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Abstract 

 
While diagnosing sleep disorders by physicians 

using electroencephalographic data is protracted and 
inaccurate, we report promising results from a novel, 
fast and reliable machine learning approach. Our 
approach only needs an electroencephalographic 
recording snippet of 10 minutes instead of eight hours 
to correctly classify the disorder with an accuracy of 
over 90 percent. The Rapid Eye Movement sleep 
behavior disorder can lead to secondary diseases like 
Parkinson or Dementia. Therefore, it is important to 
classify the disorder fast and with a high level of 
accuracy – which is now possible with our approach. 
 
Keywords:  
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1. Introduction 
 

Driven by increases in computational power and 
the availability of huge new datasets, IT-based 
healthcare has undergone a dramatic upswing in the 
past years [1, 2]. The field has witnessed spectacular 
advances in the ability of machines to understand data 
and this can be accompanied by extraordinary 
successes in medicine, in particular for diagnosing 
diseases [3, 4] or detecting higher orders of medical 
substance interactions [5]. The application of most 
modern machine learning using big data within the 
healthcare domain fosters this success [1-5]. 

Despite the progress in this research field, its 
application to the treatment of sleep disorders, one of 
the most frequent disorders, is still missing. 

The International Classification of Sleep Disorders 
(ICSD-3) divides sleep disorders into seven classes. In 
this work we will focus on Rapid Eye Movement sleep 
behavior disorders (RBD). RBD belongs to parasomnia 

dysfunctions and can be identified by a loss of 
muscular atonia during the rapid eye movement (REM) 
sleep stage [6-8]. Abnormal or disruptive behavior 
occurs during the REM sleep phase resulting in sleep 
interruptions and physical injuries like bruises, 
abrasions, and patients shouting or punching [9]. For 
the mental and physical health, sleep is an important 
and critical human process [10]. RBD affects 
approximately 0.4–0.5% of the world population, 
which is about 35 million people, and appears mainly 
in men over 60 years old [11-12]. To suffer under a 
secondary disease means a high risk for people with 
the RBD disorder. About 50 % of all patients will 
develop another neurodegenerative disease like De-
mentia or Parkinson within 12 years [13]. To diagnose 
RBD, polysomnographic recordings (PG) are used. 
The PGs include, at least, electroencephalography 
(EEG), electromyography (EMG) and electrooculogra-
phy (EOG). The EEG is considered relevant for 
identifying the RBD sleep behavior disorder, requires 
usually eight hours of recording time which is recorded 
overnight. Electroencephalography is widely used in 
medicine and records the neuronal activities of the 
brain. It is a technique for imaging electrical signals in 
the brain. The analysis of overnight EEG recordings is 
complex and time-consuming. In addition, there is the 
fact that different physicians make different diagnoses 
using the same EEG recording [13-16]. 
 Spectral frequencies of EEG data can be divided 
into different frequency bands. These frequency bands 
were collected with their related frequency bandwidth 
in table 1. 
 
Frequency 

Band
Frequency 
range in Hz

Characterization 

Delta 0.5–3.5 Hz Deep sleep 
Theta 3.5–7.5 Hz Sleep and dream 
Alpha 7.5–12.5 Hz Relaxed awake 
Beta 12.5–30 Hz Inner restlessness, stress

Gamma > 30 Hz Extreme concentration
Table 1: EEG frequency bands 
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In the literature the exact thresholds of the 
bandwidths vary. While traditional approaches use 
roughly aggregated delta, theta, alpha, beta, and 
gamma spectral powers (see table 1, [17]), we make 
use of a more sophisticated fine-graded analysis of 
EEG sub-bands and develop an algorithm correctly 
classifying RBD sleep behavior disorder with an 
outstanding accuracy of over 90 percent. 

After following the design-science approach [18], 
we rigorously evaluate our algorithm using unseen data 
and 10-fold cross-validation on unseen testing data.  

Our algorithm outperforms the current benchmark 
by Islam et al. [15], who achieved a mean accuracy of 
70.4 % using support vector machines.  
The most important contributions of this paper are: 
1. We developed an automatic classification method 

for an accurate and reliable classification of RBD 
and non-RBD subjects with an accuracy of over 90 
percent. 

2. We used 10 minute snippets instead of 8 hour 
recordings to enable a fast analysis. 

3. We present the important frequency bandwidths 
from 0.5-50 Hz for classifying the REM sleep 
behavior disorder. These include the most 
important frequencies in the subbands of delta (0.5-
2.5 Hz), theta (6.5-8 Hz) and alpha (10.5-11 Hz, 
11-12 Hz). 

4. We demonstrate that the spectral power of RBD 
compared to non-RBD is higher for the first 
frequencies and lower for the last frequency per 
subband for all predictive bands.  

The paper is organized as follows: Next we describe 
the data used in our study and the machine learning 
method. After that, we present the results of our 
implemented method and discuss it including 
theoretical and practical implications. Finally, we 
outline the limitations of our work and make proposals 
for future work. 

 
2. Method  
 
2.1. Preprocessing 
 

The dataset used in this paper was collected at the 
Sleep Disorders Center of the Ospedale Maggiore of 
Parma, Italy. This paper is focused on 
polysomnographic recordings from healthy subjects 
and subjects with the RBD disorder. RBD was 
professionally diagnosed by doctors according to the 
standards of the American Academy of Sleep Medicine 
(International classification of sleep disorders, 3rd 
edition; equivalent to ICD-10 G47.52). The age of the 
RBD patients is ranged from 58 to 82 with 86% male 
participants and 14% female participants. The age of 

the healthy patients ranged between 23 and 42 with 
44% male and 56% female participants. The data set 
includes 22 patients with Rapid Eye Movement sleep 
behavior disorder and 16 healthy subjects. The data is 
derived from different electrodes scanned at 512 Hz. 
Each EEG recording lasts about eight hours and was 
recorded overnight. The full dataset is available from 
doi:10.13026/C2VC79.  

Fig 1 shows the placement of the sensors 
corresponding to the 10-20 international system. 
 

 
Figure 1: Electrode placement [19] 

 
The extracted signals recorded through various 

electrodes during an EEG are contaminated by noises 
which should be removed before further processing. 
These undesired noises occur during recording and can 
be divided by noncortical biologic artifacts and 
environmental noises. Eye blinks or movements and 
cardiac or muscle activity can be assigned to the group 
of biological artifacts which are the principal problem. 

The appearance of environmental noises can be 
described with line noises, radio or electrical 
interference [20]. The blind source separation (BSS) is, 
next to the Regression, Wavelet transform, empirical 
mode decomposition and others, one of the most 
commonly used methods to detect and remove noises. 
A technique based on BSS is the independent 
component analysis (ICA). The aim is to extract 
statistically independent source signals from a linear 
mixture of observed signals. For application, several 
premises have to be fulfilled. The principals are that 
the source signals must be statistically independent and 
the number of sources has to be equal or lower to the 
observed signals [21]. Figure 2 illustrates the ICA 
application on the original EEG (left) and as a result 
the corrected EEG (right) [22]. 
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Figure 2: ICA application on EEG data [20] 

 
2.2. Machine Learning Method 
 

Figure 3 introduces the plan of procedure of this 
paper. First, the EEG dataset of healthy subjects and 
subjects with REM sleep behavior disorder is read in 
the system. Subsequently, the ICA will be performed 
to clean up the EEG data from environmental noises 
and noncortical biologic artifacts. The corrected EEG 
which is now without undesired noises will be 
transformed by the Fast Fourier Transformation (FFT). 
Afterwards a classification algorithm is implemented 
with 75% training and 25% testing data. In this paper 
Random Forest is used to classify RBD from healthy 
subjects. For validation, the 10-fold cross-validation is 
chosen to evaluate the Random Forest classifier to 
evaluate using unseen testing data.   
 

 
Figure 3: Plan of procedure 

 
2.2.1. Spectral Analysis. The aim of this work is to 
determine these frequency bands from the underlying 
EEG dataset, which are the most important for 

distinguishing between healthy and RBD-sick patients. 
For this purpose, this paper refers to the method by 
[source blinded]. In this method the standard division 
of the frequency bands in “alpha”, “beta”, “theta”, 
“delta” and “gamma” was not considered. As feature 
extraction criterium, the frequency range from 0.5 to 
50 Hz was selected. This range was divided into 99 
frequency bands, each of them with a length of 0.5 Hz. 
With the help of this finer classification, the 
information content of the individual frequency bands 
should be increased. Consequently, the level of 
accuracy for the determination of RBD-sick and 
healthy patients should be increased too. 

After reading and cleaning the EEG data with the 
ICA, the next step is to transform the data with the help 
of the spectral analysis. Thereby the signals of the EEG 
data are converted into sinusoidal frequency 
components. The method used for the spectral analysis 
is the Fast Fourier Transformation (FFT). The FFT is a 
fast, widespread method to determine spectral 
parameters from neurological signals, which allows an 
estimate to be made of the frequency components from 
the signals [23-26]. Figure 4 shows the process of the 
spectral analysis in simplified form. While the EEG 
signal is unchanged in the first step, it is converted into 
sinusoidal signals in the second step. The third and last 
steps show the individual frequency components from 
the EEG data. 

 

 
Figure 4: Fourier Transformation EEG signal 

 
2.2.2. Classification by Random Forest. For 
classification using machine learning, there are a lot of 
algorithms to use. For instance, support vector 
machines, neural networks or k-nearest neighbors 
achieve good results, but they offer no indications 
about the most important predictors. Due to this fact 
classification trees (CTs) are the better choice for 
interpretation. To avoid the sensitivity of small 
changes regarding the learning sample and so increase 
stability, an extension of CTs will be used [27]. 
Ensemble learning leads to a better reliability in an 
algorithm by using many classifiers. Afterwards the 
results of these classifiers will be aggregated. Two 
methods of ensemble learning are prominent: boosting 
and bagging. By using the bagging method, the 
algorithm constructs successive independent trees with 
different separation of data. The result is a ranked list 
of the most commonly used predictors. For the 
classification in this paper, the Random Forest 
approach, which is based on the bagging method, is 
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applied. Here, an additional layer of randomness is 
added to split each node by the best of a randomly 
chosen subset of predictors instead of all variables 
[28]. Due to the number of various predictors as a 
result of the different trees overfitting can be reduced. 
By this and by handling large amount of data 
efficiently, Random Forests are very effective at 
predicting [29]. Furthermore, an advantage of this 
algorithm is the receiving of information about the 
importance of the variables. The importance of the 
variable depends on the rising prediction error when 
data for that variable is adjusted while others are not 
[28]. To determine the most important frequencies for 
the classification of the data used the results regarding 
the variable importance of the algorithm are needed. 
Random Forest algorithm works as follows [27, 28]: 
 
1. The original learning sample is divided into b 

bootstrapped samples (b = 1, …, B) while on each 
bootstrapped sample a tree is grown.  

2. For each sample b a random sample m of predictors 
is taken instead of all variables p. Find the best split 
among these predictors of the random sample m 
and repeat this until a maximally sized tree is 
grown. 

3. Aggregate the predictions of all bootstrapped 
samples b and obtain the majority votes for 
classification. 

 
The recordings were divided between 75% training 

(972) and 25% testing (324) data, each with 10 
repetitions and n=100 number of trees. The outcome of 
the algorithm is the confusion matrix, performance 
indicators and the calculated variable importance.   
 
2.2.3. Validation. To evaluate the performance of a 
classifier, the prediction errors of the model need to be 
estimated. In the machine learning sector, the accuracy 
is used as a standard measurement to determine the 
performance of a model. Therefore, there are a lot of 
methods available like Hold-Out, Bootstrap or cross-
validation (CV). To evaluate the Random Forest 
classifier used in this paper, the k-fold cross-validation 
is performed, using 10-folds CV [30-31]. The k-fold 
cross-validation separates the underlying data set 
randomly in k subsets of equal size. Every fold is used 
in turn for testing the model. The k-1 folds are used as 
the training data set and the prediction error is 
estimated with the remaining fold [32]. 

In order to determine which subjects were 
classified correctly and which were wrongly classified, 
the cross-validation Matrix was used. Table 2 shows 
the matrix, which is differentiated between true 
positive, false negative, false positive and true 
negative. If the subject is classified as true positive, it 

is an RBD patient who has been correctly classified as 
sick. False negative includes subjects who have RBD 
but have been incorrectly classified as non-RBD. 
Under false positive, a healthy patient has been 
classified incorrectly as an RBD subject. True negative 
means a healthy patient is correctly classified 
 
3. Results 
 

The Random Forest Model was trained with 715 
RBD and 257 non-RBD recordings. For testing, 245 
RBD and 79 non-RBD recordings were used. Here, the 
10-times cross-validation as well as an 
electroencephalography frequency bandwidth of 0.5 
Hz were considered. Table 2 contains the results of the 
model in the form of a confusion matrix. It delivers a 
total accuracy of 90.12 percent (balanced accuracy 
83.13%). In addition to the accuracy, table 3 contains 
other relevant performance indicators. The model was 
trained with mtry= 100 and ntry=50. 
 

 Reference 
RBD Non-RBD 

Predicted 
RBD 237 24 

Non-RBD 8 55 
Table 2: Confusion Matrix 

 
Performance Indicators Value 
Accuracy 90.12% 
True positive rate / Recall 96.73% 
True negative rate 69.62% 
Positive predictive value / Precision 90.80% 
Negative predictive value 87.30% 
Balanced accuracy  83.18% 

Table 3: Performance Indicators 
 

Hz RBD 
non-
RBD 

p-value 
Coh-
ens d 

0.5-1 0.110523 0.042652 < 0.001 0.267 

1-1.5 0.070853 0.039451 < 0.001 0.392 

1.5-2 0.013933 0.007716 < 0.001 0.298 

2-2.5 0.004044 0.007293 < 0.001 0.209 

6.5-7 0.006464 0.001621 < 0.05 0.950 

7-7.5 0.006158 0.003465 < 0.001 0.997 

7.5-8 0.002781 0.005250 < 0.001 0.766 

10-10.5 0.007014 0.005478 < 0.001 0.824 

11-11.5 0.014493 0.010204 < 0.001 0.378 

11.5-12 0.003423 0.012149 < 0.001 0.516 

Table 4: Spectral power in predictive subbands 
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In table 4 further statistical evaluations of the 
results are shown. It contains the most important 
frequencies with their spectral power of RBD and non-
RBD. Furthermore, the respective p-value and Cohens 
d are calculated. Figure 5 visualizes the spectral power 
for the most important frequencies per frequency 
subband. Here, a pattern in each subband can be 
detected. The spectral power of RBD is always higher 
for the first variables than the power of non-RBD. In 
contrast to that, the power of the last variable of RBD 
is always lower than the spectral power of non-RBD. 
 

 
Figure 5: Illustration of spectral power per subband 

 
Figure 6 shows the variable importance scaled to 

100. The most important frequency band is 1-1.5 Hz 
with a relative importance of 100. 

 

 
Figure 6: Variable Importance 

 

 
Figure 7: Most important variables 

As shown in the figure, the importance of the 
frequency bands decreases with a higher Hz range. 
Figure 7 contains the Top 10 of the variable 
importance calculated by the algorithm. The following 

results were achieved: the bandwidth from 1.5-2 Hz 
has a value of 57.24 and the frequency band 7-7.5 Hz a 
value of 52.99. Further results: 6.5-7 Hz 51.89, 7.5-8 
Hz 49.94, 0.5-1 Hz 43.22, 11-11.5 Hz 30.43. The 
bands from 10-10.5 Hz reached a value of 29.61, 2-2.5 
Hz of 29.24 and 11.5-12 Hz 27.65. When the 
frequency bands are no longer considered in 0.5 Hz 
width but in the standard division delta, theta, alpha, 
beta and gamma, the ten most important variables are 
in the frequency bands delta, theta and alpha. The delta 
band holds four variables, theta and alpha each contain 
three variables (green-marked in figure 7). 
 
4. Discussion 
 

This paper reports on a novel, fast and reliable 
machine learning approach. Our approach only needs 
an electroencephalographic recording snippet of 10 
minutes instead of eight hours to correctly classify the 
Rapid Eye Movement sleep behavior disorder with an 
accuracy of 90.12 percent. The frequency bands of the 
EEG data are divided into 0.5 Hz ranges, the standard 
classification into delta, alpha, theta, and gamma is not 
considered. Regarding current research, there are 
various studies that deal with the subject of REM sleep 
behavior disorder in relation to EEG data. The slowing 
of waking activity occurs in people who have the REM 
sleep behavior disorder. In the slowing of waking 
activity, the theta and delta frequency bands are 
considered important in RBD-sick patients [33]. 
Gagnon et al. [34] conducted a study investigating the 
association of this activity with the risk of RBD 
patients suffering further cognitive impairments.  

Again, a high power of the theta frequency band 
could be detected. The analysis of EEG data showed 
that several activities take place on the alpha and theta 
bands during the REM sleep phase [35]. The sleep 
behavior disorder treated in this paper takes place 
during the REM sleep. Therefore, the results of this 
study indicate that the affected bands of alpha and theta 
play an important role in distinguishing between 
healthy and RBD-sick patients. In a study carried out 
by Fantini et al. [36] 15 RBD patients and 15 healthy 
people are examined in a waking state and REM sleep 
state using EEG recordings to determine whether brain 
stem structures are responsible for cortical activation in 
RBD patients. The frequency bands have been divided 
into theta, delta, alpha, beta 1 and beta 2 (up to 30 Hz). 
The RBD patients showed conspicuous features in the 
theta and beta 2 bands both in waking and in sleeping 
states.  

Based on the current state of knowledge, no studies 
have been conducted to determine which frequency 
bands are necessary to identify the REM sleep 
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behavior disorder. Although the sources mentioned 
above take analysis of RBD patients in relation to EEG 
data into account, various other aspects such as the risk 
for RBD patients of contracting further cognitive 
disorders, or the REM sleep phase of sick and healthy 
people are investigated here. A consequence is that a 
determination of which frequency bands could be 
relevant for the disorder can be made, but there are no 
exact investigations in this research field. In addition, it 
should be noted that in previous studies only frequency 
bands as whole bands are considered, but the method 
used in this paper divides the bands into 0.5 Hz 
frequency ranges. This allows a much deeper look into 
the individual ranges. The hypothesis of this paper was 
to increase the information density and quality with the 
help of more detailed frequency bands and thus to 
achieve a high accuracy for the detection of the RBD 
disorder. Furthermore, a fast method to detect Rapid 
Eye Movement sleep behavior disorder should result. 
By dividing the standard frequency bands into smaller 
ranges, this approach has been used to show that there 
are highly informative frequency ranges in the 
frequency bands of delta, theta and alpha. The 
achieved accuracy of 90.12 percent confirms the 
assumption that the subdivision into smaller frequency 
ranges and the consideration of 10 minutes EEGs are 
sufficient to achieve very good results in the 
identification of RBD patients. Considering the 10 
most important classifiers in terms of the variable 
importance, four variables in the delta, three variables 
in the theta and three variables in the alpha range are 
shown. Previous studies considering the frequency 
ranges associated with RBD and further cognitive 
disorders showed conspicuous features in the theta and 
delta bands. With the analysis of the REM sleep phase, 
relevant features of alpha and theta bands could be 
identified. The sleep behavior disorder occurs in the 
REM phase, so we assumed that these two frequency 
bands are important for the identification of RBD. This 
assumption could be proven in this paper. In addition, 
it could be determined that the delta band plays an 
important role for the identification of the sleep 
behavior disorder. By considering the three predictive 
subbands, a pattern in the spectral power could be 
detected. Compared to the non-RBD patients, the 
spectral power of the RBD-patients is always stronger. 
Only the spectral power of the last frequency range is 
lower. As a result, there is a strong spectral power in 
the lower regions of the subbands, which decreases in 
higher frequency ranges. Considering all predictive 
frequency bands, Cohens d shows a medium/strong 
effect power. The results of this paper prove that it is 
reasonable to use this new and innovative approach to 
analyze the frequency bands instead of the standard 

division, and thus new findings from the EEG records 
can be obtained. 

This machine learning method based on the 
analysis of fine-graded spectra can be used as a 
technical assistance for physicians. Due to this, it 
allows a faster evaluation with its classification and 
snippets of only 10 minutes length instead of eight 
hour recordings, but also demonstrates which Hz 
frequencies physicians should pay attention to for 
detecting the disorder. The shorter time span is a 
facilitation for the patient as well as for the attending 
physician. In the context of this research about the 
RBD disorder, early detection could have an impact on 
avoiding secondary diseases like Parkinson or 
Dementia, which strongly affect the lives of the 
patients [13].  
 
5. Conclusion 
 

As demonstrated in this paper, an accurate and 
reliable automatic classification method was 
implemented, as well as showing which Hz frequencies 
are particularly relevant for the classification. By 
analyzing fine-graded spectra instead of standard 
frequency bands (delta, theta, alpha, etc.) a more 
detailed result is possible. In this way, important 
frequencies become apparent which were not 
considered before, and open up a new perspective for 
the analysis. Furthermore, patterns in the spectral 
power of RBD patients could be determined. This work 
confirms previous results that information with respect 
to RBD disorder are hidden in theta and alpha bands in 
which REM sleep can be detected [35]. Additionally, 
there is a new finding. Beside theta and alpha bands, 
frequencies in the delta band are in particular highly 
relevant for classifying RBD and non-RBD data. The 
delta frequency band has a range of 0.5-3.5 Hz and is 
characterized by deep sleep.  
 
5.1. Limitations 
 

While the internal validity of our method was high, 
since we used a reliable dataset from the PhysioBank 
database, the method should be introduced as a medical 
application in a clinical environment to assess external 
validity. By doing this, more data of patients could be 
analyzed to validate the results of this research. A 
further limitation could be the absence of acceptance 
by physicians to apply the method in their daily 
routines. 

Despite we intensively evaluated other traditional 
machine learning approaches such as clustering [37] 
and also most modern convolutional neural networks, 
which are outstanding in other domains such as image 
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recognition [38-40], we achieved the best results here 
with our novel method, originally proposed in [41, 42]. 
However, future work should extend the application of 
further novel machine learning approaches. 

In addition, medication and personality [43-45] 
influence EEG data, and as a result, our classifier. 
While the internal validity of our model is very high 
due to the rigorous k-fold-cross-validation, improving 
external validity by training with additional datasets is 
also an important step to improve the model. Also, the 
influence of individual differences in brain activity on 
EEG e.g. other mental disorders need to be analyzed 
and considered in future studies. 

 
5.2. Future work 
 

In future work we will report common method bias 
evaluations [46, 47]. In addition, we will triangulate 
EEG data with other physiological sensors (i.e. 
electrocardiogram [48, 49], electrodermal activity [50, 
51], eye fixation [52-54], eye pupil diameter [55-58]). 
Furthermore, we will experimentally evaluate whether 
our novel approach is also robust under various 
conditions of a user's cognitive workload [59-61] and 
related concepts [62-64], concentration [65], and 
mindfulness [66, 67]. In addition, we will report results 
on successfully applying our novel procedure to other 
sleep data [68] and other diseases such as epilepsy [69] 
and schizophrenia [70, 71]. 

To assess preconditions to implement the approach 
in real clinical environments we will conduct an 
implementation study to evaluate acceptance [72-74] 
and trust [75, 76] by physicians and patients and 
determine if the automated approach improves the 
coordination [77-79] between doctors more efficiently. 

In addition, future work on a sensitivity analysis of 
other timespans than 10 minute recordings is also 
indicated. 
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