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Abstract. In recent years, the study of multi-layer networks has received significant

attention. In this work, we provide new measures of dependency between directed

links across different layers of multiplex networks. We show that this operation

requires more than a straightforward extension of the corresponding multiplexity

measures that have been developed for undirected multiplexes. In particular, one

should take into account the effects of reciprocity, i.e. the tendency of pairs of

vertices to establish mutual connections. In single-layer networks, reciprocity is a

crucial property affecting several dynamical processes. Here we extend this quantity

to multiplexes and introduce the notion of multireciprocity, defined as the tendency of

links in one layer to be reciprocated by links in a different layer. While ordinary

reciprocity reduces to a scalar quantity, multireciprocity requires a square matrix

generated by all the possible pairs of layers. We introduce multireciprocity metrics

valid for both binary and weighted networks and then measure these quantities on the

World Trade Multiplex (WTM), representing the import-export relationships between

world countries in different products. We show that several pairs of layers exhibit

strong multiplexity, an effect which can however be largely encoded into the degree or

strength sequences of individual layers. We also find that most pairs of commodities are

characterised by positive multireciprocity, and that such values are significantly lower

than the usual reciprocity measured on the aggregated network. Moreover, layers with

low (high) internal reciprocity are embedded within groups of layers with low (high)

mutual multireciprocity. We finally identify robust empirical patterns that allow us to

use the multireciprocity matrix to retrieve the two-layer reciprocated degree (strength)

of a node from the ordinary in-degree (in-strength) in a single layer and to reconstruct

joint multi-layer connection probabilities from marginal ones, hence bridging the gap

between single-layer properties and truly multiplex information.
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1. Introduction

Several real-world systems exhibit a network structure, being composed by

interconnected elementary units. The study of networks has received much attention

in the last two decades. In this perspective, both the intensity and the symmetry of

the interactions between nodes have been analysed, thus introducing the concepts of,

respectively, weighted and directed graphs. For instance, most of the communication

relations among individuals, such as exchanging letters, e-mails or texting, can be

suitably represented by directed networks, thus pointing out the directionality of these

interactions [1]; furthermore, such interactions can be weighted, in order to quantify the

strength of such social connections [2].

Nevertheless, a more detailed representation of such systems is often required, since

generally a given set of units can actually be connected by different kinds of relations (as

in the so-called edge-colored graphs), therefore yielding interdependent networks where

the various layers may influence each other [3, 4]. A clear example is represented by the

different kinds of relationships existing between employees in a university department [5],

where individuals can be connected by co-authorship, common leisure activities, on-line

social networks etc.

In this context, all the considerations about the intensity and the symmetry of the

connections made for single-layer graphs can be applied to multiplexes, as they can be

seen as the superposition of several (possibly directed or weighted) networks. Indeed,

detailed information about intensity and directionality may sometimes be crucial for a

deeper understanding of such system, as it has been observed [6] that weighted multi-

level networks showing non-trivial correlations between topology and weights actually

exist.

In particular, one of the most well-studied properties of single-layer directed

networks - either binary or weighted - is their reciprocity, i.e. the tendency of vertex pairs

to form mutual connections. This property can be indeed crucial for dynamical processes

taking place on networks, such as diffusion [7], percolation [8] and growth [9, 10]; for

instance, the presence of directed, reciprocal connections can lead to the establishment of

functional communities and hierarchies of groups of neurons in the cerebral cortex [11].

It has been shown [12] that the measure of the number of mutual interactions has

to be compared with the expected reciprocity obtained for a given reference model, in

order to understand whether such observed mutual links are actually present in the real

network significantly more (or less) often than in the randomized benchmark [13]. In

this context, it is therefore crucial to make use of proper null models for networks; in

particular, for unweighted networks the directed (binary) configuration model (DBCM)

has been widely used, in order to take into account the heterogeneity of the degree

sequence within the null model [14].

This quantity has been extended to weighted networks by means of the definition

of the weighted reciprocity [15]. Similarly to the binary case, this measure has to be

compared to the expected value under a proper null model, represented for instance by
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the directed weighted configuration model (DWCM) [16].

The concept of reciprocity has not been generalized to multi-layer networks yet.

Here we argue that, in presence of multiple types of connections, one should extend

the notion of reciprocity to that of multireciprocity, which we define as the tendency

of a directed link in one layer of the multiplex to be reciprocated by an opposite

link in a different layer. While ordinary reciprocity can be quantified by a scalar

quantity, multireciprocity requires a square matrix where all the possible pairs of

layers are considered. Furthermore, we investigate the correlations between directed

layers of a multiplex through the directed multiplexity. We introduce multiplexity and

multireciprocity matrices for both binary and weighted multiplexes and we then validate

our metrics by measuring them on the World Trade Multiplex (WTM), a directed

weighted multiplex representing the import-export relations between countries of the

world in different products.

2. Methods

2.1. Multiplex approach, null models and Maximum Likelihood Method

We represent our multiplex as the superposition of M networks, each of them

sharing the same set of N nodes. Since our purpose is precisely that of measuring

correlations between directed links (possibly, in opposite directions) in different layers,

we define independent reference models for each layer of the multiplex, thus creating an

uncorrelated null model for the entire multiplex [23, 17].

In this context, we make use of the concept of canonical network ensemble [18],

represented by the the family of networks satisfying a set of constraints on average (to be

fixed, for instance, based on some properties of the considered real-world network). Such

randomized graphs preserve only some of the features of the system under study and

are completely random otherwise; therefore, they represent suitable reference models

for networks.

In particular, in order to take into consideration the heterogeneity of the degree sequence

within the null models, in the unweighted case we make use of the directed (binary)

configuration model (DBCM) [14], namely the ensemble of networks satisfying on

average a given in-degree and out-degree sequences. It should be noted that the

popular microcanonical implementation [14] of this null model is biased [19], and that

its unbiased modification is computationally demanding. Moreover, in order to measure

the expected value of any quantity of interest, the generation of several randomized

networks, on each of which the quantity needs to be calculated, is necessary. For

this reason, we adopt the unbiased canonical approach based on an analytical and fast

Maximum Likelihood method [20, 21, 22]. Such method, explained in more details in

the Appendix, is able to provide the exact probabilities of occurrence of the graphs of

the ensemble having the same average constraints as the real network. Based on these

probabilities, it is then possible to compute the expectation values of the quantities of
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interest; in particular, the average link probability pαij, from any node i to any node j

in layer α, can be easily calculated. As we said before, such probabilities are computed

independently for each layer.

We can introduce a notation able to describe the pairwise interactions between

layers of the multiplex. Defining pα→β
ij as the joint probability of observing a directed

link from i to j in α and no link from j to i in β, and pα↔β
ij as the joint probability of

observing a link from i to j in α and a link in the opposite direction in β, the previous

single-layer average link probability can be expressed as:

pαij = pα→β
ij + pα↔β

ij (1)

With the aforementioned notation, from Bayes’ theorem we have, for each ordered pair

of layers (α, β):

pα↔β
ij = rαβij · p

β
ji (2)

where rαβij is the conditional probability of observing a direct link from i to j in layer α

given that we observe a link from j to i in layer β. In the general case, the value of rαβij
depends both on the considered pair of nodes and on the pair of layers.

In this context, the expected degree sequences of the single layers read:

〈kα,ini 〉 =
∑
j 6=i

pαji ; 〈kα,outi 〉 =
∑
j 6=i

pαij (3)

while the reciprocated degree sequence, for any pair of layers, is:

〈kα↔β
i 〉 =

∑
j 6=i

rαβij p
β
ji (4)

In Section 3.4 we will show that such quantities may be used to build the minimal model

able to reproduce the observed level of reciprocation between layers of the multiplex.

Analogously, in order to build suitable null models in the weighted case, the enforced

constraints are chosen to be the in-strength and out-strength sequences of the real

network - separately for each layer - and the key property that can be computed is the

average weight 〈wαij〉 related to each directed link connecting i to j in layer α. Moreover,

we can also define quantities taking into account interactions between pairs of layers:

〈wα↔β
ij 〉 is the reciprocated component of the weights associated to the links from i to j

in α and from j to i in β while 〈wα→β
ij 〉 is the non-reciprocated component between the

same two directed weighted links. Hence, the expected weights in a given layer α are

therefore given by:

〈wαij〉 = 〈wα→β
ij 〉+ 〈wα↔β

ij 〉 (5)

In particular, the reciprocated component can be written in terms of a joint

probability, in order to keep the same structure adopted for the binary case [15]:

〈wα↔β
ij 〉 = 〈min{wαij, w

β
ji}〉 =

=
∞∑
w=1

P
(
min{wαij, w

β
ji} ≥ w

)
=
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=
∞∑
w=1

P
(
wαij ≥ w ∩ wβji ≥ w

)
=

=
∞∑
w=1

Rαβ
ij

(
wαij ≥ w|wβji ≥ w

)
P
(
wβji ≥ w

)
(6)

where Rαβ
ij is now the probability of observing a weight wαij in α larger than w given that

a weight wβji larger than w has been observed in β. Further steps in the simplification of

this expression can be done based on the empirical evidence of the considered system,

as we will show in Section 3.4. From the previous definitions we can directly compute

the expected in- and out-strengths in each layer:

〈sα,ini 〉 =
∑
j 6=i
〈wαji〉 ; 〈sα,outi 〉 =

∑
j 6=i
〈wαij〉 (7)

and the reciprocated strength sequence, for any ordered pair of layers:

〈sα↔β
i 〉 =

∑
j 6=i
〈wα↔β

ij 〉 (8)

Furthermore, the previous average values of the link probability or link weight will

be crucial for the computations of other quantities such as, in this work, the expected

overlap between links in different layers or the expected inter-layer reciprocity.

2.2. Binary multiplexity and multireciprocity

In order to analyze the similarity and reciprocity between layers of a directed unweighted

multiplex, we define the binary directed multiplexity and the multireciprocity as the

extension of the multiplexity introduced in [23] to directed networks:

mα,β
bin =

2
∑
i 6=j min{aαij, a

β
ij}

Lα + Lβ
; rα,βbin =

2
∑
i 6=j min{aαij, a

β
ji}

Lα + Lβ
(9)

with α, β = 1, . . . ,M standing for the different layers, aαij = 0, 1 depending on the

presence of a directed link from node i to node j in layer α and Lα representing the

total number of directed links in layer α (analogously for layer β). The quantities

defined in (9) provide information about the overlap between directed links connecting

nodes in any pair of layers. Indeed, such raw quantities range in [0, 1] and are maximal

only when layers α and β are respectively identical - hence, if there is full similarity

between the considered layers - or fully multireciprocated; therefore, they evaluate

the tendency of nodes to share directed connections in the various layers (possibly, in

different directions). Though, the proper way to extract information from such measures

consists in a comparison with some kind of expected value under a given null model.

Hence, we introduce the transformed directed multiplexity and multireciprocity as:

µα,βbin =
mα,β
bin − 〈m

α,β
bin 〉

1− 〈mα,β
bin 〉

; ρα,βbin =
rα,βbin − 〈r

α,β
bin 〉

1− 〈rα,βbin 〉
(10)

where mα,β
bin and rα,βbin are the previously defined observed directed multiplexity and

multireciprocity, while 〈mα,β
bin 〉 and 〈rα,βbin 〉 are their expected values with respect to the
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chosen reference model. These filtered quantities are directly informative about the real

correlations between layers: indeed, since µα,β and ρα,β range in [−1, 1], positive values

represent positive correlations (respectively, stronger inter-layer reciprocity), negative

values are associated to anticorrelated (respectively, antireciprocated) pairs of layers,

while pairs of uncorrelated layers are characterized by multiplexity and multireciprocity

values comparable with 0.

It can be shown, with a straightforward extension of the calculations reported in [23],

that such expected values, when the directed binary configuration model (DBCM) is

considered as benchmark, just require the computation of the minimum between two

binary variables, which is given by:

〈min{aαij, a
β
ij}〉DBCM = pαijp

β
ij ; 〈min{aαij, a

β
ji}〉DBCM = pαijp

β
ji (11)

with the same notation introduced previously.

It is worth pointing out that, while the intra-layer multiplexity mα,α
bin leads by

construction to the maximum value of similarity (that is, mα,α
bin = 1), the intra-layer

multireciprocity rα,αbin provides important information regarding the reciprocity observed

within a given layer. Indeed, it can be shown that it is nothing but the usual expression

of reciprocity introduced for unweighted monoplex networks [12].

In this context, we can therefore adopt an aggregation procedure, in order to compare

the values of multireciprocity for the different pairs of layers with the global reciprocity

of the aggregated network; we define the latter in the following way:

aaggrij =

{
1 if ∃ α | aαij = 1

0 otherwise
(12)

The global raw reciprocity is therefore given by:

raggrbin =

∑
i 6=j min{aaggrij , aaggrji }

Laggr
(13)

with the same notation as before, but referred to the aggregated network; it is then

possible to define the corresponding filtered quantity, in analogy with (10).

2.3. Weighted multiplexity and multireciprocity

Similarly to the unweighted analysis, we can study weighted correlations and inter-layer

reciprocities in a directed multiplex by means of the weighted directed multiplexity and

multireciprocity:

mα,β
w =

2
∑
i 6=j min{wαij, w

β
ij}

Wα +W β
; rα,βw =

2
∑
i 6=j min{wαij, w

β
ji}

Wα +W β
(14)

where wαij is the weight associated to the directed link from node i to node j in layer α

and Wα is the total weight of the links in layer α (analogue notation for layer β).

In this case, the required introduction of the rescaled directed multiplexity and

multireciprocity:

µα,βw =
mα,β
w − 〈mα,β

w 〉
1− 〈mα,β

w 〉
; ρα,βw =

rα,βw − 〈rα,βw 〉
1− 〈rα,βw 〉

(15)
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are based on the following expressions for the expected value of the minimum, when the

directed weighted configuration model (DWCM) is taken into account as a benchmark

(calculations are straightforward modifications of [23]):

〈min{wαij, w
β
ij}〉DWCM =

pαijp
β
ij

1− pαijp
β
ij

(16)

〈min{wαij, w
β
ji}〉DWCM =

pαijp
β
ji

1− pαijp
β
ji

(17)

We can furthermore analyze the weighted reciprocity of the network resulting from

the aggregation of the various layers by means of the usual weighted reciprocity [15]:

raggrw =

∑
i 6=j min{waggrij , waggrji }

W aggr
(18)

together with its corresponding filtered value, similarly to (15). In this case, the

aggregating procedure consists of:

waggrij =
M∑
α=1

wαij (19)

In the following Section, we will measure the above quantities on a real multi-layer

system and explore many empirical patterns that allow us to model the observed levels

of multiplexity and multiplexity.

3. Results

3.1. Data

In order to test the previous definitions on a real-world system, we analyze the World

Trade Multiplex (WTM), namely the graph representing the import-export bilateral

relations between countries in different products, as provided by the BACI-Comtrade

dataset [24]. Indeed, it is possible to characterize this system as a multiplex [25], where

each layer stands for a different commodity, for instance exploiting the standard 2-digits

HS1996 classification [26] of traded goods. In particular, we will consider a multi-layer

representation defined by 207 nodes (countries) and 96 layers (commodities), as reported

in 2011.

Firstly, we will take into account only the topology of the various layers, thus

disregarding the information about the volume of the disaggregated trade. Secondly, we

will consider a weighted approach, therefore taking into account also the value of import

and export between each pair of countries and adding a further level of complexity.

It should be noted that we can simply recover the aggregated directed trade relations

between any two countries i and j (i.e. the collapsed monoplex trade network) by

summing all the values of i’s exports to j over all commodities, as stated in the previous

Section. We will therefore compare the obtained values of multireciprocity for any pair

of commodities with the usual definition of reciprocity (both binary and weighted) for

the monoplex represented by the aggregated trade network.
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(a) (b)

(c) (d)

Figure 1. Top panels: binary directed raw multiplexity color-coded matrix (a) and

the corresponding distribution of pairwise multiplexities mα,β
bin (b). Bottom panels:

binary directed rescaled multiplexity color-coded matrix (c) and the corresponding

distribution of pairwise values µα,βDBCM (d).

3.2. Binary multiplexity and multireciprocity

In Figure 1(a) we report the color-coded matrix showing the directed overlap between

pairs of layers, together with its corresponding distribution (Figure 1(b)). A high overlap

can be observed for most of the pairs of commodities even when both import and

export are taken into consideration separately, in agreement to what has been reported

in [23]. Furthermore, Figure 1(c) shows the color-coded matrix of rescaled values of

directed multiplexity µα,βDBCM after discarding the information already encoded into the

corresponding binary configuration model; clearly, a significant amount of correlation

is destroyed, but we can see from the corresponding distribution in Figure 1(d) that

all the values are still strictly positive, thus pointing out a positive correlation between

each pair of traded commodities.

It has been shown [12] that the International Trade Network exhibits a high level

of reciprocity when the aggregated trade between countries is considered; however, it is

interesting to see whether such property is preserved also at the single-layer level. We

check this by means of the previously defined multireciprocity.
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Figure 2(a) shows the color-coded matrix reporting the pairwise values of binary

multireciprocity. Significant raw inter-layer reciprocities can be measured when most of

the pairs of commodities are taken into account, but the multireciprocity distribution

reported in Figure 2(b) provides a novel kind of information: the aggregated network

exhibits a higher value of binary reciprocity with respect to any pair of commodities.

As we have already mentioned, the intra-layer multireciprocity mα,α, unlike the intra-

layer multiplexity, is well-defined and corresponds to the usual measure of reciprocity

introduced for monoplex networks. We observe that the intra-layer reciprocity

values (shown in the main diagonal of the matrix) do not look different from the

neighbouring inter-layer multireciprocity values, as the diagonal is indistinguishable

from the rest of the matrix. This means that layers characterized by low (high) values

of internal reciprocity are embedded within groups of layers with low (high) mutual

multireciprocity. This suggests that the tendency to reciprocate is not specific to each

individual layer, but rather to groups of layers.

(a) (b)

(c) (d)

Figure 2. Top panels: binary raw multireciprocity color-coded matrix (a) and the

corresponding distribution of pairwise values rα,βbin (b). Bottom panels: binary rescaled

multireciprocity color-coded matrix (c) and the corresponding distribution of pairwise

values ρα,βDBCM (d). The dashed lines represent the value of reciprocity associated to

the aggregated network.
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In Figure 2(c) and (d) we report the color-coded matrix and the corresponding

distribution of binary rescaled multireciprocity ρα,βbin . As already said for the multiplexity,

we show that most of the correlations between links aαij and aβji are actually encoded

in the degree sequences of the considered layers. Indeed, we observe that all the pairs

of layers exhibit positive multireciprocities, but such values are significantly reduced

with respect to the corresponding raw values. Moreover, we show that the aggregated

reciprocity is still higher than almost all the pairs of commodities ‡.
When we look at the raw multiplexity matrices (for instance, in Figure 1(a)) and

the corresponding raw multireciprocity matrices (such as in Figure 2(a)), we see the

appearance of similar patterns. Such behaviour is explicitly shown in Figure 3(a), where

we report the scatter plots of pairwise multreciprocity values versus the corresponding

directed multiplexity values. However, such behaviour is partially lost when we look at

the filtered values, as shown in Figure 3(b).

(a) (b)

Figure 3. Scatter plots of binary multireciprocity values versus binary directed

multiplexity values. Left: raw values (rα,βbin vs mα,β
bin ); right: rescaled values (ρα,βDBCM

vs µα,βDBCM ).

3.3. Weighted multiplexity and multireciprocity

We now perform a weighted analysis of the World Trade Multiplex, that is, we also

take into account the value of imports and exports observed between countries. In this

context, we apply the weighted quantities introduced in the previous Section in order

to study correlations between weighted layers of the multiplex.

‡ It is worth noticing that values of reciprocity reported in [12] and [15], although referred to the same

real-world system, are actually calculated on a different dataset with respect to our analysis, based on

the BACI–Comtrade dataset [24].
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In Figure 4(a) and (b) we show the color-coded matrix referred to the weighted

directed multiplexity values mα,β
w and the corresponding distribution. We clearly see

that, even though several pairs of commodities are still strongly overlapping, the highest

fraction of pairs of layers are characterized by values of multiplexity lower than 0.2;

indeed, such weighted overlap provides a more refined information with respect to the

unweighted case, and this generalized reduction in the amount of correlation (w.r.t

Figure 1(a)), is therefore expected. In Figure 4(c) and (d) we report the color-coded

(a) (b)

(c) (d)

Figure 4. Top panels: weighted directed raw multiplexity color-coded matrix (a) and

the corresponding distribution of pairwise multiplexities mα,β
w (b). Bottom panels:

weighted directed rescaled multiplexity color-coded matrix (c) and the corresponding

distribution of pairwise values µα,βDWCM (d).

matrix and the corresponding distribution related to the weighted rescaled multiplexity

values µα,βDWCM ; in this case, we show that much information about the correlations

between commodities are encoded into the strength sequences of the different layers.

Moreover, we see that some pairs actually exhibit negative correlations, after applying

the weighted configuration model, even though the distribution is far from being

symmetric.

We then analyze the weighted reciprocity of the World Trade Multiplex at the

commodity level by means of the weighted multireciprocity. This property has been

studied at the aggregated level [15] and it has been shown that the International Trade
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Network is a clear example of strongly positively reciprocated system. In Figure 5(a)

and (b) we report the pairwise multireciprocity matrix together with its distribution; we

can clearly see, analogously to the binary case, that the aggregated network exhibits a

reciprocity which is significantly higher than the multireciprocity associated to any pair

of layers; however, several pairs of commodities are characterized by noticeable inter-

layer reciprocity. Similar considerations can be done when the rescaled multireciprocity

(a) (b)

(c) (d)

Figure 5. Top panels: weighted raw multireciprocity color-coded matrix (a) and

the corresponding distribution of pairwise values rα,βw (b). Bottom panels: weighted

rescaled multireciprocity color-coded matrix (c) and the corresponding distribution

of pairwise values ρα,βDWCM (d). The dashed lines represent the value of weighted

reciprocity associated to the aggregated network.

is considered, as shown in Figure 5(c) and (d).

Furthermore, if we look at the plots reporting the relation between values of

weighted multireciprocity and weighted directed multiplexity (Figure 6), we observe

a clear linear trend - although more scattered than the corresponding unweighted case

when we consider the raw values (a) - while the trend becomes even more clear for the

filtered values, as shown in (b).
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(a) (b)

Figure 6. Scatter plots of weighted multireciprocity values versus weighted directed

multiplexity values. Left: raw values (rα,βw vs mα,β
w ); right: rescaled values (ρα,βDWCM

vs µα,βDWCM ).

3.4. Patterns of multireciprocity: reconstructing joint multi-layer connection

probabilities from the multireciprocity matrix

In this Section, we identify robust empirical patterns in the WTM and show that

the multireciprocity matrices allow us to reconstruct the joint multi-layer connection

probabilities from the marginal single-layer ones, thus retrieving inter-layer information

like pα↔β
ij from single-layer properties such as pαji.

In the previous Section we introduced the expressions for the expected degree sequences,

both single-layer (3) and pairwise reciprocated (4); though, we can easily apply such

definitions to the observed system, as this reduces to a shift from the variables pαji and

pα↔β
ij (given by the model) to aαji and aα↔β

ij (directly measured on the observed network).

Their application to the World Trade Multiplex results in what is shown in Figure 7;

clearly, a linear trend can be inferred from the scattered plot of the pairwise reciprocated

degree sequence versus the in-degree sequence in one of the layers (four pairs of

commodities are shown, but similar plots can be observed in the other cases).

Hence, phenomenologically we observe that the conditional probability defined

in (2) is actually independent from the considered pair of nodes:

rαβij =
pα↔β
ij

pβji
=
〈aαija

β
ji〉

〈aβji〉
∼ rαβ (20)

Since the transformation i 7→ j together with α 7→ β keeps the quantities unaffected,

we have:

rαβ〈aβji〉 ∼ 〈aαija
β
ji〉 = 〈aβjiaαij〉 ∼ rβα〈aαij〉 (21)



Multiplexity and multireciprocity in directed multiplexes 14

Furthermore, summing (21) over i and j, we get:

rαβLβ = rβαLα ; (22)

From (20), we immediately have:

rαβ〈aβji〉 ∼ 〈aαija
β
ji〉 (23)

Summing the previous (23) and inverting the obtained expression:

rαβ =

∑
i,j〈aαija

β
ji〉∑

i,j〈a
β
ji〉

=

∑
i,j a

α
ija

β
ji

Lβ
(24)

Therefore we have:

2

rαβbin
=

2
(
Lα + Lβ

)
2
∑
i,j a

α
ija

β
ji

=
1

rαβ
+

1

rβα
(25)

where rαβbin is the entry of the raw multireciprocity matrix shown in Figure 2(a) and

rαβ is derived from the empirical relationship between kβ,ini and kα↔β
i . Thus, rαβbin is

the harmonic mean of the conditional probabilities rαβ and rβα. Applying (22) to the

previous expression, we get:

2

rαβbin
=

1

rαβ

(
1 +

rαβ

rβα

)
=

=
1

rαβ

(
1 +

Lα

Lβ

)
=

=
Lα + Lβ

rαβLβ
(26)

Hence, the value of the angular coefficient in the plots kα↔β
i vs kβ,ini should be:

rαβ =
Lα + Lβ

2Lβ
rαβbin (27)

Indeed, in Figure 7 we show that the actual best fit curves (in the form y = a · x since

if kβ,ini = 0 then it is necessarily true that kα↔β
i = 0) almost coincide with the expected

ones according to (27). In this context, it turns out phenomenologically that the most

minimal model one can design in order to reproduce the observed values of pairwise

multireciprocity builds on the information about the total number of reciprocated links

Lα↔β for any ordered pair of layers (α, β) (together with the aforementioned in- and

out-degree sequences in each layer).

Similarly to the binary case, from Figure 8 phenomenologically we observe (again

switching to the observed values wα↔β
ij and wβji instead of the expected ones) that the

conditional probability defined in (6) is actually independent from the considered pair

of nodes:

Rαβ
ij =

〈min{wαij, w
β
ji}〉

〈wβji〉
∼ Rαβ (28)

Applying the same transformations i 7→ j and α 7→ β we get:

Rαβ〈wβji〉 ∼ 〈min{wαij, w
β
ji}〉 = 〈min{wβji, wαij}〉 ∼ Rβα〈wαij〉 (29)
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Figure 7. In-degree of layer β versus inter-layer reciprocated degree for 4 different

pairs of commodities: inorganic chemicals (a), plastics (b), iron and steel (c), electric

machinery (d) versus trade in cereals. Blue dots: real data; red line: best fit; green

line: expected trend according to (27).

Summing (29) over i and j, we have:

RαβW β = RβαWα (30)

Similarly, inverting (28) we obtain:

Rαβ〈wβji〉 ∼ 〈min{wαij, w
β
ji}〉 (31)

and summing the previous expression, as in the binary case:

Rαβ =

∑
i,j〈min{wαij, w

β
ji}〉∑

i,j〈w
β
ji〉

=

∑
i,j min{wαij, w

β
ji}

W β
(32)

Therefore we get:

2

rαβw
=

2
(
Wα +W β

)
2
∑
i,j min{wαij, w

β
ji}

=
1

Rαβ
+

1

Rβα
(33)

where rαβw represents the entry of the raw weighted multireciprocity matrix (Figure5(a))

and Rαβ is derived from the empirical relationship between sβ,ini and sα↔β
i . In analogy

with the binary case, rαβw is therefore the harmonic mean of the conditional probabilities

Rαβ and Rβα, as previously defined. Applying (30) to the previous expression, we get:

2

rαβw
=

1

Rαβ

(
1 +

Rαβ

Rβα

)
=
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Figure 8. In-strength of layer β versus inter-layer reciprocated strength for 4 different

pairs of commodities: inorganic chemicals (a), plastics (b), iron and steel (c), electric

machinery (d) versus trade in cereals. Blue dots: real data; red line: best fit; green

line: expected trend according to (35).

=
1

Rαβ

(
1 +

Wα

W β

)
=

=
Wα +W β

RαβW β
(34)

Thus, the value of the angular coefficient in the plots sα↔β
i vs sβ,ini should be, in the

weighted case:

Rαβ =
Wα +W β

2W β
rαβw (35)

in perfect analogy with the unweighted case. Indeed, in Figure 8 we show the comparison

between the actual fit lines (again in the form y = a ·x since sβ,ini = 0 implies sα↔β
i = 0)

and the expected ones according to (35): the agreement is clear and is robust across

different pairs of commodities. Therefore, in analogy to the unweighted case, here the

most minimal model suitable to reproduce the observed values of pairwise weighted

multireciprocity is based on the total reciprocated weight Wα↔β for any ordered pair of

layers (α, β), accompanied by the in- and out-strength sequences measured in any layer.

4. Conclusions

The study of multi-layer networks has been deeply pursued in the last few years, by

means of the introduction of several novel quantities characterizing such systems and



Multiplexity and multireciprocity in directed multiplexes 17

the dynamical processes acting on top of them. However, a crucial property like the

reciprocity has not been generalized for these multiplexes yet. In this work, we have

faced this issue by defining the so-called multireciprocity, in order to detect the tendency

of pairs of nodes to form mutual connections (in opposite directions) in different layers;

such quantity has been introduced for unweighted and weighted systems. Furthermore,

we have defined the directed multiplexity - again, for both binary and weighted networks

- to characterize the similarity between layers of a directed multiplex network.

We have shown, by testing such quantities on the World Trade Multiplex, that

significant correlation and inter-layer reciprocity can be observed for most of the pairs

of layers in the binary case. In addition, when the weighted links are taken into account

such properties are still present, even though the overlap between commodities and

the multireciprocity exhibit lower values with respect to the binary case, due to the

unbalance between weights in different layers (that is, between values of import and

export in different commodities).

Moreover, our results show that, for the World Trade Multiplex, a large amount

of correlation and inter-layer reciprocity is actually encoded in the degree and strength

sequences associated to the various layers of the system, as we observe after a comparison

between the raw measured values and the expected ones according to proper null models.

In order to exploit these new measures of multireciprocity to model the system, we

have analyzed the behaviour of the pairwise reciprocated degree as a function of the

in-degree for any node of the multiplex network. This dependence is based on the the

conditional probabilities of observing a link from i to j in layer α given that a link from

j to i is observed in β and is in principle peculiar of each node.

However, we have phenomenologically observed a linear trend between the pairwise

reciprocated degree sequence and the in-degree sequence in one of the layers; in this

context, these conditional connection probabilities do not actually depend on the

considered pair of nodes, but only on the pair of layers. Moreover, the entries of the

multireciprocity matrix are the harmonic mean of the aforementioned probabilities.

Similar considerations can be done in the weighted case, except for a different definition

of the conditional probabilities.

This evidence shows that the multireciprocity matrices allow to reconstruct the joint

connection probabilities from the marginal ones, hence bridging the gap between single-

layer information and truly multiplex properties.

Such results highlight some crucial properties of the WTM, such as the high

reciprocity, but provide new insights into the understanding of the characteristics of

this network at the disaggregated level, therefore pointing out the importance of a

multiplex approach to the study of such system.

Furthermore, these considerations open new perspectives in the definition of proper

null models for directed multi-layer networks, since the introduction of the notions of

multireciprocity and multiplexity as constraints, in addition to the degree or strength

sequences, may be pursued. We believe that our findings can be important in order to

properly characterize multi-layer networks and may affect the understanding of several
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dynamical processes acting on such systems.
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Appendix A. Maximum Likelihood Method

We consider the multiplex
−→
G = (G1, G2, . . . , GM) as the superposition of M layers Gk

(k = 1, 2, . . . ,M), each of them represented by a graph having in common with the

others a given set of N nodes with the other ones [3]. It is a usual practice to define

null models for networks as randomized network ensembles, represented by the family

of graphs satisfying a given set of constraints on average (canonical ensembles). In

this context, such approach has been generalized to multi-layer networks: a multiplex

ensemble can be introduced by assigning a probability P (
−→
G) to each multiplex, therefore

the entropy S of the ensemble is:

S = −
∑
−→
G

P (
−→
G) lnP (

−→
G) (A.1)

In order to design null models for multi-layers networks, the maximization of (A.1)

subject to given constraints has to be performed. In particular, as we stated in the

main text, we make use of the concept of uncorrelated multiplex ensembles, thus the

probability of any multiplex in the ensemble can be factorized into the probabilities of

the different layers Gk building that particular multiplex (this is due to the supposed

lack of correlation between the presence of links in any two layers α and β); hence, such

probability is given by:

P (
−→
G) =

M∏
k=1

Pk(Gk) (A.2)

Based on such probabilities, it is then possible to compute the expected values of any

quantity of interest under the chosen null model.

We can therefore focus our analysis on a given layer α, thus exploiting the framework

used for single-layer networks, as the same will hold separately for all the others. It has

been shown that a proper choice of constraints, when designing a null model for a

real network, is represented by the degree sequence of that network. Since we deal

with directed graphs, we therefore enforce as constraints both the in-degree and the

out-degree sequences, defining the so-called directed (binary, as we are now considering

unweighted networks) configuration model (DBCM) [14].
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However, finding such probabilities (and then the average values of the quantities

we are interested in) for real networks is computationally demanding, as it requires

the generation of several randomized networks on top of which we can measure such

quantities. Hence, we use a fast and completely analytical method, building on the

maximization of the likelihood [20, 21, 22]; such approach is able to provide the exact

occurrence probabilities of the randomized networks with the same average constraints

as the real network and, as a consequence, other properties such as the expected link

probability pαij.

In the unweighted case, the Maximum Likelihood Method reduces to solving the

solution of following set of 2N coupled nonlinear equation (as we said, independently

for each layer α = 1, 2, . . . ,M due to the uncorrelated assumption):∑
i 6=j

xαi y
α
j

1 + xαi y
α
j

= kαi,out ∀i = 1, 2, . . . , N (A.3)

∑
i 6=j

xαj y
α
i

1 + xαj y
α
i

= kαi,in ∀i = 1, 2, . . . , N (A.4)

where kαi,out is the observed out-degree of node i in layer α, kαi,in the observed in-degree

and the unknown variables {xαi } and {yαi } (i = 1, . . . , N) of the equations are the so-

called 2N hidden variables associated to layer α. Hence, the expected value of the link

probability pαij is given by, for any pair of nodes (i, j) in any layer α:

pαij =
xαi y

α
j

1 + xαi y
α
j

(A.5)

where now {xαi } and {yαi } are the values solving the previous set of equations.

Similar considerations can be made for directed weighted multiplexes, except for

a change in the chosen constraints: we now enforce the in-strength and out-strength

sequences of the real system (again, independently for each layer, due to the uncorrelated

assumption that we still take into account), designing the so-called directed weighted

configuration model (DWCM) [16]. Analogously to the binary case, the Maximum

Likelihood Method, when applied to weighted networks, reduces to finding the solution

to a set of 2N coupled nonlinear equations. Indeed, for any node i in any layer α, we

have: ∑
i 6=j

xαi y
α
j

1− xαi yαj
= sαi,out (A.6)

∑
i 6=j

xαj y
α
i

1− xαj yαi
= sαi,in (A.7)

where sαi,out is the observed out-strength of node i in layer α, sαi,in the observed in-strength

and the unknown variables of the equation represent the 2N hidden variables associated

to that particular layer. It is then possible to use the solutions to the previous system

of equations in order to find the expected link weight wαij form node i to node j, which

becomes:

wαij =
xαi y

α
j

1− xαi yαj
(A.8)
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Based on such expressions for pαij and wαij, we can compute the expected values of higher-

order properties, such as the directed multiplexity and the multireciprocity reported in

the main text.
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