273 research outputs found

    Development of electroencephalogram (EEG) signals classification techniques

    Get PDF
    Electroencephalography (EEG) is one of the most important signals recorded from humans. It can assist scientists and experts to understand the most complex part of the human body, the brain. Thus, analysing EEG signals is the most preponderant process to the problem of extracting significant information from brain dynamics. It plays a prominent role in brain studies. The EEG data are very important for diagnosing a variety of brain disorders, such as epilepsy, sleep problems, and also assisting disability patients to interact with their environment through brain computer interface (BCI). However, the EEG signals contain a huge amount of information about the brain’s activities. But the analysis and classification of these kinds of signals is still restricted. In addition, the manual examination of these signals for diagnosing related diseases is time consuming and sometimes does not work accurately. Several studies have attempted to develop different analysis and classification techniques to categorise the EEG recordings. The analysis of EEG recordings can lead to a better understanding of the cognitive process. It is used to extract the important features and reduce the dimensions of EEG data. In the classification process, machine learning algorithms are used to detect the particular class of EEG signal based on its extracted features. The performance of these algorithms, in which the class membership of the input signal is determined, can then be used to infer what event in the real-world process occurred to produce the input signal. The classification procedure has the potential to assist experts to diagnose the related brain disorders. To evaluate and diagnose neurological disorders properly, it is necessary to develop new automatic classification techniques. These techniques will help to classify different EEG signals and determine whether a person is in a good health or not. This project aims to develop new techniques to enhance the analysis and classification of different categories of EEG data. A simple random sampling (SRS) and sequential feature selection (SFS) method was developed and named the SRS_SFS method. In this method, firstly, a SRS technique was used to extract statistical features from the original EEG data in time domain. The extracted features were used as the input to a SFS algorithm for key features selection. A least square support vector machine (LS_SVM) method was then applied for EEG signals classification to evaluate the performance of the proposed approach. Secondly, a novel approach that combines optimum allocation (OA) and spectral density estimation methods was proposed to analyse EEG signals and classify an epileptic seizure. In this study, the OA technique was introduced in two levels to determine representative sample points from the EEG recordings. To reduce the dimensions of sample points and extract representative features from each OA sample segment, two power spectral density estimation methods, periodogram and autoregressive, were used. At the end, three popular machine learning methods (support vector machine (SVM), quadratic discriminant analysis, and k-nearest neighbor (k-NN)) were employed to evaluate the performance of the suggested algorithm. Additionally, a Tunable Q-factor wavelet transform (TQWT) based algorithm was developed for epileptic EEG feature extraction. The extracted features were forwarded to the bagging tree, k-NN, and SVM as classifiers to evaluate the performance of the proposed feature extraction technique. The proposed TQWT method was tested on two different EEG databases. Finally, a new classification system was presented for epileptic seizures detection in EEGs blending frequency domain with information gain (InfoGain) technique. Fast Fourier transform (FFT) or discrete wavelet transform (DWT) were applied individually to analyse EEG recording signals into frequency bands for feature extraction. To select the most important feature, the infoGain technique was employed. A LS_SVM classifier was used to evaluate the performance of this system. The research indicates that the proposed techniques are very practical and effective for classifying epileptic EEG disorders and can assist to present the most important clinical information about patients with brain disorders

    Detection of Pathological HFO Using Supervised Machine Learning and iEEG Data

    Get PDF
    Epilepsy is the second most common neurological disorder and it affects approxi mately 50 million people worldwide. One of the main characteristics of this disorder is the presence of recurrent seizures which tend to be controlled through medication. Nonetheless, 20% of the patients with this disorder are resistant to drug treatment meaning that they need to go through alternative procedures

    A computer aided analysis scheme for detecting epileptic seizure from EEG data

    Get PDF
    This paper presents a computer aided analysis system for detecting epileptic seizure from electroencephalogram (EEG) signal data. As EEG recordings contain a vast amount of data, which is heterogeneous with respect to a time-period, we intend to introduce a clustering technique to discover different groups of data according to similarities or dissimilarities among the patterns. In the proposed methodology, we use K-means clustering for partitioning each category EEG data set (e.g. healthy; epileptic seizure) into several clusters and then extract some representative characteristics from each cluster. Subsequently, we integrate all the features from all the clusters in one feature set and then evaluate that feature set by three well-known machine learning methods: Support Vector Machine (SVM), Naive bayes and Logistic regression. The proposed method is tested by a publicly available benchmark database: ‘Epileptic EEG database’. The experimental results show that the proposed scheme with SVM classifier yields overall accuracy of 100% for classifying healthy vs epileptic seizure signals and outperforms all the recent reported existing methods in the literature. The major finding of this research is that the proposed K-means clustering based approach has an ability to efficiently handle EEG data for the detection of epileptic seizure

    Epileptic seizure detection and prediction based on EEG signal

    Get PDF
    Epilepsy is a kind of chronic brain disfunction, manifesting as recurrent seizures which is caused by sudden and excessive discharge of neurons. Electroencephalogram (EEG) recordings is regarded as the golden standard for clinical diagnosis of epilepsy disease. The diagnosis of epilepsy disease by professional doctors clinically is time-consuming. With the help artificial intelligence algorithms, the task of automatic epileptic seizure detection and prediction is called a research hotspot. The thesis mainly contributes to propose a solution to overfitting problem of EEG signal in deep learning and a method of multiple channels fusion for EEG features. The result of proposed method achieves outstanding performance in seizure detection task and seizure prediction task. In seizure detection task, this paper mainly explores the effect of the deep learning in small data size. This thesis designs a hybrid model of CNN and SVM for epilepsy detection compared with end-to-end classification by deep learning. Another technique for overfitting is new EEG signal generation based on decomposition and recombination of EEG in time-frequency domain. It achieved a classification accuracy of 98.8%, a specificity of 98.9% and a sensitivity of 98.4% on the classic Bonn EEG data. In seizure prediction task, this paper proposes a feature fusion method for multi-channel EEG signals. We extract a three-order tensor feature in temporal, spectral and spatial domain. UMLDA is a tensor-to-vector projection method, which ensures minimal redundancy between feature dimensions. An excellent experimental result was finally obtained, including an average accuracy of 95%, 94% F1-measure and 90% Kappa index

    High-performance Diagnosis of Sleep Disorders: A Novel, Accurate and Fast Machine Learning Approach Using Electroencephalographic Data

    Get PDF
    While diagnosing sleep disorders by physicians using electroencephalographic data is protracted and inaccurate, we report promising results from a novel, fast and reliable machine learning approach. Our approach only needs an electroencephalographic recording snippet of 10 minutes instead of eight hours to correctly classify the disorder with an accuracy of over 90 percent. The Rapid Eye Movement sleep behavior disorder can lead to secondary diseases like Parkinson or Dementia. Therefore, it is important to classify the disorder fast and with a high level of accuracy - which is now possible with our approach

    Classification of Frequency and Phase Encoded Steady State Visual Evoked Potentials for Brain Computer Interface Speller Applications using Convolutional Neural Networks

    Get PDF
    Over the past decade there have been substantial improvements in vision based Brain-Computer Interface (BCI) spellers for quadriplegic patient populations. This thesis contains a review of the numerous bio-signals available to BCI researchers, as well as a brief chronology of foremost decoding methodologies used to date. Recent advances in classification accuracy and information transfer rate can be primarily attributed to time consuming patient specific parameter optimization procedures. The aim of the current study was to develop analysis software with potential ‘plug-in-and-play’ functionality. To this end, convolutional neural networks, presently established as state of the art analytical techniques for image processing, were utilized. The thesis herein defines deep convolutional neural network architecture for the offline classification of phase and frequency encoded SSVEP bio-signals. Networks were trained using an extensive 35 participant open source Electroencephalographic (EEG) benchmark dataset (Department of Bio-medical Engineering, Tsinghua University, Beijing). Average classification accuracies of 82.24% and information transfer rates of 22.22 bpm were achieved on a BCI naïve participant dataset for a 40 target alphanumeric display, in absence of any patient specific parameter optimization

    Classification of THz pulse signals using two-dimensional cross-correlation feature extraction and non-linear classifiers

    Get PDF
    This work provides a performance comparison of four different machine learning classifiers: multinomial logistic regression with ridge estimators (MLR) classifier, k-nearest neighbours (KNN), support vector machine (SVM) and naïve Bayes (NB) as applied to terahertz (THz) transient time domain sequences associated with pixelated images of different powder samples. The six substances considered, although have similar optical properties, their complex insertion loss at the THz part of the spectrum is significantly different because of differences in both their frequency dependent THz extinction coefficient as well as differences in their refractive index and scattering properties. As scattering can be unquantifiable in many spectroscopic experiments, classification solely on differences in complex insertion loss can be inconclusive. The problem is addressed using two-dimensional (2-D) cross-correlations between background and sample interferograms, these ensure good noise suppression of the datasets and provide a range of statistical features that are subsequently used as inputs to the above classifiers. A cross-validation procedure is adopted to assess the performance of the classifiers. Firstly the measurements related to samples that had thicknesses of 2 mm were classified, then samples at thicknesses of 4 mm, and after that 3 mm were classified and the success rate and consistency of each classifier was recorded. In addition, mixtures having thicknesses of 2 and 4 mm as well as mixtures of 2, 3 and 4 mm were presented simultaneously to all classifiers. This approach provided further cross-validation of the classification consistency of each algorithm. The results confirm the superiority in classification accuracy and robustness of the MLR (least accuracy 88.24%) and KNN (least accuracy 90.19%) algorithms which consistently outperformed the SVM (least accuracy 74.51%) and NB (least accuracy 56.86%) classifiers for the same number of feature vectors across all studies. The work establishes a general methodology for assessing the performance of other hyperspectral dataset classifiers on the basis of 2-D cross-correlations in far-infrared spectroscopy or other parts of the electromagnetic spectrum. It also advances the wider proliferation of automated THz imaging systems across new application areas e.g., biomedical imaging, industrial processing and quality control where interpretation of hyperspectral images is still under development

    Epileptic EEG signal classification using convolutional neural network based on multi-segment of EEG signal

    Get PDF
    High performance in the epileptic electroencephalogram (EEG) signal classification is an important step in diagnosing epilepsy. Furthermore, this classification is carried out to determine whether the EEG signal from a person's examination results is categorized as an epileptic signal or not (healthy). Several automated techniques have been proposed to assist neurologists in classifying these signals. In general, these techniques have yielded a high average accuracy in classification, but the performance still needs to be improved. Therefore, we propose a convolutional neural network based on multi-segment of EEG signals to classify epileptic EEG signals. This method is built to overcome data limitations in the convolutional neural network training process and add the ensemble combination process. The multi-segment of EEG signal is formed by splitting the signal without overlapping each channel and converting it into the spectrogram image based on the short-time Fourier transform value. The spectrogram image is then used as input for the convolutional neural network in in-depth training and testing. The convolutional neural network model of the training results is used to classify each EEG signal segment on each test channel before entering the ensemble combination stage for the final classification. To evaluate the performance of our proposed method, we used the Bonn EEG dataset. The dataset consists of five EEG records labelled as A, B, C, D, and E. The experiments on several datasets (AB-C, AB-D, AB-E, AB-CD, AB-CDE, and AB-CD-E) which were arranged from the dataset showed that our proposed method (with segment) performs better than without segment. Our proposed method yielded the best average of classification accuracy which is 99.33%, 100%, 100%, 99.5%, 99.8%, and 99.4% for the AB-C, AB-D, AB-E, AB-CD, AB-CDE, and AB-CD-E.By these results, the proposed method can outperform several other methods on the same dataset

    Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers

    Get PDF
    IntroductionIn the clinical setting, it becomes increasingly important to detect epileptic seizures automatically since it could significantly reduce the burden for the care of patients suffering from intractable epilepsy. Electroencephalography (EEG) signals record the brain's electrical activity and contain rich information about brain dysfunction. As a non-invasive and inexpensive tool for detecting epileptic seizures, visual evaluation of EEG recordings is labor-intensive and subjective and requires significant improvement.MethodsThis study aims to develop a new approach to recognize seizures automatically using EEG recordings. During feature extraction of EEG input from raw data, we construct a new deep neural network (DNN) model. Deep feature maps derived from layers placed hierarchically in a convolution neural network are put into different kinds of shallow classifiers to detect the anomaly. Feature maps are reduced in dimensionality using Principal Component Analysis (PCA).ResultsBy analyzing the EEG Epilepsy dataset and the Bonn dataset for epilepsy, we conclude that our proposed method is both effective and robust. These datasets vary significantly in the acquisition of data, the formulation of clinical protocols, and the storage of digital information, making processing and analysis challenging. On both datasets, extensive experiments are performed using a cross-validation by 10 folds strategy to demonstrate approximately 100% accuracy for binary and multi-category classification.DiscussionIn addition to demonstrating that our methodology outperforms other up-to-date approaches, the results of this study also suggest that it can be applied in clinical practice as well
    corecore