0.21 

(-0.31 to -0.11) 

1 0.87 

(0.84 to 0.89) 

-0.26 

(-0.32 to -0.20) 

0.06 

(0.00 to 0.12) 

Embryo 

fragmentation 

0.03 

(-0.03 to 0.09) 

-0.28 

(-0.37 to -0.19) 

0.87 

(0.84 to 0.89) 

1 -0.23 

(-0.29 to -0.18) 

0.02 

(-0.04 to 0.08) 

DET -0.09 

(-0.16 to -0.02) 

0.01 

(-0.09 to 0.10) 

-0.26 

(-0.32 to -0.20) 

-0.23 

(-0.29 to -0.18) 

1 0.04 

(-0.02 to 0.11) 

LBE 0.16 

(0.09 to 0.23) 

0.11 

(0.02 to 0.21) 

0.06 

(0.00 to 0.12) 

0.02 

(-0.04 to 0.08) 

0.04 

(-0.02 to 0.11) 

1 

Table 16: Estimates of association between IVF response variables from the correlated latent variable model. Posterior 
medians and 95% CIs. 

 

 

 Discussion 10.5

We have presented and compared several approaches for the analysis of multistage IVF 

data. All methods offer several advantages over those previously described, including the 

ability to incorporate mixed outcome types and responses defined at different levels of a 
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multilevel data structure. The approaches are flexible enough to accommodate different 

combinations of response types and different covariates in the various submodels, 

according to the particular research question under consideration. The models can be 

fitted in freely available Bayesian software (Stan Development Team, 2017) without the 

need to write custom sampling algorithms.  

 

The application to routinely collected clinical data highlighted a number of key differences 

between the approaches. The latent variable method can be used to examine 

relationships between covariates and stage-specific response variables. However, it is less 

useful for investigating the relationships between the responses, due to difficulties in 

interpreting the latent correlation coefficients and the fact that these cannot be adjusted 

for other response variables in the model. Both the outcome regression approach and the 

endogenous response model were preferable in this regard. Both provide easily 

interpretable regression coefficients and allow the causal structure of the sequence of 

responses to be represented. The validity of the estimates in the outcome regression 

approach rests upon an assumption of no unmeasured confounding however, which will 

always be implausible in practice. By contrast, the endogenous response model allows for 

the valid estimation of outcome-covariate effects by explicitly modelling the correlation 

between the error term and the response variable (Terza, 1998, Skrondal and Rabe-

Hesketh, 2004). We have assumed a multivariate Gaussian distribution for the latent 

variables connecting the submodels. This is unverifiable in practice. Accordingly, the 

model should not be seen as a panacea for confounding. It might be possible to improve 

robustness in this regard using more flexible latent variable distributions, such as 

mixtures of Normals (Komarek et al., 2010) or copula-based methods (de Leon and Wu, 

2011). We are aware that, in discussing the potential of these methods to quantify 

structural relationships in the IVF cycle, we have skirted the debate about whether or not 

it is meaningful to speak of causal effects of variables which are not directly modifiable 

(Greenland, 2017, Krieger and Davey Smith, 2016). The methods we present could be 

described using the language of causal mediation, so that instead of speaking of an effect 

of number of oocytes on downstream variables, for example, we could speak of the 

effects of predictors being mediated through the number of oocytes. A valid approach to 

mediation analysis in nonlinear models has been described by Pearl, (2011).  
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Identification of endogenous response models can be challenging. The inclusion of 

instrumental variables in some of the submodels is a common strategy to assist with 

identification. In our analysis, ‘attempt number’ acted as an instrumental variable in the 

number of oocytes and DET submodels and the binary variable ‘method of fertilization’ 

(either by mixing with sperm in vitro or by injecting the sperm directly into the oocytes) 

acted as an instrumental variable in the embryo quality submodels. We therefore 

assumed that attempt number affects the number of oocytes obtained and the decision 

to transfer two rather than one embryos (with previous failed attempts making it more 

likely both that higher doses of ovarian stimulation drugs will be used and that two rather 

than one embryo will be transferred) but does not influence the other response variables 

other than via these intermediaries. We also assumed that the method of fertilizing the 

oocytes influences the downstream outcomes solely through the quality of the resulting 

embryos. It is difficult to imagine how the method of fertilization could affect the cycle 

outcome by any other causal pathway. There could plausibly be unmeasured common 

causes of our instruments and downstream responses, which would undermine their 

validity as instruments. We note however that, since we handle endogenity through 

correlated latent variables in the model, validity of the instruments is not required. We 

anticipate that identification of endogenous response models is likely to be easier using 

larger datasets than that considered here, although as noted above fitting the models can 

be computationally expensive. It remains to identify a suitable reparametrization which 

may improve the speed of fitting the model, and to investigate the role of Bayesian prior 

regularization in improving efficiency (Gelman et al., 2014).  
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Parameter Outcome regression model Endogenous response model 

Number of oocytes submodel   
Intercept 2.09 (2.07 to 2.12) 2.09 (2.07 to 2.12) 
Age (SDs) -0.18 (-0.21 to -0.15) -0.18 (-0.21 to -0.15) 
Partner Age (SDs) 0.04 (0.01 to 0.06) 0.03 (0.01 to 0.06) 
Attempt number: 1

st
  0 0 

2
nd

  0.06 (0.01 to 0.12) 0.07 (0.02 to 0.12) 
3

rd
  0.17 (0.06 to 0.27) 0.15 (0.06 to 0.24) 

4
th

 or 5
th

  0.02 (-0.23 to 0.26) 0.14 (-0.10 to 0.37) 
Fertilization rate submodel   
Intercept -1.04 (-1.07 to -1.01) -0.96 (-0.99 to -0.93) 
Age (SDs) 0.06 (0.03 to 0.10) 0.07 (0.04 to 0.10) 
Partner Age (SDs) -0.02 (-0.05 to 0.02) -0.02 (-0.05 to 0.01) 
Embryo evenness submodel   
Intercepts (log odds of <=k): k=1 -4.33 (-4.47 to -4.18) -4.33 (-4.49 to -4.19) 
K=2 -1.37 (-1.47 to -1.28) -1.37 (-1.47 to -1.27) 
K=3 1.34 (1.24 to 1.43) 1.35 (1.25 to 1.45) 
Age (SDs) 0.02 (-0.04 to 0.09) 0.02 (-0.09 to 0.13) 
Partner Age (SDs) 0.04 (-0.02 to 0.11) 0.04 (-0.02 to 0.11) 
Sperm injected into egg -0.26 (-0.38 to -0.14) -0.26 (-0.38 to -0.15) 
Number of oocytes 0.09 (0.01 to 0.17)  0.24 (-0.10 to 0.60) 
Fertilisation rate -0.16 (-0.23 to -0.09) -0.45 (-0.66 to -0.21) 
Embryo fragmentation submodel   
Intercepts (log odds of <=k): k=1 -5.07 (-5.26 to -4.88) -5.07 (-5.25 to -4.88) 
K=2 -2.41 (-2.56 to -2.27) -2.40 (-2.54 to -2.26) 
K=3 -0.30 (-0.43 to -0.16) -0.28 (-0.41 to -0.15) 
Age (SDs) -0.12 (-0.21 to -0.03) -0.22 (-0.37 to -0.07) 
Partner Age (SDs) 0.07 (-0.02 to 0.16) 0.08 (-0.02 to 0.17) 
Sperm injected into egg -0.32 (-0.48 to -0.16) -0.32 (-0.48 to -0.15) 
Number of oocytes 0.22 (0.09 to 0.34) -0.09 (-0.53 to 0.42) 
Fertilisation rate -0.30 (-0.41 to -0.20) -0.57 (-0.90 to -0.20) 
Double embryo transfer submodel   
Intercept 0.13 (0.07 to 0.19) 0.08 (0.02 to 0.14) 
Age (SDs) 0.07 (0.00 to 0.13) -0.03 (-0.11 to 0.05) 
Partner Age (SDs) -0.03 (-0.09 to 0.03) -0.02 (-0.07 to 0.04) 
Attempt No: 1

st
  0 0 

2
nd

  0.25 (0.12 to 0.37) 0.26 (0.15 to 0.38) 
3

rd
  0.47 (0.23 to 0.70) 0.53 (0.31 to 0.76) 

4
th

 or 5
th

  0.63 (0.08 to 1.22) 0.68 (0.15 to 1.23) 
Number of oocytes -0.06 (-0.13 to 0.02) -0.25 (-0.48 to 0.01) 
Fertilization rate -0.02 (-0.09 to 0.05) -0.37 (-0.53 to -0.16) 
Embryo evenness -0.14 (-0.20 to -0.08) -0.09 (-0.15 to -0.02) 
Embryo fragmentation -0.12 (-0.18 to -0.06) -0.04 (-0.12 to 0.03) 
Live birth event submodel    
Intercept -0.55 (-0.64 to -0.47) -0.38 (-0.73 to -0.06) 
Age (SDs) -0.06 (-0.12 to -0.00) -0.12 (-0.20 to -0.04) 
Partner Age (SDs) -0.05 (-0.11 to 0.02) -0.03 (-0.09 to 0.03) 
Number of oocytes 0.04 (-0.03 to 0.13) -0.11 (-0.35 to 0.14) 
Fertilization rate 0.14 (0.08 to 0.21) -0.17 (-0.35 to 0.03) 
Embryo evenness 0.07 (0.01 to 0.13) 0.03 (-0.04 to 0.10) 
Embryo fragmentation 0.04 (-0.24 to 0.10) 0.04 (-0.04 to 0.11) 
DET 0.11 (0.00 to 0.21) -0.15 (-0.63 to 0.44) 

Table 17: Regression coefficients from outcome regression and endogenous response models for the IVF cycle. 
Posterior medians and 95% CIs. 
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Although the latent variable model was not useful for the purpose of investigating 

relationships between responses, models of this sort can be usefully employed for the 

purpose of making multivariate predictions (McCulloch, 2008). Using the posterior draws 

from the latent variable model fitted in section 10.4.3, we predicted the IVF cycle 

outcomes for a new cohort of patients with the same characteristics as those in our 

sample. We adopted a sequential approach whereby we predicted the number of oocytes 

obtained after stimulation for each patient for each draw from the posterior, before 

predicting the fertilization rate (and consequently, the number of embryos obtained) in 

those who were predicted to have any oocytes available. We then predicted the embryo 

quality for each embryo predicted to arise from the fertilization procedure, and so on. 

This approach allows us to predict the responses of a cohort of patients (or indeed, of an 

individual) as they pass through the stages of the IVF cycle, while incorporating the 

dependency between stage-specific responses. This is not a feature of existing prediction 

models (eg: Dhillon et al., 2016, Nelson and Lawlor, 2011), but may be useful to the 

clinician whenever there is interest not only in the overall outcome of treatment but also 

in ensuring that this is achieved in a safe manner. For example, large egg yields following 

ovarian stimulation are associated with increased risk of ovarian hyperstimulation 

syndrome (Steward et al., 2014), low birthweight and preterm birth (Sunkara et al., 2015). 

Consequently, a target of ovarian stimulation is to obtain a yield of oocytes which is 

neither too low to limit the overall likelihood of success, nor too high to represent a risk 

to the patient or offspring (La Marca and Sunkara 2014, La Marca et al., 2012). We can 

use the latent variable approach to predict the probability of a patient obtaining a safe 

yield of oocytes under a given treatment (eg: fewer than 15) and going on to have a live 

birth. Without conditioning on any patient or treatment covariates, we calculate this as 

23%, with a 95% prediction interval of 21 to 25%. It remains to establish whether there is 

any advantage offered by including outcome-covariates in the prediction setting.  

While all of the models presented here can accommodate embryo-level response 

variables, relationships between these and other outcomes are estimated using the mean 

value (Dunson et al., 2003). An undesirable consequence of this is the implicit assumption 

that the relationship between the evenness and fragmentation of an embryo is the same 
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as the relationship between the evenness of an embryo and the fragmentation of another 

from the same patient (Gueorguieva, 2001). This could be relaxed by using latent 

representations of the embryo grading submodels and allowing the embryo-level residual 

terms to be correlated (McCulloch, 2008, Gueorguieva and Sanacora, 2006). A related 

concern is the fact the models do not allow embryo-level responses to be included as 

covariates in the DET and LBE submodels without averaging the values over a patient’s 

embryos. The estimation of the effects of embryo characteristics on birth outcomes is 

complicated by the fact that if two embryos are transferred and only one implants, it is 

not known which of the two was successful. This partial observability problem motivates 

the use of embryo-uterine models which have been described from both Bayesian (Dukic 

and Hogan, 2002) and Likelihood (Roberts, 2007) viewpoints. It remains to incorporate 

the embryo-uterine approach in the joint modelling approaches described here. We also 

note that the mean value might not be the best summary measure to use for the purpose 

of including the embryo gradings as covariates in the DET and LBE submodels, since the 

best one or two are selected for transfer. An alternative measure capturing the highest 

available grades might be more appropriate future applications of the methods. 

Alternatively, we could include the quality of the transferred embryos as additional 

embryo-level response variables in the model. More generally, we note the fact that we 

included only a small number of covariates as a limitation of our analysis. We anticipate 

that differences between the outcome regression and endogenous response approaches 

will reduce if further covariates are available to control for confounding. This is a topic for 

future research.  

In these examples, we do not differentiate between twin and singleton births. The 

difference is clinically important, since twin pregnancies represent increased risk to the 

mother and infants. While we do not make this distinction here, any of the approaches 

we describe could be extended to accommodate a twin vs singleton submodel, fitted 

conditional on birth. Our live birth submodel also does not distinguish between failure 

due to transferred embryos not implanting in the uterine wall and failure due to 

implanted embryos not being sustained to term (ie: miscarriage). This may be an 

important distinction for some research questions. Separate submodels for embryo 

implantation and birth (conditional on implantation) could be included to this end.  
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All of the approaches presented here assume that any drop out from the cycle is MAR. 

This might be plausible, since drop out is usually the result of poor response or outright 

failure at one stage, preventing further progression. These response variables are 

included in the models. If however, the MAR assumption is deemed not to be 

appropriate, we could  jointly model the drop out process by defining a sequential probit 

submodel (Albert and Chib, 2001) corresponding to transitions through the stages, and 

allowing this to be correlated with the stage-specific responses (Steele et al., 2009). An 

alternative strategy would be to employ a selection modelling approach (Heckman, 1976, 

1978, Diggle and Kenward, 1994) where the probability of dropout at a given stage is 

related to the coincident (possibly unobserved) response variables by way of inclusion as 

covariates and/or correlated latent variables. Selection models are difficult to implement 

in Stan, which does not support discrete parameters, thereby precluding explicit 

modelling of missing egg counts or ordinal gradings. More generally, we might question 

whether missing-not-at-random (MNAR) methods are suitable in the present context. 

Given that downstream responses are defined conditional on upstream success, this may 

be construed as an example of the phenomenon known as truncation-by-death (Zhang 

and Rubin, 2003, Rubin, 2006). McConnell and colleagues (2008) note that MNAR 

methods implicitly assume an underlying value for missing outcomes, and discuss 

principal stratification approaches as an alternative. The applicability of principal 

stratification methods to complex multistage IVF data warrants consideration in future 

research.  

 

 Recommendations 10.6

When analysing multistage IVF data, the appropriate analytic method will depend on the 

exact research question under consideration. If interest is in estimating the effects of 

treatment and patient characteristics on outcomes, as well as the structural relationships 

between the responses at each stage, we recommend the use of the endogenous 

response model. Identification of the model is likely to require relatively large, detailed 

datasets, and researchers should be realistic about the scope to answer mechanistic 

research questions where this resource is not available. Questions of this sort may be 

tackled using the outcome regression approach, but researchers should be aware that 
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this involves the strong assumption that confounding has been adequately dealt with by 

measured covariates. In our simple example, we arrived at substantively different 

conclusions regarding the effects of procedural response variables on downstream 

outcomes in the outcome regression approach compared to the endogeneity approach, 

which allows for the correlation between procedural responses and unmeasured 

predictive factors. We would urge caution when interpreting the endogenous response 

model however, since inevitable misspecification of the latent variable distribution means 

that residual confounding will not be eliminated. Researchers should still attempt to 

reduce confounding through the inclusion of known variables as far as possible. Estimates 

corresponding to other (exogenous) covariates were similar between models. Where 

interest lies in making predictions about the patient journey through the stages of the IVF 

cycle, the relatively simple latent variable approach offers a framework to do this while 

taking the dependency between the stages into consideration. These approaches assume 

that drop out is MAR. We are unable to make a definitive recommendation regarding the 

most appropriate approach to modelling drop out at present, other than to state that 

MNAR methods assume that there is an underlying value for each missing response. This 

may not be appropriate where responses are strictly undefined. Finally, given the 

complexity of IVF, we note that any meritorious analysis will require substantial input 

from clinician and clinical scientist collaborators. 
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Figure 39: Observed response distribution against simulated datasets drawn from the posterior predictive distribution. ‘Error bars’ on barplots are 95% intervals based on the simulated 

proportions 
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 Supplementary material for Chapter 10.   10.8

 

 Number of 
oocytes 

Fertilization rate Embryo evenness Embryo 
fragmentation 

DET LBE 

Number of  
oocytes 

1 -0.58 
(-0.64 to -0.51) 

0.00 
(-0.35 to 0.29) 

0.29 
(-0.02 to 0.51) 

0.42 
(0.17 to 0.62) 

0.36 
(0.09 to 0.59) 

 
Fertilization  
rate 

-0.58 
(-0.64 to -0.51) 

1 0.34 
(-0.01 to 0.58) 

0.06  
(-0.23 to 0.32) 

0.27 
(-0.04 to 0.55) 

0.23 
(-0.05 to 0.50) 

Embryo  
evenness 

0.00 
(-0.35 to 0.29) 

0.34 
(-0.01 to 0.58) 

1 0.84 
(0.76 to 0.88) 

-0.06 
(-0.22 to 0.07) 

0.08 
(-0.06 to 0.21) 

Embryo  
fragmentation 

0.29 
(-0.02 to 0.51) 

0.06  
(-0.23 to 0.32) 

0.84 
(0.76 to 0.88) 

1 -0.02 
(-0.15 to 0.12) 

0.09 
(-0.05 to 0.22) 

DET 0.42 
(0.17 to 0.62) 

0.27 
(-0.04 to 0.55) 

-0.06 
(-0.22 to 0.07) 

-0.02 
(-0.15 to 0.12) 

1 0.32 
(-0.05 to 0.60) 

LBE 0.36 
(0.09 to 0.59) 

 

0.23 
(-0.05 to 0.50) 

0.08 
(-0.06 to 0.21) 

0.09 
(-0.05 to 0.22) 

0.32 
(-0.05 to 0.60) 

1 

S Table 21: Latent correlation matrix derived from the endogeneity model of the IVF cycle. All submodels 
adjusted for age, partner age. Number of oocytes and DET submodels additionally adjusted for attempt 
number. Embryo quality submodels additionally adjusted for method of fertilization (mixing eggs with 
sperm in vitro or injecting sperm directly into the egg). Posterior medians and 95% CIs. 
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Preamble In this paper we use the multistage modelling methodology developed in the 

thesis to investigate a clinical research question: does ovarian stimulation affect the 

uterine environment, making it less likely that embryos will implant and be carried to 

term? We add a submodel corresponding to the total dose of gonadotropins received by 

the patient, and use two submodels to represent the outcomes of the transfer process; 

embryo implantation and live birth event (given embryo implantation). We felt it was 

important to make the distinction between implantation (only) and live birth for the 

present study, since our interest is in the specific effects of stimulation on the patient. 

This research question is difficult to answer, because ovarian stimulation influences the 

clinical outcome by expanding the available embryo pool in addition to any physiological 

effects on the uterus. Separating these two causal pathways is difficult. Standard 

outcome regression (for example, a logistic regression of embryo implantation with dose, 

egg yield, embryo quantity and quality and other predictors included as covariates) would 

not be sufficient, because dose and the other response variables are endogenous. 

In this instance, the variables accounting for a large portion of the unmeasured 

confounding are known, but unmeasured; a patient’s ovarian reserve is used to 

determine the starting dose, and ongoing monitoring results in dose switching. We 

employ instrumental variables and correlated latent variables in an attempt to soak up 

residual confounding (see the illustrative simulation study in 7.7).  
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Outputs and Impact of the research This work has not yet been submitted to a journal, 

although an abstract has been submitted to the Fertility 2018 conference. 

 

 Abstract 11.1

 

Study question 

Does controlled ovarian stimulation (COS) with gonadotropins affect the uterine 

environment, making it less likely that transferred embryos will implant? 

 

Summary answer 

After controlling for confounding and the influence of COS on oocytes and embryos, we 

found that higher gonadotropin doses resulted in a reduced chance that embryos would 

implant and be carried to term. 

 

What is known already 

 It has been suggested that COS adversely affects endometrial angiogenesis, making it less 

likely that embryos will successfully implant and develop in utero. This motivates the idea 

of freezing all embryos, and delaying transfer until the woman has recovered from 

stimulation. Previous studies have suffered from methodological limitations, however. 

 

Study design, size, duration 

  Multistage modelling of a routine ART database.  Analysis allowed for COS to influence 

the final outcome both by increasing the pool of available embryos and by having 

physiological effects on the uterine environment, and for the separate estimation of 

these effects. Analysis also allowed for unmeasured confounding between gonadotropin 

dose and patient responses. 2968 cycles in 2457 patients in the three-year time period 

January 2013-December 2015 were included.  
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Participants/materials, setting, methods 

 Women aged 21-43 years commencing COS for IVF or ICSI at the Department of 

Reproductive Medicine, St Mary’s Hospital, Manchester, England. 

 

Main results and the role of chance 

 Total gonadotropin doses ranged between 224 and 7650IU, with a median of 2250IU. 

After controlling for both measured and unmeasured confounding due to patient 

characteristics, a dose-response relationship with embryo implantation was evident, with 

increasing total gonadotropin dose resulting in reduced likelihood of embryo implantation 

across the dose range. The likelihood that an implanted embryo would be sustained to 

birth was reduced up to a dose of around 1900IU, before levelling off. The dose effect 

appeared to be attenuated in blastocyst as opposed to cleavage stage transfers. 

 

Limitations, reasons for caution 

 While we adjusted both for measured confounding variables and for unmeasured 

confounding arising due to the fact that dose is selected on the basis of patient 

characteristics, there could still be some confounding due to measurement error in the 

model.  

 

Wider implications of the findings 

The present study supports the theory that COS has deleterious consequences for the 

uterine environment and for embryo implantation and development. While uncertainty 

remains as to the effectiveness of elective cryopreservation cycles, blastocyst transfers 

may mitigate these effects. 
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 Introduction 11.2

In controlled ovarian stimulation (COS), the ovaries are stimulated with gonadotropins. 

The aim is to furnish the embryologist with a sufficient number of oocytes to produce a 

robust pool of embryos. She can then select the most suitable candidate amongst these 

for transfer. However, while COS improves the chances of obtaining high quality embryos 

for fresh transfer and freezing, it is also associated with deleterious consequences, 

including risk of ovarian hyperstimulation syndrome (OHSS) (Steward, et al., 2014). 

Additionally, it has been suggested that COS might negatively impact upon uterine 

receptivity, making it less likely that transferred embryos will implant (Maheshwari and 

Bhattacharya, 2013). The evidence in support of this idea is limited however, since the 

task of distinguishing adverse effects on the uterine environment from the benefits of an 

expanded stock of embryos presents a considerable statistical challenge. Several 

observational studies have indirectly supported the hypothesis by suggesting increased 

risk of obstetric haemorrhage (Healy, et al., 2010), and of perinatal morbidity (Kalra, et 

al., 2011), in fresh compared to frozen transfer cycles. This has been attributed to the 

post-COS recovery period afforded to the woman by the latter. However, although the 

authors of these studies attempted to adjust for confounding, the multivariable 

regression methods they employed are not capable of untangling the causal web that 

includes COS, oocyte yield, embryo selection and cryopreservation amongst its strands 

(Blalock, 1961, Westreich and Greenland, 2013). Confounding is not the only impediment. 

Strong selection effects also obfuscate the interpretation of these studies. Patients who 

experience adverse outcomes after a fresh transfer might be less likely to undergo 

subsequent treatment. Susceptible patients will therefore be underrepresented in frozen 

cycles, wherever these are not restricted to initial elective treatments. In addition, 

patients who have had all embryos frozen in order to mitigate OHSS will not be present in 

fresh cycle data. Pregnancy rates in this group are generally high (Raziel, et al., 2009). 

Similarly, an extreme form of selection bias casts doubt on several recent studies 
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comparing obstetric and perinatal outcomes in frozen compared to fresh transfer cycles, 

including a recent highly cited meta-analysis (Maheshwari, et al., 2012), and a 

retrospective analysis of births from two RCTs (Shapiro, et al., 2016). This arises wherever 

miscarriages are excluded from analysis, since deleterious effects of treatment on 

gestation are likely to manifest in unsuccessful pregnancies. This is the same fallacy that 

led to erroneous conclusions in studies of folate supplementation for the prevention of 

neural tube defects (Hernan, et al., 2002).  Differential expression of genes involved in 

endometrial receptivity after COS has been suggested in an exploratory study (Haouzi, et 

al., 2009), although no confirmatory study appears to have been conducted to affirm 

these results. 

Consequently, much of the evidence suggesting that COS adversely affects the uterine 

environment in humans is indirect and methodologically limited. Nonetheless, there is 

understandably considerable interest in the effectiveness of frozen cycles (Maheshwari 

and Bhattacharya, 2013, Weinerman and Mainigi, 2014); a recent Cochrane Review found 

insufficient evidence to reach a conclusion in this regard from four completed RCTs, but 

identified 12 ongoing trials (Wong, et al., 2017). While it is unclear what this body of 

research will eventually show, it remains in the interim to identify the underlying causal 

mechanisms by which COS influences the IVF outcome, using appropriate statistical 

methods. Mechanistic understanding of complex interventions is necessary for explaining 

the success and failure of tested treatments, as well as for the design and testing of new 

treatments (Emsley, et al., 2010). 

Joint modelling techniques have long been used to estimate causal effects from 

observational data in the presence of selection biases and unmeasured confounding (eg: 

(Heckman, 1976, Heckman, 1978, Skrondal and Rabe-Hesketh, 2004, Terza, 1998). 

Sufficient computational power is now readily available to permit the adaptation and 

application of these methods to large datasets and complex multilevel data structures 

(Dunson, 2000, Dunson, et al., 2003, Goldstein, et al., 2009, Steele and Washbrook, 2013). 

This includes complex multistage treatments such as IVF. We developed a model in this 

framework in order to investigate how COS impacts downstream events, including oocyte 

yield, fertilisation, embryo morphology, implantation and development in utero. This 

approach allows us to distinguish ‘direct’ effects of COS from ‘indirect’ effects influencing 

the transfer outcome by way of expansion of the embryo pool and the quality of the 
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embryos selected for transfer (Skrondal and Rabe-Hesketh, 2004). It also estimates 

treatment effects while allowing for unmeasured confounding (Skrondal and Rabe-

Hesketh, 2004, Terza, 1998). We used the model to assess COS effects in a large routine 

ART database. We present the findings from our analysis and discuss the implications. 

 Materials and methods 11.3

 Population 11.3.1.

We included women aged over 18 years commencing COS for IVF at Department of 

Reproductive Medicine, St Mary’s Hospital, Manchester, England. The three-year time 

period January 2013-December 2015 was considered. Donor and banking cycles were 

excluded. Small numbers of cycles were excluded for no sperm (5 cycles), for loss to 

follow up (26), for missing embryo data (53) and missing starting dose (3).  

Cause of subfertility was established by an initial investigation. Male factor subfertility 

was established if the partner had azoospermia, surgical sperm extraction, or severe 

oligiospermia, or if sperm counts or other parameters were abnormal. Endometriosis was 

diagnosed where there was a history of endometriosis confirmed by laparoscopy. 

Endometrioma diagnosis was based on an ultrasound scan. If no cause was identified, we  

considered the reason for subfertility to be unexplained. 

 

 ART Protocols  11.3.2.

Patients were allocated to a starting dose of gonadotropins (either hMG, (Menopur, 

Ferring Pharmaceuticals Ltd, UK) or rFSH (Gonal F, Merck Serono Ltd)) on the basis of anti-

mullerian hormone levels, antral follicle count, and previous response to stimulation in 

either a GnRH Long Agonist or GnRH Antagonist protocol, depending on patient 

preference and clinician judgement based on individual clinical features. In the Long 

Agonist protocol, 0.25mg of Buserelin (Supercur, Sanofi Aventis Ltd., Surrey, UK) was 

administered daily starting from the mid-luteal phase (day 21 in a 28-day cycle) and 

continuing until the day of trigger. In the Antagonist protocol, 0.25mg of Cetrotide 

(Cetrorelix, Merck Serono Ltd, Middlesex, UK) was administered from day 5 until the day 

of trigger. The cycle was monitored by serum oestradiol (E2) and transvaginal ultrasound 

scan beginning on stimulation day 6 in cycles at high risk of excessive response and on day 



 

325 
 

8 otherwise. The daily FSH dose could be altered from day 6 on the basis of ultrasound 

results at the discretion of the clinician. The criteria for triggering of oocyte maturation 

were 3 or more follicles > 17mm on ultrasound and E2 < 15,000 pmol/L. In Long Agonist 

cycles, triggering was performed using 5,000 IU of HCG  (Pregnyl, Organon Laboratories 

Ltd., Cambridge, UK), or 10,000 IU in the event that 4 or fewer eggs were expected. The 

same triggering protocol was used in Antagonist cycles, unless an excessive response was 

anticipated, in which case an Agonist trigger was used.      

Oocyte pickup (OPU) took place around 34-36 hours following HCG trigger, guided by 

ultrasound. Aspirated oocytes were immediately identified and counted by an 

embryologist following the procedure. Embryos were graded according to the British 

Fertility Society and Association of Clinical Embryologist joint guidelines for elective single 

embryo transfer (Harbottle, et al., 2015). We use the day 2 gradings (approx. 66 hrs after 

insemination) for analysis. 

 

 Statistical Analysis 11.3.3.

Our model comprises several regression submodels corresponding to the sequence of 

treatments and responses arising in the fresh IVF cycle. The response variables in the 

model are total dose of gonadotropins administered, number of oocytes obtained in OPU, 

number of cleaved embryos obtained from fertilisation, embryo-level morphology 

grading (degree of fragmentation), the number of embryos transferred, embryo 

implantation (whether or not at least one implanted) and whether or not implanted 

embryos were carried to term (live birth event). The treatment variables total dose and 

number of embryos transferred are included as response variables because both are 

determined by patient characteristics and, in the case of the latter, additionally by 

outcome of stimulation, fertilisation and culture. In particular, dose is increased to 

compensate for anticipated poor ovarian response. This induces confounding by 

indication (Walker, 1996) between dose and patient outcomes, which must be corrected 

for. By including dose as a response variable, we can model the correlation introduced by 

the confounding. This allows us to adjust our estimated dose effects for confounders, 

even though some of these are not measured (Heckman, 1976, Heckman, 1978, Skrondal 

and Rabe-Hesketh, 2004).  
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The representations and regression types used for each response were: total dose (log 

transform, linear regression); number of oocytes (count variable, Poisson regression); 

fertilisation rate (count variable, Poisson regression with number of eggs as an offset); 

embryo fragmentation (ordinal 1 to 4 variable, cumulative logit regression); number of 

embryos transferred (1 or 2 embryos, probit regression); embryo implantation (any or 

none, probit regression); and live birth event (yes or no, probit regression). We included 

only fragmentation grade, and not evenness, as a measure of embryo quality because 

both were strongly correlated, meaning that it was not possible to statistically distinguish 

between these two in the model. Evenness has previously been suggested as having no 

additional predictive value after fragmentation has been taken into account (Stylianou, et 

al., 2012). We used the day 2 fragmentation grading in the analysis, since by day 3 some 

cleaved embryos are lost, with the potential to introduce truncation biases into the 

analysis. 

We represented total dose using regression splines, based on a B-spline basis, using the 

splines package in R (R Core Team, 2014). We included knots at the variable quintiles 

(Harrell Jr, 2015). This allows for nonlinear effects of dose on the downstream response 

variables. 

As noted above, we allowed for unmeasured confounding between the response 

variables in the model, by explicitly representing this as unexplained covariation (Terza, 

1998). We also minimised unmeasured confounding as far as possible by including known 

predictive variables in the appropriate submodels. Figure 40 gives full details of the 

covariates included in each part (submodel) of the model. S Table 22 to S Table 30 give 

additional information regarding their representational forms. Each submodel is fitted to 

those patients who did not drop out at an earlier stage of treatment (so that patients with 

no oocytes are not included in the submodels of fertilisation, embryo morphology, or in 

any of the submodels pertaining to embryo transfer, for example). This amounts to an 

assumption that missing data are explicable by the response and covariate data included 

in our model (Rubin, 1976). We use Bayesian regularisation to fit the model (Gelman, et 

al., 2014). Briefly, this allows complex models to be fitted by excluding a priori highly 

implausible parameter values from consideration. Even a large dose increase will not 

result in a 100-fold increase in the number of eggs obtained, for example. 11.7.3 gives the 

mathematical representation of the model and S Figure 3 shows a path diagram 
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corresponding to the model. We fitted the model in the software R (R Core Team, 2014) 

and rstan (Stan Development Team, 2014), by running 3 chains for 7000 iterations, and 

discarding the first half of each as a ‘warm up’ phase, which allows the sampler to locate 

and sample from the probability distributions corresponding to the model. Stan code to 

fit the model is provided in 11.7.3. Convergence of the model was assessed using 

traceplots and the Gelman-Rubin convergence diagnostic (Gelman and Rubin, 1992). We 

conducted extensive model checking, by plotting the posterior predictive distribution 

against the observed data (Gelman, et al., 1996).  

We conducted auxiliary analyses where we estimated the effects of gonadotropin dose 

on uterine receptivity separately in cleavage stage (day 2 or 3) and blastocyst (day 5) 

transfers. We reasoned that the effects of COS should be diminished in the latter, since 

the uterine environment has had more time to equilibrate. 

 

Figure 40: Outcome variables and covariates in seven submodels in the model. Covariates in blue boxes are variables 

appearing as both response variables and covariates in the model. 
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 Results 11.4

We identified 2968 eligible cycles on 2457 patients. Characteristics of the sample are 

shown in Table 18 and Table 19. The median (IQR) total dose of gonadotropins (IU) 

administered was 2250 (1581 to 3000).  

 Model checking 11.4.1.

The convergence of the model parameters was deemed to be good on the basis of 

Gelman-Rubin statistics and traceplots (S Table 22 to S Table 30), and S Figure 8 to S 

Figure 15). When convergence is achieved, Gelman-Rubin statistics should be very close 

to 1 (Gelman and Rubin, 1992), and the traceplots should resemble overlaid dense 

scribbles. Plots of the model predictions against the observed responses indicated that 

the model closely resembled the multivariate distribution of the data (S Figure 4 to S 

Figure 7). On the basis of these checks, we were satisfied both that our algorithm 

successfully represented our intended model, and that our model provided a good fit to 

the data. 

 

 Estimates from the fitted model 11.4.2.

The analysis produces a large number of estimates corresponding to the effects of 

different variables at different stages of treatment. While it is tempting to probe these for 

insights into the relationships between events in the cycle, we would stress that the 

present model was designed for a specific purpose: to validly identify the effects of COS 

upon downstream responses, with particular interest in effects on uterine receptivity. 

However, for completeness, we present regression tables corresponding to each 

response in the model in S Table 22 to S Table 30. 
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Variable Summary  

No of cycles started 2968 

Number of egg collections (% per started) 2901 (98%) 

Number of oocytes per cycle started 9 
5 to 13 
0 to 50 

Number of cycles with fertilization 
attempted  (% per started) 

2867 (97%) 

Method of fertilisation (per cycle with 
fertilisation attempt) 

 

IVF 1203 (42%) 
ICSI 1664 (58%) 

Number of cleaved embryos per cycle 
started 
 
 
Total cleaved embryos 

4 
2 to 6 

0 to 20 
 

12 936 

Day 2 embryo fragmentation grade (% per 
embryo) 

 

1 340 (3%) 

2 2077 (16%) 

3 4027 (31%) 

4 6492 (50%) 

Number of transfer procedures (% per 
started) 

2505 (84%) 

Number of embryos transferred per transfer  
1 1049 (58%) 
2 1456 (42%) 

Number of cycles where >=1 embryo 
implanted (% per cycle started) 

1101 (37%) 

Number of live birth events 811 (27%) 

Attempt Number  
1st 2136 (72%) 
2nd  661 (22%) 
3rd  147 (5%) 
4th  4 (0%) 
5th  20 (1%) 

Table 18: Characteristics of the sample. Frequency (%) for categorical variables. Median, 

interquartile range and range for continuous variables. Continued in Table 19 
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Variable Summary  

Age (yrs) 33 
30 to 36 
21 to 43 

Partner Age (yrs) 35 
32 to 39 
19 to 72 

Initial Dose of gonadotropins (IU) 188 
150 to 300 

75 to 450 

Total Dose of gonadotropins (IU) 2250 
1581 to 3000 

224 to 7650 

Downregulation protocol  
Antagonist 1612 (54%) 

Long Agonist 1356 (46%) 

OPU practitioner  
1 (Practitioners with < 30 procedures) 108 (4%) 

2 214 (7%) 
3 380 (13%)  
4 104 (4%) 
5 241 (8%) 
6 133 (4%) 
7 258 (9%) 
8 99 (3%) 
9 569 (19%) 

10 661 (22%) 
11 201 (7%) 

Transfer Practitioner  26 randomly allocated  
1 (Practitioners with < 20 procedures) 46 (2%) 

2 141 (6%) 
3 166 (7%) 
4 136 (5%) 
5 164 (7%) 
6 185 (7%) 
7 125 (5%) 
8 191 (8%) 
9 36 (1%) 

10 120 (5%) 
11 393 (16%) 
12 580 (23%) 
13 198 (8%) 

Diagnosis  
Tubal  460 (15%) 

Ovulation Failure 37 (1%) 
 Uterine Problem 29 (1%) 

Unexplained 809 (27%) 
Male factor 1506 (51%) 

Endometriosis 117 (4%) 
Anovulation  418 (14%) 

Table 19: Continuation of Table 18.  
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Figure 41: Distribution of starting dose and of total dose of gonadotropins (IU) in the dataset. 

 

 

 COS effects in the IVF cycle 11.4.3.

Since the effects of COS are complex and nonlinear, they cannot be summarised by a 

single number. Instead, they are best understood by way of visual representations. The 

estimated direct effects of COS upon downstream response variables are displayed in 

Figure 42, with a shaded band representing +/-1 standard error. These estimates are 

adjusted for model covariates, and are also corrected for unmeasured confounders (such 

as levels of ovarian reserve). They represent dose effects after averaging over the other 

variables; the dosing thresholds described here therefore correspond to hypothetical 

‘average’ patients.  The analysis indicates that higher total doses increase oocyte yield up 

to a point (around 1300IU), after which the effect becomes deleterious. There is some 

suggestion that fertilisation rate dips as dose increases in the low range (up to around 

1100IU), but then increases. This is the inverse of the relationship between dose and 

oocytes (however, the fertilisation curve may be misleading, and we explain why in the 

discussion). Our estimated curve corresponding to dose effects on embryo fragmentation 

suggests lower embryo quality with increasing dose, but is quite imprecise. We find that 
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increasing gonadotropin dose negatively affects embryo implantation, with a downwards 

trend across the dose range. A decreasing probability of an implanted embryo being 

sustained to term is observed up to a total dose of around 1900 IU, but is relatively flat 

thereafter. 

 

 

 COS effects in cleavage and blastocyst stage transfers 11.4.4.

Figure 43 shows the estimated dose effects on implantation and subsequent live birth 

event in cleavage stage (1580 cycles, 63%) and blastocyst (925 cycles, 37%) transfers. As 

expected, the dose effect on implantation appears to be more severe in cleavage 

compared to blastocyst transfers, albeit with considerable uncertainty. However, the 

patterns of effect on live birth are less distinct. This was evaluated in smaller numbers of 

cycles however (578 and 523, respectively), since it applies only to those cycles where 

embryos implant. 

 

 Discussion 11.5

We have conducted a multistage modelling study to determine the effects of COS 

throughout the IVF cycle. Ours is the first study on this topic to use statistical 

methodology capable of distinguishing between the various mechanisms by which COS 

affects treatment outcome. Our findings support and augment the limited evidence 

available to date, which has directly and indirectly suggested that COS adversely affects 

endometrial angiogenesis (Haouzi, et al., 2009, Healy, et al., 2010, Kalra, et al., 2011). Our 

analysis suggests that COS reduces the likelihood that transferred embryos will implant, 

with evidence of a nonlinear overall dose-response relationship.  The analysis also 

indicates that COS reduces the chance of an implanted embryo being carried to term. The 

probability appears to decrease as total dose increases, up to a dose of around 1900IU. 

Beyond this, we do not see evidence of any further reduction with increasing dose.  

Our model suggests increased oocyte yields with higher doses up to around 1300IU, and  
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Figure 42: Estimated direct effects (+/-1SE)  of total gonadotropin dose on responses in the model. Estimates are 

adjusted for confounding arising from measured and unmeasured covariables. 



 

334 
 

 

reduced yields beyond this. As described in the Statistical Analysis section, this estimate is 

adjusted for unmeasured confounders, such as ovarian reserve. This finding appears to be 

consistent with previous studies which have suggested a dose-response relationship 

between initial gonadotropin dose and stimulation response at low doses (Arce, et al., 

2014). Initial dose effects have previously been shown to be to be modest (Sterrenburg, 

et al., 2011). The present analysis suggests that dose effects become more defined over 

the stimulation period. While we also found an inverse relationship between dose and 

fertilisation (reduction in the fertilisation rate up to a dose of around 1100IU, followed by 

an increase), we are less confident that this can be attributed to COS per se. This is due to 

the (technical) point that the number of oocytes appears as an ‘offset’ rather than as a 

covariate in the fertilisation submodel. A consequence of this is that direct dose effects 

on fertilisation are not clearly distinguished from knock on effects following from the 

effects of dose on oocyte yield. Accordingly, the apparent effect of dose on oocytes could 

be attributable to larger yields including more immature oocytes (for example). As such, 

the dose curve we present for fertilisation should be interpreted with caution. Since a 

similar pattern is evident in several of the submodels (a steeper change in response at 

low doses, which then plateaus or inverts), characteristics of the oocytes and resulting 

embryos, rather than physiological effects of COS, might be offered as the probable 

explanation. However, our model is able to distinguish dose effects from the effects 

ensuing from having an increased pool of oocytes, for all of response variables other than 

fertilisation rate. 

 There is some suggestion that gonadotropin dosing has physiological effects up to a 

threshold, which manifest both in stimulation response and also in uterine receptivity. 

This is consistent with the hypothesis, discussed by Maheshwari and Bhattacharya (2013), 

that negative uterine effects of COS are due to oestrogen produced by growing follicles. A 

biological limit on the number of follicles activated by increasing gonadotropin dose (as 

suggested, for example, by Sterrenburg and colleagues, (2011)) would then explain both 

the observed relationship with the number of oocytes obtained and the relationship with 

uterine receptivity. Our subgroup analyses according to day of transfer appear to support 

the hypothesis; the negative effects of COS on implantation may be diminished in
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Figure 43: Estimated direct effects of gonadotropin on embryo implantation (left) and live birth event (right), adjusted for measured and unmeasured confounding. Shaded area = 1SE.
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blastocyst compared to cleavage stage transfers. These latter analyses suffer from 

imprecision however. 

Our findings broadly agree with previous studies; they support the case for treatment 

strategies to mitigate the disturbance caused by COS, such as elective cryopreservation of 

embryos. However, we would generally caution against using standard regression 

methods to answer mechanistic questions relating to IVF. IVF is a complex, multistage 

intervention, and special statistical methods are required to delineate the underlying 

causal network (Blalock, 1961, Terza, 1998). We would encourage quantitative 

researchers in this field to acquaint themselves with joint and structural modelling 

techniques, which can be used to estimate effects of interventions by different pathways 

in the presence of unmeasured confounding. That said, it is important to consider exactly 

how our analysis could be wrong, and what impact this would have on our conclusions. 

Any parametric analysis, whether it is a t-test or a complex multivariate regression like 

the one presented here, rests on the adequacy of the assumed model. We have 

confirmed that the model is consistent with the observed data, by simulating data from 

the fitted model and comparing to the actual responses. We have also conducted 

sensitivity analyses, where we relaxed the regularisation constraints used to fit the 

model, specifically by allowing greater variation in the model intercepts. Our dose 

estimates were robust to these investigations. Confounding always represents a major 

concern in non-randomised studies. Our approach is to adjust for confounding as far as 

possible by including covariates in the model, and to minimise unmeasured confounding 

by including correlated latent variables in the model (Skrondal and Rabe-Hesketh, 2004, 

Terza, 1998). This approach may not eliminate the problem entirely however. As such, we 

would recommend further studies of differing designs, to confirm that the effects we 

describe are independent of bias (ie: to adopt a triangulation approach, Lawlor, et al., 

2016). For example, an instrumental variable analysis of RCT data (Emsley, et al., 2010), 

would provide a useful adjunct to the present study.  

While the subjective embryo fragmentation grading we used as a measure of embryo 

quality in the model has been shown to be predictive of pregnancy (Stylianou, et al., 

2012), it will nevertheless be subject to some measurement error. In fact, our model 

estimates suggest that embryos with higher fragmentation gradings are less likely to 
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implant and to be sustained to term (S Table 27 and S Table 30). A disadvantage of 

transferring two embryos at once on implantation is also suggested (S Table 28). 

However, we conducted a sensitivity analysis where we additionally adjusted for the day 

of transfer (2, 3, or 5) in the implantation and live birth submodels. Clear advantages of 

higher grade embryos and of double embryo transfer on implantation were evident once 

we accounted for the fact that blastocysts are more likely to be transferred in singleton. A 

negative estimate for the effect of higher fragmentation grade on live birth was still 

observed however. Accordingly, we would repeat our advice against interpreting the 

other model parameters (Westreich and Greenland, 2013). 

We have not been able to investigate whether the dose effects we have described here 

vary according to the patient’s ovarian reserve in this study. While ovarian reserve tests 

are used for initial dose and protocol selection in our centre, the measurements 

themselves are not recorded in the database. If deleterious implantation effects are due 

to follicular development, then it is plausible that patients with low or high reserve might 

be differentially affected. This remains to be established; the present analysis describes 

only average effects of dose in the cohort. It should be noted that the question of 

whether or not dose effects differ according to ovarian reserve is not the same as the 

question of whether or not apparent dose effects are really attributable to confounding 

due to ovarian reserve. We are agnostic about the former, but our method rules out the 

latter. 

 Numerous RCTs of elective frozen transfers are underway, and until these studies are 

completed, the clinical effectiveness and safety of this strategy is unknown (Wong, et al., 

2017). Our findings suggest that, if these trials are negative, the cause will lie in effects of 

cryopreservation on embryos. The implications for patient safety must also be 

considered. In the interim, clinicians should be aware that the likelihood of successful 

implantation and gestation appears to be highest with low cumulative exposure to 

gonadotropins.  Wherever possible, a strategy of transferring blastocyst stage embryos 

appears to offer some protection against negative effects of COS.  
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S Figure 3: Path diagram showing the causal structure implied by the model. Arrows point from causal antecedents to 

consequents. Mathematical notation is presented in S File 1.  
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S Figure 4: Model checking. Observed distribution of total doses of gonadotropin (dark line) with simulated distributions 

from the posterior predictive distribution (clumped light grey lines).  

 

 

 

S Figure 5: Model checking. Observed distribution of number of eggs obtained (dark line) with simulated distributions 

from the posterior predictive distribution (clumped light grey lines). 
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S Figure 6: Model checking. Observed distribution of number of cleaved embryos (successful fertilisations)  

 

S Figure 7: Model checking for fragmentation grade, double embryo transfer (DET), implantation and live birth event 

(LBE). Bar heights show observed proportions in the dataset. ‘Error bars’ correspond to 95% prediction intervals for the 

proportions drawn from the posterior predictive distribution.  
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S Figure 8: Traceplots for dose submodel 
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S Figure 9: Traceplots for number of oocytes submodel 

 

S Figure 10: Traceplots for fertilisation rate submodel 
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S Figure 11: Traceplots for threshold parameters in embryo fragmentation submodel 

 

 

S Figure 12: Traceplots for regression coefficients in embryo fragmentation submodel. 
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S Figure 13: Traceplots for double embryo transfer submodel. 

 

S Figure 14: Traceplots for embryo implantation submodel 
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S Figure 15: Traceplots for live birth event submodel
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 Supplementary Tables for Chapter 11.   11.7.2.

Variables Comments Estimate 95% CI Effective sample size 
Gelman-Rubin 

convergence statistic 

Log(Total Dose) submodel Linear regression of log (dose)     

Intercept Mean log dose averaging over other covariates 7.254 6.882 to 7.618 2176 1.00 

Age Spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  0.094 -0.211 to 0.389 2854 1.00 
2  -0.037 -0.215 to 0.138 2974 1.00 
3  0.026 -0.187 to 0.230 2705 1.00 
4  0.101 -0.098 to 0.294 2727 1.00 
5  0.005 -0.216 to 0.223 2988 1.00 
6  0.097 -0.130 to 0.323 3349 1.00 
7  0.054 -0.230 to 0.342 4312 1.00 

Attempt No: 1st Categorical variable w/ 4 levels     
2nd   -0.036 -0.057 to -0.015 10500 1.00 
3rd  -0.059 -0.100 to -0.019 10500 1.00 

4th or 5th Combined due to low numbers 0.001 -0.093 to 0.097 10500 1.00 

Initial dose spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  0.084 -0.333 to 0.515 2639 1.00 
2  0.017 -0.306 to 0.344 2722 1.00 
3  0.184 -0.131 to 0.507 2643 1.00 
4  0.577 0.260  to 0.901 2609 1.00 
5  0.905 0.590  to 1.228 2631 1.00 
6  1.071 0.752 to 1.405 2709 1.00 
7  1.170 0.862 to 1.488 2574 1.00 

S Table 22: Characteristics of the log(total dose of gonadotropin) submodel, including details of covariates, parameter estimates and convergence diagnostics. Estimates (95% CIs) in this 
submodel correspond to changes in log(total dose) as each covariate varies. 
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Variables Comments Estimate 95% CI Effective sample size 
Gelman-Rubin 
convergence statistic 

Number of oocytes submodel Poisson regression     

Intercept Mean log oocytes per cycle 2.124 1.534 to 2.676 1616 1.00 

Long Agonist Protocol (vs Antagonist) Binary indicator variable 0.069 0.012 to 0.128 3662 1.00 

Total dose spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  0.998 0.525 to 1.492 2854 1.00 
2  0.532 0.161 to 0.910 1862 1.00 
3  0.541 0.169 to 0.933 1624 1.00 
4  0.469 0.087 to 0.865 1559 1.00 
5  -0.044 -0.477 to 0.408 1953 1.00 
6  -0.663 -1.250 to -0.091 2311 1.00 
7  -0.694 -1.318 to -0.062 2702 1.00 

HMG (vs FSH) Binary indicator variable -0.003 -0.063 to 0.056 3712 1.00 

Age spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  -0.294 -0.969 to 0.403 1577 1.00 
2  -0.231 -0.624 to 0.184 1756 1.00 
3  -0.446 -0.920 to 0.039 1517 1.00 
4  -0.449 -0.887 to 0.002 1578 1.00 
5  -0.466 -0.979 to 0.057 1682 1.00 
6  -0.681 -1.195 to -0.158 2049 1.00 
7  -0.062 -0.739 to 0.603 2229 1.00 

OPU practitioner (vs 10) Categorical variable w 11 levels. 10 used as 
reference category due to highest frequency. 

    

1 (Fewer than 30 ops)  -0.099 -0.215 to 0.015 5499 1.00 
2  -0.158 -0.242 to -0.073 4818 1.00 
3  -0.053 -0.124 to 0.015 3292 1.00 
4  -0.189 -0.311 to -0.075 4384 1.00 
5  0.087 0.005 to 0.169 1415 1.01 
6  0.040 -0.068 to 0.147 1005 1.00 
7  -0.135 -0.215 to -0.054 1937 1.00 
8  -0.094 -0.210 to 0.019 5535 1.00 
9  -0.040 -0.101 to 0.020 3616 1.00 
11  0.056 -0.032 to 0.147 715 1.01 

Diagnosis Seven binary indicators     
Tubal disease  0.000 -0.074 to 0.074 3117 1.00 
Ovulation Failure  -0.119 -0.327 to 0.090 1206 1.01 
Uterine problem  0.191 -0.020 to 0.401 3083 1.00 
Unexplained  0.013 -0.067 to 0.095 3080 1.00 
Male factor  0.004 -0.064 to 0.071 3153 1.00 
Endometriosis  -0.192 -0.310 to -0.077 4976 1.00 
Anovulation  0.122 0.050 to 0.196 2077 1.00 

S Table 23: Characteristics of the number of oocytes  submodel, including details of covariates, parameter estimates and convergence diagnostics. Estimates (95% CIs) in this submodel 
correspond to log(yield ratios). Yield ratios indicate the relative change in the number of oocytes as each covariate varies. 
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Variables Comments Estimate 95% CI Effective sample size 
Gelman-Rubin 

convergence statistic 

Fertilisation submodel Poisson with log(oocytes) as offset variable     

Intercept Mean log(cleaved embryos) averaging over other 
covariates -0.795 -1.566 to -0.011 1709 1.00 

Long Agonist Protocol (vs Antagonist) Binary indicator variable 0.083 0.010 to 0.152 3966 1.00 

Total dose spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  -1.084 -1.780 to -0.386 2610 1.00 
2  -0.097 -0.638 to 0.445 1558 1.00 
3  -0.398 -0.956 to 0.168 1404 1.00 
4  -0.347 -0.899 to 0.210 1296 1.00 
5  -0.223 -0.855 to 0.413 1678 1.00 
6  -0.047 -0.836 to 0.721 2036 1.00 
7  -0.420 -1.331 to 0.440 2455 1.00 

HMG (vs FSH) Binary indicator variable 0.070 -0.002 to 0.140 4499 1.00 

Age spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  0.155 -0.688 to 1.015 2051 1.00 
2  0.176 -0.308 to 0.669 2241 1.00 
3  0.149 -0.432 to 0.755 2006 1.00 
4  0.370 -0.165 to 0.918 2015 1.00 
5  0.007 -0.614 to 0.649 2203 1.00 
6  0.581 -0.072 to 1.245 2828 1.00 
7  -0.729 -1.620 to 0.160 2999 1.00 

Diagnosis Seven binary indicators     
Tubal disease  0.110 0.021 to 0.200 4750 1.00 

Ovulation Failure  -0.048 -0.309 to 0.200 10500 1.00 
Uterine problem  0.081 -0.168 to 0.320 5751 1.00 

Unexplained  0.020 -0.079 to 0.116 4398 1.00 
Male factor  0.030 -0.063 to 0.123 4712 1.00 

Endometriosis  0.064 -0.080 to 0.209 10500 1.00 
Anovulation  -0.041 -0.129 to 0.047 4210 1.00 

Partner Age (SDs) Standardised, linear term 0.001 -0.028 to 0.029 10500 1.00 

ICSI (vs IVF) Binary indicator variable -0.275 -0.341 to -0.209 10500 1.00 

S Table 24: Characteristics of the fertilisation  submodel, including details of covariates, parameter estimates and convergence diagnostics. Estimates (95% CIs) in this submodel correspond to 
log(rate ratios). Rate ratios indicate the relative change in the rate of cleaved embryos per oocyte as each covariate varies. 
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Variables Comments Estimate 95% CI Effective sample size 
Gelman-Rubin 

convergence statistic 

Embryo Fragmentation submodel Cumulative logit model     

1st threshold parameter Odds of grade 1 -6.309 -9.077 to -3.481 380 1.01 
2nd threshold parameter Odds of grade 2 or less -3.643 -6.414 to -0.837 380 1.01 
3rd threshold parameter Odds of grade 3 or less -1.524 -4.294 to 1.294 379 1.01 

Long Agonist Protocol (vs Antagonist) Binary indicator variable -0.083 -0.300 to 0.136 1816 1.00 

Total dose spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  -0.337 -2.826 to 2.191 631 1.01 
2  -0.385 -2.060 to 1.364 720 1.01 
3  -0.354 -2.139 to 1.428 729 1.00 
4  -0.669 -2.425 to 1.114 714 1.00 
5  -0.204 -2.163 to 1.744 1365 1.00 
6  -1.652 -4.025 to 0.677 957 1.00 
7  -1.511 -4.118 to 1.025 1556 1.00 

HMG (vs FSH) Binary indicator variable -0.048 -0.269 to 0.174 2532 1.00 

Age spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  0.007 -2.916 to 2.903 1689 1.00 
2  -0.505 -2.326 to 1.278 1849 1.00 
3  -0.108 -2.225 to 2.009 1298 1.00 
4  -0.243 -2.228 to 1.732 1184 1.00 
5  -0.568 -2.702 to 1.605 1152 1.00 
6  -0.436 -2.580 to 1.721 1019 1.00 
7  -0.241 -2.479 to 2.026 1497 1.00 

Oocyte spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  -0.363 -1.592 to 0.839 1261 1.00 
2  -0.586 -1.606 to 0.423 124 1.04 
3  -0.315 -1.680 to 1.037 99 1.05 
4  -0.678 -2.301 to 0.875 80 1.06 
5  0.362 -1.907 to 2.653 86 1.06 
6  -0.936 -4.014 to 2.132 117 1.04 
7  -2.875 -6.918 to 0.997 211 1.02 

Partner Age (SDs) Standardised, linear term 0.059 -0.033 to 0.151 3388 1.00 

ICSI (vs IVF) Binary indicator variable -0.193 -0.354 to -0.036 3201 1.00 

S Table 25: Characteristics of the embryo fragmentation submodel, including details of covariates, parameter estimates and convergence diagnostics. Estimates (95% CIs) in this submodel 
correspond to log(odds ratios). Odds ratios indicate the relative change in the odds of the embryo having a higher, rather than a lower grade as each covariate varies. 
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Variables 
 

Comments Estimate 95% CI Effective sample size 
Gelman-Rubin 

convergence statistic 

Double embryo transfer submodel Probit regression model     

Intercept Mean Z score, after averaging over other variables -1.711 -2.787 to -0.683 2136 1.00 

Age spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  0.423 -1.039 to 1.949 2619 1.00 
2  0.230 -0.648 to 1.158 2674 1.00 
3  0.430 -0.587 to 1.494 2371 1.00 
4  0.169 -0.778 to 1.167 2392 1.00 
5  0.544 -0.527 to 1.663 2656 1.00 
6  0.718 -0.378 to 1.838 2772 1.00 
7  0.718 -0.475 to 1.936 2710 1.00 

Attempt number: 1st Categorical variable w/ 4 levels     
2nd   0.314 0.182 to 0.444 10500 1.00 
3rd   0.525 0.255 to 0.804 3094 1.00 

4th or 5th  Combined due to low numbers 0.684 0.071 to 1.336 4665 1.00 

Number of cleaved embryos spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  0.812 -2.251 to 3.979 7749 1.00 
2  2.931 1.477 to 4.376 7094 1.00 
3  1.603 1.147 to 2.040 1579 1.00 
4  1.341 0.966 to 1.704 396 1.01 
5  0.221 -0.532 to 0.980 362 1.01 
6  1.472 0.293 to 2.639 793 1.00 
7  0.313 -1.153 to 1.797 656 1.01 

Number of oocytes spline Spline with three knots. Not directly interpretable.     
1  1.148 0.173 to 2.130 1340 1.00 
2  -1.573 -2.634 to -0.494 1511 1.00 
3  1.369 -0.087 to 2.809 1989 1.00 

Mean fragmentation of embryos selected for 
transfer 

Standardised, linear variable 
-0.152 -0.233 to -0.071 3961 1.00 

S Table 26: Characteristics of the double embryo transfer submodel, including details of covariates, parameter estimates and convergence diagnostics. Estimates (95% CIs) in this submodel 
correspond to log(odds ratios). Odds ratios indicate the relative change in the odds of having two rather than one embryos being transferred. 
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Variables Comments Estimate 95% CI Effective sample size 
Gelman-Rubin 

convergence statistic 

Embryo implantation submodel Probit regression submodel     

Intercept Mean Z score, after averaging over other variables 0.112 -1.139 to 1.379 2610 1.00 

Long Agonist (vs Antagonist) Dummy indicator variable -0.041 -0.183 to 0.103 10500 1.00 

Total dose spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  -1.227 -2.521 to 0.083 2981 1.00 
2  -0.431 -1.402 to 0.500 2838 1.00 
3  -0.900 -1.854 to 0.064 2646 1.00 
4  -0.779 -1.726 to 0.159 2659 1.00 
5  -1.335 -2.405 to -0.241 3839 1.00 
6  -1.498 -2.861 to -0.146 4107 1.00 
7  -0.939 -2.378 to 0.452 4461 1.00 

HMG (vs FSH) Binary indicator variable 0.095 -0.047 to 0.237 10500 1.00 

Age spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  -0.199 -1.596 to 1.198 3119 1.00 
2  0.408 -0.434 to 1.251 3366 1.00 
3  -0.098 -1.061 to 0.875 2801 1.00 
4  0.380 -0.516 to 1.304 2862 1.00 
5  -0.350 -1.383 to 0.669 2992 1.00 
6  0.521 -0.523 to 1.587 2919 1.00 
7  -0.923 -2.165 to 0.312 3543 1.00 

Number of cleaved embryos spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  -0.180 -3.251 to 2.862 7743 1.00 
2  0.918 -0.574 to 2.404 3076 1.00 
3  0.665 0.158 to 1.128 733 1.00 
4  0.591 0.168 to 1.004 336 1.01 
5  0.854 0.043 to 1.649 337 1.01 
6  0.924 -0.355 to 2.183 427 1.01 
7  -0.393 -1.965 to 1.149 629 1.00 

Number of oocytes spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  -0.016 -1.070 to 1.054 562 1.00 
2  0.143 -1.110 to 1.401 808 1.00 
3  -0.067 -1.686 to 1.598 899 1.00 
4  0.122 0.042 to 0.201 2250 1.00 
5  -0.178 -0.614 to 0.287 327 1.00 
6  -0.111 -0.490 to 0.272 10500 1.00 
7  0.018 -0.210 to 0.245 10500 1.00 

Mean fragmentation of embryos selected for 
transfer 

Standardised, linear term 
-0.177 -0.401 to 0.038 10500 1.00 

S Table 27: Characteristics of the embryo implantation submodel, including details of covariates, parameter estimates and convergence diagnostics. Estimates (95% CIs) in this submodel 
correspond to change in ‘Z scores’, which correspond to changes in probability that one or more of the transferred embryos will implant as each covariate varies. Continues in S Table 28: 
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Variables Comments Estimate 95% CI Effective sample size 
Gelman-Rubin 

convergence statistic 

Embryo implantation submodel, continued Probit regression submodel     

 
Double embryo transfer (vs single) 

Binary indicator variable 
-0.582 -0.841 to -0.332 10500 1.00 

Practitioner performing transfer (vs 12) Categorical variable w 13 levels. 12 used as 
reference category due to highest frequency. 

    

1 (fewer than 20 procedures)  0.040 -0.176 to 0.262 10500 1.00 
2  0.184 -0.029 to 0.388 10500 1.00 
3  0.006 -0.245 to 0.247 10500 1.00 
4  0.130 -0.079 to 0.341 10500 1.00 
5  0.175 -0.226 to 0.590 10500 1.00 
6  0.210 -0.036 to 0.459 10500 1.00 
7  0.015 -0.151 to 0.177 6651 1.00 
8  0.029 -0.178 to 0.234 10500 1.00 
9  -0.035 -0.212 to 0.149 3443 1.00 

10  -0.095 -0.594 to 0.398 10500 1.00 
11  -0.444 -1.020 to 0.108 10500 1.00 
13  0.020 -0.174 to 0.210 4983 1.00 

Diagnosis Seven binary indicators     
Tubal disease  -0.043 -0.211 to 0.127 2165 1.00 

Ovulation Failure  -0.119 -0.397 to 0.162 10500 1.00 
Uterine problem  0.010 -0.172 to 0.195 4048 1.00 

Unexplained  -1.711 -2.787 to -0.683 2136 1.00 
Male factor  0.423 -1.039 to 1.949 2619 1.00 

Endometriosis  0.230 -0.648 to 1.158 2674 1.00 
Anovulation  0.430 -0.587 to 1.494 2371 1.00 

S Table 28: Continuation of S Table 27: Characteristics of the embryo implantation submodel, including details of covariates, parameter estimates and convergence diagnostics. Estimates 
(95% CIs) in this submodel correspond to change in ‘Z scores’, which correspond to changes in probability that one or more of the transferred embryos will implant as each covariate varies. 
Continues in S Table 28: 
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Variables Comments Estimate 95% CI Effective sample size 
Gelman-Rubin 

convergence statistic 

Live birth event submodel Probit regression submodel     

Intercept Mean Z score, after averaging over other 
variables 1.826 0.203 to 3.444 1681 1.00 

Long Agonist (vs Antagonist) Dummy indicator variable -0.058 -0.286 to 0.174 10500 1.00 

Total dose spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  -0.893 -2.712 to 0.794 3500 1.00 
2  -0.062 -1.279 to 1.111 3087 1.00 
3  -0.986 -2.198 to 0.130 2556 1.00 
4  -0.589 -1.795 to 0.523 2885 1.00 
5  -1.007 -2.454 to 0.402 3429 1.00 
6  -0.548 -2.445 to 1.362 3828 1.00 
7  -0.686 -2.320 to 1.027 4157 1.00 

HMG (vs FSH) Binary indicator variable -0.098 -0.333 to 0.133 10500 1.00 

Age spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  -0.050 -1.825 to 1.657 3915 1.00 
2  -0.189 -1.314 to 0.945 4168 1.00 
3  0.329 -0.875 to 1.488 3307 1.00 
4  -0.283 -1.416 to 0.798 3276 1.00 
5  0.564 -0.707 to 1.831 3615 1.00 
6  -1.111 -2.663 to 0.332 3362 1.00 
7  0.777 -1.186 to 2.908 6192 1.00 

Number of cleaved embryos spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  0.997 -1.279 to 3.285 5716 1.00 
2  -0.598 -1.737 to 0.549 1257 1.00 
3  0.345 -0.351 to 1.055 500 1.00 
4  0.265 -0.373 to 0.932 284 1.01 
5  -0.530 -1.558 to 0.565 276 1.01 
6  1.120 -0.489 to 2.746 355 1.01 
7  -1.321 -3.273 to 0.542 518 1.01 

S Table 29: Characteristics of the live birth event submodel, including details of covariates, parameter estimates and convergence diagnostics. Estimates (95% CIs) in this submodel correspond 
to change in ‘Z scores’, which correspond to changes in probability that any of the implanted embryos will be sustained, resulting in a live birth event, as each covariate varies. Continued in S 
Table 30 
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Variables Comments Estimate 95% CI Effective sample size 
Gelman-Rubin 

convergence statistic 

Live birth event submodel, continued Probit regression submodel     

Number of oocytes spline Spline with knots at quintiles. Not directly 
interpretable. 

    

1  -0.866 -2.201 to 0.461 4824 1.00 
2  -0.158 -0.983 to 0.657 2769 1.00 
3  -0.672 -1.636 to 0.240 1538 1.00 
4  -0.094 -1.029 to 0.863 802 1.00 
5  -0.987 -2.320 to 0.315 705 1.00 
6  0.237 -1.737 to 2.162 901 1.00 
7  1.802 -0.814 to 4.815 3774 1.00 

Mean fragmentation of embryos selected for 
transfer 

Standardised, linear term 
-0.127 -0.260 to 0.002 1371 1.00 

Double embryo transfer (vs single) Binary indicator variable 0.101 -0.495 to 0.667 184 1.02 

Practitioner performing transfer (vs 12) Categorical variable w 13 levels. 12 used as 
reference category due to highest frequency. 

    

1 (fewer than 20 procedures)  0.039 -0.599 to 0.735 10500 1.00 
2  0.319 -0.097 to 0.754 5474 1.00 
3  -0.352 -0.721 to 0.013 10500 1.00 
4  -0.025 -0.550 to 0.530 2640 1.00 
5  -0.088 -0.423 to 0.273 6930 1.00 
6  -0.195 -0.500 to 0.123 10500 1.00 
7  0.110 -0.290 to 0.525 6944 1.00 
8  -0.227 -0.558 to 0.103 6742 1.00 
9  -0.399 -0.965 to 0.179 10500 1.00 

10  -0.038 -0.402 to 0.336 10500 1.00 
11  -0.323 -0.579 to -0.070 6169 1.00 
13  0.091 -0.257 to 0.438 6460 1.00 

Diagnosis Seven binary indicators     
Tubal disease  -0.118 -0.398 to 0.163 3139 1.00 

Ovulation Failure  -0.447 -1.213 to 0.339 10500 1.00 
Uterine problem  -0.565 -1.516 to 0.385 10500 1.00 

Unexplained  -0.062 -0.366 to 0.233 5972 1.00 
Male factor  0.023 -0.242 to 0.285 4081 1.00 

Endometriosis  -0.090 -0.566 to 0.385 10500 1.00 
Anovulation  0.008 -0.286 to 0.300 4800 1.00 

S Table 30: Continuation of S Table 29. Characteristics of the live birth event submodel, including details of covariates, parameter estimates and convergence diagnostics. Estimates (95% CIs) 
in this submodel correspond to change in ‘Z scores’, which correspond to changes in probability that any of the implanted embryos will be sustained, resulting in a live birth event, as each 
covariate varies.
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 Additional Supplementary Material for Chapter 11.   11.7.3.

 

Supplementary Material 1: Mathematical presentation of the model. 

 

Following the notation of Journal Article 5 (Chapter 10): 

 

Dose submodel 

 

For patient j, we model the logarithm of the total dose of gonadotropins (𝑦𝑗
𝑇), using linear 

regression: 

 

𝑦𝑗
𝑇 = 𝑿𝑗

𝑇𝜷𝑇 + 𝑧𝑗
𝑇 

 

where  𝑿𝑗
𝑇

 is a row-vector of covariates, 𝜷𝑇is a vector of regression parameters, and 𝑧𝑗
𝑇 is the 

model residual. 

 

Number of oocytes submodel  

For patient j, we model the number of oocytes (𝑦𝑗
𝑂) using Poisson regression, with 

𝑦𝑗
𝑂~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑗

𝑜) : 

 

log(𝜆𝑗
𝑜) = 𝑿𝑗

𝑜𝜷𝑜 + 𝑼𝑗
𝑜𝜹𝑜 + 𝑧𝑗

𝑜  

 

Where 𝜆𝑗
𝑜is the rate parameter, 𝑿𝑗

𝑜
 is a row-vector of covariates, 𝜷𝑜 is a vector of regression 

parameters and 𝑧𝑗
𝑜 is a patient-specific latent variable.  𝑼𝑗

𝑜
  is a row-vector of ‘outcome-

covariates’ corresponding to upstream response variables (in this case, a spline representation of 

total dose) and 𝜹𝑜 is a corresponding vector of regression parameters..  

 

Fertilisation submodel 

We model the number of embryos obtained when oocytes are mixed with sperm 𝑦𝑗
𝑀 in terms of 

its rate parameter 𝜆𝑗
𝑀, again using a Poisson submodel: 

 

log(𝜆𝑗
𝑀) = log(𝑦𝑗

𝑂) + 𝑿𝑗
𝑀𝜷𝑀 + 𝑼𝑗

𝑀𝜹𝑀 + 𝑧𝑗
𝑀  

 

where 𝑿𝑗
𝑀

, 𝜷
𝑀 and 𝑧𝑗

𝑀 are analogous to the corresponding terms in the stimulation model. We 

now include an offset term log(𝑦𝑗
𝑂)  corresponding to the logarithm of the number of oocytes 

obtained in the linear predictor. 𝑼𝑗
𝑀

  is a row-vector of ‘outcome-covariates’ corresponding to 

upstream response variables (in this case, a spline representation of total dose) and 𝜹𝑀 is a 

corresponding vector of regression parameters..  
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Embryo fragmentation submodel 

 

Degree of fragmentation (𝑦𝐹) is an ordinal 1 to 4 grading scale. We model this using cumulative 

logit regression. For embryo i (where i = 1,2,…,nj) and patient j we have, for k = 1,2,3: 

 

 

logit(𝛾𝑘𝑖𝑗
𝐹 ) =  𝛼𝑘

𝐹 − 𝑿𝑖𝑗
𝐹 𝜷𝐹 + 𝑼𝑗

𝐹𝜹𝐹  − 𝑧𝑗
𝐹  

 
 

 

where 𝑿𝑖𝑗
𝐹  is a row-vector of covariates, 𝜷𝑘

𝐹  is a vector of regression coefficients and  𝑧𝑗
𝐹 is a 

random effect. 𝛾𝑘𝑖𝑗
𝐹  is a cumulative probability of embryo i in patient j having a grade of k or lower 

for fragmentation degree and 𝛼𝑘
𝐹 is a threshold parameter, corresponding to the log-odds of the 

embryo having grade k or lower.  𝑼𝑗
𝐹

  is a row-vector of ‘outcome-covariates’ corresponding to 

upstream response variables (in this case, spline representations of total dose and number of 

oocytes) and 𝜹𝐹 is a corresponding vector of regression parameters. 

 

 

Double embryo transfer submodel 

 

We model double embryo transfer using probit regression. Let 𝑦𝑗
𝐷 = 1 or 0 if patient j does or 

does not have DET, respectively. We define 𝑦𝑗
𝐷∗ as a latent continuous variable underlying the 

binary 𝑦𝑗
𝐷, such that:  

𝑦𝑗
𝐷 = {

1 𝑖𝑓𝑦𝑗
𝐷∗  ≥ 0

0 𝑖𝑓 𝑦𝑗
𝐷∗ < 0

 
 

 

A linear regression submodel for the latent 𝑦𝑗
𝐷∗  is then used to estimate covariate effects: 

 

𝑦𝑗
𝐷∗ = 𝑿𝑗

𝐷𝜷𝐷 + 𝑼𝑗
𝐷𝜹𝐷 𝑧𝑗

𝐷 

 

𝑧𝑗
𝐷~𝑁(0, 1)    

 

 

 

where 𝑿𝑗
𝐷 is a row-vector of patient-level covariates and 𝜷𝐷 is a vector of regression coefficients. 

𝑼𝑗
𝐷

  is a row-vector of ‘outcome-covariates’ corresponding to upstream response variables (in this 

case, spline representations of total dose, number of oocytes and number of cleaved embryos, 
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and mean fragmentation of transferred embryos) and 𝜹𝐷 is a corresponding vector of regression 

parameters.  

 

 Implantation and  Live birth event submodels 

As for DET, we use probit regression to model implantation and live birth event (LBE).  𝑦𝑗
𝐼 = 1 or 0  

and 𝑦𝑗
𝐿 = 1 or 0 if there is/is not an implantation and LBE, respectively, with underlying latent 

variables 𝑦𝑗
𝐼∗ and 𝑦𝑗

𝐿∗ , row vectors of patient-level covariates 𝑿𝑗
𝐼 and 𝑿𝑗

𝐿 and vectors of regression 

coefficients 𝜷𝐼 and 𝜷𝐿 . Additionally, these submodels contain row-vectors of outcome-covariates 

𝑼𝑗
𝐼  and 𝑼𝑗

𝑳 (containing spline representations of total dose, number of oocytes, and number of 

cleaved embryos, in addition to mean fragmentation of transferred embryos and an indicator 

denoting double embryo transfer), and corresponding vectors of regression parameters 𝜹𝐼 and 

𝜹𝐿. The error terms 𝑧𝑗
𝐼 and 𝑧𝑗

𝐿 have variance 1.  

 

 

Latent variable distribution 

 

We specify a multivariate Normal distribution for the latent variables to connect the submodels: 

 

[
 
 
 
 
 
 
 
 
 
𝑧𝑗

𝑇

𝑧𝑗
𝑂

𝑧𝑗
𝑀

𝑧𝑗
𝐹

𝑧𝑗
𝐷 

𝑧𝑗
𝐼 

𝑧𝑗
𝐿 
]
 
 
 
 
 
 
 
 
 

~ 𝑀𝑉𝑁(𝟎, 𝚺 ) 

 

where we estimate the elements of 𝚺 together with the rest of the model. 

Further details can be found at : http://www.biorxiv.org/content/early/2017/08/10/173534 

 

 

Supplemental Material 2: Stan code to fit the model 

 

data { 

  int <lower=0> Nstart;//number of cycles started 

   

  int <lower=0> Nmix; //number of cycles with eggs mixed with 

sperm 

  int <lower=0> Ntrans; //number of cycles reaching transfer 

  int <lower=0> Nembryo; //number of embryos 

  int <lower=0> Nimp; // number of cycles achieving embryo 

implantation 

http://www.biorxiv.org/content/early/2017/08/10/173534
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  int <lower=0> Pstart; //number of regression params in starting 

model 

  int <lower=0> Pmix; //number of regression params in 

fertilisation model 

  int <lower=0> Pdet; //number of params in DET model 

  int<lower=0> Pimp; //number of params in implantation model 

  int <lower=0> Plbe; //number of params in LBE model 

  int <lower=0> Pembryo; //number of params in embryo models 

  int<lower=0> Pdose; //number of regression params in dose model 

   

  

  int<lower=0> Mtrans; //number with no trans 

  int<lower=0> Mimp; //number with no implantation 

 

  int <lower=0> cid[Nembryo]; //cycle id number at embryo level 

  int <lower=0> startid[Nstart]; //cycle id number, cycle-level, 

all cycles started 

  int <lower=0> mixid[Nmix]; //cycle id numbers, subsetted to 

cycles with cleavage 

  int <lower=0> transid[Ntrans]; //cycle id numbers, subsetted to 

cycles with transfers 

  int <lower=0> impid[Nimp]; //cycle id numbers, subsetted to 

cycles with implantation 

  int <lower=0> mtransid[Mtrans]; 

  int <lower=0> mimpid[Mimp]; 

   

   

  matrix[Nembryo, Pembryo] Xembryo; //design matrix for embryo 

submodels 

  matrix[Nstart, Pstart] Xstart; 

  matrix[Nmix, Pmix] Xmix; 

  matrix[Ntrans, Pdet] Xdet; 

  matrix[Nimp, Plbe] Xlbe;//lbe covariates - only in those who had 

implantation 

  matrix[Nstart, Pdose] Xdose; //design matrix for dose submodel 

  matrix[Ntrans, Pimp] Ximp; //implantation covariates, in those 

who had transfer 

   

  //Response variables and offset for fert model 

   

  vector<lower=1>[Nmix] mTotEgg; 

  int<lower=0> ncleave[Nmix];  

  int<lower = 0> TotEgg[Nstart]; 

  row_vector<lower=-1, upper = 1>[Ntrans] detsign; //det = 0 -> -

1, det = 1 -> 1 

  row_vector<lower=-1, upper = 1>[Ntrans] impsign; //imp = 0 -> -

1, imp = 1 -> 1 

  row_vector<lower=-1, upper = 1>[Nimp] lbesign;  

   

  

  int<lower=0,upper=1> cumfrag1[Nembryo]; 

  int<lower=0,upper=1> cumfrag2[Nembryo]; 

  int<lower=0,upper=1> cumfrag3[Nembryo]; 

  vector[Nstart]ltotdose; 
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} 

 

 

parameters{ 

  vector[Pdose] betad; 

  vector[Pstart] betao; 

  vector[Pmix] betam; 

  vector[3] alphaof; 

  vector[Pembryo] betaof; 

  vector[Pdet] betadet;  

  vector[Pimp] betaimp; 

  vector[Plbe] betalbe;  

   

  matrix[3,Nstart] Z24;//2nd to fourth random effects, of seven, 

all at cycle level  

  cholesky_factor_corr[7] L;//corr matrix for lv 2 random 

effects/latent variables 

  row_vector<lower=0>[Ntrans] obs_abs_detstar;//latent var for 

observed DET  

  row_vector[Mtrans] unobs_detstar; 

  row_vector<lower=0>[Ntrans] obs_abs_impstar;//latent var for 

observed implantation outcomes 

  row_vector[Mtrans] unobs_impstar; 

  row_vector<lower=0>[Nimp] obs_abs_lbestar;//latent var for 

observed birth outcomes 

  row_vector[Mimp] unobs_lbestar;//latent var for unobs birth 

outcomes- 

 

 

  vector<lower=0>[4] theta14;//four variance parameters of seven-

put prior onto this vector 

   

   

} 

 

 

 

 

 

 

   

   

  transformed parameters{ 

   

   

  matrix[7,Nstart] Z; 

  vector[7] theta; 

  vector[Nmix] lTotEgg; 

  vector[7] mu; 

  vector[Nstart] XBstart; 

  vector[Nmix] XBmix; 

  vector[Nembryo] XBfrag; 

  vector[Ntrans] XBdet; 

  vector[Nimp] XBlbe; 

  vector[Nstart] XBdose; 
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  vector[Ntrans] XBimp; 

   

   

   

  XBdose<-Xdose*betad;//linear predictor for dose 

  XBstart<-Xstart*betao; //linear predictor for oocytes 

  XBmix<- Xmix*betam; //linear predictor for fert 

  XBfrag<-Xembryo*betaof; //linear predictor for frag 

  XBdet<-Xdet*betadet; //linear predictor for DET 

  XBimp<-Ximp*betaimp;//linear predictor for implantation 

  XBlbe<-Xlbe*betalbe; //linear predictor for LBE  

   

   

   

   

   

  lTotEgg <-log(mTotEgg); 

 

  for (n in 1:Nstart)//Z1 is the residual from the dose model 

  Z[1, startid[n]]<- ltotdose[n]-(XBdose[n]); 

   

  for (p in 1:Ntrans){ 

    Z[5,transid[p]]<- detsign[p] * obs_abs_detstar[p] - XBdet[p]; 

  } 

   

  for (u in 1:Mtrans){ 

    Z[5,mtransid[u]]<-unobs_detstar[u]; 

  } 

   

  for (p in 1:Ntrans){ 

    Z[6,transid[p]]<- impsign[p] * obs_abs_impstar[p] - XBimp[p]; 

  } 

   

  for (u in 1:Mtrans){ 

    Z[6,mtransid[u]]<-unobs_impstar[u]; 

  } 

   

   

   

   

  for (p in 1:Nimp){ 

    Z[7,impid[p]]<- lbesign[p] * obs_abs_lbestar[p]-XBlbe[p]; 

  } 

   

  for (u in 1:Mimp){ 

    Z[7,mimpid[u]]<-unobs_lbestar[u]; 

  } 

   

  for (k in 2:4){Z[k]<-Z24[k-1];} 

   

  theta[5]<-1.0; 

  theta[6]<-1.0; 

  theta[7]<-1.0; 

    for(i in 1:4){theta[i]<-theta14[i];} 
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  for (k in 1:7) 

  mu[k]<-0; 

   

     

   

} 

 

  

 

 

model{ 

  

   

  betad~normal(0,10); 

  betao~normal(0,10); 

  betam~normal(0,10); 

  alphaof~normal(0,10); 

  betaof~normal(0,10); 

  betadet~normal(0,2); 

  betaimp~normal(0,2); 

  betalbe~normal(0,2); 

  theta14~cauchy(0,2.5); //half cauchy - see 6.12 

  L~lkj_corr_cholesky(1); 

   

   

   

   

  //dose model 

   ltotdose~normal(XBdose, theta[1]); 

   

   

   

   //stimulation model 

  for (i in 1:Nstart){ 

  TotEgg[i]~poisson_log(XBstart[i]+ Z[2,startid[i]]);} 

   

   

  //transfer models - residuals calculated in transformed 

parameters block 

  for (i in 1:Nstart){  

     

    Z[,startid[i]]~multi_normal_cholesky(mu, 

diag_pre_multiply(theta,L));} 

     

 

    

   

   

//embryo models 

 

 for (i in 1:Nembryo){ 

    

  

     

    //fragmentation degree 
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    cumfrag1[i]~bernoulli_logit(alphaof[1]-

(XBfrag[i]+Z[4,cid[i]])); 

     

    cumfrag2[i]~bernoulli_logit(alphaof[2]-

(XBfrag[i]+Z[4,cid[i]])); 

     

    cumfrag3[i]~bernoulli_logit(alphaof[3]-

(XBfrag[i]+Z[4,cid[i]]));}  

    

    

    

 

//fertilisation model 

 

for (i in 1:Nmix) { 

   

  ncleave[i]~poisson_log(lTotEgg[i]+XBmix[i]+ Z[3,mixid[i]]); 

   

   

} 

 

 

   

   

} 

 

 

generated quantities{ 

    matrix[7,7] Eta; 

    matrix[7,7] Theta; 

    Eta<-multiply_lower_tri_self_transpose(L); 

    Theta<-quad_form_diag(Eta, theta); 

       

  } 
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IV. Conclusions  
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Chapter 12.  Discussion of the thesis 

 How should we measure multistage IVF outcomes? 12.1

It became apparent almost immediately during a review of the literature (Chapter 1) that 

the goal of identifying a single outcome measure for IVF was fanciful. Different outcome 

measures are more or less useful for different purposes, and for different audiences. This 

somewhat blithe statement belies the complexity of the problem however. Having 

reviewed both the range of expert opinions (Chapter 1) and the outcomes in use in 

several settings (Journal Articles 1, 2 and 3), as well as having solicited the opinions of 

many IVF ‘survivors’ (to borrow a term in use in online patient groups), we have identified 

a wide array of elements that must be considered when selecting the right outcome 

measure for a given purpose. The problem of what to report arises due to the plethora of 

options on offer. This in turn results from the multistage nature of treatment, which 

produces a sequence of response variables (potential numerators) and opportunities for 

left truncation (hence, potential denominators). There is neither consensus nor 

consistency in how numerators are measured. In Journal Article 2 (Chapter 4), we 

identified 361 numerators in use in IVF RCTs, after combining similar variables (and hence 

understating the actual variation in reporting).  We identified 87 distinct denominators 

(again, after combining similar items), resulting in 815 distinct combinations. Even on IVF 

clinic websites, where reported outcomes should be restricted to measures of clinical 

relevance, we found considerable variation in reporting (Journal Article 1, Chapter 3). We 

identified 54 outcome measures in use, including 33 different ways of reporting 

pregnancy and 9 different ways of reporting live birth. The scope for variety was 

expanded by modifiable reporting filters, defined by date ranges, or patient and 

treatment characteristics.  

The implications are manifold. In the context of RCTs, there is scope for selective 

reporting, including flexibility in adopting data-driven outcome definitions from a menu of 

potential measures, all of which are consistent with the trial protocol. This does not 

require conscious cheating on behalf of the investigators. Rather, subtle decisions made 

at the point of analysis may bias a study’s results even when made in good faith (Gelman 

and Loken, 2013, Simmons, et al., 2011). It has recently been argued that core 
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(mandatory, standardised) outcome sets reduce the scope for p-hacking of this sort (van't 

Hooft and Khan, 2017) and there is prime facie some credibility to this claim. The 

adoption of core outcome sets in IVF trials might also go some way to resolving a second 

concern relating to outcome heterogeneity; namely, the hindrance this presents for 

systematic review and meta-analysis.  

In the context of IVF clinic websites, financial conflicts of interest in combination with the 

extensive menu of reporting options exacerbates concerns about selective reporting. 

Potential patients may be misled on the basis of cherry-picked results, or else by 

superficially equivalent but substantively different measures of success used by clinics. As 

for outcome reporting in RCTs, standardised measures offer one solution to the problem. 

National reporting schemes such as that curated by HFEA in the UK or SART in the US 

present standardised measures of clinic performance. This reduces selective reporting by 

clinics, but does not necessarily remove gaming entirely. Clinics remain free to select and 

treat their patients so as to maximise their ranking according to the national performance 

indicator. These behaviours may not guarantee the best interests of patients. Where 

national reporting schemes are in place, a second concern relates to the particular 

measure or measures chosen as the universal standard. In Journal Article 3 (Chapter 5), 

we reviewed the current reporting practices of HFEA and SART, and raised concerns over 

the new standards introduced recently by the former. In particular, we objected to the 

implicit exclusion of patients with failed ovarian stimulation from the measures ‘live birth 

event per embryo transferred’ and ‘cumulative live birth per egg collection’. We also 

objected to the former on the grounds of poor face validity, unit of analysis error, and the 

fact that it removed relevant variation in clinic policies, which is a fatal limitation for a 

performance measure (Bird, et al., 2005). It appears that HFEA solicited at most very 

limited involvement from statisticians when consulting on the choice of measure.  

And therein lies a recurring theme in discussion and deployment of IVF outcome 

measures. While the debate tends to acknowledge the complexity of balancing competing 

perspectives of clinicians and patients, and even of those with financial incentives, 

statistical considerations do not regularly or prominently feature. One attitude towards 

the role of statistics in determining outcomes was encapsulated in a response to talk 

given by the lead author on the topic of outcome reporting on IVF clinic websites, at the 
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Cochrane Gynaecology and Fertility 20 year anniversary meeting, in April of 2016. The 

comment was made that IVF clinic websites were ‘not scientific papers’, with the 

implication being that the statistical arguments being advanced did not matter. While it is 

true that stakeholders should decide exactly what content is important and should be 

conveyed by outcome measures, it is the role of statistics to assess whether a measure 

has any content at all (for example, that there is no unit of analysis error being made) 

and, if so, to compare that content against whatever the measure was intended to 

convey. A measure that excludes patients with cancelled stimulation cycles from the 

denominator, for example, conditions on successful ovarian stimulation and therefore 

offers neither prognostic utility nor information about variation in stimulation 

performance, which is a key determinant of downstream success.  

At least we can agree with the commenter that statistical considerations matter in 

relation to outcome measurements in the domain of IVF research. We’ve already 

commented on the plethora of measures in use in IVF RCTs. This might not be a sign of 

methodological malaise per se; it could be, in principle, that each measure we 

encountered was selected with the intention of answering a particular research question, 

and was appropriate for that purpose. This doesn’t appear to be the case, however. 

During our review of RCTs, we looked at the denominators used to report the outcome 

‘live birth’ and its variants. Over half of them used a denominator that didn’t represent 

the full randomised cohort (we did not include trials with small numbers of exclusions on 

grounds of non-adherence here, since this is a separate issue). We saw examples where 

the (valid) measurement of treatment effect on live birth was precluded by the trial 

design. Trials where each patient’s oocytes were randomly divided between two 

interventions constitute one example. Resulting embryos from one of the arms 

(whichever were ‘best’) were transferred to the patient, and the live birth outcome was 

attributed to whichever group they came from. This does not represent a randomised 

comparison. Where dysfunctional outcome measures are being used as the basis for 

inference, the clinical conclusions arrived at must be subject to doubt.  

Arguably perhaps, throughout Part II of the thesis, we have spent less time addressing the 

question of how to measure IVF and more time addressing the matter of how not to. 

Given that so much of what is done could be classified as examples of the latter, we feel 
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that this is itself an important contribution to the topic. Drawing attention to 

methodological limitations and thereby promoting scepticism towards reported IVF 

outcomes is something that appears to be urgently required. A recent review of 

treatments offered by IVF clinics in the UK found many of them lack good quality 

evidence of clinical benefit (Heneghan, et al., 2016). A response by UK practitioners 

served to underline concerns that much practice is not driven by sound scientific 

reasoning. They responded that, in their view, there was good quality evidence, and due 

to the fact that IVF is complicated, the effectiveness of interventions can often not be 

established by RCTs (Balen, et al., 2017). These are the same kinds of arguments 

frequently advanced by practitioners of alternative medicine. Given that research 

methodology does not appear to be well understood by many who practice and research 

IVF, the need for antagonistic statistical voices appears to be acute. This is particularly 

true in light of the vulnerable patient population and costs involved. 

That said, our contribution has not been entirely negative. In relation to direct advertising 

of IVF to patients by clinics, we have argued for an outright ban on the basis of our 

findings in Journal Article 1 (Chapter 3). Instead, we argue, reporting of success rates 

should be restricted to standardised public reporting schemes. We have also argued that 

measures used for this purpose should generally include all women who begin treatment 

in the denominator (Journal Article 3, Chapter 5). Moreover, we have argued that a set, 

rather than a single measure, should be presented, in order to capture different aspects 

of the clinic’s performance and to put greater emphasis on safety. While we presented a 

possible set of outcome measures for this purpose in Journal Article 3, it seems 

appropriate to disclose that this had not been our intention when submitting that 

manuscript for publication. It was at the insistence of a peer reviewer that a particular set 

of measures was included. While we included our preferred set, we believe that this 

should form the basis of further discussion rather than be taken as the last word on the 

topic.  

Our proposed set of measures included the incidence of ovarian hyperstimulation 

syndrome (OHSS). One theme that became apparent during the thesis was the disconnect 

between IVF research and public reporting in relation to safety concerns over ovarian 

stimulation. There is currently substantial research interest in the idea of tailoring ovarian 
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stimulation to the patient so as to avoid excessive responses, which are associated with 

OHSS. This was the motivating idea behind the analysis presented in Journal Article 4 

(Chapter 9). Recent research includes the validation of predictive markers (Broer, et al., 

2011, Broer, et al., 2013a, Broer, et al., 2013b, Rustamov, et al., 2011, Rustamov, et al., 

2012, Rustamov, et al., 2014) and both development (La Marca, et al., 2013, La Marca, et 

al., 2012) and testing (Allegra, et al., 2017, Nyboe Andersen, et al., 2017, Popovic-

Todorovic, et al., 2003) of dose-selection algorithms designed to reduce variation in 

ovarian response. However, we found that incidence of OHSS was not reported by any 

clinic website in our review. At the time of writing, OHSS rates also do not feature on the 

patient-directed websites of either HFEA or SART. While regulators have done well to 

address safety concerns associated with twin births from IVF, it is concerning if 

prospective patients are not being sufficiently warned of the risks of ovarian stimulation. 

If potential harms of treatment are not clearly communicated, then prospective patients 

are instead left to base the decision of whether and where to be treated on some 

combination of success rates and invariably glowing patient testimonials. Based on a 

feeling that the downsides of IVF are often downplayed by those selling the treatments, a 

new and ongoing online campaign set up by IVF survivors is seeking to add some realism 

to the otherwise selective narratives seen by women researching treatments online, by 

encouraging women to share their unfiltered experiences of IVF (Repro Tech Truths, 

2017).  

Clearly, the matters of IVF clinic outcome reporting and direct advertising to patients 

have not been settled, but patient-led initiatives such as reprotechtruths.org, as well as 

ongoing research into reporting standards (at the time of writing, we are aware of 

ongoing reviews in Latin America and Europe, in addition to our own UK review) are 

setting the stage for greater transparency. Following the publication of our website 

review, HFEA have told us that they will put the issue of outcome reporting in the UK on 

their agenda. It remains to see if this happens, and if so what their solution will be. 

At the time of writing, we have not made suggestions regarding outcome measures for 

IVF clinical trials. This is partially because we believe that the appropriate outcome 

measure for a trial depends on the particular research question at hand. There is a 

potential conflict between this view and the IMPRINT (Improving the Reporting of 
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Infertility Trials) statement, which encourages live birth to be reported for all trials (Legro, 

et al., 2014). For the within-patient designs described above, where batches of oocytes 

are randomly allocated to different interventions, this would require an inappropriate 

outcome measure to be reported. Similarly, ongoing efforts as part of the CROWN (Core 

Outcomes in Women’s Health) initiative appear to ignore the possibility that valid 

reporting of some outcome measures might be precluded by some kinds of design (Khan, 

2014). While the goal of aiming towards commensurability of outcome measures for 

systematic review and comparison between treatments is admirable, there is no value in 

a meta-analysis of the outcome ‘live birth event per whichever of two half-batches of 

oocytes randomised produced the best embryos’.  

The problem largely appears to be attributable to the fact that studies within CROWN do 

not clearly delineate between effectiveness trials (concerned with the question of 

whether introducing a treatment actually leads to improved patient outcomes) and 

efficacy trials (earlier phase trials which test whether or not an intervention has the 

intended effect on the IVF process). This is in contrast, for example, to COMET (Core 

Outcome Measures in Effectiveness Trials) (Williamson, et al., 2011). Although it does not 

permit an assessment of clinical effectiveness, the within-patient design is excellent for 

the purpose of testing whether an intervention produces superior embryos (or, for 

example, higher fertilisation rates). This is because it eliminates within-patient sources of 

variation, and requires smaller sample sizes compared to a between-patient design. 

Accordingly, if the intervention does not work as intended, this can be established with a 

smaller cohort. On the other hand, if the treatment shows efficacy in principle, it can then 

be evaluated as part of a practical treatment strategy in larger studies. If we were to 

follow the recommendations of IMPRINT and CROWN, and to insist that (valid) patient-

centred measures must be included in all trials, this breed of within-patient design would 

not be admissible5.  

If women’s health journals are committed to making sure all trials adhere to CROWN 

then, we might be facing a future where many trials are mandated to report unsuitable 

                                                           
5
 We do not enter into the debate around whether or not a second type of within-patient design, the 

crossover trial, is suitable for IVF studies. See Vail and Gardener 2003, Makubate and Senn, 2010 and 
McDonnell et al., 2004. 
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outcome measures or else to adhere to study designs which permit clinical effectiveness 

(and safety) endpoints to be measured. In fact, the idea of core study designs has already 

been introduced (Myatt, et al., 2014). It is unclear how to react to this as methodologists. 

On the one hand, it is difficult to see how all possible research questions can be 

anticipated and accommodated by standardised trial designs. On the other hand, any 

applied methodologist can attest to the recurrence of poor methodological design 

features in the clinical literature. To paraphrase Doug Altman (and to oversimplify an 

issue with multifactorial causes), this happens because many of the people doing 

research are not competent to do so (Altman, 1994). To the extent that core designs are 

based on methodological principles, a totalitarian publication policy, in which studies are 

accepted on the condition that they adhere to standardised design principles, might lead 

to a net improvement in the quality of the literature. Cochrane could be taken as a model. 

Authors produce systematic reviews which are published on the condition that they 

achieve the standards set out by the Cochrane Handbook, which is primarily authored by 

methodologists (Higgins and Green, 2011). Flexibility is permitted where departures from 

the guidelines can be justified for the problem at hand. The Cochrane model is not 

uncontroversial however. As Stephen Senn has commented on Twitter: “The aviation 

equivalent of the Cochrane Collaboration would be an organization writing manuals to 

instruct kids to fly jumbo jets”.  

As we discussed in the context of public-facing outcome measures, the key point here is 

that statistical and methodological considerations must be taken into account when 

choosing outcome measures for IVF trials. Reassuringly, the fledgling COMMIT project 

(Core Outcome Measures for Infertility Trials) will include statisticians amongst its 

steering group. The project will use the review of trials presented in the thesis (Journal 

Article 2, Chapter 4) as a starting point. 

One additional project we intend to complete in the imminent future is the production of 

a list of statistically valid outcome measures for IVF RCTs. The measures will avoid the 

common problems we have identified as stemming from the multistage treatment 

structure, such as improper subgrouping and unit of analysis errors. This will not be 

restricted to clinically relevant endpoints, but, using Journal Article 2 as a basis, will 

include outcome measures suitable for answering research questions at each stage of the 
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IVF cycle. We will include explanations as to what makes these outcome measures 

preferable over common alternatives. We will emphasise the importance of the choice of 

denominator for preserving the advantages proffered by randomisation. We would then 

hope that the core outcomes chosen as part of the COMMIT process would comprise the 

intersection of the sets of clinically relevant and of statistically valid outcomes measures, 

while emphasising the fact that core outcomes might not be suitable for efficacy and 

mechanism trials. This would be a valuable resource to the IVF research community, and 

one that affords a greater degree of personal responsibility than does the strategy of 

mandating conformity in every aspect of design.  

Most of the issues we have discussed here had not been anticipated at the outset. The 

primary motivation for reviewing IVF outcome measures was to inform the development 

of statistical methods for multistage IVF data. By investigating which events in the IVF 

cycle were commonly reported, how they were measured, and the questions they were 

used to answer, we were able to flesh out our understanding of the underlying processes 

which we sought to represent through modelling. During the process of conducting these 

review exercises however, it became apparent that there were important statistical issues 

that needed to be spotlighted. Journal Articles 1, 2 and 3 represent our attempts to do so. 

These simple review and discussion papers might ultimately lead to greater patient 

benefit than the complex methodological work, which we turn our attention to next. 

 

 How should we model multistage IVF data? 12.2

Relatively little work has been done on the analysis of multistage IVF data up to now. Two 

proposals to use discrete time to event methods for this purpose have been advanced 

(Maity, et al., 2014, Penman, et al., 2007). We have discussed the limitations of these 

approaches (wasteful outcome dichotomisation, inability to handle different covariates at 

different treatment stages) throughout the thesis. These methods are useful for the 

purpose of assessing association between baseline covariates and the probability of 

success or failure at a given stage of the cycle. They are less suitable for the purpose of 

answering mechanistic research questions about relationships between interventions and 

events at different stages of the cycle.  
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Accordingly, we identified, adapted and developed methods in use in other fields, 

including econometrics, education research, and developmental toxicology, for the 

purpose of analysing multistage treatment data with mixed, multilevel responses. After 

investigating the matter of how to model stimulation response and embryo quality 

(Chapter 6.  ), we proceeded to jointly model response variables by positing an underlying 

multivariate Gaussian latent structure (Chapter 7.  ). The initial challenge was to establish 

suitable representations of each response variable, so that they could be connected to 

the other responses by way of this latent structure. The work of Gueorguieva and 

colleagues (Gueorguieva, 2001, Gueorguieva and Agresti, 2001, Gueorguieva and 

Sanacora, 2006) describing  joint models for different combinations of response types was 

useful in this regard, as was Goldstein and colleagues’ framework, which accommodated 

mixed responses defined at different levels of a multilevel data structure (2009). The 

measures of latent association yielded by this approach were not obviously interpretable 

however. They represent correlation coefficients and remain unadjusted for other 

response variables in the model. As such, they do not provide clear effect estimates on 

the scales of the responses.  

An obvious answer to this problem was to allow response variables in the model to enter 

as ‘outcome-covariates’ in the submodels relating to the downstream stages of the cycle. 

It would not be appropriate to model the cycle as a set of unconnected ‘outcome-

regression’ submodels however, since to do so would be to assume that there was no 

unmeasured confounding between the model response variables. This might still be 

superior to the correlated latent variable approach, since we can at least adjust for 

upstream response variables as covariates in each submodel. However, the likelihood of 

residual confounding due to unmeasured variables and measurement error in the 

included covariates means that univariate regression modelling is unlikely to be sufficient 

for valid inference. Consequently, we accommodated unmeasured confounding by 

maintaining the underlying multivariate latent Gaussian structure at the same time as 

including response variables as model covariates.  This explicitly models the correlation 

between response variables resulting from unmeasured confounding (so-called 

endogeneity). We refer to this, our preferred method for the analysis of multistage IVF 

data, as the endogenous response model. Turning a correlated latent variable model into 
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an endogenous response model is easy, since one just has to include upstream responses 

in the appropriate covariate matrices. The challenge we faced at this stage was therefore 

not so much how to set up the model as it was how to get the sampler to converge to the 

posterior distribution. The approaches we identified as effective were simplifying the 

model (for example, by setting some elements in the latent correlation matrix to be zero, 

or by excluding outcome-covariates) and including instrumental variables in the 

submodels. While the former is most effective, there may be a cost, since this approach 

may involve substantive changes to the postulated causal structure. If the analyst does 

decide to simplify the model, and there isn’t interest in the effect of a particular outcome-

covariate, excluding it from some submodels is likely to be more palatable than severing 

the latent link. This is because conditional independence of response variables given the 

latent variables (assumed if we exclude an outcome-covariate) is probably more 

reasonable than the assumption that the outcome-covariate is exogenous (assumed if we 

set the latent correlation to be zero). As an example, in Journal Article 6 (Chapter 11) we 

accommodated the relationship between number of embryos and fragmentation of 

individual embryos using only the correlated latent variables between the corresponding 

submodels. This component of the model was therefore similar to the joint models of 

cluster size and subunit-specific responses described by Dunson, et al. (2003). 

Instrumental variables (or, at least, variables that we assume have a substantive effect in 

the submodel in which they appear, and sufficiently negligible effects elsewhere to 

warrant exclusion) also facilitated the estimation of the model parameters. Due to the 

multilevel nature of IVF, where interventions are targeted both at women and at their 

oocytes and embryos, a number of plausible instrumental variables are available. 

Whether eggs are injected or mixed with sperm or vitro cannot possibly affect the patient 

directly, for example. Weakness or even outright invalidity of the instruments remains a 

possibility. The former arises where there is low correlation with the response in the 

submodel, while the latter arises if the instrument itself is endogenous (that is, the so-

called ‘back door criterion’ is not satisfied). If injecting eggs with sperm is only minimally 

associated with embryo quality, then the instrument is weak. If clinicians decide to inject 

on the basis of prognostic patient characteristics, the instrument is invalid. Neither of 

these scenarios are fatal in the endogenous response model, since the correlated latent 

variables accommodate unmeasured confounding. Even when instrumental variables are 
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included however, convergence of the models can be slow, necessitating moderately 

(although not excessively) long runtimes of several days to obtain large effective sample 

sizes. However, in Journal Article 5 (Chapter 10), we used real data to show that the 

endogenous response model can lead to substantively different conclusions compared to 

outcome regression, demonstrating the practical benefit that comes with the additional 

effort.  

We further demonstrated the utility of the endogenous-response method by using it to 

investigate the effect of ovarian stimulation on uterine receptivity, distinct from indirect 

effects by way of oocytes and embryos. This suggested that embryo implantation was less 

likely when a patient received higher doses of gonadotropins, as was the likelihood of an 

embryo being carried to term. This result coincided with findings from previous, 

methodologically limited studies addressing the same topic and confirmed what was  

predicted on the basis of current understanding. However, it would be useful to confirm 

that the effect can be replicated in other datasets. One possibility would be to fit a 

version of the model in the dataset we used in Journal Article 4 (Chapter 9), where we 

quantified the sources of variation in ovarian response to stimulation. This dataset has 

additional information about ovarian reserve measures, which are used to determine 

dose. These variables may also be independently predictive of cycle outcome. In Journal 

Article 6 (Chapter 11), where these variables were not available, we relied upon our 

latent variable structure to soak up any confounding relating to ovarian reserve. The 

Journal Article 4 dataset does not have embryo-level outcome data however, meaning 

that we would not be able to consider dose effects on individual embryos. This is not a 

crucial feature for the purpose of answering the question of whether or not COS affects 

transfer outcomes, although an understanding of how dose affects embryo quality 

elucidates the complex relationship between gonadotropins and the final outcome. If 

convergent results were obtained from both datasets, this would strengthen the evidence 

for the effect. In addition, the paired analyses would together constitute a useful case 

study of the robustness of the endogenous-response method.  

This latter point touches on a glaring limitation of the present work. Given the time 

requirement to fit these models, it has not been possible to evaluate their properties 

systematically through simulation studies. If a model takes eg: 2 days to fit, 1000 
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iterations would take five and a half years. Simulation studies have therefore not been 

possible, beyond some minimum testing of our models by way of fitting to small numbers 

of simulated datasets. In this regard, we largely stand upon the shoulders of those who 

have investigated the properties of these approaches mathematically (eg: Heckman, 

1976, Heckman, 1978, Heckman, 1979, Terza, 1998 , Terza, 2009) and by simulation (eg: 

McCulloch, 2008). These studies have invariably focussed on simpler examples however, 

for example containing just two response variables. With the computational resources 

available, we would have been restricted to simulations based on similarly simplistic 

(compared to our actual examples) scenarios, which would lack relevance. More 

generally, a recent review of methodology to deal with unmeasured confounding 

suggested that there is relatively little work comparing the performance of different 

methods (Streeter et al., 2017).   

Accordingly, we would urge that the methods we present are not implemented 

mindlessly, but are rather integrated into a process of thoughtful model building 

(controlling for confounding with measured variables as far as possible), model checking 

and sensitivity analysis. Of course, this should always be the case with data analysis. An 

example where mindless application of the method without sufficient understanding of 

the data generating process could potentially lead to error comes from Journal Article 6 

(Chapter 11). The model in the article is set up to estimate the effect of varying dose on 

uterine receptivity, and we advise against interpretation of the other model covariates. 

For example, parameters relating to effects of embryo quality and double embryo 

transfer on embryo implantation are negative. A naïve interpretation would take this to 

indicate that higher quality embryos, and embryos transferred in duplicate, are less likely 

to implant. However, blastocyst stage embryos (those which have been cultured for five 

days) are usually transferred in singleton, and these are more likely to implant compared 

to cleavage stage embryos (which have been cultured for three). Further adjustment for 

day of transfer (blastocyst or cleavage stage) removes the apparent disadvantage of 

higher quality embryos and of double transfer on implantation. Because the models 

contain many parameters, a carefree approach to interpretation could result in many 

spurious conclusions. 
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We implemented the models in the Bayesian software RStan (Stan Development Team, 

2014) primarily on pragmatic grounds. The software is flexible, and removes the need to 

write custom sampling algorithms. In addition, the Bayesian approach allows for stable 

estimation of parameters in complex models, since priors can be used to direct the 

sampler away from implausible values. In principle, this sort of prior regularisation can 

protect against overfitting a model to data (McElreath, 2015). However, it is important 

that the exclusion of implausible values is not prioritised over the inclusion of plausible 

ones. In Journal Article 5 (Chapter 10), we did not get this balance quite right. Our prior 

relating to the intercept term in our double embryo transfer submodel was too strong, 

underfitting the data (McElreath, 2015). This became apparent when we checked the 

model using draws from the posterior predictive distribution; the model slightly but 

systematically underestimated the sample mean, corresponding to the proportion of 

cycles where two embryos were transferred. In retrospect, it is quite obvious that a 

different prior should, in general, be appropriate for intercepts compared to other terms 

in the model, since these terms are on a different scale. This also highlights the need for 

robust model checking. Accordingly, in Journal Article 6 (Chapter 11), where we created 

and fitted a model in this framework to investigate the effects of ovarian stimulation on 

the uterine environment, we established that the estimated treatment effect was robust 

to informative prior specification for the model intercepts. 

While we have provided Stan code with the models, the implementation of these 

methods will remain out of reach for most of those conducting IVF data analysis. One 

solution would be to produce an R package to simplify the process for the user. However, 

while our methods leverage what is, broadly speaking, the fixed, sequential structure of 

IVF, the particular submodels to include in any particular implementation will vary 

according to the research question. Creating a package capable of handling such a wide 

variety of models with minimal demands on the user might not be feasible. For now, 

researchers should modify the examples and code provided to produce bespoke models 

for their particular problems. We have shown that models of this complexity can be 

accommodated within Stan. We anticipate, but have not confirmed, that it will be 

possible to produce non-Bayesian analogues of many of the models we present using the 

Stata package gllamm (Generalised Linear Latent and Mixed Models), although whether 
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or not it will be possible to fit the models without using prior regularisation is currently 

unclear. Shared parameter or ‘factor analysis’-style formulations of joint models (section 

7.4.4), rather than formulations based on correlated latent variables, might fit more 

naturally within the GLLAMM framework. Michael Crowther’s upcoming meganreg 

(Multivariate Extended Generalised Linear and Non-linear Mixed Effects Models) package 

will accommodate a wide array of complex joint models, but will not accommodate 

responses defined at different levels of a hierarchy (personal communication). 

Accordingly, these methods will remain off-limits for all but the most competent analysts 

in the immediate future. Given our discussion outlining the risks of using complex 

methods without sufficient understanding, some would argue that the barrier to entry is 

a boon.    

As we arrive at the conclusion of the thesis, there are many avenues for future research. 

Questions remain about the implications of model misspecification for these methods, 

particularly with respect to the posited latent variable distribution. This is by definition 

unobserved, and so cannot be checked against data. The posited distribution has 

implications for the assumed missing data mechanism. In our endogenous response 

models, we draw a complete vector of latent variables (with one element corresponding 

to each submodel) for each cycle regardless of when it was terminated. The latent 

variable distribution is the same for all cycles, both complete and incomplete, so that the 

patterns of confounding are assumed to be the same. It might be beneficial to relax the 

model assumptions by allowing the latent variable distribution to vary according to the 

stage of dropout. For example, cycles ending prior to transfer could have a distinct (and 

smaller) correlation matrix underlying their (smaller) set of submodels, compared to 

those who underwent all stages of treatment. The latent variables could then be fitted as 

mixture distributions (eg: Komarek, et al., 2010). This would bear some resemblance to 

the pattern mixture models of Little (1993). There may however be difficulties in 

implementation which we have not anticipated in the present discussion.  

Our modelling work has primarily focussed on developing or extending methods for 

answering mechanistic or explanatory questions about the fresh IVF cycle. We have not 

yet considered the possibility of extending the models to cover frozen transfers (where 

stored, frozen embryos are thawed and transferred, usually after a failed fresh attempt). 
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Although we are yet to consider the matter in detail, we anticipate that it will be possible 

to extend the models we have described by adding further conditional submodels relating 

to implantation and live birth outcome after the frozen transfer procedure. We have also 

not extended the models to account for the clustering of repeated cycles within patients. 

By introducing patient-level random effects, a three-level structure (embryos within 

cycles within patients) could be modelled (Goldstein, 2003).     

Another area for future research is the value of multistage modelling techniques for 

prediction problems. We gave an example in the discussion of Journal Article 5 (Chapter 

10), where we used the correlated latent variable model to predict the probability that a 

patient would have a safe ovarian response and go on to have a baby. It is unclear 

whether outcome regression or endogenous response models would offer any advantage 

for problems such as these. We note at present that existing prediction methods offer 

black box prediction of the overall outcome of treatment given baseline characteristics. 

The ability to predict both the clinical outcome of the cycle and the route by which the 

patient arrives might assist in clinical decision making. These comments remain 

speculative for now.   

We have not attempted to reconcile these methods with formal systems of causal 

inference. We have casually referred to ‘effects’ of non-manipulable variables, and have 

not given formal definitions of direct and indirect effects. For some problems, it might be 

useful to reformulate the models in a causal mediation framework. For example, in 

Journal Article 6 (Chapter 11), we have concentrated on estimating the direct effects of 

gonadotropin dose on responses throughout the model. A mediation analysis would allow 

us to quantify how much of the overall effect of COS is mediated through the quantity 

and quality of embryos produced. Pearl (2011) has described a mediation formula for 

nonlinear models, which can be fitted as a series of regression models. The details are yet 

to be considered fully. 

Throughout, we have attempted to ensure that the methods we have developed are 

clinically relevant and have attempted to answer clinically important research questions. 

Our analyses in Journal Articles 4 and 6 (Chapters 9 and 11) are anticipated to have 

clinical value. The first suggests that the scope for tailoring the initial dose of 
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gonadotropin to the individual on the basis of known markers is likely to be limited, due 

to the modest amount of explicable variation in ovarian response. Given the general 

enthusiasm of the IVF industry for new products which can be marketed to patients, 

together with the current fervour for personalised medicine, this sobering finding 

represents an important caveat. A Cochrane review of trials of personalised ovarian 

stimulation using ovarian reserve markers is underway (Lensen, et al., 2017). 

Journal Article 6 (Chapter 11) suggests that clinicians should be mindful that the 

likelihood of embryo implantation and of term gestation might decrease with cumulative 

exposure to gonadotropin during COS. Since implantation failure is the most common 

reason for treatment failure, strategies to mitigate the adverse effects of COS have the 

potential to greatly improve success rates. Elective frozen embryo transfers (eFET, where 

all embryos are frozen for later transfer) and the transfer of blastocysts are two 

treatment strategies which might reduce the consequences of COS by giving the uterine 

environment time to recover. These strategies have disadvantages however. Both 

potentially reduce the pool the embryos available for transfer, since some embryos will 

perish before reaching blastocyst stage (Glujovsky, et al., 2016) and some will not survive 

the thawing process (Maheshwari and Bhattacharya, 2013). Cochrane reviews on these 

topics indicate that there is currently insufficient evidence to determine the effectiveness 

of eFET (Wong, et al., 2017),while suggesting an advantage of a blastocyst transfer policy 

as compared to a cleavage stage policy (Glujovsky, et al., 2016). One reason for this might 

be that waiting until day 5 for blastocysts to develop weeds out inferior embryos, which 

perish before this time. Acquiring greater understanding of these complex issues is a 

current goal of IVF research, and we anticipate that the methods we have outlined will be 

useful for this purpose. 

The methods we have developed in this thesis are bespoke to IVF. We have identified 

treatment stages which appear in most IVF cycles, and have developed appropriate 

submodels for each of these. Any particular research question might require 

augmentation to this base set of submodels. At the time of writing, we have not identified 

other complex, multistage treatments which might be investigated using these 

approaches.  
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 Closing Remarks 12.3

Maity and colleagues referred to the stages of the IVF cycle as ‘failure opportunities’ 

(Maity, et al., 2014). They were referring to the possibility of outright treatment failure, 

but this thesis demonstrates that they could just as well have been talking about the 

potential for methodological blunders. Because it is a multistage treatment, there are 

many options for reporting and analysis of IVF data, and this means that there are many 

opportunities to get things wrong. We would urge consumers and producers of IVF 

statistics to think particularly carefully about denominators, since these determine which 

patients are excluded from consideration. Where exclusions are not made clear, IVF 

success rates have the potential to be misleading. Producers of IVF statistics have a 

responsibility to mitigate these concerns by using intuitive, transparent outcome 

measures. There are additional problems with denominator-related exclusions in RCTs, 

since non-randomised comparisons do not guarantee valid inferences. The risk of 

misinterpretation is heightened when a non-randomised comparison is made in an RCT 

compared to an observational study design, since little appreciation of or control for 

confounding usually appears in the former. And of course, the perception of many 

researchers is that because the data arose from an RCT, any analysis of it must be 

trustworthy. RCTs are, after all, the gold standard in research. While we are sympathetic 

to the idea that different numerators are appropriate for different research questions, 

the variety currently appearing in the literature is excessive. Precise prespecification in a 

study protocol is essential, and peer reviewers should be wary of flexible outcome 

definitions. 

The multistage treatment structure also results in a need for tools to address mechanistic 

research questions. These are important in the design of complex interventions, but are 

fiendishly difficult to answer correctly. The multiplicity of causal pathways encompassing 

eggs, embryos, selection and the uterine environment, as well as the complex patterns of 

confounding, means that standard methods are usually not sufficient for the task. We 

have developed methods for modelling multistage IVF data, and have provided code for 

the use of the applied statistician. Hopefully this makes the methods accessible enough 

for the competent analyst to use while keeping naïve users out of the loop. If members of 

the latter group had access to the models, the concern is that they might start dividing 
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each of a multitude of parameters by its standard error, comparing each ratio against a t-

distribution (with how many degrees of freedom?) and embarking on the fishiest of 

fishing expeditions. If our main contribution to the literature was to provide a new 

machine for the production of falsehoods, this would not be a good outcome. We hope 

instead that we have set the stage for conservative, high-quality structural analyses of the 

IVF cycle, and, on balance, created more opportunities for methodological success than 

for failure.  
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