
Received:  December 31, 2020.     Revised: February 18, 2021.                                                                                       160 

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021           DOI: 10.22266/ijies2021.0630.15 

 

 
Epileptic EEG Signal Classification Using Convolutional Neural Network Based 

on Multi-Segment of EEG Signal 

 

Irwan Budi Santoso1,2          Yudhi Adrianto3          Anggraini Dwi Sensusiati3 

Diah Puspito Wulandari1         I Ketut Eddy Purnama1* 

 
1Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia 

2Department of Informatics Engineering, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia 
3Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia 

* Corresponding author’s Email: ketut@te.its.ac.id 

 

 
Abstract: High performance in the epileptic electroencephalogram (EEG) signal classification is an important step in 

diagnosing epilepsy. Furthermore, this classification is carried out to determine whether the EEG signal from a person's 

examination results is categorized as an epileptic signal or not (healthy). Several automated techniques have been 

proposed to assist neurologists in classifying these signals. In general, these techniques have yielded a high average 

accuracy in classification, but the performance still needs to be improved. Therefore, we propose a convolutional 

neural network based on multi-segment of EEG signals to classify epileptic EEG signals. This method is built to 

overcome data limitations in the convolutional neural network training process and add the ensemble combination 

process. The multi-segment of EEG signal is formed by splitting the signal without overlapping each channel and 

converting it into the spectrogram image based on the short-time Fourier transform value. The spectrogram image is 

then used as input for the convolutional neural network in in-depth training and testing. The convolutional neural 

network model of the training results is used to classify each EEG signal segment on each test channel before entering 

the ensemble combination stage for the final classification. To evaluate the performance of our proposed method, we 

used the Bonn EEG dataset. The dataset consists of five EEG records labelled as A, B, C, D, and E.  The experiments 

on several datasets (AB-C, AB-D, AB-E, AB-CD, AB-CDE, and AB-CD-E) which were arranged from the dataset 

showed that our proposed method (with segment) performs better than without segment. Our proposed method yielded 

the best average of classification accuracy which is 99.33%, 100%, 100%, 99.5%, 99.8%, and 99.4% for the AB-C, 

AB-D, AB-E, AB-CD, AB-CDE, and AB-CD-E. By these results, the proposed method can outperform several other 

methods on the same dataset. 

Keywords: Electroencephalogram, Segment, Short time fourier transform, Spectrogram image, Convolutional neural 

network, Ensemble combination. 

 

 

1. Introduction 

Epilepsy is a chronic brain disease characterized 

by repeated seizures and involuntary movements 

involving part or all of the body [1]. Examination of 

a patient using the EEG does not always result in a 

precise diagnosis. Some patients were diagnosed to 

be in normal condition by EEG examination, but they 

had epilepsy [2]. This mistake can be caused by 

manual diagnosis by an expert by merely looking at 

the EEG recordings. Therefore, it is necessary to 

develop a method for the classification of epileptic 

EEG signals as a part of diagnostics that has high-

performance. Many previous studies had developed 

these methods, which are generally grouped into two 

main stages: the signal features extraction and 

classification of epilepsy with the input of these 

features [3, 4]. In theory and practice, these stages 

have contributed significantly to improve the EEG 

signal-based epilepsy classification performance. 

The contribution of the method in the EEG signal 

features extraction includes the time domain as 

presented in [5, 6], the frequency domain as shown in 
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[7-9], the time-frequency domain as presented in [10-

12], and the domain graph as presented in [13]. 

Meanwhile, the development of the method of 

classification/detection of epilepsy signals is 

relatively less than the feature extraction method. The 

proposed method for EEG signal features extraction 

is usually evaluated using public datasets. Among the 

epileptic EEG signal datasets used as a standard of 

testing is the epileptic EEG signals dataset from Bonn 

University, Germany [14]. Several studies have used 

this dataset, including by researchers in [9-11,15-22]. 

From several previous studies, the average 

performance of their proposed method, in this case, 

was high, but the performance still needed to be 

improved. From a machine learning perspective, 

efforts to improve performance are still constrained 

by the limited data available. Besides, most of the 

researchers focused on getting the best method to 

extract epileptic EEG signal features. Therefore, 

there are many variations of signal features extraction 

methods but rarely focus on improving classification 

performance by modifying the classifier or focus on 

both. In time-domain studies, they focus more on how 

to get a signal pattern that represents the original 

signal with the least possible noise. However, in the 

frequency domain, they focus more on how to get a 

method to obtain the frequency's main features. Since 

the EEG signal is a data series, using only the time or 

frequency domain is not enough, so the EEG signal 

must be processed in the time-frequency domain, for 

example, using short-time Fourier transform (STFT) 

[20], empirical mode decomposition (EMD) [10], or 

wavelet transform [16, 17]. However, the extraction 

of features in this domain does not always result in 

the best classification performance. There is no 

guarantee that a classifier can work properly with 

these features because the features extraction process 

does not involve the classifier itself. Therefore, 

additional steps are needed to solve this problem. 

In this paper, we proposed a method to enrich 

features and select the features by involving the 

classifier. This method is done by splitting the EEG 

signal into several segments (multi-segment) and 

converting it into the spectrogram image [23–25] and 

involving the convolutional neural network (CNN) 

[26] as the classifier. The multi-segment of EEG 

signal is created to enrich the training's data, thereby 

strengthening the classification performance. In 

contrast, the reasons for using a spectrogram image 

for each EEG signal segment are: first, the 

spectrogram image is a visual representation of the 

signal in the form of the image [23]. The spectrum 

frequency in the image spectrogram varies from time 

to time, while the different colors in the image 

represent different energy values. Second, it contains 

more unknown EEG signal features and has better 

performance on CNN [26]. In this paper, the 

spectrogram image of the signal obtained from the 

STFT value is mapped to the RGB colormap [24, 25]. 

The third reason, visually with the image spectrogram, 

there is a clear difference between epileptic and non-

epileptic EEG signals, as showed in Fig. 1. STFT is 

chosen to determine the spectrogram determination 

because of its ability to calculate complex amplitude 

over time and frequency on non-stationary EEG 

signals [27]. Simultaneously, the CNN method was 

chosen as a method for the classification of epileptic 

EEG signals because it has a deep learning algorithm 

that can select features optimally based on the loss 

function to achieve high performance in classifying 

images [26]. 

There are four main stages of the proposed 

method for the classification of epileptic EEG signals. 

The first step is determining the multi-segment of the 

EEG signal. Second is determining the STFT value 

for each segment of the EEG signal with the same 

input parameters for each segment and label (class) 

the scenario. Third is creating the spectrogram image 

by mapping the STFT value to the RGB color map 

for each signal segment. The final step is classifying 

each signal segment with CNN and the ensemble of 

the CNN results. In the classification of epileptic 

EEG signals with a spectrogram image value input, 

CNN's training is done based on the CNN 

architecture. 

The contributions of this paper are as follows: 

• Forming the multi-segment and spectrogram 

image for each EEG signal to enrich the features. 

Experiments on the epileptic EEG dataset from 

the University of Bonn have shown that splitting 

the EEG signal into several segments (multi-

segment) and converting it to the spectrogram 

image gives CNN a significant increase in 

classification. 

• Establishing an ensemble method for the 

classification results of each EEG signal segment 

with CNN. This method is used to perform the 

final classification and to provide improved 

classification performance in testing. 

In this paper, Section 2 discusses the related works 

about the classification of the epileptic EEG signal. 

Section 3 describes the materials and methods. In 

Sections 4 and 5, we intensively discuss the 

experiments and the results. Lastly, Section 6 

contains the conclusions of this study. 

2. Related work 

In this study, we used the Bonn EEG dataset to 

evaluate the proposed method. Therefore, in this 
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section, we discuss several recent studies that use 

these datasets. The studies were based on two 

methods namely conventional methods and CNN. 

The studies were based on conventional methods, 

such as those conducted by Alçіn et al [21], Tiwari et 

al. [28], X. Zhao et al. [29], Sharma et al. [30], and 

Gupta et al. [31]. Alçіn et al. [21] converted the EEG 

signal into a spectrogram based on the value of STFT. 

Grey level co-occurrence matrix (GLCM) was used 

for feature extraction and passed to the fisher vector 

(FV) encoder before the classification stage. The test 

results using the extreme learning machine (ELM) 

classifier for five classes obtained an accuracy of 

96.4%. This performance indicates that the 

spectrogram, GLCM, and FV successfully extract 

important signal features for the five-class 

classification. 

Tiwari et al. [28] used the pyramid of the 

Difference of Gaussian (DoG) for signal key-point 

detection. Local binary patterns (LBP) are computed 

at key points and determined a histogram as a feature 

set. Classification using SVM on the AB-E and AB-

CD-E datasets obtained an accuracy of 100% and 

98.8% respectively. The same case was carried out by 

X. Zhao et al. [29]. They measured that the 

instantaneous energy changes in the EEG signal to 

obtain features. EEG signal was classified using 

several classifiers. The combination of instantaneous 

energy-based features with back propagation neural 

network (BPNN) on the AB-E and AB-CD-E dataset 

yielded an accuracy of 100% and 99.1% respectively. 

The result shown by Tiwari et al. [28] is the success 

in finding the key-point of the signal, whereas X. 

Zhao et al. [29] get better results by considering 

several classifiers. 

Sharma et al. [30] used iterative filtering (IF) to 

decompose the signal into intrinsic mode functions 

(IMFs). The signal features were taken from the IMF 

function and the amplitude envelope AE included the 

k-nearest neighbor entropy estimator (KNNE), log 

energy entropy (LEE), shannon entropy (SE), and 

poincar´e plot parameters. Experiments on the AB-

CD-E dataset using the random forest classifier 

obtained an accuracy of 98%. Signal decomposition 

was also carried out by Gupta et al. [31] who 

proposed a multirate filter bank structure to 

decompose the signal into brain rhythms and model 

it with fractional Brownian motion (fBm) and 

fractional Gaussian noises (fGn). The hurst exponent 

and autoregressive moving average (ARMA) 

parameters were features of the EEG signal. The test 

results using the binary SVM classifier on the AB-

CD and AB-E datasets were obtained an accuracy of 

97.7% and 97.27% respectively. The main problem 

of this method is that many processes and the more 

tuning of parameters to extract the features. Therefore, 

limited data in the experiment cause the classification 

result not optimal. 

Several recent studies on the classification of 

epileptic EEG signals based on the CNN include 

studies conducted by Ullah et al. [32], W. Zhao et al. 

[33], Akut [34], and Tu¨rk and Ozerdem [35]. Ullah 

et al. [32] divided the EEG signal into several 

overlapping sub-signals. EEG signal classification 

was obtained by inputting the raw sub-signal dataset 

into the pyramidal one-dimensional convolutional 

neural network (P-1D-CNN) models (14 layers). 

From the experiment using the method on the AB-

CD-E dataset, it obtained an average of accuracy 

which is 99.1%. Similar study was also conducted by 

W. Zhao et al. [33]. They divided each EEG signal 

channel into 23 sub-signals and proposed 1D CNN 

for detection of epileptic seizures. The results of 

testing the model on the Bonn dataset obtained an 

accuracy of 97.63%-99.52% for the two-class and 

96.73% -98.06% for three classes. 

Another study was conducted by Akut [34], 

which divided the EEG signal into 5 main subbands 

and used a discrete wavelet transform (DWT) to 

extract the lowest frequency and eliminate the highest 

frequency. Training using CNN (23 layers) showed 

that the model works properly on small datasets. 

Classification using this model on the AB-CD-E 

dataset yielded an accuracy of 99.4%. Preprocessing 

of EEG signals was also conducted by Tu¨rk and 

Ozerdem [35]. They formed the scalogram using a 

continuous wavelet transform (CWT) on each signal 

channel and resized the image. The testing results 

using CNN (5 layers) on the A-E and A-D-E datasets 

obtained an accuracy of 99.50% and 99% 

respectively. The main problem of their proposed 

method is that resizing the image has an impact on 

classification. 

Next is considering previous studies by using 

conventional methods. Many methods have been 

developed to obtain EEG signal features. On the other 

hand, the best performance in the classification 

/detection of epilepsy is not necessarily obtained by 

using these features. Therefore, researchers often 

involve several methods by tuning parameters to get 

the features and use one or several classifiers. This 

approach is certainly ineffective and time-consuming. 

Meanwhile, the CNN-based epileptic EEG signal 

classification/detection in this case provides a 

solution to the problem of conventional methods. 

However, several things must be considered, 

including limited data availability, preprocessing of 

the EEG signal and the CNN architecture. Studies by 

Ullah et al. [32] and W. Zhao et al. [33] split the 

original signal to overcome data limitations. The raw 
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data resulted from the splitting (1D) were directly 

forwarded into CNN. Compared to Akut [34]  

without signal splitting but processing the signal with 

DWT (2D) before implementation to CNN gives 

better results than Ullah et al. [32] for the same 

dataset. On the other hand, overcoming data 

limitations must be done to improve CNN 

performance. Another case conducted by Tu¨rk and 

Ozerdem [35]  although using a scalogram (2D) but 

resizing image affects the classification performance. 

This paper proposes a methodology involving signal 

splitting (segment), signal preprocessing (2D), CNN, 

and ensemble in the classification of epileptic EEG 

signals. Our proposed method differs from existing 

method in several aspects: (i) segments formed from 

the original EEG signal without overlapping are to 

keep mutually exclusive characteristics (ii) adding 

preprocessing to form a spectrogram image (2D) (iii) 

using a single CNN model (iv) classifying each 

testing segment using the same CNN model, before 

deciding on the classification results with the 

ensemble combination. For the experiment, this 

paper focuses on classifying normal (healthy) (AB) 

EEG signals with epilepsy (C, D, E, CD, CDE, CD-

E). Therefore, there are six scenarios for evaluation. 

3. Material and methods 

This section further explains the dataset and the 

proposed method stages for the classification of 

epileptic EEG signals. The dataset used in the 

experiment is the dataset of epileptic EEG signals 

taken from Bonn University, Germany. The proposed 

method for the epileptic EEG signals classification 

includes several main stages as showed in Fig. 2.  

3.1 Dataset of experiment 

The dataset used in the experiment is the epileptic 

EEG signals dataset available in [14] and described 

by [36]. The dataset consists of Set A-Set E. Each 

dataset contains 100 single-channel EEG signals and 

it is recorded for 23.6 seconds. These signals were 

selected after visual inspection of the artifacts caused 

by the movement of the eye muscles. Set A and Set 

B were EEG signal data obtained from five healthy 

volunteers with their eyes open and closed. Sets C, D, 

and E were the EEG signals obtained from five 

people with epilepsy patients at their preoperative 

diagnosis. Set C and D signals were obtained at 

seizure-free intervals (inter-ictal), while Set E was 

obtained at seizure (ictal). The Set C signal was 

obtained by placing the electrode opposite to the 

epileptogenic zone, while the Set D and E were in the 

epileptogenic zone. 

 

 
Figure. 1 Example of spectrogram images of epileptic 

EEG signal taken from the Bonn EEG dataset 

 

From the description of the dataset, we arrange 

several scenarios of the experimental dataset. This 

study's dataset scenario is focused on the 

classification of EGG signals in epileptic patients and 

healthy people with several combinations among the 

existing datasets. Six datasets are created from five 

datasets (Set A-Set B) to evaluate the proposed 

method's performance. The description of the six 

datasets can be seen in Table 1. 

3.2 Segment of EEG signal 

Epileptic EEG signals are periodic, non-

stationary, and their values vary from time to time. 

The representative signal value of a certain period 

(quasi-stationary) in this study is obtained by 

dividing the EEG signal of each channel of each class 

into smaller and mutually exclusive segments [9, 37]. 

Each segment consists of EEG signal data in a certain 

time window, for example in one of the cases in this 

study each segment has a time window of 4.72 s, as 

shown in Fig. 3. A segment's formation on the signal 

is used to get many features and to enrich data in 

training or testing. 

Fig. 3 is an example of determining the segment 

of an EEG signal from the Bonn EEG database. In 

this example, each EEG channel's signal is divided 

into five segments, with each segment containing the 

signal data for 4.72s. Since each channel contains 

4097 data points of 23.6s, the size of segment 1 is 819 

points, segment 2 is 819 points, segment 3 is 819 

points, segment 4 is 819 points, and segment 5 is 821 

points. 
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Figure. 2 The stages of the proposed method for epileptic 

EEG signals classification 

3.3 Short-time fourier transform 

Short-time Fourier transform (STFT) is 

implemented to transform the signal from the time 

domain to the time-frequency domain. This method 

is used to analyze the smallest part of the EEG signal 

in time using windowing [38]. Mathematically, the 

definition of STFT can be written as follows  

 

𝑆𝑇𝐹𝑇(𝑣, 𝑢) = ∫ 𝑥(𝑡)𝑤(𝑡 − 𝑢)𝑒−𝑗𝑣𝑡𝑑𝑡
∞

−∞
        (1) 

 

where 𝑥(𝑡) is the EEG signal analysed and 𝑤(𝑡) is 

the window with its energy concentrated around 𝑢. 

From STFT, the signal spectrogram value is obtained 

with the following equation 

 

𝑆 = |𝑆𝑇𝐹𝑇(𝑣, 𝑢)|2                         (2) 

 

The spectrogram values measure the amount of 

energy around the time-frequency (𝑣, 𝑢) . In this 

study, STFT is obtained by a discrete approach 

[24,39], which can be written as follows 

 

𝑆𝑇𝐹𝑇(𝑣, 𝑢) = ∑ 𝑥(𝑡)𝑤(𝑡 − 𝑢)𝑒−𝑗2𝜋𝑣𝑡/𝐿𝐿−1
𝑡=0   (3) 

 

where 𝑤(𝑡) is the window function on the 𝐿-point. 

For each window, the Fourier Transform process is 

calculated by using the Discrete Fourier Transform 

(DFT). Furthermore, the amplitude spectrum 

obtained from the STFT is converted to decibel (dB). 

The windowing technique for STFT in this study 

is the Blackman window defined in [40]. This 

technique is chosen based on the characteristic of the 

Table 1. Dataset scenarios for epileptic EEG signal 

classification  

No Datasets Description 

  Class 1 Class 2 Class 3 

1 AB-C Healthy Inter-ictal - 

2 AB-D Healthy Inter-ictal - 

3 AB-E Healthy Ictal - 

4 AB-CD Healthy Inter-ictal - 

5 AB-CDE Healthy Epilepsy - 

6 AB-CD-E Healthy Inter-ictal Ictal 

 

epileptic EEG signal and the assumptions on DFT. 

Implementation of DFT in STFT assumes a periodic 

extension of the input vector. Therefore, the suitable 

windowing technique used in this case is the periodic 

Blackman window. 

3.4 Spectrogram image 

A spectrogram image is obtained by changing the 

S index in the previous step into RGB. This change 

in the spectrogram image represents the frequency 

amplitude [24, 25] or the frequency spectrum. The 

steps to change 𝑆 to RGB are explained as follows: 

1. Rescale the 𝑆 value in the range [0,1]. 

2. Change the  𝑆 value in the range [0,1] into the 

range [0,255]. 

3. Change the  𝑆 index into the RGB color map 

by using a colormap jet. 

The jet colormap is a variant of HSV. The color 

map starts with dark blue, ranges through shades of 

blue, cyan, green, yellow, and red, and ends with a 

deep red. In this study, the spectrogram image is a 

visual representation of the frequency spectrum so 

that a lot of information can be retrieved [23]. Besides, 

the CNN classifier will provide high performance 

when working on RGB image objects [41]. Fig. 4 is 

an example of the EEG signal of healthy people and 

epileptics, which is split into five segments then the 

spectrogram image is determined in each segment. 

3.5 Convolutional neural network  

 
Figure. 3 Example of the segment of an EEG signal  
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Figure. 4 Example of the spectrogram images for each 

segment on a signal channel in dataset A (healthy) and D 

(epilepsy) 

 

Convolutional neural network (CNN) is a type of 

feed-forwarding neural networking applied to visual 

images and has a high performance [42,43]. In this 

study, the CNN architecture includes several layers, 

including the input layer, convolutional layer, batch 

normalization layer, activation layer, pooling layer, 

fully connected layer, and output (classification) 

layer. Fig. 5 is the CNN architecture used in the 

epileptic EEG signals classification with these layers. 

3.5.1. Input layer 

The input layer is the layer for inserting images 

into the network and performing data normalization. 

In this study, the input is a spectrogram image in 

RGB, so that there are three channels in a 

multispectral or hyperspectral image. The 

spectrogram image size depends on the spectrogram 

size of the STFT results (e.g. width=a height=b). 

While data normalization is obtained by subtracting 

each input image with the image's mean value [43]. It 

is written 𝑍̂ = 𝑍 − 𝑍̅  where 𝑍̂  is the normalized 

value of the spectrogram image,  𝑍 is the value of the 

spectrogram image, and 𝑍̅   the average value of 

spectrogram image. 

3.5.2. Convolutional layer 

The convolutional layer is a layer that will 

convolute the input data (spectrogram image) or from 

the previous layer by shifting a filter to produce the 

feature map. The convolution process will yield many 

feature maps to butter understand the characteristics 

of the spectrogram image [44,45].The convolution 

operation can be written as follows 

 

𝑍̃ = 𝑓(𝑊𝑍̂ + 𝑏)                        (4) 

 

with 𝑍̃ is the output of the convolution process, 𝑓(. ) 

is the activation function, 𝑊 is the weights, and 𝑏 is 

the bias. The weight on the convolutional layer will 

experience an update process to improve the image 

classification results in the training process. The 

update process in training is done on all weights in 

each convolutional layer. A set of weights applied to 

a region in an image is called the filter. In this study, 

the filter or kernel used refers to [46] with the 

following equation 

 

𝑊𝑖𝑗~𝑈 [−
1

√𝑛
,

1

√𝑛
]                               (5) 

 

where 𝑈 [−
1

√𝑛
,

1

√𝑛
]  as a uniform distribution with 

interval parameters(−
1

√𝑛
,

1

√𝑛
) and 𝑛 is the size of the 

previous layer (number of columns 𝑊). In this study, 

the number of filters used for the first layer is 30, the 

second is 60, and the third is 120, while the filter size 

is 5x5 for each layer. In the convolution process, 

stride (𝑠) and padding (𝑝) must be determined [47]. 

The stride and padding used in the convolution 

process are one (1) and the same padding as shown in 

Fig. 5. 

3.5.3. Batch normalization layer 

The batch normalization layer is normalizing 

each input channel in mini-batch. This process is 

needed to speed up training on CNN and to reduce 

the network initialization sensitivity. To achieve the 

results, the batch normalization layer is placed 

between the convolutional and ReLU as shown in Fig. 

5. In this study, the batch normalization process refers 

to reference [48]. The first layer of the process is to 

normalize each channel's activation by subtracting 

each channel with the mini-batch average and 

dividing by the mini-batch standard deviation. Then, 

the layer shifts the input and scales it by the scale 

factor. 

3.5.4. Activation layer 

The activation layer applies an unsaturated 

activation function to enhance the nonlinear nature of 

the decision function. In this study, the activation 

function used is the rectified linear unit (ReLU) [41, 

44], which is presented  in the following equation 

 

𝑍̃𝑅(𝐹̂) = {
𝐹̂, 𝐹̂ ≥ 0

0, 𝐹̂ < 0
                              (6) 

 

with 𝐹̂  is the output of the convolution process, 

which has entered the mini-batch process. 
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3.5.5. Pooling layer 

The pooling layer usually follows a convolutional 

layer and is a non-linear sampling method. The 

pooling process is used to reduce the spatial size of 

the representation. This process also reduces the 

number of calculations and controls overfitting. In 

this study, the pooling used is max pooling, which 

partitions the input layer into a rectangular set with 

each region's maximum output  [41,49]. The filter 

size used by the pooling layer is 4x4 with a stride size 

of 2, as shown in Fig. 5. 

3.5.6. Fully connected layer 

The fully connected layer is used after the 

convolutional layer and max-pooling layer. In this 

layer, the feeds back process is done by refining the 

previous layer's weight and bias. This process also 

reduces the loss of feature information. The results of 

this layer forward the output layer for classification 

[41]. 

3.5.7. Output (classification) layer 

The output (classification) layer functions to 

show the classification results, namely, accuracy and 

loss. The loss is the deviation between the predicted 

and the target labels. The two of most widely used 

activation functions for classification are softmax and 

sigmoid [41]. In this study, the activation function 

used in the output layer is softmax [50], as in the 

following equation 

 

𝑦𝑘(𝑍∗) =
exp (𝑍𝑘

∗)

∑ 𝑒𝑥𝑝(𝑍𝑗
∗)𝐶

𝑗=1

, 𝑘 = 1, … , 𝐶               (7) 

 

where 𝑦𝑘  is the softmax output in the 𝑘-class, 𝑍∗ is 

the output of the fully connected layer process in the 

𝑘-class, and 𝐶 is the number of classes (labels). 

3.6 Ensemble combination  

The ensemble method used in this study is almost 

similar to the bagging method [51]. The ensemble 

method is only applied at the testing and only uses 

one CNN model training results to classify each 

segment on the testing dataset. Fig. 6 shows how the 

process of training and testing the EEG signal dataset 

by applying an ensemble combination of the 

classification results of each segment with CNN. The 

ensemble combination used in determining the output 

is simple majority voting as in the bagging method. 

Based on the output layer at the CNN training stage, 

the classification results for each segment of the 

testing   dataset   can   be   determined   by  using  the  

equation as follows 

 

ℎ𝑖 = 𝑎𝑟𝑔 max
𝑘

(𝑦𝑖𝑘) , 𝑖 = 1,2, … , 𝑟; 𝑘 = 1, … , 𝐶       (8) 

 

with 𝑟 is the number of EEG signal segment, and 𝐶 

is the number of label (class). If  𝑣𝑖,𝑘 is the result of 

voting with the determination  𝑣𝑖,𝑘=1, the evaluation 

result is the same as the actual class and 0 if it is not 

the same, then the total voting in the ensemble can be 

determined by using the equation as follows 

 

𝑉𝑘 = ∑ 𝑣𝑖𝑘 , 𝑘 = 1, … , 𝐶𝑟
𝑖=1                  (9) 

 

then the ensemble results can be obtained by using 

the equation as follows 

 

𝐸𝐶 = 𝑎𝑟𝑔 max
𝑘

(𝑉𝑘) , 𝑘 = 1, … , 𝐶          (10) 

3.7 Cross validation and performance evaluation  

To avoid the possibility of overfitting and obtain 

reliable performance from the CNN model, we 

applied the k-fold cross-validation technique [52] for 

each scenario. In this study, we use is 5-fold cross-

validation. The entire dataset is randomly split into 

five folds with the same sample size. For each fold, 

four subsets are for training, and the rest for testing. 

The process is repeated five times. Each test dataset 

is obtained five performances in the classification, 

and this performance average is the last performance. 

In general, the performance of the proposed method 

in epileptic EEG signal classification is evaluated by 

statistical measures of sensitivity (SEN), specificity 

(SPE), and accuracy (ACC) [53], which are defined 

as follows. 

 

𝑆𝐸𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
100%       (13) 

 

𝑆𝑃𝐸 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
100%        (14) 

 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
100%         (15) 

 

where TP and TN are the correct total numbers in the 

classification of the EEG signal of healthy people and 

the correct total number in the classification of the 

EEG signal of patients with epilepsy, FP and FN are 

the total numbers that are wrong in the classification 

of the EEG signal of healthy people and the total 

number that is wrong in the classification of the EEG 

signal of people with epilepsy. 
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Figure. 5 The architecture of CNN for epileptic EEG signals classification 

 

 
Figure. 6 Training and testing using CNN and Ensemble Combination 

 

4. Experiment 

In this section, we use the epileptic EEG signal 

dataset to evaluate the proposed method's 

performance. The evaluation is carried out by 

referring to the six experimental dataset scenarios as 

in the previous chapter. Experiments were 

implemented using MATLAB with detailed 

experimental settings for each EEG dataset scenario 

as follows. 

4.1 Data preparation   

Although the Bonn dataset has been widely used, 

we use it in this study which is different from many 

previous studies. Apart from being different from the 

proposed method, this study focuses on the epileptic 

EEG signals classification with scenarios, as shown 

in Table 1. To evaluate the proposed method's 

performance on six datasets arranged from five sets 

of EEG signals, it is necessary to specify the number 

of training and testing datasets for each scenario. In 

this study, we use 5-fold cross-validation so that the 

composition of the training and testing dataset is  

80% and 20%  as shown in Table 2. The AB-C, AB-

D, and AB-E datasets have the same number of 

training and testing samples. Besides, for AB-CDE 

and AB-CD-E also has the same number of samples 

of 400 and 100. Even though each experimental fold 

in one dataset has the same number of training and 

testing samples, the composition of the number of 

samples for each class/label can be different/varied. 

From this dataset, the proposed method is 

implemented in each fold. Thus, five classification 

performance of epileptic EEG signal is obtained for 

each dataset. The proposed method's performance is 

obtained by calculating the average of the five 

performances for each dataset. 
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4.2 Parameters settings 

Based on the proposed method's steps, each 

channel of the EEG signal is split into several smaller 

segments. In this study, the experiment is done with 

the number of segments (𝑟) as different and the best 

selected based on the resulting accuracy value. The 

number of segments (𝑟) used for testing includes 1, 

3, 5, 7, 9, 11, and 13. Each signal segment is then 

determined spectrogram by using STFT. In this study, 

the windowing technique for STFT uses a Blackman 

window with a window length of 32, while the 

Fourier transform process uses FFT with a length of 

FFT of 256 and the sample rate (Fs) adjusted to the 

length of the segment is made on each EEG signal 

channel. Each spectrogram obtained from each 

segment is converted into a RGB (spectrogram 

image) in the range [0, 255]. 

For the CNN training process, referring to the 

CNN architecture in Fig. 5, where the training input 

is a spectrogram image with dimensions adjusting to 

the resulting spectrogram image's size. All CNN 

training for each fold and dataset are performed using  

"stochastic gradient descent with momentum" 

(SGDM) to determine the optimal weight [43]. The 

values of momentum and learning rate used are 0.9 

and 0.001. To reduce overfitting, L2 regularization 

with the parameter used is 0.0001. The dropout rate 

is 0.5 used in the fully connected (FC) layer during 

classification. For all of the training in this study, 

batch size and a maximum epoch are 128 and 500. 

5. Results and discussion 

In this section, experimental results are generated 

based on the dataset scenario described in Section 3 

and Section 4. The test results using the proposed 

method in each dataset scenario are begun by splitting 

each EEG signal channel into 𝑟 segments.  

For 𝑟=1, it means that the EEG signal channel is 

still as it came from (without segment). The example, 

if the AB-C dataset is implemented with 240 and 60 

data for training and testing, the training and testing 

data used remains the same as 240 and 60. For  𝑟=3, 

each EEG signal channel is split into three segments 

so that the total data training will be three times (240 

x 3 = 720 segment). Likewise, for 𝑟=5, 𝑟=7, 𝑟=9, 

𝑟=11, and 𝑟=13, the total training data will be 5 times 

(240 x 5 = 1200 segments), 7 times (240 x 7 = 1680 

segments), 9 times (240 x 9 = 2160 segments), 11 

times (240 x 11 = 2640 segments) and 13 times (240 

x 13 = 3120 segments). This treatment is also applied 

to each dataset and fold. 

The number of segments on each channel and the 

dataset scenario will determine the spectrogram's 

number and spectrogram image. Spectrogram image 

on each segment as input to CNN training and 

indirectly enrich training data. The dimensions of the 

input spectrogram image in each dataset vary 

depending on the segment's length on each EEG 

signal channel and the parameters on STFT. The 

windowing technique of STFT in this study uses the 

Blackman window with window length = 32, length 

of FFT = 256, and sample rate (Fs) = length of the 

segment. From these parameters for 𝑟=1, then Fs = 

4097, and a spectrogram image is obtained based on 

the STFT value with dimensions of 129 x 509. For 

𝑟 =3, 𝑟 =5, 𝑟 =7, 𝑟 =9, 𝑟 =11, and 𝑟 =13, the sample 

rates used are 365, 819, 585, 455, 372, and 315 

respectively and produce a spectrogram image with 

dimensions as in Table 3. Especially for 𝑟 =9 and 

𝑟=11, we discard the last remaining sample, while for 

the others, the rest of the sample is merged with the 

last segment. Table 3 shows the input dimensions of 

the different spectrogram images on CNN training. 

The image spectrogram dimensions are different 

because the number of segments on each EEG signal 

channel is different, while the parameters for STFT 

are fixed. 

For testing, each EEG signal with a length of 

4097 in the test set is divided into 𝑟 segments without 

overlapping as for training. Each spectrogram image 

(𝑍𝑖 , 𝑖 = 1,2, . . , 𝑟) obtained from each segment will be 

forwarded to the same CNN model to be classified. 

The classification results are then forwarded to the 

ensemble combination to determine the signals' final 

classification results. The ensemble combination is 

used to decide whether an original signal is a seizure 

signal or not by considering all segments' 

classification results. 

5.1 Experimental Results 

The results of training with CNN in each dataset 

and fold scenario showed that the proposed method 

for each training produced 100% training accuracy. 

Furthermore, the test results on each testing dataset 

and fold of the proposed method can be seen in Table 

3 and Table 4. 

Using the ensemble combination of CNN 

classification results on the AB-C dataset obtained 

the best average performance of classification for the 

number of segments 7, 11, and 13. The average of 

accuracy, sensitivity, and specificity of the proposed 

method was 99.33 %, 99.09, and 100%. These results 

are much better than the classification results without 

performing segment with an average improvement of 

4.66% (99.33%-94.67%) for accuracy, 1.95% 

(99.09%-97.14%) for sensitivity and 9.33% (100%-

90.67%) for specificity. Based on the dispersion of  
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Table 2. Samples of training and testing on each fold and scenario 

Datasets Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 

Tra Tes Tra Tes Tra Tes Tra Tes Tra Tes 

AB-C AB 163 37 157 43 167 33 156 44 157 43 

Tra=240,Tes=60 C 77 23 83 17 73 27 84 16 83 17 

AB-D AB 165 35 160 40 159 41 159 41 157 43 

Tra=240,Tes=60 D 75 25 80 20 81 19 81 19 83 17 

AB-E AB 158 42 155 45 164 36 161 39 162 38 

Tra=240,Tes=60 E 82 18 85 15 76 24 79 21 78 22 

AB-CD AB 162 38 164 36 154 46 166 34 154 46 

Tra=320,Tes=80 CD 158 42 156 44 166 34 154 46 166 34 

AB-CDE AB 163 37 166 34 156 44 155 45 160 40 

Tra=400,Tes=100 CDE 237 63 234 66 244 56 245 55 240 60 

AB-CD-E AB 156 44 157 43 166 34 162 38 159 41 

Tra=400,Tes=100 CD 163 37 166 34 158 42 156 44 157 43 

 E 81 19 77 23 76 24 82 18 84 16 

                      *)Tra=training,Tes=testing 

 

accuracy, each fold's performance in the number of 

segments 7, 11, and 13 has an accuracy value of 

98.33-100%, sensitivity 97.73-100%, and specificity 

of 100-100%. In contrast, the dispersion of accuracy, 

sensitivity, and specificity for without segment is 

91.67-96.67%, 93.18-100%, and 87.50-94.12%. 

From these dispersion values, accuracy dispersion for 

with segment is much better than the dispersion 

without segment.  By considering the performance 

value and the number of signal segments formed, the 

test on the dataset shows that the proposed method 

for the number of segments of 7 gives the best results. 

For testing on the AB-D dataset, in general, the 

proposed method's performance based on multi-

segment of the signal is also much better than the 

performance without the segment of the signal. The 

best results are indicated by an average value of 

100% accuracy for the number of segments 5-13 so 

that the average sensitivity and specificity are also 

100%. In contrast, without segment, the average of 

accuracy, sensitivity, specificity was 97.67%, 

98.14%, and 95.10%. From this value, it can be 

determined that the average performance 

improvement of the method by forming the segment 

of the signal was 2.33% for accuracy, 1.22% for 

sensitivity, and 4.9% for specificity.  

The same results were also obtained in the AB-E 

dataset. The performance of the proposed method 

was better than without the segment of the signal. The 

best results were obtained in the number of segments 

7 and 9 with 100% accuracy, sensitivity, and 

specificity values. Meanwhile, the proposed method's 

average improvement for accuracy, sensitivity, and 

specificity was 2.67%, 2.95%, and 2.3%. Likewise, 

in the AB-CD dataset, the best performance was 

obtained from the proposed method in the number of 

segments 9 and 11 with the average values of 

accuracy, sensitivity, and specificity in the 

classification of 99.5%, 99.03%, and 100%. The 

average improvement given by the proposed method 

for accuracy, precision, and specificity was 2.25%, 

1.42%, and 3.14%. 

Overall, for testing on the AB-CDE dataset, it 

also provides better classification performance than 

the implementation without the segment of the 

original signal. The methods proposed implemented 

in the number of segments 11 and 13 have the same 

and best performance compared to the others with an 

average accuracy, sensitivity, and specificity of 

99.8%, 99.48%, and 100%, respectively. The average 

improvement of the proposed method with the signal 

segment was 3% for accuracy, 5.28% for sensitivity, 

and 1.31% for specificity. The dispersion for 

accuracy, sensitivity, and specificity of the proposed 

method was 99-100%, 97.37-100%, and 100-100%. 

From this dispersion, it is identified that the proposed 

method has high performance and consistency. 

In the AB-CD-E dataset, the best performance 

value is also dominated by the proposed method by 

forming the signal segment. The best results were 

obtained in the number of segments 9 with an average 

accuracy of 99.4%. The average sensitivity values for 

classification of AB, CD, and E were 99.04%, 

99.43%, and 100%, respectively, while the average 

specificity values for AB, CD, and E were 99.53%, 

99.01%, and 100%, respectively. The average 

improvement given by the proposed method is 2.6% 

for accuracy, 2.79%, 3.44%, 1.25% for the sensitivity  
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Table 3. Classification accuracy (ACC) of epileptic EEG signals  

on each dataset and scenario 

Datasets # Segment Spectrogram 

Image 
ACC(%) 

 (𝒓) (a x b) Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average 

AB-C 1 129 x 509 93.33 96.67 95 96.67 91.67 94.67 

 3 129 x 167 98.33 98.33 100 100 96.67 98.67 

 5 129 x 99 100 98.33 100 100 95 98.67 

 7 129 x 70 100 98.33 100 100 98.33 99.33 

 9 129 x 53 100 98.33 100 100 96.67 99.00 

 11 129 x 43 100 98.33 100 100 98.33 99.33 

 13 129 x 36 100 98.33 100 100 98.33 99.33 

AB-D 1 129 x 509 98.33 96.67 100 96.67 96.67 97.67 

 3 129 x 167 100 98.33 100 98.33 100 99.33 

 5 129 x 99 100 100 100 100 100 100 

 7 129 x 70 100 100 100 100 100 100 

 9 129 x 53 100 100 100 100 100 100 

 11 129 x 43 100 100 100 100 100 100 

 13 129 x 36 100 100 100 100 100 100 

AB-E 1 129 x 509 100 95 95 100 96.67 97.33 

 3 129 x 167 98.33 100 98.33 100 98.33 99.00 

 5 129 x 99 100 100 100 100 98.33 99.67 

 7 129 x 70 100 100 100 100 100 100 

 9 129 x 53 100 100 100 100 100 100 

 11 129 x 43 98.33 100 100 100 100 99.67 

 13 129 x 36 98.33 100 100 100 100 99.67 

AB-CD 1 129 x 509 97.75 96.25 100 100 92.25 97.25 

 3 129 x 167 100 98.75 100 100 96.25 99.00 

 5 129 x 99 100 98.75 100 100 97.50 99.25 

 7 129 x 70 100 98.75 98.75 100 97.50 99.00 

 9 129 x 53 100 98.75 100 100 98.75 99.50 

 11 129 x 43 100 98.75 100 100 98.75 99.50 

 13 129 x 36 100 98.75 98.75 100 97.50 99.00 

AB-CDE 1 129 x 509 96 96 97 97 98 96.80 

 3 129 x 167 98 99 98 99 100 98.80 

 5 129 x 99 98 99 100 99 100 99.20 

 7 129 x 70 98 99 100 100 100 99.40 

 9 129 x 53 98 100 100 100 100 99.60 

 11 129 x 43 99 100 100 100 100 99.80 

 13 129 x 36 99 100 100 100 100 99.80 

AB-CD-E 1 129 x 509 96 95 100 97 95 96.6 

 3 129 x 167 98 97 100 98 100 98.6 

 5 129 x 99 99 99 100 98 100 99.2 

 7 129 x 70 98 98 100 98 100 98.8 

 9 129 x 53 99 99 100 99 100 99.4 

 11 129 x 43 98 100 100 98 100 99.2 

 13 129 x 36 98 100 100 98 100 99.2 

    *) 𝑟 =1(without segment) 
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Table 4. Sensitivity(SEN) and specificity (SPE) of epileptic EEG signals classification on each dataset  

# Segment Average of SEN (%)(all Fold)   

(𝒓) AB-C AB-D AB-E AB-CD AB-CDE AB-CD-E 

      AB CD E 

1 97.14 98.78 97.05 97.61 94.20 96.25 95.99 98.75 

3 98.66 100 98.48 99.02 98.54 98.13 98.42 100 

5 98.24 100 99.49 99.03 98.54 99.49 98.45 100 

7 99.09 100 100 99.03 98.97 99.04 97.89 100 

9 98.66 100 100 99.03 98.97 99.04 99.43 100 

11 99.09 100 99.53 99.03 99.48 99.04 99.01 100 

13 99.09 100 99.53 99.03 99.48 99.04 99.01 100 

 Average of SPE (%) (all Fold)   

(𝒓) AB-C AB-D AB-E AB-CD AB-CDE AB-CD-E 

      AB CD E 

1 90.67 95.10 97.70 96.86 98.69 97.11 97.49 93.79 

3 99.17 98.05 100 98.86 99.01 99.53 98.42 96.97 

5 100 100 100 99.41 99.70 99.53 99.55 97.84 

7 100 100 100 98.84 99.70 99.07 99.01 97.84 

9 100 100 100 100 100 99.53 99.01 100 

11 100 100 100 100 100 100 99.01 97.84 

13 100 100 100 98.84 100 100 99.01 97.84 

      *) 𝑟 =1(without segment) 

 

of AB, CD, E, and 2.42%, 1.52%, 6.21% for the 

specificities of AB, CD, E.  

From the test results on all datasets, in general, 

the proposed method by forming a multi-segment 

signal in the epileptic EEG signal much better 

performance than the implementation without 

forming a segment on the original EEG signal. The 

formation of the EEG signal segment has the effect 

of multiplying the spectrogram image used in the 

training process to get the optimal CNN weight and 

avoid overfitting. The more spectrogram images used 

in training, it is possible that the more features can be 

retrieved through a convolutional process with CNN. 

The ensemble combination process from the results 

of the signal classification with CNN on the testing 

dataset has a role in reducing errors the classification 

of epileptic EEG signals. Because in the ensemble 

combination process, the CNN classification results 

are done by voting as in Eq. (10), so in determining 

the number of segments must be odd to avoid the 

same voting value. 

5.2 Discussion 

Many methods have been proposed for the 

classification of epileptic EEG signals. The EEG 

signal classification usually includes binary and 

ternary classification. This study focused on testing 

several datasets, including AB-C, AB-D, AB-E, AB-

CDE, and AB-CD-E. Comparison of this to the 

existing methods and the same test dataset is given in 

Table 5, including Tzallas et al. [54], Orhan et al. [55], 

Song and Zhang [15], Zhu et al. [56], Hassan and 

Subasi [57], Tiwari et al. [28], Sharma et al. [30], 

Gupta et al. [31], Ullah et al. [32], X. Zhao et al. [29], 

Akut [34], and W. Zhao et al. [33]. 

Tzallas et al. [54] using time-frequency analysis, 

and ANN yielded an accuracy of classification for 

AB-CD-E dataset max 97.72% and the average of 

94.73%. Similar research was also conducted by 

Orhan et al. [55] by using the K-mean, and multi-

layer perceptron neural network obtained an accuracy 

of 95.6%. Like before, Hasan and Subasi [57] using 

spectral feature extraction from CEEMDAN mode 

functions and linear programming boosting spectral 

classifying with the same dataset obtained an 

accuracy of 97.6%. Tiwari and Pachori [28] classified 

the same dataset using the local binary pattern (LBP), 

and SVM obtained an accuracy of 98.8%. The same 

test was also carried out by Sarma et al.[30]. They 

used IF in the EEG signal to decompose the signal 

and retrieve its features, including KNNE, LEE, and 

SE. From the test result using the random forest 

classifier it obtained a maximum accuracy which is 

98%. Besides, X. Zhao et al. [29] obtained an average 

of accuracy which is 99.1% by using Instantaneous 

energy-based features and BPNN. These researchers 

use conventional methods, whereas those that use 

CNN is as conducted by Ullah et al.[32]. They used  
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Table 5. Comparison of the existing methods with the proposed method 

Reseachers Methods Datasets ACC (%) 

[54] Time-Frequency Analysis +PCA+ANN AB-CD-E 97.72 

[55] K-means +MLPNN AB-CDE 

AB-CD-E 

98.8 

95.6 

[15] Wavelet Transform + ELM+ Genetic Algorithm AB-CDE 94.2 

[56] Sample Entropy + Multi-Scale K-means AB-CDE 99.1 

[57] CEEMDAN + Linear Programming Boosting AB-CD-E 97.6 

[28]  Local Binary Pattern (LBP) +SVM AB-E 

AB-CD-E 

100 

98.8 

[30]  KNNE + Random Forest Classifier AB-CD-E 98 

[31]  Hurst Exponent+ ARMA+SVM 

 

AB-E 

AB-CD 

97.27 

97.7 

[32] P-1D-CNN AB-E 

AB-CD 

AB-CDE 

AB-CD-E 

99.7 

99.8 

99.95 

99.1 

[29]  Instantaneous Energy-Based Features+BPNN AB-E 

AB-CD-E 

100 

99.1 

[34] DWT+CNN AB-CD-E 99.4 

[33] 1D CNN AB-E 

AB-CD-E 

99.38 

96.97 

Our proposed 

method 

Multi-Segment + Spectrogram Image + CNN+ 

Ensemble Combination (Testing) 

 

 

AB-C 

AB-D 

AB-E 

AB-CD 

AB-CDE 

AB-CD-E 

99.33 

100 

100 

99.5 

99.8 

99.4 

 

P-ID-CNN in the same dataset and yielded an average 

of accuracy which is 99.1%. Akut [34] used DWT 

and CNN for classification and yielded an average of 

accuracy which is 99.4%. In contrast, W. Zhao et al. 

[33] obtained an average of accuracy which is 

96.97% by using the 1D CNN. Using the proposed 

method on the same dataset, we obtained an average 

of accuracy which is 99.4%. These results are 

obtained by dividing the original signal into 9 

segments. We only use a CNN model to classify each 

segment before the ensemble combination process of 

all the classification results. Compared to 

conventional methods, our proposed method is better. 

This occurs because a common problem in 

conventional methods requires manually setting 

parameters to get features and does not involve 

classifiers in selecting important features. Compared 

to the CNN-based method proposed by Ullah et al. 

[32] and W. Zhao et al. [33], our proposed method 

with the same dataset still yielded better results. Ullah 

et al. [32] and W. Zhao et al. [33] directly input the 

raw signal/sub-signal on CNN without any specific 

preprocesses such as transformation to the signal 

using the time-frequency domain so that there is an 

important feature of the signal that CNN cannot yet 

use for non-binary classification. On the contrary, in 

our proposed method, the segment/sub-signal is first 

processed into a spectrogram image (2D) before 

being forwarded to CNN. Our results for this case are 

comparable to that of Akut [34] that used DWT (2D) 

to process the original signal before entering CNN.  

For testing, the AB-CDE dataset, among others, 

was carried out by Orhan et al. [55]. Using K-mean 

and MLPNN obtained an accuracy of 98.8%. This 

test was also carried out by Song and Zhang [15] 

using the wavelet transform, genetic algorithm, and 

extreme learning machine obtained an accuracy of 

94.2%. Zhu et al. [56] used the entropy sample 

method and multi-scale K-means, yielded 99.1% 

accuracy. Meanwhile, with our proposed method, we 

obtain an average of accuracy which is 99.8% when 

the original signal is divided into 11 and 13 segments. 

These results confirm that our proposed method has 

a higher accuracy than the conventional methods. 

However, it is still lower than the method proposed 

by Ullah et al. [32], with the average of accuracy 

which is 99.95%. Although our proposed method's 

accuracy is not the best in this dataset, the difference 

between our proposed method’s accuracy and the 

best accuracy is relatively small (0.15%). 

Testing on the AB-CD dataset, conducted by 

Gupta et al. [31] and Ullah et al. [32]. Gupta et al. 
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[31] used hurst exponent and ARMA parameters as 

features. Their experiments using SVM obtained an 

average of accuracy which is 97.7%. Ullah et al. [32], 

with the proposed method (P-1D-CNN), obtained an 

average of accuracy which is 99.8% for this case. 

Meanwhile, our proposed method obtained an 

accuracy of 99.5% when the original signal is divided 

into 9 and 11 segments. Based on these results, the 

proposed method is better than the method proposed 

by Gupta et al. [31] but it is still under Ullah et al. 

[32]. The method proposed by Gupta has not been 

running consistently and optimally because the 

sample size of the dataset is relatively small. We have 

solved this problem by forming multiple segments of 

each original signal without overlapping. Our 

classification accuracy results in this dataset are still 

lower than Ullah et al. [32] because we only use one 

CNN model to classify each signal segment before 

the ensemble process. 

Furthermore, for testing the AB-E dataset, the 

method proposed by Gupta et al. [31] obtained an 

average of accuracy which is 97.27%, W. Zhao et al. 

[33]  obtained an average of accuracy which is 

99.38%, and Ullah et al. [32] obtained an average of 

accuracy which is 99.7%. For this case, our proposed 

method achieved an average of accuracy which is 

100% when the original signal is divided into 7 and 9 

segments, so it is better than them. Tiwari et al. [28] 

and X. Zhao et al. [29], in this case, also yielded an 

average of accuracy which is 100%. It is interesting 

in this case that the two CNN-based methods provide 

average of accuracy under the two conventional 

methods, although the signal augmentation in the 

sub-signal has been done. The first reason they made 

the raw sub-signal as input on CNN so that there are 

important features that differentiate the two classes 

that are not selected by CNN.  

For testing by using the AB-C and AB-D datasets, 

with our proposed method, an average of accuracy 

which is 99.33% and 100% is obtained. For this 

dataset, we have not found any other methods that 

carry out testing so we cannot make comparisons yet. 

 We realize that the comparison of our proposed 

method with existing methods is far from ideal. The 

main problem that is difficult for us to avoid is the 

configuration of datasets for training and testing that 

may be different. We are currently only able to make 

comparisons based on the similarity of the testing 

datasets among other researchers. However, from 

these comparisons, we can see that our proposed 

method is comparable. 

 

 

 

6. Conclusion 

We have proposed CNN based on multi-segment 

EEG signals involving an ensemble combination to 

classify epileptic EEG signals. This method has been 

designed by forming a multi-segment on the EEG 

signal without overlapping and transforming each 

segment into a spectrogram image (2D) based on the 

STFT value. Classification of EEG signals is carried 

out through two classification stages. The first is the 

classification of each signal segment in each signal 

channel with one CNN model and the second is the 

classification using an ensemble combination based 

on the majority results classification on each segment 

by CNN. Experiments on several datasets arranged 

from the Bonn EEG dataset show that our proposed 

method (with segment) performs better than those 

without forming a signal segment. The best average 

of accuracy in the classification is 99.33%-100% for 

two classes and 99.4% for three classes. Therefore, 

the method we propose in this study has great 

potential to assist neurologists (clinicians) in 

diagnosing epilepsy patients. 

There is still a potential to improve performance 

in the classification of epilepsy based on EEG signals. 

In the future, the consideration of overlapping in 

forming multi-segments to add data to the training 

process and using several different models in the 

classification of each segment could improve 

performance. 
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