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Abstract 

Real-time system is all around us, especially in 21st century era, mobile devices are 

becoming one of the most important real-time systems. However, the energy 

consumption has always been a challenge in designing a real-time system. Although 

several common power management techniques have been widely proposed, Dynamic 

Voltage Scaling (DVS) has not been investigated completely for further minimizing the 

energy consumption of microprocessor and prolong the operational life of real-time 

system. In this dissertation, several algorithms of DVS are proposed, including the 

workload prediction based DVS for soft real-time system and offline Convex Optimized 

based DVS for hard real-time system. For Workload Prediction based DVS, two 

adaptive algorithms are proposed based on the weighted least square error and the 

minimum mean square error methods, respectively. The algorithms of soft real-time 

system are implemented on a small scaled wireless sensor network (WSN), while the 

algorithms of hard real-time system are implemented on a simulation model. The 

experimental results shows that workload prediction based DVS have a good predction 

performance with a condition of good choice in number of workload samples and 

forgetting factor. As for Convex Optimized based DVS, it perform a good energy saving 

of CPU while guaranteeing deadline. The computational performance of the proposed 

method in term of time complexity is improved with the modified of problem 

formulation.  
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1.0 INTRODUCTION 

1.1 Hard and soft real-time system 

In 21st Century, the devices and machines have been integrated into real-time system. 

However, what is a real-time system? A real-time system is a system required to 

complete its work and deliver its services on a timely basis [1]. Each of the electrical 

systems such as electronic, control, power, signal processing, and telecommunication 

has varieties of real-time systems in order to deliver its services in timely manners. For 

example, an electronic device—smartphone, can be used for internet browsing, 

multimedia playing and gaming apart from the usual mobile phone functionalities. Thus, 

each of these functionalities is processed in a timely manner by using a real-time system.   

Real-time systems can be categorized into two types, depending on its characteristics 

such as soft or hard real-time system. Generally, all kinds of work (such as signal 

processing, data acquisition and etc.) processed by real-time systems are called a job. 

Sometimes, real-time systems are overloaded with excessive jobs, therefore some of the 

jobs have to be scheduled for later execution. There are two main time definitions in this 

context: release time and deadline. The release time of a job is defined as the instant of 

time at which the job becomes available for execution. Meanwhile, the deadline of a job 

is defined as the instant of time by which its execution is required to be completed. A 

hard real-time system is a system which must finish executing the job before the 

specified deadline once it has been released. Failing to meet the deadline will bring a 

catastrophe performance.  

An example of a hard real-time system is the automatic train braking controller, jobs 

assigned to the CPU has to be completed within the specified deadline. When the stop 

signal is triggered from sensors, the braking action must be activated in a distance away 

from the signal post at which the train must stop. The braking distance depends on the 

speed of the train and the safe value of deceleration. Implementing these information, 

the controller is able to compute the best time for the train to start braking. In the real-

time system point of view, it is important to impose a constraint on the response time of 

the jobs. If the system cannot finish the jobs on time or not responsive to the incoming 

jobs, it will cause a catastrophe to happen in which human lives are endangered. 
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Soft real-time system on the other hand, can afford to miss some deadlines occasionally 

or tolerated abort of execution. In fact, the overall performance of the system will 

become less responsive due to the extension of time completion for the jobs. However, 

the designer or developer of soft real-time system is rarely required to prove the real 

time guarantees on that system. For instance, a frame of a video must be delivered in 

every 1/13 second time. The time difference between the displayed video frame and the 

presented sound should be less than 80msec. In fact, each new video stream that is 

transmitted through a network, is subjected to a timing constraint. If the network could 

not transmit the video frame within the timing constraint, the new stream will be 

rejected and the admission is requested again, with the condition of not violating the 

constraints of existing streams. However, users are willing to tolerate a few glitches of 

the video, and for that reason, timing constraints of most multimedia systems are 

measured on a statistical basis (e.g., the average number of lost frames per minute). In 

this case, the quality-of-service guarantee, validation requirement and the timing 

constraints defining the video quality are essentially “soft”. 

 

1.2 Energy consumption of real-time system 

Since real-time system has become a major concern in each design, thus its energy 

consumption is also directly proportional crucial. Many applications impose severe 

power or energy constraints on embedded systems, such as Wireless sensor network 

(WSN). Although WSN has several benefits such as low cost, wireless, fast deployment 

characteristics and has been used for remote monitoring applications, its energy 

consumption remains as a major issue. This is because WSN platforms are powered by 

batteries, and they are inaccessible once they are deployed in the physical environment. 

Therefore, a good energy saving scheme for WSN nodes is essential in order to provide 

a long operational life, especially for at least two years.  
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1.3 Previous Works 

Below are some of the most frequent approaches in minimizing the power consumption 

of WSN: 

 Dynamic Power Management (DPM) 

Dynamic Power Management (DPM) schemes have been presented in the literatures [2, 

3, 4, 5]. The main idea is to switch off the electronic components (such as the radio 

transceiver) when it is not used, and switch back on again when it has been assigned for 

a task. DPM has been a very popular approach for WSN due to its significant energy 

saving performance and ease of implementation. 

 Energy Harvesting 

Energy harvesting is another approach for achieving the longevity of operational life, 

where the electrical energy of sensor node is harvested from the natural energy nearby, 

such as solar and water flow current [6, 7, 8, 9, 10, 11]. 

 Energy Aware Routing Protocol 

Energy aware routing protocols have been presented in [12, 13] which the data 

aggregation route from node to node is adjusted based on the battery conditions of the 

sensor nodes around the network. This will prevent early battery drain of a particular 

node (dead node) due to rapid data aggregation, hence prolong the operational life of the 

whole system. 

 Dynamic Voltage Scaling (DVS) 

Although Dynamic Voltage Scaling (DVS) has been widely used in embedded system 

applications due to its effective energy saving for CPU, it has not fully investigated on 

WSN. Most microprocessor systems have time varying computational load, including 

WSN, therefore, by scaling the clock rate of a CPU corresponding to its CPU loads will 

result in lower power consumption.  
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1.4 Motivation 

Although several common power management techniques have been widely proposed, 

Dynamic Voltage Scaling (DVS) has not been investigated broadly. DVS is a new trend 

for minimizing the energy consumption of microprocessor. Speed scheduling on real-

time system is not a trivial task, as it has known to be NP-hard problem [14]. The 

potential of good DVS scheme could significantly save the energy usage of processor, 

especially WSN and mobile devices.  

1.5 Objectives 

The energy consumption of both hard and soft real-time systems based on Dynamic 

voltage scaling (DVS) is investigated in this thesis. Several algorithms of DVS are 

proposed and their performances are evaluated and discussed. For soft real-time system 

based algorithms, the experiment is carried out on a small scale WSN, while for hard 

real-time system experiment is carried out on simulation model.  

1.6 An outline of the dissertation 

This dissertation is organized in six chapters. The following Chapter discuss the 

introduction of real-time systems and CPU power model. Chapter 3 includes the related 

work of DVS. Meanwhile, Chapter 4 and Chapter 5 comprises of the presentation of 

workload prediction based DVS and offline convex optimization based DVS, 

respectively. The experimental results and discussion for the proposed DVS algorithms 

are discussed in Chapter 6. Lastly, conclusions and the outline of future work are 

detailed in Chapter 7 and Chapter 8.  
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2.0 REAL-TIME SYSTEM AND CPU POWER MODEL 

In this chapter, the introduction of real-time system model and CPU power model are 

presented. In this dissertation, DVS algorithms are designed for real-time system 

processing periodic tasks. A periodic task is referred to as a task with regular arrival 

time, such as to read sensor data and to update the state of the real-time system on a 

regular basis. Therefore, a periodic task model is also included in this chapter. 

2.1 Temporal parameters of real-time workload 

The workload on microprocessors consist of several jobs J. Each job, Ji, is a unit of 

work to be allocated to a microprocessor time and other resources, respectively. A set of 

related jobs that execute to support a function of the system is denoted as a task, Ti. 

The parameters of a hard real-time job and task are identified at all times, otherwise the 

system will be impossible to ensure whether it meets the hard real-time guarantee. The 

following are the frequently used terms of temporal parameters of a job Ji: 

 Release time (or arrival time) ri: is the instant of time at which the job becomes 

eligible for execution. The respective release time of the job may be jittery 

(sporadic). This means that ri is in the range of [ri−, ri+] in which only the range 

of ri is known but not the actual value of ri. More elaboration of this term is 

discussed in section B. 

 Absolute deadline di: di is the instant of time by which the job must complete. 

 Relative deadline Di: Di is the maximum allowable response time of the job. 

 Execution time ei: ei is the amount of time required to complete the execution of 

Ji when it executes alone and has all the resources it requires. The execution time 

of Ji may vary in range such that ei is in the range of [ei−, ei+]. This corresponding 

range is known but not the actual value of ei. Some models assume that Ji always 

executes for the maximum amount of time, ei+; or in other words, Worst Case 

Execution Time (WCET).  

 Pre-emptivity: A job is pre-emptible if its execution can be suspended at any 

time to allow the execution of other jobs and, later on, can be resumed from the 

point of suspension.  A job is non-pre-emptible if it must be executed from start 

to completion without being interrupted. 
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2.2 Jittered, fixed, and sporadic release times 

In most of the systems, the time when a job is released is unknown. In other words, the 

actual release time ri of each job Ji is not known; only the range of ri [ri- , ri+] can be 

identified. ri-is denoted as the earliest release time, and ri+ is denoted as the later release 

time possible. The range of ri is called jitter, or jittered release times. 

 

However, the jitter sometimes is so small compared with the values of other temporal 

parameters. It can therefore be ignored. For practical purposes, the actual release time of 

each job can be approximated by either the earliest or the later release time. We called 

this kind of release time to be fixed. 

 

Almost every real-time system is required to respond to the external events which 

occurred at random instants of time. When such an event occurred, in response, the 

system will execute a set of jobs. The release times of these jobs are not known until the 

event triggering them occurs. Such jobs are called sporadic jobs or aperiodic jobs 

because they are released at random time Instants. 

 

2.3 Periodic task model 

In the periodic task model, tasks are executed repeatedly in regular time intervals to 

comprise a function of the system. Specifically, each periodic task is denoted as Ti . The 

period pi of the periodic task Ti is the minimum length of all time intervals between 

release times of consecutive jobs in Ti. Meanwhile, the execution time, ei is the 

maximum execution time of all jobs in Ti.  

 

The n-th number of tasks in the system is denoted by T1, T2, … , Tn. And each individual 

jobs in a task Ti is denoted by Ji,1 ,Ji,2, … , Ji,k in which Ji,k being the k-th job in Ti . The 

release time, ri,1 of the first job Ji,1 in each task Ti is called the phase of Ti where it is 

denoted as ői, and ői = ri,1, respectively. In general, different task has different phases. 

However, there exist some tasks which are in the same phase. 
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The maximum number of jobs, N in each hyper-period is equal to 

 

    ∑ 𝐻/𝑝𝑖
𝑁
𝑖=1 .                                                                     (2.1) 

 

where H is the hyper-period of the periodic task and p is the period of the tasks. For 

example, the length of a hyper-period of three periodic tasks with periods 3, 4, and 10 is 

60. Thus, the total number of jobs, N in the hyper-period is 41. 

 

The utilization of the task Ti, is denoted as ui, where ui = ei/pi is the fraction of time a 

truly periodic task keeps a processor busy. The total utilization denoted as utotal = 

∑ 𝑒𝑖/𝑝𝑖
𝑛
𝑖=1 , respectively. For instance, if the execution times of the three periodic tasks 

are 1, 1, and 3, and their periods are 3, 4, and 10, thus their corresponding utilizations 

will be 0.33, 0.25 and 0.3. Meanwhile, the total utilization of the tasks is 0.88. 

A job in Ti which is released at t must complete Di units of time after t; Di is the 

(relative) deadline of the task Ti.  

 

2.4 Real-Time Scheduling Algorithms and Validation Tests 

A scheduling algorithm in real-time systems allocates processor time to tasks in order to 

meet the timing constraints. There are numerous publications on the real-time 

scheduling algorithm [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. The commonly 

used terms in the publications are summarized below: 

 

 

Feasibility, optimality & schedulability 

A task set T is said to be feasible on a hardware platform if there exist some way of 

scheduling that meets all the deadlines of the corresponding platform. T is said to be 

schedulable on a hardware platform by algorithm A, provided A is capable for correct 

scheduling on that platform such that A can meet all the deadlines of T. Furthermore, A 

is said to be an optimal scheduling algorithm if A can correctly schedule every feasible 

task system for every hardware platform. 
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Maximum schedulability utilization 

A system is schedulable by an algorithm if the algorithm could always produces a 

feasible schedule. A feasible and schedulable system is valid if it is schedulable by some 

algorithm. However, now the question is—how large is the total utilization of a system 

can be in order for the system to be surely schedulable, in other words, what is the 

maximum schedulability utilization of the algorithm. 

 

Schedulability tests  

It is a validation tests for the purpose of validating that the given application system can 

indeed meets all its hard deadlines when scheduled accordingly to the chosen scheduling 

algorithm. If a schedulability test is efficient, it then can be used as an on-line 

acceptance test. 

 

Priority-driven scheduling approach 

Priority-driven scheduling algorithms refer to a large class of scheduling algorithms that 

never leave any resource idle intentionally. A resource will stay idle only when there is 

no job ready for execution. Scheduling is decided based on events such as occurrences 

of releases and completions of job. 

 

Priority-driven algorithms are classified into two types: fixed priority and dynamic 

priority. A fixed-priority algorithm assigns the same priority to all the jobs in each task. 

In other words, the priority of each periodic task is fixed relative to other tasks. 

Conversely, a dynamic-priority algorithm assigns different priorities to the individual 

jobs in each task. Hence the priority of the task with respect to that of the other tasks 

changes as jobs are released and completed. Both examples of well-known dynamic and 

fixed priority algorithms are discussed below. For the rest of the dissertation, we are 

going to refer a periodic task Ti with period pi, execution time ei by the 2-tuple (pi, ei). 
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For example, (3, 6) is a periodic task whose period is 10, and execution time is 3. By 

default, the phase of each task is 0, and its relative deadline is equal to its period.  

Dynamic-priority driven 

The most well-known dynamic-priority algorithm—Earliest-deadline-first (EDF) 

algorithm assigns priorities to individual jobs in the tasks according to their absolute 

deadlines. Figure 2.1 shows the example of EDF schedule, with the corresponding tasks 

T1 = (2, 0.9) and T2 = (5, 2.3). 

 

- At time 0, the first jobs J1,1 and J2,1 of both tasks are ready. The absolute deadline 

of J1,1 is 2 while the deadline of J2,1 is 5. Consequently, J1,1 has a higher priority 

to execute first. Thus when J1,1 completed, J2,1 begins to execute. 

- At time 2, J1,2 is released, and its deadline is 4, earlier than the deadline of J2,1. 

Hence, J1,2 is placed ahead of J2,1 in the ready job queue. J1,2 pre-empts J2,1 and 

executes. 

- At time 2.9, J1,2 completed. The processor then executes J2,1. 

- At time 4, J1,3 is released; its deadline is 6, which is later than the deadline of J2,1. 

Hence, the processor continues to execute J2,1. 

- At time 4.1, J2,1 completed, the processor starts to execute J1,3, and so on. 

 

Note that the priority of T1 is higher than the priority of T2 from time 0 until time 4.0. T2 

starts to have a higher priority at time 4.0. When the job J2,2 is released, T2 again has a 

lower priority. Hence, the EDF algorithm is a task-level dynamic-priority algorithm. 
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Figure 2.1 An earliest-deadline-first schedule of (2, 0.9) and (5, 2.3). 

 

 Static-priority driven 

A well-known fixed-priority algorithm is the rate-monotonic algorithm. This algorithm 

assigns priorities to tasks based on their periods: the shorter the period, the higher the 

priority. 

The rate (of job releases) of a task is the inverse of its period. Hence, the higher its rate, 

the higher its priority are. We will refer to this algorithm as the RM algorithm for short 

and a schedule produced by the algorithm as an RM schedule. 

 

For an example, the schedule in Figure 2.2 is for the tasks T1 = (2, 0.9) and T2 = (5, 2.3). 

The tasks are in phase. According to the RM algorithm, task T1 has a higher priority 

than task T2. Consequently, every job in T1 is scheduled and executed as soon as it is 

released. The jobs in T2 are executed in the background of T1. 
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Figure 2.2 RM schedule of T1 = (2, 0.9) and T2 = (5, 2.3). 

 

 EDF and RM algorithm comparison 

For a uniprocessor, the maximum schedulable utilization of RM for periodic task 

systems is 𝑈𝑅𝑀  =  𝑁 ·  (21/𝑁 −  1) [1]. Notice that from the equation, the maximum 

utilization decreases when number of task, N increases, and will eventually converge to 

𝑙𝑛 2 ≈  0.69 when N is ∞. But the schedulable utilization of EDF is 1.0 for all N. Thus, 

EDF has better performance than RM. Furthermore, since there is no algorithm which 

could correctly schedule any task system with total system utilization more than 1, EDF 

is considered optimal among all scheduling algorithms. 

 

2.5 CPU Power Model 

In CMOS devices, power consumption is proportional to the voltage square, which is 

given by [17]: 

    𝑃𝑐𝑚𝑜𝑠 = 𝐶𝐿𝑁𝑆𝑊𝑉𝐷𝐷
2                                                         (2.2) 

Where  

 CL is the circuit output load capacitance 

 Nsw is the number of switches per clock cycle 

 VDD is the supply voltage 

 f is the clock frequency 
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The gate delay in the system is followed by: 

                                                     𝑇 = 𝑘
𝑉𝐷𝐷

(𝑉𝐷𝐷−𝑉𝑇)2
                                         (2.3) 

Where 

 k is technology dependant constant 

 VT  is threshold voltage 

From the observation of both equations above, the speed of the processor is proportional 

to f, and inversely proportional to the gate delay. Thus, speed versus power curve can be 

derived in Figure 2.3. 

 

Figure 2.3 Power vs Speed of CMOS Device 

 

In this dissertation, VT is set as 0.8V and maximum supply as 5.0V. The normalized 

speed of the processor at maximum frequency, and the normalized power consumption 

at maximum frequency and maximum supply voltage were both set to be 1. By 

combining the gate delay equation and the Power of CMOS device, the normalized 

power function (P) as a function of speed (S) is shown as below: 
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(2.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑃(𝑆) = 0.248𝑆3 + 0.256 ∗ 𝑆

+ (0.014112𝑆2 + 0.0064𝑆)(√311.16𝑆2 + 282.24𝑆) 
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3.0RELATED WORK 

There are two categories of DVS which are known as inter-task and intra-task. An inter-

task DVS is basically a scheme to assign one specified speed to the task, and it is not 

changed during the task execution. For an intra-task DVS, different speeds can be 

assigned to a same task along the task execution. Some of the research papers on DVS 

are presented in [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. 

 An extension of static solutions on periodic and aperiodic task models were proposed in various 

papers [45- 47, 75]. Pering et al proposed a DVS algorithm on a microprocessor [45].  The result 

showed that DVS allows a microprocessor to save energy by operating at optimal voltage for a 

given task. In [46], the authors proposed  both aperiodic  and periodic  tasks on variable 

voltage processor to optimize power consumption while ensuring all periodic tasks meet 

their deadlines and to accept as many periodic tasks as possible, as long as it is not 

compromising the feasibility of the system. 

In paper [47], the authors proposed a non-pre-emptive power aware scheduling and also 

the synthesis technique that addresses the selection of the processor core. Meanwhile, 

the determination of the instruction, data cache size and configuration so as to fully 

exploit dynamically variable voltage hardware. And it is the only paper that considers 

the aspect of instruction and data cache size that will further improve the energy saving 

of the processor. 

In paper [48], it was the first paper addresses the further voltage scaling by allocating 

slack time of the early finished task to other available tasks. The proposed run-time 

mechanism is simple to implement in a system kernel while resulted as significantly 

energy saver. Thus, there goes the attention of researchers to further improve on this 

approach.  

In [49], the authors proposed a reclaiming algorithm (Cycle-Conserving EDF) and a 

speculation-based algorithm (Look-Ahead EDF). These inter-task DVS algorithms are 

based on updating and predicting the instantaneous utilization of the periodic task set.  

The most popular DVS method on hard real-time system is published in [50]. Their 

proposed method includes three components: a static(offline) solution to compute the 
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optimal speed assuming worst case execution time (WCET) for each arrival, an online 

speed reduction mechanism to reclaim energy by adapting to the actual workload, and 

the online, adaptive and speculative speed adjustment mechanism to anticipate early 

completions of future executions based on the average-case workload information. The 

main idea behind their proposed online DVS is to the slack time from early-finished task 

will be given to strictly lower priority task. The method is found to be efficient while 

guarantee feasibility for EDF scheduling. 

In [63], the authors proposed a heuristic algorithm on DVS by using just two voltage 

levels to achieve energy saving consumption while still guarantee to meet tasks’ 

deadlines. 

In [51], the authors presented an analytical model of general tasks for DVS assuming 

job timing information is known only after a task release. It models the voltage scaling 

process as a transfer function-based filtering system, which facilitates the design of two 

efficient scaling algorithms—time-invariant and time variant scaling algorithm. 

 In paper [52], the authors proposed a scheduling scheme for reduced energy of hard 

real-time tasks with fixed priorities assigned in a rate monotonic schedule. The authors 

targeted to scale down the voltage based on offline and online decisions. For their 

offline scaling method, the authors employed stochastic data of the task to derive energy 

efficient schedules based on the probability theory. 

In [53], the authors presented an algorithm to compute a near optimal constant 

slowdown factor for a hard real-time system assuming the deadline of the task can be 

lower than its period. The authors proposed the bisection method to compute constant 

static slowdown factors and an algorithm based on the ellipsoid method to compute 

uniform slowdown factors. 

In paper [54], Lin et al. proposed ALT-DVS which is a DVS that take consideration of 

the leakage and temperature of CPU chips. The algorithm leverages the on-chip 

temperature sensor and the established system-level thermal model to determine the 

appropriate operating voltage and frequency for a given task. Such that each task can be 

completed before its deadline while the system does not overheat. 
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In [55], the authors issued that the memory-bound multimedia applications are 

becoming popular in handheld devices, thus the DVS policies should consider the so-

called ‘memory wall’ problem to maximize the energy gain. The authors proposed a 

memory-aware DVS (M-DVS) technique that takes the memory wall problem fully into 

consideration. The experimental results on a PDA shows that M-DVS can reduce 8% of 

additional power consumption, compared to the conventional DVS without any QoS 

degradation for handling multimedia clips. 

 

Although many DVS algorithms have been developed for real-time systems with 

periodic tasks, none of them can be used for a system with both periodic and aperiodic 

tasks because of the arbitrary temporal behaviours of aperiodic tasks. In [56], Shin at el. 

Describes dynamic voltage scaling (DVS) algorithms for real-time systems with both 

periodic and aperiodic tasks. The paper proposed off-line and on-line DVS algorithms 

that are based on existing DVS algorithms. The proposed algorithms utilize the 

execution behaviours of scheduling servers for aperiodic tasks. Since there is a trade-off 

between the energy consumption and the response time of aperiodic tasks. The proposed 

algorithms focus on bounding the response time degradation of aperiodic tasks even 

though the response time is delayed by stretching the task execution to get high energy 

savings in mixed task sets. 

Jacob et al. proposed PACE (Processor Acceleration to Conserve Energy)—a New 

Approach to Dynamic Voltage Scaling in [57]. The proposed formula specifies 

increased speed as the task progresses.  The optimal formula depends on the probability 

distribution of the task’s work requirement with condition that the speed be varied 

continuously. They also presented methods for estimating the task work distribution and 

evaluate how effective the authors are on a variety of real workloads. The authors 

showed how to approximate the optimal continuous schedule with one that changes 

speed a limited number of times.  

In [58], the authors proposed a novel workload estimation technique for DVS. This 

technique is based on the Kalman filter and can estimate the processing time of 

workloads in a robust and accurate manner by adaptively calibrating estimation error of 
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feedback. Experimental results showed that this approach can reduce energy 

consumption by 57.5% on average, only with negligible deadline miss ratio (DMR) 

around 6.1%, 11.7% in the worst case. 

In [62], the authors proposed DVS by predicting the incoming workload traces through 

adaptive filtering theory. Few filter coefficient have been proposed and compared, and 

Least Mean Square have been chosen due to its light weight computation. In [58], the 

authors proposed a DVS scheme for jittered controlled real-time scheduling. They 

transformed jittered periodic real-time tasks into a tree structure. 

For intra-task DVS, Dongkun et al proposed a novel intra-task dynamic voltage 

scheduling (IntraDVS) framework for low-energy hard real-time applications [59].  

Based on a static timing analysis technique, the proposed approach controlled the supply 

voltage within an individual task boundary. By fully exploiting all the slack times, a 

scheduled program by the proposed technique always completes its execution near the 

deadline, thus achieving a high energy reduction ratio. The problem formulation of 

IntraDVS is first presented and two heuristics are proposed: one based on worst-case 

execution information and the other on average-case execution information. 

In [60], the authors presented a novel light-weighted energy-efficient EDF schedulers 

for processors. The proposed EDF scheduler performed an online intra-task and inter-

task frequency scaling at the same time. 

In paper [61], the authors addressed the problem of variable execution time in tasks 

under the Fixed-Priority scheduling with pre-emption threshold (FPPT). FPPT allows a 

task to disable pre-emptions from tasks up to a specified pre-emption threshold priority. 

Tasks with a priority greater than the pre-emption threshold priority are still allowed to 

pre-empt. The pre-emption threshold scheduling model has been shown to reduce the 

run-time costs by eliminating unnecessary task pre-emptions. The authors thus proposed 

an intra- task voltage scheduling that exploit the stochastic data of the tasks completion 

tasks. 
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4.0 WORKLOAD PREDICTION BASED ON LINEAR PREDICTION 

In this chapter, a workload prediction based on linear prediction for a soft real-time 

system is proposed.  Due to the nature of WSN in which few deadline misses are 

acceptable, WSN is used for the study of a soft real time system.  The proposed 

workload prediction method will be experimented on a small-scale WSN for evaluating 

its performances. 

4.1 Operating System for WSN 

To determine whether an Operating System (OS) is suitable to provide real-time 

guarantee, it depends on the scheduling mechanism and execution models of the OS. 

Real-time guarantee is essential for an OS used in the real-time systems. This is because 

real-time systems have its deadlines, thus missing the deadline will cause system failure 

in a worst situation. 

An OS that is eligible to provide real-time guarantees should have a real-time scheduler 

policy (i.e., Earliest-Deadline-First)  and a good execution model that could handle task 

and being responsive in time constrained environment (i.e., thread based driven model). 

In [65], a survey regarding OS for WSN is made. Out of seventeen OS that have been 

surveyed, only five OS have real-time guarantees. Since the majority of the OS based in 

WSN are not eligible to apply on real-time constrained applications, therefore WSN can 

be considered as soft real-time system. 

 

4.2 WSN System Model 

A system model of DVS for wireless sensor node is shown in figure 3.1. The main 

components of a wireless sensor node consist of a radio transceiver, microcontroller, 

Flash memory and a number of sensors. Each of the components has their own tasks-

waiting for the microprocessor to execute. In OS environment, the tasks will be queued 

and scheduled by an OS scheduler. An OS scheduler’s job is to determine which task 

should be executed first or pre-empted, based on its scheduling policy. Assume each of 

n components generates task at a specified rate rk (k = 1, 2, … , n). The tasks rate that 

arrives at processor is 𝑟 = ∑ 𝑟𝑘. Then the OS kernel will compute the workload, w over 

an observation frame, T. The workload is computed using the following equation: 
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               (4.1) 

 

where idle_cycle denotes the idle cycle of the processor in the observation timeframe. 

Based on the historical workloads that have be calculated, a future workload can be 

predicted. The DVS module then adjusts the voltage, v and the frequency, f for the 

microprocessor, based on the predicted future workload, wp. A direct current or direct 

current converter is used to adjust the desirable voltage level from the fixed voltage 

supply that corresponding to the current workload state of the processor, as shown in 

figure 4. 

 

4.3 Workload prediction algorithm 

4.3.1  Ergodic Process 
A stochastic process is assumed to be ergodic if its statistical properties can be 

deduced from a single, sufficiently long sample of the process. For example, a discrete 

process x(n) has mean, 

(4.2) 

 

And autocovariance, 

 

(4.3) 

 

that does not change with time, is assumed to be ergodic [66]. 

In this paper, ergodic process is proposed as the context for workload prediction. It is 

reasonable because in most WSN applications, the event is periodic nature.  For 

example, a remote monitoring system will acquire sensing data and relay it across 

𝑤 =
𝑇 − 𝑖𝑑𝑙𝑒_𝑐𝑦𝑐𝑙𝑒

𝑇
 

 

µ = 𝐸[𝑥(𝑛)] 

 

𝑟𝑥(K) = 𝐸[(𝑥(𝑛) − µ)(𝑥(𝑛 + K)

− µ)] 
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network once for every time interval. Hence, it is understandable to assume that the 

workload will have the same mean and autocovariance across time. 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.1  DVS System Model for Sensor Node 

4.3.2  Linear Prediction 
To predict a future workload, observation of the previous workload history, w has to 

be done. Assume the previous workload samples are w(n – 1), w(n – 2),….., w(n – M), 

where M is the number of past samples used to predict the future workload, �̂�(n). We 

may assume the predicted workload as a linear function of the given M samples. Hence, 

the equation for predicting the future workload is given by [67] 

(4.4) 

Where ak are constant coefficients for the predictor. Different methods had been 

proposed to determine ak [67]. In this paper, two algorithms are considered: Minimum 

Mean Square Error and Weighted Least Mean Square. 
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Minimum Means Square Error (MMSE) – It is obvious that we need to minimize the 

error between predicted value and actual value.  In Probability theory, a common 

measure for prediction error is the Root Mean Square (RMS) Error. So, to minimize 

prediction RMS error, Weiner- Hopf equations came out as following, 

(4.5) 

where, 

(4.6) 

 

(4.7) 

 

(4.8) 

 

 

 

Rxx(k) denotes the autocorrelation function of the sequence w(n) for a lag k. Note that 

Rxx(-k) = Rxx(k), since we assume the process to be stationary. Therefore, to solve the 

corresponding coefficient a, Rxx(k) up to order M have to be determined.  

To determine Rxx(k) for the input sequence w(n),  we need to have apriori knowledge 

of the entire process. In previous section, we have assumed the workload process to be 

ergodic. Hence Rxx(k) is derived as follow, 

 

 

(4.9) 

𝑹𝐚 = 𝒓 

 

𝐚 = [a1 a2 a3  …  a3]
𝑇 

 

𝒓 = [ 𝑅𝑥𝑥(1)    𝑅𝑥𝑥(2)    𝑅𝑥𝑥(3)    …   𝑅𝑥𝑥(𝑀)]𝑇 

𝑹 =

[
 
 
 
 
 

𝑅𝑥𝑥(0)  𝑅𝑥𝑥(−1) … 𝑅𝑥𝑥(1 − 𝑀)

𝑅𝑥𝑥(1) 𝑅𝑥𝑥(0) … 𝑅𝑥𝑥(2 − 𝑀)

𝑅𝑥𝑥(2) 𝑅𝑥𝑥(1) … 𝑅𝑥𝑥(3 − 𝑀)
. . … .
. . … .

𝑅𝑥𝑥(𝑀 − 1) 𝑅𝑥𝑥(𝑀 − 2) … 𝑅𝑥𝑥(0) ]
 
 
 
 
 

 

 

𝑅𝑥𝑥(𝑘) =
1

𝑁 − 𝑘
∑𝑤(𝑙)𝑤∗(𝑙 − 𝑘)

𝑁

𝑙=1
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Weighted Least Square Error (WLSE) - unlike MMSE, autocorrelation of the 

sequence is not needed. Hence, WLSE is more practical for real time implementation 

compared to the former since priory knowledge of the process is no needed anymore. 

The idea is to minimize the sum of square error in which the error is defined as the 

difference between actual value and the predicted value. Thus, we have 

 

(4.10) 

 

And the cost function that we need to minimize, as a function of e(n) and dependent on 

the predictor’s coefficients. We have 

 

(4.11) 

 

where αn=αk-1 is the “forgetting factor”, which will give the lesser weights to the older 

error samples, and 0 <α < 1. New set of predictor’s coefficients will be computed at 

each time t = k. In order words, it will adaptively change the coefficient in order to 

minimize the cost function in every time interval. 

WLSE algorithm is outlined as below, 

For k = 2 to ∞, 

a) Calculate the current predicted workload  

(4.12) 

where 

𝑒(𝑛) = 𝑤(𝑛) − �̂�(𝑛) 

 

∁(𝐚) =
1

2
∑ 𝛼𝑛𝑒2(𝑛)

𝑘

𝑛=1

 

 

�̂�(𝑛) = 𝐚𝑀
𝑇 (𝑘 − 1)𝑢(𝑘) 
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(4.13) 

 

b) Update the coefficient vector 

 

(4.14) 

 

where 

(4.15) 

 

c) Update the P matrix 

(4.16) 

 

 

 

 

 

 

 

 

 

𝑢(𝑘) = [𝑤(𝑘 − 1) 𝑤(𝑘 − 2) … 𝑤(𝑘 − 𝑀)]𝑇 

 

 

𝐚𝑀(𝑘) = 𝐚𝑀(𝑘 − 1) +
𝑃(𝑘 − 1)𝑢(𝑘)

𝛼 + 𝑢𝑇(𝑘)𝑃(𝑘 − 1)𝑢(𝑘)
[𝑒(𝑘)] 

 

𝑒(𝑘) = 𝑤(𝑘) − �̂�(𝑘) 

 

𝑃(𝑘) =
1

𝛼
{𝑃(𝑘 − 1) −

𝑃(𝑘 − 1)𝑢(𝑘)𝑢𝑇(𝑘)𝑃(𝑘 − 1)

𝛼 + 𝑢𝑇(𝑘)𝑃(𝑘 − 1)𝑢(𝑘)
} 
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5.0   OFFLINE OPTIMAL INTER TASK DVS 

In the previous chapter, it shows that DVS by predicting the future workload based on 

its history profile is not a promising method, especially in hard real-time system. In this 

chapter, an offline optimal inter task DVS is presented.   

The algorithm is offline because the optimal speed of each task is allocated based on 

prior knowledge of each task’s parameters, (Ci, Pi). The prior knowledge of execution 

time, Ci is assumed to be Worst case execution time (WCET). This method ensures 

deadline guarantee of the tasks even though CPU speed is slowing down. Hence, the 

DVS proposed in this chapter can be applied on hard real-time system. 

Although several offline DVS have been presented, an investigation is carried out on 

whether the problem formulation presented in [43] that has been commonly used, can be 

improved. Moreover, a modified problem formulation to improve the computation 

performance is proposed in the dissertation as well. 

 

5.1 Problem formulation 

We want to compute task slowdown factors that minimize the energy consumption of 

the processor. The total energy consumption of CPU when task is executed at a 

normalized speed, Si (highest normalized speed is equal to 1) is given by:  

          

(5.1) 

- H is hyper-period of the tasks  

- Pi is period of the task 

- Ci is WCET of the task 

- P (Si) is the power consumption of CPU at a given slowdown speed. 

 

Based on the EDF scheduling policy, a task-set of n independent periodic tasks is 

feasible at speed Si, for task Ti, if the utilization under slowdown is not more than 1, 

𝑒(𝑆) = ∑
𝐻

𝑃𝑖

𝐶𝑖

𝑆𝑖
𝑃(𝑆𝑖)

𝑛

𝑖=1
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which is stated at (5.2) and (5.3).  Si has to be more than or equal to minimum speed, 

Smin and less than or equal to 1, stated at (5.4). 

                        (5.2) 

           

   (5.3) 

 

               (5.4) 

However, it can be proven that the inequality constraint of (5.2) can be written as 

equality constraint, shown in (5.5), without affecting the optimization performance and 

results. The proof of the statement is written below.  

              (5.5) 

Proof: From equation (2.1) in chapter 2, power consumption P(Si) is convex function of 

speed, Si. Hence, it is understandable that, in order to minimize the energy consumption 

of CPU, it is better for the speed allocation of each task to be lower. Now, considering 

the inequality constraint of equation (5.2) and (5.3). The total utilization bound Utot is 

inversely proportional with Si and it is upper bounded by 1. In other words, value Si 

should be as low as possible, as long as Utot does not exceed 1.  Hence the optimal 

solution S*can be found when the utilization constraint is equal to 1. 

The reason of transforming inequality constraint to equality constraint is to reduce the 

feasible solution space. This is because, the solution space is directly proportional to the 

computation throughput. The larger the solution space, the more iteration and larger the 

computation throughput will be. The performance comparison between equality 

constrained and inequality constrained is further discussed in the experimental result and 

discussion chapter. 

Now a question arises. Will the minimization function performs better if Ci of each task 

is further thin sliced into smaller pieces and different speed is allocated on each of them? 

Consider the following example with task set {T1, T2 …Tn}, assuming each task has Ci. 

𝑈𝑡𝑜𝑡 ≤ 1 

𝑈𝑡𝑜𝑡 = ∑
𝐶𝑖

𝑆𝑖
∙
1

𝑃𝑖

𝑘

𝑖=1

 

𝑆𝑚𝑖𝑛 ≤ 𝑆𝑖 ≤ 1 

𝑈𝑡𝑜𝑡 = 1 
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If each Ci are thin sliced into m pieces, so we have Ci,1, Ci,2,…Ci,m such that Ci = 

∑ 𝐶𝑖,𝑗
𝑚
𝑗=1 . Thus, we have 

             (5.6) 

 

Therefore, in order to answer the question whether equation (5.6) is better function 

formulation than (5.1), we look at the following scenario. Says T1 has optimal solution, 

S* with S1 is equal to 0.6, and C1 has been thin sliced into 2 pieces (m=2) such that C1,1 

and C1,2. Next, we need to find the optimal solution for S1,1  and S1,2 subject to constraint 

of utilization bound below: 

            (5.7) 

 

Based on the proof mentioned, the inequality constraint can be written into equality 

constraint, thus we have 

              (5.8) 

 

Now, simplify the equation above, we have 

   (5.9) 

From the observation, you get S1,1 =0.6 and S1,2 =0.6. Note that, the optimal solution of 

S1
* =S1,1 = S1,2. In other words, equation (5.6) produces the same optimal solution as 

equation (5.1). Hence, we are going to use the equation (5.1) as the minimization 

function for the remaining work. 

To summarize from the above, the finalized optimization problem can be stated as 

below: 

           (5.10) 

𝑒(𝑆) = ∑∑
𝐻

𝑃𝑖
[
𝐶𝑖,𝑗

𝑆𝑖,𝑗
𝑃(𝑆𝑖,𝑗)]

𝑚

𝑗=1

𝑛

𝑖=1

 

𝐶1,1

𝑆1,1
+

𝐶1,2

𝑆1,2
≤

𝐶1,1 + 𝐶1,2

0.6
 

𝐶1,1

𝑆1,1
+

𝐶1,2

𝑆1,2
=

𝐶1,1 + 𝐶1,2

0.6
 

𝐶1,1𝑆1,1𝑆1,2 + 𝐶1,2𝑆1,1𝑆1,2 = 0.6𝐶1,1𝐶1,2 + 0.6𝐶1,2𝐶1,1 

Minimize:𝑒(𝑆) = ∑
𝐻

𝑃𝑖

𝐶𝑖

𝑆𝑖
𝑃(𝑆𝑖)

𝑛
𝑖=1  
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            (5.11) 

 

           (5.12) 

 

 

5.2 Introduction of Convex optimization 

 Convex minimization is a subset of optimization. It studies the minimization 

problem that is convex functions over convex sets. The convexity property makes the 

optimization easier to solve compared to the general cases, because any local minimum 

found in the problem must be a global minimum. In other words, a global solution of the 

problem is guaranteed to be found [68, 69]. 

The minimization problem of energy consumption that was discussed above, is 

considered a convex nature, due to the convexity of the Power function, P(Si). The 

graph of P(Si) is shown in Chapter 2. 

5.2.1 Interior point method algorithm 
Interior point methods are a certain class of algorithms to solve linear and nonlinear 

convex optimization problems [70, 71]. 

The main idea of interior point method is to solve a sequence of approximate 

minimization problems. Consider the original problem below: 

            (5.13) 

            (5.14) 

           (5.15) 

 

           (5.16) 

            (5.17) 

Subject to: ∑
𝐶𝑖

𝑆𝑖
∙

1

𝑃𝑖

𝑛
𝑖=1 = 1,      

𝑆𝑚𝑖𝑛 ≤ 𝑆𝑖 ≤ 1        , i=1, … ,n 

Minimize:𝑒(𝑆) = ∑
𝐻

𝑃𝑖

𝐶𝑖

𝑆𝑖
𝑃(𝑆𝑖)

𝑛
𝑖=1  

𝑔(𝑆) = [
𝑆𝑖 − 1 ≤ 0         , 𝑖 = 1,… , 𝑛

−𝑆𝑖 ≤ −𝑆𝑚𝑖𝑛          , 𝑖 = 1,… , 𝑛
] 

−𝑆𝑖 ≤ −𝑆𝑚𝑖𝑛          , 𝑖 = 1,… , 𝑛  

𝑆𝑖 − 1 ≤ 0         , 𝑖 = 1,… , 𝑛 

Subject to: ℎ(𝑆) = ∑
𝐶𝑖

𝑆𝑖
∙

1

𝑃𝑖

𝑛
𝑖=1 − 1 = 0, 
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Note that (5.14) is the same as (5.11), while (5.15) and (5.16) is the same as (5.12). For 

the remaining chapter, g(S) is denoted as the vector of inequality constraints (5.15) and 

(5.16), h(S) is denoted as the vector of equality constraint (5.14). Next, we add slack 

variables, 𝑤 into g(S) to become equality constraint: 

           (5.18) 

       

w represents the vector of wp, with 𝑝 = 1,… , 2𝑛. Note that the slack variables are as 

many as inequality constraints.  

 The constraints (5.18) are then replaced with a logarithmic barrier term in the objective 

function, resulting in the transformed problem below: 

 

         

                                (5.19) 

 

 

 

Incorporating the equality constraints into objective function using Lagrangian 

Multipliers to form Lagrange function: 

             𝐿𝑢(𝑆, 𝑤, 𝛾, 𝛽) = 𝑒(𝑆) − 𝜇 ∑ ln(𝑤𝑝) − 𝛾𝑇(𝑔(𝑆) + 𝑤) − 𝛽𝑇ℎ(𝑆)2𝑛
𝑝=1   (5.20) 

The first order conditions for a minimum are: 

                           ∇𝑠𝐿𝜇(𝑆, 𝑤, 𝛾, 𝛽) = ∇𝑒(𝑆) − 𝛾𝑇∇𝑔(𝑆) − 𝛽𝑇∇ℎ(𝑆) = 0  (5.21) 

                                   ∇𝑤𝐿𝜇(𝑆, 𝑤, 𝛾, 𝛽) = −𝜇𝑊−1𝜀 − 𝛾𝜀 = 0,   (5.22) 

                                        ∇𝛾𝐿𝜇(𝑆, 𝑤, 𝛾, 𝛽) = 𝑔(𝑆) + 𝑤 = 0,    (5.23) 

                                             ∇𝛽𝐿𝜇(𝑆, 𝑤, 𝛾, 𝛽) = ℎ(𝑆) = 0    (5.24) 

  Minimize:          𝑒(𝑆) − 𝜇 ∑ ln(𝑤𝑝)
2𝑛
𝑝=1  

     subject to:       ℎ(𝑆) = 0, 

 𝑔(𝑆) + 𝑤 = 0. 

 

𝑔(𝑆) + 𝑤 = 0, 

𝑤 ≥ 0, 

 



29 
 

Where 𝑊 is a diagonal matrix whose diagonal elements are 𝑤𝑝, 𝜀 is the p-vector of all 

ones, modify  equation (5.22) by multiplying W, resulting as follows: 

                                   ∇𝑒(𝑆) + 𝛾𝑇∇g(S) + 𝛽𝑇∇ℎ(𝑆) = 0,    (5.25) 

                 −𝜇𝜀 − 𝑊𝑌𝜀 = 0,    (5.26) 

    𝑔(𝑆) + 𝑤 = 0,     (5.27) 

    ℎ(𝑆) = 0      (5.28) 

Taking Y is the diagonal matrix with diagonal elements 𝛾i. Applies Newton’s method in 

order to solve the system above. Substitute 𝑆 = 𝑆 + ∆𝑆, 𝑤 = 𝑤 + ∆𝑤, 𝛾 = 𝛾 + ∆𝛾, and 

𝛽 = 𝛽 + ∆𝛽 into the system, we have 

[

𝐻(𝑆, 𝛾) 0 −∇𝑔(𝑆)𝑇 −∇ℎ(𝑆)𝑇

0 𝑌 𝑊 0
∇𝑔(𝑆) 𝐼 0 0
∇ℎ(𝑆) 0 0 0

] [

∆𝑆
∆𝑤
∆𝛾
∆𝛽

] =

[
 
 
 
−∇𝑒(𝑆) + 𝛾𝑇𝑔(𝑆) + 𝛽𝑇∇ℎ(𝑆)

−𝜇𝜀 − 𝑌𝑊𝜀

−𝑔(𝑆) − 𝑤
−ℎ(𝑆) ]

 
 
 
 ,(5.29) 

  𝐻(𝑆, 𝛾) = ∇2𝑒(𝑆) − ∑ ∇2𝑔𝑝(𝑆)𝛾𝑝
2𝑛
𝑝=1 − ∑ ∇2ℎ𝑝(𝑆)𝛽𝑝

2𝑛
𝑝=1 .      

Once the search direction ∆𝑆 , ∆𝑤 , ∆𝛾 , ∆𝛽have been computed, the algorithm loop 

iteratively, and compute the new estimates to the optimal solution as follows: 

    𝑆(𝑘+1) = 𝑆(𝑘) + 𝛼∆𝑆𝑘 

    𝑤(𝑘+1) = 𝑤(𝑘) + 𝛼∆𝑤𝑘   (5.30) 

    𝛾(𝑘+1) = 𝛾(𝑘) + 𝛼∆𝛾𝑘 

    𝛽(𝑘+1) = 𝛽(𝑘) + 𝛼∆𝛽𝑘 

where 𝛼 is the step length. 
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6.0 EXPERIMENTAL RESULT AND DISCUSSION 

6.1 Workload Prediction based on Linear Prediction 

Two kinds of methods are used to test for the prediction of performance evaluation. The 

first method is a Wireless sensor node system model which was built on Matlab 

Simulink SimEvent, and its workload state was captured for algorithm testing. In the 

simulation system model, five components generate tasks at each different rate. The 

execution time for each task will be uniformly distributed between [BCET, WCET], 

where BCET is best case execution time, and WCET is worst case execution time, with 

ratio WCET/BCET of 5. The scheduler policy for the system model is First-In First-Out 

(FIFO).  

Figure 6.1 and 6.2 show the predicted workloads that were done by MMSE and WLSE. 

Both MMSE and WLSE are compared with proposed LMS algorithm [63], in terms of 

the corresponding prediction performance. Root mean square error (RMSE) is used for 

prediction performance metrics, and their results are shown in figure 6.4. As seen in 

figure, both MMSE and WLSE have better performance compared to LMS with lesser 

RMSE. MMSE has the least RMSE among other algorithms with 0.0928 when the 

number of samples, M is 5. WLSE has a 0.1 RMSE when M is 6, which is slighly higher 

than MMSE. LMS has the highest RMSE among all, which was 0.1172 when M is 3. 

Note that, if the number of past samples, M is too little, the prediction will be noisy and 

if it is too much, there exist excessive low pass filtering. Both will results in high RMS 

error. Thus, choosing a right number of past samples has to be wise in order to get the 

best performance. 

For WLSE algorithm, in order to optimize the prediction performance, choosing a right 

forgetting factor, α is crucial. Figure 6.3 shows the surface plot of RMSE for WLSE 

with respects of M and forgetting factor, α. When M is 6 and α is 0.8, the prediction 

performance is most optimal. 
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Figure 6.1 MMSE workload prediction (Simulink model generated) 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 WLSE workload prediction (Simulink model generated) 
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Figure 6.3 Root mean square error of WLSE respects to number of samples and 

forgetting factor,α

 

Figure 6.4 Root mean square error comparison between MMSE, WLSE, and LMS 
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embedded operating system, to operate on the sensor node. TinyOS employs FIFO 

schedule policy and event driven execution model. A simple application is deployed on 

the sensor nodes, where temperature sensing data of every node was acquired, and then 

relayed back to the sink node by using a multi-hop network protocol. The sink node’s 

workload was captured and we use MATLAB to do the prediction algorithms testing.  

 

Figure 6.5  MMSE workload prediction (WSN generated workload) 

 

Figure 6.6  WLSE workload prediction (WSN generated workload) 

 

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time, t (ms)

W
o

rk
lo

a
d

 (
w

)

MMSE Workload Prediction

 

 

Actual Workload

Predicted Workload

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time, t (ms)

W
o

rk
lo

a
d

 (
w

)

WLSE Workload Prediction

 

 

Actual Workload

Predicted Workload



34 
 

 

 

 

 

 

 

 

 

 

Figure 6.7 Root means Square Error comparison for both MMSE and WLSE 

 

Figure 6.8 Root mean square error of WLSE respects forgetting factor, α 
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better prediction compared to WLSE, when M = 4, it generates the least RMS error, 

which is 0.1035. 

In figure 6.8, it shows the RMS error of WLSE vs. forgetting factor, α with M = 6. Same 

as previous, choosing too large or too little α will result in bad predicting performance. 

As seen in figure, when α = 0.85, it gets smaller RMS error, which is 0.1242. 

For prediction wise, MMSE has better performance compared to WLSE. But in 

computational wise, WLSE uses much lesser computation compared to MMSE. Notice 

that, in MATLAB environment, MMSE algorithm used 55ms to complete the running 

while WLSE used only 1.2ms. It means that MMSE needs almost 46 times more 

computation compared to WLSE, and this is a huge advantage for WLSE. It is obvious 

why there exist a huge computation difference because MMSE needs to compute the 

autocorrelation function while WLSE does not need so. Hence, in resource constrained 

environment for WSN, it is more practical to choose WLSE rather than the other one. 

6.2 Convex Optimization of DVS 

Simulation experiments were performed by using Simulink SimEvent to evaluate 

convex optimization DVS. Several task sets are considered, each with 10 randomly 

generated tasks. Tasks were assigned with a random period within range of [2, 40], and 

WCET within a period of [0.01, 3]. 

Power model which is shown in Chapter 2, equation (2.1) is used for the corresponding 

experiments. Threshold voltage is 0.8V and maximum voltage is 5V. The speed has 

been normalized in the range of [0.1, 1] at the steps of 0.001. 

For interior point method search stopping criteria, the condition is set when maximum 

iteration is 10000, or when the solution is stopped to improve with the improved range  

of 1X10-6. 

The Energy consumption for both conventional method, Static Voltage Scaling [49] 

with convex optimization of DVS is compared. Both methods are compared under 

scenario of identical power characteristic and varying task power characteristic. 
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Identical Power Characteristic 

For the simulation result of identical power characteristic shown in figure 6.9, both 

static voltage and proposed DVS method generate the same optimal solution. Hence, 

theorem shown in [74], in which it stated that the optimal speed allocation for each tasks 

for minimizing energy consumption should be constant and equal to total utilization, Utot 

is proven. 

Varying Power Characteristic 

Tasks can have different power characteristics due to the diverse nature of the tasks in a 

system [43]. For the experimental results, we assumed the power characteristics to be 

linear. It means that the tasks have constant power coefficient, k. The equation is shown 

below: 

                                                                                                                                                         (6.1) 

The power function coefficients of the tasks are uniformly distributed between [1, 10].   

Figure 6.10 shows the results of both static voltage and proposed DVS. It clearly shows 

that Convex Optimization of DVS has better normalized energy saving compared to 

static voltage scaling except when the utilization equal to 0.1. Both have the same 

energy saving due to the bounded minimize speed. The energy saving decreases when 

utilization began to increase, because the speed allocation becomes higher, which 

contribute to more energy consumptions. 

Convex Optimization inco-operate with Generic Dynamic Reclaiming Algorithm 

Generic Dynamic Reclaiming Algorithm (GDRA) is an online DVS scheme that aims to 

further scale down the speed when a task finishes earlier than WCET [50]. The idea 

behind GDRA is to allocate the runtime slack introduced by an early finished task to a 

lower priority task. GDRA is proved to be deadline guarantee.   

Convex Optimized DVS as offline DVS is combined with GDRA as online DVS for 

performance evaluation. We vary the execution time of a task in normal distributed 

manners within a range of [r, WCET]. Here, r is the ratio of WCET and best case 

𝑃𝑐𝑚𝑜𝑠 = 𝑘𝐶𝐿𝑁𝑆𝑊𝑉𝐷𝐷
2 𝑓 
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execution time (BCET), which is equal to WCET/BCET. The power characteristic 

coefficient in all the WCET/BCET ratio cases is equal to 10. Different of WCET/BCET 

ratio of experiment is performed, and Figure 6.11 shows the outcome. As seen earlier, 

we compare both static DVS with convex Optimized DVS. Notice that from the graph, 

Convex Optimized DVS outperform static DVS. The normalized energy saving 

increases when WCET/BCET ratio starts to increase. This is because higher 

WCET/BCET ratio implies more slack time introduction, hence higher potential of 

higher speed reduction.  

Computational Performance 

The computational performance of both inequality and equality constrained problem 

formulation were investigated. Figure 6.12 shows the number of iteration of 

computation for both equality constrained and inequality constrained problem. It shows 

that equality constrained has far lesser iteration compared to inequality constrained 

when the utilization increases. Equality constrained problem has lesser iteration than 

inequality constrained because of the smaller feasible search space. 

Figure 6.13 shows the graph of number of task set versus the number of iteration of 

equality constrained problem. The iteration increases when the number of task set 

increases due to the increase of variable search space to compute as number of task set 

increases. 
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Figure 6.9 Normalized Energy Saving for both Equality and Inequality constrained 

problem optimization (identical power characteristic) 
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Figure 6.10 Normalized Energy Saving for task varying power characteristic 

 

 

 

 

 

 

 

 

 

Figure 6.11 Normalized Energy Saving respects with WCET/BCET ratio in online 

condition 
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Figure 6.12 Number of iteration comparison between Equality and Inequality 

constrained problem optimization 

 

 

 

 

 

 

 

 

 

Figure 6.13 Number of iteration respects to number of task set 
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7.0 CONCLUSION 

In this dissertation, the workload prediction based DVS for soft has been studied on 

WSN. It was found that other than conventional DPM method, DVS can be an effective 

technique to prolong the operational life of WSN. This dissertation proposed both online 

and offline DVS schemes to change the frequency and voltage. The workload prediction 

algorithm proposed is suitable for soft real-time system, since it does not consider on the 

total utilization of the system. 

There are two types of algorithms applied in a predictor: MMSE and WLSE. MMSE 

generates a better prediction performance while WLSE generates a lesser computation. 

Hence, it is up to the users to decide whether MMSE with good prediction performance 

but large computation will be suitable for their application. Furthermore, for a better 

prediction result, choose three to seven past samples, M, would be a good choice. 

As for hard real time system, an offline DVS is proposed. The equality constrained 

problem formulation is presented. The comparison between equality constrained 

problem and conventional inequality constrained problem has been made. The equality 

constrained problem has been proved to have better computational performance, 

compared with inequality constrained problem.  
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8.0 FUTURE WORK 

 

Several extensions for the future work, a power aware task scheduling policy for 

overload system could be investigated, in order to perform a trade-off between 

minimizing numbers of deadline miss while maximizing the power saving performance. 

Other than that, a speed scheduling for real-time system varying power characteristic 

tasks could be investigated in the future.  As some system have different tasks with  

specific power characteristics, a power scheduling scheme for such case will be 

proposed in order to enhance power saving performance of the system. 
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