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The feed-forward relationship naturally observed in time-dependent processes and in a diverse number of
real systems—such as some food webs and electronic and neural wiring—can be described in terms of the
so-called directed acyclic graphs �DAGs�. An important ingredient of the analysis of such networks is a proper
comparison of their observed architecture against an ensemble of randomized graphs, thereby quantifying the
randomness of the real systems with respect to suitable null models. This approximation is particularly relevant
when the finite size and/or large connectivity of real systems make inadequate a comparison with the predic-
tions obtained from the so-called configuration model. In this paper we analyze two methods of DAG ran-
domization as defined by the desired combination of two topological invariants �directed degree sequence and
component distributions� aimed to be preserved. A highly ordered DAG, called snake graph, and an Erdös-
Rényi DAG were used to validate the performance of the algorithms. Finally, three real case studies, namely,
the C. elegans cell lineage network, a Ph.D. student-supervisor network, and the Milgram’s citation network,
were analyzed using each randomization method. Results show how the interpretation of degree-degree rela-
tions in DAGs with respect to their randomized ensembles depends on the topological invariants imposed.
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I. INTRODUCTION

Many relevant properties of complex systems can be de-
scribed by an appropriate network representation of their el-
ements and interactions �1–5�. Most of these networks are
directed, i.e., there is a directional relationship between two
elements defining who influences who in a given order.
Among the class of directed networks, directed acyclic
graphs �DAGs� are an important subset lacking feedback
loops. This is especially suitable for the representation of
evolutionary, developmental, and historical processes in
which the time asymmetry determines a feed-forward �acy-
clic� flow of causal relations. In this context, DAGs consti-
tute a formal representation of causal relations that display
the direct effects of earlier events over latter ones. Citation
networks are among their most paradigmatic cases �6,7�. In
these networks nodes are scientific articles and directed links
�arcs in the terminology of graph theory� stand for biblio-
graphic citations among them. According to a chronological
order, arcs are established from former articles to newer ones
in a feed-forward manner.

In general, time-dependent processes have been formal-
ized as DAGs. Examples of that comprehend article and
patent citation networks �8,9�, decision jurisprudence pro-
cesses �10,11�, and tree genealogies and phylogenies. More-
over, other relevant systems such as standard electric circuits
�12�, feed-forward neural �13�, and transmission networks
�14� are also suitably represented as DAGs.

The main objective of this paper is to explore the
randomness—in topological terms—of real systems display-

ing a directed acyclic structure by the definition of random-
ization methods that preserves a fixed number of topological
invariants. To this end, the design of null models to highlight
the particular features characterizing a system with respect to
a neutral or random scenario �2� is needed. In this context,
the so-called configuration model �2,3,15,16� has been
probed as a fruitful approximation to provide a null-model
scenario of what is expected by chance in complex networks
under the assumptions of sparseness, infinite size, and lack of
correlations. However, little attention has been paid concern-
ing DAGs. Indeed, a rigorous definition of random DAG
from its directed degree sequence has been only recently
proposed �17�, rising the interest for its study through the
configuration model approach. Borrowing the methodology
to build random undirected graphs �16,18�, degree sequence
is visualized as a set of edge stubs. Hence, a random DAG is
constructed by matching stubs according to certain order
constraints until they are completely canceled �17�. Although
this is an important contribution, some problems arise in us-
ing this methodology as the null-model reference of real
nets. First, this methodology is dependent on how probable is
to construct a graph from a degree sequence since not all of
them produce a graph, i.e., they are not graphical. Addition-
ally, configuration model assumptions are not fulfilled in real
systems due to their finite size and the presence of densely
connected regions.

An alternative approach used in this work is based on
iterative processes of arc rewiring over the graph, keeping
the graphical condition during the whole process of random-
ization. This is a relevant issue since the degree sequence,
either directed or undirected, imposes a particular space of
topological configurations rather limited—as we shall see in
this work—for DAGs. Attending to this approach we can
estimate where a real graph is placed preserving a graphical*carlos.rodriguez@upf.edu
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ensemble that holds some topological invariants. The two
fundamental topological invariants considered in this work
for a null-model comparison are the directed degree se-
quence and the component structure. Degree sequence �either
directed or undirected� and the degree distribution have been
typically chosen as invariants in the construction of random
models �2,16,17,19�. However, as is well known in random
graph theory, the existence of some graph satisfying a given
degree sequence does not guarantee a single connected com-
ponent containing the whole set of nodes, except at high
connectivities. Therefore, sparse networks representing con-
nected systems are expected to be fragmented during a ran-
domization process. For instance, this may be an undesirable
effect when studying historical processes since it breaks the
flow of causality. Besides, there are also real systems that
display more than a single connected component. Those dis-
connected components do not interact among them and, ar-
guably, can be considered to be independent systems in terms
of causality. It is worth to note that preservation of connected
components in graph randomization processes has recently
raised the interest of the network community �20�.

According to the above considerations, in order to pro-
duce comparable ensembles for the evaluation of the ran-
domness of a real DAG, we describe two randomization
methods for DAGs paying attention to the conservation of
directed degree sequence. These two models differ in the
requisite of the connected component structure conservation.
In order to test the success of these randomization tech-
niques, algorithms were applied to two extreme—in terms of
degree-degree relations—network models: an Erdös-Rényi
�ER� DAG and a highly ordered graph denominated snake
DAG. Their respective graph ensembles were evaluated by
measuring the loss of degree-degree relations along different
rewiring processes.

It is arguable to think that as the number and complexity
of topological invariants increases, the space of possible ran-
dom network is consequently reduced. Then, doing a com-
parison of graph ensembles keeping different topological in-
variant can provide a good insight about the effectiveness of
our randomization methods. According to this, extreme mod-
els were also randomized with two additional raw methods
based on the conservation of the undirected degree sequence
�and one of them also on the connected component struc-
ture�. Therefore, a total of four types of randomization were
applied to these two extreme models. Randomized en-
sembles were compared among them in terms of their
degree-degree relations. Once evaluated the success of our
two methods they were applied to three real DAGs: a citation
network, a Ph.D. student-supervisor network, and the cell
lineage in the development of Caebnorhabditis elegans
worm.

The paper is organized as follows: Sec. II offers the basic
concepts related to DAGs. Section III explicitly defines the
set of four randomization algorithms according to different
topological invariants. Section IV describes and character-
izes the randomness indicators, and it applies the randomiza-
tion processes to the systems under study: two toy models—
which enable us to validate the performance of the
algorithms—and three real systems. Section V discusses the
relevance of the obtained results.

II. ORDERING, CAUSALITY, AND FORMAL DEFINITION
OF DAGs

In this section we discuss some mathematical properties
of DAGs, their interpretation in terms of causal relations, and
the problem of component structure conservation.

A. Basic definitions

Let G�V ,E� be a directed graph, with V= �v1 , . . . ,vN� be-
ing the set of nodes, and the set of ordered pairs E
= ��vk ,vi� , . . . , �v j ,vl�� the set of arcs—where the order
�vk ,vi� implies that there is an arrow in the following direc-
tion: vk→vi. The underlying graph Gu of a directed graph G
is an undirected graph with the same set of nodes G, but
whose arrows are neglected. Formally, if �vk ,v j��E, then
the unordered pair—the edge—�vk ,v j��Eu. Given a node
vi�V, the number of outgoing arcs, to be denoted by ko�vi�,
is called the out-degree of vi. Similarly, the number of ingo-
ing arcs of vi is called the in-degree of vi, denoted by ki�vi�.

A DAG is a directed graph characterized by the absence
of cycles: if there is a directed path from vi to vk �i.e., there
is a finite sequence �vi ,v j� , �v j ,vl� , �vl ,vs� , . . . , �vm ,vk��E�,
then there is no directed path from vk to vi. Borrowing con-
cepts from order theory �21,22�, we refer to nodes with ki
=0 as maximals and those with ko=0 as minimals. The ab-
sence of cycles ensures that at least there is one minimal
node and one maximal node. Maximal nodes can be seen as
inputs of a given computational or sequential process while
minimal—or terminal—ones are the outputs of such a pro-
cess. Furthermore, the acyclic nature permits us to define a
node ordering by labeling all the nodes with sequential natu-
ral numbers. Thus, in a DAG there is at least one numbering
of the nodes such that

�∀�vi,v j� � E� ⇒ �i � j� . �1�

For this reason, DAGs have been also referred as ordered
graphs �17�.

B. Random DAGs

The theoretical roots of the concept of a random DAG are
based on the so-called directed degree sequence �17�—as
well as on the concept of random graph �16�. A random DAG
G is a randomly chosen element of an ensemble of DAGs
which share the directed degree sequence, denoted by d�G�,
which is defined as follows:

d�G� = „ki�v1�,ko�v1�…, . . . ,„ki�vi�,ko�vi�…, . . . . �2�

The two numerical quantities composing every element of
such a sequence, ki�vk� and ko�vk�, encode the pattern of
connectivity of every node of the graph. In general, the en-
semble of random graphs containing N nodes is composed by
all possible graphs whose connectivity pattern satisfies the
directed degree sequence. If we only pay attention to the
number of edges connected to a given node vi—i.e., regard-
less the direction of the arrows—we define the degree of the
node vi as k�vi�=ki�vi�+ko�vi� �23� and, consistently, the un-
directed degree sequence of G, is defined as
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du�G� = k�v1�, . . . ,k�vi�, . . . . �3�

However, it is clear that not any sequence of N pairs of
natural numbers—or N natural numbers in the case of the
undirected degree sequence—represents the degree sequence
of an ensemble of some kind of random graphs containing N
nodes �16,17�. There are indeed several restrictions that a
�un�directed degree sequence must satisfy in order to repre-
sent a proper graph, i.e., a sequence to be graphical or fea-
sible �16�. In the case of directed graphs, in- and out-degrees
of the whole sequence must be consistent with the number of
arcs, i.e.,

	
i�n

ki�vi� = 	
i�n

ko�vi� = 
E
 . �4�

Nevertheless, such a condition does not avoid the presence
of cycles in the network structure. Consistent with the claim
that DAGs depict systems where some unavoidable ordering
among nodes is at work, we can ensure the generation of a
given DAG if and only if there is a labeling of the nodes
such that vi→v j implies i� j �24�. Taking into account this
ordering to build the graph, the directed degree sequence
must also hold two conditions. First,

ko�vn� = ki�v1� = 0, �5�

and, second,

�∀vl � V� 	
j�l

ki�v j� − 	
j�l

ko�v j� � 0. �6�

Under conditions �4�–�6� it is ensured that a directed degree
sequence will be graphical and able to represent the degree
sequence of a given nonempty ensemble of DAGs.

C. Component structure and causal relations

The concept of component structure stems from the no-
tion of undirected path: given two pairs of nodes vi ,vk�V,
there is an undirected path among them if there is a finite
sequence of edges such that it can be ordered sequentially,
for example, �vi ,v j� , �v j ,vl� , �vl ,vs� , . . . , �vm ,vk��Eu. A
component of G is a �maximal� subset of V by which an
undirected path can be defined among any pair of nodes. The
special features of a DAG impose constraints on the number
of—DAG-like—components from a given directed degree
sequence. Indeed, let M�G�= �vk�V :ki�vk�=0� be the set of
maximal nodes of a given DAG G and ��G�= �vk
�V :ko�vk�=0� be the set of its minimal nodes. Let d�G� be
the directed degree sequence of G which, by assumption, is
graphical. Then, the number of �DAG� components of the
graph c�G� is bounded by

c�G� � min�
M
, 
�
� , �7�

since any connected DAG must have, at least, 
�
= 
M
=1.
Another constraint must be satisfied. There must exist a par-
tition of the directed degree sequence d�G� by which all c�G�
subsequences are graphical, i.e., they satisfy Eqs. �4�–�6�.

III. RANDOMIZATION METHODS

This section describes four algorithms that provide ran-
domized ensembles of DAGs considering the conservation of

two topological constraints: the �un�directed degree sequence
and the connected component structure of the original DAG.
From a methodological point of view, we propose two algo-
rithms of randomization that keeps the directed degree se-
quence of a DAG, one of them preserving the number and
size of the connected components of the original DAG and
the other one not considering this requisite. Furthermore, two
additional randomization methods keeping the undirected de-
gree sequence �analogously, one of them conserving compo-
nent structure� are also included in this work. From a tech-
nical perspective, they are simpler and quite intuitive since
they are derived from randomizing methods of the underly-
ing graph. For the sake of completeness, they are also in-
cluded in this methodological section. As we shall see, these
latter methods allow us to evaluate how random can be a
DAG given directed degree sequence �and component struc-
ture�. The four algorithms described in this work are illus-
trated in Fig. 1. The order of presentation of the methods is
the same for all figures and tables, and thus the letters used in
Fig. 1 equivocally identify the methods of randomization.

A. Generating the ensemble from the undirected
degree sequence

The simplest method of randomization preserving compo-
nents consists of applying a random numbering to Gu. This
allows us to define order criteria to establish the direction of
arrows. In this case, given an undirected pair �vi ,v j� we say
that if i� j we defined the order pair as �vi ,v j�, otherwise
�v j ,vi�. Since Gu is preserved, undirected degree-degree re-
lations are also conserved. Then, a suitable randomization
should require a rewiring process on the underlying network
able to destroy the presence of degree-degree relations. Once
the underlying network is randomized, a simple numbering
preceding an arrow reassignment provides a randomized
DAG. Arguably, due the destructive nature of this method
any possible degree-degree relation should be broken.

The first randomization method, denoted by the letter a, is
depicted in Fig. 1�a�. The steps of the algorithm are sched-
uled in the following:

�1� Given a DAG, G�V ,E�, we obtain its respective under-
lying network, Gu.

�2� We obtain a random network conserving the undi-
rected degree sequence of Gu and its component structure by
a randomization process of denominated local swap �20�.
Local swap is performed as follows: we randomly select an
existing edge �vi ,v j� of Gu such that the two additional edges
�vi ,vk� and �v j ,vl� also exist in Gu, provided that vk ,vi ,v j ,vl
are all different. Then we proceed to make the rewiring by
generating the edges �vi ,vl� and �v j ,vk� and removing the
edges �vi ,vk� and �v j ,vl�. If �vi ,vl� or �v j ,vk� already exist in
Gu, we abort the operation and we randomly select another
edge satisfying the above described conditions to perform
the local swap. According to �20�, local-swap method can
perform all edge rewiring except those that imply breaking
the component structure. This process is iteratively repeated
until achieving a suitable randomization of Gu or after a pre-
defined number of iterations.

�3� Once the local-swap randomization of Gu is done, we
label every node with an arbitrary natural number, from 1 to
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N, with N being the size of the graph. No repetitions are
allowed.

�4� We now proceed to defining the arrows taking into
account the numbering of the nodes defined in the previous
step. For every pair of connected nodes in the randomized
version of Gu, we define the arrow from lower to higher
number’s nodes. Formally, given an undirected pair �vi ,v j�,
where i , j are the respective labels obtained through the ran-
dom numbering, if i� j then vi→v j, otherwise vi←v j. The
total order of natural numbers ensures the absence of cycles.

Method b consists of preserving the undirected degree
sequence �19� but not preserving the component structure.
The component structure is ensured by step �2� in method a.
In this case, step �2� is replaced with a rewiring process: �i�
selecting a pair of different edges �vi ,vk� , �v j ,vl� of Gu, �ii�
generating with probability p=1 /2 either the edges
�vi ,vl� , �v j ,vk� or the edges �vi ,v j� , �vl ,vk� �provided that
both two edges are not already present�, and �iii� removing
the edges �vi ,vk� , �v j ,vl� �see Fig. 1�b��.

B. Generating the ensemble from the directed degree sequence

Once described the randomization of the undirected topo-
logical structure of the real DAG conserving component

structure, we are going to consider the preservation of the
directed degree sequence �see Eq. �2��. This has an important
physical interpretation since it implies that every node has an
invariant number of inputs and outputs, as it happens with
the components of an electronic device. Under such a restric-
tion we can no longer work with the underlying graph but
with the directed graph.

The proposed algorithm, denoted by method c �see Fig.
1�c��, begins with a numbering of the nodes resulting from
the application of a leaf-removal algorithm �25� and a rewir-
ing operation constrained by this numbering. Let us briefly
revise how a leaf-removal algorithm works: from the original
graph G, we iteratively remove the nodes with ko=0 until the
complete pruning of the graph. According to this, a DAG can
be layered, and thus a partial order between nodes can be
easily established. Formally, the ith iteration of the leaf-
removal algorithm defines the set Vi�V of nodes where Vi
corresponds the ith layer of the DAG. Then, any DAG can
be redefined in terms of the resulting �ordered� layers of a
leaf-removal algorithm, i.e.,

W�G� = �W1, . . . ,Wl� , �8�

where no arc between nodes of the same layer is established.
Method c �see Fig. 1�c�� is defined as follows:
�1� Generate the set W�G� by applying the leaf-removal

algorithm.
�2� Perform a random numbering of the nodes in such a

way that, given vi�Wu and vk�Ws,

�u � s� → �i � k� . �9�

�3� Select at random an arc �vk ,v j��E. Then we look for
the presence of two nodes vi ,vl�V by which either

�i� �vi,vk�,�vl,v j� � E , �10�

or

�ii� �vk,vi�,�v j,vl� � E . �11�

Notice that the absence of cycles makes these two options
mutually exclusive.

�4� If condition �10� is satisfied, the arcs �vl ,vk� and
�vi ,v j� are generated, and �vi ,vk� and �vl ,v j� are deleted,
provided that the following conditions are satisfied: �1�
�vl ,vk��vi ,v j��E and �2� l�k and i� j. If any of these three
conditions does not hold, the rewiring event is aborted and
another arc is newly selected at random.

If condition �11� is satisfied, the pairs �vk ,vl� and �v j ,vi�
are generated, deleting �vk ,vi,��v j ,vl� arcs, provided that
�vk ,vl��v j ,vi��E and k� l and j� i conditions are satisfied.
Again, if one of these two conditions does not hold the re-
wiring event is restarted.

Finally, the randomization method d preserves the di-
rected degree sequence but does not preserve the component
structure. In this case, step �3� is replaced with the following
procedure: �i� select two arcs at random �vk ,vi� , �vl ,v j��E;
�ii� generate the arcs �vk ,v j� , �vl ,vi� provided that
�vk ,v j� , �vl ,vi��E and that k� j , l� i. If some of these con-
ditions do not hold, the process is aborted and we restart the
rewiring event. �iii� If conditions are satisfied, �vk ,vi� , �vl ,v j�
are removed �see Fig. 1�d��.

FIG. 1. Schematic representation of the four different DAG ran-
domizations proposed in this work. Methods are alphabetically de-
noted ��a�–�d��. Method a: randomization preserving undirected de-
gree sequence and component size distribution. Method b: DAG
randomization only preserving the undirected degree sequence.
Method c: randomization preserving directed degree sequence and
component size distribution. Method d: randomization preserving
only directed degree sequence. Boxes represent where an iterative
process is applied. Note that while vertices have invariable labels
their associated numbers can be changed. From a computational
point of view, every vertex �noted by its label� is associated to a
fixed position in the adjacency matrix. In this way vertex realloca-
tions in the matrix are avoided. As we shall see later this is an
important aspect for the computation of dissimilarity.
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IV. EXPLORING THE RANDOMNESS OF DAGs

In this section we apply the above-defined algorithms to
some real topologies to construct an ensemble of randomized
networks �also known as surrogate data in other scientific
communities� preserving the defined topological invariants.
First of all, we need to define proper measures to evaluate the
level of randomness of our systems.

A. Testing the success of the randomization process

As it is described above, randomizations are subject to
very restrictive constraints since not all �un�directed degree
sequence configurations are graphical. Therefore, the success
of DAG randomization processes must be properly evalu-
ated. Two estimators were measured for this purpose. First,
as a control of evolution process, a dissimilarity parameter D
is proposed to measure how the graph differs along the itera-
tions with respect to the original one. Second, the deteriora-
tion of present degree-degree relations is also reported by
means of an estimator borrowed from information theory, the
so-called joint entropy �26�. As we shall see, the combination
of these two measures provides a good insight about the
randomization process, especially when the degree-degree
relations of a graph are close to the expected at random or an
extreme �un�directed degree sequence with a very limited
number of graphical solutions. In such cases, minor changes
in the joint entropy might be expected, and then the increase
in the dissimilarity would indicate that randomization
method is working and the graph is not stacked in a particu-
lar configuration. According to this, we are ready to define a
working criterion of ending the randomization process. We
consider that a DAG has acquired a stable randomized con-
figuration if dissimilarity has been stabilized along effective
rewiring events during the randomization process. For prac-
tical issues randomization methods were iterated and evalu-
ated in powers of 2 until dissimilarity showed an increase
with respect to the previous evaluation below 5%. Addition-
ally, efficiency or effectiveness of the randomization process
was evaluated by the relative frequency of successful itera-
tions. In this case, each point represents the percent of suc-
cessful iterations in the current randomization interval, i.e.,
the iterations performed from the previous point, which is
the previous power of 2. An iteration is said to be successful
or effective when the selected nodes and links �according to
each method as expressed in Fig. 1� permit a change in the
network.

1. Dissimilarity

The dissimilarity parameter D between two graphs is the
relative frequency of arc mismatches between them, i.e., the
Hamming distance of their adjacency matrices. In the context
of a randomization process, let us define A as the adjacency
matrix of an original graph �G� and At as the adjacency
matrix of the graph resulting from the application of t ran-
domization iterations �Gt�. We consider that vertex position
in the adjacency matrix must be kept invariable along ran-
domization process �27�. Under such a restriction, any
change in the matrix will be only due to an arc rewiring

event. Then, dissimilarity can be expressed as

D�G,Gt� �
1

2
E
	i,j 1 − ��Aij,Aij
t � , �12�

where � is the Kronecker delta and 
E
 denotes the number of
arcs of both G and Gt, since the undirected degree sequence is
preserved in the four randomization methods.

2. Degree-degree joint entropy

Given two random variables X ,Y, the joint entropy be-
tween X and Y, H�X ,Y�, is given by

H�X,Y� = − 	
x,y

P�x,y�log P�x,y� , �13�

with P�X ,Y� being the joint probability of the pair of out-
comes x ,y happening together—throughout this paper, log2
will be used for the joint entropy measurements. Let us detail
how this concept is translated in a useful way to produce a
set of four measurements that describe the different degree-
degree relations within a graph.

Joint entropy for the evaluation of degree-degree relations
can be expressed as

H�Gu� = 	
i�j

P�i, j�log P�i, j� , �14�

where P�i , j� defines the probability of finding a randomly
selected edge that connects two nodes vm ,vl�V such that
k�vm�= i , k�vl�= j. This measurement was found to be more
appropriate than other existing alternatives for the purpose of
monitoring the degree-degree interplay along the randomiza-
tion processes �28�. The subscript “u” emphasizes that such a
measure does not take into account the directed nature of the
graph. Joint entropy quantification for degree-degree consid-
ering the directed degree sequence can be easily derived. In
this case three additional joint entropies attending directed-
ness can be considered, namely, the ones accounting for kiko,
kiki, and koko relations. Although more elaborated definitions
of these three probabilities could be proposed, for the sake of
simplicity, we assessed whether two nodes with given de-
grees tend to be connected, no matter what the direction of
the arrow connecting them is. Then the �kiki�-joint entropy of
a directed graph G, Hi,i�G�, is expressed as

Hi,i�G� = 	
k�j

Pi,i�k, j�log Pi,i�k, j� , �15�

where Pi,i�k , j� is the probability of that an edge chosen at
random connects a node with ki= i to another with ki= j. A
similar expression is obtained for Ho,o�G�. Finally, Hi,o�G� is
defined as

Hi,o�G� = 	
k,j

Pi,o�k, j�log Pi,o�k, j� . �16�

Notice that this is the only case where Pi,o�k , j��Pi,o�j ,k�.
The ensemble of random graphs produced from a original

graph G after t iterations can be associated to the undirected
degree-degree joint entropy distribution of its conforming
graphs, which can be characterized by its mean �H�Gu

t �� and
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its standard deviation �(H�Gu
t �). The closeness of the joint

entropy value of the original graph to the ensemble distribu-
tion can be quantified by means of the Z score, which reads

Z�Gu� =
H�Gu� − �H„Gu

t ��

��H�Gu
t
…�

. �17�

The statistical significance level was set at p�0.001, which
for two tails corresponds to 
Z
�3.27. Significant values
were denoted by Z� in the tables describing joint entropy
values of graphs. Values of Z�3.27 mean that the degree-
degree relations at the original network G are significantly
high with respect to the Z distribution of its random en-
semble. Values of Z�−3.27 mean that the degree-degree re-
lations at the original network G are significantly low with
respect to the Z distribution of its random ensemble. Finally,
values within the range �−3.27,3.27� indicate that no signifi-
cant differences in the degree-degree relations were found
between the original graph and its randomized ensemble.
Analogously, we can compute �Hi,o�Gt��, �Hi,i�Gt��,
�Ho,o�Gt��, and its associated Z scores at the step t of the
randomization process.

B. Extreme graphs

Prior to study the randomness of real DAGs, we construct
two extreme topologies in order to evaluate the behavior of
the algorithms using the measures defined above. The first
model, random DAG, permits us to test the randomization
methods in a highly disordered degree-degree scenario. In
terms of degree-degree joint entropy, minimal changes are
expected along the randomization processes. The second
model, snake DAG, permits the same test but in a highly
ordered scenario where large increments of joint entropy val-
ues should be observed in the obtained randomized en-
sembles.

1. Random-DAG model

The first one is a completely degree-degree disordered
DAG up to finite-size effects. Let V be a set of N nodes, by
which the probability p for two of them to be connected is
constant. This is the definition of the ER graph. Once we
have an ER graph, we randomly label the nodes of V sequen-
tially, from 1 to N. Finally, we define the direction of the
arrows by looking at the labeling of the nodes and observing
condition �1�. We will refer to this model as random DAG.

For methodology evaluation we created a random DAG of

V
=600 and 
E
=6000 and an ensemble of 500 randomized
graphs for each method. See Fig. 2�a� for an example of this
graph. As shown in Table I and Fig. 3 the degree-degree
relations of the random DAG are neither significantly low
nor significantly high with respect to any of its randomized
ensembles. This result indicates that the four randomization
methods proposed here did not produce significant biases in
the degree-degree relations with respect to the original ran-
dom DAG. It is worth noting that dissimilarity is a useful
indicator for noncorrelated graphs due to a nonsignificant
variation of the joint entropy that can be used as an estimator
of the success of the random process. In this case, dissimi-

larity variation indicates that randomization processes have
not been initially stacked in a particular graph configuration.

It is worth to mention that since graph fragmentation is
unlikely to happen under the values of �k� used for graph
construction, methods a and b on a hand and methods c and
d on the other are indistinguishable in terms of joint entropy.
Interestingly, Table I shows that standard deviations pro-
duced by methods a and b were one order of magnitude
higher than for methods c and d. Another interesting result is
that Hi,i and Ho,o exhibited higher differences, respecting the
original graph for methods a and b than for methods c and d.
These two facts agree with that, although random DAG is a
noncorrelated network, the conservation of the directed de-
gree sequence of the original network by the use of methods
c and d reduces the space of graphical solutions. As ex-
pected, this does not occur in a and b methods. Interestingly,
observing the differences among methods we can conclude
that the solutions of more restrictive methods �c and d� are
included within the space of solutions of the methods with
softer topological restrictions �a and b�.

2. Snake-DAG model

In order to complement the random-DAG model with an
opposite extreme case, we construct a highly degree-degree
ordered acyclic graph, hereafter called snake DAG. In this
graph, vertices of the same degree tend to be connected

FIG. 2. �a� Illustration of a random DAG with N=60 and �k�
=3. �b� Illustration of a snake DAG with N=60 and K=6. A par-
ticular numbering satisfying the DAG condition is indicated for
these graphs. Note that arrows go from nodes with smaller numbers
to nodes with larger numbers.
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among them, giving rise to a high degree-degree relation and
thus very low joint entropy values. In the following lines we
outline the construction of this network.

Let us consider K�ko
max as the highest out-degree to ap-

pear in the resulting graph. Let V be the set of nodes such
that there exists an integer n by which nK= 
V
. We then
perform a partition of V in K different subsets:

P�V� = �V1, . . . ,VK� . �18�

In this partition, for any Vi�P�V�, 
Vi
=n. We sequentially
number the nodes of the set V in the following way: for the
subset of nodes V1, the label will run from 1 to n, thus
obtaining

V1 = �v1, . . . ,vn� .

For the subset of nodes V2, the label will run from n+1 to
2n:

V2 = �vn+1, . . . ,v2n� .

We follow the numbering by using the criteria that the nodes
of subset Vm will be labeled from �m−1�n+1 to in, until all
the nodes of V are numbered. We then identify the label of
the partition with the out-degree of the nodes belonging to it,
namely,

�vi � Vm� ⇒ „ko�vi� = K − m… . �19�

Now we proceed to defining the connections: for any
vi�Vm, we will have the following arcs:

TABLE I. Joint entropy values for a random DAG of 
V
=600 and 
E
=6000 and a snake DAG �
V
=600 and K=6� compared with sets
of 500 randomized graphs after 216 iterations of each of the four randomization methods �alphabetically denoted�. Symbol � �� denotes
significant differences.

Method D Hu�Gu
t � Hi,o�Gt� Hi,i�Gt� Ho,o�Gt�

Random graph 8.147 9.224 9.234 9.202

a 0.98 8.145	0.003 �Z=0.56� 9.20	0.02 �Z=1.13� 9.19	0.04 �Z=0.93� 9.19	0.04 �Z=0.27�
b 0.98 8.145	0.003 �Z=0.67� 9.20	0.02 �Z=1.13� 9.19	0.04 �Z=1.01� 9.20	0.04 �Z=0.14�
c 0.96 8.144	0.003 �Z=0.87� 9.219	0.003 �Z=1.61� 9.226	0.004 �Z=2.08� 9.202	0.004 �Z=−0.06�
d 0.96 8.144	0.003 �Z=0.90� 9.217	0.003 �Z=2.41� 9.223	0.004 �Z=2.76� 9.200	0.004 �Z=0.47�
Snake graph 2.998 4.694 4.524 4.462

a 0.99 5.16	0.002 �Z=−110.74�� 6.97	0.02 �Z=−142.06�� 6.97	0.03 �Z=−77.85�� 6.97	0.03 �Z=−91.33��
b 0.99 5.281	0.003 �Z=−674.41�� 6.98	0.02 �Z=−137.3�� 6.97	0.03 �Z=−82.06�� 6.97	0.03 �Z=−71.45��
c 0.93 4.87	0.03 �Z=−64.46�� 5.47	0.02 �Z=−37.38�� 5.59	0.02 �Z=−52.99�� 5.29	0.03 �Z=−28.43��
d 0.94 4.97	0.03 �Z=−77.62�� 5.47	0.01 �Z=−52.37�� 5.61	0.02 �Z=−66.26�� 5.25	0.02 �Z=−39.20��
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FIG. 3. Evolution of the randomization process along effective rewiring showing dissimilarity, efficiency, and joint entropy values for a
random DAG of 
V
=600 and 
E
=6000 �six panels, left� and a snake DAG �
V
=600 and K=6� �six panels, right�. Sets of 500 randomized
graphs were produced until 216 iterations of the four randomization methods. The mean and the standard deviation of 500 are shown for each
point. The joint entropies with significant Z values are highlighted with �� �. Open circles in the vertical axis indicate the joint entropy value
of the original graph in each case. X axes are expressed in log10. See Table I for numerical details.
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�vi ,vi+1� , . . . , �vi ,vi+K−m�. This process excludes node v
V

which will only receive an arc from v
V
−1. We observe that,
in general, both v1 and v2 belong to V1. Finally, to break the
extreme symmetry of the obtained net, we introduce a mini-
mal source of noise by renumbering a small fraction �0.05
of the nodes with a further arrow orientation, consistent with
the new numbering, as depicted in Eq. �1�. This modification
was required since the snake-graph model without noise was
computationally not affordable when trying to obtain a com-
plete randomization. However, time execution was drasti-
cally reduced with this little fraction noise in the network.

Analogous to the experiment performed with a random
DAG, we create a snake DAG of 
V
=600 and 
E
=2099
�K=6� and, for each method, an ensemble of 500 random-
ized graphs product of 216 iterations. See Fig. 2�b� for an
example of this graph. As shown in Fig. 3 �right� and Table I,
all the degree-degree relations of the snake DAG were highly
significant with respect to any of the randomized ensembles.
This result indicates that the four randomization methods
proposed here are able to successfully deteriorate the high
degree-degree relations present at the snake DAG.

As mentioned above, methods a and b preserve the undi-
rected degree sequence, while methods c and d do the same
with the directed degree sequence. While the latter methods
are randomization processes that iteration by iteration
modify the DAG under study, the former ones proceed in a
different way. They can be seen as iterative processes acting
over the underlying graph. In this sense, Hu is iteratively
modified by means of destroying presumable degree-degree
relations. However, Hi,i, Hi,o, and Ho,o are only altered in the
last step of the algorithm, i.e., the numbering process. In this
process any directed degree-degree relation is lost and the
directed graph is, on average, modified by 50% since the
direction of arcs are randomly changed �see dissimilarity in
Fig. 3�. Hence, methods a and b break, somehow, the itera-
tive concept of a randomization process on a DAG since this
really happens on its underlying graph. This can be observed
in Fig. 3 where methods a and b exhibit a different value of
entropy and dissimilarity at the first iteration. By contrast,
methods c and d gradually differ from the initial value along
the production of effective rewiring. Interestingly, not only
directed joint entropies are informative for DAG randomiza-
tion; we can observe that in the snake-graph randomization
significant variation of H can be found even when the under-
lying network has not been randomized. This is especially
dramatic for methods a and b as Fig. 3 shows. By this rea-
son, dissimilarity and also both undirected and directed ver-
sions of joint entropy should be observed for the evaluation
of the randomization process.

C. Real biological and social DAGs

Results of previous section have checked the behavior of
methods c and d by comparing them with methods a and b
in two extreme models: snake DAG and random DAG with
high and low degree-degree relations, respectively. In this
section we proceed to evaluating three DAGs representing
real systems: the C. elegans cell lineage network, the Mil-
gram’s citation network, and a Ph.D. student-supervisor net-

work �Fig. 4� with methods c and d, i.e., preserving the
directed degree sequence with and without conserving the
connected component structure of the original graph.

1. C. elegans cell lineage network

The first system chosen is a cell lineage network. Briefly,
it captures the genealogical pedigree of cells related through
mitotic division during its development in a treelike struc-
ture. The cell lineage network of C. elegans was retrieved
from the WormBase �29� C. elegans repository. In this net-
work the initial egg division �the giant component� and al-
ternative variants of neural postembryonic cell lines are in-
cluded in an 18-component graph representation. The
randomization methods were applied up to fulfill the ending
criterion. The dissimilarity values reached were over 0.95 in
all cases, indicating a successful alteration of most of the
arcs under the different topological invariants.

Figure 5 shows representative DAGs obtained from c and
d randomization methods. Interestingly, Fig. 5 �right panel�
shows that the treelike structure and the number of graph
components are conserved by just only preserving the di-
rected degree sequence invariant. The reason is that the regu-
lar pattern of ki=1 for all nonmaximal nodes in its directed
degree sequence is graphical only in a tree structure. In this
particular situation, the number of DAG components coin-
cides with the number of maximal nodes but not with their
size of components �see Fig. 4�a��. This contrasts with the
big fragmentation �up to 200 components� obtained from the
application of the raw method b �data not shown�. Figure 5
and Table II show that although methods produced effective
rewiring and increased the dissimilarity, no significant devia-
tions in joint entropies were found due to the very restrictive
differences between the original and randomized ensembles,
even at very small standard deviations.

2. Milgram’s citation network

The second system is a sample of the process of article
citation. The chosen system used to illustrate this process is
the resulting network containing the papers that �1� cite “S.
Milgram’s 1967 Psychology Today” paper or �2� use Small
World in the title. This network was retrieved from Pajek’s
network data set �30�.

Figure 6 and Table III show that this DAG displays sta-
tistical deviations of undirected and directed joint entropies
to all randomized ensembles, except the case of Hi,i.

This example illustrates how a randomization process de-
stroys local associations and the heterogeneous partition ob-

FIG. 4. Real biological and social DAGs studied in this work.
Caebnorhabditis elegans cell lineage network �left�, Milgram’s ci-
tation network �center�, and Ph.D. student-supervisor network
�right�.
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served in the original DAG �Fig. 4�b��. In this case, due to
the high connectivity of the original DAG—it is worth to
note that such a graph contains several nodes whose connec-
tivity is O�
V
�—fragmentation is unlikely to happen due to a
high average connectivity. In such a situation, it is arguable
to think that both methods must show the same behavior.
Interestingly, Table III shows the same values for joint entro-
pies and dissimilarities. Differences come from the efficiency
of the method, which in general for all the real networks
analyzed in this work method c was lower than c. This result
indicates that the proposed methods are indistinguishable
when DAGs have enough average degree to avoid fragmen-
tation.

Furthermore, as a side effect of this high degree, an upper
boundary below maximal value of dissimilarity is imposed
depending on the randomization method used, even in the
simplest case of the randomization of the underlying network
�data not shown�. A limit case of that is provided by a clique
conformation where a directed acyclic condition is obtained
by described numbering process. In this situation no rewiring

is possible since all possible arc combinations satisfying the
directed acyclic condition are already present in the network.

3. Ph.D. student-supervisor network

The last system evaluated in this paper contains the ties
between Ph.D. students and their supervisors in theoretical
computer science. Each arc points from a supervisor to one
of its Ph.D. students �Fig. 4�c��. Data were retrieved from
Pajek’s network data set �30�. This network illustrates just
the intermediate situation between the two previous ex-
amples. It is a DAG able to be fragmented �when DAG com-
ponent conservation is not imposed� but with just right con-
nectivity: too low to avoid a large fragmentation but not too
high to impose an upper bounding in dissimilarity, being,
jointly to the random DAG studied above, the DAG structure
fairly closer to the assumptions of the configuration model.
Interestingly, contrasting with the C. elegans behavior when
randomized with method d, little fragmentation is found. In
other words, strictly speaking, the tree architecture but not a
softer configuration, as that observed in Ph.D. student-

FIG. 5. Randomization process for Caebnorhabditis elegans network using methods c �left� and d �right�. A six-panel composition for
each method shows a prototypic randomized network and the evolution of dissimilarity, efficiency, and the undirected and directed joint
entropies. Evolution of the randomization process is shown along effective rewiring. Randomization for method c was completed after 217

iterations, while method d required 215 iterations according the ending criterion for randomization processes. The mean and the standard
deviation of 500 graph randomizations are shown for each point. The joint entropies with significant Z values are highlighted with �� �. X
axes are expressed in log10. See Table II for numerical details.

TABLE II. Joint entropy values for the original C. elegans network and a set of 500 randomized networks
originated from methods c and d. Symbol � �� denotes significant differences and � a� indicates that Z score
is not computable due to �=0.

Method D Hu�Gu
t � Hi,o�Gt� Hi,i�Gt� Ho,o�Gt�

G orig. 1.832 0.991 0.116 1.732

c 0.97 1.828	0.003 �Z=1.41� 0.990	0.001 �Z=1.31� 0.116	0.0a 1.733	0.002 �Z=−0.72�
d 0.98 1.832	0.002 �Z=0.36� 0.990	0.001 �Z=−1.50� 0.116	0.0a 1.735	0.002 �Z=−2.37�
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supervisor network, is able to preserve the component distri-
bution �Fig. 7�. In this network, the dissimilarity value
reached was 0.98 in both cases, indicating a successful alter-
ation of most of the arcs independent of graph fragmentation.

Table IV displays statistically significant low joint entropy
values for Hu and Ho,o. A less clear behavior was observed
for Hi,i where Z values were close to signification. In these
cases joint entropies exhibited higher values for method d
than for d illustrating the softer restriction that operates in
the randomization in method d. Contrasting to this Hi,o does
not exhibit any significant difference. Note that contrasting
with Milgram’s citation network, these methods, although
fairly similar, are not strictly indistinguishable when frag-
mentation occurs.

V. DISCUSSION

Is there any differential trait in the architecture of causal
relations representing historical processes, formal chains of
reasoning, or flows in gradient-dissipative systems? The first

step dealing with this question begins with the generation of
random null-model metaphors. Tackling this problem from
the perspective of graph theory, the construction of random
graph ensembles provides a framework to observe what is
expected by simple combinatorics under a number of con-
straints to be satisfied. In this paper we present a set of two
algorithms based on iterative processes of rewiring for the
construction of DAG random models. The difference be-
tween algorithms stems from the conservation or not of the
connected component distribution. In contrast to other meth-
ods of random model construction, this approach works
within the space of graphical solutions providing a feasible
computational approximation for the exploration of such a
graphical space, considering a defined number of topological
invariants in the null-model ensemble generation.

Two methods proposed in this paper �c and d� preserve
the directed degree sequence. First, they were compared with
two alternative raw methods where only undirected degree
sequence was conserved �methods a and b�. This comparison
was evaluated through the analyses of two extreme graph
models: random DAG and snake DAG. Second, three real

FIG. 6. Randomization process for Milgram’s citation network using methods c �left� and d �right�. A six-panel composition for each
method shows a prototypic randomized network and the evolution of dissimilarity, efficiency, and the undirected and directed joint entropies.
Evolution of the randomization process is shown along effective rewiring. Randomization for method c was completed after 214 iterations,
while method d required 213 iterations according the ending criterion for randomization processes. The mean and the standard deviation of
500 graph randomizations are shown for each point. The joint entropies with significant Z values are highlighted with �� �. X axes are
expressed in log10. See Table III for numerical details.

TABLE III. Joint entropy values for the original Milgram’s citation network and two sets of 500 randomized networks originated from
methods c and d. Symbol � �� denotes significant differences.

Method D Hu�Gu
t � Hi,o�Gt� Hi,i�Gt� Ho,o�Gt�

G orig. 9.03 7.38 7.16 7.53

c 0.70 9.18	0.02 �Z=−7.63�� 7.45	0.01 �Z=−6.75�� 7.17	0.01 �Z=−1.44� 7.63	0.01 �Z=−8.49��
d 0.70 9.18	0.02 �Z=−8.04�� 7.45	0.01 �Z=−7.25�� 7.17	0.01 �Z=−1.38� 7.63	0.01 �Z=−7.97��
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systems were studied by the evaluation of dissimilarity and
joint entropy. While the former indicates whether connec-
tions have been actually changed after randomization, the
latter quantifies the disorder or uncertainty in the degree-
degree relations, thereby being an indicator of randomness.
In this context, it is worth to mention that other measures
such as assortative mixing �31,32� or mutual information
�33� have been suggested for the evaluation of degree-degree
correlations. In essence, these measures compare these cor-
relations with the expected one obtained from the remaining
degree information. A problem arises when a proper defini-
tion of remaining degree attending directedness needs the
information of the directed degree sequence because the lat-
ter is a topological feature not preserved in all of our meth-
ods �methods a and b�. Therefore, measures based on re-
maining degree information, although extensively used as
estimators of degree-degree relations in the network litera-
ture �31–33�, cannot be applied in this work for a compara-
tive evaluation of our methodology.

To overcome these limitations, joint entropy was used as a
raw measure of uncertainty once defined to be applied to

directed graphs leading to four alternative descriptors ac-
cording to in- and out-degree information. Furthermore, the
significance of the variation of degree-degree relations be-
tween the random ensembles and the original graph was
evaluated using a Z-score estimator. The analysis of network
models verified that our methods do not produce a bias when
applied to the random-DAG model while they produced a
significant increase in disorder of the degree-degree relations
on the snake-DAG model when randomized �see Table I�.
When studying real systems, our analyses revealed that all
the methods produced an Hu greater than its respective origi-
nal value, indicating that the randomizations performed af-
fect the pattern of arrows.

Additionally, our results show that preserving the compo-
nent size structure is an important aspect to take into account
since it has dramatic effects when the network is markedly
sparse. This is the case of Ph.D. student-supervisor DAG, by
which randomizations not preserving the component size
produced a graph fragmentation. However, this does not oc-
cur in a treelike structure as is the case of C. elegans net-
work, in which the number of maximals imposes the number

FIG. 7. Randomization process for Ph.D. student-supervisors network using methods c �left� and d �right�. A six-panel composition for
each method shows a prototypic randomized network and the evolution of dissimilarity, efficiency, and the undirected and directed joint
entropies. Evolution of the randomization process is shown along effective rewiring. Randomization for method c was completed after 216

iterations, while method d required 214 iterations according the ending criterion for randomization processes. The mean and the standard
deviation of 500 graph randomizations are shown for each point. The joint entropies with significant Z values are highlighted with �� �. X
axes are expressed in log10. See Table III for numerical details.

TABLE IV. Joint entropy values for the Ph.D. student-supervisor network and a set of 500 randomized networks originated from methods
c and d. Symbol � �� denotes significant differences.

Method D Hu�Gu
t � Hi,o�Gt� Hi,i�Gt� Ho,o�Gt�

G orig. 6.42 4.075 1.348 6.34

c 0.98 6.47	0.01 �Z=−4.83� 4.076	0.005 �Z=−0.23� 1.32	0.01 �Z=3.22� 6.39	0.01 �Z=−4.25��
d 0.98 6.59	0.01 �Z=−13.06�� 4.072	0.005 �Z=0.58� 1.366	0.002 �Z=−9.81�� 6.39	0.01 �Z=−5.50��
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of components, but not their size when applying method d.
Finally, it is noteworthy that high average degree guarantees
the preservation of the giant component in both randomiza-
tion methods. Hence, DAGs with this feature contain an in-
trinsic preserver of components that leads, in those cases, to
almost indistinguishable topologies.

Another important observation is related to the small val-
ues displayed by standard deviations in joint entropies. When
extreme graphs were evaluated, methods c and d are one
order of magnitude lower than the ones obtained for methods
a and b. This suggests that just directed degree sequence
conservation is enough to severely reduce the space of
graphical configurations. Consistently, it was observed that,
in general, methods c and d provided lower Z values than
methods a and b. However, the small divergence of the ob-
tained values is not explained by a noneffective rewiring
since high values of dissimilarity were reached. An interest-
ing exception was found in the Milgram’s citation network
where dissimilarity values after processes of randomization
were markedly lower than those observed in the other real
networks, as well as in the extreme models. An explanation
can be found in the presence of superhubs, nodes whose
connectivity is �O�
V
�. This introduces a strong constraint
in the rewiring, difficult—even impossible—to overcome.
Nevertheless, Fig. 6 illustrates that the original network
seems to be clustered in two regions. Using the same layout
for randomized graphs, we did not found this clustered view,
suggesting that rewiring process has actually produced an
impact on the topological structure. By contrast, C. elegans
randomized ensembles were completely shuffled—as indi-
cated by the high values of dissimilarity—but degree-degree
relations were not significantly altered. In this context, cor-
rect evaluation of the randomization process comes from the
observation of both dissimilarity and joint entropies. In fact,
this is a consequence of the limited space of possibilities
permitted by the extreme directed degree sequence. There-
fore, very small variations were found in the joint entropies
�notice the case of Hi,i=0 for method c�. On the one hand,
when directed degree sequence and component structure are
not preserved, tree configuration is unlikely to happen by
chance. On the other hand, tree structure is practically the
only solution when directed degree sequence is preserved
even not conserving the component size distribution. In this
latter context, although dissimilarity is telling us that our
method has not been stacked �and thus effective rewiring is
happening�, the randomization process does not produce any
variation in topological terms.

The choice of topological constraints �i.e., the particular
method� for a desired randomization process depends on the

question the researcher wants to explore, rather than on a
technical issue. Preserving the directed degree sequence cap-
tures the necessity to fix the number of inputs and outputs for
every element. Randomizations attending to this constraint
�for example, in a technological system� may be interpreted
as a rewiring of an electronic circuit by a random assembling
of integrated devices �e.g., chips� but preserving the inputs
and outputs of the components. This contrasts with the softer
undirected degree sequence invariant produced by preserving
just the number of connections in every node. In this case,
the relevance relies on the number of relations instead of the
arrow orientation—i.e., the undirected degree sequence. Fur-
thermore, the conservation of the connected components is
essential in a graph describing a process, since fragmentation
can be interpreted as a break of the flow of causality. Since
causal flow can be preserved by method c in random en-
sembles, we are able to provide a random structure attending
the input or output constraint of every element of a system.
At this point, differences between the original and random-
ized graphs would provide a good insight about what is be-
yond the simple assembling of elements expected by simple
combinatorics. Hence, the characterization of the topological
differences between the original and its random counterparts
would constitute the next step for the study of the organiza-
tion of feed-forward causal structures. A further exploration
in the hierarchical behavior of these networks may contribute
to a better understanding of the causal relations present in
many complex systems and processes.

Finally, we stress that an important feature of any ran-
domization process is how or to what extent topological in-
variants restrict the space of graphical solutions. Our meth-
odology provides valuable information about the randomness
of a particular structure within the context of its graphical
space of solutions. It is arguable to think that the higher the
number of constraints the smaller the space of solutions. In
any case, its complete exploration is not feasible beyond a
graph containing more than a handful of nodes. In this con-
text, our methodology provides a sampling of such space in
order to estimate the randomness of a DAG given some to-
pological constraints.
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