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Abstract

Epilepsy is the second most common neurological disorder and it affects approxi-

mately 50 million people worldwide. One of the main characteristics of this disorder

is the presence of recurrent seizures which tend to be controlled through medication.

Nonetheless, 20% of the patients with this disorder are resistant to drug treatment

meaning that they need to go through alternative procedures. One common option is

the surgical resection of the epileptogenic tissue in the region of the brain that is re-

sponsible for the seizures. This study presents a supervised machine learning approach

to identify pathological oscillations in the seizure onset zone based on the presence of

high frequency oscillations. The method implements a SVM algorithm using features

extracted from iEEG data. The model was trained, validated and tested with 25 pa-

tients suffering from refractory epilepsy and then evaluated in a dataset containing

additional 8 patients. The algorithm was capable of detecting 77% of the positive

cases in the test dataset and an average of 61% in the dataset of additional patients.

Also, it presented an AUC of 77% and 85% accuracy in the test dataset. In addition,

this work also discusses which are the features extracted from iEEG data that are

more relevant to identify the pathological HFO and are able to satisfactorily represent

the characteristics of the signals. In this respect, frequency domain features proved to

be among the best model predictors. The results indicate that when these attributes

and time-frequency domain attributes were added the model performance increased

significantly.

Keywords: Epilepsy, HFO, SVM, iEEG signal, Supervised Learning
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Chapter 1

Introduction

1.1 Background

Epilepsy is a neurological chronic disease characterized by the occurrence of recurring

spontaneous seizures. According to the World Health Organization, around 50 million

people in the world have epilepsy (Fisher et al., 2014), making it the second most

common neurological disorder after cerebrovascular disease (Moritz, Fox, Luscombe,

& Kraemer, 1997).

The seizures tend to be caused by abnormal discharges of brain neurons and they

are commonly controlled by medication. However, more than 20% of patients remain

resistant to drug treatment (Kwan & Brodie, 2000; Picot, Baldy-Moulinier, Daurès,

Dujols, & Crespel, 2008) which can contribute to an increase in the morbidity and

mortality of this disease. Although the causes of why a patient is resistant to drug

treatment are unknown, one alternative treatment for patients with refractory epilepsy

is the surgical resection of the epileptogenic region responsible for seizures. This

resective surgery has the potential to fully control and eliminate seizures in selected

patients that are refractory to medications (De Tisi et al., 2011; Liu et al., 2018).

The accurate localization of the pathological region normally referred to as seizure

onset zone (SOZ) or region of interest (ROI), is critical for the success of the surgery.

To localize the focal epileptogenic area and the ROI, it is required an intracranial

electroencephalographic monitoring (iEEG) over a large period of time and detailed

1



CHAPTER 1. INTRODUCTION

visual inspection of these data by medical experts (Liu et al., 2016).

Although resective surgery based on careful analysis of iEEG recordings have been

used by epileptologists since the 1950s, epilepsy surgery is ofttimes not successful

(Gliske et al., 2016). Therefore, several computer based solutions have been developed

to assist neurologists in the identification of the seizure onset zone (Chen, Wan, Xiang,

& Bao, 2017). The SOZ can be identified by the implementation of iEEG which would

capture seizures’ occurrences. From the iEEG recordings different types of biomarkers

1 can be measured, high frequency oscillations (HFO) being one of the most correlated

to a successful outcome of surgical procedures. One of the reasons for this is that

clinical procedures that focus on frequency bands lower than 30 Hz. are successful in

only 50–60% of patients undergoing the surgery with significantly lower outcome rates

for certain types of epilepsy (Gliske et al., 2016). In addition, the dynamic variation

of phase amplitude coupling (PAC) has been used to study the differences between

epileptogenic regions (Amiri, Frauscher, & Gotman, 2016).

Although defining the limits of the epileptogenic region is a difficult task, research

suggests that the extraction of relevant features from the epileptic activity recorded on

iEEG data can be a potential solution to discriminate seizure onset zones on epilepsy

patients (Varatharajah et al., 2018).

1.2 Research Project

The current gold standard process to identify pathological oscillations in the region

of interest is based on the analysis of interictal epileptiform activity as well as on

the visual inspection of the iEEG. This analysis consists of patients staying in the

hospital for several days while highly trained medical professionals label the onset

times manually. Epileptologists rely on data based on long-term iEEG recordings

captured using a large number of intracranial electrodes implanted into the brain

through surgical procedure. This is a time consuming manual process that costs

1A biomarker is defined as an objectively measured characteristic of a normal or pathological

biologic process (Dümpelmann, Jacobs, & Schulze-Bonhage, 2015)

2



CHAPTER 1. INTRODUCTION

medical resources and time. Moreover, there were cases where visual inspection of the

iEEG recordings to identify the SOZ resulted in poor surgical outcome. Less than

50% of patients that went under surgery resulted in seizure free ten years after the

procedure (Elahian, Yeasin, Mudigoudar, Wheless, & Babajani-Feremi, 2017).

Even though researchers have been studying and developing different approaches

and algorithms to mitigate the workload of clinicians during this process, it is still

possible to improve the current methodologies and techniques to detect SOZ. High-

frequency oscillations (HFO) are local electrical signals recorded by electrodes and have

received intense interest as potential biomarkers to improve the identification of the

region of interest. Although most researchers have focused on HFO as an indication

of pathological activity, these oscillations can occur across different brain areas which

make them difficult to identify. Pathological HFOs can have similar characteristics

(i.e. amplitude, duration and frequency) to physiological HFOs, therefore the use of

conventional features do not seem to be enough to discriminate accurately the SOZ

(Liu et al., 2018).

There are several challenges that prevent researchers from achieving a conclusive

solution to this problem. Algorithms should be able to identify electrode’s signatures

at the moment of seizure to determine the SOZ. However, neuronal oscillations are

not isolated and independent; they can interact with each other and can modulate the

oscillations in other frequency bands causing what is called cross frequency coupling

(CFC) (Amiri et al., 2016).

Based on the key points raised above, this study focuses on understanding which

features and algorithms can best perform the task of discriminating pathological and

physiological oscillations on patients with refractory epilepsy. Therefore, the research

question that serves as the basis for this work is: Are frequency and time-frequency

domain features from iEEG signal data statistically significant to discriminate HFO

in the seizures onset zones in epilepsy patients?

3



CHAPTER 1. INTRODUCTION

1.3 Research Objectives

This research has two main objectives, the first being the identification of the most

significant intra-patient features for the detection of spikes in the signal captured by

iEEG data and the second one being the development of a statistical model using

machine learning algorithms to detect HFOs and discriminate seizures onset zones in

epilepsy patients. Table 1.1 presents the hypothesis related to these objectives and

the methods used in order to accomplish them:

Objective 1 Identify relevant features to find HFOs on SOZ

Method 1 Feature selection based on machine learning algorithms

Hypothesis 1 Time-Frequency domain features will be better predictors of patho-

logical HFOs

Objective 2 Investigate most effective machine learning algorithms to identify

pathological HFOs

Method 2 Evaluation of algorithm performance metrics such as Accuracy,

AUC and F1 Score

Hypothesis 2 Support Vector Machine algorithm will have a higher predictive

power than other traditional supervised learning algorithms

Table 1.1: Objectives and Hypotheses of the study

The reason to investigate the most prominent features is to assess which character-

istics of a patient’s iEEG signal data are relevant to find the pathological HFOs and

thus the seizure onset zone. This identification can potentially save epileptologists

examination time of hours of iEEG recordings. Furthermore, the intention behind

investigating the different machine learning algorithms is to provide an analysis of the

most effective techniques and learn how they can be implemented in this context.

4



CHAPTER 1. INTRODUCTION

1.4 Research Methodologies

Defining the appropriate research methodology is key to successfully achieve the re-

search objectives defined in the previous section. Thus this study can be classified in

four categories: by its type, by its objective, by its form and by its reasoning.

This is a secondary research type of study, since it summarises and expands ex-

isting research. Since the investigation of the most relevant features and the SOZ

detection strategy uses supervised machine learning, which requires subjective human

involvement to collect the training data, this is classified as quantitative research.

Therefore, identifying the pathological HFOs in signal data can be better addressed

by extracting different types of features, using them to train machine learning models

and then compare the feature importance in the best model.

Three types of features based on the signals from iEEG data were created and

selected:

• Time domain features

• Frequency domain features

• Time-Frequency domain features

Also, to identify the spikes and select the most important features the following

supervised learning algorithms were used:

• Decision Trees

• Random Forest

• Super Vector Machine

• Gradient Boosting

• Artificial Neural Networks

The performance of the different statistical models built is evaluated using metrics

such as sensitivity, specificity and AUC. To assess whether there is a statistically

5
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significant difference in the accuracy of the models, the hypothesis is tested using the

McNemar nonparametric statistical test. Therefore this work falls under the empirical

research category.

A deductive reasoning was used based on a top-down approach; the hypothesis was

built based on a pre-existent theory and then tested using the relevant techniques.

The results obtained were analysed which led to a conclusion and confirmation of the

hypothesis established.

1.5 Scope and Limitations

The scope of this research is limited to the application of supervised machine learning

techniques to identify HFO from the seizure onset zone using iEEG signals recorded

from 33 patients diagnosed with refractory epilepsy.

This study focuses on the development of a series of models trained to identify HFO

in the SOZ and understanding what are the most important features extracted from

the iEEG signal. The attributes to be analysed are well defined features used by other

authors but that have not been combined previously in the literature. In addition, the

selection of the supervised learning algorithms is based also on what has been used in

previous research in combination with the most popular classifier algorithms.

However, this work also presents a few limitations. Only one type of biomarker

will be tested (high frequency oscillations) and supervised machine learning algorithms

were selected which requires a target attribute to be previously defined. In this research

the target attribute was built based on the visual inspection from doctors. Considering

the time limitation to develop this work, features extracted from additional biomarkers

were not considered in this research, although literature suggests that those might

enhance the model performance.

While the current sample size utilized is far superior than the one used in previous

research, a second dataset was not available. Therefore, a sub-sample of patients was

selected to be used to test whether the proposed solution generalizes well to unseen

data. This sub-sample of 8 patients did not take part in the training nor model building
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at any moment, thus it is safe to say that it could be used to perform a fair assessment

of the model. Nonetheless, if there was a bias on how the iEEG recordings were

collected or how the patients were selected then it could affect the model capability

to generalize.

1.6 Document Outline

This thesis is organized in five chapters which are structured as follows. Chapter 2 in-

troduces an overview of previous research and current gaps presented in the literature.

The methodology used to design the experiment and the data collection is presented in

Chapter 3. This chapter also includes a detailed explanation on how the time domain

and frequency domain features were created, as well as a description of the algorithms

and the model evaluation metrics selected. In Chapter 4, the application of a Baseline

model based on traditional features is illustrated in the first half of the chapter. Then

on the second half, a set of Challenger models are presented, which are built using a

combination of traditional features and the additional time-frequency domain features

added. In this chapter, the results of this approach and its implications are described

and discussed. Finally, this work concludes with a description of the next steps and

how future work can leverage from this research in Chapter 5.
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Chapter 2

Literature Review

2.1 Approaches to solve the problem

Literature review suggests that there are different approaches to try to solve this

problem. Some researchers have focused on the extraction of HFO traditional features

such as Duration, Amplitude, Energy and Peak ratio, and used K-means clustering and

Hierarchical linear mixed model to detect the region of interest (Malinowska, Bergey,

Harezlak, & Jouny, 2015). Results achieved by the authors indicate that the average

HFO rate is higher for SOZ channels compared to non-SOZ channels. This is consistent

with the results found by (Matsumoto et al., 2013) where pathological HFO had lower

average frequency, longer average duration and a higher average spectral amplitude

than physiological HFO. Malladi, Johnson, Kalamangalam, Tandon, and Aazhang

(2018) proposed a novel approach of using mutual information in frequency metric

to infer the cross-frequency coupling mechanisms during epileptic seizures, identifying

that HFO increases in ictal periods.

2.1.1 Features

There is still discussion among researchers on how HFO are defined and identified.

They have been defined as: oscillations in the frequency band 65–600 Hz (Cimbalnik,

Kucewicz, & Worrell, 2016); as short events defined in the band 80–500 Hz (Liu et
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al., 2018; Murphy, Von Paternos, & Santaniello, 2017; Staba, Wilson, Bragin, & Fried,

2002). They have also been divided into ripples (80-200 Hz), fast ripples (FRs, 250-500

Hz) and very high frequency oscillations (VHFOs, over 1000 Hz) (Wan, Wu, Wan, &

Du, 2016).

In addition, Liu et al. (2016) studied the use of more advanced features such as

spectral entropy, sub-band power ratio and frequency. The results of this study imply

that these features are capable of discriminating SOZ more accurately than tradi-

tional HFO attributes. Moreover, non-linear model techniques such as Kolmogorov

entropy have been demonstrated to be reliable to extract different states of normal and

pathological brain pattern (Van Drongelen et al., 2003). Furthermore, other types of

biomarkers have been studied such as cross-frequency coupling (CFC), which in some

cases combines the features from low frequency oscillations (LFO) with HFO features

(Jensen & Colgin, 2007; Guirgis, Chinvarun, Del Campo, Carlen, & Bardakjian, 2015).

Also, adding features measuring the strength of coupling between the amplitude and

phase based was shown to be successful for identifying SOZ (Edakawa et al., 2016).

Additionally, the location of iEEG electrodes involved in a seizure onset zone has also

been studied as possible features represented on the high-dimensional spatial informa-

tion (Zhang, Xu, Wang, & Liang, 2010).

Feature extraction plays a key role in the detection of SOZ, and becomes impor-

tant to determine the valuable features from iEEG data. Siuly and Li (2015) designed

mechanism for feature extraction which is based on optimum allocation methods to

acquire representative sampling points and principal component analysis to eliminate

redundant EEG data information. In addition, Zhang et al. (2010) proposed an au-

tomatic patient-specific SOZ detection using incremental non-linear dimensionality

reduction. This unsupervised incremental learning scheme has the potential to effec-

tively map new data into the embedded space automatically which would lead to a

significant reduction of the time spent by doctors on visual inspection tasks.
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2.1.2 Techniques

In recent years researchers have studied different machine learning techniques for the

automated recognition of the pathological area. Still there is no consensus on what

type of algorithm is preferred to perform this task, thus Support Vector Machine

(SVM) (Shoeb, 2009; Güler & Übeyli, 2007; Chen et al., 2017; Dian, Colic, Chinvarun,

Carlen, & Bardakjian, 2015), Artificial Neural Networks (Gabor, Leach, & Dowla,

1996; Ghosh-Dastidar & Adeli, 2009), Bayesian classifiers (Saab & Gotman, 2005),

Nearest-Neighbor classifiers (Qu & Gotman, 1997) and clustering techniques (Liu et

al., 2016; Malinowska et al., 2015) are listed among the most used algorithms to detect

epileptic onset zones. Table 2.1 summarizes the different machine learning techniques

and algorithms used in the literature:

Paper Dataset Size Algorithm

Iscan, Dokur, and Demiralp (2011) Not Available Decision Tree

Wan et al. (2016) Not Available Fuzzy NN

Iscan et al. (2011) Not Available KNN

Qu and Gotman (1997) 23 patients

Sciaraffa,2020 18 patients

Elahian et al. (2017) 18 patients Logistic Regression

Modur and Miocinovic (2015) 10 patients

Sciaraffa et al. (2020) 18 patients

Iscan et al. (2011) Not Available Naive Bayes

Saab and Gotman (2005) 28 patients

Gabor et al. (1996) 22 patients Neural Network

Ghosh-Dastidar and Adeli (2009) Not Available

Guo, Rivero, and Pazos (2010) Not Available

Sciaraffa et al. (2020) 18 patients Random Forest

Akter et al. (2020) 8 patients SVM

Chen et al. (2017) 22 patients
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Cimbalnik et al. (2019) 43 patients

Dian et al. (2015) 6 patients

Iscan et al. (2011) Not Available

“Channel-Wise Characterization of High

Frequency Oscillations for Automated

Identification of the Seizure Onset Zone”

(2020)

5 patients

Matsumoto et al. (2013) 5 patients

Nicolaou and Georgiou (2012) 5 sets

Price and TS (2008) 10 patients

Sciaraffa et al. (2020) 18 patients

Shoeb (2009) 23 patients

Shoeb et al. (2004) 12 patients

Tito, Cabrerizo, Ayala, Jayakar, and Ad-

jouadi (2010)

14 patients

Varatharajah et al. (2018) 82 patients

Xiang et al. (2015) Not Available

Chua, Chandran, Acharya, and Lim

(2008)

5 patients GMM

Liu et al. (2016) 8 patients

Liu et al. (2018) 13 patients

Smart and Chen (2015) Not Available

Malinowska et al. (2015) 45 patients K-means

Table 2.1: Summary of techniques used in reviewed papers

2.2 Gaps in Research

Most researchers have used a single biomarker to identify the SOZ. Considering com-

bining features from different biomarkers could lead to more precise SOZ identification
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(Varatharajah et al., 2018). Some researchers have proposed to detect spikes and anal-

yse its relationship with SOZ (Gaspard, Alkawadri, Farooque, Goncharova, & Zaveri,

2014). However, several studies selected HFO from iEEG as a good candidate for

biomarker (Frauscher et al., 2017).

Different criteria have been used to identify HFO without specifying time frequency

in the oscillations nor how many of them are required to distinguish HFO from back-

ground activity. Studies do not specify their definition of HFO or how they detected

it. It must be calibrated to each patient and EEG dataset (Malinowska et al., 2015;

Murphy et al., 2017).

Moreover, there is evidence that different types of HFO features can be relevant to

identify the SOZ:

• Several studies focused on using conventional features such as: amplitude and

spectral frequency (Modur & Miocinovic, 2015). Research has been limited to

investigate HFO changes in time and its relationship with spikes and SOZ, but

they do not analyse HFO characteristics (Dümpelmann et al., 2015).

• Non-linear measures such as Lyapunov exponent (Zhang et al., 2010), the cal-

culation of fuzzy entropy and short time energy of filtered signals (Wan et al.,

2016) and features based on power spectrum (Chua et al., 2008; Jacobs et al.,

2016) have been proposed. In addition, phase locking values (PLV) were pro-

posed to extract the PLV features such as: PLV positive, PLV peak, PLV power

(Elahian et al., 2017). However, non-linear methodologies to extract features are

dependent on the sample size and features based on power spectrum can lose

information about the high-order feature.

• Use of wavelet transformation: the optimal combination of four factors, mother

wavelet, decomposition level, frequency band, and feature was explored in (Chen

et al., 2017). Efficiently setting these factors will lead to high seizure detection

accuracy with low computational cost.

In addition, most studies have not contemplated intra-patient variations nor the

temporal variation of the epileptic activity. Intra-patient features which could help
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to discriminate epileptic brain regions that should be considered. It is presumably

that additional data would help to tackle the correct identification of epileptogenic

zones and its patterns (Cimbalnik et al., 2016; Smart & Chen, 2015). One proposed

option is the adoption of Point Process Models which estimate the likelihood of a

HFO occurrence given that a sequence of past HFO has been observed (Sumsky &

Santaniello, 2018). However, this analysis only considered ripples event, which are a

subset of HFO.

Given the limited availability of data, many studies were developed with less than

10 patients (Alper et al., 2008; Dian et al., 2015). Analyses based on small cohorts

of patients are not enough to pick up variations on signals and could lead to skewed

results. Data must be representative of different epilepsy types and seizures should

not be concentrated in a single brain region. In addition, research should have not

tested the proposed approaches to a different dataset to assess how well it generalizes.

2.3 Summary

This chapter presented an overview of the different approaches taken to solve the

problem of identifying pathological oscillation in the seizure onset zone in patients

with epilepsy. As it was observed, many algorithms have been used over time to try

to identify pathological oscillations and seizure onset zones, Support Vector Machines

being by far the most popular among researchers.

When analysing the types of features used to train the different machine learning

models, it was noticed that different methods have been used to extract features

from the iEEG signal. From more traditional approaches using wavelet transform

and deriving attributes from it to the extraction of features based on cross coupling

frequencies, researchers have been working on different ways to characterise the signals

from iEEG data.

In recent years, extensive research has been done in the field and researchers have

studied different biomarkers and techniques to identify the signal characteristics within

the seizure onset zone. Nonetheless, a few gaps were identified which include the fact
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that different machine learning algorithms have been used, both supervised and unsu-

pervised, but there is no consensus on the best technique to identify the oscillations

belonging to the seizure onset zone. Also, different types of features have been used

across all the studies but not many of them have been combined to capture the char-

acteristics of the pathological oscillations.

The gaps presented define the base of this research, which involves the use of five

different supervised machine learning algorithms that were trained using features from

different domains: time, frequency and time-frequency domain. The literature review

suggests that better model performance would be achieved if these features are com-

bined to identify the oscillations that belong in the SOZ. Therefore, this investigation

tries to answer the following research question: Are frequency and time-frequency do-

main features from iEEG signal data statistically significant to discriminate HFO in

the seizures onset zones in epilepsy patients?
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Chapter 3

Experiment design and

methodology

This chapter describes the experiment setup, including data collection, preparation and

a detail of the features created. It also includes an explanation of the machine learning

algorithms selected and how the proposed solution was evaluated. In section 3.1, the

hypothesis and objectives of this research are presented, as well as an overview of the

tasks performed on experiment implementation. In section 3.2 describe the methods

used to prepare the iEEG data and to create the features necessary for modeling.

Finally, the subsequent sections 3.3 and 3.4 summarize the algorithms selected and

the methods used for evaluation.

3.1 Hypothesis

How to identify the most relevant attributes to detect SOZ is a problem that can be

better addressed by extracting features with different domains from the high frequency

oscillations. If a combination of time-frequency domain features are used to discrim-

inate pathological oscillations, then models that discriminate SOZ will show better

performance than the models that use traditional intra-patient attributes.

H0: There is no statistically significant difference on the average accuracy of the

model used to detect the SOZ when combined time-frequency features are used.
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H1: There is a statistically significant difference on the average accuracy of the

model used to detect the SOZ when combined time-frequency features are used.

In this research, time domain, frequency domain and time-frequency domain fea-

tures extracted from electrical signals on the high frequency band were combined with

the aim to accurately discriminate HFOs in the epileptic region of the brain. With the

aim of answering the proposed research question (section 1.2), a quantitative research

study was designed to identify the most relevant attributes to detect seizure onset

zones (SOZ) by using machine learning models. Figure 3.1 provides an overview of

the process followed to execute this study:

Figure 3.1: Design of the implementation for identifying SOZ

The underlying hypothesis behind the design of the present comparative exper-

iment is that if non-traditional features extracted from iEEG data are used to dis-

criminate pathological oscillations, then machine learning models will show better

performance than the models that use only traditional attributes.
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3.2 Dataset, Context and Participants

The dataset selected for developing the machine learning models contains anonymized

patient information of continuous intracranial electroencephalography (iEEG) record-

ings of 33 patients suffering from refractory (drug-resistant) epilepsy from a Hungarian

Hospital 1. The dataset was provided in files named with the ID of the thirty three

patients (e.g. ID1) and the raw data containing the recording of each patient was

saved in a Neuroscan “.cnt” file. An example of the multi-channel iEEG recording for

a patient is presented in Figure 3.2

Figure 3.2: Example of 160 seconds iEEG recording for one patient

The iEEG signals were recorded intracranially by using different types of electrodes,

including but not limited to strip, grid, and depth electrodes. The sampling frequency

ranged between 1024 Hz and 2048 Hz and the length of the recordings range from 200

up to 2000 seconds, varying by patient. On average, 18 minutes of recordings for each

subject were available and an average of 48 channels per patient were implanted.

The recording of signals took place during the night and captured pre-ictal, post-

ictal or interictal stages of the different patients. All the iEEG recordings were visually

1The dataset was provided by a third party company.
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inspected and seizure onset zones were identified by experienced epileptologists. This

manual classification of the seizure onset zones was used to build the target variable

used to train the models.

3.3 Methodology

The approach selected is based on the CRISP-DM methodology which provides a

framework to plan a data mining project that works for different industries. This

approach was selected due to the fact that is a robust and well-proven methodology

used by researchers across different projects. The CRISP-DM model is presented in

Figure 3.3:

Figure 3.3: CRISP-DM Methodology, adapted from Wirth and Hipp (2000)

In line with the approach presented by the CRISP-DM methodology (Wirth &

Hipp, 2000), the Data Preparation, Modeling and Evaluation stages that comprehend

this experiment were implemented in five phases as presented in Figure 3.4.
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Figure 3.4: Implementation phases carried out in this study

The methods and techniques used in each phase are detailed in the subsequent

subsections.

3.3.1 Data Preprocessing

The first step before the modeling phase is initiated, is the preprocessing of the data

which includes analysing the signal, applying filters to remove artifacts and signal

averaging. This phase consists in the definition and identification of the high frequency

band and ripples events by using the algorithm proposed by (Staba et al., 2002), as

well as the detection and removal of artifacts to reduce noise. The signals were digitally

filtered by a finite impulse response (FIR) band-pass filter within the range 80Hz -

500Hz to remove low-frequency artifacts and Savitzky–Golay filter was applied with

the purpose to increase precision without distorting the signal in the data. Figure 3.5

presents the steps taken to perform the signal processing.
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Figure 3.5: Illustrative diagram steps implemented to process the iEEG signals

3.3.2 Feature Creation

The second activity in this analysis is the feature creation phase which intends to

define a vector of attributes that will be input into the models in the training phase.

The goal behind extracting these features is to minimize the loss of information and

resources needed to process the signal data (Al-Fahoum & Al-Fraihat, 2014).

There are several methods that have been employed in previous research to ex-

tract features from iEEG signals, among those are Wavelet transform (WT), Fourier

Transform (FT) and time-frequency distributions (TFD). In this research, a Contin-

uous Wavelet Transform and a Fourier Transform were applied to the raw signal to

transform it into the required frequency domain.

Continuous Wavelet Transform (CWT): It measures the similarity between

a signal and a function. Specifically, a signal is projected on a continuous family of

frequency bands as expressed in equation 3.1:

C(a, b; f(x)), ψ(t)) =

∫ ∞
−∞

f(x)
1

a
ψ∗
(
x− b
a

)
dx (3.1)

Where:

• a is a scalar parameter a > 0

• b represents the position

• * denotes the complex conjugate

• ψ is a wavelet, representing the analyzing function
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Here the Morlet Wavelet Transform was used to extract the features based on the

equation 3.2:

Morlet Wavelet function

ψ(x) = exp−
x2

2 cos 5x (3.2)

One of the most important properties of the Wavelet transform is that given any

general function, it can be expressed as an infinite series of wavelets. This is partic-

ularly useful when dealing with non stationary signals such as iEEG (Al-Fahoum &

Al-Fraihat, 2014).

Fast Fourier Transform (FFT): Similar to the CWT, the Fast Fourier transform

also measures similarity between a signal and a function under analysis. The goal is

to transform the temporal representation of a waveform x(t), to a frequency domain

representation X(jω). In this case, such function is a periodic waveform represented

by complex exponential, expjωt, where t is the period. This results in a function

dependent on a single variable ω as presented in equation 3.3:

F (ω) =

∫ ∞
−∞

f(x) exp−iωx dx (3.3)

Using the transformations above, a total of seventeen features were extracted from

iEEG data and divided into two groups: advanced time-frequency features and tradi-

tional features. Time-Frequency features provide information about the wave form and

the repetitiveness of the signals in the data. On the other hand, traditional features

have the advantage that they tend to be easy to compute and can give practical infor-

mation about the data. These features are summarized in Table 3.1 and are described

in the subsequent sections.

Time Domain Features

The main goal of the feature extraction phase is to choose the statistics and features,

which are an appropriate representation of the original iEEG signal. Consecutive
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values of time series tend to be highly correlated and are usually not independent,

which can lead to redundancy and makes the feature extraction process more relevant

(Hussein, Mohamed, Shaban, & Mohamed, 2013).

The following statistical features related to the time-domain of the signals were se-

lected: Maximum (equation 3.4), Minimum (equation 3.5), Mean, Standard Deviation,

Normalized Standard Deviation and Coefficient of Variation.

1. Maximum (Max)

maximum = maxxi (3.4)

2. Minimum(Min)

minimum = minxi (3.5)

3. Mean

µ(x) =
1

N

N∑
i=1

(xi) (3.6)

4. Standard Deviation (std)

σ(x) =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (3.7)

5. Coefficient of Variation (CV)

Cv =
σ(x)

µ(x)
(3.8)

6. Skewness

sk = E

[
(x− µ)3

σ3

]
(3.9)

7. Kurtosis

k = E(x4)− 3E(x2)2 (3.10)

Where n represents the total number of data points in the window, while xi rep-

resents the ith data point in the window.
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Frequency Domain Features

Three statistical features were extracted for each iEEG segment:

1. Energy

energy =
N∑
i=1

(
xi(n)2

N
) (3.11)

2. Entropy

entropy = −
N∑
i=1

p(xi)log(p(xi)) (3.12)

3. Root Mean Square Power (RMS)

RMS =

√∑N
i=1 |x2i |
N

(3.13)

Time-Frequency Domain Features

Based on the transformations presented above, the following time-frequency features

were extracted:

1. Number of Peaks If a data point is three standard deviations away from the

mean, then it is classified as a peak in the signal within the observation window.

Figure 3.6 illustrates how the variable was calculated:

Figure 3.6: Number of peaks

2. Average of Maximum Peak

Calculated as the average of the values of the identified peaks in the signal within

the observation window.
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3. Peak to Notch

PeaktoNotch = max
(Energymaxi
Energymini

)
(3.14)

Where:

(a) Energymax(xi) is the energy of the maximum point of the power spectrum

in the observation window

(b) Energymin(xi) represents the energy of the minimum point of the power

spectrum in the observation window

The figure below illustrates how this feature was created based on the description

from Liu et al. (2016):

Figure 3.7: Peak to Notch

4. Power Spectral Density (PSD) As defined by Turitsyna and Webb (2005)

Sxx(ω) =

∫ ∞
−∞

Rxx(τ) exp−iωτ dτ (3.15)
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Where:

• Rxx corresponds to the auto-correlation function of the signals output of a

Fourier Transform

5. Power Band Ratio (PBR) This feature summarized the contribution of a

given frequency band to the overall power of the signal.

PBR =
Sxx1(ω)

Sxx2(ω)
(3.16)

Where:

• Sxx1 corresponds to the power spectral density of the band frequency 1

• Sxx2 corresponds to the power spectral density of the band frequency 2

6. Kullback-Leibler distance

The Kullback-Leibler distance (or relative entropy), it is a measure of how the

distribution of the signal is different from a second reference probability distri-

bution, in this case Gaussian distribution.

KL =
∑
i

(p(x) ∗ log
(
p(x)

q(x)

)
(3.17)

Where:

• p(x) corresponds to the signal distribution

• q(x) corresponds to the Gaussian distribution used to approximate p(x)

7. Amplitude envelope

The amplitude envelope is given by the magnitude of the analytic signal which

can be defined as:

xa = F−1(F (x)2U) = xi+ y (3.18)

Where:
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• F is the Fourier transform

• U the unit step function

• y the Hilbert transform of x

Complete list of features

Feature Definition Equation

Max Maximum value of coefficients 3.4

Min Minimum value of coefficients 3.5

Mean Mean value of coefficients 3.6

Std Standard Deviation of coefficients 3.7

CV Coefficient of variation of coefficients 3.8

Skewness Skewness of coefficients 3.9

Kurtosis Kurtosis of coefficients 3.10

Energy Square sum of coefficients 3.11

Entropy Entropy of the spectrum 3.12

RMS Power Root mean square power 3.13

Number Peaks Number of peaks in a window 3.14

Peak to Notch The frequency corresponding to the maxi-

mum peak to notch ratio

3.15

Peak Maximum Avg The average of the peaks values 3.16

Power Spectral Density Distribution of the power into frequency

components

3.17

Power Band Ratio The sub-band power ratio after denoising the

time frequency plane

3.18

KL Dist Kullback-Leibler distance 3.19

Amplitude Envelope Magnitude of the analytic signal 3.20

Table 3.1: Complete list of features extracted from iEEG signals
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To support the decision of including these variables in the training phase, an ex-

ploratory data analysis was conducted in which the distribution of the variables and

their correlation were analysed. The detailed results are presented in Appendixes

A.1.1 and A.1.2. In addition, a bivariate analysis was performed to understand the

relationship of the variables with the target. The results obtained are presented in

Appendix A.1.3.

3.3.3 Data Preparation

After preprocessing the data and extracting the features, the following additional steps

were taken to prepare the data for the modelling phase:

1. Data normalization : with the aim of avoiding bias caused by the differences in

the ranges feature values, all the attributes were normalized so its distribution

would have a mean of zero and a standard deviation of one (↪→ N (0, 1)) by using

standardization process:

z =
x− µ
σ

(3.19)

Where µ is the mean of the population and σ is the standard deviation of the

population

2. Univariate Analysis: it refers to the analysis of the descriptive statistics and the

features frequency using histograms.

3. Bivariate analysis: it takes into consideration each variable independently and

analyses the relationship between the feature values and the dependent variable.

Those variables which do not present a clear relationship with the target will be

excluded from the model.

4. Data split: following common practice in the field, the dataset was split into 3

subsets; training (60%), validation(20%) and test (20%). The model coefficients

are estimated from the training dataset, while the hyperparameters of the chosen
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algorithm are tuned using the validation dataset. Finally, the unbiased evalu-

ation of the performance metrics is obtained from applying the fitted model to

the test dataset.

3.3.4 Modeling Phase

In this section, an overview of the most common algorithms used in the literature is

given. Several existing machine learning algorithms have been described and compared

among researchers, however after a detailed literature review was executed, it remains

unclear which machine learning algorithm is more appropriate to address the presented

problem. Therefore, the following question raises: Which method best suits this specific

application?

The approach selected to carry out the activities of the modeling phase are de-

scribed below:

Figure 3.8: Modeling phase approach

In this study a set of different algorithms were explored and implemented to train

models able to identify HFO in the epileptic region of the brain. First, a set of Baseline

models were trained using time domain features and implementing the five different

algorithms described in this section. From these set of model a champion was selected
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based on the performance metrics described in the following section. Second, a set

of Challenger models were trained adding the frequency and time-frequency domain

attributes and implementing the same set of algorithms. A champion model was

selected using the same approach as in the Baseline models.

In the next subsections, the supervised machine learning algorithms used are de-

scribed, exploring these techniques can provide an understanding of which is the most

suitable given the data and problem in question.

Decision Trees (DT)

Decision Trees are a widely-used algorithm for supervised learning problems. Its pop-

ularity is attributed to the fact that this is a simple algorithm to understand which

can achieve high levels of accuracy. There are several Decision Tree algorithms (e.g.

C4.5, CHAID, CART, etc.), the one selected in this study was CART algorithm im-

plemented on sklearn library in python. This algorithm can take both categorical and

numeric inputs, as well as it can handle missing values. A decision tree is illustrated

in Figure 3.9

Figure 3.9: Illustrative example of Decision Tree

In this case, the feature that has the highest information gain is selected as the root

node (the highest decision node). The same strategy is replicated in each subdivision of
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the training dataset until all instances are divided (Hastie, Trevor Tibshirani, Robert

Friedman, 2009; Kubat, 2017)

One of the many advantages of the decision tree algorithms is that their logic and

output are easy to understand, even people that are not experts on the area. Although

accuracy metrics are important to assess an algorithm suitability, its interpretability

is equally important and that is why it has been selected to be tested in this analysis.

Random Forest (RF)

Random forests is an assemble method based on the average of a large number of

randomized decision trees built by the algorithm. In recent years, this algorithm has

become very popular since it can achieve high degrees of accuracy and it is very simple

to train and tune. Although it has been applicable to a diverse range of problems in

different areas, it has not found the same popularity for this particular problem.

The algorithm proposed by (Breiman, 2001) is trained using a bagging method

which consists of sampling different subsets of the training data at random, fitting the

model to these samples by using a random number of the features and aggregating

the predictions using majority vote. The algorithm is able to perform a randomisa-

tion approach and introduce diversity using different features and by implementing

the bagging method. This technique gives the algorithm the advantage of avoiding

overfitting while handling a large number of input features.

Support Vector Machines (SVM)

Support Vector Machines are supervised learning algorithms able to produce nonlinear

boundaries by building a linear boundary in the feature space transformed hyperplane.

Its goal is to find the most optimal function that maximizes the distance between

the nearest positive instances and the nearest negative instances. Figure 3.10 is a

representation of this strategy:
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Figure 3.10: SVM: optimal separating hyperplane

Although this algorithm is relatively more complex than tree based algorithms, one

of its advantages resides on the fact that the number of dimensions (features) does not

affect its ability to find an optimal solution. However, it requires a significant amount

of training time and memory.

Artificial Neural Networks (ANN)

Recently, Artificial Neural Networks have been a hot topic among researchers in ma-

chine learning and deep learning areas. This is a powerful algorithm able to outperform

classic techniques such as Support Vector Machines and Random Forest.

In this study, a Multilayer Perceptron Neural Network was built. Usually, the

architecture of this type of neural network consists of three layers where each of them

are composed of units called neurons. Figure 3.11 illustrates the network structure

implemented in this study:

• Input layer: contains a vector with the input features

• Hidden layer: contains the neurons that are interconnected to the input and

output layers by weighted links
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• Output layer: represents the model response

Figure 3.11: Multilayer Perceptron Neural Network

One advantage of these nonlinear statistical models is their capability to handle

multiple responses smoothly. This makes this algorithm particularly well suited to

process high dimensional data such as images. However, artificial neural networks are

difficult to tune and they demand large amounts of computational processing power

and memory usage.

Gradient Boosting (GB)

Gradient boosting is a type of supervised learning algorithm usually based on en-

sembled Decision Trees, in the same way as Random Forests. The idea behind this

technique is that the model can be trained in a gradual and sequential fashion. The

algorithm used gradient descent to optimize the loss function, meaning that the results
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are adjusted by the gradient of the error between actual target and prediction. At each

iteration, the model takes a step in the direction that minimizes the loss function.

Among the many advantages to use Gradient Boosting, resides in the fact that this

algorithm allows the user to optimize a customized loss function.

3.3.5 Model Evaluation

This study has as a purpose the investigation of supervised learning algorithms that

would allow the correct identification of HFO on seizure onset zones, as well as iden-

tifying those variables that contribute the most to this identification.

The determination of the goodness of fit of a classifier can be calculated by using

the model trained on the training dataset to predict the classes on the test dataset

and comparing the predictions to the true class values of the test dataset. There

are several performance metrics that can make this comparison such as accuracy, F1-

score, precision, recall, negative predictive value (NPV), sensitivity, specificity, receiver

operating characteristics (ROC) curve analysis and area under ROC curve (AUC).

The metrics used to evaluate the model performance are crucial to assess which

machine learning algorithm presents the greater predictive power. In line with previ-

ous studies in the literature, five criteria for evaluating the model performance were

selected (Kubat, 2017). Table 3.2 presents a summary of the these metrics:
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Metric Definition

AUC Measures the overall performance of a binary classifier

F1-Score Measures the effectiveness of the model in terms of Precision and Re-

call

Accuracy Measures the fraction of predictions that the model correctly identified

NPV Measures the probability that predicted negative cases were actually

negative

Recall Measures the fraction of actual positive cases that were correctly iden-

tified as such

Precision Measures the fraction of actual negative cases that were correctly iden-

tified as such

Table 3.2: Comparative table of the model performance metrics

While accuracy is presented in most research as one of the main metrics to evaluate

model performance, it can be inaccurate to use only this metric when in presence of

imbalance data as it is the case in question. When a particular class represents the

majority of cases, an algorithm could achieve close to 100% of accuracy by predicting

every instance as the majority class and it would be unsuccessful at identifying the

minority class which is the main objective of the study. Hence, NPV, Recall, F1 Score

and AUC were selected as additional metrics that can provide a good indication of the

model performance when dealing with imbalanced data and are also useful to model

comparison. This can be better observed when their formula is analysed:

1. NPV: It represents the probability that the classifier is right when labeling an

instance as negative:

NPV =
TN

TN + FN
(3.20)

2. Precision: It represents the probability that the classifier is right when labeling

an instance as positive:
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Precision =
TP

TP + FP
(3.21)

3. Recall: it is the probability that the classifier would correctly predict a positive

instance. Its formula is defined by:

Recall =
TP

TP + FN
(3.22)

4. Accuracy: It is defined as the percentage of correctly classified instances and

calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.23)

Where:

• TP = True positives cases

• TN = True negatives cases

• FP = False positives cases

• FN = False negatives cases

5. F1 Score: It is a criterion representing the harmonic mean of Precision and

Recall, defined by the following formula:

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(3.24)

6. AUC: It stands for Area Under the Curve (ROC curve) and it measures the

area underneath the ROC curve. It can be represented by a single scalar value

that measures the overall performance of a binary classifier (Melo, 2013) and can

take the values in the range [0, 1] in R.

To define the algorithm with the best performance four metrics were selected:

NPV, recall, ROC and F1 score. To select the model with the best performance
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across all metrics, the absolute difference between a model’s performance and the

best performance for each metric was calculated. The model with the lowest relative

difference was selected as the champion. The accuracy was calculated for each model

for informational purposes since it is the most reported measure in the literature.

3.4 Evaluation of Designed Solution

As mentioned in the previous sections, model performance metrics such as F1 Score,

Accuracy and AUC are good tools to compare models and assess which is the one that

best performed the task that it was trained for. However, this study also requires a

comparison between the Baseline model and Challenger was performed. The reason

behind comparing different classification models is to understand whether any observed

difference is statistically significant and not attributed to noise in the dataset.

Choosing the appropriate statistical test depends on the task the algorithm is

trying to learn and the data distribution. The most common statistical test used in

the literature to assess the difference of proportions is the independent t-test, however

this is not the appropriate tool to assess the difference between the accuracy of two

models. Instead, the McNemar test is proposed to determine if the difference observed

is significantly different from the expected (Dietterich, 1998). The McNemar test is a

non-parametric statistical test designed for paired nominal samples that can be applied

to compare the performance metrics of two machine learning classifiers.

3.4.1 Hypothesis Test

Here the hypothesis test to assess the statistical significance of accuracy for the best

performing algorithms used is presented. This hypothesis determines whether the

difference in performance between the Baseline model and the proposed Challenger

model are significant.

H0: There is no statistical significance between the models performance, i.e.: the

probabilities p(A) and p(B) are the same.

H1:There is a statistical significance between the models performance.
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Two significance levels were used to carry out the hypothesis test, 95% and 99%,

therefore each hypothesis was rejected if p-value is less than α level (5% and 1%)

respectively.

3.5 Strengths and Limitations of the proposed de-

sign

The experiment was designed having in mind that it should be easy to extend to other

researches and that the proposed champion model could be applied to either EEG

or iEEG data. The most relevant mainstream algorithms were selected due to their

easy interpretability and understanding. Additionally, the fact that NPV is used as

an evaluation metric which is important in many medical applications but not always

reported in previous studies.

Another strength of the proposed solution is the fact that attributes extracted from

different domains within the iEEG signal were used to train the model to identify

pathological high frequency oscillations. Whereas prior research tends not to go in

depth into feature creation, mostly focus on the machine learning algorithms.

Some of the limitations of the design include the fact that it still relies on iEEG

data which is an invasive procedure that patients have to undergo. A possible solution

would be to assess whether the application of the results obtained to EEG data is

effective. In addition, since noise detection was not the core of this project there is an

opportunity to increase the predictive power of the model by integrating it with more

sophisticated solutions that are able to reduce the presence of artifacts in the data.

One of the potential issues of the design of this experiment is the limited amount

of data. The predictive models are planned to be evaluated with information of only

8 patients. Therefore, if the patient selection had intrinsic bias the results of the

evaluation could be less relevant in terms of the model ability to generalize to unseen

data.
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Results, evaluation and discussion

A description of the experiment’s implementation and the results obtained from this

process, as well as their evaluation are discussed in this chapter. Having collected and

processed the iEEG data, Baseline and Challenger models were trained to discriminate

HFOs within the seizure onset zone using different supervised learning algorithms. The

process consisted in defining those features that would be included in the Baseline

and those included in the Challenger model, and then performing hyperparameter

optimization to select the best settings for each algorithm. The full list of variables,

the settings of the champion model (the one with the best performance) as well as the

results obtained are presented in this section.

4.1 Baseline Model

The Baseline model was trained taking into consideration the most basic time domain

variables used in the literature (Chen et al., 2017; Dian et al., 2015). Table 4.1 presents

the selected features:
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Basic Time Domain Features

Min Max

Mean Std

Skewness Kurtosis

Coef. Variation Entropy

Table 4.1: Baseline models - input features

For each algorithm, an iterative approach was chosen to carry out the hyperparam-

eter optimization during the training and validation phase. This optimization consists

of choosing a set of optimal hyperparameters that define the model architecture and

searching for the ideal combination of such hyperparameters. In this work, the Grid

search method was used to identify the best set of hyperparameters by training a

model for each combination of all the parameter values specified for each algorithm.

Then the best set of parameters was selected based on the model that produced the

best results employing a 10-fold cross validation.

Table 4.2 details the different hyperparameters that were optimized during this

iterative process which is described by the following steps:

1. Iteration 1: model is trained with the default hyperparameters and the Baseline

features

2. Iteration 2: manually selection of different values for the several algorithm’s

hyperparameters to understand which are the few important parameters

3. Iteration 3: perform a grid search with a 10-fold cross validation over the most

important parameters and select the optimal settings
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Algorithm Hyperparameters

Decision Tree criterion

min samples leaf

min samples split

max features

Random Forest n estimators

criterion

min samples leaf

max features

Gradient Boosting learning rate

n estimators

min samples leaf

max features

Support Vector Machine gamma

C

Artificial Neural Networks hidden layer sizes

activation

alpha

batch size

max iter

Table 4.2: Hyperparameters tested for each algorithm

Given the lack of consensus in the literature about the best algorithm to train and

solve for this type of problem, four different algorithms were selected based on previous

research and the model with the best performance was selected as the champion model.

Table 4.3 presents the performance metrics obtained by these algorithms:
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Model Precision Recall AUC Accuracy F1

DT (Baseline) 47.5% 22.5% 60.1% 91.4% 0.31

RF (Baseline) 64.8% 20.2% 59.6% 92.4% 0.32

GB (Baseline) 68.9% 10.0% 54.8% 92.1% 0.17

ANN (Baseline) 71.7% 11.2% 55.4% 92.2% 0.19

SVM (Baseline) 19.4% 62.7% 69.5% 75.2% 0.30

Table 4.3: Baseline model. Performance metrics: Decision Tree (DT); Random Forest

(RF); Gradient Boosting (GB); Support Vector Machine (SVM); Artificial Neural

Network (ANN)

As it can be seen from the results obtained, the Random Forest algorithm presents

the highest F1 Score (0.32) and accuracy (92.4%). As mentioned in the previous

section, when a dataset is imbalanced looking at accuracy is not recommended and

instead the metrics such as Precision, Recall and NPV should be considered to select

the best model.

In the case of the Artificial Neural Network, it presents a high value of precision

but low recall, meaning that while the model is good at predicting positive cases, it

only identifies a small number of the total positives. In this context, when the model

identifies a peak as pathological HFO (pHFO) it is most likely to be a real pHFO but

not all of the existing pHFO are being caught by the model.

On the other hand, the highest recall is achieved by the SVM model despite lower

values of precision. This means that the model is predicting most positive cases

correctly but it is also predicting some of the negative cases as positive. This model

also presents the highest AUC metric overall. Figure 4.1 presents the ROC of each

model.
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Figure 4.1: ROC curves of baseline models

Although high values of accuracy and AUC are important in every machine learn-

ing model, in most machine learning medical applications higher values of recall are

preferred than high values of precision. This is due to the fact that predicting some

negative cases as positive would not present major consequences, these cases will be

reviewed by doctors and then classified correctly as negative.

Another important metric is the NPV, which is a measure of the clinical relevance

of the results. The NPV uses the prevalence of a condition to determine the probability

that the predicted negative cases are in fact negative. This metric is important because

if a pHFO is predicted to be non-pathological (nHFO) it would have a major negative

impact (doctors will not take this for further review). Table 4.4 presents the NPV

values achieved by each model:
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Model NPV

DT (Baseline) 93.3%

RF (Baseline) 93.2%

GB (Baseline) 92.4%

ANN (Baseline) 92.5%

SVM (Baseline) 95.7%

Table 4.4: Negative Predictive Values of baselines models

As mentioned in Section 3.3.5, the champion model was selected taking into consid-

eration Recall, AUC, F1 Score and NPV metrics. The model with the best performance

across these metrics was a Support Vector Machine (SVM) with the following settings:

Hyperparameters Values

Kernel Radial Basis Function (RBF)

gamma 1

C 10

Table 4.5: Baseline models. Best hyperparameters settings

Next, an analysis of the features’ importance was completed. However, not all

algorithms can provide a measure of how important a feature is, this being the case of

Support Vector Machine and Artificial Neural Networks. Therefore, the importance

of the features in the three based algorithms was considered as a proxy to identify the

most relevant. Table 4.6 presents the feature for each model by order of importance:
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DT RF GB

std std std

skewness CV kurtosis

CV skewness CV

kurtosis kurtosis skewness

max max

Table 4.6: Baseline models. Features selected by decision tree (DT), random forest

(RF) and gradient boosting (GB) by order of importance.

After analysing the results, it becomes clear that standard deviation (std) within

the signal is the most relevant feature when it comes to identify pathological HFOs.

Also, the skewness and the coefficient of correlation are very important to the correct

prediction.

4.2 Challenger Model

To test whether time domain and time-frequency domain features are better predictors

of pHFO a set of Challenger models were built. This second set of models were trained

using a combination of traditional features, time domain and time-frequency domain

attributes. The complete list of features tested is presented in Table 4.7:

Complete set of features

Min Max Mean

Std Skewness Kurtosis

Coef. Variation Entropy Energy

Peak Maximum Avg Peak to Notch Amplitude Envelope

KL Dist Entropy Power Band Ratio

Number of Peaks

Table 4.7: Input features of challenger models
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In addition, the same set of algorithms used to train the set of Baseline models were

also implemented to train the Challenger models. The set of optimal hyperparameters

was obtained following a similar strategy to the Baseline set. Initially, the best set

of parameters from the Baseline models were implemented as a first iteration to train

the Challenger model. Then, based on this initial set of hyperparameters a Grid

search implementing a 10-fold cross validation technique was used to test different

values and therefore obtain the best hypeparameters for each algorithm. Finally,

five Challenger models were trained and validated using the optimized values. The

performance metrics of each model is presented in table below:

Model Precision Recall AUC Accuracy F1

DT (Challenger) 64.3% 42.5% 70.2% 93.2% 0.51

RF (Challenger) 81.9% 41.5% 70.3% 94.3% 0.55

GB (Challenger) 79.6% 35.8% 67.5% 93.9% 0.49

ANN (Challenger) 80.7% 36.3% 67.7% 93.9% 0.50

SVM (Challenger) 33.5% 77.0% 81.5% 85.3% 0.47

Table 4.8: Challenger model. Performance metrics: Decision Tree (DT); Random For-

est (RF); Gradient Boosting (GB); Support Vector Machine (SVM); Artificial Neural

Network (ANN)

The Random Forest algorithm presents the highest F1 Score (0.55), accuracy

(94.3%) and precision (81.9%) across all models, similar to what was observed in the

Baseline model setup. These results prove how powerful the Random Forest algorithm

is and why it is one of the most popular choices among many researchers.

Nonetheless, when recall and AUC values are analysed, the best model that arises

is a SVM model which achieved an AUC of 81.5% and recall of 77%. Both metrics in-

dicate the model is very good predicting correctly the positive cases in the population.

The ROC curve for each model is displayed in Table 4.2.
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Figure 4.2: ROC curves of challenger models

As mentioned earlier, NPV is also a highly important metric that needs to be

reported when dealing with this type of problem. Based on the results achieved by

each algorithm presented in Table 4.9, it can be observed that SVM model has the

highest predictive power when it comes to identifying the negative cases.

Model NPV

DT (Challenger) 94.9%

RF (Challenger) 95%

GB (Challenger) 94.4%

ANN (Challenger) 94.5%

SVM (Challenger) 97.6%

Table 4.9: Negative Predictive Values of challenger models

Based on the results obtained, the model with the best performance across the

different metrics was a Support Vector Machine with the following settings:
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Hyperparameters Values

Kernel Radial Basis Function (RBF)

gamma 50

C 100

Table 4.10: Final hyperparameters settings of SVM model.

When the features’ importance is examined in each model, it shows that the fre-

quency and time-frequency variables (e.g.: energy, entropy, KL distance, number of

peaks, etc.) have more relevance in the models than the original basic time domain

features. Furthermore, attributes such as standard deviation and coefficient of varia-

tion also remain important over the models. Table 4.11 details the list of features by

importance for each model:
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DT RF GB

std CV num peak

entropy std entropy

CV entropy CV

KL dist energy energy

kurtosis KL dist std

energy peak to notch kurtosis

num peak num peak KL dist

PBR kurtosis PBR

skewness skewness peak to notch

peak to notch PBR skewness

max amplitude enve-

lope

amplitude envelope

max

max peak avg

Table 4.11: Challenger models. Features selected by decision tree (DT), random forest

(RF) and gradient boosting (GB) by order of importance

4.3 Model comparison

One champion model was selected from the set of Baseline models and another cham-

pion from the set of Challenger models. The following table summarizes the perfor-

mance metrics for both champions selected and Figure 4.3 displays the ROC curve for

each model:
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Model Precision Recall AUC Accuracy F1

Best Baseline

(SVM)

19.4% 62.7% 69.5% 75.2% 0.30

Best Challenger

(SVM)

33.5% 77.0% 81.5% 85.3% 0.47

Table 4.12: Comparison of best performing baseline model (applying time-frequency

domain features) and best challenger model (applying all sets of features listed in

Table 3.1).

Figure 4.3: ROC Curve of SVM challenger and SVM baseline models.

As it can be observed, the performance of the champion Challenger model is quite

superior in most metrics. The F1 Score of the Challenger is 57% higher than the

Baseline, as well as its precision is 72% higher. In addition, the AUC of the cham-
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pion Challenger model is only a 17% better than the champion Baseline. Overall, it

suggests that introducing the frequency and time-frequency attributes improved the

performance of the algorithm in identifying the pHFOs.

As explained earlier, SVM algorithm does not provide guidance with regards to

the features that contribute the most to the model. Therefore, the output from the

other algorithms (decision tree, random forest and gradient boosting) were used to

identify the best predictors by taking into consideration the ranking of each attribute

when ordered by its importance. Table 4.13 presents a summary of the top 5 features

in each model:

Baseline Challenger

std Entropy

CV CV

Skewness std

Kurtosis Energy

max KL dist

Table 4.13: Top 5 best performing features in each model based on Decision tree,

Random Forest and Gradient Boosting results.

Since the decision tree, random forest and gradient boosting are tree based algo-

rithms, the most important features can be selected computing the relative rank of

an attribute when used as a decision node in the tree. Usually, attributes used at

the top of the tree tend to contribute to the final prediction of the majority of the

input samples (Breiman, 2001). The five most important features of the baseline and

challenger model were selected combining their raking in each of the three algorithms

mentioned above. Tables 4.6 and 4.11 presented the ranking of the attributes for each

algorithm in the baseline and challenger model respectively.

Also, the density distribution of the top five best performing features were analysed

(Figure 4.4 - Figure 4.8). From this analysis it can be observed that the features cap-

turing the oscillations in the SOZ demonstrate a long tail, especially for Entropy and
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Energy features which is compatible to what has been seen in the literature (Cimbalnik

et al., 2019).

Figure 4.4: Entropy distribution Figure 4.5: St. Deviation distribution

Figure 4.6: Energy distribution Figure 4.7: CV distribution

Figure 4.8: KL distance distribution
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Additionally, when compared to results achieved by previous researchers, it is ob-

served that the proposed champion model accomplished excellent values of NPV and

good values of AUC. However, the F1 score is not as high as expected due to low

precision of the model. Table 4.14 presents the comparison against similar models

presented in the literature:

Methodology Best Performance

Author Features Classifier AUC NPV F1 Score

Akter et al.

(2020)

features based on

entropy

SVM 83% N/A 0.46

Chen et al.

(2017)

Max, Min, Mean,

Std, Skewness,

Kurtosis, Energy

SVM 92% 91.8% 0.92

Cimbalnik et

al. (2019)

HFO, Univariate

and Bivariate

features

SVM N/A 80% 0.89

Proposed

Model

Entropy, CV, Std,

Energy, KL dist

SVM 77% 97.6% 0.47

Table 4.14: Comparison of proposed solution to results achieved by previous research

The results obtained suggest that the precision of the algorithm could be improved

with no detriment of the recall metrics, and thus the F1 score achieved should increase

significantly.

4.3.1 McNemar test

A paired sample McNemar statistical test was conducted to compare whether the

difference in the performance obtained by the two different models are actually sta-

tistically significant. The results of the test suggest that the difference between these

models was significant, X2 (2, N = 52842) = 551, p < .001. The predictive power

of the Challenger model is higher than the predictive power achieved by the Baseline
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model, suggesting that the features added are indeed better predictors. Therefore, the

statistically significant result indicates there is evidence to support rejecting the null

hypothesis presented in Section 3.1.

4.4 Evaluation

To evaluate the model capability to generalize to unseen data, the champion model

was implemented on 8 patients that did not participate in the training, validation nor

test phases. Table 4.15 presents the performance metrics of the model for each patient:

Patient Precision Recall AUC Accuracy F1

Patient 1 33.9% 68% 77.8% 85.9% 0.45

Patient 2 24% 46% 70% 92.2% 0.32

Patient 3 1.6% 59% 54.4% 50% 0.03

Patient 4 10.1% 15.5% 53.7% 87.8% 0.12

Patient 5 4.2% 44.7% 59.1% 72.7% 0.08

Patient 6 10.6% 69.1% 61.9% 55.8% 0.18

Patient 7 5.9% 04.5% 51.3% 95.6% 0.05

Patient 8 0% 0% 49.6% 98% 0

Table 4.15: Performance metrics for extra 8 individual patients of SVM challenger

model.

The results achieved by the model are very heterogeneous, they suggest that the

model did a good work predicting pHFO on half of the patients analyzed. Although,

the model accomplished a very good AUC for patients 1,2 and 6, its performance for

patients 7 and 8 is not different than a random guess.

As can be observed in Table 4.16, the model performance in terms of negative pre-

dictive values is relatively good even for those patients where the overall performance

was poor.
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Patient NPV

Patient 1 96.7%

Patient 2 97.7%

Patient 3 98.8%

Patient 4 94.9%

Patient 5 98.1%

Patient 6 95.8%

Patient 7 97.4%

Patient 8 98.7%

Table 4.16: Negative predictive values for extra 8 individual patients of SVM challenger

model.

A possible explanation for the acceptable values of NPV could be due to the fact

that the algorithm overestimates the number of HFO in the seizure onset zone, as can

been seen in Figure 4.9 that shows the number of predicted pHFO (orange bar) and

the total number of pHFO identified visually by doctors (blue bar).
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Figure 4.9: Patient-specific target detection. Each bar indicates the number of targets

Nonetheless, when the number of correct predictions per patient is analysed (Figure

4.10) it is observed that the model has missed the true pHFO in 4 out of the 8 patients

analysed which it is in accordance with the low precision of the model.

For Patient 1 and 6 the algorithm over detected 68% of the total targets, however it

also predicted 2 and 6 times more events than the actual numbers. On the other hand,

the model presented its worst performance on patients 7 and 8 where it identified less

than 5% of the total events.
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Figure 4.10: Patient-specific target detection. Each bar indicates the number of targets

(blue corresponds to actual target and orange to those correctly predicted)

There are additional factors that might be relevant to this analysis but were not

taken into consideration, for example the number of channels used to capture the

iEEG. It was observed that in the cases where less channels were used, the model

presented an inferior performance, as can be seen in Figure 4.11. To confirm this

hypothesis, data of the thirty three patients was used and a Pearson’s correlation test

was conducted to assess the relationship between the model AUC performance and the

number of channels. The results suggested that there is a strong statistically significant

correlation between the two variables (r =.7417, n = 33, p=.0351). However, it must

be considered that the sample size is quite small.
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Figure 4.11: Relationship between number of channels used to record iEEG and AUC

performance of the model)

4.5 Discussion

Some of the limitations and strengths of the proposed champion model are discussed

in this section.

With regards to the strengths, the fact that the model was trained with a larger

dataset than what has been seen in the literature, suggests that data points based

on signals with different shapes were included and therefore the model potential to

generalize should be better. Also, the negative predicted value was reasonably better

than those achieved by previous studies.

An additional strength of the model is that the features used to improve the model

performance did not require additional data collection. All the features presented were

extracted from the same iEEG recordings.

Although the results obtained are promising, there are a few limitations that are

57



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

worth mentioning. First, the running time of the SVM algorithm was significantly

higher than for other algorithms which requires an analysis of the trade off between

better performance and training time needed. Second, the analysis of adding these

features individually was not included in this research, as well as different combinations

of multiple subsets of the attributes.

Finally, the model was not trained to detect seizures happening in real time, it was

only trained to identify HFO located in the seizure onset zone. However, translating

this model into a real time seizure detection application should not be difficult based

on the assumption that brain waves would have similar shape
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Conclusion

5.1 Research Overview

Epilepsy is the second prevalence neurological disease in the world, affecting millions

of people worldwide. In most cases this condition is treated with medication, yet

drug treatment is not successful for many patients whose need to go under surgery to

control the seizures produced by this disorder.

This research attempts to expand the knowledge about this subject by combin-

ing different features and classifiers selected from the literature. In this study, fea-

tures from different domains were extracted from intracranial electroencephalography

(iEEG) signals are studied in order to determine their fitness to identify pathological

high frequency oscillations (HFO) by training a series of supervised machine learning

algorithms to perform this task. The discrimination between pathological (pHFO) and

physiological HFO would help epileptologists to focus their resources on the seizure

onset zone (SOZ) in the brain.

5.2 Problem Definition

The current gold standard to identify the seizure onset zone (SOZ) in the brain is based

on visual inspection of the iEEG captured through a surgical procedure. Therefore,

most researchers have analysed HFO as a potential biomarker. However pathological
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and physiological oscillations can occur across different brain areas and in order to

successfully identify the pathological HFO (pHFO) on the SOZ it is important to

understand which variables successfully represent the pHFO characteristics.

In addition, many different machine learning approaches have been used to tackle

this problem. Some researchers have adopted unsupervised learning approaches using

mostly clustering techniques based on Gaussian Mixed Models. On the other hand

Support Vector Machines have been very popular among those studies using a super-

vised learning approach.

All the reasons presented above explain why this is not a trivial task and requires

a deep understanding of the different methods that can be used to solve this problem.

Thus, the main goal of this research was to identify the most significant iEEG signal

features for the detection of pathological HFO on the SOZ. Secondly, a statistical

model using supervised machine learning algorithms was developed to detect such

pHFO in epilepsy patients.

5.3 Design, Evaluation & Results

The presented analysis was motivated by the need to identify those features extracted

from iEEG signal data that are statistically significant to discriminate HFO in the

seizures onset zones. The hypothesis behind this is that supervised learning models

trained using less traditional attributes will show better performance than the mod-

els that use only traditional attributes. Where less traditional features are frequency

domain attributes (e.g.: entropy, energy, etc.) and time-frequency domain attributes

(e.g. number of peaks, power spectral density, Kullback-Leibler distance, etc.). Usu-

ally, the traditional features refer to basic statistical time domain variables such as

mean, skewness, standard deviation, etc.

As a result, a total of five Baseline models were trained using traditional features

and employing five different supervised learning algorithms:

1. Decision Tree

2. Random Forest
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3. Gradient Boosting

4. Support Vector Machine

5. Artificial Neural Network

Likewise, five different Challenger models were built taking into consideration both

traditional and non-traditional attributes and making use of the same set of algorithms.

Data of 25 out of the 33 patients were used to train, validate and test the machine

learning models. Also, a grid search with a 10-fold cross validation approach was

employed to optimize the hyperparameters of each algorithm. Also, to assess the

champion model’s ability to generalize to unseen data, the model was applied to the

remaining 8 patients.

From the set of Baseline models, a SVM (kernel = rbf, C= 10, gamma = 1) was

the best performing model achieving 75.2% accuracy, 69.5% AUC and 95.7% NPV.

However these values suggest that there is opportunity to improve the predictive power

of the model. Furthermore, the best Challenger model was also a SVM (kernel = rbf,

C= 100, gamma = 50) algorithm. This model presented a 23% higher recall (77%),

17% higher AUC (82%), 13% higher accuracy(85%) and the negative predictive value

rate also improved to 97.6%.

With respect to the features with the highest importance, these could not be deter-

mined from the SVM algorithm since it projects the features hyperplane to an infinite

dimension. However, the outputs from the Random Forest, Gradient Boosting and

Decision Tree were taken into consideration to define which features were the better

predictors. From this analysis, it was observed that entropy, coefficient of variation,

standard deviation, energy and Kullback-Leibler distance were the five attributes with

the most importance to the models. This suggests that frequency and time-domain

features contribute to the discrimination of pHFO in the seizure onset zone.

Finally, a McNemar test was conducted to assess whether the difference between

the performance of the models is statistically significant. The results of the test suggest

that the difference between these models was significant, X2 (2, N = 52842) = 551,
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p < .001 and that there is evidence to support rejecting the null hypothesis stated in

Section 3.1.

5.4 Contributions and impact

The results from the research carried out suggest that the inclusion of frequency do-

main and time-frequency domain variables to train machine learning models to discrim-

inate between pathological and physiological HFO improves the model performance.

This is one of the few studies that have combined different attributes extracted from

iEEG data collected to train a machine learning model able to identify pHFO in the

seizure onset zone.

In addition, when it comes to assessing the best algorithm the SVM proved to be

the best option in terms of getting high values of negative predictive value (NPV), AUC

and Recall. The recommended metrics used to evaluate machine learning algorithms

when applied to medical cases are recall and NPV. High values of recall indicate that

the algorithm is successful in classifying most positive cases. Furthermore, high values

of NPV imply that the algorithm is identifying negative cases correctly.

The fact the SVM algorithms performed better in both Baseline and Challenger

problems, indicates that its ability to learn non-linear decision boundaries is really

powerful when applied to iEEG signal data. This finding adds to the large body of

knowledge in the field of machine learning applied to neurological sciences and supports

why many researchers have used it in the past.

When compared to other studies, it was observed that the champion model pre-

sented similar levels of accuracy and a higher NPV, which is something to be outlined

since NPV is a crucial metric when working with medical applications.

Moreover, besides the findings obtained by this research, it is also important to

emphasize that this study used a larger dataset than what has been seen in the lit-

erature (presented in Table 2). The findings are based on 33 patients while most of

previous research have used less than 20 patients.

Although the analysis presented in this study is limited to the use of HFO as
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biomarkers, the approach proposed and the findings presented show value. They

emphasize the importance of using machine learning techniques to solve important

medical problems and help doctors on time consuming tasks.

5.5 Future Work & recommendations

The work presented aimed to fill one of the many gaps in the literature, hence there is

an opportunity to continue with this analysis complementing it with additional data.

For example, previous research suggests that features extracted from other biomarkers

could represent a huge improvement regarding the identification of seizure onset zones

(Cimbalnik 2019 y Varatharajah,). There are several examples of features that could

be included such as phase locking value (PLV) and cross frequency coupling (CFC)

based features.

Although multiple supervised machine learning algorithms have been tested in this

study, future work could focus on the adoption of deep learning techniques to identify

the relevant oscillations on the SOZ.

Finally, how to discriminate between pathological and physiological HFOs gener-

ated by the human brain is a task that has yet to be completely understood. Hopefully,

this work could set the base to future developments into real-time iEEG data process-

ing and SOZ discrimination, which could reduce the time required for monitoring and

could lead to real-time seizure identification.
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