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ABSTRACT

ESTIMATING THE CHANCE OF SUCCESS AND
SUGGESTION FOR TREATMENT IN IVF

Gizem Mısırlı

M.S. in Computer Engineering

Supervisor: Prof. Dr. H. Altay Güvenir

August, 2013

In medicine, the chance of success for a treatment is important for decision making

for the doctor and the patient. This thesis focuses on the domain of In Vitro

Fertilization (IVF), where there are two issues: the first one is the decision on

whether or not go with the treatment procedure, the second one is the selection

of the proper treatment protocol for the patient.

It is important for both the doctor and the couple to have some idea about

the chance of success of the treatment after the initial evaluation. If the chance

of success is low, the patient couple may decide not to proceed with this stressful

and expensive treatment. Once a decision for treatment is made, the next issue

for the doctors is the choice of the treatment protocol which is the most suitable

for the couple.

Our first aim is to develop techniques to estimate the chance of success and

determine the factors that affect the success in IVF treatment. So, we employ

ranking algorithms to estimate the chance of success.

The ranking methods used are RIMARC (Ranking Instances by Maximizing

the Area under the ROC Curve), SVMlight (Support Vector Machine Ranking

Algorithm) and RIkNN (Ranking Instances using k Nearest Neighbour). All of

these three algorithms learn a model to rank the instances based on their score

values. RIMARC is a method for ranking instances by maximizing the area

under the ROC curve. SVMlight is an implementation of Support Vector Machine

for ranking instances. RIkNN is a k Nearest Neighbour (kNN) based algorithm

that is developed for ranking instances based on similarity metric. We also used

RIwkNN, which is the version of RIkNN where the features are assigned weights

by experts in the domain. These algorithms are compared on the basis of the

AUC of 10-fold stratified cross-validation. Moreover, these ranking algorithms are
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modified as a classification algorithm and compared on the basis of the accuracy

of 10-fold stratified cross-validation.

As a by-product, the RIMARC algorithm learns the factors that affect the

success in IVF treatment. It calculates feature weights and creates rules that are

in a human readable form and easy to interpret.

After a decision for a treatment is made, the second aim is to determine

which treatment protocol is the most suitable for the couple. In IVF treatment,

many different types of drugs and dosages are used, however, which drug and

the dosage are the most suitable for the given patient is not certain. Doctors

generally make their decision based on their past experiences and the results of

research published all over the world. To the best of our knowledge, there are no

methods for learning a model that can be used to suggest the best feature values

to increase the chance that the class label to be the desired one. We will refer to

such a system as Suggestion System.

To help doctors in making decision on the selection of the suitable treatment

protocols, we present three suggestion systems that are based on well-known ma-

chine learning techniques. We will call the suggestion systems developed as a

part of this work as NSNS (Nearest Successful Neighbour Based Suggestion),

kNNS (k Nearest Neighbour Based Suggestion) and DTS (Decision Tree Based

Suggestion). We also implemented the weighted version of NSNS using feature

weights that are produced by the RIMARC algorithm. Moreover, we propose

performance metrics for the evaluation of the suggestion algorithms. We intro-

duce four evaluation metrics namely; pessimistic metric (mp), optimistic metric

(mo), validated optimistic metric (mvo) and validated pessimistic metric (mvp) to

test the correctness of the algorithms.

In order to help doctors to utilize developed algorithms, we develop a decision

support system, called RAST (Risk Analysis and Suggestion for Treatment). This

system is actively being used in the IVF center at Etlik Zübeyde Hanım Woman’s

Health and Teaching Hospital.

Keywords: Prediction, Suggestion, Ranking, Classification, RIMARC, SVM,

kNN, Decision Trees, Decision Support System.



ÖZET

TÜP BEBEK YÖNTEMİNDE TEDAVİ BAŞARI
ŞANSINI TAHMİN ETME VE TEDAVİ YÖNTEMİ

ÖNERME

Gizem Mısırlı

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. H. Altay Güvenir

Ağustos, 2013

Tıp alanında, bir tedavi sonucunda başarıya ulaşma şansının karar verilmesi çok

önemlidir. Bu tez çalışması, tüp bebek tedavisinde dikkate alınması gereken iki

önemli aşama üzerine odaklanmıştır. Bu aşamalardan birincisi gelen hastanın

tüp bebek tedavisi için uygun olup olmadığıdır. Hastanın tedaviye uygun olduğu

kararı verildikten sonra ikinci aşama hastaya uygulanacak olan en uygun tedavi

yönteminin belirlenmesidir.

Hem doktorlar, hem de tedavi uygulanacak olan aday hasta çifti için ilk

değerlendirmeden sonra hastaya uygulanacak olan tedavi sonucunda başarıya

ulaşma şansı çok önemlidir. Eğer başarı şansı düşük ise, hasta çifti bu pahalı

ve stresli tedaviye devam etmek istemeyebilir. Tedavi uygulama kararı verildik-

ten sonra doktorlar için karar verilmesi gerekilen ikinci konu hasta çifti için en

uygun olan tedavi yöntemini seçmektir.

Bu tez çalışmasındaki ilk amacımız tedavi için gelen bir hasta çifti için başarı

şansını tahmin etme ve tüp bebek tedavisindeki başarı oranını etkileyen faktörleri

bulmak ve amacıyla teknikler geliştirmektir. Bu amaçlar doğrultusunda sıralama

algoritmaları kullanılmaktadır.

Kullanılan metodlar RIMARC (Ranking Instances by Maximizing the Area

under the ROC Curve), SVMlight (Support Vector Machine Ranking Algorithm)

ve RIkNN (Ranking Instances using k Nearest Neighbour)’dir. Bu algorit-

maların her üçü de örnek hastaları onlara atanmış olan skor değerlerine göre

sıralamaya dayalı bir model öğrenir. RIMARC, Receiver Operating Charac-

teristics (ROC) eğrisi altında kalan alanı maksimize ederek örnekleri sıralayan

bir metoddur. SVMlight, destek vektör makinesi algoritmasının örnek sıralaması
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için geliştirilmiş bir versiyonudur. RIkNN, en yakın komşu algoritmasını esas

alan ve örnek sıralamasında benzerlik ölçütünü kullanan bir algoritmadır. Bun-

lara ek olarak, bu tez çalışmasında RIkNN algoritmasının bir versiyonu olan ve

her bir öznitelik için konunun uzmanları tarafından belirlenmiş olan öznitelik

ağırlıklarını da dikkate alan RIwkNN algoritmasını da kullandık. Bu algoritmaları

değerlendirmek için ROC eğrisi altındaki alan (AUC) değeri ve katmanlaştırılmış

10’lu çapraz geçerlilik yöntemlerini kullandık. Ek olarak, tasarlanan sıralama al-

goritmalarını birer sınıflandırma algoritması haline getirdik ve bu algoritmaları

değerlendirmek için accuracy değeri ve katmanlaştırılmış 10’lu çapraz geçerlilik

yöntemlerini kullandık.

Yan ürün olarak RIMARC algoritması tüp bebek tedavisinde başarı şansını

etkileyen faktörleri öğrenmektedir. Bu amaçla öznitelik ağırlıklarını hesaplar ve

insanlarn kolaylıkla anlayıp yorumlayabilecekleri kurallar üretir.

Gelen hasta çifti için ilk değerlendirmeden sonra tedavi sonrası şansının yüksek

olduğuna karar verilir ise ikinci aşamaya geçilir. Bu aşama hasta için en uygun

olan tedavi yönteminin belirlenmesi aşamasıdır. Tüp bebek tedavisi içerisinde

çok sayıda ilaç yer almaktadır fakat bu ilaçlardan hangisinin hasta için en uy-

gun olduğu kesin olarak bilinememektedir. Doktorlar genellikle hasta için ilaç

seçimi yaparken geçmişte tedavi ettikleri hastaların değerlerine bakarak karar

verirler. Bu karar her zaman olumlu bir şekilde sonuçlanmayabilir çünkü insan

hafızası gereği doktorların geçmişte tedavi ettikleri bütün hasta profillerini doğru

bir şekilde hatırlayabilmeleri mümkün değildir. Bildiğimiz kadarıyla, istenilen

sonucu elde etme şansını arttırmak amacıyla en iyi öznitelik değerini önermek

için model öğrenen bir method bulunmamaktadır. Biz bu tür bir sistemi Önerme

Sistemi olarak adlandıracağız.

Doktorlara, uygun tedavi yöntemlerini belirleme aşamasında yardımcı olmak

için bilinen makine öğrenmesi tekniklerine dayalı üç önerme sistemi geliştirdik.

Bu çalışmanın bir parçası olarak geliştirilen önerme sistemlerini NSNS (Near-

est Successful Neighbour Based Suggestion), kNNS (k Nearest Neighbour Based

Suggestion) ve DTS (Decision Tree Based Suggestion) olarak adlandıracaız. Bun-

lara ek olarak, bu tez çalışmasında NSNS algoritmasının bir versiyonu olan ve

her bir öznitelik için RIMARC algoritması tarafından belirlenmiş olan öznitelik

ağırlıklarını da dikkate alan wNSNS algoritmasını da kullandık. Ayrıca, önerme
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algoritmalarının doğruluğunu değerlendirmek için performans kriterleri tasar-

ladık. Bu amaçla, bu tez çalışmasında, pessimistic metric (mp), optimistic metric

(mo), validated optimistic metric (mvo) ve validated pessimistic metric (mvp)

olarak adlandırılan dört adet değerlendirme kriteri sunuyoruz.

Geliştirilen bu algoritmalardan doktorların faydalanmasını sağlamak amacı

ile RAST (Risk Analysis and Suggestion for Treatment) adı verilen bir karar

destek sistemi geliştirdik. Sistem şuanda Ankara Etlik Zübeyde Hanım Kadın

Hastalıkları Eğitim ve Araştırma Hastanesi Tüp Bebek Merkezi’nde aktif olarak

kullanılmaktadır.

Anahtar sözcükler : Tahmin, Öneri, Sıralama, Sınıflandırma, RIMARC, SVM,

kNN, Karar Ağaçları, Karar Destek Sistemi.
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Chapter 1

Introduction

In Vitro Fertilization (IVF) is a major treatment in infertility, among the assisted

reproductive technologies. The IVF treatment involves the use of many different

drugs including hormones [1]. Further, it is a quite stressful procedure for both

candidate mother and father. The cost of the IVF treatment is also high. If a try

(cycle) fails, the couple has to wait for several months before the next try. It is

important for both the doctor and the couple to have some idea about the chance

of success of the treatment, since if the chance is low the couple may choose to

adopt a baby, instead. On the other hand, estimating the chance of success for a

given IVF patient constitutes a great challenge in obstetrics and gynecology.

Given a new candidate for IVF, there are two important questions that a

doctor has to address. The first question is whether or not the patient should

undergo the IVF treatment. If the chances of success are low, the couple may

choose not to continue with the treatment. If the answer to this question is

yes, then the second question is the treatment protocol to be applied. An IVF

protocol specifies all of the steps of the treatment, including the hormones and

the medicines to be used, and the way they are to be administered. Although,

there are many protocols in common use, it is a difficult question for the doctors

to choose the best protocol for a given patient.

In this thesis, several algorithms for predicting the chance of the success and

1



the suggestion for the best treatment protocol for a given patient are proposed.

Also a web based decision support system is developed that implements these

algorithms to help doctors in IVF treatment.

1.1 Estimation of the Chance of the Success

In IVF treatment, the most challenging question is whether or not the patient

couple is a candidate for a successful treatment. To this end, it is important

to estimate the chance of success of the treatment; since if the chance is low,

a couple may decide not to continue with the treatment due to cost and side

effects. For an IVF treatment, doctors generally make their decisions based on

their past experiences. When a new patient couple applied to the clinic, the

doctors consider the previous couples that are the most similar to the new one.

If the data about the previous patients, including clinical parameters, and the

results of treatments are available, machine learning techniques could be of great

value for doctors and medical personnel.

In this thesis, we show that a ranking algorithm that learns a model to rank

instances based on a score value can be used to estimate the chance of success in

an IVF treatment. Moreover, these ranking algorithms can be used for classify

the instances as Successful or Failure.

Given a new patient couple, such a ranking method assigns a score to the new

couple and determines its rank for success among the training instances. Then,

the chance of the success of the treatment for the new couple can be estimated

as the ratio of successful training instances among the ones with similar score

values.

We briefly sketch three ranking algorithms, namely RIMARC (Ranking In-

stances by Maximizing the Area under the ROC Curve), SVMlight (Support Vec-

tor Machine Ranking Algorithm) and RIkNN (Ranking Instances using k Nearest

Neighbour). We also implemented the weighted version of RkNN that is RwkNN
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(Ranking Instances using weighted k Nearest Neighbour). RIMARC is a recently

introduced method that learns to rank instances by aiming to maximize the area

under the ROC curve [2]. It is shown that RIMARC is a simple yet efficient and

fast algorithm. SVMlight is an implementation of Vapnik’s Support Vector Ma-

chine [3] for the problem of pattern recognition, for the problem of regression, and

for the problem of learning a ranking function. RIkNN is a k Nearest Neighbor

(kNN) based algorithm that is developed for ranking instances based on similar-

ity metric. We also implemented RIwkNN, which is a version of RIkNN, where

the features are assigned weights by experts in the domain. According to our

experimental results, it is clearly shown that RIMARC outperforms other meth-

ods in terms of AUC. As a classification algorithm, RIMARC again outperforms

other methods in terms of accuracy on the average.

1.2 Suggestion of the Best Treatment Protocol

After a decision is made for a given patient couple, if the IVF treatment is decided

to start, doctors have to decide on the most suitable treatment protocol, which

includes the types of the drugs and the way they are to be applied.

The goal of this research is to develop machine learning algorithms that learn

models to suggest best values for selected features in a way that the chance of

achieving the desired result will be maximized. Therefore, we aimed to suggest

the best value for the selected feature especially the treatment protocol for our

problem, since, if the suggested feature is the most valuable one for the patient,

than the chance of achieving the desired result will be maximized.

As it is known from classical machine learning techniques, if there exists a data

about the previous patients that include clinical parameters, applied treatment

protocols and the results of the treatment, these techniques can be used by their

help, while deciding the treatment protocol doctors can be more self-confident

and the chance of acquiring positive result can be increased.
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In this thesis, we propose three suggestion algorithms. They are NSNS (Near-

est Successful Based Suggestion), kNNS (k Nearest Neighbour Based Suggestion)

and DTS (Decision Tree Based Suggestion). We also propose the weighted version

of NSNS called wNSNS, using feature weights that are produced by the RIMARC

algorithm.

Evaluating the correctness of suggestion is also a challenge. Since there is no

suggestion system in the literature, there are no methods proposed to be used as

an evaluation metric. In this thesis, we introduce four performance evaluation

metrics that are pessimistic metric (mp), optimistic metric (mo), validated op-

timistic metric (mvo) and validated pessimistic metric (mvp). According to the

performance evaluation metrics, DTS outperforms other algorithms in overall

evaluation.

The most important contribution of this thesis is the definition of suggestion

as a machine learning problem. Here we defined the problem, proposed three

machine learning algorithms, and formulated four metrics for the evaluation of

these algorithms. To the best of our knowledge, there are no algorithms in the

literature for suggestion. It is a newly defined problem and this thesis will be the

first academic work that contributes to the literature for suggestion.

1.3 Decision Support System

Medical domains are among the areas where decision support systems are applied

successfully. Making a diagnosis based on the symptoms seen in a patient or de-

ciding on the best treatment for a given patient is the most challenging part in

medical domains. Doctors generally make their decisions based on their experi-

ences; however, these decisions may not always be successful as expected. In order

to increase the chance of achieving the desired results, decision support systems

are developed to help doctors. These systems provide doctors with alternatives

that are more likely to result in successful treatment.
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As it is mentioned above, our aim is to develop algorithms to predict the out-

come of treatment, and give suggestions about the treatment protocol to achieve

the desired result for the IVF patient. We want to allow doctors to take the

advantage of these methods because the results are really valuable. If the doctors

take into consideration the results of prediction and suggestion algorithms, the

success rate of the IVF treatment increases. So, in order to bring our algorithms

into use, we developed a web based decision support system called RAST (Risk

Analysis & Suggestion for Treatment). The RAST system also helps in the data

entering by checking the plausibility of the values. We provide data correctness

by defining limitations. Doctors can observe how the process will continue and

they can compare patients and judge about them.

In the next chapter, literature summary about the ranking algorithms, ROC,

AUC maximization, accuracy, prediction, classification and decision support sys-

tems are given. Chapter 3 covers the IVF domain and the dataset. Chapter

4 introduces the theoretical background of the ranking algorithms that are RI-

MARC, RIkNN and SVMlight, their implementation details and how they are

used to predict the chance of success in the IVF treatment. The RIMARC algo-

rithm also learns rules and weights about the factors affecting the outcome of an

IVF treatment. Chapter 5 gives information about the rules and weights learned

by RIMARC. Chapter 6 covers the suggestion algorithms that are NSNS, kNNS

and DTS. It also presents performance evaluation metrics namely; pessimistic

metric (mp), optimistic metric (mo), validated optimistic metric (mvo) and vali-

dated pessimistic metric (mvp). In Chapter 7, empirical evaluation of prediction

and suggestion algorithms are presented. Chapter 8 gives information about the

decision support system, namely RAST. Finally, Chapter 9 concludes with some

directions for future work.
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Chapter 2

Background

This chapter starts with a background on the ranking problem. Evaluation met-

rics such as ROC, and AUC are detailed. The ROC, AUC, AUC Maximization

and accuracy subjects are given since they are essential for ranking algorithms

RIMARC, SVMligt and RIkNN. Then, prediction and classification subjects are

determined. Next, the intelligent decision support systems for IVF are outlined.

2.1 Ranking

The ranking problem can be classified as a binary classification problem with

additional ordinal information. In the binary classification problems, a finite

sequence of training examples z = ((x1, y1), ..., (xn, yn)), where the instances are

xi in some instance space X and with their class labels yi belongs to Y = {s, f}.
Here s and f are two possible class labels. In our examples, s will stand for

successful and f will stand for failure cases. The aim in binary classification

problems to learn a binary-valued function h: X → Y that predicts the class

labels for future instances [2].

In the machine learning literature, the problem of learning a real-valued func-

tion that induces a ranking over an instance space is very important. Information
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retrieval, estimation of risks associated with a surgery or credit-risk screening are

some examples of the application domains. The problem of learning a ranking

function from a training set of examples with binary labels to rank positive in-

stances higher and negative instances are lower is known as bipartite ranking

problem [4], [5], [6]. Agarwal and Roth [4] worked on to learn a bipartite ranking

function and showed that learning linear ranking functions is NP-hard.

Different ranking functions have been developed for particular domains such

as information retrieval [7], [8]. In medicine, Conroy et al. [9] developed ranking

function to estimate ten-year risk of fatal cardiovascular disease. Also, Agostino

et al. [10] and Provost et al. [11] proposed ranking functions in medical domain. In

the field of insurance, Kevin et al. [12] worked on insurance applications of some

risk measures. In addition to them, there exist research areas where different

ranking functions are developed such as finance and fraud detection [13], [14].

2.2 ROC, AUC, AUC Maximization and Accu-

racy

ROC curves, AUC and Accuracy metrics are popular due to the fact that their

application to the machine learning techniques. AUC and Accuracy are used

in order to evaluate machine learning algorithms as a learning criterion. We

explain these subjects in this section. The reason why AUC is more accurate

than Accuracy and AUC Maximization subjects are determined in this section.

2.2.1 Receiver Operating Characteristics (ROC)

A ROC curve is a graphical plot that illustrates a performance of a classifier

system as its discrimination threshold is varied. The first application of ROC

graphs were used to analyse radar signals [15]. After that, the usage of it expanded

in different areas such as medicine and signal detection [16], [17], [18]. Spackman

has done the first application of ROC graphs in machine learning [19]. ROC
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graphs become popular as a performance evaluation measure in the machine

learning community after realizing that accuracy is not an accurate metric to

evaluate classifier performance [20], [21], [11].

ROC curves are more proper to binary classification problems than multi ones.

At the end of the classification phase, each instance is mapped to a class label

that is a discrete output. On the other hand, some classifiers such as Neural

Networks and Naive Bayes are able to predict a probability value for an instance

that belong to a specific class label. This kind of outputs are known as continuous

valued output or score. Classifiers that produce a discrete output represented as

a single point in the ROC space because only one confusion matrix is produced

from their classification output. Classifiers that produce continuous output can

have more than one confusion matrix by applying different thresholds to predict

class membership. For ranking algorithms in this thesis, instances who have a

higher score value than the threshold are predicted to be s class and all others

are predicted to be f class.

ROC space is a two dimensional space with a range of (0.0, 1.0) on both x and

y axes. A ROC space is defined by True Positive Rate (TPR) and False Positive

Rate (FPR) as x and y axes. The TPR defines how many correct positive results

occur among all positive instances during the test. On the other hand, FPR

defines how many incorrect positive results occur among all negative instances

during the test.

Let us consider a binary classification problem where the outcomes are clas-

sified as s (Successful) and f (Failure) and in order to calculate the TPR and

FPR, we need to know four possible outcomes of a binary classifier. If the out-

come from a prediction is s and the actual value is also s, then it is called a true

positive (TP ); however if the actual value is f then it is said to be a false positive

(FP ). Conversely, a true negative (TN) has occurred when both the prediction

outcome and the actual value are f, and false negative (FN) is when the predic-

tion outcome is f while the actual value is s. These outcomes constitute the parts

of the confusion matrix that can be showed in Figure 2.1.

TPR and FPR values are calculated by using Equation 2.1. The number of
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Figure 2.1: Confusion matrix of the binary classification outcomes.

s labelled instances is indicated by S and that number of f labelled instances is

by F.

TPR = TP/S

FPR = FP/F
(2.1)

As it is mentioned before, the classifiers that produce continuous output can

form a curve because they are represented with more than one point in the ROC

graph. As a result, to draw the ROC graph different threshold values are selected

and different confusion matrices are formed.

2.2.2 Area Under the ROC Curve (AUC)

The area under ROC (receiver operating characteristic) is a widely used an ac-

cepted performance evaluation metric for evaluating machine learning algorithms

and quality of a ranking function [22], [23].

ROC graphs are proper to use in order to visualize the performance of a

classifier, however, to compare classifiers a scalar value is needed. In the literature,
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Figure 2.2: Example ROC curve.

ROC curve is intended as a performance evaluation metric by Bradley [22]. The

classifier that has a higher AUC value is approved by having a better performance

in general. In spite of having a higher AUC value, a classifier can be outperformed

by another one in some regions of ROC space for particular threshold values.

The ROC graph space is a one-unit square. So, the maximum AUC value

is 1.0 that also means the perfect classification. In ROC graphs, a 0.5 AUC

value represents random guessing and values lower than 0.5 are not realistic. An

example ROC curve is shown in Figure 2.2.

The AUC value of a classifier is the same as the probability that the classifier

will rank a randomly chosen positive instance higher than a randomly chosen

negative instance. It is shown that this is equal to the Wilcoxon test of ranks [24].
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AUC has important characteristics such as intensitivity to class distribution

and cost distributions [22], [23], [21]. Moreover, in the literature there are studies

that show what kind of classification algorithms can be used for ranking prob-

lems [25].

2.2.3 The reason why AUC is more accurate than Accu-

racy

Accuracy has been widely used as the main criterion for comparing the predictive

ability of classification systems. Most of these classifiers also produce probability

estimations of the classification, but they are completely ignored in the accuracy

measure. This is often taken for granted because both training and testing sets

only provide class labels [26].

There are several reasons why AUC outperforms accuracy. The first one is

the independence of the decision threshold of the AUC. AUC has the ability to

measure the quality of ranking so it is a better performance evaluation metric in

this domain.

Second reason is the discrimination power of the accuracy and AUC metrics.

In the literature, AUC metric is recommended instead of accuracy for classifier

algorithms by Bradley [22]. Also, for classification algorithms, ROC analysis is

suggested as a powerful tool instead of the applicability of the accuracy by Provost

et al. [11]. It is claimed that by Rosset [27], if the aim is to get the maximum

accuracy, AUC may be better than empirical error for discriminating between

models. Huang and Ling [21] give the formal proof of the superiority of the AUC.

They showed that AUC is more discriminating and statistically consistent than

accuracy. All of these studies prove the discriminatory power of the AUC metric.

The third reason to prefer AUC as a metric is the skewed (unbalanced)

datasets. A dataset becomes an unbalanced when the difference between class

distribution is high. Datasets in the areas like medicine [28], [29] and fraud detec-

tion [14] are the examples of unbalanced datasets. As an example, if a classifier
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predicts the class labels as negative for all instances despite the fact that a few of

the instances have very high accuracies, there exists an inaccurate and misleading

situation [30].

2.2.4 AUC Maximization

The aim of the classification algorithms is to achieve the maximum accuracy value.

Since accuracy is a performance evaluation metric for classification, when the

classification algorithm maximizes the accuracy, it means that the algorithm gives

a better predictive performance. Due to the fact that accuracy metric has some

substantial drawbacks in some domains, AUC metric is preferred as a performance

evaluation metric.In the literature, it is shown the maximizing accuracy does not

outperform maximizing AUC [31], [32]. As a result, new algorithms that aim to

maximize AUC have been developed.

Researchers have proposed some approximation methods that aim to maxi-

mize AUC value directly [33], [34], [32]. For example, Ataman et al. [35] proposed

a ranking algorithm that maximizes AUC using linear programming. Brefeld and

Scheffer [36] presented an AUC maximizing Support Vector Machine. Rakotoma-

monjy [30] proposed a quadratic programming based algorithm for AUC maxi-

mization and showed that under certain conditions 2-norm soft margin Support

Vector Machines can also maximize AUC. Toh et al. [37] developed an algorithm

in order to optimize the ROC performance directly for the fusion classifier. Ferri

et al. [38] presented a method to optimize AUC locally in decision tree learning.

Cortes and Mohri [31] proposed boosted decision stumps. Several algorithms

have been proposed in order to maximize AUC in rule learning [39], [40], [41].

A nonparametric linear classifier based on the local maximization of AUC was

proposed by Marrocco et al. [42]. Sebag et al. [43] presented a ROC-based genetic

learning algorithm. Marrocco et al. [44] used linear combinations of dichotomizers

for the same purpose. Freund et al. [6] proposed a boosting algorithm that com-

bines multiple rankings. Cortes and Mohri [31] showed that this approach also

aims to maximize AUC. Tax et al. [29] proposed a method that weighs features

linearly by optimizing AUC to the detection of interstitial lung disease. Ataman
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et al. [35] proposed an AUC-maximizing algorithm with linear programming.

Joachims [45] introduced a binary classification algorithm by using SVM that

can maximize AUC. Ling and Zhang [46] compared AUC-based Tree-Augmented

Naive Bayes (TAN) and error-based TAN algorithms. The results showed that the

AUC-based algorithms produce more accurate rankings. More recently, Calders

and Jaroszewicz [47] suggested a polynomial approximation of AUC in order to

optimize it efficiently. Linear combinations of classifiers are also used to maxi-

mize AUC in biometric scores fusion [37]. Han and Zhao [48] proposed a linear

classifier based on active learning that aims to maximize AUC.

2.3 Prediction of the Outcome in IVF

Although, in the literature there are some intelligent decision support systems

for IVF process, the related literature is limited. In the literature, it is seen

that early studies that are case-based reasoning systems and neural networks

have been constructed in order to predict the outcome of IVF [49], [50]. Sait et

al. [51] and Trimarchi et al. [52], proposed decision tree models for predicting

the outcome of IVF treatment . The most recent studies on IVF propose Naive

Bayes, Bayesian Classification and Support Vector Machines in order to increase

the chance of having a baby after IVF treatment. Uyar et al. [53] studied for

implantation prediction on IVF embryos using Naive Bayes classification. In

another study, the embryo implantation prediction is defined. In this study,

embryo based prediction is identified in order to predict the outcome of IVF

treatment and SVM based learning system is used [54]. Also, there is a study

related to predicting implantation potentials of IVF embryos [55]. Predicting the

IVF outcome is really challenging process so generally many researches aim to

handle this problem [56], [57].

The area under the ROC curve (AUC) is a widely accepted performance mea-

sure for evaluating the quality of ranking. It has become a popular performance

measure in the machine learning community after it was realized that accuracy

is often a poor metric to evaluate classifier performance [21], [20], [11].
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2.4 Decision Support Systems

As huge amounts of data are stored in medical databases, decision support sys-

tems (DSS) could be equipped with intelligent tools for efficient discovery and use

of knowledge. Many hospitals have equipment for monitoring and data collection

devices that provide inexpensive data collection and storage for hospital informa-

tion systems. Decision support systems (DSS) are designed to assist physicians

and other health professionals with decision making tasks, such as determining

diagnosis from patient data. In the literature, examples of these kinds of sys-

tems can be seen. For example, Berner et al. [58] developed a clinical decision

support system called Isabel in order to predict the correct diagnosis in medical

cases. Another example for these systems was developed for dietary analysis and

suggestions for Chinese menus [59]. Also, in order to improve abdominal aortic

aneurysm in a primary care practice, a web based CDSS is designed [60].

In hospitals or medical research centres, patient records collected for diagnosis

and prognosis typically encompass values of clinical and laboratory parameters,

as well as treatment procedures and drugs that are used. Such datasets usually

contain missing or noisy data [61]. Therefore, DSS that are designed to learn

from past examples have to be able to cope with noise and missing values.
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Chapter 3

In Vitro Fertilization and IVF

Dataset

In this section, we give the domain description of the In Vitro Fertilization. De-

tailed information about the IVF dataset that is gathered from IVF center at

Etlik Zübeyde Hanım Woman’s Health and Teaching Hospital is given.

3.1 IVF Domain Description

Infertility can be defined as a couple’s biological inability to have a baby. Various

international studies have estimated that between 9% and 14% of couples will

have difficulties in conceiving during their reproductive life [62]. If the infertility

factor of a couple is identified, an appropriate treatment should be applied in

order to conceive a successful pregnancy.

In Vitro Fertilization (IVF) is a major treatment for infertility when other

methods of assisted reproductive technology have failed. It is a process by which

an egg is fertilized by sperm outside the body. IVF gives the couples a chance

of becoming parents. There are five basic steps in the IVF and embryo trans-

fer process: Stimulating and monitoring the development of healthy eggs in the
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ovaries, collecting the eggs, collecting the sperm, combining the egg and sperm

together in the laboratory and providing the appropriate environment for fertil-

ization and embryo growth, transferring the embryos into the uterus. Fertility

medications are prescribed to control the timing of the ovulation and to increase

the chance of collecting multiple eggs during one of the woman’s cycles. Clinical

pregnancy, which is the main outcome measure of an IVF program, is defined as

a positive intrauterine gestational sac with fetal heart beat visible by ultrasound.

However, the final goal is achieving and maintaining pregnancy in which there

are many factors affecting the outcome. The prediction of a successful outcome

during IVF critically depends on many parameters that are aimed to provide

good-quality embryos. However, the parameters for predicting pregnancy rates

after IVF are still lacking. Since the first birth by IVF was achieved in 1978, the

techniques involved in assisted reproductive technology have grown at an enor-

mous rate. Nevertheless, there are inconsistencies in the available clinical studies

and endpoints. As a result, there are continuous efforts to find parameters that

can detect the outcome earlier. It is very likely that the individual prognosis of

the couple influences the outcome. Individual patient data analysis will allow

us to take the prognostic factors into account and to evaluate their effects on

the outcome of the treatment. In a prediction model, factors such as age of the

couple, reason and duration of infertility, previous gynecologic surgery, tests for

the ovarian reserve of the female and sperm parameters should be included. Af-

ter the baseline characteristics of the couple, the next step is the decision of the

ovulation induction protocol. Several protocols have been described for ovarian

stimulation and generally the selection of the stimulation protocol depends on

the individual characteristics of the patient.

According to the doctors, the most preferred protocols are long luteal agonist

and antagonist protocol. For patients with diminished ovarian reserve, micro-

dose agonist and antagonist protocols can be selected. The initial dose of go-

nadotrophin is tailored to the needs of the individual with typical starting doses

range between 150-300 IU. In the decision of dosage, female age, ovarian reserve

and body mass index are the main parameters. The decision of protocol and

dosage generally depends on clinician expertise. A computerized system could

16



help to improve care, pre-IVF counselling for patients and most importantly, the

outcome.

3.2 IVF Dataset

A dataset of 2,020 patients has been compiled by the IVF unit at Etlik Zübeyde

Hanim Women’s Health and Teaching Hospital. For each patient, the dataset

contains demographic features, 64 clinical features, and 77 treatment features

and the result of the treatment.

In order to evaluate the success of the ranking based prediction algorithms

on different states of the treatment process, the IVF dataset is divided into three

groups as summarized in Table 3.1. Each dataset contains one dependent feature

called Result, that has the value s (Successful) if the female patient had the

clinical pregnancy 28 weeks after the treatment. It has the value f (Failure) if

the female patient had only chemical pregnancy or no pregnancy, at all.

Table 3.1: Summary of the IVF Datasets.

Dataset #instances #categorical #numeric #missing
IVFa 1,801 43 21 15,782
IVFb 1,801 51 50 46,288
IVFc 1,801 78 63 70,693

The first group of the IVF dataset, called IVFa, contains only the clinical

features that are known before making a decision on whether to apply the IVF

treatment or not. The dataset contains 64 independent features; 52 of them are

related to the female and 12 are related to the male. The independent features in-

cluded in the IVFa dataset are summarized in Table 3.2. Among the independent

features, 43 of them take on categorical values and 21 of them are numerical. Cat-

egorical features are indicated with a (C) and numerical ones are indicated with

a (N). Features that take on only binary values, such as Yes/No or True/False

are treated as categorical.
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Table 3.2: Features in the IVFa Dataset.

Variables from Female Variables from Male
Female Age(N) Laparoscopy(C) Male Factor(C)
Female Blood Type(C) Hysteroscopy(C) Male Age(N)
Height(N) Laparoscopic Surgery(C) Male Blood Type(C)
Weight(N) Hysteroscopic Surgery(C) Male Genital Surgery(C)
BMI(N) Abdominal Surgery(C) Semen Analysis Category(C)
Tubal Factor(C) Abdominal Surgery Category(C) Male FSH(N)
Age Related Infertility(C) Gynecologic Surgery(C) Sperm Count(N)
Ovulatory Dysfunction(C) Ovarian Surgery(C) Sperm Motility(N)
Unexplained Infertility(C) Tubal Surgery(C) Total Progressive Sperm Count(N)
Severe Pelvic Adhesion(C) Uterine Surgery(C) Sperm Morphology(N)
Endometriosis(C) Duration Infertility(N) Testicular Biopsy(C)
Cycle No(N) PCOS(C) TESE Outcome(C)
D3 FSH(N) HSG Cavity(C) Male Karyotype(C)
D3 LH(N) HSG Tubes(C)
D3 E2(N) Hydrosalpinx(C)
Gravida(N) Office Hysteroscopy(C)
Abortus(N) Office Hysteroscopic Incision(C)
Alive(N) Office Hysteroscopic Procedure(C)
DM(C) Total Antral Follicle Count(N)
HT(C) Right Ovarian Antral Follicle Count(N)
Thyroid Disease(C) Left Ovarian Antral Follicle Count(N)
Anemia(C) Myoma Uteri(C)
Hyperprolactinemia(C) Localization Myoma Uteri(C)
Hepatitis(C) Endometrioma Surgery(C)
Embryocryo(C) Cyst Aspiration(C)
Laparotomy(C)

The treatment phase is analyzed in two steps: the period up to and including

the embryo transfer and the period after the embryo transfer. The second dataset,

called IVFb, contains all the features in IVFa and 101 features involving the first

phase of the treatment. IVFb dataset contains 51 categorical and 50 numerical

features. Finally the IVFc dataset includes all features of IVFb and further

features related with the final phase of treatment. IVFc dataset contains 78

categorical and 63 numerical features.
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Table 3.3: Additional Features in IVFb Dataset.

Variables
Ovulation Induction Protocol(C) FSH Brand Name(C) E2 Day2v3(N)
GNRH Brand Name(C) HMG Brand Name(C) E2 Day4v6(N)
GNRH Duration(N) HMG Start Day(N) E2 Day7v8(N)
Antagonist Day(N) HMG Dose(N) E2 Day9v10
Antagonist Duration(N) Final HMG Dose(N) E2 Day11v12(N)
Supressed E2(N) HMG Duration(N) E2 Day13v14(N)
Supressed FSH(N) Oral Contraceptive Brand Name(C) E2 Day15v16
Supressed LH(N) Ovulation Induction Dose Day3(N) E2 Max(N)
Supressed Progesteron(N) Ovulation Induction Dose Day6(N) Follicle Count 17mm(N)
Supressed Endometrial Thickness(N) Ovulation Induction Dose Final(N) Follicle Count 15 17mm(N)
Supressed Antral Follicle Count(N) Ovulation Induction Dose Protocol(C) Follicle Count 10 14mm(N)
Ovulation Induction Type(C) Ovulation Induction Duration(N) HCG Dose(C)
Ovulation Induction Dose Initial(N) Ovulation Induction Total Dose(N) HCG Cycle Day(N)
HCG Endometrial Thickness(N)

Table 3.4: Additional Features in IVFc Dataset.

Variables
OPU Procedure(C) Quality Score Day2(N) Catheter Control(C)
OPU E2(N) Quality Score Day3(N) ET Progesteron(N)
OPU LH(N) Quality Score Day5(N) ET E2(N)
OPU Progesteron(N) Number Embryo Transferred(N) ET Endometrial Pattern(C)
OPU Endometrial Pattern(C) Number Embryo Gr1(N) ET Endometrial Thickness(N)
OPU Endometrial Thickness(C) Number Embryo Gr2(N) Distance Embryo Fundus(N)
Method Sperm Retrieval(C) Number Embryo Gr3(N) Freezing Embryo Procedure(C)
Total Oocyte Count(N) Number Embryo Gr4(N) Number Freezing Embryo(N)
Mature Oocyte Count(N) Blastocyst Transfer(N) Lutheal Support(C)
Number Inseminated Oocytes(N) Assisted Hatching(C) Hospitalization OHSS(C)
Oocyte Quality Index(N) Embryo Transfer Procedure(C) Cycle Cancellation(C)
Pronuclear2 No(N) Embryo Transfer Type(C) Result BHCG(N)
Day Embryo Transfer(N) End thick HCG(N)
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Chapter 4

Ranking Algorithms

This chapter presents detailed information about ranking algorithms that are

RIMARC (Ranking Instances by Maximizing the Area under the ROC Curve),

SVMlight (Support Vector Machine Ranking Algorithm) and RIkNN (Ranking

Instances using k Nearest Neighbour).

4.1 Ranking Algorithms Introduction

In medicine, the chance of success for a treatment is important and risky for

decision making for both doctor and the patient. In this thesis, the first problem

is to predict the outcome of the IVF treatment. It is very crucial in the decision

on proceeding with the treatment. It is very important for the doctor and the

patient couple in the beginning stage of the treatment because this gives some

idea about the chance of success of the treatment after the initial evaluation. As

a result of this, if the chance of success is low, the patient couple may decide not

to proceed with this stressful and expensive treatment.

In this research, the aim is to determine the factors that affect the success in

IVF treatment and develop techniques that can be used to estimate the chance

of success and classify the given patient as it will be successful or failure at
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the beginning. The objective in developing the techniques for estimation is to

employ ranking based algorithms where the ranking criterion ranks the instances

according to their chance of success.

The methods used are RIMARC, SVMlight and RIkNN. Also, the weighted

version of the RIkNN is used namely, RIwkNN where the features are assigned

weights by experts in the domain. All of these algorithms learn a model to rank

the instances based on their score values and these algorithms are compared on

the basis of the AUC of 10-fold stratified cross-validation.

Ranking algorithms include two steps that are train and test. For computing

AUC, 10-fold cross-validation technique is applied on the dataset. That means,

the dataset is partitioned into 10 equal size sub-datasets. Among 10 sub-datasets,

a single dataset is retained as the test dataset for testing the model, and the

remaining 9 sub-datasets are used as training data. The cross-validation process

is repeated 10 times, with each of the 10 sub-datasets are used exactly once as

the test dataset. For each fold, ranking algorithms take the training datasets as

an input and produce a model. The training operations are shown in Figure 4.1,

Figure 4.2.

 test1 

Features Class 

 train1 

Ranking 

Algorithm  Model1 

Features Class 

The first fold of train 

Figure 4.1: The first fold of the training.
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Figure 4.2: The ith fold of the training.

In the following sections, the details of the proposed ranking algorithms are

given.

4.2 RIMARC: Ranking Instances by Maximiz-

ing the Area under the ROC Curve

RIMARC is a supervised, non-parametric algorithm that learns a ranking func-

tion [2]. The RIMARC algorithm aims to maximize the AUC value, since the

area under the ROC curve (AUC) has become a widely accepted performance

evaluation metric in order to evaluate the quality of ranking.

It learns a ranking function which is a linear combination of non-linear score

functions constructed for each feature separately. Each of these non-linear score
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functions aims to maximize the AUC by considering only the corresponding fea-

ture in ranking. It has been shown that, for a single categorical feature, it is pos-

sible to derive a scoring function that achieves the maximum AUC [2]. Therefore

the RIMARC algorithm first discretizes all continuous features into categorical

ones, in a way that optimizes the AUC, using the MAD2C algorithm proposed

by Kurtcephe and Güvenir [63].

A categorical feature f has a finite set of values. Let

Vf = v1, v2, ..., vk (4.1)

be the set of values for a given categorical feature f . Consider a dataset that

includes only this feature and a class value for each instance. That is, an instance

is represented by two values: f value and class label. A scoring function sf () can

be defined to rank the elements of Vf . According to this scoring function

vi � vj (4.2)

if and only if

sf (vi) ≤ sf (vj) (4.3)

.Note that, the problem of ranking the instances in a dataset is reduced to

the problem of ranking the values of a feature. Guvenir and Kurtcephe showed

that a scoring function has to satisfy the following condition in order to achieve

the maximum AUC [2].

sf (vi) ≤ sf (vj) iff
Pi

Ni

<
Pj

Nj

(4.4)

This newly defined scoring function satisfies the condition in Equation 4.4 and

further it is interpretable since it is simply the probability of the p label among all
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instances with value vi. This probability value is easily interpretable by humans.

The instances of the dataset, that has a single categorical feature f, are sorted by

the scoring function sf (), and the AUC is computed. The AUC obtained by such

a scoring function is guaranteed to be between 0.5 and 1.0 [2]. If the feature f

is irrelevant, the AUC will be 0.5. On the other hand, if the single feature f is

sufficient to predict the class label, that is all positive and negative instances will

be separated by the scoring function sf (), the AUC will be 1.0. The RIMARC

algorithm uses the AUC value to measure the weight (relevancy) of the feature

f , as:

Wf = 2(AUCf − 0.5) (4.5)

where AUCf is the AUC obtained for feature f . The RIMARC algorithm

computes the weight of each feature by setting up a sub-dataset, which is com-

posed of only that feature and the class label.

As an example, suppose that if the AUC computed for the feature f is 1, that

means perfect ordering and this is the maximum value that AUC can have. That

is, all instances in the training set can be ranked by using only the values of

feature f . Therefore, we expect that query instances can be ranked correctly by

using feature f only, as well.

The rule model learned by the RIMARC algorithm is used to compute the

score for a given query patient q as:

score(q) =

∑
f

wfsf (q)∑
f

wf

(4.6)

Wf =

 2(AUCf − 0, 5) qf is known

0 qf is missing
(4.7)

Here wf represents the weight of the feature f , and sf (p) represents the score
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associated with the value of feature f for the patient couple p. For example,

consider a 25 years old female, whose BMI is 25.7 and she does not have age

related infertility and the semen analysis category for her partner is astheno; and

the values of all other features are missing. Then the chance of the outcome of

IVF treatment can be computed as shown in Table 4.1.

Table 4.1: An example for chance estimation using RIMARC.

Feature Feature weight wf Feature value Score value sf (q) wf .sf (q)
Female Age 0.1753 25 0.2374798 0.04163021

BMI 0.1443 25.7 0.21691176 0.03130037
Semen Analysis Category 0.1407 astheno 0.35714287 0.05025000

Age Related Infertility 0.1178 no 0.22451456 0.02644782
Sum 0.5781 0.1496284

score(p) = 0.1496/0.5781 = 0.2587

The ranking score value is used to locate the query patient among the training

cases. However, what is needed is the chance of success of the treatment for a new

query patient couple. On the other hand, semantically, the word chance refers

to the probability. In order to report the chance of success of IVF treatment for

a query patient q, we select the first 100 past (training) patients whose ranking

scores are closest to score(q). If the number of successful cases among these 100

training cases is Pcount, then the chance of success for q is reported as

chance(q) =
Pcount

100
(4.8)

That is, chance(q) represents the probability of success considering the most

similar 100 past cases.

Such a ranking algorithm can also be used for binary classification, where the

class labels are s and f. The class label of a query instance q, can be predicted

as s if the chance(q) is more than or equal to 0.5 as it is shown in Equation 4.9.

class(q) =

 s chance(q) ≥ 0.5

f otherwise
(4.9)
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4.3 SVMlight: Support Vector Machine Ranking

Algorithm

SVMlight is an implementation of Support Vector Machine (SVM) in C [3]. It

is designed for ranking problems. It is an implementation of Vapniks Support

Vector Machine for the problem of regression, pattern recognition, and for the

problem of learning a ranking function. It has many versions. New in this version

is an algorithm for learning ranking functions. The goal is to learn a function

from preference examples, so that it orders a new set of objects as accurately as

possible.

SVMlight includes two modules that are learning module (svm learn) and clas-

sification module (svm classify). The classification module is used for applying

the learned model to the new examples. In order to run the algorithms two input

files are needed (train and test files). In the classification mode, the target value

denotes the class of the example. A +1, as the target value, marks a positive

example, -1 a negative example respectively. In out IVF data set, +1 is used to

represent a successful instance, and a -1 is used to denote a failure.

The result of the svm learn algorithm is the model which is learned from

the training data in training file. The model is written to model file. To make

predictions on test examples, svm classify reads this file. For all test examples in

test file the predicted values are written to the output file. There is one line per

test example in the output file containing the value of the decision function on

that example. The result of the decision function is real value that can be used

as the rank score of the corresponding query instance in test file.

The SVMlight algorithm can be used for estimating the chance of success and

predicting the class label of a given query instance as for the RIMARC algorithm.
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4.4 RIkNN: Ranking Instances using k Nearest

Neighbour

The k Nearest Neighbour (kNN) is one of the well-known classification methods

in machine learning and pattern recognition. The kNN algorithm is a kind of

lazy learning algorithm, where the training instances are simply stored and all

computation is deferred until classification. It is among the simplest, yet effective,

of all machine learning algorithms. The kNN algorithm classifies a query instance

by a majority vote of its neighbours. That is, the query instance is assigned to

the class most common among its k nearest neighbours. The k parameter is a

positive, typically small, integer, indicating the number of nearest neighbours to

be considered in the classification. If the value of k is 1, then the query instance

is simply assigned to the class of its nearest neighbour [64], [65], [66], [67], [68].

Datasets used in classification methods have several parameters; also called

features. These features are the variables that are believed to affect the result

of the event. In medical domain, features can be symptoms of an illness, drugs

that are applied to the patient and factors that are influential on the result of the

treatment. The result of the treatment is called the class variable. Classification

algorithms try to generate a model and predict the outcome of the event. In

the nearest neighbour approach, this prediction, so called classification, is done

based on cases that have been found similar to the queried case. The underlying

bias is that, the classification of an instance should be similar to the classification

of similar cases. In order to accomplish this goal, all instances are represented

as a point in the n-dimensional space where n is the number of features. Since,

nearest neighbour approach is a lazy learner, there is no calculation done in

the training phase. When test starts, the algorithm tries to classify the query

instance as correctly as possible. To find cases that are similar to the case that

is being classified, distances to all other instances are computed. Class of the

query instance is predicted to be the most frequently occurring class among the

k nearest neighbours.

The number of neighbours to be taken into consideration during classification
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is a controversial issue. k Nearest Neighbour, shortly kNN, is a well-known

algorithm that implements the nearest neighbour approach. K is the number

of neighbours to be considered in the overall classification.

In this thesis, we want to estimate the chance of success of the treatment

for a given patient. That is, instead of a class value, the estimation algorithm

has to return a real value indicating the chance of success. Therefore, in our

implementation, the kNN algorithm returns the ratio of positive instances among

all k nearest neighbours. That is the probability of success among the k nearest

neighbours.

Medical science is one of the most related domains. In medicine, chance

of an operation and chance of success for a treatment are all points that need

to be handled carefully. Without help of data mining techniques, physicians

infer from their past knowledge and conclude accordingly. Nonetheless, machine

learning and data mining techniques find correlations in data that are not easily

recognizable by human beings. Finding unknown relationships among features

and learning dynamically from the dataset facilitate interpretation of the data.

Nearest neighbour used in classification problems has been used extensively.

In this thesis, we used a modification of the k nearest neighbour algorithm for

predicting the chance of success. Although this research describes the application

on IVF treatment, the developed algorithm can be used in all domains in which

a chance/probability of success is present.

For IVF treatment, doctors generally make their decisions based on their past

experiences. When a new patient couple applied to the clinic, the doctors consider

the past couples that are the most similar to the new one. It is easily understood

that, this method is similar to the kNN algorithm which is very popular in data

mining and machine learning domains. Due to the fact that kNN is easy to

interpret for doctors, we developed a new algorithm based on it called RIkNN in

order to rank instances.

The similarity between the query patient q and the past patient p, is defined

as s(q, p), which returns a real value between 0 and 1; here 1 represents the
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exactly same values, while 0 represents a completely different case. The similarity

function is defined as

s(q, p) = 1− d(q, p) (4.10)

where d(q, p) represents the distance between two records, and returns a real

value between 0 and 1. As a distance metric, Euclidean distance is used.

d(q, p) =
n∑

f=1

δ(f, qf , pf ).wf (4.11)

δ(f, x, y) =


0.25 if at least one of x or y is missing

(x− y)2 if f is nominal or ordinal

(x == y) if f is categoric

(4.12)

Here, wf is the weight assigned to the attribute f by the doctors. Label

values of the ordinal attributes are replaced by their ordinal (integer) values.

Then, all numerical and ordinal attributes are normalized using the min-max

normalization. While determining the difference on a variable, if at least one of

the values is missing, the distance is assumed as 0.25 between two variables.

Having computed the similarity between the query patient couple and the

records, starting with the instance that has highest similarity value, all k nearest

neighbours are determined. In order to calculate the chance for a query instance,

the following formula is used directly.

chance(q) = score(q) =
Pcount

k
(4.13)

Here Pcount represents the number of instances whose class label is Success-

ful and k represents the number of neighbours considered. That is, chance(q)

represents the probability of success considering the most similar k past cases.
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Chapter 5

Determining the Factors in the

Success of IVF Treatment

In the IVF dataset, there are many features about the patients. Each of them has

an affect on the result however, their importance are not equal. Doctors have a

general idea about which features are mostly effective on the outcome. According

to the gynocologist, the most important factor in IVF is the female age. When

a patient comes to the clinic, doctors firstly ask for the age of the patient. If the

age is under a threshold, than achieving a positive result at the end of the IVF

treatment is high. However, making a decision based on only one feature is not

reliable. There are so many important features that affect the result. In order to

make a good decision, importance weights of all features and their importances

must be determined.

RIMARC learns feature weights and creates rules that are in a human readable

form and easy to interpret. For example, a high feature weight value indicates

that the corresponding feature is a highly effective factor in IVF. On the other

hand, features with low weights may be ignored by doctors. These rules and

weight values may be very useful for determining the chance of success since each

rule has its own score value and weight. Listing the effects of features based on

feature weights and how their particular values affect the ranking.
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In Table 5.1 and 5.2, features and their weight values that are learned by the

RIMARC algorithm are given. In Figure 5.1 to Figure 5.6, some rules that are

learned by RIMARC are illustrated. It is obvious that, these rules are very easy

to understand and interpret by domain expert.

There seems to be a strong correlation with the male blood type and the

success of the treatment, in favour of B Rh-, see Figure 5.1. In our dataset the

blood type of 1881 patient is give. Among them, there are 9 cases where male

blood type is B RH- and the result of the treatment is Successful. This may be by

chance or there may be a medical explanation. It deserves further investigation

by the IVF community.
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A Rh- AB Rh- O Rh- B Rh+ A Rh+ O Rh+ AB Rh+ B Rh- 

Score 
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Figure 5.1: Rule for categoric feature, Male Female Blood Type.
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Table 5.1: Feature weights learned by RIMARC on the IVF dataset.

Feature Weight Feature Weight

Result BHCG 0,9905 End thick HCG 0,5689

E2 Day15v16 0,5579 Laparoscopic Surgery 0,5363

TESE Outcome 0,3936 Embryo Transfer Type 0,3871

Embryo Transfer Procedure 0,3743 Quality Score Day5 0,3421

E2 Day13v14 0,3334 Male FSH 0,3160

Male Blood Type 0,2899 Pronuclear2 No 0,2898

E2 Day2v3 0,2887 Hysteroscopic Surgery 0,2854

Mature Oocyte Count 0,2843 Quality Score Day3 0,2829

Number Inseminated Oocytes 0,2745 Ovulation Induction Dose Final 0,2417

Total Oocyte Count 0,2396 Number Embryo Gr1 0,2389

Ovulation Induction Dose Initial 0,2261 Ovulation Induction Dose Day3 0,2253

Total Antral Follicle Count 0,2202 Right Ovarian Antral Follicle Count 0,2131

Localization Myoma Uteri 0,2123 Ovulation Induction Dose Day6 0,2079

Quality Score Day2 0,2068 E2 Max 0,2038

Left Ovarian Antral Follicle Count 0,1984 Ovulation Induction Protocol 0,1960

HCG Endometrial Thickness 0,1874 Supressed FSH 0,1865

E2 Day11v12 0,1811 Oocyte Quality Index 0,1794

E2 Day4v6 0,1788 E2 Day9v10 0,1781

HMG Start Day 0,1763 Follicle Count 15 17mm 0,1752

Supressed LH 0,1744 E2 Day7v8 0,1737

ET Progesteron 0,1696 HMG Brand Name 0,1686

Sperm Count 0,1684 Follicle Count 17mm 0,1677

Blastocyst Transfer 0,1667 ET E2 0,1664

Antagonist Duration 0,1662 Number Freezing Embryo 0,1652

Female Age 0,1629 Lutheal Support 0,1586

OPU Endometrial Thickness 0,1576 Total Progressive Sperm Count 0,1575

D3 FSH 0,1564 OPU E2 0,1562

Supressed Progesteron 0,1507 Follicle Count 10 14mm 0,1487

Gynecologic Surgery 0,1466 Day Embryo Transfer 0,1462

Unexplained Infertility 0,1440 Ovulation Induction Type 0,1420

Semen Analysis Category 0,1411 Number Embryo Transferred 0,1402

Ovulation Induction Total Dose 0,1390 Female Blood Type 0,1380

Ovulation Induction Dose Protocol 0,1350 GNRH Duration 0,1325

Freezing Embryo Procedure 0,1315 OPU Progesteron 0,1313

OPU Procedure 0,1305 Ovulation Induction Duration 0,1303
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Table 5.2: Feature weights learned by RIMARC on the IVF dataset Cont.

Feature Weight Feature Weight

Supressed Antral Follicle Count 0,1285 BMI 0,1272

Duration Infertility 0,1217 ET Endometrial Pattern 0,1214

Cycle Cancellation 0,1179 Age Related Infertility 0,1151

Final HMG Dose 0,1133 Sperm Motility 0,1130

Male Age 0,1119 Method Sperm Retrieval 0,1118

Height 0,1094 GNRH Brand Name 0,1071

Weight 0,1049 Male Genital Surgery 0,1035

HMG Duration 0,1016 Supressed E2 0,0973

Distance Embryo Fundus 0,0945 Office Hysteroscopy 0,0910

D3 LH 0,0909 Number Embryo Gr36 0,0902

OPU LH 0,0886 HSG Cavity 0,0869

Office Hysteroscopic Procedure 0,0865 Male Karyotype 0,0865

Sperm Morphology 0,0861 Supressed Endometrial Thickness 0,0833

ET Endometrial Thickness 0,0759 Ovulatory Dysfunction 0,0756

PCOS 0,0751 Antagonist Day 0,0747

Laparotomy 0,0740 D3 E2 0,0691

Number Embryo Gr4 0,0661 Number Embryo Gr2 0,0592

HMG Dose 0,0583 HCG Cycle Day 0,0536

Uterine Surgery 0,0476 Catheter Control 0,0474

HSG Tubes 0,0447 Cycle No 0,0433

Abdominal Surgery 0,0386 HCG Dose 0,0382

Tubal Factor 0,0350 Myoma Uteri 0,0335

G 0,0300 Ovarian Surgery 0,0290

Thyroid Disease 0,0249 Testicular Biopsy 0,0245

Abdominal Surgery Category 0,0245 FSH Brand Name 0,0243

Cyst Aspiration 0,0217 Endometrioma Surgery 0,0212

Male Factor 0,0199 Assisted Hatching 0,0198

Laparoscopy 0,0198 Oral Contraceptive Brand Name 0,0192

OPU Endometrial Pattern 0,0120 DM 0,0120

Tubal Surgery 0,0102 A 0,0093

Endometriosis 0,0084 Hydrosalpinx 0,0078

Hyperprolactinemia 0,0071 HT 0,0070

Embryocryo 0,0065 Hepatitis 0,0057

Office Hysteroscopic Incision 0,0033 Y 0,0027

Severe Pelvic Adhesion 0,0026 Hysteroscopy 0,0019

Hospitalization OHSS 0,0015 Anemia 0,0001
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Figure 5.2: Rule for numerical feature, Female Age.
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Figure 5.3: Rule for numerical feature, Total Antral Follicule Count.
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Figure 5.4: Rule for numerical feature, Sperm Motility.
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Figure 5.5: Rule for numerical feature, D3 FSH.
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Figure 5.6: Rule for numerical feature, Weight.
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Chapter 6

Suggestion of the Best Treatment

Protocol

This chapter presents detailed information about suggestion methods that are

Nearest Successful Neighbour Based Suggestion (NSNS), k nearest Neighbour

Based Suggestion (kNNS) and Decision Tree Based Suggestion (DTS). Also, the

detailed information about performance evaluation metrics namely; pessimistic

metric (mp), optimistic metric (mo), validated optimistic metric (mvo) and vali-

dated pessimistic metric (mvp) are given.

6.1 Suggestion Introduction

Suggestion systems aim to give a direction to users in a specific area that can

provide reliability in decisions and in parallel with results. These systems can

be developed for many different areas like economics and medicine where there

exist many choices that can affect the result directly. In such cases, making

a decision to select the best choice that provides to get the desired result. In

medicine, especially while deciding the best treatment protocol for the patient

is a really challenging process. Since, there are many treatment techniques for

an illness, selection of the treatment protocol that provides a successful result is
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very important. In order to solve this problem, we developed algorithms that are

based on machine learning techniques.

Our problem set belongs to patients who have infertility problems. Infertility

is the state of the couple who is unable to have a baby. For this problem, there are

many ongoing treatment techniques. However, In Vitro Fertilization (IVF) is the

major treatment for infertility among the assisted reproductive technologies. This

treatment includes decisions about many different types of drugs and dosages that

have heavy side affects on the woman. So, the selection of the proper treatment

protocol is vital because when a cycle fails, everything must be repeated from the

beginning.

This thesis proposes three algorithms that are served as the solution of this

problem. Due to the fact that there is no suggestion system in the literature,

evaluating the correctness of the algorithms is not clear. So, we developed four

performance evaluation metric namely, pessimistic metric (mp), optimistic metric

(mo), validated optimistic metric (mvo) and validated pessimistic metric (mvp).

6.2 NSNS: Nearest Successful Neighbour Based

Suggestion

Machine learning algorithms have been used in developing model that can be

used to make diagnosis in medical domains. On the other hand, another possible

application area where machine learning techniques can be utilized is the sugges-

tion of the best treatment for a given patient. Having found similar patients, it

is logical for an algorithm to suggest treatments that have been successful among

those patients. In domains where contributions of features and possible results

of treatment are not crystal clear, physicians sometimes feel the necessity to de-

cide heuristically. The procedure they apply is generally, remembering patients

that were similar to the current patient and apply the treatment that has been

successful among similar cases. This heuristic, is the bases of our algorithm. Our

inductive bias for suggestion is that, the nearest successful neighbours treatment
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would be suitable for the queried instance. Therefore, we list all neighbours and

find the closest successful neighbour to suggest the treatment. As a distance

metric, for numerical features Euclidean metric is used. For categorical features,

if the value of the feature for query instance and the test instance is the same,

than the distance equals to 0, 1 otherwise. So, we developed an algorithm called

NSNS (Nearest Successful Neighbour Based Suggestion).

d(q, p) =
√

(q1 − p1)2 + (q2 − p2)2 + . . .+ (qn − pn)2 =

√√√√ n∑
i=1

(qi − pi)2 (6.1)

There are two main points that affect the result of the treatment in IVF;

namely the drug to be applied and the dosage of the drug. Since protocol selection

determines the drug and the dosage that are going to be used, these two factors

are decided to give a direction to the treatment. The suggestion technique for

both of the drug and the dosage is the same. Having found the nearest successful

patient, we suggest the drug and the dosage that have been applied to that

successful patient. By this way, we aim to increase chance of success for the

queried patient.

6.3 kNNS: k Nearest Neighbour Based Sugges-

tion

Similar to the NSNS algorithm, kNNS calculates the distance between queried

instance and the training instances. After that, list all instances considering their

distance values. Different from the NSNS algorithm, we consider failure cases in

this algorithm. Also we suppose that k can be different from 1. Considering k

nearest neighbours, based on their class labels and distance values, we calculate

a score for the value of the suggestible feature.

kNNS is a k Nearest Neighbour based algorithm. The kNN algorithm classifies

a query instance by a majority vote of its neighbours. That is, the query instance
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is assigned to the class most common among its k nearest neighbours as it it

shown in Figure 6.1. In the example, the query instance (green circle) should

be classified either to the first class of blue squares or to the second class of red

triangles. If k = 3 (solid line circle) it is assigned to the second class because there

are 2 triangles and only 1 square inside the inner circle. If k = 5 (dashed line

circle) it is assigned to the first class (3 squares vs. 2 triangles inside the outer

circle) In this thesis, we want to suggest a treatment protocol to the patient. That

is, instead of a class value, the suggestion algorithm has to return a suggestion

and a value which represents the score of the suggestion.

? 

Figure 6.1: Example of kNN classification.

In IVF treatment, doctors generally make their decisions based on their past

experiences. When a new patient couple applied to the clinic, the doctors consider

the past couples that are the most similar to the new one. It is easily understood

that, this method is similar to the kNN algorithm which is very popular in data

mining and machine learning domains. Due to the fact that kNN is easy to

interpret for doctors, we developed a new algorithm based on it called kNNS in

order make suggestions.

In order to find the k nearest neighbours, the distance between the training in-

stances and the query instance must be computed. After computing all distances
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between a query instance and the training instances, neighbours are sorted in in-

creasing order based on their distance values and k nearest of them are selected.

After that, class labels and applied treatment protocols for neighbours are deter-

mined. Treatment protocols that are applied to selected neighbours are identified

as possible alternatives. However, we still do not know which one is the best for

the queried instance. In order to find the score of the suggestible value, we use

the Equation 6.2.

Ssv =


1

ed(q,p)
if Class Label = Successful

−1
ed(q,p)

if Class Label = Failure
(6.2)

In the equation, Ssv represents the score of the suggestible value. That means

among the alternatives for the given query, alternative with the higher score

value is the most proper one. If this alternative is applied to the patient, than

the chance of achieving the desired result will be maximized. For example in

Figure 6.2, k = 7 so we consider the nearest 7 neighbours for suggestion. For the

first nearest neighbour, the applied treatment protocol is P1 and the class label

is Successful. So, according to the equation 6.2, Wsv for P2 equals 1
ed(q,p1)

. For

the second nearest neighbour, the applied treatment protocol is P4 and the class

label is Successful. The score value for P4 is computed similarly like P1 and it

equals 1
ed(q,p2)

. For the third nearest neighbour, the applied treatment protocol is

P2 and the class label is Failure. So, according to the equation,Wsv for P2 equals
−1

ed(q,p3)
. The algorithm calculates this equation for each neighbour and at the end,

we get the sum of the score values of the same treatment protocols. For example,

treatment protocol P2 is applied two instances and one of them successes and the

other one fails. As a result, the final score value for treatment protocol P2 equals
−1

ed(q,p3)
+ 1

ed(q,p7)
. In Table 6.1 and 6.2, example values for neighbour distances and

the alternatives with score values are given.

According to the Table 6.2, our algorithm firstly suggest the treatment pro-

tocol P4 with score value 0,93 and after that it suggests treatment protocol P1

with score value 0,13. Alternatives with score values that are smaller than 0 are

not suggested if there exist an alternative a score value that is greater than 0.
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Figure 6.2: Example for to suggest an alternative treatment protocol with score
value in IVF treatment.

This output is really valuable for doctors because it says which treatment

protocol is most suitable for the patient. Especially the score values indicate the

convenience of the treatment protocol for the patient.

6.4 DTS: Decision Tree Based Suggestion

A decision tree is a decision support tool that uses a tree-like model of decisions

an possible consequences. It is a one way to represent an algorithm. In data

mining and machine learning, decision tree learning uses a decision tree as a

predictive model which maps observations about an instance to conclusions about
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Table 6.1: Example of the kNNS.

Neighbour Distance Applied treatment protocol Class Label Ssv

N1 0,05 P1 S 1
e0,05

= 0, 95

N2 0,07 P4 S 1
e0,07

= 0, 93

N3 0,13 P2 F −1
e0,13

= −0, 87

N4 0,17 P3 F −1
e0,17

= −0, 84

N5 0,19 P1 S 1
e0,19

= 0, 82

N6 0,21 P3 F −1
e0,21

= −0, 81

N7 0,22 P2 S 1
e0,22

= 0, 80

Table 6.2: Suggested treatment protocols with score values.

Suggested treatment protocol Ssv

P4 0,93
P1 0,13
P2 -0,07
P3 -1,65

the instances target value. These tree models are also known as classification or

regression trees. In these tree structures, each internal node tests an attribute,

each branch corresponds to an attribute value and each leaf node represents the

class label. Figure 6.3 illustrates an example decision tree for predicting whether

a person cheats or not.

In the decision tree, root node and the internal nodes represent an attributes

that has specific values. These values represent test conditions and create

branches. As it is shown in example, decision tree is constructed from the data

gathered in training instances. Once a decision tree is constructed, rules from

root node to leaf nodes are determined and each test instance follows one of these

rules and reach the target leaf node as it is shown in Figure 6.4.

Decision tree models are used to solve classification problems. They are sim-

ple and widely used classification techniques. Furthermore, decision trees can be
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id Refund Marital 

Status 

Taxable 

Income 

Cheat 

1 Yes Single 125K F 

2 No Married 100K F 

3 No Single 70K F 

4 Yes Married 120K F 

5 No Divorced 95K S 

6 No Married 60K F 

7 Yes Divorced 220K F 

8 No Single 85K S 

9 No Married 75K F 

10 No Single 90K S 
10 

 

Refund 

MarSt 

TaxInc 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 

Splitting Attributes 

Training Data Model:  Decision Tree 

Figure 6.3: Example of training phase in Decision Tree.

converted to a set of rules. Thus, this representation is considered as comprehen-

sible.

In medical domains, there are many situations where decision must be made

reliably and effectively. Decision making models with automatic learning func-

tions are most appropriate for performing such tasks. Decision trees are reliable

and provide high classification accuracy. So, they have been used in many differ-

ent medical domains for decision making [69], [70], [71]. However, classification

is not the only problem that must be determined. Especially in medicine, treat-

ment technique for an illness is very important for prediction of the result. Since

it directly affects the patients life, choosing the proper treatment for the patient

is vital. Also, in IVF treatment, the importance of the treatment protocol is

really high because when a cycle fails, that means a selected treatment protocol

is not proper for the patients and achieving the desired result is not possible,

patient couple may be obliged to try one more time from the beginning. Effect

of the medicines that are used in the IVF treatment are damaging and treat-

ment costs high. So, decision of the treatment protocol is very crucial for patient

couple. Since, there is not any research on suggestion for the best treatment pro-

tocol, we developed a decision tree based algorithm namely, Decision Tree Based
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Yes No 
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< 80K > 80K 

Refund Marital 
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Taxable 

Income 

Cheat 

No Married 80K ? 
10 

 

Test Data 

Assign Cheat to “No” 

Figure 6.4: Example of testing phase in Decision Tree.

Suggestion (DTS) that aims to suggest a best treatment protocol for a selected

patient. Since, our dataset belong to IVF patients so the algorithms aims to give

a suggestion that increases the chance of having a baby.

DTS is different from a simple decision tree algorithm. In decision tree classifi-

cation, there exist one decision tree that is generated from training data. However,

in DTS there are more than one decision trees. In IVF dataset, there are two cat-

egoric suggestible features that are “Ovulation Induction Protocol” and “Ovula-

tion Induction Dose Protocol”. “Ovulation Induction Protocol” has 18 different

values and “Ovulation Induction Dose Protocol” has four different values. Based

on the values of the selected suggestible feature, the training dataset is partitioned

as it is shown in Figure 6.5. That means, for each suggestible value there exists

a decision tree.
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Figure 6.5: Splitting the training files in DTS.

After the construction of the training datasets, we need to convert them

into .arff file format because we use weka.classifiers.trees.J48 pack-

age to construct model from training instances. When the file conversion

is completed, we make a system call from our source code using the com-

mand java -cp weka.jar weka.classifiers.trees.J48 -t trainFileName

-d modelFileName -no-cv -c 1 for each training dataset and Weka constructs

a decision tree model. We use weka.classifiers.trees.J48 as a classifier.

Furthermore, “trainFileName” represents the name of the training datasets. We

create a model and save it in a file named modelFileName. Model file names are

unique. They are composed of the fold number and the value of the suggestible

feature. Lastly, we represent the class label as the first feature in the dataset so,

in order to provide Weka to understand it, we give the index number of the class

label. Otherwise, Weka accepts the last feature as a class label.
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Figure 6.6: Generation of the training datasets for each fold in DTS.

When the model construction is completed, testing instances for each fold

entered to the models that represent the values of the suggestible feature. Each

test instance is classified as Successful of Failure and assigned a confidence factor
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value. For the classification phase, we again use weka.classifiers.trees.J48

package.

For the performance evaluation, we need three values from the output of the

test phase. The first one is the actual class label of the test instance. Second

one is the value of the suggestible feature that was previously applied to the test

instance. Lastly, the confidence factor of the model is calculated. Confidence

factor of the class label (CF
label(s,f)) represents the total number of instances

that are tested as ntest and misclassified instances as nerror in the format of

(ntest/nerror) and the following equation is the calculation.

CF
label(s,f) =

ntest − nerror

ntest

(6.3)

As it is same in the kNNS, we give suggestions with score values. In this

technique, score values are determined by considering the confidence factor of

the decision tree that belongs to each value of a suggestible feature for each fold.

Equation 6.4 illustrates the conditions for assigning score values to the values of

the suggestible features.

scoresv =

 1− CF
label(s,f) ifclass label = f

CF
label(s,f) otherwise

(6.4)

6.5 Performance Evaluation Metrics

To the best of our knowledge, suggestion is a new topic in the literature and there

is no evaluation metric for testing the developed algorithms in this domain. We

developed two suggestion algorithms and in order to make their performance eval-

uations, we described four new metric that are called pessimistic metric (mp), op-

timistic metric (mo), validated optimistic metric (mvo) and validated pessimistic

metric (mvp).

In suggestion, a suggestible categoric feature fs is selected and its values
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Vf = v1, v2 . . . , vk can be suggested for the queried instance. In the evaluation

phase, three important issues must be considered for the metrics. The first one is

the applied (a) value for the suggestible feature. The second one is the suggested

(s) value that is suggested by our systems. The last one is the actual class label

(r ∈ {s, f}) of the queried instance. Considering these three issues, we developed

four possible evaluation metric cases;

• (s = a) & (r = s): Suggested value equals to the applied value and the

class label is Successful (nas is the number of instances matching this case).

• (s 6= a) & r = s): Suggested value is not equal to the applied value and

the class label is Successful (nds is the number of instances matching this

case).

• (s = a) & (r = f): Suggested value equals to the applied value and the

class label is Failure (naf is the number of instances matching this case).

• (s 6= a) & (r = f): Suggested value is not equal to the applied value and

the class label is Failure (ndf is the number of instances matching this case).

Performance evaluation metrics are developed based on these four cases and

detailed information about them are introduced in the following subsections.

6.5.1 mp: pessimistic metric

In this metric, we consider only the first case as a good result. In the first case,

the class label is successful. Suggestible value that is applied to the query instance

and the predicted value that is suggested by our system are the same. So, in this

case we are sure that our suggestion is proper for the query instance and this case
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is considered as “Good”. Due to the fact that our point of view is pessimistic,

all other three cases can be considered as “Bad”. As a result, based on these

information the equation for mp is defined as below:

mp =
nas

nas + nds + naf + ndf

(6.5)

6.5.2 mo: optimistic metric

In this metric, we consider first, second and fourth cases as a good result. In the

first case, we can sure that our suggestion can be suitable for the query instance

because it is same as the applied value and the result is successful. In the second

case, predicted and applied values are not equal and the class label is successful.

If we consider this case optimistically, this does not mean that the suggested

value is a bad choice for the query instance. If the suggested value is applied to

the query instance, than the result may be successful. So, this case is considered

as “Good” like case one. In the third case, we are sure that the suggested value

is not proper for the query instance because it is same as the applied value and

the class label is failure. Accordingly, this case is considered as “Bad”. In the

last case, predicted value is not equal to the suggested one and the class label is

failure. We cannot say that, if the suggested value is applied to the patient, than

achieving the desired result will be maximized exactly. However, according to the

optimistic viewpoint the suggested value can be proper for the query instance and

this case also is considered as “Good”. As a result, based on these information

the equation for mo is defined as below:

mo =
nas + nds + ndf

nas + nds + naf + ndf

(6.6)
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6.5.3 mvo: validated optimistic metric

In this metric, we consider first case as a good result, third case as a bad result

and we ignore second and fourth cases. Since the result is not clear in cases

second and third, we ignore them. They do not have any contribution to this

metric. So, based on these information the equation for mvo is defined as below:

mvo =
nas

nas + naf

(6.7)

6.5.4 mvp: validated pessimistic metric

If we analyse the cases, first one is absolutely true and the third one is absolutely

false. For the second case, in the pessimistic view our suggestion is different from

the applied value and the result is successful. So, we can say that our system

suggests a wrong value and this case can be considered as “Bad”. Since the result

is not accurate in case four, this one is ignored in the calculation of this metric.

Therefore, based on these information the equation for mvp is defined as below:

mvp =
nas

nas + nds + naf

(6.8)

Table 6.3 illustrates an example of the calculation of the performance evalu-

ation metrics.
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Table 6.3: Example of the performance evaluation metrics calculation.

Train No Applied (a) Suggested (s) Class Label (r) mp mo mvo mvp

1 a a S 1 1 1 1

2 a b S 0 1 - 0

3 a a F 0 0 0 0

4 a b F 0 1 - -

5 a c S 0 1 - 0

6 a c F 0 1 - -

7 a a S 1 1 1 1

8 a a F 0 0 0 0

9 a d S 0 1 - 0

10 a a S 1 1 1 1

Results of the metrics = 3 / 10 8 / 10 3 / 5 3 / 8
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Chapter 7

Empirical Evaluation

In this chapter, we present the test results for developed algorithms for both

prediction and suggestion. All algorithms are tested using stratified 10-fold cross-

validation technique. Stratification guaranties that the ratio of positive instances

and negative instances remains through out each fold.

In the next subsections, we give the test results of the prediction and sugges-

tion algorithms. In order to test the ranking algorithms for prediction, the AUC

metric is used and to test the classification performance, accuracy is used. Due

to the fact that suggestion is a new topic, there is no performance evaluation

metric to test them. So, we developed four performance evaluation metrics and

the validation of the suggestion algorithms are done by using these metrics.

7.1 Estimation of the Chance of Success

In order to support the theoretical backgrounds of the ranking algorithms with

empirical results, we compared all of them. We use two performance evaluation

metrics that are AUC and accuracy. The following sections give more detailed

information about testing and the evaluation.
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7.1.1 Computation of the AUC metric for Prediction

Since the AUC values are used to measure the predictive performance, we use

this metric to test our algorithms.

As it is explained in Chapter 4, each ranking algorithm learns a model from

a set of training instances. After gathering the model, test instances are given to

this model and ranking functions of the algorithms assigns a score value for each

test instance. In Figure 7.1, testing the first fold of the dataset is illustrated.

Since we use 10-fold cross-validation technique, this step is repeated ten times for

each fold as it is shown in Figure 7.2. After completing this step for each fold,

all test instances have a score value that are assigned by the ranking algorithms.

 test1 

Features Class 

 train1 

Features Class 

The first fold of test 

 Model1 

Features Class Score 

… S / F 

S / F … 

Figure 7.1: First fold for testing instances using AUC.

Now, we have 10-fold cross-validated and scored test instances. In the next

step, these instances are integrated and sorted based on their score values and

the AUC metric is computed as it is illustrated in Figure 7.3.

A stratified 10-fold cross-validation is employed to calculate AUC values of

the ranking algorithms. Figures 7.4, 7.5 and 7.6 represent the test conducted

with IVFa, IVFb, and IVFc datasets.
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 testi 

Features Class 

 traini 

 Modeli 

Features Class 

The  ith fold of test 

Features Class 

Features Class Score 

… S / F 

S / F … 

Figure 7.2: ith fold for testing instances using AUC.

As the red line implies, RIMARC used for ranking instances, is more suc-

cessful than RIkNN, SVMlight and RIwkNN with 10-fold cross-validation with

stratification.

The AUC of RIMARC for IVFa dataset is 0,708. For other algorithms, as

they are shown in Table 7.1., the AUC values are as follows: SVMlight is 0.578,

RIkNN is 0.580 for k = 100 and RIwkNN is 0.597 for k = 100 as the best case.

The AUC of RIMARC for IVFb dataset is 0,689. For other algorithms, as

they are shown in Table 7.1., the AUC values are as follows: SVMlight is 0.589,

RIkNN is 0.610 for k = 99 and RIwkNN is 0.626 for k = 51 as the best case.

The AUC of RIMARC for IVFc dataset is 0,986. For other algorithms, as

they are shown in Table 7.1., the AUC values are as follows: SVMlight is 0.814,

RIkNN is 0.742 for k = 89 and RIwkNN is 0.752 for k = 99 as the best case.
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Figure 7.3: Computation of the AUC metric.
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Figure 7.4: Experimental result for dataset IVFa based on AUC.
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Figure 7.5: Experimental result for dataset IVFb based on AUC.
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Figure 7.6: Experimental result for dataset IVFc based on AUC.

Table 7.1: AUC values for ranking algorithms for datasets IVFa, IVFb and IVFc.

Dataset Ranking Algorithm AUC

IVFa

RIMARC 0,708

RIwkNN 0,597

RIkNN 0,580

SVMlight 0,578

IVFb

RIMARC 0,689

RIwkNN 0,626

RIkNN 0,610

SVMlight 0,589

IVFc

RIMARC 0,986

SVMlight 0,814

RIwkNN 0,752

RIkNN 0,742

According to the prediction performances, RIMARC outperforms other rank-

ing algorithms in all test datasets. In addition to that, it calculates feature
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weights and rules that are in a human readable form and easy to interpret.

Based on this information, the main characteristics of RIMARC can be sum-

marized as follows: It achieves high AUC values. It is a non-parametric algorithm

and it does not require tuning of parameters in order to achieve best performance.

It is robust to missing feature values and the ranking function is in a human read-

able form that can be easily understood by domain experts, listing the effects of

features based on feature weights and how their particular values affect the rank-

ing.

7.1.2 Computation of the Accuracy for Classification

Developed ranking algorithms were modified as a classification algorithms to pre-

dict the class label of the queried instance as Successful or Failure.

The working principle of the classification algorithms that are determined

in this thesis is as follows: First of all, these algorithms learn a model from a

training dataset similar as the ranking algorithms. After that, using this model,

score values are assigned to each training instance and scored training instances

are sorted as it is illustrated in Figure 7.7. In ranking algorithms, score values are

assigned to test instances and AUC metric is computed. However, for accuracy

calculation, both training and testing instances are scored.

Since our dataset belongs to IVF patients, we try to give an easily compre-

hensible result. From the patients point of view, if a doctor says that the chance

of success is %x to the patient, the patient understands that x people over 100

people who have infertility problem have a baby after the IVF treatment. This

kind of result makes sense for the patient. So, when a test instance comes, we find

its location among training instances based on their score values. After that, we

select k = 100 nearest neighbours using score values and find instances that are

successful (have a class label s). As it is shown in Figure 7.8, ns represents the

number of instances that are classified as s among k instances. Computing the

Equation 7.1 that equals to accuracy computation, we find the chance of success
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of the test instance.

chance of success =
ns

k
(7.1)

In order to classify the test instance, Equation 7.2 is used. If ns/k is greater

than or equal to 0,5, our algorithms classify these test instances as s, otherwise

f.

predicted class =

 s ns

k
≥ 0, 5

f else
(7.2)

The comparison of these three algorithms are shown in Figure 7.9, 7.10 and

7.11 for datasets IVFa, IVFb and IVFc.

The accuracy of RIkNN and RIwkNN for IVFa dataset is 0.794 for k = 100 as

the best case. For other algorithms, as they are shown in Table 7.2, the accuracy

values are as follows: RIMARC is 0,792 and SVMlight is 0.669.

The accuracy of RIwkNN is for IVFb dataset is 0.795 for k = 34 as the best

case. For other algorithms, as they are shown in Table 7.2, the accuracy values

are as follows: RIwkNN is 0.794 for k = 100 as the best case, RIMARC is 0,782

and SVMlight is 0.687.

The accuracy of RIMARC for IVFc dataset is 0,964. For other algorithms, as

they are shown in Table 7.2, the accuracy values are as follows: SVMlight is 0.808,

RIwkNN is 0.786 for k = 73 and RIkNN is 0.784 for k = 71 as the best case.
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Figure 7.7: Creating sorted and scored training dataset.
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Figure 7.8: Classification of the test instances.
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Figure 7.9: Experimental result for dataset IVFa based on accuracy.
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Figure 7.10: Experimental result for dataset IVFb based on accuracy.
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Figure 7.11: Experimental result for dataset IVFc based on accuracy.

Table 7.2: Accuracy values for ranking algorithm for datasets IVFa, IVFb and

IVFc

Dataset Classification Algorithm Accuracy

IVFa

RIkNN 0,794

RIwkNN 0,794

RIMARC 0,792

SVMlight 0,669

IVFb

RIwkNN 0,795

RIkNN 0,794

RIMARC 0,782

SVMlight 0,687

IVFc

RIMARC 0,964

SVMlight 0,808

RIwkNN 0,786

RIkNN 0,784

According to the experimental results for classification, the performance of
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the RIMARC algorithm and RIkNN is nearly the same for datasets IVFa and

IVFb. Since RIkNN is a parametric algorithm, achieving high accuracy values

can be possible by using different k values. On the other hand, RIMARC is a non

parametric method and it is not a classification algorithm. For IVFa and IVFb

datasets, the success of RIkNN does not make sense because if we classify all

instances as Failure than we get 80% accuracy. In IVFc, RIMARC outperforms

other algorithms and the accuracy rate is higher than the default one that is 80%.

For all datasets, SVMlight has the weakest performance in classification.

7.2 Suggestion of the Best Treatment Protocol

In the literature, there is not any suggestion system so evaluating the correctness

of the developed algorithms is open to the discussion. In this thesis, we proposed

four performance evaluation metrics to test the correctness of the algorithms.

A stratified 10-fold cross-validation is employed to calculate performance eval-

uation metrics. We calculated pessimistic metric, optimistic metric, validated

optimistic metric and validated pessimistic metric based on performance eval-

uation cases that are described in Chapter 6 for the algorithms NSNS, kNNS

and DTS. In IVF dataset, we have two suggestible features that are “Ovula-

tion Induction Protocol” and “Ovulation Induction Dose Protocol”. The results

are illustrated in Figures between 7.12 and 7.19.

In the calculation of mp, we consider the instances with cases where the

applied and suggested treatment protocol is equal and the result of the treat-

ment is Successful among 2020 instances. For the first suggestible feature that

is“Ovulation Induction Protocol”, in NSNS 169 number of instances matches this

case. In kNNS, 3 number of instances are matching this case for 95 < k ≤ 100 as

the worst case and 78 number of instances are matching this case for k = 2 as the

best case. According to the DTS, 8 number of instances match this case among

2020 instances. Lastly, in wNSNS, 171 number of instances match the case. For

the second suggestible feature that is “Ovulation Induction Dose Protocol”, in
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Figure 7.12: Experimental result for “Ovulation Induction Protocol” based on
pessimistic metric (mp).

NSNS 178 number of instances matches this case. In kNNS, 51 number of in-

stances are matching this case for k = 2 as the worst case and 112 number of

instances are matching this case for k = 5 as the best case. According to the

DTS, 151 number of instances match this case among 2020 instances. Lastly, in

wNSNS, 186 number of instances match the case.

In the calculation of mo, we consider the instances with all cases except where

the applied and suggested treatment protocol is equal and the result of the treat-

ment is Failure among 2020 instances. Since it is an optimistic view, the result of

other three cases can be Successful. For the first suggestible feature that is “Ovu-

lation Induction Protocol”, in NSNS 1350 number of instances matches this case.

In kNNS, 1657 number of instances are matching this case for k = 1 as the worst

case and 1998 number of instances are matching this case for 97 < k ≤ 100 as the

best case. According to the DTS, 2006 number of instances match this case among

2020 instances. Lastly, in wNSNS, 1364 number of instances match the case. For

the second suggestible feature that is “Ovulation Induction Dose Protocol”, in

NSNS 1253 number of instances matches this case. In kNNS, 1545 number of
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Figure 7.13: Experimental result for “Ovulation Induction Dose Protocol” based
on pessimistic metric (mp).

instances are matching this case for k = 5 as the worst case and 1755 number

of instances are matching this case for k = 2 as the best case. According to the

DTS, 1614 number of instances match this case among 2020 instances. Lastly, in

wNSNS, 1182 number of instances match the case.

In the calculation of mvo, we consider the instances with the case where the

applied and suggested treatment protocol is equal and the result of the treat-

ment is Successful. Since it is a validated optimistic view, we have to consider

the case whose result is known, accurate and successful. Cases that have un-

certain results are ignored. For the first suggestible feature that is “Ovula-

tion Induction Protocol”, in NSNS 169 number of instances matches this case

among 839 instances. In kNNS, 3 number of instances are matching this case

among 26 instances for 95 < k < 99 as the worst case and 62 number of instances

are matching this case for k = 5 among 265 instances as the best case. According

to the DTS, 8 number of instances match this case among 22 instances. Lastly,

in wNSNS, 171 number of instances match the case among 827 instances. For

the second suggestible feature that is “Ovulation Induction Dose Protocol”, in
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Figure 7.14: Experimental result for “Ovulation Induction Protocol” based on
optimistic metric (mo).

NSNS 178 number of instances matches this case among 945 instances. In kNNS,

53 number of instances are matching this case among 331 instances for k = 1 as

the worst case and 102 number of instances are matching this case for 24 < k <

27 among 426 instances as the best case. According to the DTS, 151 number of

instances match this case among 557 instances. Lastly, in wNSNS, 186 number

of instances match the case among 1024 instances.

In the calculation of mvp, we consider the instances with the case where the

applied and suggested treatment protocol is equal and the result of the treatment

is Successful. Since it is a validated pessimistic view, we have to consider the case

whose result is known. Cases that have uncertain results are ignored.
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Figure 7.15: Experimental result for “Ovulation Induction Dose Protocol” based
on optimistic metric (mo).
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Figure 7.16: Experimental result for “Ovulation Induction Protocol” based on

validated optimistic metric (mvo).
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Figure 7.17: Experimental result for “Ovulation Induction Dose Protocol” based

on validated optimistic metric (mvo).

For the first suggestible feature that is “Ovulation Induction Protocol”, in

NSNS 169 number of instances matches this case among 1087 instances. In kNNS,

3 number of instances are matching this case among 440 instances for 95 < k <

99 as the worst case and 78 number of instances are matching this case for k

= 2 among 755 instances as the best case. According to the DTS, 8 number of

instances match this case among 431 instances. Lastly, in wNSNS, 171 number of

instances match the case among 1073 instances. For the second suggestible feature

that is “Ovulation Induction Dose Protocol”, in NSNS 178 number of instances

matches this case among 1184 instances. In kNNS, 51 number of instances are

matching this case among 682 instances for k = 2 as the worst case and 102

number of instances are matching this case for k = 24 among 736 instances as

the best case. According to the DTS, 151 number of instances match this case

among 823 instances. Lastly, in wNSNS, 186 number of instances match the case

among 1255 instances.
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Figure 7.18: Experimental result for “Ovulation Induction Protocol” based on

validated pessimistic metric (mvp).

Based on the matching cases and considered number of instances for each

performance evaluation case, metrics are computed and the results are given in

Table 7.3 and 7.4.

Table 7.3: Results of performance evaluation metrics for suggestible feature “Ovu-
lation Induction Protocol”

Suggestion Algorithm mp mo mvo mvp

kNNBS 0,039 0,989 0,234 0,103
DTBS 0,004 0,993 0,364 0,019
NSBS 0,084 0,668 0,201 0,155
wNSBS 0,085 0,675 0,207 0,159
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Figure 7.19: Experimental result for “Ovulation Induction Dose Protocol” based

on validated pessimistic metric (mvp).

Table 7.4: Results of performance evaluation metrics for suggestible feature “Ovu-
lation Induction Dose Protocol”

Suggestion Algorithm mp mo mvo mvp

kNNBS 0,055 0,869 0,242 0,139
DTBS 0,075 0,799 0,271 0,183
NSBS 0,088 0,620 0,188 0,150
wNSBS 0,092 0,585 0,182 0,148

According to the performance evaluation metrics, DTS outperforms other

suggestion algorithms almost in each metric.
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Chapter 8

Risk Analysis and Suggestion for

Treatment (RAST)

In this chapter, a decision support system namely, RAST is given. RAST is a

web based system and it is currently used in Etlik Züübeyde Hanım Woman’s

Health and Teaching Hospital.

8.1 RAST Introduction

RAST is a decision support system that is composed of a DBMS (MySQL) and a

web-server (IIS). It is implemented in the PHP programming language. Informa-

tion about patients is stored as records in a table in the database. The dataset for

experimental results includes 2020 patient records. The users continuously enter

patient records to the system and currently we have 2124 patient records. Each

patient record is composed of 163 attributes. The attributes can be grouped into

the following categories:

• Personal information: Name, Address, Phone, file no, Year. . .

• Clinical parameters: Female Age, Cycle No, Weight, PCOS, D3 FSH,
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Method Sperm Retrieval, Sperm Count, Sperm Motility, Male FSH. . .

• Treatment related parameters: Ovulation Induction Protocol, Supressed FSH,

Ovulation Induction Dose, Follicle Count 15 17mm, OPU Procedure. . .

• Embryo transfer parameters: Assisted Hatching, ET Progesteron, Em-

bryo Transfer Procedure, Embryo Transfer Type, Day Embryo Transfer,

Freezing Embryo Procedure. . .

• Result: BHCG results, IVF Outcome, Clinical Pregnancy Outcome, Ongo-

ing Pregnancy Outcome. . .

Each attribute has important characteristics, such as data type, distinctive,

predictive, required, queriable, predicted, display color and weight. Attribute

data types are numeric, ordinal, categoric and string. Some examples for each

data type are given below:

• Numeric attributes: Female Age, Cycle No, Result BHCG. . .

• Ordinal attributes: Ovulation Induction Dose Initial, HCG Dose. . .

• Categoric attributes: Embryo Transfer Procedure, OPU Procedure, Ovu-

lation Induction Protocol. . .

• String attributes: Name, Address, Notes. . .

Once the type of a variable is set by the administrator, they cannot be modified

later. If a variable is set as Distinctive, the value of this attribute is shown in

the search results to find the searched record easily. Predictive attributes are

necessary for similarity computations and only categorical, numerical and ordinal

variables can be set as Predictive. Predicted feature is used as the class feature

in machine learning algorithms. For a Queriable feature, the best value for this

feature for the optimum result can be queried by the suggestion system. The value

of the Required feature must be a non-missing value for querying the feature in

higher positions by the suggestion system. Some examples of the Distinctive,

Predictive, Predicted, Queriable and Required attributes are given below:
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Figure 8.1: Administrator interface to RAST.

• Distinctive: Female Name, Age, File No, Cycle No. . .

• Predictive: IVF Outcome, Result BHCG, Ovulation Induction Protocol. . .

• Queriable: Ovulation Induction Protocol, Ovulation Induction Dose Protocol. . .

• Required: Female Age, Cycle No. . .

• Predicted: Result. . .

Color attribute is used to group attributes that have similar medical charac-

teristics. The characteristics, except the type, of the variables can be modified

by the administrator, see Figure 8.1 and Figure 8.2. Even after the dataset is

created, the administrator can insert new variables if needed. The position of

a variable in the data entry page is important. Since it is easier for humans to

follow a flow from the top of the page to the bottom, variables whose values are

determined earlier in time should be on top of the page, while the ones related

with the results should be at the bottom. The position of a variable on the page

is set by the attribute called PosGUI. This also allows variables that are common

to be placed close to each other on the data entry page.

For IVF treatment, doctors generally make their decisions based on their past

experiences. When a new patient couple applied to the clinic, the doctors consider
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Figure 8.2: Editing variable details.

the past couples that are the most similar to the new one. However, remembering

all patient records is a very difficult task for humans. In order to help doctors

in chance estimation and deciding on the best treatment protocol for IVF, the

RAST system was developed.

8.2 Ensuring the Data Correctness

Ensuring the correctness of the data is essential for a decision support systems

that makes inferences from the past experiences. RAST requires that the values of

categorical or ordinal variables to be selected from a list of valid values. However,

such a list is not possible for numerical variables. We noticed that the source of
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incorrect data entry is due to wrong assumption in the unit of the measurement for

numerical variables; e.g., entering 1.65, assuming meters, for the height, while cm

is the expected. RAST tries to guarantee the correct entry of data using boundary

values that are minAccept, maxAccept, minExpect, maxExpect for attributes.

Lower values than minAccept and higher values than maxAccept are not allowed

to be inserted into the system. If a numeric value is between minExpect and

maxExpect range, it means that data is expected to be true and can be inserted

into the system. However, if a numeric value is between minAccept-minExpect

and maxExpect-maxAccept, system asks for the user approval.

8.3 User Interface

User interfaces that are designed for clinical decision support systems can intro-

duce new forms of error. Interface problems have the potential to contribute to

adverse medical events. In order to overcome problems, user interfaces should be

designed properly [72], [73].

Actions that any user with admin privileges can be grouped under two cat-

egories, namely user operations and dataset operations. In the user operations,

admin can list, edit, delete and insert new users into the system. In the database

operations, there exist two options for entering the data to the database. In the

first option, a tab separated text file can be loaded into the system by using the

upload interface under the “Select Dataset File” action. The first line of the file

has to consist of tab separated variable names. When the “Select Dataset File”

is clicked, only the variable names are loaded into the system and their types

are set to unknown as default. After that, “Edit Variable Types” page is opened

automatically. The system accepts four different variable types that are numeric,

categoric, ordinal and string. While setting variable types, for each numeric value,

admin has to set the minAccept, minExpect, maxExpect and maxAccept values.

For each categoric and ordinal variable, new tables are created in the database

and each new value for these variables is inserted into their corresponding tables.

Having registered the data types of the variables, the data containing the records
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of past patients, can be loaded by through the “Load Dataset” action. After

loading the dataset, the admin can edit variable characteristics such as position,

color etc., under “Edit Variable Details” action.

As the second option for data entrance, admin enters variable characteristics

by inserting them manually under the “Insert New Variable” action. Through

the “Delete a Variable” action, all variables in the system are listed and admin

can choose a variable to be deleted.

Having the dataset loaded into the database, admin can list all or desired

patient records using the “Access Records” action. Search operation is based on

the values of the Distinctive variables. Search values for categoric and ordinal

variables are selected from a drop-down list. Search values for the string variable

can start with the “%” character to find similar records. The first characters of

a numerical variable can be relational operators, such as “=” or “>”. If none of

the distinctive variables is given a search key, all patient records are listed. An

example result of this search operation is showed in Figure 8.3.

In addition to record searching, new patient information can be inserted into

the system manually. When “Add” button is clicked, all variables are listed

with no information and admin can fill them and save the record. Moreover,

using “Download these matching records” button, matching patient information

is downloaded by tab separated values into intended location on computers.
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Matching results 

Figure 8.3: Searching for past cases and list of matching records.

As it is seen in Figure 8.3, there are five buttons under the “Actions”. These

buttons are “Edit”, “Delete”, “Neighbour”, “Predict” and “Suggest”. Using
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“Edit” button, admin can change patient information. If “Edit” button is clicked

then all variables and their information for selected patient is listed and necessary

changes can be done. Also, using “Delete” button, all information related to

selected patient is deleted from the system. Other action button is “Neighbour”.

Using this button, similar records to the current patient are listed based on their

similarity values in decreasing order as it is shown in Figure 8.4. Other action

button is “Predict” that is used for estimating the chance of success of the IVF

treatment for the selected patient. Figure 8.5 illustrates the chance of the patient

whose ID is 1593. Chance value is calculated using the RIMARC algorithm.

As it is shown that, the chance of this patient equals to 68%. Classification

versions of our ranking algorithms say that if the chance is greater than or equal

to 0.5, then we classify this instance as Successful. So, according to this, the

RIMARC algorithm classifies this patient as Successful. When we compare this

result to the actual one, we see that these two values are equal which can be

considered as the proof of the correctness of our algorithm. Last action button is

“Suggest” that is used for suggesting the best treatment protocol of the selected

patient. In Figure 8.6, suggested values are listed for the first suggestible value

that is “Ovulation Induction Protocol” for the selected patient whose ID is 1593.

Results are determined using NSNS and kNNS. NSNS suggests “OC + long

luteal”. For kNNS, k value equals to 100. According to the results, there are

many values that are not applied among 100 nearest neighbours. So, the score

value of them equals to 0. Remaining values have negative score values that

means the rate of the Failure records among those records are higher than the

rate of the Successful records. If we compare the applied, suggested values and

the class label of this selected patient, we see that the suggested value from NSNS

is equal to the applied one and the class label is Successful. It again can be seen

as a proof of the correctness of the suggestion algorithm.
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Figure 8.4: Searching for similar records to the selected patient.
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Figure 8.5: Chance estimation for the selected patient.
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Figure 8.6: Suggestion for “Ovulation Induction Protocol” for the selected pa-

tient.

For any user who has staff privileges is allowed to list attributes and access

patient records similar as admin. Also, staff can search records using “Access

Records” button similar as admin. Moreover, for prediction, the RIMARC algo-

rithm was integrated into the system and using “Learn” button, some analysis

about the dataset is made as it is shown in Figure 8.7. Since, RIMARC creates

weights and rules, using “Show Weights” and “Show Rules” buttons, produced

feature weights and rules are shown as illustrated in Figure 8.8 and Figure 8.9.
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Figure 8.7: Data analysis by the RIMARC algorithm.

Figure 8.8: Feature weights that are produced by the RIMARC algorithm.
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Figure 8.9: Rules that are produced by the RIMARC algorithm.

Last user for the system is guest. Guest is allowed to list variables, patients

records, feature weights and rules. Also, guest can download patient records.
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Chapter 9

Conclusion and Future Work

In Vitro Fertilization is a common infertility treatment method which female

oocytes are inseminated by sperm under laboratory conditions. Given a new

candidate for IVF, the first important issue is whether or not go with the IVF

treatment. The decision is made jointly by the doctor and the couple. Since the

IVF treatment involves an application of several hormones and medicines to both

female and male patients, it is a difficult and stressful process. If the chance of

success is low, the couple may choose not to continue with the treatment. One

way to increase the success rate of the treatment is to build predictive models

which take into account results that are derived from different stages from the

IVF treatment. Another problem that needs to be solved is the choice of the

proper treatment protocol for the given patient.

In this thesis, we gave a discussion about ranking algorithms in order to predict

the chance of success in IVF. Then we showed how these ranking algorithms can

be modelled as a binary classification problem in machine learning in order to

classify instances as Successful or Failure as a result of the IVF treatment. After

that, we focused on the suggestion algorithms that can maximize achieving the

desired result of the IVF treatment. At last, we developed a decision support

system in order to serve these prediction and suggestion algorithms to doctors.

First of all, we worked on the viability prediction models. Our basis algorithm
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is RIMARC that is a simple, non-parametric learning algorithm. RIMARC ranks

instances by assigning them real values. In order to test the performance of

RIMARC, we were interested in constructing different models based on data

mining and machine learning techniques in particular support vector machines

and k nearest neighbour algorithm.

We present three different methods that are SVMligt, RIkNN and RIMARC

that, given the clinical parameters of the couple, estimate the chance of success

of IVF treatment. Also we implemented the weighted version of the RIkNN that

is RIwkNN. Given a new patient couple, these methods make estimates of suc-

cess by considering the results of treatments applied to the past patients. The

results indicate that each method performs quite well and they can be used as

decision support systems in IVF treatment. However, according to the experi-

mental results it is clearly shown that RIMARC outperforms other two methods

in prediction. As a classification algorithm, RIMARC again outperforms other

methods in terms of Accuracy on the average.

The second issue is the choice of the best treatment protocol for the patient.

An IVF protocol specifies all of the steps of the treatment, including the hormones

and the medicines to be used, and the way they are to be administered. In IVF

dataset, there are two suggestible values that are “Ovulation Induction Protocol”

and “Ovulation Induction Dose Protocol”. Although, there are many protocols

in common use, it is difficult to choose the best protocol for a given patient.

In order to provide this, we developed three different methods that are NSNS,

kNNS and DTS. Also we implemented the weighted version of the NSNS that is

wNSNS.

NSNS is a k Nearest Neighbour based algorithm. The algorithm suggests the

treatment protocol that was applied to the nearest and the successful instance.

So, we suppose that k equals to 1 and we only consider the successful instance.

kNNS is a k Nearest Neighbour based algorithm. The algorithms considers

the class labels and the value of the suggestible feature of the k nearest training

instances. It generates a series of alternatives with score values. Score values

indicates the importance of the value of the suggestible feature. A suggestible

87



feature value with highest score means that, if this value is applied to the patient

than achieving the desired result will be maximized.

DTS is a decision tree based algorithm. In this algorithm, training dataset are

split into smaller training datasets based on the values of the suggestible feature.

After splitting, each training dataset includes patient records that only belongs to

one value of the suggestible feature. From these training datasets, the algorithm

learns a model and classify all test instances.

To the best of our knowledge, in the literature there in not any suggestion

system. So, evaluating the performance of the newly developed algorithms is an

open issue. In order to overcome this problem, we developed four performance

evaluation metrics in order to test the correctness of the suggestion algorithms.

These metrics are pessimistic metric (mp), optimistic metric (mo), validated op-

timistic metric (mop) and validated pessimistic metric (mvp). According to the

performance evaluation metrics, DTS outperforms other suggestion algorithms in

overall evaluation.

In order to bring our algorithms into use, we developed a web based decision

support system called RAST (Risk Analysis & Suggestion for Treatment). Now,

RAST is in use for IVF dataset however, any other datasets in different domains

that needs to make prediction or suggestion can be added to the system. In

addition to prediction and suggestion, RAST ensures about data correctness by

defining limitations. Doctors can observe how the process will continue and they

can compare patients and judge about them. RAST has been used in Etlik

Züübeyde Hanım Woman’s Health and Teaching Hospital since 5 months.

As a future work, for the ranking and classification algorithms RIMARC can

be compared with other methods that aim to maximize AUC and accuracy values.

For the suggestion, new algorithms can be developed and performance evaluation

metrics can be extended. In addition to IVF dataset, all of these algorithms can

be applied to other datasets in medical or different domains and the results can be

compared. The interface of the RAST can be improved and remaining suggestion

algorithms can be integrated into the system.
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To conclude, first of all ranking algorithms are proposed in this thesis for pre-

diction and classification. RIMARC is the most effective predictive model among

RIkNN, RIwkNN and SVMlight. It is easily understandable by domain experts

and it will be useful for machine learning community because it is also modelled

as a classification method. Furthermore, a new problem is defined namely, sug-

gestion and three algorithms are developed. Since, it is a new research area in the

literature, we have to develop performance evaluation metrics called mp, mo, mvo

and mvp in order to test the correctness of the algorithms. We developed four

performance evaluation metrics and validate our algorithms. According to the

results, DTS is the most effective suggestive model among NSNS, wNSNS and

kNNS. The most important parts that contribute to this thesis are the suggestion

algorithms and the performance evaluation metrics. Lastly, we developed a deci-

sion support system to guide doctors during the IVF treatment. RAST provides

data correctness. Also, it gives direction to doctors during the treatment by the

help of developed prediction and suggestion algorithms.
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[63] M. Kurtcephe and H. A. Güvenir, “A discretization method based on maxi-

mizing the area under receiver operating characteristic curve,” International

Journal of Pattern Recognition and Artificial Intelligence, vol. 27, no. 01,

p. 1350002, 2013.

[64] T. M. Mitchell, Machine Learning. No. 0070428077, 9780070428072, New

York, NY, USA: McGraw-Hill, Inc., 1997.

[65] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Information

Theory, IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27,

1967.

[66] T. Denoeux, “A k-nearest neighbor classification rule based on dempster-

shafer theory,” Systems, Man and Cybernetics, IEEE Transactions on Sys-

tems, Man, and Cybernetics, vol. 25, no. 5, pp. 804–813, 1995.

[67] T. Hastie and R. Tibshirani, “Discriminant adaptive nearest neighbor clas-

sification,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 18, no. 6, pp. 607–616,

1996.

[68] J. H. Friedman, “Flexible metric nearest neighbor classification,” tech. rep.,

Department of Statistics and Stanford Linear Accelerator Center, Stanford

University, 1994.

[69] V. Podgorelec, P. Kokol, B. Stiglic, and I. Rozman, “Decision trees: An

overview and their use in medicine,” Journal of Medical Systems, vol. 26,

no. 5, pp. 445–463, 2002.

97



[70] A. Azar and S. El-Metwally, “Decision tree classifiers for automated medical

diagnosis,” Neural Computing and Applications, pp. 1–17, 2012.

[71] I. Kononenko, “Machine learning for medical diagnosis: history, state of the

art and perspective,” Artificial Intelligence in Medicine, vol. 23, no. 1, pp. 89

– 109, 2001.

[72] T. A. Graham, A. W. Kushniruk, M. J. Bullard, B. R. Holroyd, D. P. Meurer,

and B. H. Rowe, “How usability of a web-based clinical decision support

system has the potential to contribute to adverse medical events,” in AMIA

Annual Symposium Proceedings, vol. 6, pp. 257 – 261, November 2008.

[73] S. Tsumoto, “Web based medical decision support system: application

of internet to telemedicine,” in Applications and the Internet Workshops,

pp. 288–293, 2003.

98


