826,954 research outputs found

    Exports, sunk costs and financial restrictions in Argentina during the 1990s

    Get PDF
    This paper examines firms' export decisions in Argentina during the 1990s. Using a sample of 1600 Argentine industrial firms with information for the years 1992, 1996, 1998 and 2001, we test which factors affect the probability of entering foreign markets. We focus on the role of sunk costs and the access to financial markets as key determinants of firms' export decisions. The estimation of a non-linear binary variable model using export prior experience and explicit sunk costs variables confirms self-selection hypothesis on export markets participation. Results also suggest that firm-specific characteristics are significant to explain export decisions, particularly firm's access to the financial systemsunk costs ; firm's export decisions ; financial restrictions ; Argentina

    Brownian motion from molecular dynamics

    Full text link
    Brownian motion of single particles with various masses M and diameters D is studied by molecular dynamics simulations. Besides the momentum auto-correlation function of the Brownian particle the memory function and the fluctuating force which enter the generalized Langevin equation of the Brownian particle are determined and their dependence on mass and diameter are investigated for two different fluid densities. Deviations of the fluctuating force distribution from a Gaussian form are observed for small particle diameters. For heavy particles the deviations of the fluctuating force from the total force acting on the Brownian particle decrease linearly with the mass ratio m/M where m denotes the mass of a fluid particle

    Stochastic differential equations for non-linear hydrodynamics

    Full text link
    We formulate the stochastic differential equations for non-linear hydrodynamic fluctuations. The equations incorporate the random forces through a random stress tensor and random heat flux as in the Landau and Lifshitz theory. However, the equations are non-linear and the random forces are non-Gaussian. We provide explicit expressions for these random quantities in terms of the well-defined increments of the Wienner process.Comment: 11 pages, submitted to Phys. Rev.

    How would you integrate the equations of motion in dissipative particle dynamics simulations?

    Full text link
    In this work we assess the quality and performance of several novel dissipative particle dynamics integration schemes that have not previously been tested independently. Based on a thorough comparison we identify the respective methods of Lowe and Shardlow as particularly promising candidates for future studies of large-scale properties of soft matter systems

    Modelling Shear Flows with SPH and Grid Based Methods

    Get PDF
    Given the importance of shear flows for astrophysical gas dynamics, we study the evolution of the Kelvin-Helmholtz instability (KHI) analytically and numerically. We derive the dispersion relation for the two-dimensional KHI including viscous dissipation. The resulting expression for the growth rate is then used to estimate the intrinsic viscosity of four numerical schemes depending on code-specific as well as on physical parameters. Our set of numerical schemes includes the Tree-SPH code VINE, an alternative SPH formulation developed by Price (2008), and the finite-volume grid codes FLASH and PLUTO. In the first part, we explicitly demonstrate the effect of dissipation-inhibiting mechanisms such as the Balsara viscosity on the evolution of the KHI. With VINE, increasing density contrasts lead to a continuously increasing suppression of the KHI (with complete suppression from a contrast of 6:1 or higher). The alternative SPH formulation including an artificial thermal conductivity reproduces the analytically expected growth rates up to a density contrast of 10:1. The second part addresses the shear flow evolution with FLASH and PLUTO. Both codes result in a consistent non-viscous evolution (in the equal as well as in the different density case) in agreement with the analytical prediction. The viscous evolution studied with FLASH shows minor deviations from the analytical prediction.Comment: 16 pages, 17 figure

    On the diffusive propagation of warps in thin accretion discs

    Full text link
    In this paper we revisit the issue of the propagation of warps in thin and viscous accretion discs. In this regime warps are know to propagate diffusively, with a diffusion coefficient approximately inversely proportional to the disc viscosity. Previous numerical investigations of this problem (Lodato & Pringle 2007) did not find a good agreement between the numerical results and the predictions of the analytic theories of warp propagation, both in the linear and in the non-linear case. Here, we take advantage of a new, low-memory and highly efficient SPH code to run a large set of very high resolution simulations (up to 20 million SPH particles) of warp propagation, implementing an isotropic disc viscosity in different ways, to investigate the origin of the discrepancy between the theory and the numerical results. Our new and improved analysis now shows a remarkable agreement with the analytic theory both in the linear and in the non-linear regime, in terms of warp diffusion coefficient and precession rate. It is worth noting that the resulting diffusion coefficient is inversely proportional to the disc viscosity only for small amplitude warps and small values of the disc α\alpha coefficient (α<0.1\alpha < 0.1). For non-linear warps, the diffusion coefficient is a function of both radius and time, and is significantly smaller than the standard value. Warped accretion discs are present in many contexts, from protostellar discs to accretion discs around supermassive black holes. In all such cases, the exact value of the warp diffusion coefficient may strongly affect the evolution of the system and therefore its careful evaluation is critical in order to correctly estimate the system dynamics (abridged).Comment: 16 pages, 14 figures. Accepted to MNRAS. Movies and additional figures can be found at http://users.monash.edu.au/~dprice/pubs/warp/index.htm
    • 

    corecore