
 

 

Epileptic Seizure Detection and Prediction based on 

EEG Signal Analysis 

 

 

 

 

 

 

Smart Systems 

Department of Computing 

Master's thesis in Technology 

 

 

 

Author(s): 

Renjie Zhang 

 

Supervisor(s): 

Prof. Tomi Westerlund 

Prof. Wei Chen 

 

18.07.2021 

Turku 

 

 

 

The originality of this thesis has been checked in accordance with the University of Turku quality 

assurance system using the Turnitin Originality Check service. 



2 
 

Master's thesis in Technology 

 

Subject: Intelligent medical engineering 

Author: Renjie Zhang 

Title: Epileptic Seizure Detection and Prediction based on EEG Signal Analysis 

Supervisor(s): Prof. Tomi Westerlund, Prof. Wei Chen 

Number of pages: 69 pages 

Date: 18.07.2021 

 

Epilepsy is a kind of chronic brain disfunction, manifesting as recurrent seizures which is caused by 

sudden and excessive discharge of neurons. Electroencephalogram (EEG) recordings is regarded as 

the golden standard for clinical diagnosis of epilepsy disease. The diagnosis of epilepsy disease by 

professional doctors clinically is time-consuming. With the help artificial intelligence algorithms, the 

task of automatic epileptic seizure detection and prediction is called a research hotspot. 

The thesis mainly contributes to propose a solution to overfitting problem of EEG signal in deep 

learning and a method of multiple channels fusion for EEG features. The result of proposed method 

achieves outstanding performance in seizure detection task and seizure prediction task. 

In seizure detection task, this paper mainly explores the effect of the deep learning in small data size. 

This thesis designs a hybrid model of CNN and SVM for epilepsy detection compared with end-to-end 

classification by deep learning. Another technique for overfitting is new EEG signal generation based 

on decomposition and recombination of EEG in time-frequency domain. It achieved a classification 

accuracy of 98.8%, a specificity of 98.9% and a sensitivity of 98.4% on the classic Bonn EEG data. 

In seizure prediction task, this paper proposes a feature fusion method for multi-channel EEG signals. 

We extract a three-order tensor feature in temporal, spectral and spatial domain. UMLDA is a tensor-

to-vector projection method, which ensures minimal redundancy between feature dimensions. An 

excellent experimental result was finally obtained, including an average accuracy of 95%, 94% F1-

measure and 90% Kappa index. 
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Chapter 1 Introduction 

 1.1 Research background 

Epilepsy is an intractable neurological disease, and almost 1% of world’s 

population is troubled by it, particularly in some developing countries without enough 

medical resources. The epileptic seizures are the hallmark of epilepsy disease, 

manifesting as consciousness loss, twitching of limbs, which is related to abnormal 

neurophysiological activity in the brain, such as sudden excessive discharges. In 

addition to the damage of epilepsy to brain neurons, the sudden and unknown arrival of 

seizure onset may lead to traumatism. 

EEG signal is regarded as the overall response of brain neuron electric activity, it 

contains a great amount of explored and unexplored physical and disease information. 

EEG recordings can reflect the cerebral electric activity in different brain regions, so it 

is an unreplaceable form of understanding the information processing in brain and nerve 

disease diagnosis. 

EEG plays a very important role in the diagnosis and treatment of epilepsy. The 

epilepsy disease is known as the symptoms of spasm, consciousness loss. Those 

symptoms without EEG signal are not enough to diagnose that patients suffer from 

epilepsy or not. When epileptic seizure occurs, it can be viewed through EEG that the 

amplitude and frequency of cerebral electricity is quite different. Such kind of abnormal 

EEG waveform is called epileptiform discharge. Combine the symptoms and EEG 

recordings, epilepsy disease can be determined clinically and multichannel EEG 

recordings make it possible to locate the epileptic lesions. And epilepsy disease differs 

in seizure types, such as tonic seizure, absence seizure and atonic seizure. EEG also 

aims to classify seizure types of various severity and provide treatment solutions. With 

the advent of long-term EEG monitor and ambulatory EEG (aEEG), so recurrent and 
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sudden epileptic seizure can be recorded and observed by EEG monitoring throughout 

a day.  

Besides clinic diagnosis and treatment, automatic seizure detection is of great 

significance. Biomedical engineering explores epileptic EEG analysis by signal 

processing method, like time-frequency analysis, spectral analysis and nonlinear 

method. Especially in recent years, the technology of artificial intelligence (AI) 

improves rapidly with the development of the theory and computing performance, 

including machine learning and deep learning. As a result, the research about seizure 

detection and prediction have already made lots of progress with advanced AI 

technologies.  

 1.2 Epileptic EEG signal 

Since the first acquisition of EEG signals in 1924 by H.Berger [1], there are several 

ways to collect EEG signals, which can be generally divided into invasive and non-

invasive method. Invasive EEG acquisition method implants electrodes into the 

cerebral cortex, so the electrodes are close to neurons and it can accurately reflect the 

electrophysiological activities in the cerebral cortex with less interference, better 

stability, higher resolution and signal-to-noise ratio. But the defect is that it will cause 

trauma to the head and the surgery operation is quite difficult. Therefore, invasive EEG 

device is mainly used for research purpose with some special requirements. Non-

invasive EEG acquisition method attaches electrodes closely to the scalp, and the 

obtained EEG signal is also called scalp EEG, which has the advantages of no trauma, 

simple operation and low cost in comparison. Scalp EEG is the most widely used EEG 

acquisition method because of its obvious advantages. In order to unify the standard of 

scalp EEG acquisition, the International EEG Society formulated the “10-20 system 

EEG placement” in 1958 [2]. How and where electrodes are placed are illustrated in 

fig1. 
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Fig 1 10-20 system EEG placement [2] 

 

There are three elements in brain waves: frequency, amplitude, and waveform. 

Frequency components present the brain activity in some ways. According to the 

frequency, EEG can be divided into δ, θ, α, β, γ. Regarding the amplitude, the 

interpretation of left and right difference and the location of the abnormal side is of 

great clinical significance.  

Collected scalp EEG is a timing signal and its value represents EEG amplitude on 

each electrode. Human scalp EEG is clinically divided into six frequency bands δ (< 3 

Hz), θ (4 – 7 Hz), α (8 −15 Hz), β (16 – 31 Hz) and γ (> 32 Hz), among which the bands 

greater than 16 Hz can be collectively referred to as β waves or fast waves. These 

frequency bands are considered to be related to brain activity and consciousness. 

The amplitude of the δ wave range from 20 μV to 200 μV. This waveband 

generally appears in adult slow-wave sleep, infants and young children with incomplete 

intellectual development may contain the component in their EEG signal. It can be 

recorded on the temporal lobe and parietal lobe. 

The amplitude of θ wave ranges from 5 μV to 20 μV, which is quite low compared 

with other components. It is the main component of the EEG in infants and teenagers, 

and the proportion of the EEG in the elderly is higher than that in adults. Adults in 
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depressed or frustrated mood may generates θ wave. The position of observing θ wave 

is the temporal lobe, frontal lobe and central area. 

The amplitude of α wave ranges from 20 μV to 100 μV. Its amplitude is higher in 

children's EEG than that in adults’ EEG, and the amplitude will gradually decrease to 

the adult level during growth and development. Alpha wave is considered as the basic 

rhythm of normal human brain waves. It is very obvious when human is awake or quiet 

with eyes closed. If the vision is stimulated suddenly (such as light stimulation) or 

active mental activities are performed, the alpha wave will be greatly reduced. The 

position where alpha waves appear includes: posterior temporal area, occipital area, 

parietal area, etc. 

The amplitude of β wave ranges from 100 μV to 150 μV, which is the most 

common EEG waveform for a normal adult in awake state. This wave band generally 

appears in mental tension, emotional agitation and excitement. The beta wave will 

increase with age, and the proportion of beta wave in adult women will be slightly 

higher than that in adult men. Beta waves can be found in a wide range of locations on 

head, it is symmetrically distributed on both sides of the brain, and the front area is the 

most obvious. 

 

Fig 2. Morphology of EEG [3] 

 

The interpretation of EEG in the diagnosis of epilepsy is marked by epileptic 

seizures, which appear as sudden and abnormal discharges in shape of epileptiform 
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patterns, including sharp waves, spikes, spike-and-wave, polyspikes, complexes and 

polyspike-and-wave. The morphology of EEG is shown in fig 2. 

According to the clinical symptoms of epilepsy, seizures can be divided into two 

categories: partial seizures and generalized seizures. Partial epilepsy is the result of 

single nidus in brain. It includes a) Simple partial seizures, which is not accompanied 

by consciousness, and EEG manifests as discharge on single side. b) Complex partial 

seizures, it is accompanied by consciousness and cannot be recalled afterwards, and it 

is often bilateral abnormal discharge. Generalized seizures are bilateral and 

symmetrical abnormal discharges in both hemispheres, including a) Absence seizures, 

which are more common in children, manifest as sluggishness, activity and language 

stop, it will return to normal after tens of seconds, but the situation of seizure cannot be 

recalled. EEG appears as normal background with paroxysmal polyspike-and-wave. b) 

Myoclonic seizures, it often occurs when falling asleep and waking up with clonic 

muscle beating, EEG appears as polyspikes and sharp waves. c) Clonic seizures, it 

manifests as convulsive body, and EEG manifestations of rapid activity above 10 Hz. 

d) Tonic seizures, the clinical characteristics is strong muscle contraction, and body 

keeps the fixed position. EEG during seizure period is fast rhythm discharge around 9-

10 Hz, the frequency gradually decreases and the amplitude increases after that. e) 

Tonic-clonic seizure, it is the most common seizure type clinically, clonic period and 

tonic period occurs alternately. f) Atonic seizure, loss of muscle tone accompanies the 

seizure onset, which may lead to a sudden fall. EEG is characterized by polyspike-and-

wave. 

EEG recordings can be categorized by seizure duration, ictal interval represents 

EEG recording during a seizure, interictal interval represents EEG recordings between 

seizures and preictal interval represents EEG recordings before seizure onset. The 

waveform of continuous categorized intervals is plotted in fig 3. 

During the interictal phase, the EEG signal is a transient waveform, which is 

manifested as a sharp wave or spike wave. The EEG signal of an epileptic seizure is 
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continuous, with a composite waveform of sharp wave and spike wave. Interictal 

epileptiform discharges and unilateral periodic epileptiform discharges have clear 

meaning in the diagnosis of epilepsy disease. Spike waves and sharp waves are mainly 

used to confirm whether the patient has epilepsy or not. Spike waves and sharp waves 

are usually used to determine whether seizure occurs. Therefore, clarifying the 

waveform, amplitude, frequency and other characteristics of epilepsy EEG signal has 

important clinical significance for the research of epilepsy automatic detection and 

prediction. 

 

 

Fig 3. Interictal, preictal and ictal interval of EEG [4] 

 

The object of epileptic EEG signal processing can be specified as classification 

task by EEG recordings categories, including seizure detection and seizure prediction. 

Seizure duration only occupies a small part of entire EEG recording, which means 

interictal intervals are much longer than ictal intervals. So the seizure detection task 

tries to classify ictal intervals form interictal intervals. The detection technology can 

relief the diagnostic burden of doctors clinically and avoid the subjective mistakes of 

EEG interpretation by doctors. In comparison, seizure prediction aims to distinguish 

interictal intervals and preictal intervals. Once preictal intervals are identified, the 

following seizure onset is predicted. The time lead of seizure prediction is related to the 

preictal definition. The earlier preictal intervals are predicted, the sooner medical help 

can be delivered to patients and the more difficult the task is.  
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 1.3 Thesis outline  

In this thesis, we mainly focus on the EEG signal processing of seizure detection 

and seizure prediction task. The innovation of the thesis includes: CNN for processing 

EEG in small data size, EEG augmentation method, and discriminant feature extraction 

and feature fusion for multichannel EEG. The content of each chapter is organized as 

follows: 

In chapter 1, we introduce the background of EEG signal and epileptic disease, 

then the significance of automatic seizure detection and prediction is explained. And 

characteristics of epileptic EEG signal is presented, it proves the feasibility of seizure 

detection and prediction from the perspective of EEG waveform. The final part of the 

chapter explains the goals and difference of seizure detection and prediction in detail. 

In chapter 2, we mainly review the research about seizure detection and prediction, 

including feature extraction method of tradition EEG signal processing, end-to-end 

classification method of deep learning, and some other novel techniques. The result of 

mentioned research is analyzed and strengths and shortcomings are concluded. The 

challenges faced by seizure detection and prediction are described. Based on the review, 

this thesis tries to propose corresponding method to improve the existed shortcomings.  

In chapter 3, we explored the application of CNN in seizure detection of small 

EEG data size. In end-to-end model, CNN does not work well as a feature extractor and 

classifier at the same time. In order to improve the overfitting problem of deep learning 

model in small samples, we propose two techniques. A hybrid model of CNN and SVM 

is proposed, CNN is adopted as feature extractor and SVM is adopted as classifier. The 

structure and training process of the hybrid model is well described. Another technique 

is the EEG augmentation method based on decomposition and recombination in time-

frequency domain. Two proposed techniques improve the performance in seizure 

detection task compared to end-to-end model. 
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In chapter 4, we proposed a feature fusion method for multichannel EEG based on 

UMLDA, which is a tensor-to-vector projection algorithm. Firstly, a tensor object of 

PSD feature extracted in time-frequency domain and 23 channels is constructed, which 

includes the information of temporal, spectral and spatial domain. The key point of this 

part is UMLDA, it projects the three-order tensor into 15-dimension vector with 

orthogonality between dimensions. And the processed feature is transmitted to KNN 

for classification. To the best of our knowledge, tensor-based UMLDA has not been 

applied to predict seizure so far. Based on above algorithm, we perform a 10-minute 

seizure prediction task on individual subject in CH-MIT dataset.  

In chapter 5, a summary of the thesis is presented. We analyzed the result of 

proposed techniques applied in seizure detection and seizure prediction. And we 

mention some points needed for improvement in the future. 
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Chapter 2 Related work  

EEG diagnosis has always been a key step in the diagnosis of epilepsy, it was 

interpreted by experienced doctors in the past. However, this greatly consumes doctors' 

resources and is prone to errors. With the advancement of signal processing technology, 

the technology of EEG signal processing developed step by step. In the 1950s, British 

physician William Grey Walter well described the topography of EEG signal [5], it 

provides guides both for clinical diagnosis and automatic EEG waveform detection. 

After 1990, much effort has been made to research the methods of denoising, 

classification and event detection of EEG signal. Some of current widely-used and 

effective techniques were emerging from that time, including independent component 

analysis (ICA) and blind source separation (BSS) [6]. They can extract EEG signal from 

complex background noise, they are very import because scalp EEG is noisy and 

limitation of EEG acquisition conditions. And neural network is utilized to classify 

EEG for seizure activity detection [7]. The rise of artificial intelligence represented by 

neural networks greatly improves the performance of EEG signal classification, it also 

promotes the feature engineering of EEG signal. In this chapter, we will review the 

EEG signal processing method and introduce current research of seizure detection and 

prediction.  

 2.1 EEG signal processing method 

The general workflow of EEG signal processing can be concluded as signal 

acquisition, preprocessing, feature engineering and classification.  

 

 

Fig4. Workflow of EEG signal processing 
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For signal acquisition, scalp EEG is the most common EEG signal because of its 

advantage of non-invasive, easy collection and low cost. Besides, EEG acquisition of 

depth electrode implantation is used unless necessary. Because it needs a surgery to 

implant the electrode inside cerebral cortex and it is quite expensive. So almost all 

public EEG datasets are scalp EEG, and EEG mentioned in this thesis also refers to 

scalp EEG.  

 2.1.1 EEG preprocessing  

Preprocessing work aims to standardize the data into a form which is prepared for 

following different applications. It tries to preserve as much useful information as 

possible, while eliminating useless signal component, such as noise and artifacts. This 

step also specializes the selected signal for certain application.  

The artifact in EEG signal can be divided into technical artifacts and biological 

artifacts. The technical artifacts come from careless signal recording process and noisy 

environment, such as power line interference, impedance fluctuation and wire 

movement. The biomedical artifacts are a kind of pollution due to biomedical electrical 

signal outside brain, so the collected EEG is a superposition of multiple signals. It can 

be caused by eyeblink, eye-movement, heart beats, muscle contraction.  

There are some common steps of preprocessing explained as follows: 

a. Filtering  

Technical artifacts are much stronger than EEG signal itself, it can be weakened 

by stringent experimental conditions and equipment. Besides, digital filter can purify 

the EEG signal.  

Scalp EEG signal contains a lot of noise during acquisition, the noise comes from 

power frequency, thermal effect, acquisition equipment and so on. The doped noise 

reduces the quality and intelligibility of EEG signals, it makes an unpredictable effect 

on EEG signal classification. So it is necessary to design an appropriate filter based on 

requirements. 
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The frequency band of EEG signal is described above, there is little information 

contained in high frequency components of EEG clinically. Considering large interface 

of power frequency, so it is very common to design a band-pass filter which limits the 

band between 0.5 and 40 Hz. 

b. Biomedical Artifact removing 

Due to good conductivity of the scalp, biological artifacts from outside the brain 

can contaminate the observed EEG signal. Electromyography (EMG) artifact caused by 

facial or neck muscle contraction when swallowing or biting, the frequency distribution 

of the artifact is 0-200 Hz. The frequency distribution of ECG artifacts caused by heart 

beat is 0-75 Hz. And the frequency distribution of EOG artifacts caused by eye-

movement is 0-13 Hz. The frequency components of biological artifacts and EEG 

signals may overlap. So it is not possible to totally remove biomedical artifacts by 

filtering, other methods need to be put forward.  

Blind source separation (BSS) refers to the method of separate source signal from 

observed signal when the mix model of observed signal and source signal is unknown 

[8]. Independent component analysis (ICA) tries to solve the separation problem by 

decomposing the observed signal into several independent signal components. The 

decomposition process is carried out according the principle of statistical independence, 

and premise is that the source signals are independent non-gaussian signal. In [9], it is 

proved that ICA outperforms regression-based method in removing artifactual sources. 

Besides hand-optimized selection of source components in ICA, automatic method 

based on machine learning are adopted to remove artifact in ICA [10]. 

c. Other steps  

There are some other necessary steps in EEG signal preprocessing besides artifacts 

removing. The step of segmentation chooses the labeled segment of EEG event. 

Baseline correction can reduce the impact of baseline drift, it is achieved by subtracting 

the selected reference mean value. Because of possible poor electrode contact, some 

EEG channel may miss data or do not satisfy the quality standard. EEG channel 

interpolation is important in such cases, the data of the channel can be replaced by the 
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mean value of several around channels. Finally, the abnormal trails which has huge 

amplitude fluctuation caused by activity outside brain have to be rejected.  

 2.1.2 Feature extraction method 

    A good method of feature extraction is very necessary for achieving robust result of 

signal classification. So the principle of feature extraction is to extract as 

distinguishable feature as possible. The most commonly used method of EEG feature 

extraction is introduced as follows: 

a. Time domain features 

Time domain analysis is intuitive and has a quite relatively clear physical meaning. 

The frequently used statistical parameters are mean, variance, median, skewness and 

kurtosis. These amplitude measurements are relevant to discriminate EEG activities. 

The combination of above features is attempted to achieve good classification 

performance [11].  

b. Frequency domain features 

Frequency domain features are very crucial in EEG signal processing, because it 

involves the spectral analysis. It brings up the parameters of frequency components and 

energy, which are very distinguishable features since different EEG events vary in these 

two parameters. For example, the energy of epileptic seizure is distinct form the 

background due to excessive discharge.  

In 2008, intensity weighted mean frequency (IWMF) discussed the frequency 

distribution of the EEG signal by analyzing the normalized power spectral distribution 

(PSD), and extracted feature achieves a good performance in seizure detection task [12]. 

And intensity weighted bandwidth (IWBW) is another measurement of PSD, which is 

introduced by McDicken and Evans in [13], it compares a large number of proposed 

energy extraction method and combine the differential energy to achieve better result 

than single energy extraction. Besides the energy or PSD of certain length EEG 

segment, instantaneous energy is also explored to achieve more sensitive detection task 

[14]. 
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c. Time-frequency domain features  

Since time feature or frequency feature only take one domain into consideration, 

its information is limited. And frequency analysis based on Fourier transform is only 

suitable for signals whose frequency components do not change over time. But EEG 

signal is a non-stationary random signal, its frequency components changes a lot during 

various brain activities. In comparison, time-frequency analysis takes both time domain 

and frequency domain into consideration, it provides a method to observe the 

information of joint distribution in time and frequency domain.  

There are many time-frequency transforms proposed to analyze the signal. Short 

time Fourier transform (STFT) calculate the Fourier transform in a sliding window, so 

the frequency components of each time point are obtained if the window length is small 

enough. Different window length in STFT has different preference for time resolution 

and frequency resolution. Wavelet transform (WT) offers a solution for the paradox 

between time resolution and frequency resolution in STFT. It overcomes the problem 

of resolution in STFT with orthonormal wavelet [16]. And Cohens time-frequency 

transform is a family of quadratic distribution, its kernel fuzzy function makes it 

suitable for different conditions. In [18], the difference of various time-frequency 

transform method is well discussed in seizure detection task.  

d. Non-linear features  

With the in-depth study of the brain, more and more evidences show that the brain 

can be approximately regarded as a nonlinear dynamic system, and the EEG signal is 

its output. Therefore, people continue to try to introduce nonlinear analysis methods 

into the analysis of EEG signals. 

Features that characterize nonlinear complexity or irregularity are widely 

proposed. In the early 1990s, Pincus proposed and developed the concept of 

approximation entropy (ApEn) from the perspective of measuring the complexity of 

time series, and successfully applied it to physiological time series analysis, such as 

EEG, heart rate signals, blood pressure signals, etc [19]. A large number of entropy 

derived parameters have been proposed since then, such as sample entropy, permutation 
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entropy, fuzzy entropy, weighted-permutation entropy, distribution entropy, hurst 

entropy, etc [20-24]. Hilbert-Huang transform (HHT) is a popular method of extracting 

features from non-stationary signal, it includes empirical mode decomposition (EMD) 

and Hilbert transform [25]. The key step of HHT is decompose the signal several 

intrinsic mode function (IMF), these functions represents the physical meaning of the 

original signal. HHT has the advantage of clear time and frequency resolution, and it 

has complete adaptability which does not need the selection of basis function. In [26], 

information related to IMF is extracted to track the local frequency and amplitude of 

EEG signal, which helps to distinguish ictal and interictal segments. 

 2.2 Classification method 

For a given set of features, we need select the most appropriate classifiers 

according the extracted features. Due to the characteristics of EEG signal, there two 

main problems in EEG classification: the curse-of-dimensionality and the bias-variance 

tradeoff.  

a. The curse of dimensionality 

Feature expression ability and separability increase with feature dimension. As we 

describe above, EEG has a lot of proposed features ready to extract. But if the 

dimension of signal is close or large than the sample number, the classifiers will suffer 

from poor results. It has been proved in [27] that the sample numbers of each class in 

training should be at least five times as many as dimensionality. But it is not easy in 

EEG signal processing, because data acquisition and annotation are hard to get.  

b. Bias-variance tradeoff 

The error of classification can be decomposed into three terms: noise, bias and 

variance. The calculation is listed below: 

𝐸𝑅𝑅𝑂𝑅 = 𝐸[(𝑦∗ − 𝑓(𝑥)2] 

                = 𝐸[(𝑦∗ − 𝑓∗(𝑥) + 𝑓∗(𝑥) − 𝐸[𝑓(𝑥)] + 𝐸[𝑓(𝑥)] − 𝑓(𝑥)2)] 

                = 𝐸[(𝑦∗ − 𝑓∗(𝑥))
2
] + 𝐸[(𝑓∗(𝑥) − 𝐸[𝑓(𝑥)])2] 
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                    +𝐸[(𝐸[𝑓(𝑥)] − 𝑓(𝑥))
2
] 

                = 𝑛𝑜𝑖𝑠𝑒2 + 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟 

where 𝑦∗ is the truth value, 𝑓(𝑥) is the predict value and 𝑓∗(𝑥) is the label value. And 

noise here represents the irreducible error between label value and truth value. And bias 

estimate the fit of the model. Variance reflects the sensitivity of the training data.  

There is natural tradeoff between bias and variance [28]. As the model's fitting 

ability increases, the bias will decrease. At the same time, the variance of the model 

will gradually increase. In this process, the model goes from underfitting to overfitting. 

In EEG signal processing, the training data from different sessions are quite dissimilar. 

In order to achieve generalization ability, a low variance model of EEG classification 

is preferred in most cases.  

 2.2.1 Machine learning  

     As we introduced above, complex model which have strong expressive ability in can 

easily lead to overfitting problem. Machine learning is considered as weaker in 

distinguishing than deep learning, but it can satisfy the EEG classification need in most 

cases and avoid overfitting problem. Machine learning methods include linear 

classifiers, decision tree models, Bayesian classifiers, nearest neighbor classifiers, etc.  

Linear discriminant analysis is a binary classification method with low 

computational complexity, which makes it appropriate for EEG activity recognition 

[29]. But it also shows its drawback of linearity in nonlinear EEG classification task 

[30]. Support vector machine (SVM) is another linear classifier by locating the optimal 

hyperplane [31]. And it overcome the drawback of LDA by kernel function, which 

allows it to have a nonlinear hyperplane, such as RBF SVM and polynomial SVM. So 

it has been widely used in EEG recognition tasks [32-33]. Hidden Markov model 

(HMM) is a popular Bayesian classifier in EEG signal recognition. A novel distance 

coupled HMM is proposed in [34], and it has outstanding advantages in computational 

complexity. A highly accurate and boosting ensemble method called gradient boosting 
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decision tree (GBDT) is applied to determine the state of EEG signal [35]. K-nearest 

neighbor (KNN) is a simple classifier that does not need training, it is used to highlight 

the effect of feature extraction in [36].  

 2.2.2 Deep learning  

 

Fig5. EEG signal in deep learning model 

 

Deep learning can be briefly summarized as artificial neural networks with deep 

depth of hidden layers. Generally, they are flexible under certain network structures, 

such as convolutional neural networks (CNN) and Recurrent Neural Network (RNN). 

The increase in the number of layers makes the network model have better fitting 

capabilities.  

With the increasing separability between different types of signals, the signal can 

be directed fed into deep learning model to perform recognition task without feature 

engineering. In traditional machine learning, the quality of feature design has a crucial 

impact on classification performance. Deep learning directly removes the steps of 

manually designing features, which greatly improves the automation of signal 

processing. But interpretability of deep learning is insufficient without feature 

engineering.  

Depending on the form of input EEG representation, like time series, dimension 

features and image representation, various deep learning models have been explored to 

achieve better recognition performance. In [37], a set of different architectures of end-

to-end CNN models are designed to encode and visualize EEG signal. Besides original 

EEG signal, extracted feature from time and frequency domain still can be the input of 

deep learning model [38]. Kostas introduces long short-term memory model (LSTM), 
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which is an improved version of RNN, in seizure prediction task, and it achieves an 

outstanding result [39]. Generative adversarial network (GAN) is an unsupervised 

learning method on complex distribution, and it is the current research hotspot of deep 

learning. It has been applied to generate EEG signal as data augmentation [40].  

 2.3 Summary of existing research 

After the above introduction, it is concluded that there are many methods for brain 

signal feature extraction and classification, and new ones are constantly emerging. But 

some innovations in feature combination or classifier ensemble methods are not 

pioneering.  

In our opinion, there are still several problems that need to be improved in EEG 

signal processing. In feature engineering, the extraction of multi-channel information 

has not received enough attention. And the fusion method of channel information needs 

further study. In deep learning, the potential overfitting in small EEG data is not well 

studied. In the following task of epilepsy detection and prediction, we will put forward 

our ideas and attempts about these two issues. 

 

 



18 
 

Chapter 3 CNN for epileptic seizure 

detection in small data size  

In this chapter, we focus on the deep learning solution for seizure detection task. 

In order to solve the contradiction between the complex CNN network and the small 

amount of data, two techniques are mainly introduced and their improvements in 

classification performance are verified. One of the techniques is a hybrid CNN-SVM 

model. the hybrid model uses CNN as a feature extractor to avoid overfitting in 

classification, and the feature vector before the last fully connected layer is input to the 

SVM to perform classification task. Another technique is generating new EEG signal 

by segmentation and recombination in time-frequency domain. The model without 

handcrafted features achieves a competitive result in seizure detection task. 

 3.1 Dataset  

Table 1. Details of subsets in Bonn dataset 

Subsets Subjects Subject’s state 
Segment 

number 
Duration Frequency 

Z 
5 healthy 

volunteers 
Eyes open 100 23.6s 173.61Hz 

O 
5 epileptic 

volunteers 
Eyes closed 100 23.6s 173.61Hz 

N 
5 epileptic 

volunteers 

Interictal intervals 

one side of hippocampal formation 
100 23.6s 173.61Hz 

F 
5 epileptic 

volunteers 

Interictal intervals 

another side of hippocampal 

formation 

100 23.6s 173.61Hz 

S 
5 epileptic 

volunteers 
Ictal intervals 100 23.6s 173.61Hz 

 

In order to meet the experimental purpose of small data samples, the dataset 

collected by Bonn University is utilized in the thesis [41]. And it has been widely used 
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in the research filed of epileptic seizure detection. There are five subsets contained in 

the dataset, donated as subset Z, subset O, subset N, subset F and subset S. Each subset 

consists of 100 single channel EEG segment, and the length of all individual segment 

is 23.6 seconds. The EEG sampling frequency is 173.61 Hz with 12bits resolution, and 

its spectral bandwidth ranges from 0.5 to 85 Hz which is consistent with the acquisition 

equipment. The EEG recording is under the standard placement of electrode, and the 

reason of single channel and short duration is that each segment is selected and cut from 

long-term multi-channel EEG to remove biomedical artifacts by experienced doctors.  

 

 

a. Subset Z                       b. subset O 

 

c. Subset N                        d. Subset F 

 

e. Subset S 

Fig.6 Examples of EEG segment in 5 subsets of Boon dataset 
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The difference of subsets lies in subjects, subjects’ state. Subset Z and O are 

collected from five healthy subjects without epilepsy, and the difference is whether the 

eyes are open. And subjects N, F and S are collected from five epileptic patients. Subset 

N and F only contains interictal intervals, which have no overlap with seizure segments. 

And EEG of subsets N and F are taken from the symmetrical sides of hippocampal 

formation in brain where is considered as the seizure generating area clinically. Subsets 

S only contains pure ictal segments. The detail of each subsets is listed in table 1, and 

fig 6 give an example of EEG waveform in each subset.  

 3.2 Data preprocessing 

Preprocessing of raw EEG data helps to achieve better result in following 

classification task. The EEG signal of Bonn dataset is quite clean because the 

biomedical artifacts are removed by doctors’ selection, such as ECG artifacts caused by 

heart beats, EMG artifacts caused by muscular activities and EOG artifacts caused by 

eye blinks. The spectral bandwidth of EEG signal in dataset is form 0.5 Hz to 85 Hz, 

which is determined by the acquisition system. And the frequency of most 

understandable brain activities is between 3-31 Hz [42]. Considering the other noises, 

such as power frequency, we design a 6-order Butterworth bandpass filter, which offers 

a flat passband to preserve desired signal. The cut-off frequency is set as 0.5 HZ and 40 

Hz. 

 3.3 CNN for seizure detection  

 3.3.1 Artificial neural networks (ANN) 

Biological neurons can cooperate with each other to complete information 

processing. Inspired by the complex system in brain, artificial neural network is created 

as a digital signal processing structure [43]. Generally speaking, a neural network 

consists of multiple layers of neurons, and the neurons of two adjacent layers are linked 



21 
 

by weights. Once the structure of the network is determined, that is the number of layers 

and the number of neurons in each layer, the process of ANN training is to find the 

appropriate weight to best fit the target output. The weight update is achieved through 

the gradient back propagation of the objective function, which is the most critical 

principle and calculation of ANN. And activation function helps neural network to 

obtain nonlinearity. A neural network with a single hidden layer is illustrated in Fig7, 

the number of hidden layers and neurons will be larger in general.  

 

 

Fig7. Structure of single hidden layer ANN 

 3.3.2 1-Dimension CNN structure 

      CNN is a specialized neural network with certain structure. It achieves shift and 

translation invariance with the introduction of convolution layer compared with ANN, 

which is very import in image processing. With the development of deep learning 

theory and the improvement of computing equipment performance, CNN has caused a 

research boom in computer vision (CV), natural language processing and other related 

fields [44].  
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      CNN has three types of layers, convolutional layer, pooling layer, and fully 

connected layer, which implement feature extraction, feature selection and 

classification respectively. The operation of dot product between convolution kernel 

weight and signal in the convolution layer can be regarded as filters, and the result 

obtained is the destination value of feature extraction. The pooling layer samples the 

feature maps output by the convolutional layer, which is the process of feature selection. 

The final fully connected layer converts high-dimensional features into output 

categories to achieve classification. 

      CNN has shown excellent performance in the field of image processing, including 

biomedical signal images. However, it is not widely used in one-dimensional time series 

signals such as EEG signals. In EEG signal processing, the convolutional operation in 

CNN is also transformed into one-dimensional, but advantages of convolution layer 

still exist, so this thesis uses CNN to do the task of epilepsy detection. The following 

part will explain each layer of one-dimension convolution in detail.  

a. 1-D convolution layer  

In ANN, the calculation of the output of each neuron requires the output of all 

neurons in the previous layer and the corresponding weights, which is called fully 

connected structure. Such a process is computationally expensive and generates a large 

number of parameters, which is not necessary in some cases.  

The convolution operation in the convolutional neural network is a non-fully 

connected structure. The convolution kernel is a structure smaller than the size of the 

input signal, and its value represents the weight, which is the target in learning process. 

The feature map output can be obtained by moving the convolution kernel on the signal. 

In this way, local features are extracted with the reuse of weight, and computational 

complexity is reduced. The process of one-dimension convolution illustrated in fig8.  

There are some parameters need to be set during the convolution process, 

including number of input and out channels, stride, padding and convolution mode. The 

number of output channels determines the number of one-dimension output signal here. 

Stride specifies the step size of each move of the convolution kernel, and padding 
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specifies the padding size of input signal. Convolution mode has other two selections 

in addition to mode ‘full’, mode ‘same’ specifies same size of input and output, and 

mode ‘valid’ only produces output when kernel is fully used.  

 

 

 

Fig8. An example of 1-dimension convolution 

b. 1-D pooling layer  

The pooling layer is also called the down-sampling layer. It has two main functions 

in CNN. The first is to reduce the dimensionality of feature vectors, reduce parameters 

and calculations, and prevent overfitting to improve model generalization performance. 

The second function is that it brings feature invariance. For example, in one-
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dimensional signal processing, the same time sequence signal can obtain the same 

feature through pooling operation at different sampling frequencies. 

 

 

Fig9. An example of one-dimension pooling 

 

  The process of one-dimension pooling is plotted in fig9. There are two ways of 

pooling operation: maximum pooling and average pooling. Maximum pooling saves 

the texture characteristics of the data, and average pooling emphasizes the overall data 

characteristics. According to their characteristics, maximum pooling can be used to 

extract features with obvious response in shallow layers, and average pooling can be 

used to store more information in deep layers. 

c. fully connected layer  

    In CNN, full connection usually appears in the last few layers, and it is used to do a 

weighted sum of the previously designed features. Its structure is similar to the above-

mentioned ANN. In the classification task, the number of output neurons in the final 

fully connected layer is equal to the number of categories to realize the classification 

task. 

d. activation function  

The output of ANN is always a linear combination of the input without activation 

function, and the approximation ability of the network is quite limited. Nonlinear 

function is introduced as the activation function, so that the deep neural network 
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expression ability is more powerful. There are two activation functions adopted in this 

work: leaky rectified linear unit (RELU) and softmax [45-46].  

(1) Leaky RELU 

RELU is a widely used in activation function, especially in deep learning. The 

equation is listed below. 

𝑓(𝑥) = {
𝑥         𝑤ℎ𝑒𝑛 𝑥 ≥ 0
0         𝑤ℎ𝑒𝑛 𝑥 < 0

 

    RELU turns all negative values into 0, which means that only neurons with an input 

greater than 0 will be activated. It makes the network sparse and improves 

computational efficiency, and the training process converges faster. At the same time, 

there is no saturation zone like in the S function. The gradient is always 1 when the 

input is greater than 0, so the continuous multiplication of the number of layers will not 

cause vanishing gradient and exploding gradient. The disadvantage of RELU is neuron 

death, which means that the excessive gradient update causes the neuron to always stay 

in the area less than 0 and no longer activates.  

The leaky RELU is proposed to improve the situation. The equation is listed below. 

The gradient of the negative zone is no longer 0, but a constant close to 0. Constant 𝛼 

is set as 0.01 here.  

𝑓(𝑥) = {
𝑥         𝑤ℎ𝑒𝑛 𝑥 ≥ 0
𝛼𝑥        𝑤ℎ𝑒𝑛 𝑥 < 0

 

(2) Softmax 

    Softmax is widely used in classification tasks, it generally serves as the last layer of 

the network. It maps the input to a 0-1 real number, and the sum of the output is 1 

through normalization. So the output represents the probability of the corresponding 

class, and the category corresponding to the maximum value is the predicted output. 

Combined with the cross-entropy loss function in the training process, the gradient 

calculation is very simple and convenient. The equation is listed below. 
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𝑆𝑖 =
𝑒𝑖

∑ 𝑒𝑗𝑗
     𝑓𝑜𝑟  𝑗 = 1,2, … 𝑘 

where i, j represents the input, k is the number of classes, and 𝑆𝑖  is the output 

probability.  

 3.3.3 Proposed CNN in seizure detection 

    As we described in Bonn dataset, the length of the input signal is 4097 according to 

the frequency of 173.61 Hz and the duration of 23.6s. And seizure detection is a binary 

classification task. So the final input dimension of the network is 4097, and the output 

dimension is 2.  

The structure of designed CNN is described in table 2. The size of the data in Table 

1 is expressed in tensor form, the first two dimensions represent the signal size, and the 

last dimension represents the number of channels. And the process of signal transition 

is illustrated in fig 10. 

Table 2. The structure of CNN 

layers or  

activation 

function 

type input size kernel size  

number of 

kernel 

(output 

channel) 

stirde  
output 

size 

1 Conv 4097*1*1 7*1 2 2 2046*1*2 

2 max pooling 2046*1*2 2*1 2 2 1023*1*2 

3 leaky RELU 1023*1*2 / / / 1023*1*2 

4 Conv 1023*1*3 3*1 4 2 511*1*4 

5 max pooling 511*1*4 2*1 4 2 256*1*4 

6 leaky RELU 256*1*4 / / / 256*1*4 

7 Conv 256*1*4 3*1 8 2 128*1*8 

8 
average 

 pooling 
128*1*8 2*1 8 2 64*1*8 

9 leaky RELU 64*1*8 / / / 64*1*8 

10 
fully 

cnnected  
64*1*8 / / / 100*1*1 

11 
fully 

cnnected  
100*1*1 / / / 2*1*1 

12 softmax 2*1*1 / / / 2*1*1 
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Fig 10. Signal transition in CNN layers 
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The original input signal is first convolved with a kernel of size 7, and number of 

signal channels is increased to 2. Under the action of the convolution kernel with stride 

equal to 2, the size of the feature map is reduced by half. At the same time, the number 

of channels is double every time. The advantage of the operation is that multi-channel 

computing and parallel computing are fast during feature extraction. Under the 

constraint of the same receptive field size, the computation complexity of consecutive 

small convolution kernels is lower than a single large convolution kernel. And the 

following pooling layer is used to reduce the feature dimension, and final pooling layer 

is replaced by average pooling to preserve more information in extracted features. Two 

fully connected layers were designed instead of one, the design purpose of them is 

different. The first fully connected layer maps the information learned by convolution 

layers to feature vectors with larger dimensions, which increases model capacity. The 

second fully connected layer mainly matches the output category of the epilepsy 

detection network. Finally, a softmax activation function is deployed to normalize 

feature vectors and generate probability estimates of each class.  

 3.3.4 Results 

In seizure detection task, we select subset N and subset F as interictal intervals and 

subset S as ictal intervals to evaluate our proposed method. Subset Z and subset O are 

left out to avoid sample imbalance between classes. So totally 300 EEG signal segments 

are included to perform the classification task. 

A 5-fold cross-validation is adopted here [47]. This method can reduce the random 

error of training on a dataset. Take the 5-fold cross-validation used in this experiment 

as an example. It divides the data evenly into five parts, 4 parts are used for training, 

and the remaining part is used for testing. The strategy is repeated by loop selection of 

training set and testing set. In this way, the performance of the model on 5 datasets is 

obtained, and the average of the result is taken as final result. 



29 
 

    We adopt the metrics of sensitivity, specificity and accuracy to evaluate the 

performance of the CNN. In the two classification problems of epilepsy detection, we 

regard the ictal intervals as positive cases and the interictal intervals as negative cases. 

So true positive (TP) represents the correct classification of the ictal intervals, and false 

negative (FN) represents that ictal interval is mistaken as interictal interval. And true 

negative (TN) represents the correct classification of the interictal interval, and false 

positive (FP) represents that interictal interval is mistaken as ictal interval. The 

presented metrics is calculated as below. The result of classification is listed in table 3 

and the confusion matrix is plotted in fig11.  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

 

Raw EEG signal classification by CNN has achieved an average sensitivity of 

92.0%, specificity of 92.5% and accuracy of 92.3%. Our designed CNN has 

outperformed the research proposed by U. Rajendra Acharya, which also uses CNN for 

seizure detection without extra feature extraction [85]. But there are still some other 

works on the same dataset that have better performance than ours. X. Zhao et al. extract 

instantaneous energy to perform seizure detection, it is achieved an average accuracy 

of 99.3% [48]. Diykh et al. designed complex networks features and LS-SVM reaches 

97.8% accuracy in same classification of subsets [49]. And Zeng et al. utilizes entropy 

of visibility graph and LS-SVM achieved a classification accuracy of 98.4% [50]. In 

comparison, the performance pf result still has room for improvement. Our view is that 

CNN is not doing well with a small sample size, so two techniques are employed to 

improve CNN's performance in this situation.  
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Table 3. Seizure detection result of CNN 

 

 

 

Fig11. Confusion matrix of CNN classification 

 3.4 Improvements: techniques in small data size 

 3.4.1 Hybrid model: CNN-SVM 

      The classification result of direct CNN output is not sufficiently competitive 

compared with the existed researches. The reason may come from the fact that the data 

sample is too small and it is not enough for deep network training. However, traditional 

machine learning methods, such as SVM, can often achieve good results when in small 

sample classification tasks. Its computational complexity is also very small because of 

its structure. Considering that the features extracted by CNN have excellent 

ictal interictal

ictal 92 8

interictal 15 185

A ctual class

Predicted class

92.0% 92.5% 92.3%

Sensitivity Specificity A ccuracy
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characteristics of shift and translation invariance. It is still advisable to extract feature 

by CNN structure. Therefore, we consider using CNN to extract features of EEG, and 

then input the extracted features into SVM to perform classification task. A hybrid 

model of CNN and SVM is designed to detect seizure.  

a. SVM  

SVM is a two-class classification model. SVM maps feature vectors to space, its 

basic idea of classification is to find the separation hyperplane with the largest interval 

between classes. SVM is suitable for small and medium data samples, nonlinear, high-

dimensional classification problems. Any hyperplane can be described by the following 

equation:  

𝑤𝑡𝑥 + 𝑏 = 0 

The points closest to the hyperplane in the sample are called support vectors. The 

distance from the support vector to the hyperplane is assumed as d, so the distance from 

other points to the hyperplane is greater than d. According to the formula for the 

distance from a point to a straight line, we can get the following formula: 

{
 
 

 
 𝑤

𝑡𝑥 + 𝑏

||𝑤||
≥ 𝑑       𝑦 = 1

𝑤𝑡𝑥 + 𝑏

||𝑤||
≥ 𝑑    𝑦 = −1

 

Let ||𝑤|| ∗ 𝑑 = 1, we can merge the two equations: 

𝑦(𝑤𝑡𝑥 + 𝑏) ≥ 1 

And the goal of maximizing the distance from the support vector to the hyperplane can 

be summarized as: 

max
1

2
||𝑤||2 

So SVM is optimization problem mathematically, which is to maximize the objective 

function under the above constraint function. For the above problem, the Lagrange 

multiplier method and the Karush-Kuhn-Tucker (KKT) condition of unequal 
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constrained optimization problems can used to convert and solve the optimization 

problem [51-53]. A simple illustration of a linear SVM is drawn in Fig 12. 

 

 

Fig 12. Illustration of linear SVM [78] 

 

    The above SVM can only be effective when the sample is linearly separable, kernel 

techniques is introduced to bring nonlinear ability to SVM [54]. Kernel techniques are 

what make SVM powerful. The kernel function maps the linearly inseparable samples 

into the high-dimensional space, where the sample points are linearly separable. 

Common kernel functions include Gaussian kernel function, linear kernel function, and 

polynomial kernel function. 

b. Hybrid of CNN and SVM 

The whole process of feature extraction and classification is as follows: 1) the 

designed CNN is trained for seizure detection task. 2) the output of the penultimate 

fully connected layer is the target feature in CNN. 3) the extracted features and 

corresponding labels are fed into SVM for training process. 4) the remaining dataset is 

adopted as testing data to evaluate the hybrid model. The workflow is also described in 

fig 13.  
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The output of the penultimate fully connected layer of CNN is a 100-dimensional 

vector. So it is also the input of SVM and the kernel function of SVM selected here is 

linear kernel function.  

 

 

Fig 13. Workflow of hybrid model 

 

c. Result of hybrid model  

The result of proposed hybrid model in concluded in table 4. The improved hybrid 

model achieved better results than an end-to-end CNN. The sensitivity increased by 

6%, specificity increased by 4%, and the final accuracy increased by 4.7%.  

The experiments can prove that the hybrid model of CNN and SVM is more 

advantageous when dealing with small data volume EEG, because it combines the 

advantages of CNN feature extractor and the excellent performance of SVM as a 

classifier.  

The proposed hybrid model avoids the poor classification performance of CNN 

caused by insufficient training in a small amount of data. Retaining CNN as the feature 

extractor is more convenient than extracting features manually. Finally, a good 

classification through was obtained through SVM. The entire hybrid model structure 

provides a new idea for the deep learning model in the processing of such small amounts 

of data in biomedical signals. 

 

 

Table 4. Seizure detection result of hybrid model 
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 3.4.2 EEG data generation  

    To further improve the performance of seizure detection, we considered the impact 

of the amount of data on the results. Not only in EEG processing, all machine learning 

models desire large amounts of data. The large amount of data will include almost 

complete data distribution, improving the robustness and generalization ability of 

training model. Therefore, artificial data generation is proposed to augment training 

dataset. It has proved its performance increase on testing set in image processing area 

and speech processing area [55-56].  

    There are many data enhancement operations in image processing, such as flipping, 

rotating, scaling, cropping, adding random noise [57]. But those operations are not 

appropriate for time series signal like EEG. We apply the perspective of component 

analysis to create new EEG data. 

    A simple idea is to divide the preprocessed EEG trail into smaller segments, and then 

recombine the segments between different trials to generate a new EEG trial. Fig 14 

demonstrate the process. An EEG trial is divided into 3 equal duration, two trials from 

the same class can form a new EEG trial by exchanging segments in the same position. 

In this way, every two EEG trial can generate new six trials. However, this method is 

too brutal. Although the newly generated EEG trials maintains continuity in time, there 

may be discontinuities in amplitude. And it results in conflicts in frequency components 

between different segments, so it is no longer suitable for feature extraction.  

   

ictal interictal

ictal 98 2

interictal 7 193

/ /
6.0%

increase

4%

increase

4.7%

increase

com pared w ith

end-to-end CN N

A ctual class

Predicted class

98.0% 96.5% 97.0%

Sensitivity Specificity A ccuracy
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Fig 14. EEG data augment in time domain [58] 

 

Fig 15. EEG data augment in time-frequency domain [58] 

 

    In order to avoid above defects, the segmentation and combination process is 

performed in time-frequency domain. We obtain the two-dimensional time-frequency 

distribution of the signal through STFT. Similarly, the two-dimension distribution is 

divided into three parts on the time scale and then combined. The generated EGG is 

obtained by inversed STFT. The calculation of STFT and inverse STFT are listed 

below. The process is plotted fig 15. 

STFT(t,𝜔) = ∫𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑒−𝑗𝜔𝜏𝑑𝜏 

inverse STFT      x(t) =
1

2𝜋
∫𝑋(𝜏, 𝜔)𝑒−𝑗𝜔𝜏𝑑𝜔 𝑑𝜏 
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After time-frequency transformation, each time segment has its own independent 

frequency component, so the exchange between segments will not destroy the 

continuity of time and frequency. 

    All possible combinations within each class are enumerated, the augmented EEG 

data contains 29800 ictal trials and 119600 interictal trials. We retrain the hybrid model 

of CNN and SVM, the testing result is listed in table 5. Based on the hybrid model, the 

performance is further improved. The sensitivity increased by 0.4%, specificity 

increased by 2.4%, and the final accuracy increased by 1.8%.  

 

Table 5. Seizure detection result of augmented EEG 

 

 3.5 Discussion  

Deep learning methods represented by CNN have made more and more 

achievements in the field of epilepsy detection. But few of them paid attention to the 

dilemma of small data size, which is the target of this chapter. 

In [85], CNN is used to process one-dimension EEG signal for seizure detection 

for the first time, it achieves an average accuracy of 88.7%, which is even lower than 

our initially proposed end-to-end model. The reason for its structure design is not 

clearly explained. CNN model design in this thesis has higher interpretability, the 

ictal interictal

ictal 29323 477 29800

interictal 1330 118270 119600

/ / /
6.4%

increase

6.4%

increase

6.5%

increase

/ / /
0.4%

increase

2.4%

increase

1.8%

increase

com pared w ith

end-to-end CN N

in sm all data size

total

com pared w ith

CN N -SV M

in sm all data size

A ctual class

Predicted class

98.4% 98.9% 98.8%

Sensitivity Specificity A ccuracy
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difference between our CNN structure lies in the design of the convolutional layer, the 

choice of pooling layer, and the number of fully connected layers. Consecutive small 

convolution kernels are adopted in this thesis to achieve same receptive field size as 

single large convolution kernels, this action improves the non-linearity while reducing 

the computational complexity. And the last pooling layer in this thesis is average 

pooling layer, it can preserve extracted features in deep layers compared to max pooling 

layer in [85]. And the three fully connected layers is unnecessary, since two fully 

connected layers increase model capacity and output category probability respectively. 

These differences are the reason why our model performs better in seizure detection 

task on same dataset.  

Most CNN methods applied in seizure detection task after [85] handle with 2-

dimension images, where EEG signal is first converted into time-frequency distribution 

by time-frequency transform [86-87]. It can not be regarded as a strict end-to-end 

model. This thesis explores the performance of CNN in processing one-dimension EEG 

signal, it reduces the steps and complexity of EEG signal processing and it is also the 

direction of future research.  

To the best of my knowledge, the problem of insufficient EEG data in seizure 

detection based on deep learning has not be well studied before. This thesis proposed 

two techniques to solve the problem. And they are proved to be effective. Although the 

result of seizure detection is not the best on Bonn dataset, it provides some thoughts for 

applications of CNN in EEG signal processing.  

 3.6 Summary  

In this chapter, we explored the CNN model for seizure detection task in small 

sample size. The end-to-end CNN structure does not show good superiority with 92.3% 

accuracy, insufficient training affects the classification performance. We proposed two 

techniques to improve the detection of seizure. A hybrid model of CNN and SVM is 

constructed, features are exacted from fully connected layers in CNN and classification 
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task is performed in SVM. Another technique is EEG data augmentation based on 

decomposition and combination of time-frequency components. The accuracy of 

seizure detection is increased to 98.8% by these two techniques.  

Biomedical signal processing is often plagued by insufficient data, the work of this 

chapter has made some attempts for the above problem in the seizure detection task. 

And the proposed techniques are proved to be effective. 
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Chapter 4 UMLDA for multichannel 

EEG feature fusion in epileptic 

seizure prediction 

    Epileptic Seizures may cause sudden faint, convulsions, and consciousness loss. Due 

to the sudden and unpredictable nature of the attack, it may bring great harm to the 

patient's body when engaged in dangerous operations, like driving. Therefore, if the 

onset of epilepsy can be predicted, even in a short period of time, it can help patients 

protect themselves and receive timely medical assistance. In addition, this can also help 

people understand the characteristics of epilepsy signals more clearly and provide ideas 

for new treatment options.  

    Epileptic seizures were believed as unpredictable at first, and the corresponding EEG 

signals only had two states: ictal intervals and interictal intervals. However, more and 

more studies have shown that the physiological manifestation and signals during 

seizures change over time. In 1997, 42% of 562 epileptic patients in a study conducted 

in the United States had symptoms before the onset [59]. Baumgartner et al. proved that 

the blood flow around the brain changed before the seizure [60]. Heart activity has also 

been shown to have an early warning effect on seizures [61]. So preictal intervals are 

proved and presented clinically to mark the duration before seizure onset.  

Inspired by clinical evidence, seizure prediction becomes a research hotspot in 

EEG signal processing. The method of epilepsy prediction is to detect the preictal EEG 

signal from the long interictal intervals, so that it can warn the arrival of seizure.  

In this chapter, we focus on the task of seizure prediction. We present a power 

extraction algorithm by wavelet transform in time-frequency domain, the feature of 

two-dimension power spectral density (PSD) is obtained by segment in time and 

frequency axis based on physiological characteristics. In order to extract more 

information from the original signal, 23 channels of CHB-MIT dataset are all 

implemented for PSD extraction. We construct a three-order tensor feature from 
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multichannel. UMLDA is applied to project the tensor into vector under the constraint 

of orthogonal dimension in feature vector, which means information is well preserved 

during the projection. The projection from tensor to vector is also the process of 

multichannel feature fusion. And final feature vectors are fed into KNN to do seizure 

prediction. The process of seizure prediction task is plotted in fig 16. 

 

 

Fig 16. The process of proposed seizure prediction 

 4.1 Dataset 

The EEG dataset used in this task is from CHB-MIT [62]. In the previous chapter, 

Boon dataset is adopted to apply deep learning model in small data size. Unlike that 

purpose, we want the continuous EEG signal to segment the preictal intervals, and a 

large amount of data is preferred. The CHB-MIT EEG dataset meets our needs very 

well.  

The scalp EEG data is collected at the Children’s Hospital Boston, it contains 24 

child cases suffering from intractable seizures. Subjects are monitored continuously for 

several days to judge their qualification for surgery. There are 23 subjects and 24 cases 

in total, case chb23 and case chb01 are from the same subjects with 1.5 years interval.  

Since the information of case24 is added later and is missing, so the data set includes 

5 males and 17 females, ranging in age from 1.5 to 22. Each case has at least 23 channel 

and the placement of electrodes is in accordance with the 10-20 international standard. 

And the EEG signal is recorded at 256 Hz with 16-bit resolution. And each case 

contains different number of seizures, varying from 3 to 40. And each case contains 19 
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to 40 continuous EEG recording in EDF format. And the time of seizure start and end 

is described in the additional document. The detail of each case is described in table 6.  

Table 6. The detailed description of CHB-MIT dataset 

Gender includes: Female (F) and Male (M). Seizure type includes: Complex partial seizure (CP), 

Simple partial seizure (SP) and Generalized tonic-clonic seizure (GTC). 

 

 4.2 Data preprocessing  

 4.2.1 Filtering 

We design a finite impulse response (FIR) bandpass filter to remove the noise, 

artifacts and unwanted high frequency components, and its passband ranges from 0.5 

to 40 HZ. Compared with infinite impulse response (IIR) filter, FIR is easier to be 

optimized and it has a linear phase [63]. The cut-off frequencies of the designed band-

pass filter are 0.5 Hz and 40 Hz, the cut-off frequencies of the stop-band are 0.1 Hz and 

40.5 Hz, and their corresponding attenuation coefficients are 60db and 80db. The 

frequency and phase response of designed FIR filter are plotted in fig 17. 

ID G ender A ge Seizure type N um ber of ED F N um ber of seizures

chb01 F 11 SP, CP 44 7

chb02 M 11 SP, CP, G TC 36 3

chb03 F 14 SP, CP 38 7

chb04 M 22 SP, CP, G TC 42 4

chb05 F 7 CP, G TC 39 5

chb06 F 1.5 CP, G TC 18 10

chb07 F 14.5 SP, CP, G TC 19 3

chb08 M 3.5 SP, CP, G TC 21 5

chb09 F 10  CP, G TC 19 4

chb10 M 3 SP, CP, G TC 25 7

chb11 F 12 SP, CP, G TC 35 3

chb12 F 2 SP, CP, G TC 24 40

chb13 F 3 SP, CP, G TC 33 12

chb14 F 9 CP, G TC 26 8

chb15 M 16 SP, CP, G TC 40 20

chb16 F 7 SP, CP, G TC 19 10

chb17 F 12 SP, CP, G TC 21 3

chb18 F 18 SP, CP 36 6

chb19 F 19 SP, CP, G TC 30 3

chb20 F 6 SP, CP, G TC 29 8

chb21 F 13 SP, CP 33 4

chb22 F 9 \ 30 3

chb23 F 6 \ 9 7

chb24 \ \ \ 22 16
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Fig 17. The frequency and phase response of designed FIR filter 

 

 4.2.2 Segmentation and selection  

The duration of each EDF file in raw CHB-MIT dataset is a continuous long-term 

signal around one hour, and we need to slice it to obtain the trials we want according to 

the needs of seizure prediction, which is the interictal intervals and preictal intervals. 

The segmentation is also related to the duration of preictal length.  

Seizure preictal horizon (SPH) and seizure interictal horizon (SIH) are important 

parameters to be determined before algorithm implementation [66]. And they stay 

controversial in different work. Epileptic prediction several hours in advance, like 

presented in [64-65], seems attractive. But it lacks medical evidence and leads to less 

available data. So we take 10 minutes duration before seizure onset as SPH, and SIH is 

determined as more than an hour from seizure onset. Such duration is reasonable for 

alerting the patients in time and achieving good prediction results. For each patient, we 

collect 20 minutes of interictal intervals and preictal intervals separately.  

Seizures within 10 minutes will be abandoned to keep the integrity of each preictal 

intervals, so less data is available. In order to augment EEG data, each selected EEG 

segment is divided into a duration of 4 seconds with 50% overlapping. An example of 

selected segments is plotted in fig 18.  
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a. Preictal segment                  b. Interictal segment 

Fig 18. An example of selected preictal and interictal segment 

 

The number of channels varies in the cases. Most EDF files contain 23 channels, 

and some cases have 24 or 26 channels. In order to maintain consistency between 

different cases, 23 channels shared by all cases are selected, which are FP1-F7, FP1-

F3, FP2-F4, FP2-F8, F3-C3, F4-C4, F7-T7, F8-T8, T7-P7, P3-O1, P4-O2, P7-O1, P7-

T7, P8-O2, C3-P3, C4-P4, T8-P8, T8-P8, FZ-CZ, CZ-PZ, T7-FT9, FT9-FT10 and 

FT10-T8.  

 4.3 Feature extraction  

The electrophysiological performance of epileptic seizures is abnormal excessive 

discharge of neurons, so the energy features of brain electricity are widely used in 

epilepsy detection and prediction tasks, and good results have been achieved. Bruno et 

al. proposed an energy relative measures based on wavelet transform to achieve seizure 

prediction task [67]. In [68], spectral power and cost-sensitive SVM are combined to 

predict seizure. Low spectral power and ratios of spectral power are extracted at low 

complexity to discriminant interictal intervals and preictal intervals [69].  

    In this section, we proposed an energy extraction algorithm in time-frequency 

distribution of wavelet transform. First, we calculated the PSD in the two-dimensional 

distribution after wavelet transform. By segmenting the time and frequency domain, we 

get a two-dimensional feature distribution, which is basic element of constructed tensor.  
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 4.3.1 Wavelet transform  

The classical Fourier transform can only analyze signals with fixed frequency 

components, while the time-frequency distribution is to analyze signals whose 

frequency changes with time. For example, the idea of the short-time Fourier transform 

is conducting Fourier transform through a sliding window in the time domain, the result 

represents the instantaneous frequency component when the window is small enough. 

However, the choice of window width is a problem. If the window is too wide, the time 

resolution is poor and the spatial resolution is good. If the window is too narrow, the 

situation is the opposite. 

Wavelet transform solves the conflict of time and frequency resolution in STFT 

by introducing wavelet basis function [70]. Different from the trigonometric function 

in the Fourier transform, the wavelet function is a finite-length attenuation function, so 

the length of the sliding window in the wavelet transform can be changed adaptively. It 

is very suitable for non-stationary random signals like EEG. The equation of wavelet 

transform is listed below: 

𝑊𝑇(𝑎, 𝜏) =
1

√𝑎
∫ 𝑓(𝑡)𝜑(

𝑡 − 𝜏

𝑎
)𝑑𝑡

∞

−∞

        

where 𝑓(𝑡) represents the input signal and 𝜑 is the mother wavelet. There are two 

variants in wavelet transform, scale 𝑎  and translation 𝜏 . The scale controls the 

expansion and contraction of the wavelet function, and the translation amount τ controls 

the translation of the wavelet function. The scale corresponds to frequency in inverse 

proportional, and the amount of translation corresponds to time. There are families of 

mother wavelet for selection. We adopt Daubechies wavelet 4 (Db4) here, because it is 

proved that it can conserve the energy of signals and redistributes energy into a compact 

form [71]. 
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 4.3.2 PSD feature extraction  

Power spectral density expresses the distribution of signal power at each frequency 

point [72], it is calculated by following equation: 

PSD(t,𝜔) =
|𝑊𝑉(𝑡, 𝜔)|2

𝑁
 

where 𝑊𝑉(𝑡, 𝑓) represents the time-frequency distribution after wavelet transform, and 

N is the signal length. The distribution of PSD is plotted in fig 19.  

 

 

 

 

 

 

 

 

 

 

Fig 19. PSD distribution in time-frequency domain 

The size of the PSD feature map obtained by wavelet transform is too large to 

constructed as a tensor, it will lead to large computational complexity and low 

computational speed. In order to reduce the size of feature map, the 4 second duration 

is equally divided into 32 segments, and the frequency band ranging from 0 to 40 Hz is 

divided into 40 segments. So the sum of PSD in each small time-frequency window is 

calculated as: 

𝑓(i, j) = ∬𝑃𝑆𝐷𝑋𝑑𝜔𝑗𝑑𝑡𝑖 

where 𝜔𝑗 represents 𝑗𝑡ℎ frequency band, 𝑡𝑖 represents 𝑖𝑡ℎ time band, and 𝑓(i, j)  
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is the calculation result of PSD sum in each time-frequency window. Because of the 

discrete characteristic of digital signal, the integral can be modified to accumulate: 

𝑓(i, j) = 𝛴𝑡𝜖𝑡𝑖𝛴𝜔𝜖𝜔𝑗𝑃𝑆𝐷𝑥(𝑡, 𝜔) 

where 𝑃𝑆𝐷𝑥(𝑡, 𝜔)  represents the energy at time t and frequency 𝜔 in the PSD 

distribution.  

    According to the feature map obtained by the above method, the energy difference 

in grids is relatively large. Because the energy is mainly distributed in the low frequency 

part. The magnitude difference of the data in the feature map will affect the convergence 

speed of the subsequent classification model and the accuracy of the result. So 

normalization of feature is applied here:  

y =
𝑥 −𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛
 

where 𝑚𝑖𝑛 represents minimum value of points at the same position in feature map of 

different trials, 𝑚𝑎𝑥 represents the maximum value. As a result, the value of output y 

is normalized to between 0 and 1 [73].  

    The PSD feature map is extracted in 23 channels, so each trial produces a 23*40*32 

three-order tensor.  

 4.4 UMLDA for multichannel feature fusion and 

tensor projection 

    Channel information is ignored in most EEG signal processing researches, because 

medical researcher indicates that there are several specific channels related to seizures. 

However, human cognition of the brain is at a very preliminary stage, and there is still 

a lot of unknown information to be explored. We take channel information into 

consideration, it is considered as spatial distribution of EEG signal. So our extracted 

feature is three-order tensor in temporal, spectral and spatial domain.  
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    It is difficult to classify tensor object directly, because it is computationally complex. 

And it is proved that tensor recognition suffers from so-called curse of dimensionality 

[74]. So dimensionality reduction is needed with maximum preservation of information 

in the original tensor structure. Traditional feature reduction method only handles with 

vector object which can be also regarded as one-order tensor, such as principle 

component analysis (PCA) and linear discriminant analysis (LDA). The tensor object 

can be reshaped to vector to perform these algorithms, but the operation of reshape 

destroys the spatial structure of the tensor. Multilinear subspace feature extraction 

methods are introduced to preserve the underlying structure of tensor object. 

Multilinear principle component analysis (MPCA) and multilinear discriminant 

analysis (MLDA) are improved version for feature extraction in multichannel signal 

[75-76]. But they also receive the inherent shortcomings of the method itself. MPCA is 

an unsupervised method, which cannot be used for classification. And MLDA is a 

supervised method compared to MPCA, its constraint is weak that dimension 

independence after projection is not promised. For the reasons mentioned above, 

UMLDA is proposed to achieve tensor-to-vector (TVP) projection with minimum 

redundancy. 

    UMLDA is introduced to is proposed to ensure orthogonal dimensionality of the 

vectors projected from tensor [77]. The constraint of correlation minimizes the 

redundancy of the projected vector, which means the original information is well 

preserved. The calculation of such TVP is an optimization problem, and it is achieved 

by an algorithm called alternating projection method (APM). Next, we will introduce 

the principle of the UMLDA and its application in seizure prediction task.  

 4.4.1 Linear discriminant analysis (LDA) 

LDA is a supervised learning dimensionality reduction technique. The idea of 

LDA can be summarized as maximizing the variance between classes and minimizing 

the variance within classes. Specifically, the projection points of same class should be 
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as close as possible, and the center of projection points of different classes should be as 

far as possible. The aim of LDA is to find optimal projection vector 𝑤, and the LDA 

projection for two-dimension vector is plotted in fig 20.  

 

Fig 20. LDA for two-dimension vector [78] 

 

For a given dataset {(𝒙𝒊, 𝑦𝑖)}𝑖=1
𝑚 , we denote 𝑋𝑖 {𝑖 = 0,1} as the set of class 𝑖, and 𝑁𝑖 is 

the sample number of class 𝑖, then the mean vector 𝜇𝑖 for 𝑋𝑖 is calculated as: 

𝜇𝑖 =
1

𝑁𝑖
∑ 𝑥

𝑥∈𝑋𝑖

 (𝑖 = 0,1) 

And the covariance matrix ∑𝑖  for 𝑋𝑖 is calculated as: 

∑𝑖 = ∑(𝑥 − 𝜇𝑖)(𝑥 − 𝜇𝑖)
𝑇

𝑥∈𝑋𝑖

 (𝑖 = 0,1) 

After projection by 𝑤𝑇, the mean vector 𝜇𝑖̃ and the covariance matrix ∑𝑖̃ is calculated 

as: 

𝜇𝑖̃ =
1

𝑁𝑖
∑ 𝑤𝑇𝑥

𝑥∈𝑋𝑖

= 𝑤𝑇𝜇𝑖  (𝑖 = 0,1) 

∑𝑖̃ = ∑(𝑤𝑇𝑥 − 𝜇𝑖̃)(𝑤
𝑇𝑥 − 𝜇𝑖̃)

𝑇

𝑥∈𝑋𝑖

= 𝑤𝑇∑𝑖𝑤 
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the optimization target 𝐽 is summarized as below, which is also the ratio of variance 

between classes and variance within classes.  

𝐽 =
||𝑤𝑇𝜇0 − 𝑤

𝑇𝜇1||
2

𝑤𝑇∑0𝑤 + 𝑤𝑇∑1𝑤
=
𝑤𝑇(𝜇0 − 𝜇1)(𝜇0 − 𝜇1)

𝑇𝑤

𝑤𝑇(∑0 + ∑1)𝑤
 

the within-class scatter matrix 𝑆𝑤 is defined as: 

𝑆𝑤 = ∑0 + ∑1 = ∑(𝑥 − 𝜇0)(𝑥 − 𝜇0)
𝑇

𝑥∈𝑋0

+ ∑(𝑥 − 𝜇1)(𝑥 − 𝜇1)
𝑇

𝑥∈𝑋1

 

and the between-class scatter matrix 𝑆𝑏 is defined as: 

𝑆𝑏 = (𝜇0 − 𝜇1)(𝜇0 − 𝜇1)
𝑇 

so the target of LDA is converted into the generalized Rayleigh quotient: 

𝑎𝑟𝑔𝑚𝑎𝑥𝑤  𝐽 =
𝑤𝑇𝑆𝑏𝑤

𝑤𝑇𝑆𝑤𝑤
 

The above optimization problem can be solved using Lagrange multiplier method.  

 4.4.2 UMLDA 

    UMLDA is developed based on the concept of LDA and MLDA. It not only 

maximizes generalized Rayleigh quotient like LDA, but also realizes the goal of  

uncorrelated feature dimension after tensor-to-vector projection. Orthogonal 

dimensions indicate that there is no information redundancy, the information contained 

in tensor object is preserved to the greatest extent during projection.  

The process of tensor-to vector is explained in fig 21. The size of extracted tensor 

feature is 23*40*32, it can be projected into a 40*32*1 matrix by a 1*1*23 vector, then 

the matrix can be transformed into a 1*32*1 vector through a 40*1*1 vector, and finally 

a scalar is obtained by projection of a 1*32*1 vector. Such a set of three projection 

vector is called as elementary multilinear projections (EMP). The tensor can be 

projected into a 15-dimension vector by 15 sets of EMPs. 
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In a more general situation, we assume 𝑋  is a N-order tensor object 

(𝑋𝜖 𝑅𝐼1x𝐼2x……𝐼𝑁). According to the above tensor-to-vector projection process, we can 

project it into a vector object y of P-dimension by P EMPs {𝒖𝑝
(1)𝑇 , 𝒖𝑝

(2)𝑇 , … , 𝒖𝑝
(𝑁)𝑇}, 

where norm of each projection is normalized as 1  (|| 𝒖𝑝
(𝑛)𝑇|| = 1 for p=1,…,P and 

n=1,…,N）. We denote the training data of tensor features as 𝑿 {𝑋𝑚,𝑚 = 1,… ,𝑀}, 

then the result of tensor-to-vector projection 𝒚 {𝒚𝑚, 𝑚 = 1, … ,𝑀} is calculated as 𝒚 =

𝑿  {𝒖𝑝
(𝑛)𝑇 , 𝑛 = 1,… ,𝑁}𝑝=1

𝑃 , among which the 𝑝𝑡ℎ dimension of projected vector y is 

calculated by 𝑝𝑡ℎ EMP, 𝒚(𝑝) = 𝑿  𝒖𝑝
(1)𝑇

 𝒖𝑝
(2)𝑇 …  𝒖𝑝

(𝑁)𝑇
, where  is mode product 

between tensor object.  

The optimization target in LDA for vector is concluded as maximization of 

generalized Rayleigh quotient, which is developed as ratio of between-class scatter 𝑆𝐵𝑝
𝑦

 

and within-class scatter 𝑆𝑊𝑝
𝑦

 here. The calculation is illustrated below.  

𝑦𝑚𝑝
= 𝑋𝑚  {𝒖𝑝

(𝑛)𝑇 , 𝑛 = 1,… ,𝑁} 

𝑆𝐵𝑝
𝑦
 =  ∑𝑁𝑐  ( 𝑦𝑐𝑝̅̅ ̅̅ −  𝑦𝑝̅̅ ̅ )

2

𝐶

𝑐=1

  

𝑆𝑊𝑝 
𝑦

= ∑  ( 𝑦𝑚𝑝 −  𝑦𝑐𝑚𝑝̅̅ ̅̅ ̅̅  )2
𝑀

𝑚=1

 

𝐹𝑝
𝑦
= 
𝑆𝐵𝑝
𝑦

𝑆𝑊𝑝
𝑦  

where C is the category number in samples, 𝑁𝑐 is the total number of sample belonged 

to category c, 𝑦𝑐𝑝̅̅ ̅̅  represents mean output value corresponding to samples belonged to 

category c, 𝑦𝑝̅̅ ̅ is the average of all provided samples and 𝑦𝑐𝑚𝑝̅̅ ̅̅ ̅̅  is the same as 𝑦𝑐𝑝̅̅ ̅̅  if 
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𝑦𝑚𝑝
 is in class c. At last, the modified optimization target for each elementary 

projection set in UMLDA is listed above. 

 

 

 

Fig 21. Tensor-to-vector projection in UMLDA 

The goal of UMLDA can be summarized as to find a tensor-to-vector projection 

following the rules in fig 21. We hope it can maximize generalized Rayleigh quotient 

in each EMP, and the uncorrelated constraint of projected dimensions is satisfied at the 

same time. So the optimization problem is presented in below mathematical form: 
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𝑝𝑡ℎ  EMP   { 𝒖𝑝
(𝑛)𝑇

, 𝑛 = 1, … , 𝑁 }  =  argmax 𝐹𝑝
𝑦

 

subject to 
𝒚(𝑝)𝑇 𝒚(𝑞)

||𝒚(𝑝)||  ||𝒚(𝑞)||
 =0   𝑤ℎ𝑒𝑛  𝑝 ≠ 𝑞,   𝑝, 𝑞 = 1,… , 𝑃 

In this nonlinear optimization problem, multiple sets of EMPs projection need to 

be solved. The calculation complexity of finding the target directly in the solution space 

is very large. We try to solve the above problems by finding the local optimal solution, 

and global optimal solution can be approached in loop. Thus, the problem is reduced to 

a linear optimization problem, such method is called alternating projection method 

(APM). 

For the calculation of 𝑝𝑡ℎ  EMP {𝒖𝑝
(𝑛)𝑇 , 𝑛 = 1, … , 𝑁} , we determine every 

projection vector 𝒖𝑝
(𝑛∗)

 one by one. We assume that 𝒖𝑝
(𝑛∗)

 is the desired element 

currently, the rest projection vectors in 𝑝𝑡ℎ  EMP {𝒖𝑝
(𝑛)𝑇 , 𝑛 = 1,… ,𝑁 𝑎𝑛𝑑 𝑛 ≠ 𝑛∗} 

project original tensor object into a vector object instead of a scalar object: 𝒚𝑚𝑝
(𝑛∗) =

𝑋𝑚  𝒖𝑝
(1)𝑇 … .  𝒖𝑝

(𝑛∗−1)𝑇
𝒖𝑝

(𝑛∗+1)𝑇 … . 𝒖𝑝
(𝑁)𝑇

. Then the problem is transformed into a 

vector optimization problem of between-class scatter 𝑆𝐵𝑝
𝑦

 and within-class scatter 𝑆𝑊𝑝
𝑦

, 

which is the same as LDA. Another constraint is orthogonal between dimensions, so 

the optimization of 𝑝𝑡ℎ EMP is converted to: 

𝒖𝑝
𝑛∗  =  𝑎𝑟𝑔𝑚𝑎𝑥 

𝒖𝑝
(𝑛∗)𝑇

𝑺𝐵𝑝
(𝑛∗)

𝒖𝑝
(𝑛∗)

𝒖𝑝
(𝑛∗)𝑇

𝑺𝑊𝑝
(𝑛∗)

𝒖𝑝
(𝑛∗)

 

subject to  𝒚(𝑝)𝑇𝒚(𝑞)  =  𝒖𝑝
𝑛∗𝒀𝑝

(𝑛∗)
𝒚(𝑞)  =  0,    𝑞 =  1, … , 𝑃 𝑎𝑛𝑑 𝑞 ≠ 𝑝 

The projection result of samples is expressed as 𝒀𝑝
(𝑛∗)

=

[𝒚1𝑝
(𝑛∗), 𝒚2𝑝

(𝑛∗), … , 𝒚𝑀𝑝
(𝑛∗)]. If 𝑺𝑊𝑝

(𝑛∗)
 is nonsingular, the solution of this optimization 

problem happens to be the eigenvector corresponding to the largest eigenvalue of the 

following equation [77]: 
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𝑹𝑝
(𝑛∗)

𝑺𝐵𝑝
(𝑛∗)

𝒖 =  𝑺𝑊𝑝
(𝑛∗)

𝒖 

where 

𝑹𝑝
(𝑛∗)

 =  𝑰𝑛∗ − 𝒀𝑝
(𝑛∗)

𝑮𝑝−1  (𝑮𝑝−1
𝑇  𝒀𝑝

(𝑛∗)𝑇
𝑺𝑊𝑝
(𝑛∗)−1 𝒀𝑝

(𝑛∗) 
𝑮𝑝−1)

−1

  𝑮𝑝−1
𝑇  𝒀𝑝

(𝑛∗)𝑇
𝑺𝑊𝑝
(𝑛∗)−1

 

    𝑮𝑝−1  =  [𝒚(1), 𝒚(2),… , 𝒚(𝑝 − 1) ]  𝜖  𝑅
𝑀(p−1) 

Iterative calculation in loop is performed to meet the loss requirement in stopping 

criterion.  

In order to achieve a compromise between computational complexity and 

information preservation of projection, the dimension of final feature is determined as 

15. 

 4.5 Principle component analysis (PCA) 

We conduct an experiment without UMLDA to verify the performance of 

proposed tensor-to-vector projection method. The tensor object is flattened into vector 

object crudely. Since the obtained dimension of feature vector is too large, we applied 

PCA to achieve dimensionality reduction.  

PCA Transform a set of potentially correlated variables into a set of linearly 

uncorrelated variables through orthogonal transformation, it is an unsupervised 

dimensionality reduction method.  

The parameter goal of PCA optimization is variance. The retention of data 

information in the dimensionality reduction process is interpreted as the data scattered 

in the new direction as much as possible. In the case of high dimensions, it is hoped to 

achieve large variance within the feature dimension and small the covariance between 

feature dimensions, which corresponds to the diagonal matrix of the covariance matrix. 

The process of calculation is PCA is concluded as: 1) normalization: the mean 

value of samples is shifted to 0, it is necessary because it leads to mean value of 0 in 
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calculation of covariance matrix. 2) the covariance matrix after projection is calculated 

as: 

𝐷 =
1

𝑚
𝑌𝑌𝑇 =

1

𝑚
(𝑃𝑋)(𝑃𝑋)𝑇 = 𝑃 (

1

𝑚
𝑋𝑋𝑇)𝑃𝑇 

     = 𝑃𝐶𝑃𝑇 

where 𝑋 represents the samples after normalization, 𝑃 is the projected vector, and C is 

the covariance matrix for original samples. The eigenvalue decomposition of C is listed: 

𝐶 = 𝐸 𝐸𝑇  

where E is the matrix of eigenvectors, and  is diagonal matrix of eigenvalues. The 

equation can be transformed into: 

𝐸𝑇𝐶 𝐸 =  

the right side of equation is a diagonal matrix, which is the goal of 𝐷. So the projection 

solution for PCA is the eigenvectors of original covariance matrix.  

      The elements in the eigenvalue matrix are arranged from large to small, reflecting 

the importance of the corresponding eigenvectors. The selection of the number of 

eigenvectors determines the dimension of the output features.  

 4.6 KNN for seizure prediction  

      As for the feature projected by UMLDA, the redundancy is removed maximumly. 

So in order to highlight the performance of our proposed feature extraction method, we 

utilize KNN to achieve the seizure prediction task [79]. KNN is known as a supervised 

learning strategy without training. The idea of the KNN algorithm is selecting the K 

samples in training set that are most similar to the testing sample, and the category of 

the testing sample is determined by voting of K samples.  

    The measure of similarity in KNN algorithm is distance, and the commonly used 

distance metrics includes Minkowski distance and cosine distance [80]. 
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𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒:  𝑑𝑥𝑦 = √∑(𝑥𝑘 − 𝑦𝑘)𝑝
𝑛

𝑘=1

𝑝

 

Minkowski distance is a generalization of a type of distance measure with variant 𝑝. If 

𝑝 is 2, it is the representation of well-known Euclidean distance: 

Euclidean 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒:  𝑑𝑥𝑦 = √∑(𝑥𝑘 − 𝑦𝑘)2
𝑛

𝑘=1

 

The form of Minkowski distance is called Manhattan distance when 𝑝 is 1, and it is 

called Chebyshev distance when 𝑝 approximates infinite.  

And cosine distance is defined as: 

𝑐𝑜𝑛𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒:  𝑑(𝐴, 𝐵) = 1 − cos(𝐴, 𝐵) = 1 −
𝐴 ∙ 𝐵

||𝐴||2||𝐵||2
 

Compared with the numerical measurement of Euclidean distance, cosine distance 

reflects the difference in direction.  

      The optimization goal of UMLDA is variance, which is a measure of numerical 

difference, so Euclidean distance is adopted here and value of K is set as 3.  

 4.7 Results and discussion 

    The subject-independent experiment is performed on 24 cases, and each case 

contains 20 minutes preictal intervals and interictal intervals. And 70% samples are 

used as training set for UMLDA, and 30% samples are used as testing set. In addition 

to the accuracy, we also calculated two other evaluating metrics: Kappa and F1-

measure.  

𝐾𝑎𝑝𝑝𝑎:   𝑘 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

 

the calculation of 𝑝𝑜 is the same as accuracy, and 𝑝𝑒 is calculated as:  
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𝑝𝑒 =
𝑎1 ∗ 𝑏1 + 𝑎2 ∗ 𝑏2 +⋯+ 𝑎𝑖 ∗ 𝑏𝑖

𝑛 ∗ 𝑛
 

where 𝑎1 is the number of samples in class 𝑖, and 𝑏𝑖 is the number of samples predicted 

to be class 𝑖, and n is the number of all samples. And F1-measure can be viewed as a 

tradeoff between precision and recall. It is calculated as: 

𝐹1 =
2

1
𝑃 +

1
𝑅

=
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛:     𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
             𝑅𝑒𝑐𝑎𝑙𝑙:      𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The result of 24 cases is presented in table 7.  

      The proposed method of UMLDA achieves an excellent result for seizure prediction 

task, its average accuracy reaches 95%, Kappa of 0.94 and F1-measure of 0.90. Most 

of the cases have achieved relatively good results. But case 6 is relatively poor. It is 

found that the age of the subject is only 1.5 years old, which is the youngest of all 

subjects. The poor performance of case 6 is also common in other works [84]. 

      It is a quite competitive result of seizure prediction on CHB-MIT dataset. In [81], 

spatiotemporal relationship of EEG signals based on phase correlation is used to predict 

seizure, and it achieves an average accuracy of 91.9%. Zhen et al. utilized approximate 

entropy to achieve 94.5% accuracy in seizure prediction task [82]. And a self-adaption 

strategy of combining reinforcement learning, online monitoring and adaptive control 

theory is proposed for seizure prediction task, and it achieves an average accuracy of 

71.3% [83].  

      To test the effectiveness of UMLDA, we repeat the seizure prediction task without 

UMLDA. The three-order tensor of size 23*40*32 is flattened into a 29440-dimension 

feature vector. The dimension of flattened feature is too large, even higher than the 

number of samples, so it is very troublesome to avoid the problem of overfitting, and 

the calculation for classification is too complex. So we applied PCA to reduce the 

feature dimension to 15, which equals the number of the output of UMLDA. Take case 
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1 as an example, the variance explained of top 15 components is plotted in fig 22. And 

the feature vector is also fed into KNN to do seizure prediction task. The subject-

independent experiment is repeated, and the average metrics is listed in table 8. 

Table 7. Seizure prediction performance of 24 cases 

 

    

The seizure prediction achieves a poor result when the feature extraction does not 

have UMLDA. The average accuracy of 23 cases dropped by 16%, F1-measure dropped 

by 18% and Kappa dropped by 29%. The necessity of UMLDA is illustrated by the 
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comparative experiments. There may be two reasons for the poor result, one is the 

structure information loss during flattening. And it can be found in fig 22 that top 15 

components only present 46% variance explained. So another reason is that PCA cannot 

well extract variance feature in limited dimension compared to UMLDA. 

 

Fig 22. Principal components in PCA of case 1 

Table 8. Seizure prediction result without UMLDA 

 

 4.8 Summary 

    In this chapter, we propose a seizure prediction algorithm based on time-frequency-

space tensor feature construction and tensor-to-vector projection method. We make full 

use of the time-frequency information and channel information of the EEG signal. By 

segmentation of time-frequency distribution after wavelet transform, a three-order 

tensor of PSD feature in temporal, spectral and spatial domain is built. UMLDA is 
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applied to project the tensor into vector, the information of the tensor structure is well 

preserved by minimizing the redundancy between dimensions. At the same time, 

multichannel feature fusion is implemented during the projection. And KNN performs 

the final classification task for interictal intervals and preictal intervals.  

    The comparative experiment results exhibit the excellent performance of UMLDA. 

This chapter provides a new idea for tensor object processing in addition to CNN. And 

we introduce a new strategy for feature fusion in multichannel EEG, which is tensor-

to-vector projection. Compared with the existing multi-channel fusion methods, such 

as MPCA, MLDA and fully connected layers in CNN, it has its own unique advantages 

of correlation constraint.  
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Chapter 5 Summary  

    The mechanism of the brain's operation has not been fully understood by humans. 

Humans try to reveal the mysteries of the brain not only through medical research but 

also through signal processing. Among them, decades of effort have been made to study 

epileptic EEG signal. Because epilepsy disease troubles a lot of people all over the 

world. Seizure detection and seizure prediction have attracted a lot of attention. Seizure 

detection provides aim for automatic diagnosis of epilepsy disease, and seizure 

prediction forecasts the upcoming seizure onset and provide a time lead for patients to 

get timely medical aid.  

    There are many researches for seizure detection and seizure prediction tasks, which 

processes non-stationary random epileptic EEG signals. And we found that there is still 

potential for deep learning methods and multi-channel features. But they all face their 

own challenges in EEG processing.  

    The difficulty of deep learning is the model overfitting caused by insufficient EEG 

samples. This is a congenital defect of biomedical signals, because their collection 

requires strict specifications and they require professional doctors to annotate, so the 

amount of data is very small in most cases. However, deep learning has powerful fitting 

capabilities and complex networks, it requires a lot of data to train. We take epileptic 

seizure detection as an example to try to provide solutions for this contradiction. 

Different from end-to-end CNN model for classification, we proposed a hybrid model 

of CNN and SVM. We design a CNN structure with three convolutional layers. The 

output of the penultimate fully connected layer of CNN is used as feature extraction to 

avoid overfitting caused by direct classification. The output features of CNN are 

classified by SVM, which is good at handling signal in small data size. Another 

proposed technique is new EEG trial generation through decomposition and 

recombination in the time-frequency domain. Both techniques further improve the 

accuracy of seizure detection based on initial end-to-end model.  
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    The difficulty for multi-channel feature extraction and fusion is how to preserve 

spatial information contained in channels during signal processing. Channel 

information increases the dimensionality of the data, so a combination method of 

dimensionality reduction and feature fusion is desired. UMLDA is introduced in the 

thesis to perform seizure prediction task. We construct a three-order tensor of feature 

by PSD extraction after wavelet transform, and it is projected into vector by UMLDA 

with correlation constraint. We compared the epilepsy prediction results with or without 

UMLDA on 24 cases of the CHBMIT data set. The results proved the superior 

performance of UMLDA in processing tensor signals and feature fusion for 

multichannel signals. 

    This thesis aims at the problem of deep learning for seizure detection in small data 

size and feature fusion for multichannel EEG. The proposed methods are new attempts 

in EEG signal processing. They provide new ideas for epileptic EEG signal processing.  

    The thesis still has some content to be improved in the future. Firstly, we want to 

verify our models and algorithms between subjects, because generalization ability for 

different individuals is important in practical applications. Besides, the CNN structure 

adopted in this thesis is determined by empirical approach. The design of the network 

should be more logical and provides enough theoretical support. This also needs to be 

well demonstrated in future work.  

 



 

 1 

Reference 

[1] Berger H. On the electroencephalogram of man[J]. Electroencephalography and clinical 

neurophysiology, 1969: Suppl 28: 37+. 

[2] Dattola S, Morabito F C, Mammone N, et al. Findings about LORETA Applied to High-

Density EEG—A Review[J]. Electronics, 2020, 9(4): 660. 

[3] Blume W T, Young G B, Lemieux J F. EEG morphology of partial epileptic seizures[J]. 

Electroencephalography and clinical neurophysiology, 1984, 57(4): 295-302. 

[4] Zhang Z J, Koifman J, Shin D S, et al. Transition to seizure: ictal discharge is preceded by 

exhausted presynaptic GABA release in the hippocampal CA3 region[J]. Journal of 

Neuroscience, 2012, 32(7): 2499-2512. 

[5] Bladin P F. W. Grey Walter, pioneer in the electroencephalogram, robotics, cybernetics, 

artificial intelligence[J]. Journal of clinical neuroscience, 2006, 13(2): 170-177. 

[6] Hyvärinen A. Survey on independent component analysis[J]. 1999. 

[7] Pradhan N, Sadasivan P K, Arunodaya G R. Detection of seizure activity in EEG by an 

artificial neural network: A preliminary study[J]. Computers and Biomedical Research, 1996, 

29(4): 303-313. 

[8] Cardoso J F. Infomax and maximum likelihood for blind source separation[J]. IEEE Signal 

processing letters, 1997, 4(4): 112-114. 

[9] Jung T P, Humphries C, Lee T W, et al. Extended ICA removes artifacts from 

electroencephalographic recordings[C]//Advances in neural information processing systems. 

1998: 894-900. 

[10] Winkler I, Haufe S, Tangermann M. Automatic classification of artifactual ICA-components 

for artifact removal in EEG signals[J]. Behavioral and brain functions, 2011, 7(1): 30. 

[11] Geethanjali P, Mohan Y K, Sen J. Time domain feature extraction and classification of EEG 

data for brain computer interface[C]//2012 9th International Conference on Fuzzy Systems and 

Knowledge Discovery. IEEE, 2012: 1136-1139. 

[12] Greene B R, Faul S, Marnane W P, et al. A comparison of quantitative EEG features for 

neonatal seizure detection[J]. Clinical Neurophysiology, 2008, 119(6): 1248-1261. 

[13] Harati A, Golmohammadi M, Lopez S, et al. Improved EEG event classification using 

differential energy[C]//2015 IEEE Signal Processing in Medicine and Biology Symposium 

(SPMB). IEEE, 2015: 1-4. 

[14] O'Toole J M, Temko A, Stevenson N. Assessing instantaneous energy in the EEG: a non-

negative, frequency-weighted energy operator[C]//2014 36th Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society. IEEE, 2014: 3288-3291. 

[15] Griffin D, Lim J. Signal estimation from modified short-time Fourier transform[J]. IEEE 

Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(2): 236-243. 

[16] Shensa M J. The discrete wavelet transform: wedding the a trous and Mallat algorithms[J]. 

IEEE Transactions on signal processing, 1992, 40(10): 2464-2482. 

[17] Zhang B, Sato S. A time-frequency distribution of Cohen's class with a compound kernel 

and its application to speech signal processing[J]. IEEE transactions on signal processing, 1994, 

42(1): 54-64. 

[18] Tzallas A T, Tsipouras M G, Fotiadis D I. Epileptic seizure detection in EEGs using time–

frequency analysis[J]. IEEE transactions on information technology in biomedicine, 2009, 13(5): 

703-710. 

[19] Pincus S M. Approximate entropy as a measure of system complexity[J]. Proceedings of the 

National Academy of Sciences, 1991, 88(6): 2297-2301. 

[20] Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series[J]. 

Physical review letters, 2002, 88(17): 174102. 

[21] Kosko B. Fuzzy entropy and conditioning[J]. Information sciences, 1986, 40(2): 165-174. 



 

 2 

[22] Fadlallah B, Chen B, Keil A, et al. Weighted-permutation entropy: A complexity measure 

for time series incorporating amplitude information[J]. Physical Review E, 2013, 87(2): 022911. 

[23] Li P, Liu C, Li K, et al. Assessing the complexity of short-term heartbeat interval series by 

distribution entropy[J]. Medical & biological engineering & computing, 2015, 53(1): 77-87. 

[24] Ferraz M S A, Kihara A H. Hurst entropy: A method to determine predictability in a binary 

series based on a fractal-related process[J]. Physical Review E, 2019, 99(6): 062115. 

[25] Huang N E, Wu M L, Qu W, et al. Applications of Hilbert–Huang transform to non‐stationary 

financial time series analysis[J]. Applied stochastic models in business and industry, 2003, 19(3): 

245-268. 

[26] Oweis R J, Abdulhay E W. Seizure classification in EEG signals utilizing Hilbert-Huang 

transform[J]. Biomedical engineering online, 2011, 10(1): 38. 

[27] Raudys S J, Jain A K. Small sample size effects in statistical pattern recognition: 

Recommendations for practitioners[J]. IEEE Transactions on pattern analysis and machine 

intelligence, 1991, 13(3): 252-264. 

[28] James G M. Variance and bias for general loss functions[J]. Machine learning, 2003, 51(2): 

115-135. 

[29] Zhou W, Liu Y, Yuan Q, et al. Epileptic seizure detection using lacunarity and Bayesian 

linear discriminant analysis in intracranial EEG[J]. IEEE Transactions on Biomedical 

Engineering, 2013, 60(12): 3375-3381. 

[30] Garcia G N, Ebrahimi T, Vesin J M. Support vector EEG classification in the Fourier and 

time-frequency correlation domains[C]//First International IEEE EMBS Conference on Neural 

Engineering, 2003. Conference Proceedings. IEEE, 2003: 591-594. 

[31] Noble W S. What is a support vector machine?[J]. Nature biotechnology, 2006, 24(12): 1565-

1567. 

[32] Li S, Zhou W, Yuan Q, et al. Feature extraction and recognition of ictal EEG using EMD 

and SVM[J]. Computers in biology and medicine, 2013, 43(7): 807-816. 

[33] Guler I, Ubeyli E D. Multiclass support vector machines for EEG-signals classification[J]. 

IEEE transactions on information technology in biomedicine, 2007, 11(2): 117-126. 

[34] Zhong S, Ghosh J. HMMs and coupled HMMs for multi-channel EEG 

classification[C]//Proceedings of the 2002 International Joint Conference on Neural Networks. 

IJCNN'02 (Cat. No. 02CH37290). IEEE, 2002, 2: 1154-1159. 

[35] Hu J, Min J. Automated detection of driver fatigue based on EEG signals using gradient 

boosting decision tree model[J]. Cognitive neurodynamics, 2018, 12(4): 431-440. 

[36] Mohammadi Z, Frounchi J, Amiri M. Wavelet-based emotion recognition system using EEG 

signal[J]. Neural Computing and Applications, 2017, 28(8): 1985-1990. 

[37] Schirrmeister R T, Springenberg J T, Fiederer L D J, et al. Deep learning with convolutional 

neural networks for EEG decoding and visualization[J]. Human brain mapping, 2017, 38(11): 

5391-5420. 

[38] Tabar Y R, Halici U. A novel deep learning approach for classification of EEG motor 

imagery signals[J]. Journal of neural engineering, 2016, 14(1): 016003. 

[39] Tsiouris Κ Μ, Pezoulas V C, Zervakis M, et al. A long short-term memory deep learning 

network for the prediction of epileptic seizures using EEG signals[J]. Computers in biology and 

medicine, 2018, 99: 24-37. 

[40] Hartmann K G, Schirrmeister R T, Ball T. EEG-GAN: Generative adversarial networks for 

electroencephalograhic (EEG) brain signals[J]. arXiv preprint arXiv:1806.01875, 2018. 

[41] Andrzejak R G, Lehnertz K, Mormann F, et al. Indications of nonlinear deterministic and 

finite-dimensional structures in time series of brain electrical activity: Dependence on recording 

region and brain state[J]. Physical Review E, 2001, 64(6): 061907. 

[42] Saab M E, Gotman J. A system to detect the onset of epileptic seizures in scalp EEG[J]. 

Clinical Neurophysiology, 2005, 116(2): 427-442. 

[43] Sarle W S. Neural networks and statistical models[J]. 1994. 

[44] Chua L O, Roska T. The CNN paradigm[J]. IEEE Transactions on Circuits and Systems I: 

Fundamental Theory and Applications, 1993, 40(3): 147-156. 



 

 3 

[45] Xu B, Wang N, Chen T, et al. Empirical evaluation of rectified activations in convolutional 

network[J]. arXiv preprint arXiv:1505.00853, 2015. 

[46] Dunne R A, Campbell N A. On the pairing of the softmax activation and cross-entropy 

penalty functions and the derivation of the softmax activation function[C]//Proc. 8th Aust. Conf. 

on the Neural Networks, Melbourne. Citeseer, 1997, 181: 185. 

[47] Browne M W. Cross-validation methods[J]. Journal of mathematical psychology, 2000, 

44(1): 108-132. 

[48] Zhao X, Zhang R, Mei Z, et al. Identification of Epileptic Seizures by Characterizing 

Instantaneous Energy Behavior of EEG[J]. IEEE Access, 2019, 7: 70059-70076. 

[49] Diykh M, Li Y, Wen P. Classify epileptic EEG signals using weighted complex networks 

based community structure detection[J]. Expert Systems with Applications, 2017, 90: 87-100. 

[50] Zeng M, Zhao C, Meng Q H. Detecting seizures from EEG signals using the entropy of 

visibility heights of hierarchical neighbors[J]. IEEE Access, 2019, 7: 7889-7896. 

[51] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural 

processing letters, 1999, 9(3): 293-300. 

[52] Everett III H. Generalized Lagrange multiplier method for solving problems of optimum 

allocation of resources[J]. Operations research, 1963, 11(3): 399-417. 

[53] Wu H C. The Karush–Kuhn–Tucker optimality conditions in an optimization problem with 

interval-valued objective function[J]. European Journal of Operational Research, 2007, 176(1): 

46-59. 

[54] Soman K P, Loganathan R, Ajay V. Machine learning with SVM and other kernel 

methods[M]. PHI Learning Pvt. Ltd., 2009. 

[55] Chakraborty R, Garain U. Role of synthetically generated samples on speech recognition in 

a resource-scarce language[C]//2010 20th International Conference on Pattern Recognition. 

IEEE, 2010: 1618-1621. 

[56] Mouchère H, Bayoudh S, Anquetil E, et al. Synthetic on-line handwriting generation by 

distortions and analogy[C]. 2007. 

[57] Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. 

Journal of Big Data, 2019, 6(1): 60. 

[58] Lotte F. Signal processing approaches to minimize or suppress calibration time in oscillatory 

activity-based brain–computer interfaces[J]. Proceedings of the IEEE, 2015, 103(6): 871-890. 

[59] Rajna P, Clemens B, Csibri E, et al. Hungarian multicentre epidemiologic study of the 

warning and initial symptoms (prodrome, aura) of epileptic seizures[J]. Seizure, 1997, 6(5): 361-

368. 

[60] Baumgartner C, Serles W, Leutmezer F, et al. Preictal SPECT in temporal lobe epilepsy: 

regional cerebral blood flow is increased prior to electroencephalography-seizure onset[J]. 

Journal of Nuclear Medicine, 1998, 39(6): 978-982. 

[61] Novak V, Reeves A L, Novak P, et al. Time-frequency mapping of R–R interval during 

complex partial seizures of temporal lobe origin[J]. Journal of the autonomic nervous system, 

1999, 77(2-3): 195-202. 

[62] Shoeb A H. Application of machine learning to epileptic seizure onset detection and 

treatment[D]. Massachusetts Institute of Technology, 2009. 

[63] Rabiner L R, Kaiser J F, Herrmann O, et al. Some comparisons between FIR and IIR digital 

filters[J]. Bell System Technical Journal, 1974, 53(2): 305-331. 

[64] Alotaiby T N, Alshebeili S A, Alotaibi F M, et al. Epileptic seizure prediction using CSP and 

LDA for scalp EEG signals[J]. Computational intelligence and neuroscience, 2017, 2017. 

[65] Chu H, Chung C K, Jeong W, et al. Predicting epileptic seizures from scalp EEG based on 

attractor state analysis[J]. Computer methods and programs in biomedicine, 2017, 143: 75-87. 

[66] Khan H, Marcuse L, Fields M, et al. Focal onset seizure prediction using convolutional 

networks[J]. IEEE Transactions on Biomedical Engineering, 2017, 65(9): 2109-2118. 

[67] Direito B, Dourado A, Vieira M, et al. Combining energy and wavelet transform for epileptic 

seizure prediction in an advanced computational system[C]//2008 International Conference on 

BioMedical Engineering and Informatics. IEEE, 2008, 2: 380-385. 



 

 4 

[68] Park Y, Luo L, Parhi K K, et al. Seizure prediction with spectral power of EEG using cost‐

sensitive support vector machines[J]. Epilepsia, 2011, 52(10): 1761-1770. 

[69] Zhang Z, Parhi K K. Low-complexity seizure prediction from iEEG/sEEG using spectral 

power and ratios of spectral power[J]. IEEE transactions on biomedical circuits and systems, 

2015, 10(3): 693-706. 

[70] Daubechies I. The wavelet transform, time-frequency localization and signal analysis[J]. 

IEEE transactions on information theory, 1990, 36(5): 961-1005. 

[71] Mohamed M, Deriche M. An approach for ECG feature extraction using daubechies 4 (DB4) 

wavelet[J]. International Journal of Computer Applications, 2014, 96(12): 36-41. 

[72] CusidÓCusido J, Romeral L, Ortega J A, et al. Fault detection in induction machines using 

power spectral density in wavelet decomposition[J]. IEEE Transactions on Industrial Electronics, 

2008, 55(2): 633-643. 

[73] Jain A, Nandakumar K, Ross A. Score normalization in multimodal biometric systems[J]. 

Pattern recognition, 2005, 38(12): 2270-2285. 

[74] Friedman J H. On bias, variance, 0/1—loss, and the curse-of-dimensionality[J]. Data mining 

and knowledge discovery, 1997, 1(1): 55-77. 

[75] Lu H, Plataniotis K N, Venetsanopoulos A N. MPCA: Multilinear principal component 

analysis of tensor objects[J]. IEEE transactions on Neural Networks, 2008, 19(1): 18-39. 

[76] Ye J, Janardan R, Li Q. Two-dimensional linear discriminant analysis [C]//Advances in 

neural information processing systems. 2005: 1569-1576. 

[77] Lu H, Plataniotis K N, Venetsanopoulos A N. Uncorrelated multilinear discriminant analysis 

with regularization and aggregation for tensor object recognition[J]. IEEE Transactions on Neural 

Networks, 2008, 20(1): 103-123. 

[78] Balakrishnama S, Ganapathiraju A. Linear discriminant analysis-a brief tutorial[C]//Institute 

for Signal and information Processing. 1998, 18(1998): 1-8. 

[79] Dudani S A. The distance-weighted k-nearest-neighbor rule[J]. IEEE Transactions on 

Systems, Man, and Cybernetics, 1976 (4): 325-327. 

[80] Singh A, Yadav A, Rana A. K-means with Three different Distance Metrics[J]. International 

Journal of Computer Applications, 2013, 67(10). 

[81] Parvez M Z, Paul M. Epileptic seizure prediction by exploiting spatiotemporal relationship 

of EEG signals using phase correlation[J]. IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, 2015, 24(1): 158-168. 

[82] Zhang Z, Chen Z, Zhou Y, et al. Construction of rules for seizure prediction based on 

approximate entropy[J]. Clinical Neurophysiology, 2014, 125(10): 1959-1966. 

[83] Wang S, Chaovalitwongse W A, Wong S. A novel reinforcement learning framework for 

online adaptive seizure prediction[C]//2010 IEEE International Conference on Bioinformatics 

and Biomedicine (BIBM). IEEE, 2010: 499-504. 

[84] Zhang Y, Guo Y, Yang P, et al. Epilepsy seizure prediction on eeg using common spatial 

pattern and convolutional neural network[J]. IEEE Journal of Biomedical and Health Informatics, 

2019, 24(2): 465-474. 

[85] Acharya U R, Oh S L, Hagiwara Y, et al. Deep convolutional neural network for the 

automated detection and diagnosis of seizure using EEG signals[J]. Computers in biology and 

medicine, 2018, 100: 270-278. 

 

 

 

 

 

 

 


	Chapter 1 Introduction
	 1.1 Research background
	 1.2 Epileptic EEG signal
	 1.3 Thesis outline

	Chapter 2 Related work
	 2.1 EEG signal processing method
	 2.1.1 EEG preprocessing
	 2.1.2 Feature extraction method

	 2.2 Classification method
	 2.2.1 Machine learning
	 2.2.2 Deep learning

	 2.3 Summary of existing research

	Chapter 3 CNN for epileptic seizure detection in small data size
	 3.1 Dataset
	 3.2 Data preprocessing
	 3.3 CNN for seizure detection
	 3.3.1 Artificial neural networks (ANN)
	 3.3.2 1-Dimension CNN structure
	 3.3.3 Proposed CNN in seizure detection
	 3.3.4 Results

	 3.4 Improvements: techniques in small data size
	 3.4.1 Hybrid model: CNN-SVM
	 3.4.2 EEG data generation

	 3.5 Discussion
	 3.6 Summary

	Chapter 4 UMLDA for multichannel EEG feature fusion in epileptic seizure prediction
	 4.1 Dataset
	 4.2 Data preprocessing
	 4.2.1 Filtering
	 4.2.2 Segmentation and selection

	 4.3 Feature extraction
	 4.3.1 Wavelet transform
	 4.3.2 PSD feature extraction

	 4.4 UMLDA for multichannel feature fusion and tensor projection
	 4.4.1 Linear discriminant analysis (LDA)
	 4.4.2 UMLDA

	 4.5 Principle component analysis (PCA)
	 4.6 KNN for seizure prediction
	 4.7 Results and discussion
	 4.8 Summary

	Chapter 5 Summary
	Reference

