1,315 research outputs found

    Machine learning techniques for fine dead fuel load estimation using multi‐source remote sensing data

    Get PDF
    Fine dead fuel load is one of the most significant components of wildfires without which ignition would fail. Several studies have previously investigated 1‐h fuel load using standard fuel parameters or site‐specific fuel parameters estimated ad hoc for the landscape. On the one hand, these methods have a large margin of error, while on the other their production times and costs are high. In response to this gap, a set of models was developed combining multi‐source remote sensing data, field data and machine learning techniques to quantitatively estimate fine dead fuel load and understand its determining factors. Therefore, the objectives of the study were to: (1) estimate 1‐h fuel loads using remote sensing predictors and machine learning techniques; (2) evaluate the performance of each machine learning technique compared to traditional linear regression models; (3) assess the importance of each remote sensing predictor; and (4) map the 1‐h fuel load in a pilot area of the Apulia region (southern Italy). In pursuit of the above, fine dead fuel load estimation was performed by the integration of field inventory data (251 plots), Synthetic Aperture Radar (SAR, Sentinel‐1), optical (Sentinel‐2), and Light Detection and Ranging (LIDAR) data applying three different algorithms: Multiple Linear regression (MLR), Random Forest (RF), and Support Vector Machine (SVM). Model performances were evaluated using Root Mean Squared Error (RMSE), Mean Squared Error (MSE), the coefficient of determination (R2) and Pearson’s correlation coefficient (r). The results showed that RF (RMSE: 0.09; MSE: 0.01; r: 0.71; R2: 0.50) had more predictive power compared to the other models, while SVM (RMSE: 0.10; MSE: 0.01; r: 0.63; R2: 0.39) and MLR (RMSE: 0.11; MSE: 0.01; r: 0.63; R2: 0.40) showed similar performances. LIDAR variables (Canopy Height Model and Canopy cover) were more important in fuel estimation than optical and radar variables. In fact, the results highlighted a positive relationship between 1‐h fuel load and the presence of the tree component. Conversely, the geomorphological variables appeared to have lower predictive power. Overall, the 1‐h fuel load map developed by the RF model can be a valuable tool to support decision making and can be used in regional wildfire risk management

    Biomass retrieval based on genetic algorithm feature selection and support vector regression in Alpine grassland using ground-based hyperspectral and Sentinel-1 SAR data

    Get PDF
    A general framework for the integration of multi-sensor data for dry and fresh biomass retrieval is proposed and tested in Alpine meadows and pastures. To this purpose, hyperspectral spectroradiometer (as simulation of hyperspectral imagery) and biomass samples were collected in field campaigns and Copernicus Sentinel-1 Interferometric Wide (IW) swath SAR backscattering coefficients were used. First, a genetic algorithm feature selection was performed on hyperspectral data, and afterwards the resulting most sensitive bands where combined with SAR data within a support vector regression (SVR) model. The most sensitive hyperspectral bands were mainly located in different regions of the SWIR range for both fresh and dry biomass, and in the red and near-infrared regions mainly for dry biomass, but with less influence for fresh biomass. The R (2) correlation values between the sampled and the estimated biomass range from 0.24 to 0.71. The relatively low performances are mainly related to the saturation effect in the optical bands, as well as to the paucity of points for high values of biomass. The methodology allows a better understanding of the interaction between grassland systems and the electromagnetic spectrum by offering a model with a reduced number of narrow bands in the context of a multi-sensor integration

    Spatial-Temporal analysis of remotely sensed data in the Italian Alpine pastures

    Get PDF
    openSpatial-Temporal analysis of remotely sensed data in the Italian alpine pasturesExploring the spatial and temporal dynamic characteristics of regional forest net primary productivity (NPP) in the context of global climate change can not only provide a theoretical basis for terrestrial carbon cycle studies, but also provide data support for medium- and long-term sustainable pastures management planning of mountain regions. This study focuses on the Alpine Community of Giudicarie, located in the Province of Trento, Italy, through utilizing NASADEM (NASA Digital Elevation Model) 30m data from 2001 to 2020 as the main data sources. By integrating diverse variables: precipitation, Aspect, and Slopes, a statistical analysis was used in our study to clarify their relationship and interactions to Net Primary Productivity (NPP) in 20 years, then we examined five distinct Machine Learning algorithms: Linear Regression, Lasso Regression, KNN Regressor, Random Forest, and Gradient Boosting to identify the most effective model for estimating NPP in both spatial and temporal dimensions. The results show that the performance of the KNN model is better than the other models, by its adaptability to our datasets and its superior performance in terms of R2 and RMSE values. The developed model is highly relevant for estimating Net Primary Productivity (NPP) in mountain pasture fields in both temporal and spatial dimensions, which serves as a valuable tool for informed decision-making in managing mountainous pastures, ensuring sustainable utilization and preservation of these vital ecosystems

    Actual and standard crop coefficients for semi‑natural and planted grasslands and grasses: a review aimed at supporting water management to improve production and ecosystem services

    Get PDF
    Natural and planted grasslands play a very important role in agriculture as source of various ecosystem services, including carbon sequestration and biodiversity, and are responsible for a large fraction of agricultural water use in rainfed and irrigated fields. It is, therefore, relevant to precisely know their water use and vegetation requirements with consideration of relevant climate, from extremely cold, dry, with long winter seasons, to tropical humid and hot climates, thus with a large variability of vegetation. Semi-natural grasslands are basically used for grazing and mainly refer to highland pastures and meadows, steppes, savannas, pampas, and mixed forest systems. The FAO method to compute crop (vegetation) evapotranspiration (ETc) through the product of a crop coefficient (K c ) by the reference evapotranspiration (ETo ) is adopted. The selected papers were those where actual ETc (ETc act ) was derived from field observations and ETo was computed with the FAO56 definition, or with another method that could be referred to the former. Field derived ETc act methods included soil water balance, Bowen ratio and eddy covariance measurements, as well as remote sensing vegetation indices or surface energy balance models, thus reviewed Kc act (ETc act/ETo) values were obtained from field data. These Kc act refer to initial, mid-season and end season (K c act ini , K c act mid , K c act end ) when reported values were daily or monthly; otherwise, only average values (K c act avg ) were collected. For cases relative to cold or freezing winters, data refer to the warm season only. For grasses cut for hay, K c act ini , Kc act mid , and Kc act end refer to a cut cycle. Kc act values rarely exceeded 1.25, thus indicating that field measurements reported did respect the available energy for evaporation. Overall, K c act mid for semi-natural grasslands in cold climates were lower than those in hot climates except when available water was high, with K c act mid for meadows and mountain pastures gener- ally high. Steppes have K c act mid values lower than savannas. Grasses commonly planted for hay and for landscape generally showed high K c act mid values, while a larger variability was observed with grasses for grazing. The collected K c act values were used to define standard Kc values for all grassland and grasses. Nevertheless, the tabulated Kc act are indicative values of K c to be used for actual water management purposes and/or irrigation scheduling of planted grasslands. It is expected that a better knowledge of the standard and/or indicative K c values for a wide variety of grasslands and grasses will support better management aimed to improve grass productivity and ecosystem services, including biodiversity and carbon sequestrationinfo:eu-repo/semantics/publishedVersio

    Multistage, multiband and sequential imagery to identify and quantify non-forest vegetation resources

    Get PDF
    Earth Resources photographs from Apollo 6, 7, and 9 and photographs taken during Gemini 4, were used in the research along with high altitude and conventional aerial photography. A unified land use and resource analysis system was devised and used to develop a mapping legend. The natural vegetation, land use, macrorelief, and landforms of northern Maricopa County, Arizona, were analyzed and inventoried. This inventory was interpreted in relation to the critical problem of urban expansion and agricultural production in the study area. The central thrust of the research program has been to develop methods for use of space and small-scale, high-altitude aerial photography to develop information for land use planning and resource allocation decisions

    Soil erosion in the Alps : causes and risk assessment

    Get PDF
    The issue of soil erosion in the Alps has long been neglected due to the low economic value of the agricultural land. However, soil stability is a key parameter which affects ecosystem services like slope stability, water budgets (drinking water reservoirs as well as flood prevention), vegetation productivity, ecosystem biodiversity and nutrient production. In alpine regions, spatial estimates on soil erosion are difficult to derive because the highly heterogeneous biogeophysical structure impedes measurement of soil erosion and the applicability of soil erosion models. However, remote sensing and geographic information system (GIS) methods allow for spatial estimation of soil erosion by direct detection of erosion features and supply of input data for soil erosion models. Thus, the main objective of this work is to address the problem of soil erosion risk assessment in the Alps on catchment scale with remote sensing and GIS tools. Regarding soil erosion processes the focus is on soil erosion by water (here sheet erosion) and gravity (here landslides). For these two processes we address i) the monitoring and mapping of the erosion features and related causal factors ii) soil erosion risk assessment with special emphasis on iii) the validation of existing models for alpine areas. All investigations were accomplished in the Urseren Valley (Central Swiss Alps) where the valley slopes are dramatically affected by sheet erosion and landslides. For landslides, a natural susceptibility of the catchment has been indicated by bivariate and multivariate statistical analysis. Geology, slope and stream density are the most significant static landslide causal factors. Static factors are here defined as factors that do not change their attributes during the considered time span of the study (45 years), e.g. geology, stream network. The occurrence of landslides might be significantly increased by the combined effects of global climate and land use change. Thus, our hypothesis is that more recent changes in land use and climate affected the spatial and temporal occurrence of landslides. The increase of the landslide area of 92% within 45 years in the study site confirmed our hypothesis. In order to identify the cause for the trend in landslide occurrence time-series of landslide causal factors were analysed. The analysis revealed increasing trends in the frequency and intensity of extreme rainfall events and stocking of pasture animals. These developments presumably enhanced landslide hazard. Moreover, changes in land-cover and land use were shown to have affected landslide occurrence. For instance, abandoned areas and areas with recently emerging shrub vegetation show very low landslide densities. Detailed spatial analysis of the land use with GIS and interviews with farmers confirmed the strong influence of the land use management practises on slope stability. The definite identification and quantification of the impact of these non-stationary landslide causal factors (dynamic factors) on the landslide trend was not possible due to the simultaneous change of several factors. The consideration of dynamic factors in statistical landslide susceptibility assessments is still unsolved. The latter may lead to erroneous model predictions, especially in times of dramatic environmental change. Thus, we evaluated the effect of dynamic landslide causal factors on the validity of landslide susceptibility maps for spatial and temporal predictions. For this purpose, a logistic regression model based on data of the year 2000 was set up. The resulting landslide susceptibility map was valid for spatial predictions. However, the model failed to predict the landslides that occurred in a subsequent event. In order to handle this weakness of statistic landslide modelling a multitemporal approach was developed. It is based on establishing logistic regression models for two points in time (here 1959 and 2000). Both models could correctly classify >70% of the independent spatial validation dataset. By subtracting the 1959 susceptibility map from the 2000 susceptibility map a deviation susceptibility map was obtained. Our interpretation was that these susceptibility deviations indicate the effect of dynamic causal factors on the landslide probability. The deviation map explained 85% of new independent landslides occurring after 2000. Thus, we believe it to be a suitable tool to add a time element to a susceptibility map pointing to areas with changing susceptibility due to recently changing environmental conditions or human interactions. In contrast to landslides that are a direct threat to buildings and infrastructure, sheet erosion attracts less attention because it is often an unseen process. Nonetheless, sheet erosion may account for a major proportion of soil loss. Soil loss by sheet erosion is related to high spatial variability, however, in contrast to arable fields for alpine grasslands erosion damages are long lasting and visible over longer time periods. A crucial erosion triggering parameter that can be derived from satellite imagery is fractional vegetation cover (FVC). Measurements of the radiogenic isotope Cs-137, which is a common tracer for soil erosion, confirm the importance of FVC for soil erosion yield in alpine areas. Linear spectral unmixing (LSU), mixture tuned matched filtering (MTMF) and the spectral index NDVI are applied for estimating fractional abundance of vegetation and bare soil. To account for the small scale heterogeneity of the alpine landscape very high resolved multispectral QuickBird imagery is used. The performance of LSU and MTMF for estimating percent vegetation cover is good (r²=0.85, r²=0.71 respectively). A poorer performance is achieved for bare soil (r²=0.28, r²=0.39 respectively) because compared to vegetation, bare soil has a less characteristic spectral signature in the wavelength domain detected by the QuickBird sensor. Apart from monitoring erosion controlling factors, quantification of soil erosion by applying soil erosion risk models is done. The performance of the two established models Universal Soil Loss Equation (USLE) and Pan-European Soil Erosion Risk Assessment (PESERA) for their suitability to model erosion for mountain environments is tested. Cs-137 is used to verify the resulting erosion rates from USLE and PESERA. PESERA yields no correlation to measured Cs-137 long term erosion rates and shows lower sensitivity to FVC. Thus, USLE is used to model the entire study site. The LSU-derived FVC map is used to adapt the C factor of the USLE. Compared to the low erosion rates computed with the former available low resolution dataset (1:25000) the satellite supported USLE map shows “hotspots” of soil erosion of up to 16 t ha-1 a-1. In general, Cs-137 in combination with the USLE is a very suitable method to assess soil erosion for larger areas, as both give estimates on long-term soil erosion. Especially for inaccessible alpine areas, GIS and remote sensing proved to be powerful tools that can be used for repetitive measurements of erosion features and causal factors. In times of global change it is of crucial importance to account for temporal developments. However, the evaluation of the applied soil erosion risk models revealed that the implementation of temporal aspects, such as varying climate, land use and vegetation cover is still insufficient. Thus, the proposed validation strategies (spatial, temporal and via Cs-137) are essential. Further case studies in alpine regions are needed to test the methods elaborated for the Urseren Valley. However, the presented approaches are promising with respect to improve the monitoring and identification of soil erosion risk areas in alpine regions

    Satellite-based monitoring of pasture degradation on the Tibetan Plateau: A multi-scale approach

    Get PDF
    The Tibetan Plateau has been entitled Third-Pole-Environment'' because of its outstanding importance for the global climate and the hydrological system of East and Southeast Asia. Its climatological and hydrological influences are strongly affected by the local vegetation which is supposed to be subject to ongoing degradation. The degradation of the Tibetan pastures was investigated on the local scale by numerous studies. However, because methods and scales substantially differed among the previous studies, the overall pattern of degradation on the Tibetan Plateau is hitherto unknown. Consequently, the aims of this thesis are to monitor recent changes in the grassland degradation on the Tibetan Plateau and to detect the underlying driving forces of the observed changes. Therefore, a comprehensive remote sensing based approach is developed. The new approach consists of three parts and incorporates different spatial and temporal scales: (i) the development and testing of an indicator system for pasture degradation on the local scale, (ii) the development of a MODIS-based product usable for degradation monitoring from the local to the plateau scale, and (iii) the application of the new product to delineate recent changes in the degradation status of the pastures on the Tibetan Plateau. The first part of the new approach comprised the test of the suitability of a new two-indicator system and its transferability to spaceborne data. The indicators were land-cover fractions (e.g.,~green vegetation, bare soil) derived from linear spectral unmixing and chlorophyll content. The latter was incorporated as a proxy for nutrient and water availability. It was estimated combining hyperspectral vegetation indices as predictors in partial least squares regression. The indicator system was established and tested on the local scale using a transect design and textit{in situ} measured data. The promising results revealed clear spatial patterns attributed to degradation, indicating that the combination of vegetation cover and chlorophyll content is a suitable indicator system for the detection of pasture degradation on local scales on the Tibetan Plateau. To delineate patterns of degradation changes on the plateau scale, the green plant coverage of the Tibetan pastures was derived in the second part. Therefore, an upscaling approach was developed. It is based on satellite data from high spatial resolution sensors on the local scale (WorldView-type) via medium resolution data (Landsat) to low resolution data on the plateau scale (MODIS). The different spatial resolutions involved in the methodology were incorporated to enable the cross-validation of the estimations in the new product against field observations (over 600 plots across the entire Tibetan Plateau). Four methods (linear spectral unmixing, spectral angle mapper, partial least squares regression, and support vector machine regression) were tested on their predictive performance for the estimation of plant cover and the method with the highest accuracy (support vector machine regression) was applied to 14 years of MODIS data to generate a new vegetation coverage product. In the third part, the changes in vegetation cover between the years 2000 and 2013 and their driving forces were investigated by comparing the trends in the new vegetation coverage product against climate variables (precipitation from tropical rainfall measuring mission and 2 m air temperature from ERA-Interim reanalysis data) on the entire Tibetan Plateau. Large areas in southern Qinghai were identified where vegetation cover increased as a result of positive precipitation trends. Thus, degradation did not proceed in these regions. Contrasting with this, large areas in the central and western parts of the Tibetan Autonomous Region were subject to an ongoing degradation. This degradation can be attributed to the coincidence of rising temperatures and anthropogenic induced increases in livestock numbers as a consequence of local land-use change. In those areas, the ongoing degradation influenced local precipitation patterns because sensible heat fluxes were accelerated above degraded pastures. In combination with advected moist air masses at higher atmospheric levels, the accelerated heat fluxes led to an intensification of local convective rainfall. The ongoing degradation detected by the new remote sensing approach in this thesis is alarming. The affected regions encompass the river systems of the Indus and Brahmaputra Rivers, where the ongoing degradation negatively affects the water storage capacities of the soils and enhances erosion. In combination with the feed-back mechanisms between plant coverage and the changed precipitation on the Tibetan Plateau, the reduced water storage capacity will exacerbate runoff extremes in the middle and lower reaches of those important river systems
    corecore