7,789 research outputs found

    Interbank markets and multiplex networks: centrality measures and statistical null models

    Full text link
    The interbank market is considered one of the most important channels of contagion. Its network representation, where banks and claims/obligations are represented by nodes and links (respectively), has received a lot of attention in the recent theoretical and empirical literature, for assessing systemic risk and identifying systematically important financial institutions. Different types of links, for example in terms of maturity and collateralization of the claim/obligation, can be established between financial institutions. Therefore a natural representation of the interbank structure which takes into account more features of the market, is a multiplex, where each layer is associated with a type of link. In this paper we review the empirical structure of the multiplex and the theoretical consequences of this representation. We also investigate the betweenness and eigenvector centrality of a bank in the network, comparing its centrality properties across different layers and with Maximum Entropy null models.Comment: To appear in the book "Interconnected Networks", A. Garas e F. Schweitzer (eds.), Springer Complexity Serie

    Multiplexity and multireciprocity in directed multiplexes

    Get PDF
    Real-world multi-layer networks feature nontrivial dependencies among links of different layers. Here we argue that, if links are directed, dependencies are twofold. Besides the ordinary tendency of links of different layers to align as the result of `multiplexity', there is also a tendency to anti-align as the result of what we call `multireciprocity', i.e. the fact that links in one layer can be reciprocated by \emph{opposite} links in a different layer. Multireciprocity generalizes the scalar definition of single-layer reciprocity to that of a square matrix involving all pairs of layers. We introduce multiplexity and multireciprocity matrices for both binary and weighted multiplexes and validate their statistical significance against maximum-entropy null models that filter out the effects of node heterogeneity. We then perform a detailed empirical analysis of the World Trade Multiplex (WTM), representing the import-export relationships between world countries in different commodities. We show that the WTM exhibits strong multiplexity and multireciprocity, an effect which is however largely encoded into the degree or strength sequences of individual layers. The residual effects are still significant and allow to classify pairs of commodities according to their tendency to be traded together in the same direction and/or in opposite ones. We also find that the multireciprocity of the WTM is significantly lower than the usual reciprocity measured on the aggregate network. Moreover, layers with low (high) internal reciprocity are embedded within sets of layers with comparably low (high) mutual multireciprocity. This suggests that, in the WTM, reciprocity is inherent to groups of related commodities rather than to individual commodities. We discuss the implications for international trade research focusing on product taxonomies, the product space, and fitness/complexity metrics.Comment: 20 pages, 8 figure

    Complex Networks from Classical to Quantum

    Full text link
    Recent progress in applying complex network theory to problems in quantum information has resulted in a beneficial crossover. Complex network methods have successfully been applied to transport and entanglement models while information physics is setting the stage for a theory of complex systems with quantum information-inspired methods. Novel quantum induced effects have been predicted in random graphs---where edges represent entangled links---and quantum computer algorithms have been proposed to offer enhancement for several network problems. Here we review the results at the cutting edge, pinpointing the similarities and the differences found at the intersection of these two fields.Comment: 12 pages, 4 figures, REVTeX 4-1, accepted versio

    Unbiased sampling of network ensembles

    Get PDF
    Sampling random graphs with given properties is a key step in the analysis of networks, as random ensembles represent basic null models required to identify patterns such as communities and motifs. An important requirement is that the sampling process is unbiased and efficient. The main approaches are microcanonical, i.e. they sample graphs that match the enforced constraints exactly. Unfortunately, when applied to strongly heterogeneous networks (like most real-world examples), the majority of these approaches become biased and/or time-consuming. Moreover, the algorithms defined in the simplest cases, such as binary graphs with given degrees, are not easily generalizable to more complicated ensembles. Here we propose a solution to the problem via the introduction of a "Maximize and Sample" ("Max & Sam" for short) method to correctly sample ensembles of networks where the constraints are `soft', i.e. realized as ensemble averages. Our method is based on exact maximum-entropy distributions and is therefore unbiased by construction, even for strongly heterogeneous networks. It is also more computationally efficient than most microcanonical alternatives. Finally, it works for both binary and weighted networks with a variety of constraints, including combined degree-strength sequences and full reciprocity structure, for which no alternative method exists. Our canonical approach can in principle be turned into an unbiased microcanonical one, via a restriction to the relevant subset. Importantly, the analysis of the fluctuations of the constraints suggests that the microcanonical and canonical versions of all the ensembles considered here are not equivalent. We show various real-world applications and provide a code implementing all our algorithms.Comment: MatLab code available at http://www.mathworks.it/matlabcentral/fileexchange/46912-max-sam-package-zi

    Exploring the randomness of Directed Acyclic Networks

    Get PDF
    The feed-forward relationship naturally observed in time-dependent processes and in a diverse number of real systems -such as some food-webs and electronic and neural wiring- can be described in terms of so-called directed acyclic graphs (DAGs). An important ingredient of the analysis of such networks is a proper comparison of their observed architecture against an ensemble of randomized graphs, thereby quantifying the {\em randomness} of the real systems with respect to suitable null models. This approximation is particularly relevant when the finite size and/or large connectivity of real systems make inadequate a comparison with the predictions obtained from the so-called {\em configuration model}. In this paper we analyze four methods of DAG randomization as defined by the desired combination of topological invariants (directed and undirected degree sequence and component distributions) aimed to be preserved. A highly ordered DAG, called \textit{snake}-graph and a Erd\:os-R\'enyi DAG were used to validate the performance of the algorithms. Finally, three real case studies, namely, the \textit{C. elegans} cell lineage network, a PhD student-advisor network and the Milgram's citation network were analyzed using each randomization method. Results show how the interpretation of degree-degree relations in DAGs respect to their randomized ensembles depend on the topological invariants imposed. In general, real DAGs provide disordered values, lower than the expected by chance when the directedness of the links is not preserved in the randomization process. Conversely, if the direction of the links is conserved throughout the randomization process, disorder indicators are close to the obtained from the null-model ensemble, although some deviations are observed.Comment: 13 pages, 5 figures and 5 table

    Quantifying sudden changes in dynamical systems using symbolic networks

    Get PDF
    We characterise the evolution of a dynamical system by combining two well-known complex systems' tools, namely, symbolic ordinal analysis and networks. From the ordinal representation of a time-series we construct a network in which every node weights represents the probability of an ordinal patterns (OPs) to appear in the symbolic sequence and each edges weight represents the probability of transitions between two consecutive OPs. Several network-based diagnostics are then proposed to characterize the dynamics of different systems: logistic, tent and circle maps. We show that these diagnostics are able to capture changes produced in the dynamics as a control parameter is varied. We also apply our new measures to empirical data from semiconductor lasers and show that they are able to anticipate the polarization switchings, thus providing early warning signals of abrupt transitions.Comment: 18 pages, 9 figures, to appear in New Journal of Physic

    Low-temperature behaviour of social and economic networks

    Get PDF
    Real-world social and economic networks typically display a number of particular topological properties, such as a giant connected component, a broad degree distribution, the small-world property and the presence of communities of densely interconnected nodes. Several models, including ensembles of networks also known in social science as Exponential Random Graphs, have been proposed with the aim of reproducing each of these properties in isolation. Here we define a generalized ensemble of graphs by introducing the concept of graph temperature, controlling the degree of topological optimization of a network. We consider the temperature-dependent version of both existing and novel models and show that all the aforementioned topological properties can be simultaneously understood as the natural outcomes of an optimized, low-temperature topology. We also show that seemingly different graph models, as well as techniques used to extract information from real networks, are all found to be particular low-temperature cases of the same generalized formalism. One such technique allows us to extend our approach to real weighted networks. Our results suggest that a low graph temperature might be an ubiquitous property of real socio-economic networks, placing conditions on the diffusion of information across these systems

    Quantifying the interdisciplinarity of scientific journals and fields

    Full text link
    There is an overall perception of increased interdisciplinarity in science, but this is difficult to confirm quantitatively owing to the lack of adequate methods to evaluate subjective phenomena. This is no different from the difficulties in establishing quantitative relationships in human and social sciences. In this paper we quantified the interdisciplinarity of scientific journals and science fields by using an entropy measurement based on the diversity of the subject categories of journals citing a specific journal. The methodology consisted in building citation networks using the Journal Citation Reports database, in which the nodes were journals and edges were established based on citations among journals. The overall network for the 11-year period (1999-2009) studied was small-world and scale free with regard to the in-strength. Upon visualizing the network topology an overall structure of the various science fields could be inferred, especially their interconnections. We confirmed quantitatively that science fields are becoming increasingly interdisciplinary, with the degree of interdisplinarity (i.e. entropy) correlating strongly with the in-strength of journals and with the impact factor.Comment: 23 pages, 6 figure

    Laplacian Dynamics and Multiscale Modular Structure in Networks

    Full text link
    Most methods proposed to uncover communities in complex networks rely on their structural properties. Here we introduce the stability of a network partition, a measure of its quality defined in terms of the statistical properties of a dynamical process taking place on the graph. The time-scale of the process acts as an intrinsic parameter that uncovers community structures at different resolutions. The stability extends and unifies standard notions for community detection: modularity and spectral partitioning can be seen as limiting cases of our dynamic measure. Similarly, recently proposed multi-resolution methods correspond to linearisations of the stability at short times. The connection between community detection and Laplacian dynamics enables us to establish dynamically motivated stability measures linked to distinct null models. We apply our method to find multi-scale partitions for different networks and show that the stability can be computed efficiently for large networks with extended versions of current algorithms.Comment: New discussions on the selection of the most significant scales and the generalisation of stability to directed network
    • …
    corecore