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Abstract: Fine dead fuel load is one of the most significant components of wildfires without which
ignition would fail. Several studies have previously investigated 1-h fuel load using standard fuel
parameters or site-specific fuel parameters estimated ad hoc for the landscape. On the one hand,
these methods have a large margin of error, while on the other their production times and costs are
high. In response to this gap, a set of models was developed combining multi-source remote sensing
data, field data and machine learning techniques to quantitatively estimate fine dead fuel load and
understand its determining factors. Therefore, the objectives of the study were to: (1) estimate
1-h fuel loads using remote sensing predictors and machine learning techniques; (2) evaluate the
performance of each machine learning technique compared to traditional linear regression models;
(3) assess the importance of each remote sensing predictor; and (4) map the 1-h fuel load in a pilot
area of the Apulia region (southern Italy). In pursuit of the above, fine dead fuel load estimation
was performed by the integration of field inventory data (251 plots), Synthetic Aperture Radar
(SAR, Sentinel-1), optical (Sentinel-2), and Light Detection and Ranging (LIDAR) data applying three
different algorithms: Multiple Linear regression (MLR), Random Forest (RF), and Support Vector
Machine (SVM). Model performances were evaluated using Root Mean Squared Error (RMSE), Mean
Squared Error (MSE), the coefficient of determination (R2) and Pearson’s correlation coefficient (r).
The results showed that RF (RMSE: 0.09; MSE: 0.01; r: 0.71; R2: 0.50) had more predictive power
compared to the other models, while SVM (RMSE: 0.10; MSE: 0.01; r: 0.63; R2: 0.39) and MLR (RMSE:
0.11; MSE: 0.01; r: 0.63; R2: 0.40) showed similar performances. LIDAR variables (Canopy Height
Model and Canopy cover) were more important in fuel estimation than optical and radar variables.
In fact, the results highlighted a positive relationship between 1-h fuel load and the presence of the
tree component. Conversely, the geomorphological variables appeared to have lower predictive
power. Overall, the 1-h fuel load map developed by the RF model can be a valuable tool to support
decision making and can be used in regional wildfire risk management.

Keywords: fire management; fuel loads; LIDAR; NDVI; Random Forest; Sentinel-1; Southern
Europe; wildfires

1. Introduction

In the last decade, Europe has experienced unprecedented and devastating wildfires
across its landscapes [1–3]. Climate change and the continuous pressure of human activities
are leading to an increase in the intensity and extent of wildfires. In 2019, more than
400,000 ha of natural areas were burned and most of the Natura 2000 sites were devastated
by wildfires [4]. While such extreme events are becoming ever more significant, European
management policies are keeping the focus on reactive fire suppression instead of properly
and proactively addressing prevention [5]. Preventive actions for fuel load management
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that can alter fire behavior and spread, reducing the likelihood and intensity of extreme
wildfires, have been well documented in the literature [6–10].

Predicting fire behavior and spread requires knowledge of fuel load distribution at
multiple scales [11]. Dead fuels, live herbaceous loads, and bulk density are essential input
data layers for simulating wildfire behavior and spread. Currently, to obtain these data two
procedural methods are mainly employed: one is the adoption of standard fuel parameters,
such as the fuel model developed by Ottmar et al. [12] or Rothermel’s models [13], and its
related studies [14–17], and the second is the alternative use of site-specific fuel parameters
estimated ad hoc for the landscape where we aimed to simulate wildfire [18]. While general
consensus affirms that the first method represents the most economic and rapid method
for obtaining fuel parameters, it has been equally well demonstrated that fire simulation
could be affected by a great variety of biases given the non-site-specific input data. On the
contrary, the estimation of fuel parameters ad hoc for the landscape under investigation
was shown to be the optimal method to obtain robust and precise data for site-specific fire
simulation. However, field surveys cannot be repeated everywhere and frequently, as they
are expensive and time consuming [19–22].

Therefore, new methods need to be developed to regularly estimate fuel parameters
across multiple scales and vegetation types. This gap has been partially filled by the
growing availability of new sensors and remote sensing detection capable of providing
data for modeling live and dead fuel load estimates. In light of the above, a number of
authors [23–29] have attempted to estimate vegetative fuel loads using different remote
sensing predictors. For example, Saatchi et al. [27] employed radar data (i.e., Synthetic
Aperture Radar) to measure the distribution of forest biomass and canopy fuel loads in
Yellowstone National Park (USA). Liu et al. [28] developed a methodological framework to
estimate the forest stand mean height and above-ground biomass in China by integrating
field plots, Sentinel imagery, as well as topographic and geographical data. Skowron-
ski et al. [30] used aerial photography, airborne laser scanning, and cadastral datasets to
test a reliable method for characterizing fuel loads at a local scale in New Jersey (USA).
Queiroz et al. [31] presented a methodology to map coarse woody debris in the boreal
forest of Alberta (Canada) using optical imagery and an infra-canopy vegetation-index
layer derived from LIDAR.

However, to our knowledge, few studies have attempted to estimate fine dead fuel
loads by integrating multiple sources of remote sensors (LIDAR, RADAR, and optical
products) and machine learning techniques [32], even though these fine dead fuel loads
represent the major carrier of fire ignition and spread [33–38]. To fill this gap, we tested
machine learning models to estimate fine dead fuel load (i.e., 1-h fuel load) using multi-
source remote sensing data in a Mediterranean landscape of Southern Europe. Thus,
the specific objectives of the study were to: (1) estimate 1-h fuel loads using remote
sensing predictors and machine learning techniques; (2) evaluate the performance of each
machine learning technique compared to traditional linear regression models; (3) assess
the importance of each remote sensing predictor; and (4) map the 1-h fuel load in a pilot
area of the Apulia region in southern Italy.

Our work intends to corroborate evolving new methods to regularly estimate fuel
loads for which remote sensing predictors have become extremely important. The increas-
ing ability to regularly acquire fuel load distribution across multiple scales and vegetation
types would improve fire risk assessment, fire behavior prediction, and fire manage-
ment plans.

2. Materials and Methods
2.1. Study Area

Apulia is the most southeastern region of Italy, geographically located between
39◦47′29.8′ ′ N, 14◦56′02.8′ ′ E and 42◦08′25.5′ ′ N, 18◦31′09.5′ ′ E (Figure 1). Encompass-
ing a total area of 19,540 km2, Apulia has an average elevation of 565 m above sea level
(a.s.l) (range: 0 m–1150 m a.s.l). Most of the region is characterized by flat and hilly
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landscape while the mountainous areas are limited to the north. It is characterized by
hot summers and mild winters, which are typical of the Mediterranean climate. Annual
rainfall is concentrated in fall and winter, while summers are typified by long periods of
drought. The average annual rainfall varies from 450 mm to 650 mm. The mean annual
temperature ranges from 12.0 ◦C for inland areas (i.e., Daunian Subappenines and Gargano
Promontory) to 19.0 ◦C along the coasts.
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tional farms) in wildland areas, which have generated urban interfaces. These areas have 
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The landscape is dominated by agriculture and characterized by the presence of
olive groves and vineyards (29%). Conversely, wooded areas cover only 9.7% of the
landscape and are mostly concentrated in hilly and mountainous areas which are difficult
to cultivate [39]. Oak woodlands and Mediterranean maquis are the most dominant forest
types in the region, while conifers (Pinus pinea L., P. halepensis Mill., and P. pinaster Aiton) are
limited to coastal areas where, historically, reforestation has taken place for slope stability.
The main tree species are Quercus ilex L., Q. pubescens Willd., Q. cerris L., Q. calliprinos
Webb., Phyllirea spp., Ruscus aculeatus L., Pistacia lentiscus L., Asparagus acutifolius, L.,
Paliurus spina-christi Mill., Cistus monspeliensis L., C. incanus L., and C. salviifolius L.

According to the European Forest Fire Information System (EFFIS), Apulia is one of
the Italian regions most frequently crossed by wildfires, although only 9.7% of the total area
(189,086 ha) is covered with forests (INFC 2015). During the 2000 to 2019 time period, the
average burnt area was slightly under 100,000 ha, with more than 10,000 recorded fire events
(Civil Protection Department). The fire season coincides with the summer period. Typically,
the number of wildfires slightly increases between May and June, reaching a peak in
August; these fires are mainly related to human activity [40,41]. Martina Franca represents
one of the main towns in the Itria Valley, located in the central-south part of Apulia. Most
of the territory is covered by agricultural lands (olive groves, vineyards, and arable crops),
followed second by forests and shrubland areas. In recent years, tourism has caused an
expansion of residential patches (i.e., buildings, infrastructures, and educational farms) in
wildland areas, which have generated urban interfaces. These areas have subjected the
territory of Martina Franca to more frequent wildfire occurrences and spread. For this
reason, it has been chosen as a pilot area in this study.

2.2. Field Data

The field data were collected during the 2018 and 2019 time period as part of the
F.OR.MA. (Fuel models and fORest roads Maps) project in collaboration with the Civil
Protection Department of the Apulia region. To assess fine dead fuel load, 251 plots were
randomly selected from the Apulian land-cover layer (http://www.sit.puglia.it, accessed
on 23 February 2021) provided by the regional government. The field sampling protocol is
illustrated in Figure 2.

http://www.sit.puglia.it
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Figure 2. Field sampling protocol. Example of a field plot with a schematic transect (left). Operators
measuring dead woody material with a caliper during a field survey campaign (right).

Sampling of the fine dead fuel load was conducted according to Elia et al. [18] and
the method developed by Brown et al. [42]. During the survey, circular plots with a radius
of 5 m each were identified by geographical coordinates using a GPS receiver. Within
each plot, a transect measuring 15 m was determined. If the piece of wood intersected the
transect more than once, each intersection was measured. For the purposes of the F.OR.MA.
project, dead woody materials were divided into three time-lag classes (1-h, 10-h, and
100-h) according to the diameter measured by the caliper at the point of intersection with
the transect. In this study, the 1-h fuel load was chosen as the response variable since it
represents the primary carrier of wildfire occurrence [43]. The 1-h time-lag fuels consist
of needles, leaves, and small twigs with a diameter between 0 and 0.65 cm. The small
size of this fuel makes its moisture content more responsive to changes in atmospheric
conditions, affecting its ignitability [44,45]. Its rapid flammability makes it prone to fire
ignition, especially in the hot and dry season.

2.3. Remote Sensing Data
2.3.1. Sentinel-1 Data

Sentinel-1 is a space mission of the European Space Agency (ESA) consisting of a
constellation of two satellites: S1-A and S1-B. On the satellites, a Synthetic Aperture
Radar (SAR) sensor is mounted, which provides C-band (5.405 GHz) images under
all weather conditions. For the period from April to September 2019, the “COPERNI-
CUS/S1_GRD” collection was downloaded from the Google Earth Engine (GEE) plat-
form (https://earthengine.google.com/platform/, accessed on 23 February 2021) using
five sub-regions of Apulia as extracting masks (Figure S1, see Supplementary Material).
The 164 S1 images were acquired in the Interferometric Wide Swath (IW) mode with
two polarizations, VH (Vertical transmit-Horizontal receive) and VV (Vertical transmit-
Vertical receive), at 10-m resolution with ascending orbit (Table 1). GEE already provided
pre-processed images (https://developers.google.com/earth-engine/guides/sentinel1,
accessed on 23 February 2021).

https://earthengine.google.com/platform/
https://developers.google.com/earth-engine/guides/sentinel1
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Table 1. List of Sentinel-1 images acquired for the field plots.

Sub-Regions Number of Relative Orbits Orbit Number of Images Polarization Band

Gargano Promontory 146 Ascending 25 VV, VH
Daunian Subappenines 44 Ascending 26 VV, VH

Murge 146 Ascending 50 VV, VH
Arco Jonico Tarantino 146 Ascending 38 VV, VH
Salentinian peninsula 146 Ascending 25 VV, VH

The pre-processing steps include applying the orbit file, GRD border noise removal,
thermal noise removal, radiometric calibration, and terrain correction using Shuttle Radar
Topography Mission (SRTM) at 30 m, or the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) Digital Elevation Model (DEM) for high latitudes. The
backscatter coefficient (σ◦) is converted to decibels (dB) using Equation (1):

σ◦(dB) = 10*log10σ
◦ (1)

where σ◦ is backscatter for a specific pixel, σ◦(dB) is the backscattering coefficient or
normalized radar cross-section measured in dB units with values ranging from +5 dB to
−40 dB. We generated the VH and VV time series by calculating the median values, then
extracted the mean value of VH and VV polarizations within the plots.

2.3.2. Sentinel-2 Data

The Sentinel-2 mission, developed by ESA in 2015, is based on a two-satellite constel-
lation (S2-A and S2-B) that orbits in space for Earth observation. Each satellite is equipped
with a multispectral sensor that acquires images in 13 bands in the visible, near infrared
and short-wave infrared. In GEE, the “COPERNICUS/S2_SR” collection was used to
select 218 images acquired from April to September 2019. The images in the collection are
radiometrically and atmospherically corrected products representing surface reflectance.
The entire dataset was further processed using the QA60 and SLC bands to mask out cirrus,
clouds, and shadows. Finally, the Normalized Difference Vegetation Index (NDVI) [46],
Normalized Difference Water Index (NDWI) [47], and Normalized Difference Moisture
Index (NDMI) [48] were calculated using Equations (2)–(4):

NDVI =
b8 − b4

b8 + b4
(2)

NDWI =
b3 − b8

b3 + b8
(3)

NDMI =
b8 − b11

b8 + b11
(4)

where b3, b4, b8, and b11 are green, red, near-infrared, and short-wave infrared bands
centered at approximately 560, 665, 842, and 1610, respectively. We generated the time series
of each vegetation index by calculating the median values and subsequently extracted the
mean value of each index within each field plot in the Geographic Information System (GIS).

2.3.3. LIDAR Data

The LIDAR (Light Detection and Ranging) sensor was used in the study to measure
variables related to the height and degree of canopy coverage within the field plots. LIDAR
data were acquired from two aerial survey missions that took place between 2015 and
2019. The average point density was 4 points/m2 with a relative height accuracy of
10 cm. The accuracy of the point clouds was verified using previously surveyed ground
control points. For each aerial survey mission, the point clouds were filtered and classified
into ground and non-ground (building and vegetation) using TerraScan software (https:
//terrasolid.com/products/terrascan/, accessed on 25 February 2021). Following the

https://terrasolid.com/products/terrascan/
https://terrasolid.com/products/terrascan/
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method by Giannico et al. [49], a Digital Terrain Model (DTM) (1 × 1 m2) was generated by
interpolating the ground points through Inverse Distance Weighting interpolation. The
Digital Surface Model (DSM) was obtained by selecting the maximum height of vegetation
points for each 1 × 1 m2 pixel after filtering for outliers. Subsequently, the Canopy Height
Model (CHM) was calculated as follows:

CHM = DSM − DTM (5)

where CHM is the distance between the ground and the top of the vegetation, DSM is
the Digital Surface Model and DTM is the Digital Terrain Model. Moreover, canopy and
vegetation cover were subsequently extracted from CHM. We defined canopy cover as the
percentage of vegetation cover with a height greater than 2 m, and vegetation cover as the
percentage of the entire vegetation. Within each plot, the average and 0.95th percentile of
CHM, canopy cover and vegetation cover were extracted.

2.4. Geomorphological and Land-Cover Data

Elevation data were obtained from the 8-m DEM of the Apulia region, downloaded
from the Territorial Information System platform (http://www.sit.puglia.it, accessed on
23 February 2021). The slope (degree) and easterness (i.e., sin of the aspect) raster were
produced from the DEM. The mean value of each geomorphological variable was extracted
using field plots in GIS. For each plot, the information concerning the land-cover was
derived from the land-use map (2011) provided by the regional government. Nine land-
cover classes were extracted using the field plots (Figure 3). A total of 107 field plots were
counted in forest areas, 56 of which are in deciduous forests, 39 in coniferous forests, and
12 plots in mixed forests. Shrublands, consisting of sclerophyllous vegetation, bushes, and
shrubs, were divided into a total of 71 plots. Lastly, 45 plots were classified as meadow and
pasture areas, with or without the presence of trees, while the remaining 28 plots fell into
areas classified as natural recolonization and reforestation areas.
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2.5. Pre-Processing and Feature Selection

A flowchart providing information about pre-processing, modeling, and model per-
formances is illustrated in Figure 4. Before applying the models, Pearson’s coefficients
were estimated to determine the correlation among the variables, and data cleaning was
performed by identifying and removing outliers. Variables with a Pearson’s coefficient
greater than ±0.90 were excluded from the analysis. Subsequently, each model was cali-
brated using the training set (70% of data), while the goodness of fit was evaluated using

http://www.sit.puglia.it
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the test set (30% of data). The training and test sets were both normalized using the caret
package [50] in R.
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2.6. Machine Learning Models

In this study, three models were adopted to estimate fine dead fuel load: Multiple
Linear Regression (MLR), Support Vector Regression (SVM), and Random Forest (RF).
In recent years, machine learning applications in wildfire science have increased. In
particular, RF and SVM, two supervised machine learning algorithms, have been widely
and extensively used for both classification and regression problems [32]. RF is an ensemble
model of decision trees, usually trained with the “bagging” method [51]. In this study, the
RF model was created using the randomForest() function of the randomForest package [51].
To tune the RF algorithm, the “ntree” and “mtry” parameters have been set. The “mtry”
parameter is the number of variables randomly sampled as candidates at each split, while
the “ntree” parameter is the number of trees to be grown. For the regression problem,
the default value for “mtry” is calculated by p/3, where p is the number of independent
variables of the database. In our study, the “mtry” number was set to 2, whereas for “ntree”
the default value of 500 was used. SVM is a related kernel-based method that finds the
optimal hyperplane for dividing data in space [52]. The SVM model was trained using
the svm() function of the e1071 package [53]. The kernel used in training and predicting is
radial, and the regression function used in the model is the eps-regression default function.
To fit the MLR model, the lm() function of a stats package was used [54]. All models have
been developed with R software [55].
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2.7. Model Performances and Assessment of Variable Importance

To compare the performances of the MLR, SVM and RF models, the Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), Pearson’s correlation coefficient (r)
and coefficient of determination (R2) were calculated as follows:

RMSE =

√√√√ n

∑
i =1

(Pi − Ai)
2

n
(6)

MSE =
n

∑
i =1

(Pi − Ai)
2

n
(7)

R2 = 1− ∑n
i =1(Ai − Pi)

2

∑n
i =1
(
Ai −Ai

)2 (8)

r =
∑n

i =1
(
Pi − Pi

)(
Ai −Ai

)√
∑n

i =1 (Pi − Pi)
2 ×∑n

i =1
(
Ai −Ai

)2
(9)

where Pi is the predicted value, Ai is the observed value, Pi is the mean of predicted values,
and Ai is the mean of observed values. To estimate and map the fine dead fuel load,
the model with the smallest RMSE and highest r square was chosen as the most fitting.
To assess the stability of the best model, 10-fold cross-validation was performed. This
procedure consists of running the model 10 times on random subsamples of training and
test sets and calculating the metrics of each subsample. Lastly, variable importance was
calculated according to the best model, which was applied to a pilot area of the Apulia
region to produce a predicted 1-h fuel load map.

3. Results
3.1. Preliminary Results

The correlation coefficients of the independent variables are shown in Figure S2 (see
Supplementary Materials). Four variables (VV, NDWI_Gao, NDWI_McFeeters, CHM_mean)
were removed from the database before modeling. Table 2 presents 1-h fuel load statistics
for the field plots divided by land-cover classes.

Table 2. 1-h fuel load statistics for land-cover classes.

Plots (N) Mean (t/ha) SD SE Range

Coniferous Forests 39 0.80 0.45 0.07 0.12–1.92
Deciduous Forests 52 1.13 0.66 0.09 0.05–4.10

Mixed Forests 10 0.92 0.66 0.21 0–2.09
Bushes or Shrubs 30 0.38 0.43 0.08 0–1.97

Sclerophyllous Vegetation 41 0.48 0.45 0.07 0–2.34
Meadows or Pastures (with Trees) 20 0.29 0.26 0.06 0.03–1.10

Meadows or Pastures (without Trees) 25 0.14 0.19 0.04 0–0.86
Natural Recolonization Areas 16 0.43 0.42 0.10 0.01–1.83

Reforestations 11 0.51 0.38 0.11 0.02–1.15

N = number of plots; SD = standard deviation; SE = standard error.

The 1-h fuel load ranged from a low of 0 to 4.10 t/ha, with an average value of
0.63 t/ha. Deciduous and mixed forest vegetation recorded the highest mean values of
fine dead fuel load (1.13 and 0.92 t/ha, respectively), while the lowest values were found
in meadows and pastures with (0.29 t/ha) or without (0.14 t/ha) the presence of trees.
High standard error (SE) and standard deviation (SD) values within the mixed forest plots
indicated a high variability in fine dead fuel load values, probably related to the number of
plots in this land-cover category. From a total of 251 plots, 7 plots were removed as outliers.
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A total of 171 were randomly selected as a training set while the remaining 73 plots were
used as a test set.

3.2. Fine Dead Fuel Load Estimation and Model Selection

Table 3 summarizes the performance metrics of each model to estimate the 1-h fuel load
(t/ha) in the field plots. Based on the performance metrics, RF showed better performances
in fine dead fuel load estimation compared to the MLR and SVM models. No substantial
differences in prediction accuracy were observed between the MLR and SVM models.
For RF, Pearson’s correlation coefficient (r) was 0.71 and the R2 value was 0.50, while for
MLR, both values were 0.63 and 0.40, respectively. The highest RMSE value (0.11) was
observed in the MLR model, while the lowest value (0.09) was found in the RF model. The
cross-validations confirmed the robustness of the RF model (Table 4). The results calculated
for 10 subsamples of training and test sets showed similar metrics values, demonstrating
no overfitting. Thus, the RF model was chosen to predict the 1-h fuel load in a pilot area
of Apulia.

Table 3. Performance metrics of the machine learning models used in the study.

RMSE MSE r R2

MLR 0.11 0.01 0.63 0.40
SVM 0.10 0.01 0.63 0.39

RF 0.09 0.01 0.71 0.50
RMSE = Root Mean Squared Error; MSE = Mean Squared Error; r = Pearson’s correlation coefficient;
R2 = coefficient of determination; MLR = Multiple Linear Regression; SVM = Support Vector Machine;
RF = Random Forest.

Table 4. Cross-validation: performance metrics of the Random Forest model evaluated in 10 training
and testing subsamples.

RMSE MSE r R2

Subsample 1 0.10 0.01 0.70 0.50
Subsample 2 0.13 0.02 0.66 0.44
Subsample 3 0.10 0.01 0.68 0.47
Subsample 4 0.11 0.01 0.60 0.36
Subsample 5 0.10 0.01 0.68 0.46
Subsample 6 0.10 0.01 0.67 0.45
Subsample 7 0.10 0.01 0.65 0.42
Subsample 8 0.11 0.01 0.63 0.39
Subsample 9 0.10 0.01 0.71 0.51
Subsample 10 0.09 0.01 0.71 0.57

RMSE = Root Mean Squared Error; MSE = Mean Squared Error; r = Pearson’s correlation coefficient;
R2 = coefficient of determination.

3.3. Variable Importance

The importance of each variable was assessed using two indicators provided by the
RF model: mean decrease accuracy (%IncMSE) and mean decrease in node impurity (IncN-
odePurity) [56,57]. The first indicator measures the decrease in accuracy and, consequently,
the percentage increase in MSE when a variable is excluded from the model. A variable
with high percentage increases in MSE has more predictive power than others, because
when it is removed from the model the accuracy in estimating 1-h fuel load decreases. The
second indicator measures the decrease in Gini impurity when a variable is chosen to split
a node. The higher the value of mean increase in node purity, the greater the importance of
the variable in the model (Figure 5).
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by (A) the percentage increase in Mean Squared Error (%IncMSE) and (B) increase in node purity
(IncNodePurity). Abbreviations are: Easternness = Easterness of each plot, VH = VH polarization,
Slope = Slope in each plot, Elevation = Elevation of each plot, NDVI = Normalized Difference
Vegetation Index, Landcover_class = Land-cover class in each plot, Vegetation_cover = Vegetation
cover, Canopy_cover = Canopy cover, and CHM_maxq = Canopy Height Model 95th percentile.

The most important variables influencing 1-h fuel load estimation were the 95th
percentile of CHM (CHM_maxq) and canopy cover (Canopy_cover) values, increasing the
MSE by more than 10% (15.71% and 11.35%, respectively); both variables were randomly
permuted (Figure 5A). NDVI and the other variables related to geomorphological data
(Slope and Elevation) showed low importance values (<5%), while VH and Easterness
were considered less important for the RF model. The importance of the CHM_maxq and
Canopy_cover variables, followed by Vegetation_cover, was also confirmed by the mean
decrease in Gini impurity, which indicated that these variables have the highest values of
node purity and the highest degree of importance (Figure 5B).

3.4. Fine Dead Fuel Map

According to performance metrics, the best model (lowest RMSE and highest R2)
was used to estimate and map 1-h fuel load in a pilot area of the Apulia region. Figure 6
shows the 1-h fuel load (t/ha) map estimated by the RF model in the administrative area
of Martina Franca. The 1-h fuel load values ranged from a low of 0.01 t/ha to a high of
0.53 t/ha.
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The highest 1-h fuel load predicted (0.26–0.53 t/ha) was recorded in the south-west
part of the pilot area where deciduous forests can be found. Likewise, the lowest estimated
1-h fuel load (0.01–0.14 t/ha) was found in the south-east portion of the pilot area, mostly
covered by meadows and pastures. Table 5 represents the distribution of each land-cover
category in terms of surface area (ha) within the 1-h fuel load classes as estimated by the
RF model.

Table 5. Distribution of land-cover categories in terms of surface area (ha) within the 1-h fuel load classes as estimated by
the Random Forest model in the pilot area of Martina Franca.

Land-Cover Class
1-h Fuel Load (t/ha) Total Area

(ha)0.01–0.14 0.14–0.18 0.18–0.21 0.21–0.26 0.26–0.53

Coniferous 2.60 (3.85%) 19.26 (28.48%) 15.68 (23.19%) 26.99 (39.91%) 3.09 (4.57%) 67.62
Deciduous 470.74 (7.63%) 1294.65 (20.98%) 1465.94 (23.76%) 1433.25 (23.23%) 1506.44 (24.41%) 6171.02

Mixed 0.91 (4.09%) 4.31 (19.35%) 4.38 (19.67%) 6.62 (29.73%) 6.05 (27.17%) 22.27
Bush or Shrubs 104.34 (78.33%) 16.21 (12.17%) 4.06 (3.05%) 7.55 (5.69%) 1.04 (0.78%) 133.2
Sclerophyllous

Vegetation 532.45 (66.26%) 180.15 (22.42%) 32.70 (4.07%) 48.64 (6.05%) 9.61 (1.20%) 803.55

Meadows or Pastures
(with Trees) 73.92 (89.02%) 6.09 (7.33%) 1.28 (1.54%) 1.62 (1.95%) 0.12 (0.14%) 83.03

Meadows or Pastures
(without Trees) 331.76 (97.53%) 5.06 (1.49%) 1.90 (0.56%) 1.42 (0.42%) 0.02 (0.01%) 340.16

Natural Recolonization
Areas 9.56 (86.67%) 0.65 (5.89%) 0.46 (4.17%) 0.31 (2.81%) 0.05 (0.45%) 11.03

Among the land-cover classes, the deciduous forest (6171 ha) and sclerophyllous
vegetation (803.55 ha) areas covered most of the entire pilot area, whereas mixed woods
(22.27 ha), coniferous woods (67.62 ha), and natural recolonization areas (11.03 ha) were
less representative. As the number of trees increased, the 1-h fuel load increased as
well. More than 85% of the pastures and meadows (with or without trees) and natural
recolonization areas recorded 1-h fuel load values between 0.01 t/ha and 0.14 t/ha and
rarely exceeded 0.18 t/ha. The 1-h fuel load values for deciduous forests were highly
variable and approximately between 0.14 t/ha and 0.53 t/ha. However, the highest 1-h
fuel load values (0.26–0.53 t/ha) were found almost exclusively in deciduous forests. The
components of the Mediterranean scrub (brush, shrubs, and sclerophyllous area) produced
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a value between 0.01 t/ha and 0.18 t/ha compared with mixed and coniferous woods with
values between 0.18 t/ha and 0.26 t/ha.

4. Discussion

Wildfires in Europe are becoming increasingly extreme and, as a result, fire manage-
ment must dedicate more effort to improve the prevention phase [58]. An effective way to
start managing wildfire risk is to characterize and estimate fuel loads by adopting multiple
and novel approaches [40]. This study intended to corroborate the knowledge on fuel load
estimations and to understand which remote sensing variables are the most important
in predicting them. Although previous studies have attempted to describe and map the
properties of fuel load types [59–61], our study is the first to integrate multiple remote
sensing predictors and several machine learning techniques in a Mediterranean landscape
of Southern Europe.

In this study, the 1-h fuel load estimation was conducted by comparing machine
learning techniques (RF and SVM) with the MLR model. Based on performance metrics,
we found that the RF model showed greater predictive power in estimating the response
variable compared to the other models. The prediction error and correlation between
the predicted and observed 1-h fuel load values (i.e., 0.09 and 0.71, respectively) suggest
that the RF model has great potential in estimating fine dead fuel loads. These results
are in line with those of Pierce et al. [25], who used the RF algorithm integrating Landsat
5 imagery, field data, and topographic factors for modeling and mapping forest canopy
fuels in Lassen Volcanic National Park, California, USA. Their RF model showed that the
remote sensing variables used to predict canopy fuel characteristics had pseudo-R2 values
ranging from 0.55 to 0.68. Conversely, our results are less consistent with the findings
of Arellano-Perez et al. [62], who employed Sentinel-2 data and two machine learning
approaches (RF and multivariate adaptive regression splines) to estimate the surface fuel
load of pinewood in northwestern Spain. Their results showed a weak model performance
with R2 ranging between 0.02 and 0.12, probably due to the fact that the authors only used
the products deriving from Sentinel-2A images as remote sensing variables instead of a
multi-source approach like ours.

Compared to the RF adopted in our study, the MLR model demonstrated a weaker
predictive power. The prediction error and correlation between the predicted and observed
1-h fuel load values were 0.11 and 0.63, respectively. Other authors have confirmed the
high performances of RF compared to MLR in similar studies [28]. For example, López-
Serrano et al. [61] compared three machine learning techniques with MLR for above-ground
biomass estimation in the Sierra Madre Occidental, in Mexico. Their results proved that RF
and SVM techniques yielded the best results compared to MLR. Moreover, Castillo et al. [63]
found that the use of machine learning algorithms in estimating the above-ground biomass
of mangrove forests gave better results compared to linear regression.

In our study, the remote sensing variables did not have the same weight in terms of
importance in the RF model. Indeed, the LIDAR variables showed a higher predictive
power than the NDVI and VH polarization. CHM followed by canopy and vegetation
cover are the most important variables in estimating 1-h fuel load. This is most likely
related to the fact that if the degree of coverage and the height of the canopy increase, then
the biomass in terms of leaves, twigs, and small branches (e.g., fine and coarse dead fuel
loads) increases as well [64–66]. These results are in line with those of Chen et al. [67],
who applied multiple regression analysis using airborne and terrestrial LIDAR for surface
fuel load estimations in the open eucalyptus forests of Australia. The developed models
presented R2 values up to 0.89. Moreover, Lopes Queiroz et al. [31] used multispectral
LIDAR data to apply generalized additive models to coarse woody debris load estimations,
yielding a high accuracy of R2 = 0.72.

Contrary to LIDAR variables, the NDVI does not provide information on vegetation
structure but qualitatively describes the photosynthetic and phytosanitary activity of
plants [68,69]. Furthermore, NDVI is not able to detect the undergrowth, especially when
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canopy layers are dense and stratified. For these reasons, results show that NDVI and the
land-cover variable have the same weight in terms of importance within the RF model. The
results also suggest that VH polarization had less importance in fuel estimation. Based on
the findings of similar studies, a more plausible explanation is that the Sentinel-1 satellite
radar images have a short wavelength and consequently low canopy penetration [70]. For
example, Kumar et al. [71] found an insignificant correlation between VH polarization
acquired by Sentinel-1A and above-ground biomass estimated in the field. Conversely, a
significant correlation between VH polarization acquired by ALOS PALSAR and biomass
was found by the authors due to the fact that the L-Band, compared to the C-band, of
Sentinel 1-A is more sensitive to backscatter values and has a greater penetration of
the canopy.

The geomorphological variables (Slope, Elevation, and Easterness) showed lesser
importance in estimating the 1-h fuel load, probably due to their relationship to the
landscape topography rather than to vegetation. According to D’Este et al. [41], fire ignition
probability is high at an altitude of about 500 m, which is the mean value of elevation in
Apulia. This confirms the poor predictive power of these variables in discriminating the
fire occurrence and the fine dead fuel production. Numerous studies have shown that
geomorphological variables have a greater influence on the likelihood of fire occurrence,
ignition and spread [72,73]. For example, Elia et al. [74] found that elevation and slope
significantly influence the probability of wildfire occurrence in Italy. However, there is no
evidence to support the fact that geomorphological variables influence the production of
fuel load.

Our results may be applied regardless of the specific landscape context since our study
has suggested a method to understand where the fine dead fuel is more likely to accumulate.
According to the map in Figure 6, the areas associated with a high quantity of 1-h fuel
load were found in forests, while this quantity radically decreased in meadow and pasture
areas. This is most likely related to the fact that if the ecosystem complexity increases, in
terms of biomass and vertical structure, the 1-h fuel load also increases and, hence, the
likelihood of ignition. In this regard, quantitatively estimating the fuel load and knowing its
spatial distribution could have great practical significance, thus allowing the prioritization
of silvicultural interventions within fire management and mitigation plans [75,76]. In a
context where resources are often limited and local and national authorities focus their
efforts solely on fire suppression [77], our approach could create the basis for planning new
preventive policies and budgeting financial resources.

Although the RF model has shown a reliable performance, our study presents some
limitations. For example, LIDAR is a valuable tool for estimating 1-h fuel load, but not all
areas are covered by this data source, as it is extremely expensive to run. Another limitation
of this study was the use of the C-band images of Sentinel-1, which are less sensitive
to fine dead fuel load compared to the L-band images of the ALOS PALSAR satellite.
However, the L-band images of the ALOS PALSAR satellite were only available until 2018.
Future studies are needed to improve the knowledge on which predictors determine and
influence the distribution of fine dead fuel. For example, in fuel load estimation models,
future research should include new variables such as those related to climate or landscape
heterogeneity [78]. According to Pickering et al. [79], if the moisture content of the fine
dead fuel is high (>16%), fires are unlikely to ignite and burn, while if this content is less
than 5–7%, the fire could ignite rapidly. Humidity, temperature, and wind speed play a
fundamental role in influencing the ignition of fuel loads and, consequently, fire ignition.
Therefore, the introduction of new variables could significantly contribute to building fire
prediction models.

5. Conclusions

Fine dead fuel load (i.e., 1-h fuel load) estimation was conducted using multi-source
remote sensing data and machine learning techniques in a Mediterranean landscape of
Southern Europe. The RF, SVM, and MLR models were employed to predict 1-h fuel load
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and to understand which remote sensing variables are most important to determine it.
Based on performance metrics, the RF model was the most accurate in estimating 1-h
fuel load compared to the traditional MLR model that showed a weaker predictive power.
The SVM model showed similar performances to the MLR model. The results showed
that the variables providing information on vegetation structure (i.e., Canopy Height
Model, Canopy cover) are the most important in fuel estimation, thus underscoring the
possibility of using these remote sensing data as a proxy of fine dead fuel load. Therefore,
this methodology could be very useful for managers and decision makers, since it would
allow the regular estimation of fuel loads, especially the fine dead fuel load. Future
research should investigate the importance of climatic variables in fine dead fuel estimation
modeling and understand how these affect fire ignition.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13091658/s1, Figure S1: Five sub-regions of the Apulia region used as masks to extract
radar images., Figure S2: Correlation matrix of independent variables. VH = VH polarization; VV =
VV polarization; NDVI = Normalized Difference Vegetation Index; NDWI = Normalized Difference
Water Index; CHM = Canopy Height Model; CHM_maxq = 95th percentile of CHM.
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