247 research outputs found

    CARTOS: A Charging-Aware Real-Time Operating System for Intermittent Batteryless Devices

    Full text link
    This paper presents CARTOS, a charging-aware real-time operating system designed to enhance the functionality of intermittently-powered batteryless devices (IPDs) for various Internet of Things (IoT) applications. While IPDs offer significant advantages such as extended lifespan and operability in extreme environments, they pose unique challenges, including the need to ensure forward progress of program execution amidst variable energy availability and maintaining reliable real-time time behavior during power disruptions. To address these challenges, CARTOS introduces a mixed-preemption scheduling model that classifies tasks into computational and peripheral tasks, and ensures their efficient and timely execution by adopting just-in-time checkpointing for divisible computation tasks and uninterrupted execution for indivisible peripheral tasks. CARTOS also supports processing chains of tasks with precedence constraints and adapts its scheduling in response to environmental changes to offer continuous execution under diverse conditions. CARTOS is implemented with new APIs and components added to FreeRTOS but is designed for portability to other embedded RTOSs. Through real hardware experiments and simulations, CARTOS exhibits superior performance over state-of-the-art methods, demonstrating that it can serve as a practical platform for developing resilient, real-time sensing applications on IPDs

    Sophisticated Batteryless Sensing

    Get PDF
    Wireless embedded sensing systems have revolutionized scientific, industrial, and consumer applications. Sensors have become a fixture in our daily lives, as well as the scientific and industrial communities by allowing continuous monitoring of people, wildlife, plants, buildings, roads and highways, pipelines, and countless other objects. Recently a new vision for sensing has emerged---known as the Internet-of-Things (IoT)---where trillions of devices invisibly sense, coordinate, and communicate to support our life and well being. However, the sheer scale of the IoT has presented serious problems for current sensing technologies---mainly, the unsustainable maintenance, ecological, and economic costs of recycling or disposing of trillions of batteries. This energy storage bottleneck has prevented massive deployments of tiny sensing devices at the edge of the IoT. This dissertation explores an alternative---leave the batteries behind, and harvest the energy required for sensing tasks from the environment the device is embedded in. These sensors can be made cheaper, smaller, and will last decades longer than their battery powered counterparts, making them a perfect fit for the requirements of the IoT. These sensors can be deployed where battery powered sensors cannot---embedded in concrete, shot into space, or even implanted in animals and people. However, these batteryless sensors may lose power at any point, with no warning, for unpredictable lengths of time. Programming, profiling, debugging, and building applications with these devices pose significant challenges. First, batteryless devices operate in unpredictable environments, where voltages vary and power failures can occur at any time---often devices are in failure for hours. Second, a device\u27s behavior effects the amount of energy they can harvest---meaning small changes in tasks can drastically change harvester efficiency. Third, the programming interfaces of batteryless devices are ill-defined and non- intuitive; most developers have trouble anticipating the problems inherent with an intermittent power supply. Finally, the lack of community, and a standard usable hardware platform have reduced the resources and prototyping ability of the developer. In this dissertation we present solutions to these challenges in the form of a tool for repeatable and realistic experimentation called Ekho, a reconfigurable hardware platform named Flicker, and a language and runtime for timely execution of intermittent programs called Mayfly

    Dynamic voltage scaling algorithms for soft and hard real-time system

    Get PDF
    Dynamic Voltage Scaling (DVS) has not been investigated completely for further minimizing the energy consumption of microprocessor and prolonging the operational life of real-time systems. In this dissertation, the workload prediction based DVS and the offline convex optimization based DVS for soft and hard real-time systems are investigated, respectively. The proposed algorithms of soft and hard real-time systems are implemented on a small scaled wireless sensor network (WSN) and a simulation model, respectively

    A Design That Incorporates Adaptive Reservation into Mixed-Criticality Systems

    Get PDF

    A survey of emerging architectural techniques for improving cache energy consumption

    Get PDF
    The search goes on for another ground breaking phenomenon to reduce the ever-increasing disparity between the CPU performance and storage. There are encouraging breakthroughs in enhancing CPU performance through fabrication technologies and changes in chip designs but not as much luck has been struck with regards to the computer storage resulting in material negative system performance. A lot of research effort has been put on finding techniques that can improve the energy efficiency of cache architectures. This work is a survey of energy saving techniques which are grouped on whether they save the dynamic energy, leakage energy or both. Needless to mention, the aim of this work is to compile a quick reference guide of energy saving techniques from 2013 to 2016 for engineers, researchers and students

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Data Collection and Information Freshness in Energy Harvesting Networks

    Get PDF
    An Internet of Things (IoT) network consists of multiple devices with sensor(s), and one or more access points or gateways. These devices monitor and sample targets, such as valuable assets, before transmitting their samples to an access point or the cloud for storage or/and analysis. A critical issue is that devices have limited energy, which constrains their operational lifetime. To this end, researchers have proposed various solutions to extend the lifetime of devices. A popular solution involves optimizing the duty cycle of devices; equivalently, the ratio of their active and inactive/sleep time. Another solution is to employ energy harvesting technologies. Specifically, devices rely on one or more energy sources such as wind, solar or Radio Frequency (RF) signals to power their operations. Apart from energy, another fundamental problem is the limited spectrum shared by devices. This means they must take turns to transmit to a gateway. Equivalently, they need a transmission schedule that determines when they transmit their samples to a gateway. To this end, this thesis addresses three novel device/sensor selection problems. It first aims to determine the best devices to transmit in each time slot in an RF Energy-Harvesting Wireless Sensor Network (EH-WSN) in order to maximize throughput or sum-rate. Briefly, a Hybrid Access Point (HAP) is responsible for charging devices via downlink RF energy transfer. After that, the HAP selects a subset of devices to transmit their data. A key challenge is that the HAP has neither channel state information nor energy level information of device. In this respect, this thesis outlines two centralized algorithms that are based on cross-entropy optimization and Gibbs sampling. Next, this thesis considers information freshness when selecting devices, where the HAP aims to minimize the average Age of Information (AoI) of samples from devices. Specifically, the HAP must select devices to sample and transmit frequently. Further, it must select devices without channel state information. To this end, this thesis outlines a decentralized Q-learning algorithm that allows the HAP to select devices according to their AoI. Lastly, this thesis considers targets with time-varying states. As before, the aim is to determine the best set of devices to be active in each frame in order to monitor targets. However, the aim is to optimize a novel metric called the age of incorrect information. Further, devices cooperate with one another to monitor target(s). To choose the best set of devices and minimize the said metric, this thesis proposes two decentralized algorithms, i.e., a decentralized Q-learning algorithm and a novel state space free learning algorithm. Different from the decentralized Q-learning algorithm, the state space free learning algorithm does not require devices to store Q-tables, which record the expected reward of actions taken by devices
    corecore