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Abstract

An Internet of Things (IoT) network consists of multiple devices with sensor(s), and

one or more access points or gateways. These devices monitor and sample targets,

such as valuable assets, before transmitting their samples to an access point or the

cloud for storage or/and analysis. A critical issue is that devices have limited energy,

which constrains their operational lifetime. To this end, researchers have proposed

various solutions to extend the lifetime of devices. A popular solution involves

optimizing the duty cycle of devices; equivalently, the ratio of their active and

inactive/sleep time. Another solution is to employ energy harvesting technologies.

Specifically, devices rely on one or more energy sources such as wind, solar or Radio

Frequency (RF) signals to power their operations. Apart from energy, another

fundamental problem is the limited spectrum shared by devices. This means they

must take turns to transmit to a gateway. Equivalently, they need a transmission

schedule that determines when they transmit their samples to a gateway.

To this end, this thesis addresses three novel device/sensor selection problems.

It first aims to determine the best devices to transmit in each time slot in an

RF Energy-Harvesting Wireless Sensor Network (EH-WSN) in order to maximize

throughput or sum-rate. Briefly, a Hybrid Access Point (HAP) is responsible for

charging devices via downlink RF energy transfer. After that, the HAP selects

a subset of devices to transmit their data. A key challenge is that the HAP has
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neither channel state information nor energy level information of device. In this re-

spect, this thesis outlines two centralized algorithms that are based on cross-entropy

optimization and Gibbs sampling.

Next, this thesis considers information freshness when selecting devices, where

the HAP aims to minimize the average Age of Information (AoI) of samples from

devices. Specifically, the HAP must select devices to sample and transmit frequently.

Further, it must select devices without channel state information. To this end, this

thesis outlines a decentralized Q-learning algorithm that allows the HAP to select

devices according to their AoI.

Lastly, this thesis considers targets with time-varying states. As before, the aim

is to determine the best set of devices to be active in each frame in order to monitor

targets. However, the aim is to optimize a novel metric called the age of incorrect

information. Further, devices cooperate with one another to monitor target(s). To

choose the best set of devices and minimize the said metric, this thesis proposes two

decentralized algorithms, i.e., a decentralized Q-learning algorithm and a novel state

space free learning algorithm. Different from the decentralized Q-learning algorithm,

the state space free learning algorithm does not require devices to store Q-tables,

which record the expected reward of actions taken by devices.
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Chapter 1

Introduction

1.1 Background

Internet of Things (IoT) networks interconnect humans with objects instrumented

with transceivers, processors, data storage, power source(s), sensors or/and actu-

ators [1]. These smart objects or ‘things’ are thus capable of sensing their sur-

roundings and communicate with other smart devices/objects to help each other

accomplish tasks [2]. As a result, these ‘things’ enable a broad range of applica-

tions. Example application domains include (i) transportation and logistics, (ii)

healthcare, (iii) smart cities/homes, (vi) agriculture, and (v) social, see details in

Table 1.1. To elaborate, applications in transportation include next generation vehi-

cles with driving assistance [1]. In healthcare, wearable devices are used to monitor

the health of patients and provide automatic health records [3]. Further, devices are

capable of automatically transmitting collected data to hospitals during emergencies

[4]. In smart environments such as homes, devices are used to monitor and control

appliances to improve energy usage [5]. On the other hand, IoT facilitates preci-

sion agriculture, whereby farmers use an IoT network to monitor their crops or/and

protect their farms against pests efficiently [5]. Lastly, smartphones and wearable

devices are now capable of gathering information relating to user activities [6], which

1



in turn helps users better manage their daily life.

Domain Application

Transportation
and logistics

Vehicles exchange information to provide assisted driving and safe
driving conditions [1], [7].
Systems that consist of smarts devices automatically monitor and
optimize every link of supply chain to provide better customer services [8].

Healthcare
Multiple wireless devices collaborate to provide continuous bio-signal and
health monitoring of patients [3], [9].
Telemedicine systems monitor and transmit patient vital signs to
hospitals [4].

Smart environment
Sensors and actuators distributed in houses to control smart household
applications and provide comfortable living environment [5].
Monitor and analyze users’ behaviors to schedule the operation time
of smart household applications [10].

Agriculture
Smart systems that automatically monitor soil moisture and control
watering time [5].
Monitoring pollination process to ensure the origin of agricultural
products [11], [12].

Social
Smart wearable devices automatically update users information such
as locations and activities to Facebook or Twitter [6].
IoT-enabled smartphones check predefined dating and friendship
information to automaticallytransfer contact information to other
smartphones [13].

Table 1.1: IoT applications.

A majority of the said applications involve targets monitoring, which is a key

step to achieving automated services and improved user experience. For example,

smart transportation, logistics, and storage systems require the capture of real-time

state of stocks such as fruits, vegetables, and meat in order to provide the freshest

products to customers [14], [15]. For smart healthcare applications, it is critical

to continuously monitor the state of patients such as their blood pressure, heart

rate, and oxyhemoglobin saturation [1], [16]. Another example is to determine the

state, e.g., temperature or occupancy, of smart homes in order to reduce their energy

consumption [17]. In terms of precision agriculture, farmers may track soil moisture

level [5]; this information can then be used to regulate water usage.

A key issue in sensor networks is energy management and consumption. The

amount of energy at sensors/devices and their energy consumption jointly determine

their lifetime. In particular, various sensors have different energy consumption when

they are working in different modes, see Table 1.2 for details. In this respect,

a dynamic power management strategy [18] that switches sensors/devices between
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sleep and active mode according to their surroundings is a viable approach to extend

their lifetime [19]. An alternative approach is energy harvesting, which will be

discussed in the next section.

Sensor Nominal voltage
Power consumption

Response time
Sleep mode Measuring

Prism photo sensor
(KP1430) [20]

5 V N/A 75 mW 24 µs

Humidity & Temperature
(HTU31 RH/T) [21]

5 V 1 µW 2.25 mW 5-10 s

Flow meter
(SFM3003) [22]

3.3 V 3.6 µW 18.15 mW 3 ms

Prism photo sensor
(KP1650) [23]

5 V N/A 75 mW 22 µs

Magnetic sensor
(TMAG5328) [24]

1.65-5.5 V 1.65 µW 10 mW N/A

Digital image sensor
(AR0130CS) [25]

12-20 V N/A 270 mW N/A

Pressure sensor
(P1A) [26]

5 V N/A 25 mW 5 ms

Table 1.2: Example of different types of sensors and their energy consumption for
different operational modes.

1.2 Energy Harvesting

To date, as shown in Table 1.3, devices can harvest energy from various sources,

namely solar [27], wind [28], thermal [29], mechanical motion [30], and kinetic [31].

Harvesting solar energy has been considered in many works; see [32] for details. Dur-

ing daytime, the power density of solar energy is capable of achieving 100 mW/cm2

[32]. For indoor environments, the power density of solar energy significantly de-

creases to 3.2 µW/cm2 [33]. Wind energy is also popular. When the wind speed is

between 2 m/s and 9 m/s, a wind turbine is capable of generating 100 mW of power.

Another source of energy includes thermoelectric, where it has a power density of

around 20-60 mW/cm2.

The aforementioned energy sources have the following disadvantages: (i) they

are unpredictable or only partially predictable, (ii) they are uncontrollable, and (iii)

the amount of available energy is a function of device location and time. In con-
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trast, kinetic and mechanical motion are controllable and predictable. However,

they require machinery, e.g., car engines, or continuous movements, to sustain en-

ergy generation. In this respect, Radio Frequency (RF) is advantageous as it is a

controllable energy source that can be used to power devices/sensors at any time

and place [34].

Energy source Work Characteristics Energy available Applications

Solar - outdoor [27]
Uncontrollable,
partially predictable

100 mW/cm2 Wireless sensors,
cellular base station

Solar - indoor [33]
Uncontrollable,
partially predictable

3.2 µW/cm2 Wireless sensors

Wind [28]
Uncontrollable,
unpredictable

100 mW at wind speeds
2 m/s - 9 m/s

Wireless sensors,
cellular base station

Thermal [29], [35]
Uncontrollable,
unpredictable

10 µW/cm2 - 1 mW/cm2 Human body, wearable,
consumer devices

Mechanical motion [30]
Controllable,
predictable

30 mW
Vehicle, wireless
sensors

Kinetic [31], [36]
Controllable,
predictable

1 µW - 7 W Wearable devices

Table 1.3: Examples of energy sources.

1.2.1 RF Charging

RF charging uses far-field wireless power transfer technology. In general, the system

consists of one or more energy transmitters, receivers/devices equipped with an RF-

energy harvester. The first step for a device is to collect RF energy. It then converts

RF power into Direct Current (DC) by using an impedance matching circuit with

a rectifier. Finally, the direct current is used to charge a battery/capacitor or/and

drive a load [37] [38].

There are several factors that dictate the amount of harvested RF energy. They

include (i) a transmitter’s transmit power, (ii) channel gains, and (iii) energy har-

vester efficiency. In particular, an energy harvester’s efficiency is affected by the fol-

lowing factors: (a) whether a harvester is constructed using Complementary Metal

Oxide Semiconductor (CMOS) transistor or Metal Oxide Semiconductor Field Ef-

fect Transistor (MOSFET), (b) carrier frequency, and (c) input power, see examples

in Table 1.4. As shown in Table 1.4, the energy conversion efficiency of RF energy

harvesters that are based on MOSFET is at most 83.7% when the input power is
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15 dBm [39]. On the other hand, CMOS based harvesters have an efficiency of at

most 69.5% when the input power is 5.2 dBm [40].

Literature
Minimum input

power

Output

voltage

of

minimum

input

power

Peak

conversion

efficiency @

RF input

power

Frequency Technology

M. Stoopman et al. [41] -27 dBm 1 V 40% @ -17 dBm 868 MHz 90 nm CMOS

M.A. Abouzied et al. [42] -21.7 dBm 1 V N/A 850 MHz 180 nm CMOS

P.H. Hsieh et al. [43] -17 dBm 2 V 44.1% @ -12 dBm 900 MHz 180 nm CMOS

Z. Hameed et al. [44] -20.5 dBm 1 V 32% @ -12 dBm 902-928 MHz 130 nm CMOS

L. Fadel et al. [45] -19.5/-25 dBm 1 V 27% @ -16 dBm 915 /2440 MHz N/A

V. Kuhn et al. [46] -20 dBm N/A 84% @ 5.8 dBm Multi-Band N/A

Z. Wang et al. [39] -15 dBm N/A 83.7% @ 15 dBm 2450 MHz MOSFET

D. Michelon et al. [47] -24 dBm 1.2 V 68% @ N/A 900 MHz CMOS

A.K. Moghaddam et al. [40] -35 dBm N/A 69.5% @ 5.2 dBm 953 MHz 130 nm CMOS

Y. Yu et al. [48] -17.7 dBm 1 V 36.5% @ -10 dBm 900 MHz 65 nm CMOS

Table 1.4: Examples of RF energy harvesters and their energy conversion efficiency.

To date, prior works have considered dedicated or ambient RF charging. A

dedicated RF source is controllable, where its transmit power, transmission time and

duration can be optimized to supply energy to devices. For example, the dedicated

RF source in [49] is capable of adjusting its energy transmission duration. In [50],

a dedicated RF source can control both its transmit power and charging duration.

Ambient RF energy sources include analog/digital TV signals, AM/FM radios, and

Wi-Fi signals [51]. Unlike dedicated energy sources, these ambient energy sources

are not aware of RF-energy harvesting devices operating in their vicinity. Further,

it is not possible for devices to request energy from these energy sources. To date,

past works have considered ambient RF sources that operate between 0.2 and 2.4

GHz. Example works include [52], where devices rely on RF signals broadcasted

by a television tower located 6.5 km from them. In addition, in [53], the authors

present a prototype that harvests energy from a WiFi signal. The aforementioned
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prototype is capable of harvesting energy at a rate of 2.77 µJ/s when it is located

around 8.5 meters from a source.

Given the advances in RF charging, Wireless Power Communication Networks

(WPCNs) are now a reality, where devices are charged by a Hybrid Access Point

(HAP) or Power Beacon (PB). Advantageously, WPCNs help realize the delivery of

both energy and data over the same wireless medium [54].

Figure 1.1 shows two different WPCN architectures. In Figure 1.1(a), there are

RF energy harvesting devices and an access point (AP). There is also a PB, which

is used to charge wireless devices. In the downlink, wireless devices collect RF

energy from a power beacon [55]. The harvested RF energy is then used by devices

to transmit their data to the AP. Another architecture is shown in Figure 1.1(b),

where there is a HAP, which serves as a PB and an AP. In other words, the HAP is

responsible for delivering energy to wireless devices in the downlink and receiving

data from these devices in the uplink.

Power beacon

Access  point

HAP

(a)

(b)

in
fo

rm
at

io
n fl

ow

Sensor 1

Energy �ow

Device 1

Device 2

Device 1

Sensor 1

Energy �ow
information flow

Figure 1.1: WPCNs architectures: (a) separated energy transmitter and information
receiver, and (b) an HAP-based WPCN.

1.3 Research Statement

This thesis studies devices/sensors selection problems in single-hop WPCNs that

use the harvest-then-transmit protocol [56], where in each frame, the HAP first
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broadcasts energy to devices/sensors via downlink RF energy transfer, see Figure 1.2

(a). After that, it selects a set of devices to transmit data or request them to

collect samples, see Figure 1.2 (b). Here, a key research problem is to select the

best set of devices to transmit or sample in each frame in order to optimize a

performance metric. The performance metrics of interest include (i) sum rate, (ii)

D
 

HAP

(a) Broadcast energy

D2 D3

D
 

HAP

D2 D3

(b) Select devices

Figure 1.2: An example WPCN. The red and green arrows represent energy flow
and data flow respectively.

Age of Information (AoI), and (iii) Age of Incorrect Information (AoII) of multiple

targets. These aims are elaborated in the following sections.

1.3.1 Sum rate

This thesis first considers devices that transmit their samples via Time Division

Multiple Access (TDMA) to a HAP. The main problem is to determine the set of

devices that have the highest data rate, i.e., devices that have the highest energy

level and the best channel state, in each frame.

There are several key challenges: (i) each device has an imperfect battery,

meaning in each frame, devices lose some of their energy over time, (ii) random

channel gains, which cause different amounts of harvested energy at devices, (iii) a

HAP/scheduler has imperfect channel state information and energy level informa-

tion of devices, and (iv) the double near-far problem [56], where devices located far
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from a HAP require more frames to harvest energy to run their operations.

1.3.2 AoI

The second research aim of this thesis considers selecting devices in order to minimize

AoI which is defined as the number of frames that have elapsed since the sample

stored at the HAP was generated at the device. The key problem is to determine

the set of devices that have sufficient energy to generate and send a sample to a

HAP and the set of devices that should save energy for future use.

There are several key challenges: (i) a HAP has neither uplink CSI nor energy

level of devices, (ii) the number of schedules increases exponentially with increasing

number of devices and time frames, and (iii) the double near-far problem, meaning a

device may have a large AoI because it requires a longer period to harvest sufficient

energy to transmit a sample successfully.

1.3.3 AoII

Lastly, this thesis considers devices/sensors that monitor one or more targets, see

Figure 1.2. The state of targets, e.g., machines or the ingresses of a building, is driven

by a stochastic process. In each frame, selected devices/sensors are responsible for

monitoring targets and transmitting the state of monitored targets to a HAP over

an orthogonal channel.

Given the said assumptions, the main aim is to select the best set of devices to

be active, i.e., sample and transmit, and placing other devices to sleep mode. The

aim is to minimize the AoII of targets. Specifically, the AoII of a target is defined

as the number of frames that have elapsed since a state mismatch exists between

the HAP and a target. In this respect, a key problem is to determine (i) whether

devices have sufficient energy to sense targets and then transmit successfully to the

HAP, and (ii) whether a device that has sufficient energy monitors targets with a

high AoII.
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There are several challenges. First, the HAP has no channel state information

and energy level of devices. Second, the HAP/scheduler has to select devices/sensors

without knowing which set of targets is under the monitor of a device. Moreover, the

HAP does not know whether other devices/sensors are monitoring the same target

at the same time. Lastly, the HAP is not aware of the stochastic process governing

the state of each target.

1.4 Contributions

This thesis contains three major contributions. They include (i) two centralized

algorithms for device selection to maximize the sum rate at a HAP, (ii) applying

reinforcement learning to select devices to sample and transmit in order to minimize

AoI, and (iii) two decentralized reinforcement learning algorithms that can be used

to determine the best devices without knowing the channel state information and

energy level of devices. The following sections further detail the aforementioned

contributions.

1.4.1 Sum Rate Maximization

First, Chapter 3 outlines the problem of selecting devices in a WPCN in order to

maximize sum-rate. Specifically, when selecting devices, a HAP/scheduler does not

have perfect channel state information nor the energy state of devices, and each

device is equipped with an imperfect battery. In this respect, Chapter 3 outlines a

cross-entropy approach to identify the best set of devices to transmit data in each

time frame over random channel gains to maximize sum rate. In addition, Chapter 3

contains a fast Gibbs sampling [57] approach, called Gibbs+. It iteratively selects

devices by evicting non-competitive devices. The proposed approaches are compared

against random pick, round robin, original Gibbs sampling, and perfect information

selection, which select devices according to known channel state information and

energy level of devices. The results show that cross-entropy and Gibbs+ produce a
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higher sum rate than the said benchmark algorithms. In addition, Gibbs+ is faster

than cross-entropy but capable of achieving approximately the same sum rate as

cross-entropy.

1.4.2 AoI Minimization

Next, Chapter 4 considers minimizing AoI. A HAP is responsible for charging devices

and instructing some devices to carry out sampling. After that, devices transmit

their samples to the HAP. It considers a challenging and practical question: how to

select devices without uplink channel state information and energy level of devices

in order to minimize AoI?

To this end, Chapter 4 contains a novel decentralized Q-learning algorithm that

can be used by a HAP to determine the best set of devices to sample and transmit

their data. Advantageously, when using a decentralized Q-learning algorithm, each

device will determine whether to send a request to the HAP according to its energy

level, channel state, buffer state, and Q-table. Instead of selecting devices according

to their channel and energy state, the proposed decentralized Q-learning algorithm

allows the HAP to select devices according to their request and AoI. The results

show that the decentralized Q-learning algorithm consistently achieves a much lower

average AoI than round-robin, random pick, and AoI-greedy strategies. In addition,

the average AoI of the outlined decentralized Q-learning algorithm is only a little

bit higher than the optimal selection strategy which requires perfect channel state

information and energy level of devices.

1.4.3 AoII Minimization

Lastly, Chapter 5 studies device selection for the purpose of minimizing AoII. Each

device is responsible for monitoring one or more targets with time-varying states.

A HAP is responsible for charging devices and instructing some devices to sample

targets that are within their sensing range to transmit samples. During this process,
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there are the following challenges: (i) the HAP does not have uplink channel state

information and energy level of devices, and (ii) devices do not know if there any

other devices that monitor the same targets.

Henceforth, Chapter 5 outlines two decentralized reinforcement learning algo-

rithms, namely (i) decentralized Q-learning, and (ii) a novel state space free learn-

ing algorithm to determine the best devices to monitor targets. Briefly, for both

algorithms (i) and (ii), each device independently decides its probability to sample

and then transmit, i.e., probability to be active, in each frame. However, for the

decentralized Q-learning algorithm, devices determine the aforementioned probabil-

ity according to their historical uplink channel state information, energy level, and

buffer state, while the state space free learning algorithm does not require the de-

vices to know the said information. In simulation studies that compare the proposed

two algorithms against random pick, round robin, ϵ-greedy strategy, the results show

that decentralized Q-learning and state space free learning algorithm achieve much

lower AoI than the aforementioned benchmark algorithms. In addition, the average

AoII of the proposed two algorithms is only slightly higher than the optimal selec-

tion strategy which requires perfect channel state information and energy level of

devices.

To summarize, this thesis includes three contributions that study different de-

vices/nodes selection problems in WPCNs. Figure 1.3 shows the relationship be-

tween the aforementioned three contributions.

1.5 Publications

The aforementioned contributions have resulted in the following publications:

1. L. Zhang and K-W Chin, On Devices Selection in RF-Energy Energy Har-

vesting Wireless Networks, in IEEE Systems Journal, 15(4), pp 4816-4826,

December, 2021.
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Figure 1.3: The three contributions in this thesis. All of them consider devices
selection problems in WPCNs. The first contribution aims to maximize sum-rate
of devices and apply centralized algorithm as its solution. The second and third
contributions aim to minimized the average AoI of devices and average AoII of
targets. They apply distributed reinforcement learning algorithms as their solutions.

2. L. Zhang and K-W Chin, A Distributed Learning Device Selection Method for

Minimizing AoI in RF-Charging Networks, in IEEE Communications Letter,

25(11), pp 3733-3737, November, 2021.

3. L. Zhang and K-W Chin, On Device Selection for Optimizing AoII in Wireless

Powered IoT Networks, IEEE Internet of Things, 2023. Under review.

1.6 Thesis Structure

1. Chapter 2. This chapter provides a comprehensive survey of past works that

consider device selection in energy harvesting sensor networks. Moreover, it

focuses on works aim to optimize sum-rate, AoI and AoII.

2. Chapter 3. This chapter outlines a cross-entropy based algorithm and a fast

Gibbs sampling approach that aim to maximize the sum-rate of multiple de-

vices in an energy harvesting WSN.

3. Chapter 4. This chapter proposes a reinforcement learning-based method to

determine the set of transmit devices so as to minimize the average age of

information in an RF-charging WSN.

4. Chapter 5. This chapter outlines a state-space free reinforcement learning
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method and a Q-learning method to determine the active device set to mini-

mize the average age of incorrect information in an energy harvesting WSN.

5. Chapter 6. This chapter concludes the thesis, provides a summary of key

contributions and outlines possible future research direction.
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Chapter 2

Literature Review

This chapter reviews past works that consider device selection in energy harvesting

WSNs or WPCNs.

2.1 Device selection in EH WSN

Many works have considered device selection in an energy harvesting wireless sen-

sor network. These works aim to select the best set of devices/sensors to trans-

mit/receive data under limited channel resources in order to achieve a specific goal,

e.g., maximize throughput. The following subsections classify past works according

to their aim(s); each subsection then further classifies past works according to their

energy source, see Figure 2.1 .

2.1.1 Throughput Maximization

A number of works have considered devices powered by an ambient energy source,

e.g., [58–68]. In these works, the fusion center or scheduler is responsible for selecting

the best K sensors out of M sensors to transmit over orthogonal channels. For

example, in [58], each sensor is equipped with a unit capacity battery and they used

a two-state Markov model to formulate the energy evolution at sensors. The fusion
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Figure 2.1: Taxonomy of prior works that study devices selection problem in EH
WSN.

center has no knowledge of the battery state of sensor devices. Nodes always have

data to transmit. A node that has sufficient energy can transmit in a time slot

when it is selected. Battery leakage is considered in [58], where the device selection

problem is modeled as a partially observable Markov decision process (POMDP). It

is then solved using the restless multi-armed bandit (RMAB) framework [58], where

the goal is to maximize the number of packets received by the central node.

Different from [58], in [59] and [60], each sensor node is equipped with a battery

with an arbitrary capacity. A similar myopic policy to the work in [58] is studied by

Pol et al. in [59] and [60]. The aforementioned two works, i.e., [59] and [60], have

the following differences: (i) reference [59] considered backlogged sensor devices and

static channel while the work in [60] assumed un-saturated sensors and considered

the influence of uplink channel state, and (ii) references [59] and [60] proved the

optimality of myopic policy in different cases, respectively. Specifically, in [59],

a myopic policy is proved to be optimal when sensors cannot harvest energy and

transmit simultaneously. The work also showed that the transition probability of

energy harvesting processes is influenced by the scheduling policy. In [60] the authors

proved the optimality of their myopic policy when the energy harvesting process of

a sensor device is independent in each slot, and when sensor devices have no battery.

The aim of [61] is similar to [58], where the latter work considered devices with a
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finite and infinite battery. Battery leakage is ignored in [61], and the authors used the

same myopic policy as the work in [61]. The authors of [61] further investigated the

throughput performance of the said myopic policy under general energy harvesting

processes, i.e., Markovian, i.i.d., non-uniform and uniform.

In [62], [63], [64], and [65], Pol et al. studied a scheduling algorithm for en-

ergy harvesting WSNs. Specifically, in [62], the fusion center has no information

about the charging process and the battery state of sensors. Instead, it knows the

previous transmission attempts of sensor nodes. The fusion center uses a so-called

uniformizing random ordered policy (UROP) algorithm. Its basic idea is to select

sensor devices based on a predefined random priority list and the outcomes of pre-

vious transmission attempts. Specifically the fusion center initially orders sensors

randomly and generates a priority list. In the first time slot, it schedules the first

K sensors on the list. If a scheduled sensor is able to transmit in a time slot, it will

be selected in the next time slot again. Otherwise, the fusion center will replace the

sensor with the next sensor in a priority list. The authors of [62] then showed that

UROP is a near optimal policy assuming infinite battery. Reference [63] extended

the work in [62] to the un-saturated case. Different from [62], in [63], a selected node

can only transmit when it has sufficient energy and it has one packet in its buffer.

Otherwise, the channel allocated to the node will be idle. The fusion center in [63]

does not know the battery and buffer state of nodes. Further, it has no knowledge

of the charging and data arrival process at nodes. In [64] and [65], based on the

work of [62] and [63], Pol et al. further investigated the throughput performance

of UROP. Specifically, instead of considering a certain energy harvesting process,

i.e., Poisson arrival and Markovian process, UROP is proved to be asymptotically

optimal for general energy harvesting processes in [65].

The work in [66] considered a device selection problem with perfect information.

Specifically, the following information is known: (i) energy arrival rate at devices,

(ii) battery state, and (iii) uplink channel state of devices. The problem at hand is

to select the best set of devices to transmit in each time slot so as to maximize sum
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rate. This problem is solved using an online policy that selects transmitting devices

according to (i), (ii), and (iii).

In [67], and [68], a reinforcement learning (RL) method is used to select devices.

Specifically, in [67], the authors studied multi-access control and battery predic-

tion in an energy harvesting in IoT system. The base station or fusion center has

channel state information. The work in [67] addressed three aims: (i) determine

the access control policy that maximizes sum rate, (ii) obtain the prediction pol-

icy such that the prediction loss is minimum, and (iii) consider access control and

battery prediction simultaneously in order to maximize long-term discounted sum

rate and minimize cumulative battery prediction loss simultaneously. Specifically,

reference [67] proposed a long short-term memory deep Q-network based approach

to achieve aim (i). The state space of the aforementioned approach consists of

channel and battery states. The action is to select a set of users to transmit. The

reward is the sum rate. The authors propose a deep long short-term memory neural

network-based battery prediction algorithm to minimize the prediction loss so as to

achieve aim (ii). Specifically, the input of the neural network is a three tuple which

consists of scheduling history, predicted battery state of users, and selected users’

true battery state. The output of the neural network is a prediction of battery state.

The authors then proposed a two-layer deep Q-network to achieve aim (iii).

In contrast to [58–67], the authors of [68] considered an energy harvesting com-

munication network that consists of an energy harvesting access point (AP) and

multiple devices. Specifically, in each time slot, the energy harvesting access point

is responsible for harvesting energy from the environment and selecting a set of

devices to deliver information. The AP selects the best set of devices to receive

data in order to maximize downlink sum rate. The AP runs a deep reinforcement

learning approach that considers channel state information, its battery state infor-

mation, and received energy. The AP learns a policy to select a subset of devices

and allocate channels to these selected devices. The reward is its sum rate.

A dedicated energy source or HAP can be used to power devices, e.g., [69], [70].
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In this context, both [69] and [70] have studied a device selection problem in a

full-duplex WPCN that consists of a HAP and multiple energy harvesting devices.

In each time slot, one device will be selected to transmit data to the HAP. Other

devices will harvest energy whenever the HAP transmits an RF signal. In [69], the

HAP has two antennas. It is capable of broadcasting energy and receiving data from

a single device simultaneously. Further, it runs a scheduler that has the energy state

of devices. The scheduler (i) selects the best transmit device in each time slot so

as to maximize the average throughput, and (ii) selects the best transmit device so

as to trade off system throughout and device fairness. To achieve (i), the scheduler

use a throughput-oriented scheduling scheme. Its basic idea is to always select the

device with the maximum weighted residual energy to transmit in each time slot.

To achieve (ii), the scheduler uses a fairness-oriented scheduling scheme. For each

device, the scheduler will calculate the ratio between its current energy level and its

average energy level within the period from its last transmission to the current time

slot. In each slot, the scheduler selects the device with the highest ratio to transmit.

Similarly, in [70], the HAP has multiple antennas. Each device has one antenna. In

each time slot, the HAP is responsible for transmitting energy. It allocates some

antennas for energy delivery and data reception. Note, the scheduler of [70] has

perfect channel state information. Its aim is to select the best transmit device,

decide the set of antennas to transmit energy, and optimize the beamforming weight

of the hybrid AP so as to maximize the average sum rate of energy harvesting devices

while satisfying their minimum average data rate requirement. The HAP decides

the best set of antennas to transmit energy and optimize beamforming in each time

slot. It then selects the transmitting device according to the decided beamforming

vector and an antenna selection vector.

Table 2.1 summarizes the aforementioned works. All works consider device se-

lection in an energy harvesting communication network. Their aim is to maximize

throughput or sum rate. We see that only reference [69] and [70] have considered

a dedicated charger, i.e., a HAP that broadcasts a radio frequency signal. These
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works studied the influence of downlink channel state on received energy at devices.

Their solution, however, only selects a single device, which means the complexity of

their problem does not grow exponentially with increasing number of time slots and

the number of selected devices. The scheduler in [66–70] has channel state, battery

state of device or/and energy arrival rate of devices information.

In this respect, a key issue is that the scheduler is required to poll devices to

collect the aforementioned information, which is impractical in an energy harvesting

wireless sensor network that contains a large number of devices.

Paper
Operation
Mode

Number of
selected
devices

Energy
source
type

Information Solution

Iannello et al. [58]
Blasco et al.
[59], [60]
Gul et al. [61]

Half-duplex Multiple Ambient None Myopic policy

Gul et al.
[62], [63], [64] [65]

Half-duplex Multiple Ambient
Transmission
attempts of
sensors

Uniformizing
random
ordered policy
algorithm

Yang et al.
[66]

Half-duplex Multiple Ambient

Channel state,
battery state,
and energy
arrival rate

Select devices
according to
known information

Chu et al.
[67]

Half-duplex Multiple Ambient Channel state
Reinforcement
learning algorithm

Luo et al.
[68]

Half-duplex Multiple Ambient

Channel state,
battery state,
and energy
arrival rate

Deep reinforcement
learning algorithm

Zhai et al.
[69]

Full-duplex Single
Dedicated
RF source

Battery state

Select device
according to
battery state
information

Park et al.
[70]

Full-duplex Single
Dedicated
RF source

Channel state
Joint ID, Antenna,
and Beamforming
(IAB) algorithm

Table 2.1: A comparison of works that study device selection and aim to maximize
throughput or sum rate.

2.1.2 Age of Information

The novel metric Age of Information (AoI) is now popular. Specifically, the AoI of

a sensor or device is defined as the number of frames that have elapsed since the

sample stored at the data receiver was generated at the device [71]. To minimize AoI,
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there are a few key challenges. First, the complexity of device selection increases

exponentially with more devices and the number of time slots. Secondly, many

works have employed a Markov decision process, e.g., [72]. In this respect, the key

challenge is the curse of dimensionality, where the state space of agent, which usually

models the channel and battery state of devices, grows exponentially with increasing

number of devices.

Many AoI works have considered an ambient energy source [73], [74], [75], [76],

[77], [78],[79],[80],[81]. For example, in [74], [75], [76], [78], Hatami et al. considered

an energy harvesting sensor network that consists of multiple sensors, an edge node,

and multiple users, i.e., data receivers. Data receivers will send their request to

the edge node to ask for a sample. Next, the edge node selects sensors to transmit

samples in order to update its cache. The aforementioned four works use a so-called

on-demand AoI. In [78], a Q-learning algorithm is used select the best set of devices

to transmit in each slot so as to trade off the energy consumption and on-demand

AoI. Their scheduler only knows the AoI and the partial battery state of devices.

Different from [78], in [76], the proposed solution selects the best set of devices to

transmit in each time slot to minimize the weighted on-demand AoI of each device.

The scheduler in [76] has perfect battery state information of each device, which is

different from [78]. The work in [82] formulated the device selection problem as a

Markov decision process and propose two solutions: (i) a model-based method, i.e.,

value iteration algorithm (VIA), and (ii) a model-free reinforcement learning (RL)

method, i.e., Q-learning algorithm. The setting in [75] is similar to [76]. There are

only two differences between the aforementioned two works. Firstly, the formula to

calculate the on-demand AoI in [75] is different from the work in [76]. Secondly,

in [75], the scheduler knows the request information of data receivers, while this

information is unknown in [76]. In [74], there is a transmission constraint, which

means in each slot, a scheduler selects at most M sensors to transmit due to limited

channel resources. There is no such constraint in [75, 76] and [78].

In [73] and [81], an energy harvesting network consists of multiple energy har-
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vesting users or sensors and multiple receivers. At most one sensor will be selected

each time by a scheduler to transmit to a receiver. The remaining sensors harvest

energy from their environment. In [73] and [81], the scheduler knows the AoI, the

uplink channel state information (CSI), and the energy level of devices. Specifically,

in [81], the proposed solution selects the best device to transmit in each slot so as to

minimize long-term AoI. To achieve the aforementioned aim, the said solution uses

a deep reinforcement learning algorithm to select a device according to the afore-

mentioned information. Different from [81], in [73], the proposed solution (i) selects

a user to transmit, (ii) determines the action of the selected user, i.e., whether to

transmit a packet to its intended receiver, and (iii) determines the transmit power of

the selected device so as to minimize the long-term age of information. The solution

employed a neural network to make decision (i), while decision (ii) and (iii) are made

based on the energy level, channel state, and Signal-to-Noise Ratio (SNR) threshold

of a selected device.

The work in [79] and [77] considered a wireless sensor network with a fusion

center, i.e., scheduler, and multiple energy harvesting sensors. The fusion center is

responsible for selecting at most M devices from K devices to sample and transmit.

Specifically, in [77], each sensor monitors a specific target and has its own AoI

threshold. The fusion center knows the following information: (i) the battery state

of each device, (ii) the transmission state in the last slot, i.e., when transmissions

are successful, (iii) the age of information threshold of each device, and (iv) the

selected devices in the last slot. The fusion center aims to select the best set of

devices in each slot according to the aforementioned information in order to (i)

minimize the total number of times that the AoI of devices exceeds a threshold,

and (ii) minimize the sum AoI of devices. To achieve its aim, it runs a double deep

Q-learning (DDQN) [83] based algorithm. Different from [79] and [77], multiple

sensors may cooperatively monitor the same target in [84]. Both works used age

of correlated information (AoCI), which is derived from the concept of AoI. Their

aim is to (i) select a set of sensors to sample and transmit, and (ii) decide the
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sensed target for each selected sensor so as to minimize the average age of correlated

information. Similar to [79], a deep reinforcement learning (DQL) based algorithm

is used in [84] to solve (i) and (ii).

In [80], Liu et al. considered a communication network that consists of a base

station that has limited computation resources and multiple heterogeneous energy

harvesting devices. Specifically, there are the following two types of devices: (i)

energy harvesting devices that have a battery, and (ii) energy harvesting devices

without a battery. The aim of [80] is to jointly address the problem of selecting

a set of devices to transmit, decide the transmit power of selected devices and

allocate the computation resource of the base station to minimize the age of status

updates, i.e., the average weighted age of information. This problem is solved using

a stochastic gradient descent based online algorithm.

Many works have considered wireless powered communication networks (WPCNs).

For example, in [85], [72], [86], the network has a HAP and multiple RF energy har-

vesting sensors or devices. A scheduler knows the energy state, uplink channel state,

downlink channel state, and age of information of all devices. Moreover, the work

in [85], [72], [86] aim to decide (i) whether each time slot is used for wireless energy

transfer (WET) or wireless information transmission (WIT) and (ii) the best set of

devices to transmit in the wireless information transmission phase so as to minimize

the long-term average weighted age of information. There are several differences

between [85], [72], [86]. Firstly, in [85], Jin et al. considered non-orthogonal mul-

tiple access (NOMA), which means multiple devices can transmit simultaneously.

While in [72], [86], the scheduler only selects one sensor to transmit in the wireless

information transmission phase. Secondly, the solution presented in [85], [72], [86]

is different. Specifically, in [85], Jin et al. applied Lyapunov optimization [87] to

dynamically decide (i) and (ii) according to the energy state, uplink channel state,

downlink channel state, and age of information of all devices. In contrast, the au-

thors of [86] and [72] respectively applied the policy iteration algorithm (PIA) and

deep reinforcement learning (DRL) as a solution.
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Recently, intelligent reflecting surface (IRS) [88] has been shown to significantly

improve wireless communication network performance [89]. This is because it could

enhance channel conditions. In this respect, in [82], Cui et al. studied an IRS-

assisted wireless powered communication network, which consists of a hybrid access

point (HAP), multiple energy harvesting sensors, and an IRS. The aim is to jointly

decide (i) the time slot used for wireless energy transfer (WET) or wireless infor-

mation transmission (WIT), and the transmitting sensor in the WIT phase, (ii) the

HAP’s beamforming vector, and (iii) the phase shifting matrices of the intelligent

reflecting surface so as to minimize the average age of information of devices. To

achieve the aforementioned aim, Cui et al. propose a hierarchical deep reinforcement

learning algorithm as a solution.

Table 2.2 summarizes and compares all the aforementioned works. The aim of

these works is to select one or multiple sensors to transmit so as to minimize the

average AoI or its variation in an energy harvesting communication network. These

works proposed centralized algorithms whereby their scheduler selects devices ac-

cording to known information. However, collecting battery and channel state infor-

mation from all sensors may be impractical, especially in a network that contains a

large number of sensors, see section 2.1.1. Only references [85], [72], [86], and [82]

consider a WPCN and downlink energy transfer. However, the work in [72], [86],

and [82] does not consider the multiple device selection problem. The only work

that considers multiple device selection in a WPCN is [85]. However, Jin et al. do

not consider a learning algorithm.

2.1.3 Distortion

A number of works have aimed to minimize distortion [90–94], which is defined as

the mean square error (MSE) between reconstructed samples at a fusion center and

original samples. These works, i.e., [90–94], have considered an energy harvesting

wireless sensor network that consists of multiple sensors and a fusion center. Sensor
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Paper
Joint
optimization

Number of
selected
devices

Energy
source
type

Information Solution

Leng et al.
[73]

Yes Single Ambient

AoI,channel
state, and
energy level
of sensors

Reinforcement
learning algorithm

Hatami et al.
[74]

No Multiple Ambient

AoI of sensors,
request of
users, and
battery state
of sensors

Relative value
iteration
algorithm

Jin et al.
[85]

No Multiple
Dedicated
RF source

Energy state,
channel state,
and AoI of all
devices

Lyapunov
optimization

Hatami et al.
[75]

No Multiple Ambient

AoI of sensors,
request of
users, and
battery state
of sensors

Value iteration
algorithm

Hatami et al.
[76]

No Multiple Ambient
AoI and battery
state of sensors

Value iteration
algorithm and
Q-learning
algorithm

Feng et al.
[77]

No Multiple Ambient

Battery state
of sensors,
transmission
state in the
last frame,
selected sensors
in the the
last frame, and
AoI threshold of
each sensor

Double deep
Q-learning
algorithm

Mohamed
et al.
[72]

No Single
Dedicated
RF source

Channel state,
battery state,
and AoI of all
senors

Deep reinforcement
learning algorithm

Mohamed
et al.
[86]

No Single
Dedicated
RF source

Channel state,
battery state,
and AoI of all
sensors

Value iteration
algorithm

Hatami et al.
[78]

No Multiple Ambient
Imperfect
battery state
of all sensors

Q-learning
algorithm

Zhao et al.
[79]

No Multiple Ambient
Battery state
of devices

Deep reinforcement
learning based
algorithm

Liu et al.
[80]

Yes Multiple Ambient
Battery state
of devices

Online algorithm

Leng et al.
[81]

No Single Ambient

AoI, channel
state, and
energy level
of sensors

Actor-Critic deep
reinforcement
learning algorithm

Cui et al.
[82]

Yes Single
Dedicated
RF source

Channel state
and energy level
of sensors

Hierarchical deep
reinforcement
learning algorithm

Table 2.2: A comparison of works that study device selection and aim to minimize
AoI or its variation.
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nodes monitor a stationary source and generate independent and identically dis-

tributed (i.i.d.) samples. A fusion center is responsible for reconstructing samples

according to data from sensors.

To minimize reconstruction distortion, the key problems considered in prior

works included (i) selecting the best subset of sensors to transmit in each time

slot, and (ii) deciding the transmit power of sensors. Addressing problem (i) and

(ii) is challenging because they are combinatoric in nature, NP-hard and results in

a non-convex optimization problem.

A set of works, i.e., [91], [92], [94], have jointly considered problem (i) and (ii)

and assumed there are finite channels. These works adopted a similar sensor network

and same problem. However, they have a different solution. For example, in [94],

a separate sensor selection and power allocation (SS-EH) algorithm is proposed

to address problem (i) and (ii). The aforementioned algorithm has the following

steps: (i) construct a vector where its elements are weights that determine the

contribution of sensors to the reconstruction process, see details in [94], (ii) select

the best K sensors according to the result of (i), i.e., select the largest K element in

the aforementioned vector, and (iii) the transmit power of selected sensors by using

the iterative algorithm in [95]. In [92], the authors extended their work in [94] and

proposed a so-called joint sensor selection and power allocation (JSS-EH) algorithm

that iteratively finds the optimal devices to transmit samples and their transmit

power, see [92]. In [91], the authors formulated and transformed their joint device

selection and power allocation problem into a convex problem. This problem is then

solved using the Lagrangian duality approach.

Different from [91], [92], [94], the authors of [90] and [93] selected devices by

controlling their transmit power, i.e., a device transmits when its allocated power

is larger than zero, otherwise, a device does not transmit. In other words, the work

in [90] and [93] has only considered problem (ii). To address problem (ii), the de-

centralized algorithm in [90] decides the transmit power of each device. Each device

locally computes and reports its transmit power to a fusion center. Then the fusion
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center optimizes the transmit power of each device. In contrast, the centralized algo-

rithm in [93] uses the Majorization-Minimization (MM) algorithm [96] to iteratively

find the transmit power of each device.

Table 2.3, summarizes and compares all works in this section. All works consider

ambient energy sources and none of them consider imperfect channel state and

battery state information. This means no works have considered collecting channel

and battery state information in a wireless sensor network that contains a large

number of sensors, see discussion of the aforementioned challenge in Section 2.1.1.

Moreover, only the work in [90] has applied a decentralized algorithm. No work has

applied a reinforcement learning based solution.

Paper
Energy
storage
loss

Joint
Optimization

Energy
source
type

Information
at fusion
center

Solution

Calov-Fullana
et al. [90]

No No Ambient

Channel state,
and amount of
harvest energy
of each sensor

Decentralized
iteration
algorithm

Du et al.
[91]

Yes Yes Ambient
Channel power
gain and battery
state of sensors

Lagrangin duality
approach

Calov-Fullana
et al. [92]

No Yes Ambient

Channel state
and amount of
received energy
of each sensor

Separate sensor and
power allocation
algorithm, joint
sensor selection
and power allocation
algorithm

Calov-Fullana
et al. [93]

No No Ambient

Channel state
and amount of
received energy
of each sensor

Majorization
-Minimization
algorithm based
centralized
algorithm

Calov-Fullana
et al. [94]

No Yes Ambient

Channel state
and amount of
received energy
of each sensor

Separate sensor and
power allocation
algorithm

Table 2.3: A comparison of works that study device selection and aim to minimize
reconstruction distortion.

2.1.4 Quality of Service

A number of works aim to achieve a specific objective, for example, maximize net-

work lifetime, while meeting a quality of service (QoS) requirement [97–100]. In
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these works, there is a fusion center and multiple energy harvesting sensors. The

problem at hand is device selection. There are two main challenges. First, the

fusion center does not have perfect information of the energy level [97] or channel

state information [101] of devices. Second, the considered device selection problem

is NP-hard [97–99].

There is a set of past works, i.e., [97] and [100], that have considered a hetero-

geneous wireless sensor network. For example, there is a primary and secondary

network in [97]. The sensors in the primary network harvest energy from solar and

are responsible for monitoring the temperature and reporting to a fusion center.

The sensors in the secondary network are responsible for monitoring solar irradi-

ance and reporting their measurement to the fusion center. Based on the received

data from the primary and the secondary network, the fusion center will forecast

the energy level of sensors in the primary network. It aims to select the best set of

sensors in the primary network to transmit according to predicted energy level so

as to maximize network lifetime while meeting the QoS defined by users, see details

in [97]. To address the sensor selection problem, Chen et al. proposed an algorithm

based on the cross-entropy method [102]. Its basic idea is to maintain a probability

distribution that is then adapted iteratively to determine the transmitting device.

Different from [97], in [100], two types of sensors, namely, (i) high-quality, and

(ii) low-quality, collaborate to monitor the same physical phenomenon, see details in

[100]. A fusion center aims to reconstruct a physical phenomenon according to the

received data from sensors so as to accurately estimate and predict the monitored

physical phenomenon. Further, it selects the best set of devices to transmit in order

to minimize the cost of active sensors while meeting the QoS criterion required by

users [100]. Similar to [97], the algorithm in [100] uses the cross-entropy method to

address the sensor selection problem.

Different from [97] and [100], in [98] and [99] there is a single type of sensors. The

fusion center knows the channel state and energy level of each sensor. Specifically,

in [99], the fusion center selects the best set of sensors to transmit in each time slot
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in order to maximize the number of received samples while meeting the quality of

service of users., i.e., ensure signal-to-noise ratio over a threshold. In [98], the authors

extended their work in [99] to further consider transmission fairness. Similarly,

the online algorithm in [98] and [99] selects devices according to their channel and

battery state information.

Some works have also considered simultaneous wireless information and power

transfer (SWIPT) [54, 103] and investigated a single device selection problem [101,

104, 105]. A key problem is whether devices should receive data or harvest energy.

For example, in [104], the problem involved (i) selecting one device to receive data,

and the other devices harvest energy from the RF-signal transmitted by a fusion

center, and (ii) deciding the transmit power to each device so as to maximize the

amount of harvest energy at devices and ensure the average data rate of devices over

a threshold. The proposed joint device selection and power allocation algorithm

selects a device and decides its transmit power according to known channel state

information. In [105] and [101], there is a fusion center that has both grid power

and renewable energy. It aims to (i) select one device to receive data. Other devices

harvest energy from its RF-signal, and (ii) decide the amount of energy to draw

from the power grid and battery to transmit a signal in order to maximize the

average throughput, satisfy the energy requirement of a device , and ensure the

energy consumption of the power grid lower than a threshold. Note that, in [105],

the fusion center has perfect channel state information of devices, while in[101],

it has imperfect channel state information. The work in [105] and [101] used a

policy iteration algorithm and reinforcement learning algorithm to maximize average

throughput while satisfying energy harvesting requirement of devices.

Table 2.4 summarizes and compares the works discussed in this section. Only the

work in [97] and [100] has a fusion center that does not use the current battery state

information of devices. They applied a cross-entropy method based algorithm to

select the best devices to transmit. However, in [97], the fusion center has to forecast

the energy level of sensors based on their historical energy level and observation of
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sensors in a secondary network. This means that the fusion center has to poll all

sensors in the secondary network in each time slot for their observation, which is

impractical in a large-scale wireless sensor network, see discussion in Section 2.1.1.

Moreover, only reference [100] has studied mixed energy sources. However, the

dedicated energy source in [100] is a power grid instead of an RF signal broadcast

by a fusion center.

Paper SWIPT
Heterogeneous
wireless sensor
network

Energy
source
type

Infornation
at fusion
center

Solution

Chen
et al. [97]

No Yes Ambient
Historical
battery state
of sensors

Cross entropy
method-based
algorithm

Hentati
et al. [98]

No No Ambient

Channel state
and energy
level of each
sensor

Online algorithm

Hentati
et al. [99]

No No Ambient

Channel state
and energy
level of each
sensor

Online algorithm

Zhang et al.
[100]

No Yes Mixed None
Cross entropy
method-based
algorithm

Boshkovska
et al. [104]

Yes No
Dedicated
RF source

Channel state
information
of devices

Online algorithm

Guo et al.
[105]

Yes No
Dedicated
RF source

Channel state
information
of devices

Policy iteration
and reinforcement
learning algorithm

Guo et al.
[101]

Yes No
Dedicated
RF source

Imperfect
channel state
information
of devices

Policy iteration
and reinforcement
learning algorithm

Table 2.4: A comparison of works that study device selection and aim to meet QoS.

2.1.5 Multi-Objectives

This section presents two categories of works that have investigated device selection.

The aim of these works is to optimize two objectives. The first category of works

considered energy and data transfer in a WPCN. The second category of works con-

sidered an energy harvesting wireless sensor network, where sensors harvest energy
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from an ambient energy source and aims to trade-off energy usage and sensing ac-

curacy. In the aforementioned works, one main challenge is the uncertain amount

of harvested energy. In this respect, a fusion center/scheduler has to select the best

set of sensors without knowing their current energy level.

The first category of works has investigated selecting devices/users and consid-

ered simultaneous wireless information and power transfer (SWIPT) [54, 103]. A

key problem of this category of works is to consider whether devices should receive

data or harvest energy. For example, in [106], [107], [108], a device is selected to

receive data from a fusion center, and the other devices will harvest energy from

the RF-signal broadcasted by the fusion center so as to trade-off the sum-rate and

harvested energy of devices. To achieve their aim, prior works proposed strategies

that select the best device according to their signal-to-noise ratio [106], [107], and

perfect channel state information [108]. The work in [109] and [110] considers de-

vices equipped with a power splitting unit. That is, a portion of a received signal

is used for information decoding and another portion is used for energy harvesting.

One device is selected to receive data and energy from a fusion center, and the other

devices only harvest energy from the RF-signal broadcasted by the fusion center so

as to trade-off the sum rate and harvested energy of devices. In order to achieve

their aim, the authors of [109] and [110] proposed strategies that select the best

device according to achievable data rate and harvested energy at devices. Differ-

ent from [106–110], in [111], multiple devices/users are selected to receive data and

other devices/users harvest energy to trade-off information transmission and energy

harvesting. To select the best set of devices/uses, the authors of [111] proposed a

so-called opportunistic communications-based user selection algorithm. The basic

idea is to select devices/users according to their energy harvesting and information

transmission capacity, which means the scheduler in [111] has perfect channel state

information of devices/users.

The second category of work investigated selecting multiple sensors to sample

and transmit data. For example, in [112, 113], the authors considered device se-
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lection in a heterogeneous sensor network. Specifically, in [112], there are multiple

nodes. Each node is responsible for multiple environmental parameters. Each node

consists of multiple sensors, and each sensor is responsible for sensing one environ-

ment parameter. In [112], the proposed solution selects (i) the best set of nodes,

and (ii) the best set of sensors so as to trade-off sensing quality and energy effi-

ciency. To achieve their aim, the solution uses a so-called adaptive multi-sensing

(MS) strategy. Its basic idea is to select sensors according to spatio-temporal dy-

namics. In [113], the authors extended their work in [112] and proposed two new

strategies: adaptive Multi-Sensing Spatial Proximity (MS-SP) and adaptive Multi-

Sensing Cross-Correlation (MS-CC). These two strategies further reduce the number

of active sensors, i.e., selected sensors, according to their location and sensed envi-

ronmental parameters, to further reduce energy consumption.

There are a set of works, i.e., [114–118], that have considered a single target

tracking problem and a network that consists of the same type of sensors. In order to

select the best set of sensors so as to trade-off tracking error and energy consumption,

they use an adaptive dynamic programming (ADP) algorithm [119]. The basic

idea is to train an agent using an actor and critic network. In [115–117], a fusion

center/sink node first predicts the state of a tracked target, i.e., the location of the

target, according to the received data from sensors. It then selects the best set

of sensors according to the predicted state. In [115, 116], the fusion center/sink

node is only capable of predicting the state of the tracked target in the next frame.

In another work, i.e., [117], the fusion center/sink node predicts the state of the

tracked target in the next few frames. Different from [115–117], in [118], instead of

predicting the location/trajectory of a tracked target, a fusion center predicts the

amount of harvested energy and tracking performance of sensors in the next frame

before ADP [119] to select sensors.

Table 2.5 summarizes works in this section. As shown in Table 2.5, only refer-

ences [106], [107], [108], [109], [110], [111] have considered RF-charging. However,

in the aforementioned works, the proposed solutions do not consider transmissions
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from devices/users to a fusion center, and they are centralized and run by a fusion

center/scheduler. Lastly, these works assumed a fusion center has perfect channel

state information of each device, which is impractical in a large-scale network since

obtaining channel state information requires the fusion center to poll all devices.

Paper
Heterogeneous
wireless sensor
network

SWIPT
Energy
source

Information
at fusion
center

Solution

Morsi
et al. [106]

No Yes
RF

signal
Channel state
of each device

Online algorithm

Morsi
et al. [107]

No Yes
RF

signal
Channel state
of each device

Online algorithm

Chynonona
et al. [108]

No Yes
RF

signal
Channel state
of each device

Online algorithm

Bang
et al. [109]

No Yes
RF

signal
Channel state
of each device

Adaptive multiuser
scheduling algorithm

Kim
et al. [110]

No Yes
RF

signal
Channel state
of each device

Adaptive proportional
scheduling algorithm

Zhao
et al. [111]

No Yes
RF

signal
Channel state
of each device

Opportunistic
communications
-based user selection
algorithm

Gupta
et al. [112]

Yes No Solar
Energy level of
sensors in past
frames

Adaptive multi-sensing
algorithm

Song
et al. [114]

No No Solar None
Adaptive dynamic
programming
algorithm

Gupta
et al. [113]

Yes No Solar
Energy level of
sensors in past
frames

Adaptive multi-sensing
spatial proximity
algorithm

Liu
et al. [115],
[116]

No No Solar
Location of
sensors

Adaptive dynamic
programming-based
multi-sensor scheduling
algorithm

Liu
et al. [117]

No No Solar
Location of
sensors

Multistep
prediction-based
adaptive dynamic
programming
algorithm

Jiang
et al. [118]

No No Solar None

Finite-horizon
adaptive dynamic
programming
algorithm

Table 2.5: A comparison of works that study device selection and consider multi-
objective optimization.
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2.1.6 Others

This section presents device selection works that consider different performance func-

tions, for example, spectral efficiency. This section classifies works into two cate-

gories according to their energy source, i.e., (i) works that have considered devices

that harvest energy from the transmission of a transmitter/HAP, e.g., a WPCN [120–

124], and (ii) works that have studied devices that harvest renewable energy such

as solar or wind [125].

The first category of works can be further classified into two groups: (i) works

that considered a harvest-then-transmit strategy [56], and (ii) works that studied

SWIPT. A key problem addressed in the first set of works is to find the set of

devices that harvest the most energy and achieve the highest data rate. For ex-

ample, in [120], a HAP selects devices to receive energy from a fusion center or

HAP. They then transmit data to the fusion center so as to maximize spectral ef-

ficiency. Moreover, the HAP aims to ensure fairness among devices. To this end,

the harvesting-constrained scheduling scheme in [120] first selects devices that are

capable of harvesting sufficient energy for transmission. It then selects devices either

according to a greedy or round-robin strategy. In works such as [121] and [122], all

devices harvest energy from RF-signals broadcasted by an energy transmitter and

transmit data to an information receiver that is located in a different place with an

energy transmitter. In each slot, the k-best devices are selected to transmit data to

a receiver so as to minimize the outage probability at an information receiver. In

order to achieve their aim, the proposed solution in [121] and [122] select devices

according to the energy level, channel state information, and signal-to-noise (SNR)

ratio at information receivers, see details in [121] and [122].

A key problem is to consider whether devices should harvest energy or transmit

their data. For example, in [123], there is a multi-user orthogonal frequency division

multiplexing (OFDM) system with an AP and multiple devices/users. The AP (i)

selects one device to receive data and other devices harvest energy from its RF-signal,
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and (ii) allocates energy for each sub-carrier to maximize energy efficiency. The AP

runs an algorithm that selects the best device and allocates energy according to

known channel state information. In a different work, devices in [124] are equipped

with a power splitting unit that divides the power of a received signal into two parts.

A portion of the signal is used for information decoding and another portion is used

for energy harvesting. The authors of [124] focused on selecting an area sector or

a set of devices to receive energy and polling information simultaneously and then

transmit data according to time division multiplexing (TDMA) to a fusion center.

The problem at hand is to minimize energy outage probability and ensure the age

of information (AoI) of devices is below a threshold. This problem is modeled as

a Constrained Markov Decision Process (CMDP) that is then solved using a linear

program.

Different from the first category of works, a key problem in the second category

of works is to consider whether devices/sensors have sufficient energy to sense and

transmit data to a fusion center. For example, in [125], the problem is to select a

set of devices/sensors to sense their environment and transmit data so as to opti-

mize average sensing utility while considering the energy budget of devices/sensors.

A myopic policy is proposed to select devices according to the energy level of de-

vices/sensors.

As shown in Table 2.6, all works required either channel state information or

energy level of devices. However, as discussed in Section 2.1.5, obtaining the afore-

mentioned information of all devices is impractical in large-scale networks since

this requires a scheduler to poll all devices/sensors. Moreover, only reference [124]

has considered RF charging and TDMA. However, it does not use a reinforcement

learning approach and it is not a distributed approach.
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Paper SWIPT TDMA WPCN
Known
information

Solution

Tabassum
et al. [120]

No No Yes
Channel state
information

Harvesting constrained
scheduling scheme

Dimitropoulou
et al. [121] and
[122]

No No Yes

Channel state
and energy
level of each
devices

Select devices according
to known information

Kwan et al.
[123]

Yes No Yes
Channel state
information

Select devices according
to channel state
information

Ko et al.
[124]

Yes Yes Yes

AoI, energy
level and
location of
devices

Linear program

Yang et al.
[125]

Yes No No
Energy level
of devices

Myopic policy

Table 2.6: A comparison of works that study device selection and consider different
performance functions with prior sections.

2.2 Summary

In summary, this chapter has reviewed device/sensor selection problems and their

respective system, namely ambient, RF, or hybrid energy harvesting wireless sensor

networks. The work in this thesis differs from past works in the following manners:

1. This thesis first aim to maximize sum rate. The majority of prior works that

have investigated data rate maximization assumed that devices are powered

by an ambient energy source, which means energy arrival at each device is

independent and random. In contrast, in this thesis, devices have a dedicated

charger, i.e., the hybrid access point. Secondly, past works such as [58–60, 62,

65] have considered the impact of random uplink channel gain on throughput.

In this thesis, however, the amount of received data is affected by the channel

gain from each transmitting device to a hybrid access point. Moreover, past

works such as [59, 60, 62, 65–67] ignored battery leakage. Apart from that,

in this thesis, a HAP is not required to poll devices to obtain their channel

state or battery state information. Consequently, the problem considered in

this thesis is more challenging than prior works.
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2. This thesis then investigates the age of information minimization. In general,

unlike prior works such as [73–77], [78–81] that considered devices that harvest

from wind or solar energy, this thesis assumes that devices harvest energy from

a HAP that broadcast an RF-signal. Further, the HAP selects the best set of

devices without knowing their energy and channel state. This feature is dis-

tinct from prior works that have considered perfect information at a HAP [72],

[85], [86], [82]. Apart from that, all past works have used a centralized rein-

forcement learning algorithm to select devices, e.g., [72], [73], [76], [77], [78],

[79], [81], [82]. In contrast, this thesis proposes a decentralized reinforcement

learning algorithm to select devices in a WPCN in order to determine a policy

that minimizes the average age of information.

3. Lastly, this thesis investigates the optimization of a novel metric, i.e., age of

incorrect information, in a WPCN. To date, there is no past work that has

studied device selection and aimed to minimize the said metric for multiple

targets. Moreover, all past works on device selection in a WPCN in order to

improve information freshness assumed that each sensor/device only monitors

one target or senses one environmental parameter [72], [74], [86], [82]. In

contrast, this thesis considers one or more targets. Apart from that, there

is no prior work that consider cooperate monitoring of targets in order to

minimize the age of incorrect information.
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Chapter 3

Throughput Maximization in RF

Charging Networks with Imperfect CSI

This chapter considers an RF charging Wireless Sensor Network (WSN) that con-

sists of a HAP and multiple EH devices with imperfect battery, i.e., energy leakage

exists. The HAP does not have the battery state information and only has the

imperfect uplink channel state information of devices. The main research question

is to determine the set of devices that maximize throughput.

To illustrate the problem, consider the example Figure 3.1. There are three

devices and a HAP. Time is slotted. HAP and devices are synchronized. The HAP

aims to select two devices in each time slot. The HAP aims to maximize the sum

rate over two time slots. Devices always have data to transmit. Further, in this

example, devices lose all their stored energy if they do not transmit. This example

only considers two channel states: good or bad. If the channel is good, a device

has a link rate of 2 bps/Hz for each 1J of energy. Otherwise, the link operates at

1 bps/Hz for the same amount of energy. This example assumes that D2 and D3

have a good channel, while D1’s channel is bad. In a charging slot, the received

energy of D1, D2 and D3 is 1J, 2J, and 4J, respectively. Consider a round-robin
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device selection policy, where devices are selected in turn by the HAP. The HAP

first selects device D1 and D2. They use all their energy to transmit data. The link

rate of D1 and D2 is respectively 1 bits/Hz and 4 bps/Hz. After the second charging

slot, D1, D2 and D3 receive 1J, 2J and 4J again. The HAP then selects D3 and

D1 to transmit in the second time slot. Their respective link rate is 1 bps/Hz and

8 bps/Hz. The sum rate over two time slots is thus 14 bps/Hz. Notice that in the

given two time slots, device D3 and D2 always have a higher energy level and better

channel state than D1. This means D3 and D2 are capable of producing a higher

rate than device D1. Consequently, a better selection policy is to select D2 and D3

in the first and the second time slot. The corresponding sum rate of the best policy

is 24 bps/Hz. However, as mentioned, the HAP is unaware of the channel state nor

battery level of devices, which complicates the device selection process.

2 J 4 bps/Hz 2 J 0 bps/Hz

4 J 0 bps/Hz 4 J 8 bps/Hz

D3

D2

D1
1 J 1 bps/Hz 1 J 1 bps/Hz

Round robin Best policy

 1 J 0 bps/Hz 1 J 0 bps/Hz

 

2 J 4 bps/Hz 2 J 4 bps/Hz

4 J 8 bps/Hz 4 J 8 bps/Hz

Figure 3.1: An example of device selection. The channel condition to/from device
D1 is poor, while that of D2 and D3 is good.

From the example, the problem at the hand is to determine which set of devices

has the highest throughput in each frame. The are two main challenges. Firstly,

the HAP/scheduler does not have perfect channel state information nor the energy

level of devices. This is reasonable since it is impractical for the HAP to poll devices

for the aforementioned information in a large-scale network. Secondly, the HAP has

to take into consideration energy leakage at each device in order to avoid energy
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wastage.

The remainder of this chapter is organized as follows. Section 3.1 formalizes

the RF-energy harvesting network and battery leakage model under consideration.

This is followed by the problem formulation in Section 3.2. After that, Section 3.2.1

lists several properties concerning the problem. Section 3.3 and Section 3.4 outline

the proposed approaches for the problem. The results are presented in Section 3.5.

Finally, Section 3.6 concludes this chapter.

3.1 System Model

Let N = {D1, D2, . . . , |N |} be a set of devices. These devices are placed randomly

around a HAP as shown in Figure 3.2. The HAP is responsible for charging via

RF these |N | devices and collecting data from them. Devices always have data to

transmit. Time is discrete and each time slot is indexed by t. There are T time slots;

each has a duration of one second. Each time slot is divided into a fixed charging

slot and K data slots, where K ≪ N ; see Figure 3.2. The size of the charging slot

is τC . Let us denote the data slots of time slot t as ŝt1, ŝ
t
2, . . . , ŝ

t
K and set the data

slot size to τD = 1−τC
K

. In each charging slot, the HAP will transmit with power P t

(in Watts) [126]. After the charging slot, the HAP will select K devices to transmit

data. Let I ti ∈ {1, 0} denote whether device Di is selected in time slot t. Specifically,

if the HAP selects Di to transmit in time slot t, then I ti = 1. Otherwise, I ti = 0. Let

st ∈ {0, 1}N be a binary vector that has exactly K selected devices, denoted with a

value of one, in time t. Formally, st = {I t1, I t2, . . . , I tN}. Note that for each time slot

t, there are
(
N
K

)
possible number of such binary vectors. Let us define a schedule

indexed by z, as Sz = {st | t = 1, . . . , T}; i.e., the set of binary vector selected by

the HAP in time slot t = 1 to t = T . The collection of schedules is denoted as Ŝ,

which has size |Ŝ|, which is bounded by
(
N
K

)T
. The channel gain between a device

Di and the HAP is denoted as gti0, where 0 denotes the HAP. The channel gain from

the HAP to a device Di is g
t
0i. The path loss between the HAP and devices follow
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...

Figure 3.2: An RF charging network and time slots.

the Log-distance model. Thus, the channel gain is calculated as

 PL (di) [dB] = PL (d0) + 10βlog10

(
di
d0

)
+ X ,

gti0 = 10−
PL(di)

10 ,
(3.1)

where di is the distance between the device Di and the HAP, PL(d0) is the path

loss at a reference distance, β is the path loss exponent. The term X is a zero mean

Gaussian distributed random variable (in dB) with standard deviation µ to reflect

shadowing effect.

The HAP has only past CSI and not the instantaneous CSI of devices. This

is reasonable because in practice collecting CSI requires the HAP to first charge

devices before collecting reply to pilot signals. This becomes a challenge when

devices have varying channel gains and may not receive sufficient energy to respond

to pilot signals, or when there are many devices in which the HAP has to send pilot

signals. Lastly, CSI remains constant within a time slot but varies across time slots.

Devices have an RF energy harvester with a conversion efficiency of η ∈ [0, 1].

Note that the RF conversion efficiency is non-linear and it is a function of the

received power [127]. Let Et
i denote the energy level of device Di at the beginning
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of time slot t. Device Di receives e
t
i = P tη gt0iτC amounts of energy in the charging

slot of time slot t. Each device has a battery with a capacity of Bmax. Once a

device’s battery reaches its capacity, any excess energy is discarded. In addition,

the battery of devices leaks at a constant rate of ϱ in each time slot. The battery

storage of each device Di thus evolves as follows:

Et+1
i =

 (1− ϱ) (MIN (Bmax, E
t
i + eti)) , I ti = 0,

0, I ti = 1.
(3.2)

Without loss of generality, device uses all its stored energy to transmit data if it is

selected by the HAP in a given time slot.

Note, in practice, a device may allocate some of its harvested energy for sampling.

A selected device then uses the transmit power

pti =
Et

i + eti
τD

. (3.3)

The data rate (in bit/s/Hz) of device Di in time slot t is

rti(Sz) =

 0, I ti = 0,

τDlog2
(
1 + ptig

t
i0

1
σ2

)
, I ti = 1,

(3.4)

where σ2 is the ambient noise power. From here onward, define the reward as the

sum-rate over T time slots as

R(Sz) =
1

T

T∑
t=1

N∑
i=1

rti(Sz). (3.5)

Instead of the average sum-rate, an alternative reward definition is the minimum

data rate of devices. Let ri(Sz) be the average transmission rate of device Di over
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T time slots, which is given by

ri(Sz) =
1

T

T∑
t=1

rti(Sz). (3.6)

The new reward that considers the minimum data rate of devices is then defined as

Ri(Sz) = MIN {ri(Sz) | i ∈ D} , (3.7)

where D is the set of devices. This reward ensures all devices have a non-zero

throughput. This is important for sensing applications that require at least a sample

from all sensor devices. This chapter will use Eq. (3.5) to show the efficacy of the

proposed approaches. All notations are summarized in Table 3.1.

Notation Description

T The number of time slots.
K The number of data slots in one time slot.
X A Gaussian distributed random variable.
P t The transmission power of the HAP.
Bmax Battery capacity.
Et

i Energy level of device Di at the beginning
of time slot t.

τC Size of the charging slot.
τD Size of the data slot.
gti0 The uplink channel gain between the HAP

and device Di.
gt0i The downlink channel gain between the HAP

and device Di.
pti Transmit power of device Di at time slot t.
η Energy conversion efficiency.
β Path loss exponent.
σ2 Noise power.
ϱ Battery leakage rate.
R The sum-rate.
Ri Average transmission rate of device i.
Sz A schedule.
D The set of devices.

Table 3.1: Key notations used in this chapter.
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3.2 The Problem

The aim is to maximize the average sum rate over a planning time horizon T . To do

this, the HAP needs to determine a schedule Sz, which selects which set of devices

to transmit in each time slot. Formally, the problem is

max
S∈Ŝ

Eφ [R(S)] , (3.8)

where we maximize over the joint distribution of channel gains to/from each sensor

device in N .

There are two challenges when solving the aforementioned problem. First, the

size of Ŝ grows exponentially with higher T andK values. Second, the HAP does not

have instantaneous CSI information. This chapter addresses both of these problems

using cross-entropy [128] and Gibb sampling [129]. The details of each method are

outlined in Section 3.3 and 3.4, respectively.

3.2.1 Analysis

To gain some insights into the problem, this section conducts an analysis on (i) the

sum rate over T time slots, (ii) the sum-rate gap between a random devices selection

policy and the optimal solution, and (iii) the optimality of the Round Robin (RR)

policy. In the analysis to follow, it is assumed that devices receive ϵ worth of energy

in each charging slot and each device has the same uplink channel gain g.

Proposition 1. Given data slot size τD, the total number of devices N , the number

of selected device K in each slot, and the battery leakage rate ϱ, the sum-rate R over

T time slots satisfies,

KTτDlog2

(
1 +

gϵ

τDσ2

)
≤ R ≤

T∑
t=1

KτDlog2

(
1 +

gϵ[1− (1− ϱ)t]
ϱτDσ2

)
.

(3.9)
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Proof. The analysis first shows the lower bound. The worst case occurs when the

same K devices are selected in each time slot. This means that these K devices are

only able to accumulate ϵ worth of energy. This implies that the transmit power

and transmission rate of each selected device is ϵ
τD

and τDlog2(1+
gϵ

τDσ2 ) respectively.

Consequently, the lower bound of the sum rate is KTτDlog2(1 +
gϵ

τDσ2 ). For the

upper bound, the best case is when the HAP queries K devices that have never been

transmitted before in each time slot. This means that in time slot t, each selected

device has ϵ[1−(1−ϱ)t]
ϱ

worth of energy. This means the maximum sum-rate of time

slot t is KτDlog2(1 +
gϵ[1−(1−ϱ)t]

ϱτDσ2 ). Consequently, the upper bound over T time slots

is
T∑
t=1

KτDlog2(1 +
gϵ[1−(1−ϱ)t]

ϱτDσ2 ), as desired.

Given the previous proposition, a gap can be found between the maximum sum

rate and the performance of a random policy whereby the HAP selects K devices

randomly.

Corollary 1. The maximum sum-rate gap between the random policy and the opti-

mal solution is
T∑
t=1

KτDlog2(
ϱτDσ2+gϵ[1−(1−ϱ)t]

ϱ(τDσ2+gϵ)
).

Proof. In the worst case, the random policy selects the same set of devices in each

time slot, and thus obtains the lower bound of Proposition-1. Consequently, the

gap in sum rate is simply the difference between the upper and lower bound of

Proposition-1. Specifically, in time slot t, the difference between the upper and lower

bound of sum rate is KτDlog2(1 +
gϵ[1−(1−ϱ)t]

ϱτDσ2 ) −KτDlog2(1 + gϵ
τDσ2 ). Consequently,

over T time slot, the maximum gap in sum-rate is
T∑
t=1

KτDlog2(
ϱτDσ2+gϵ[1−(1−ϱ)t]

ϱ(τDσ2+gϵ)
).

The previous proposition assumes that the HAP is able to query K new devices

in each slot. The next proposition relaxes this assumption and shows that the Round

Robin (RR) policy, where the HAP ensures each device has equal opportunity to

transmit, is optimal.
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Proposition 2. Let ∆ = ⌈N
K
⌉ be an integer. Define ∆̂ = 1 + gϵ[1−(1−ϱ)∆]

ϱτDσ2 and

T̄ = T −∆. Then, the Round Robin policy is optimal.

Proof. This section first proves the sum rate from slot ∆+ 1 to T is optimal. After

a device is queried, it at most has ∆ time slots to accumulate ϵ[1−(1−ϱ)∆]
ϱ

worth of

energy before it is queried again. This means in each slot the maximum sum-rate is

KτDlog(1 +
gϵ[1−(1−ϱ)∆]

ϱτDσ2 ). In particular, the sum-rate over (T − ∆) time slots, i.e.,

T̄KτDlog(∆̂) or τDlog(∆̂
T̄K), is optimal. To see this, recall the Arithmetic-Mean

Geometric-Mean (AM-GM) inequality,

(
z1 + z2 + · · ·+ zn

n

)n

≥ z1z2 . . . zn. (3.10)

The maximum value on the right hand side is attained when z1 = z2 = · · · = zn.

Using the AM-GM inequality and the assumption that all ∆̂ value are equal, it has

∆̂T̄K =

(
∆̂ + ∆̂ + · · ·+ ∆̂

T̄K

)T̄K

. (3.11)

This implies that the RR policy achieves the highest sum-rate value over ∆ + 1 to

T time slots. Next, considers the sum rate of the first ∆ time slots. In each time

slot t = 1, 2, . . . ,∆, the RR policy selects K devices that have yet to transmit. This

means each selected device accumulates ϵ[1−(1−ϱ)t]
ϱ

of energy for data transmission.

This produces the sum-rate of KτDlog(1+
gϵ[1−(1−ϱ)t]

ϱτDσ2 ) in time slot t. By the AM-GM

inequality, the terms in the logarithm KτDlog((1 +
gϵ[1−(1−ϱ)1]

ϱτDσ2 )× (1 + gϵ[1−(1−ϱ)2]
ϱτDσ2 )×

. . .× (1 + gϵ[1−(1−ϱ)∆]
ϱτDσ2 )) must be similar or equal to yield the highest sum-rate. This

means if the HAP uses another policy that delays querying devices to allow them

to accumulate more energy, there will be a larger discrepancy between the energy of

devices, meaning that the sum rate of such a policy will be lower than that of the

RR policy. This concludes the proof.
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3.3 A Cross Entropy (CE) Algorithm

Recall that the problem is to identify a schedule S, that maximizes reward (3.5).

To this end, this chapter will use CE to construct and select the best schedule.

As we will see later, CE maintains a probability distribution that is then adapted

iteratively to determine the transmitting device in each slot.

Briefly, CE was originally proposed to estimate the occurrence probability of

rare events in a stochastic network [130]. Then, the authors of [131] adapted CE

to solve combinatorial optimization problems. CE operates iteratively. In each

iteration, it has two main phases: (i) it generates samples according to an initial

Probability Distribution Function (PDF) or Probability Mass Function (PMF), and

(ii) it then evaluates these samples and identifies so-called elite samples. Then, it

updates the parameters of the PDF or PMF using the statistics of these elite samples.

Specifically, CE first generates J samples according to an initial distribution. Let

us denote each sample j as xj, where j = 1, 2, . . . , J . Each sample has a so-called

reward, which is denoted as S(xj). Next, CE sorts the J samples according to their

reward in non-decreasing order. Then it identifies the samples in the (1 − ρ)-th

percentile, where ρ ∈ [0, 1]. Let the reward of the (1 − ρ)-th sample be δ. CE

then records all samples with a reward that is higher than δ; these are the so-called

elite samples, which is denoted by the set Xρ. Lastly, CE uses the statistics of elite

samples to update the parameters of the PDF or PMF. CE repeats the said two

phases until convergence.

Algorithm 3.1 details the CE-based approach. The parameter α determines the

learning rate of CE. Specifically, it controls how fast the vector Bc changes in each

iteration. The sets Xc and Xc
ρ are respectively used to store the samples and elite

samples in the c-th iteration. The vector Bc is a multivariate Bernoulli distribution

that is used to generate sample or schedule xj in c-th iteration, i.e., xj ∼ Ber(Bc).

The distribution Bc indicates the success/failure probability of element I ti in schedule

xj at iteration c. Initially, the CE algorithm sets all elements in Bc to 0.5, i.e.,
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Algorithm 3.1: A CE-based algorithm for devices selection.

Output: Bc

1 Initialize: Bc = (0.5, 0.5, . . . , 0.5), c = 1, δ, α,Xc, Xc
ρ

2 while c > 1 AND not converge do
3 Xc = ∅, Xc

ρ = ∅
4 for j ← 1 to J do
5 Generate xj ∼ Ber(Bc)
6 Store xj in X

c

7 Calculate S(xj)
8 end

9 Ŝ = Sort (S(x1), . . . ,S(xj))
10 δc =Percentile((1− ρ), Ŝ)
11 for each xj ∈ Xc do
12 if S(xj) ≥ δc then
13 Store xj in X

c
ρ

14 else
15 Ignore xj
16 end

17 end
18 for n← 1 to |Bc| do
19 Calculate Bc

n as per Eq. 3.12
20 Bc

n = αBc
n + (1− α)Bc−1

n

21 end
22 c← c+ 1

23 end
24 return Bc
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B1 = (0.5, 0.5, . . . , 0.5), which means each device has the same probability to be

selected, see line 1. Let Bc
n denote the n-th item of the vector Bc. In line 5 - 7, the

algorithm generates J samples, i.e., schedules, and calculates their corresponding

reward or sum rate. In line 9, CE sorts the reward of samples in ascending order:

S(1) ≤ . . . ≤ S(J). Let us denote the sorted list as Ŝ and define Percentile((1−ρ), Ŝ)

as a function that calculates a threshold to identify elite samples, i.e., samples that

belong to the (1 − ρ)-th percentile value of Ŝ. In line 10 we see that CE sets the

threshold δc to Percentile((1 − ρ), Ŝ). Next, CE identifies elite samples according

to threshold δc and sample rewards. We see that, in line 12-14, CE collects samples

with a reward larger than δc and stores them in the set Xρ. After that, as CE

seeks to generate better samples in the next iteration, it updates each element of

the multivariate Bernoulli distribution Bc according to Xρ. The update formula is

given as

Bc
n =

∑J
j=1 I{S(xj)≥δc}I{xj,n=1}∑J

j=1 I{S(xj)≥δc}
, (3.12)

where xj,n is the n-th element of the sample xj. The denominator corresponds to

the number of elite samples. The numerator is equal to the number of elite samples

where the n-th element is equal to one. Instead of updating the value of Bc
n directly

via the solution of (3.12), CE uses a smoothing process, see line 20. Specifically,

the value of Bc
n is equal to the weighted average of the solution of (3.12) and the

value of Bc−1
n . CE converges when the value of each element of vector Bc is within

a tolerance, i.e., 0.01, away from one or zero.

3.4 A Gibbs Sampling Based Algorithm

The next solution is based on Gibbs sampling, which allows us to efficiently sam-

ple possible optimal schedules. Gibbs sampling was originally proposed to gener-

ate samples from a joint probability distribution indirectly [132]. Let p(Θ) be a

joint probability distribution, where Θ = (θ1, θ2, . . . , θω) is a random vector with

ω elements. Gibbs sampling can be used to generate Θ according to the condi-
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tional probability p(θa|Θ−a), where Θ−a represents the set of all elements of Θ

except element θa. The Gibbs sampling process can be viewed as the construction

of a Markov chain with multiple states. Each state is a possible vector Θ. The

transition probability between each state follows the conditional probability distri-

bution p(θa|Θ−a). The steady-state distribution of the Markov chain is given by

p(Θ). Let Θ(m) be the m-th sample or state of the Markov chain. Gibbs sampling

has two main steps: (i) initially, it randomly generates a vector or sample Θ(1),

and (ii) after that, it updates each element of Θ(m+1) one by one from θ
(m+1)
1 to

θ
(m+1)
ω . Let θ

(m+1)
a denote the element to be updated in the sample Θ(m+1). It has

Θ
(m+1)
−a = {θ(m+1)

1 , θ
(m+1)
2 , . . . , θ

(m+1)
a−1 , θ

(m)
a+1, . . . , θ

(m)
ω }. That is, the first a−1 elements

of Θ
(m+1)
−a have been updated. The remaining ω − a elements of Θ

(m+1)
−a are those

in the vector Θ(m). In particular, Gibbs sampling produces θ
(m+1)
a according to the

conditional probability p(θ
(m+1)
a | θ(m+1)

1 , θ
(m+1)
2 , . . . , θ

(m+1)
a−1 , θ

(m)
a+1, . . . , θ

(m)
ω ). Step (ii)

is then repeated M times to obtain the sample Θ(M). As M grows larger, i.e.,

M →∞, the sample Θ(M) converges to the joint probability distribution p(Θ).

In the second approach, called Gibbs+, let ξt be the set of K selected devices

in time slot t. Formally, ξt = {i|i ∈ N ∧ I ti = 1}. It, then, has samples or

schedules Θ containing T sets of type ξt. Each sample Θ can then be denoted

as Θ = {ξt | t = 1, 2, . . . , T}. In the m-th iteration, Gibbs+ updates each ξt of

Θ(m) according to the conditional probability p(ξt|Θ−t), i.e., ξ
t ∼ p(ξt|Θ−t). The

distribution p(ξt|Θ−t) indicates the probability that the HAP chooses ξt as the set

of selected devices at time slot t when other elements are fixed in the schedule Θ(m).

The m-th iteration ends after Gibbs+ updates the last element ξt of Θ(m).

Now we are ready to illustrate how Gibbs+ updates the set ξt in the m-th it-

eration. As before, the HAP selects K devices in each time slot t. Consequently,

there are N − K devices that are not in ξt. Let the set N t contain these N − K

devices, where N t = {i | i ∈ N ∧ i /∈ ξt}. In time slot t, Gibbs+ removes the device

with the lowest throughput from the set ξt. Let R be the removed device. Gibbs

inserts R into the set N t. After that, Gibbs+ inserts a device k from the set N t
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into ξt. This creates |N t| different selected device sets which are denoted as ξtR,k.

Gibbs+ uses |N t| different ξtR,k to replace ξt in schedule Θ(m) and obtains |N t| new

schedules. Let (ξtR,k,Θ
(m)
−t ) be the new schedule in which the t-th element is ξtR,k. Let

P (ξtR,k|Θ
(m)
−t ) be the probability that Gibbs+ updates ξt as ξtR,k. Next, Gibbs+ deter-

mines P (ξtR,k|Θ
(m)
−t ) according to the reward or sum-rate of schedule (ξtR,k,Θ

(m)
−t ). Let

R(ξtR,k,Θ
(m)
−t ) denote the reward of schedule (ξtR,k,Θ

(m)
−t ). The formula to calculate

P (ξtR,k|Θ
(m)
−t ) is given as [129]:

P
(
ξtR,k|Θ

(m)
−t

)
=

exp
(
γR
(
ξtR,k,Θ

(m)
−t

))
∑

∀ξtR,k
exp

(
γR
(
ξtR,k,Θ

(m)
−t

)) , (3.13)

where γ is a fixed parameter that is larger than zero. When γ is large, as per

Eq. (3.13), there is a high probability that Gibbs+ replaces ξt with ξtR,k.

Algorithm 3.2: A Gibbs-based algorithm for selecting devices

Output: Θ(m)

1 Initialize: Θ(m) = {ξt|t = 1, 2, . . . , T},m = 1,M
2 while m < M do
3 Run schedule Θ(m) and record rti
4 for each time slot t do

5 Θ̂ = R̂ = ∅
6 N t = {i | i ∈ N ∧ i /∈ ξt}
7 Remove the device with the lowest rti in ξ

t

8 Insert R in N t

9 for each device k ∈ N t do
10 ξtR,k = ξt ∪ k
11 Obtain schedule (ξtR,k,Θ

(m)
−t )

12 Store (ξtR,k,Θ
(m)
−t ) in Θ̂

13 Run schedule (ξtR,k,Θ
(m)
−t ) for ζ times

14 Store the average R(ξtR,k,Θ
(m)
−t ) in R̂

15 Calculate P (ξtR,k|Θ
(m)
−t ) as per Eq.(3.13)

16 end
17 Update ξt as ξtR,k

18 end
19 m← m+ 1

20 end

21 return Θ(m)

Now we are ready to present Gibbs+ in its entirety; see Algorithm 3.2. Initially,
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Gibbs+ set m to one and randomly generates a schedule Θ(m), i.e., Gibbs+ randomly

selects K devices in each time slot, see line 1. In line 3, Gibbs+ or the HAP uses

schedule Θ(m) and records the corresponding throughput of each device. For each

time slot t, Gibbs+ first sets Θ̂ and R̂ to the empty set. These sets will respectively

be used to record schedules generated by Gibbs+ and their corresponding reward

or sum rate. It then selects devices that have yet to be selected in time slot t to

construct the set N t, see line 5-6. In line 7-8, Gibbs+ removes the device with the

lowest throughput in ξt and inserts the device into the set N t. In line 10-15, Gibbs+

selects a device from the set N t to replaceR in the set ξt. This creates an alternative

schedule (ξtR,k,Θ
(m)
−t ), which is stored in the set Θ̂. Gibbs+ runs (ξtR,k,Θ

(m)
−t ) for ζ

times, and calculates the average reward R(ξtR,k,Θ
(m)
−t ) and stores R(ξtR,k,Θ

(m)
−t ) in

the set R̂. Then, Gibbs+, calculates the probability P (ξtR,k|Θ
(m)
−t ) using the reward

R(ξtR,k,Θ
(m)
−t ) and (3.13). In line 17, Gibbs+ selects ξtR,k to replace ξt as per the

probability computed by (3.13). Gibbs+ repeats line 3 to 19 until m =M .

3.5 Evaluation

The proposed algorithms are evaluated in Matlab [128]. The conducted simulations

consisted of ten devices and a HAP. These devices are randomly placed 1 to 6 meters

from the HAP; this placement ensures devices are within the receiver sensitivity of

the Powercast RF-energy harvester. The simulation study the following parameters:

(i) smoothing parameter α, (ii) number of samples, (iii) transmission power P t, (iv)

number of selected devicesK, (v) battery leakage rate ϱ, and (vi) standard deviation

X . The antenna gain of the HAP and devices is set to 1 dBi and 6.1 dBi, respectively

as per [133]. The path loss exponent is 2.5. The standard deviation is set to one

in case (i) to (v). Assume that the noise power is −80 dBm. The HAP operates in

the 915 MHz frequency band. The battery of devices is initially empty and it has

a maximum capacity of 1 J. There are 20 time slots. The time slot and charging

slot size is set to 1 s and 0.2 s, respectively. The charging efficiency is as per the
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Powercast P20110B harvester [127]. For the CE method, its parameter ρ, which

controls the number of elite samples, is set to 0.01. As for Gibbs+, set γ = 1.

Table 3.2 summarizes parameter settings.

Table 3.2: Parameter settings in simulation.

Parameter Value

The antenna gain of the HAP 1 dBi
The antenna gain of the devices 6.1 dBi
The path loss exponent β 2.5
Noise power σ2 −80 dBm
HAP broadcast frequency 915 MHz
Battery capacity Bmax 1 J
Number of time slots 20
Charging slot size 0.2 second
Time slot duration 1 second
Parameter ρ 0.01
Parameter γ 1

The following rules were used to benchmark against the proposed approaches:

• Random Pick (RP): In each time slot, the HAP randomly selects K out of

N devices to transmit data.

• Round Robin (RR): The HAP selects K devices according to a fixed order

to ensure each device gets equal number of turns to transmit its data.

• Perfect Information Selection (PIS): The HAP will select the K devices

with the highest energy level and best uplink channel to transmit data in each

time slot. This means the HAP has perfect information of the energy level of

devices and their uplink channel condition. Thus, PIS allows us to benchmark

against the theoretical maximum sum rate.

• Original Gibbs Sampling (OGS): In each time slot, OGS will randomly

replace a device instead of the device that has the lowest throughput.
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3.5.1 Convergence

There are five devices. This experiment studies the convergence behavior of CE and

Gibbs+ algorithm for 300 and 100 iterations, respectively. Referring to Figure 3.3

and Figure 3.4, the proposed CE and Gibbs+ algorithms converged and outperform

RR and RP after converging. The reason is that, after convergence, CE and Gibbs+

do not select devices that are located far from the HAP until they accumulate

sufficient energy to produce a higher throughput than those devices nearer to the

HAP. While RR only selects devices in a fixed order and RP simply selects devices

randomly.
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Figure 3.3: Converge curve for CE algorithm.

3.5.2 Smoothing Parameter

Here, the smoothing parameter value α has one of the following values: 0.1, 0.2, . . .,

1.0. The battery leakage rate is set to 20%. The transmit power P t is 3 W. The
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Figure 3.4: Converge curve for Gibbs+ algorithm.

HAP selects K = 5 devices at a time.

Figure 3.5 shows the average sum-rate of CE decreases with higher α values.

When α = 0.1, the sum-rate of sample size 500, 1000, and 1500 is 12.7582 bps/Hz,

12.7539 bps/Hz, and 12.7540 bps/Hz, respectively. When α increases to 1.0 the

sum-rate respectively decreases to 12.3909 bps/Hz, 12.6008 bps/Hz, and 12.6815

bps/Hz. Recall that CE generates schedules, i.e., samples, according to a mul-

tivariate Bernoulli distribution. A large α value causes some elements to have a

probability of one or zero prematurely. This causes CE to return a solution with a

lower sum rate.

Figure 3.6 shows that the learning duration of CE decreases with higher α values.

We find that when α = 0.1, the learning duration of sample size 500, 1000, and 1500

is 497, 1056 and 1681 seconds, respectively. Then, when α increases to 1.0, the

learning duration of sample size 500, 1000, and 1500 decreases to 14, 48 and 86
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seconds respectively. This is because a small α value, e.g., 0.1, means that the

Probability Mass Function (PMF) changes slowly in each iteration. Thus, CE will

have a slow convergence rate. To this end, to balance the trade-off between learning

duration and sum-rate performance, smoothing parameter α is set to a value greater

than equal to 0.6 when the sample size is larger than 1500.
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Figure 3.5: Sum-rate of CE versus different α values.

3.5.3 Sample Size

To study sample sizes, this section considers {500, 1000, 1500, . . . , 5000}. The bat-

tery leakage rate is set to 20%. The transmit power of the HAP is 3 W. In each

time slot, the HAP selects K = 5 devices to transmit.

Figure 3.7 shows that the average sum rate of CE increases with a higher num-

ber of samples. Referring to Figure 3.7, when the sample size is 500, the sum-rate

when the smoothing parameter has a value of 0.6, 0.7, 0.8, and 0.9 is 12.519 bps/Hz,
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Figure 3.6: Learning duration of CE versus different α values.

12.502 bps/Hz, 12.436 bps/Hz and 12.372 bps/Hz respectively. When the sample

size increases to 5000, the sum-rate increases respectively to 12.765 bps/Hz, 12.761

bps/Hz, 12.757 bps/Hz, and 12.751 bps/Hz. This is because a higher sample size,

i.e., 5000, covers more potential schedules, meaning there is a higher probability of

finding the best solution. This is important because CE updates the PMF according

to elite samples. As expected, when α = 0.6, CE produces the highest sum rate.

Recall that a lower α value, i.e., 0.6, increases the probability that CE converges to

a global optimal solution as it allows more exploration of the solution space. From

Figure 3.8 we observe that when the sample size is 500, the learning duration of

smoothing parameter α = 0.6, 0.7, 0.8 and 0.9 is 41, 34, 29 and 22 seconds, respec-

tively. When the sample size increases to 5000 the learning duration of smoothing

parameter α = 0.6, 0.7, 0.8, and 0.9 respectively increases to 998, 914, 735, and 672

seconds. This is because with more samples, i.e., 5000, CE needs a longer time to
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collect the reward of samples in each iteration. This slows the learning rate of CE.

Thus CE uses a longer time to converge when α = 0.6, which is consistent with the

result of Section 3.5.2. Referring to Figure 3.7 and Figure 3.8, we find that, when

the sample size is larger than 3000, the sum-rate of α = 0.7 is close to α = 0.6 while

yields a shorter learning duration. Therefore, a conclusion is that a sample size of

3000 and a smoothing parameter of 0.7 is the best combination to yield a high sum

rate.
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3.5.4 Charging Power

This section studies the following HAP transmit power values (in Watts): P t ∈

{1, 2, 3, 4, 5}. The battery leakage rate is 20%. In each time slot, the HAP will

select K = 5 devices to transmit.

Figure 3.9 shows the sum rate of PIS, RR, RP, CE, Gibbs+, and OGS when

the HAP uses different transmit power or P t values. When P t changes from 1 W

to 5 W, the sum rate of CE, Gibbs+, PIS, RR, RP and OGS increases by about

27.15%, 38.22%, 25.72%, 59.74%, 65.25%, and 67.69%, respectively. This is because

a higher transmit power P t results in devices having a higher energy level on average,

which helps improve their sum rate. Referring to Figure 3.9, CE and Gibbs+ always

outperform RR, RP, and OGS. This is because CE does not select devices located

far away from the HAP until they have accumulated sufficient energy to produce

a higher throughput than those devices nearer to the HAP. Gibbs+ reduces the

selection frequency of devices located far from the HAP and gives those devices
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located nearer to the HAP more chances to transmit. The RR rule only selects

devices according to a fixed order, i.e., device D1 to D5 in one time slot, and selects

device D6 to D10 in the next time slot before repeating the sequence. The RP rule

simply picks five devices randomly in each time slot. An interesting observation

is that OGS’s performance is close to RP. This is because in each time slot OGS

randomly removes and selects one device. This means OGS produces a new schedule

randomly. When the transmit power is P t = 1 W, the sum rate attained by CE

is 9.7% higher Gibbs+, 35.36% higher than RR, and 42.56% higher than RP. This

is because when P t is 1 W, the received power or energy at devices will be low,

especially those devices located far from the HAP, which only received less than

0.05 mW. At such received power, the energy conversion efficiency is less than 1%.

Moreover, Gibbs+, RR, and RP select these far away devices more frequently than

CE, which explains their low sum rate. The charging efficiency of the RF harvester

that is used by devices is higher with higher received signal power [127]. When the

transmission power is P t = 2 W, far away devices have a correspondingly higher

received power, which leads to a better charging efficiency, i.e., 20%, meaning that

their energy level is also higher. Consequently, when the transmission power P t

increases from 1 W to 2 W, the sum rate of Gibbs+, RR, and RP shows a more

significant increase as compared to CE. The sum rate of Gibbs+, and the RR and RP

rules increases by 24.8%, 38.7%, and 42.96% respectively, while CE only increases

by 14.9%. From Figure 3.9, we find that the sum rate of CE is 99% that of PIS.

When P t is larger than 1W, the sum rate of Gibbs+ reaches 99% of CE. Gibbs+ uses

less time than CE to find the schedule that produces a high sum rate. The running

duration of Gibbs+ is around 136 second which is 60% faster than the running time

of CE.
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Figure 3.9: Sum-rate of PIS, RR, RP, OGS, CE, and Gibbs+ versus HAP transmit
power.

3.5.5 Number of Selected Devices

To study how the number of devices impact the sum-rate at the HAP, the simulation

study in this section considers one to nine devices. The transmission power of the

HAP is 3 W. The battery leakage rate is 20%.

Figure 3.10 shows the sum rate of PIS, RR, RP, CE, Gibbs+, and OGS when the

HAP selects a different number of devices, i.e., K, to transmit. From Figure 3.10, we

find that the sum rate of CE and PIS decreases with higher K values. Specifically,

the sum rate of these two strategies decreases by 13.1% and 13.2%, respectively.

This is because as the HAP needs to select more devices in each time slot, it will

have to select devices located further away. These devices tend to have less energy

in each charging slot and thereby have a lower throughput than those nearer to

the HAP. Referring to Figure 3.10, the sum rate of RR and RP increased by 9.8%

and 13.4%. The reason is that when using the RR and RP rule, devices will have

more opportunities to transmit, especially devices near the HAP. When the selected
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Figure 3.10: Sum-rate of PIS, RR, RP, OGS, CE, and Gibbs+ versus the number of
selected devices.

device number increases from one to three, the sum rate of Gibbs+ increases by

about 23%. This is because when K = 1, Gibbs+ randomly generates new schedules

in each iteration. The device replacement strategy ensures that Gibbs+ selects K−1

devices that have the highest throughput in each time slot. Consequently, Gibbs+

produces a higher throughput when K > 1. The sum rate of Gibbs+ decreases

by 7.4% when K increases from three to nine. Recall that as the HAP needs to

select more devices in each time slot, it has to select devices that are located further

away from itself. This causes a decrease in sum rate when the HAP uses Gibbs+.

The results show that the sum rate of RR, RP, PIS, OSG, CE, and Gibbs+ becomes

closer to each other with higher K values. This is because by selecting more devices,

PIS, RR, RP, OGS, CE, and Gibbs+ are more likely to select the same devices to

transmit in each time slot, which produces a similar sum rate.
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3.5.6 Battery Leakage Rates

Different battery leakage rate ϱ also influences the sum-rate. To this end, this section

investigates how ϱ influences the selection strategy of the CE method. It reports

on the following ϱ values: {0%, 20% . . . , 100%}. The HAP will select five devices to

transmit in each time slot.

Figure 3.11 shows the sum-rate of PIS, RR, RP, OGS, CE, and Gibbs+ when

ϱ changes from 0% to 100%. As expected, the sum-rate of the RR, RP, and OGS

decreases with higher battery leakage rates. The sum-rate of RR, RP, and OGS de-

creases by 6.9%, 5.1%, and 4.3% respectively. This is because the increased battery

leakage rate results in selected devices having a low transmit power. The results

show that the sum-rate of CE, Gibbs+, and PIS only decreases by 1.9%, 1.8%,

and 2.0% when ϱ increases from 0% to 100%. This is because in each time slot

CE, Gibbs+, and PIS select the nearest four devices to transmit. Recall that this

chapter assumes the selected devices do not lose energy and will use all stored en-

ergy to transmit. That is when using CE, Gibbs+, and PIS, in each time slot the

transmission power of the nearest devices does not decrease with higher ϱ values.

Consequently, the sum-rate of CE, Gibbs+, and PIS does not decrease significantly.

Figure 3.12 shows the selection strategy of CE when batteries have a different

leakage rate ϱ. From Figure 3.12, CE always select device D1 to D4 to transmit.

This is because they are located near the HAP. Thus, these devices have higher

throughput than D5 to D10 in each time slot. When ϱ increases from 0% to 100%,

the HAP increases the selection time of D5 from eight to eighteen times. At the

same time, the HAP decreases the selection frequency of D6,. . . ,D10. This is because

for ϱ = 0% devices that have not transmitted any data will have the opportunity to

accumulate energy. This means that within two or three time slots, devices located

further away from the HAP will accumulate sufficient energy to produce a higher

throughput than those nearer to the HAP; for example, device D5. The HAP thus

selects D6, . . . , D10 more frequently when ϱ = 0%. In each time slot, the amount of
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Figure 3.11: Sum-rate of PIS, RR, RP, OGS, CE, and Gibbs+ versus the battery
leakage rate of devices.

energy accumulated by devices located far from the HAP will decrease with higher

leakage rate ϱ. This means that when the battery leakage rate is larger than 0%,

devices located further away from the HAP need a longer time to accumulate energy

in order to generate higher throughput than device D5. The HAP, thus, reduces how

often it selects these far away devices.

3.5.7 Impact of Channel Variation

Channel variation also influences CE and Gibbs+. Recall that X relates to the

severity of channel condition. To this end, a simulation is conducted for the following

standard deviation µ values: {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. The transmission power of

the HAP is 3 W. The HAP selects five devices in each time slot.

From Figure 3.13, the learning duration of CE increases from 649 to 4571 seconds

when µ changes from 0.5 to 3.0. This is because a higher µ value means that the

channel gain will vary more drastically between device Di and the HAP. Recall that
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Figure 3.12: Selection strategy of CE versus the battery leakage rate of devices.

the reward of a sample is a function of the channel state. Consequently, devices

that make it to the elite samples vary more significantly in each iteration when

the channel gain variance is high. This slows the convergence of CE. Referring to

Figure 3.13, the running duration of Gibbs+ remains around 133 seconds when µ

changes from 0.5 to 3.0. This is because the running duration of Gibbs+ is influenced

by: (i) the number of iterations, and (ii) the number of potential schedules in each

time slot. Hence, µ impacts on neither (i) nor (ii). Figure 3.14 shows the sum rate

of RIP, RR, RP, CE, Gibbs+, and OGS. Referring to Figure 3.14, when µ increases

from 0.5 to 3.0, the sum rate of CE remains at around 12.75 bps/Hz. This means

the slight increase in µ value does not decrease the sum rate of CE.
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Figure 3.13: Learning duration of CE versus standard deviation µ.
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Figure 3.14: Sum-rate of PIS, RR, RP, OGS, CE, and Gibbs+ versus standard
deviation µ.
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3.6 Conclusion

This chapter has considered a device selection problem in an RF charging network

where multiple devices are powered by a HAP. The HAP aims to select the best

set of devices to transmit in each time slot in order to maximize the sum rate over

a planning horizon. Critically, this chapter considers a challenging aspect whereby

the HAP does not have perfect CSI nor battery state information of devices. This

is significant in a large-scale RF charging network as it becomes impractical to poll

every device for the said information. To address the problem, this chapter proposes

a CE-based algorithm and a Gibbs+ algorithm. The simulation results show that

the performance of CE and Gibbs+ algorithm respectively achieve 99% and 98% of

average sum-rate attained by PIS. The proposed algorithms also achieve a higher

sum rate than RR, RP, and OGS. In addition, the Gibbs+ algorithm is around 60%

faster than the CE algorithm.

This chapter only focuses on sum-rate maximization in an RF-charging network.

It ignores information freshness of samples or data from devices, which quantifies

when a sample was taken by a device. Hence, a key topic in the next chapter is to

ensure devices are able to update a HAP frequently to minimize AoI.
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Chapter 4

Age of Information Minimization in

RF-Charging WSNs

The previous chapter considers a sum-rate maximization problem in an RF-charging

network. However, it ignores information freshness. Hence, this chapter addresses

a challenging problem: transmit device selection, where the HAP does not have

the uplink CSI of devices. The main research problem is to determine the set of

transmitting devices in each frame so as to minimize the average AoI at the HAP.

To illustrate the research problem, consider the WPCN shown in Figure 4.1. For

simplicity, this example assumes the WPCN consists of two devices and a HAP,

i.e., N = 2, and only consider two frames. In each frame, the HAP first broadcasts

energy and then selects one device to generate and transmit its sample. The aim

is to find the best transmit device in each frame so as to minimize the average AoI

of each frame. Consider Figure 4.1. The AoI of devices increases by one at the

start of each frame. If a device transmits its sample successfully, the HAP resets

the device’s AoI to zero at the end of a frame. Assume D1 only needs one frame to

accumulate energy to transmit its sample to the HAP, while D2 needs two frames.

Also, assume D2 has a poor channel in the first frame. Otherwise, both devices have
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a good channel. Now consider the following cases: (i) Case-1: The HAP selects D2

in the first frame and selects D1 in the next frame. In this case, D2 fails to transmit

as it has insufficient energy and a bad channel. Its AoI in frame-1 and frame-2 is

respectively one and two. As for D1, it is one and zero. The average AoI per frame

is calculated as 1+2+1+0
2·2 = 1, (ii) Case-2: the HAP selects D1 followed by D2. In

this case, both devices will have sufficient energy to transmit when they are selected

by the HAP. As shown in Figure 4.1, the AoI of D1 is respectively zero and one

over two frames. As for D2, it is one and zero. Hence, the average AoI per frame is

0+1+1+0
2·2 = 0.5.
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Figure 4.1: An RF-charging network, a frame and AoI evolution in Case-2.

From the above toy example, the key problem at the hand is that determine

the devices that have sufficient energy to generate a sample and then transmit

successfully in order to minimize the average age of information. The key challenge

is that the HAP has the select the best devices without knowing their channel state

information and energy level.

The rest of this chapter is structured as follows. Section 4.1 outlines the system

model and problem. Then Section 4.2 outlines a novel Markov model, which is used

to gain insights into the problem. The proposed distributed solution is presented

in Section 4.3 followed by the evaluation in Section 4.4. Section 4.5 concludes this
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chapter.

4.1 System Model and Problem

Let N = {D1, D2, . . . , DN} be a set of devices. Time is divided into K frames. Each

frame has two phases: (a) energy harvesting, and (b) data transfer. Their respective

duration is τ c and τ d. In frame k, the HAP first broadcasts energy over its omni-

directional antenna with power P (in Watt). In each frame k, the HAP selects

M < N out of N devices, where it assigns each device an orthogonal channel. Note

that, in each frame, there are
(
N
M

)
different device selection choices. Let xki ∈ {0, 1}

denote whether the HAP selects device Di in frame k; namely, it has xki = 1 (xki = 0)

if the HAP selects (does not select) device Di in frame k. Let sk = {xk1, xk2, . . . , xkN}

be the selection status of N devices. Define a schedule as sz = {sk | k = 1, . . . , K}.

The collection of schedules is denoted as S.

The uplink channel gain between a device Di and the HAP in frame k is denoted

as gki0, whereas for downlink it is gk0i. The channel gain is as per the Log-distance

path loss, which is calculated as per Eq. (3.1).

4.1.1 Sampling and Buffer Model

A selected device consumes es amount of energy to generate a sample. It does

not generate a new sample if its energy level is lower than es. Each device has

a data storage capacity that only stores one latest sample [134]. At the end of a

frame, device Di removes a successfully transmitted sample. Otherwise, it retains

the sample. Let Bk
i ∈ {0, 1} and B̂k

i ∈ {0, 1} denote the buffer state of device Di

at the beginning and conclusion of the data transfer phase in frame k, respectively.

Specifically, Bk
i = 1 means a device has a sample, while Bk

i = 0 indicates its buffer

is empty.
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4.1.2 Energy Model

Devices have an RF energy harvester [135] with a non-linear energy conversion

efficiency that is a function of the received power. A device stores any unused

energy for future use. The amount of energy received by device Di in frame k is

eki =

[
ψk
i −H i

maxΩi

]
τ c

1− Ωi

, (4.1)

Ωi =
1

1 + exp(aibi)
, (4.2)

ψk
i =

H i
max

1 + exp(−aj(pkgk0i − bj))
, (4.3)

where H i
max is a constant that corresponds to the maximum harvested power at

device Di. Parameter ai and bi are constants that relate to the RF-energy harvester

hardware of [135]. In addition, Ωi is a constant that is specific to a given circuit

specification and ψk
i is the logistic function with respect to the received power of

devices Di in frame k. Each device is equipped with a battery with a capacity of

Bmax, meaning any energy that arrives once it has Ek
i = Bmax is lost. Formally, the

energy storage of device Di at the end of frame k evolves as

Ek
i =

 0, xki = 1 ∧Bk
i = 1,

min(Bmax, E
k−1
i + eki ), Otherwise.

(4.4)

4.1.3 Transmission Model and AoI

A selected device, say Di, will use all its energy to transmit a sample. Its transmit

power in frame k is

pki =


0, Ek−1

i + eki < es ∧ B̂k−1
i = 0,

Ek−1
i +eki
τd

, Ek−1
i + eki < es ∧ B̂k−1

i = 1,

Ek−1
i +eki −es

τd
, Ek−1

i + eki > es.

(4.5)
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A device’s transmission fails if the Signal-to-Noise Ratio (SNR) at the HAP falls

below the threshold ζ. Let Iki ∈ [0, 1] denote whether device Di transmits data

successfully in time frame k, which is given as

Iki =

 1,
pki g

k
i0

N0W
≥ ζ,

0,
pki g

k
i0

N0W
< ζ,

(4.6)

where N0 andW denotes noise spectral density and channel bandwidth, respectively.

Recall that, the AoI of a device is defined as the number of frames that have

elapsed since the sample stored at the HAP was generated at the device. Let k̂i be

the frame index in which device Di obtains its sample, and Asz
i denotes the AoI of

device Di when the HAP uses schedule sz. At the beginning of a time frame, the

AoI of device Di evolves as

Asz
i (k + 1) =

 k − k̂i + 1, xki = 1 ∧ Iki = 1,

Asz
i (k) + 1, Otherwise.

(4.7)

Note that the freshest samples are those from the current frame. i.e., frame k.

Therefore, it always has k̂i ≤ k. Let Ā(sz) denote the average AoI over K frames

when using schedule sz. Mathematically, the average AoI per frame is

Ā(sz) =
1

NK

K∑
k=1

N∑
i=1

Asz
i (k). (4.8)

4.1.4 The Problem

The aim is to minimize the average AoI over a given duration K. To do this, the

HAP needs to determine a schedule sz that selects which set of devices to sample

and transmit in each frame. Formally, the problem is

min
sz ∈ S

Eφ

[
Ā(sz)

]
, (4.9)
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where φ is the joint distribution over random channel gains to/from each sensor

device in N .

4.2 A Markov Model

This section first outlines a novel Markov chain to study how the average AoI is

affected when the HAP randomly selectsM out of N devices at a time given random

channel gains and energy arrivals. To ensure mathematical tractability, the Markov

chain model assumes (i) a sample is generated with zero energy cost, (ii) the energy

arrival at devices follows a Bernoulli distribution, i.e., one unit of energy arrives with

probability p̂, (iii) the uplink channel to the HAP is as per the Gilbert–Elliot (GE)

channel model. It has two states, where the channel is either ‘Good’ (ĝ) or ‘Bad’

(b̂). There is a probability that governs whether the channel remains in a state or

changes state. Let Pĝb̂ and Pb̂ĝ denote the transition probability from ĝ to b̂ and

from b̂ to ĝ, respectively. The steady-state probability of state ĝ and state b̂ is given

as π̂ĝ =
Pb̂ĝ

Pb̂ĝ+Pĝb̂
and π̂b̂ =

Pĝb̂

Pb̂ĝ+Pĝb̂
, respectively, and (iv) each device has a battery

capacity of one unit of energy. Each device has either zero or one unit of energy.

The transition probability from zero to one state and from one to zero state is p̂

and M(1−p̂)
N

, respectively. Let π̂0 and π̂1 be the steady-state probability of zero and

one state, respectively. It has π̂0 = M(1−p̂)
M(1−p̂)+Np̂

and π̂1 = Np̂
M(1−p̂)+Np̂

. As an aside, it

is also possible to use the channel model in [136] with multiple states. In this case,

it can group a set of channel states to be ‘Good’ or ‘Bad’, where the corresponding

probability π̂ĝ and π̂b̂ is equal to the sum of the steady-state probability of states in

group ‘Good’ and ‘Bad’, respectively.

Referring to Figure 4.2, the Markov chain model has Y states; each state is the

AoI of a device. The probability that the AoI increases by one is denoted as λ. The

value of λ corresponds to (i) the probability that a device is selected by the HAP,

i.e., M
N
, (ii) the probability that a device has one unit of energy, and (iii) that a

device’s channel is in the ‘Good’ state. Formally, it has λ = 1− Mπ̂1π̂ĝ

N
.

72



0   1   2   3 ...

1-

Y

λ

1-λ 1-λ 1-λ

λ

λ

λ
λλλ

1-λ

Figure 4.2: A Markov model depicting the AoI evolution of a device.

The steady-state probability for each state f can be shown to be

π̂f =


λY

(1−λ)
Y −1∑
y=0

λy+λY

, f = Y ,

λf (1−λ)

(1−λ)
Y −1∑
y=0

λy+λY

, Otherwise.
(4.10)

The expected AoI is then Ā = π̂1 + 2π̂2 + · · ·+ Y π̂Y . Using (4.10), we have

Ā =(1− λ)
Y−1∑
v=1

vλv

(1− λ)
Y−1∑
y=0

λy + λY

+
Y λY

(1− λ)
Y−1∑
y=0

λy + λY
.

(4.11)

Now this section studies a network with ten devices, i.e., N = 10. The number

of the selected devices, i.e., M , varies from one to seven. The probability that an

uplink channel is in the ‘Good’ and ‘Bad’ state is 0.5. The maximum AoI, i.e.,

Y , is set to 20. Referring to Figure 4.3, if the HAP selects more devices in each

frame, the average AoI of devices when the energy arrival rate equals 0.5 to 0.9

decreases by around 70%, 75%, 78%, 80%, and 82%, respectively. This is because a

higher energy arrival coupled with the HAP selecting more devices per frame leads

to a lower average AoI. As expected, the lowest average AoI is attained when the

energy arrival rate is high, namely 0.9. Specifically, this means the probability that

devices have energy is high when they are selected, which increases the probability
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Figure 4.3: Expected AoI versus the number of selected devices.

Next, this section studies channel conditions, where the probability of ‘Good’

channel, i.e., π̂ĝ, varies from 0.1 to 0.7. It sets M = 5. Referring to Figure 4.4,

as expected, higher energy arrivals coupled with better channel state results in a

lower average AoI. This is because the probability of a successful transmission is

proportional to the probability that a selected device has energy and its channel

condition is ‘Good’.

Note that the GE model is used for its mathematical tractability. Other models

which contain multiple channel levels can also be used. Specifically, in this case, this

section models the channel state according to the stationary probability of being in

each level. For example, there are three states, i.e., ’good’, ’mild’, and ’bad’. The

stationary probability of being in ‘good’, ‘mild’, and ‘bad’ state is πg, πm, and
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Figure 4.4: Expected AoI versus channel conditions.

πb, respectively. Consider the example that shown in Figure 4.5. The stationary

probability of being in state-1, state-2, and state-3 is π1, π2, and π3, respectively.

The said stationary probabilities then allow us to determine whether a channel is

in a ‘good’ or ‘bad’ state given a level. In the above example, assume the channel

state is considered ‘good’ if it is in state-2 or state-3. Then, the probability of being

in ‘Bad’ and ‘Good’ channel state is π1 and π2+ π3, respectively.

4.3 A Distributed Q-Learning Algorithm

DQL is a distributed protocol, whereby each device and the HAP act independently.

In other words, the HAP is not required to collect channel state or battery level

information from all devices nor devices need to communicate with one another. It

has the following basic idea. At the beginning of a data slot, devices decide whether
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Figure 4.5: An example of a three-state channel model.

to send a request to the HAP based on their policy that is dependent on their energy

level, buffer state, and uplink channel state. Upon receiving a request from devices,

the HAP then selects devices that have the highest AoI to sample and transmit their

packets. Advantageously, the HAP does not need to collect uplink channel state,

battery state, and buffer state of devices. This helps devices save their energy.

Next, this section formulates a Markov Decision Process (MDP) and outlines the

details of DQL.

4.3.1 A Decision Problem

Each device aims to minimize its AoI. Let aki ∈ {0, 1} denote the action of device

Di, where a value of one means that it will send a request to the HAP. Otherwise, it

remains silent (aki = 0). Let Ak
i (a

k
i ) denote the AoI of device Di at the end of frame

k when Di selects action a
k
i , which is given as

Ak
i (a

k
i ) =

 k − k̂i, aki = 1 ∧ xki = 1 ∧ Iki = 1,

Ak−1
i

(
ak−1
i

)
+ 1, Otherwise.

(4.12)

Let Rk
i denote the difference between the AoI of device Di at the end of frame
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k − 1 and that of frame k. Then, when device Di takes action a
k
i in frame k, it has

Rk
i (a

k
i ) = Ak−1

i (ak−1
i )− Ak

i (a
k
i ). (4.13)

Formally, the problem of each device is to find its best action so as to maximize

the following long-term reward:

Rπ = lim
K→∞

1

K
Eπ

[
K∑
k=1

Rk
i (a

k
i )

]
, (4.14)

where π is a policy used to select aki and the expectation is taken with respect to

joint distribution of channel gains between device Di and the HAP. The optimal

policy π∗ is

π∗ = argmax
aki ∈{0,1}

1

K
Eπ

[
K∑
k=1

Rk
i (a

k
i )

]
. (4.15)

4.3.2 An MDP Model

Problem (4.14) can be modeled as an MDP {Ŝ,A,P ,R}, where the corresponding

state, action space, transition probability, and reward are defined as follows: (i)

State Ŝ consists of the energy level, uplink channel gain and the buffer state of

a device. Specifically, letting ŝki denote the state of device i in frame k, it has

ŝki = {Ek−1
i + eki , g

k
i0, B

k
i }, (ii) the action space is defined as A. There are two

actions, i.e., a = 0 and a = 1, (iii) the transition probability P is unknown as a

model free approach is considered, and (iv) the reward Ri ∈ Ri of device Di after

taking an action is calculated as per Eq. (4.13).

4.3.3 Q-Learning and DQL Algorithm

Given that the MDP is model free, the chapter will apply the Q-learning algo-

rithm [137] to find the optimal policy. Q-learning learns the optimal policy based

on a so-called Q-table. Each Q-table is indexed by a state-action pair (ŝk, ak) that

has a corresponding Q-value Q(ŝk, ak). This Q-value represents the expected dis-
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counted reward for taking an action in a state [137]. Q-learning aims to calculate

Q(ŝk, ak) for each action of each state. The update rule of a Q-table is given as

[137]:

Q(ŝk, ak) =(1− α)Q(ŝk, ak) + α[r(ŝk, ak)

+ γmaxQ(ŝk+1, ak+1)],

(4.16)

where α ∈ [0, 1] is the learning rate, γ ∈ [0, 1] is the discount fact and r(ŝk, ak) is

the reward of taking action ak in state sk, which is calculated as per Eq. (4.13).

Referring to Algorithm-4.1, a device Di first initializes its Q-table arbitrarily. In

each frame k, devices Di selects an action as per the ϵ-greedy strategy; as shown

from (3) to (8). Next, device Di first calculates the reward after taking an action as

per Eq. (4.13), as shown in line (9) and line (10). It then observes its state in the

next frame and finds the maximum Q-value of its observed state. After that, device

Di updates its Q-table as per (4.16). Lastly, in each frame, the run-time complexity

of DQL is O(|A|). This is because a device needs to retrieve the value of each action

for a given state in order to determine an action with the highest Q-value.

Algorithm 4.1: DQL algorithm for devices.

1 Initialize: Q-table
2 for each frame k ∈ K do
3 Observe state ŝki and generate random number ẑ ∈ [0, 1];
4 if ẑ ≤ ϵ then
5 Randomly select an action

6 else
7 Select the action with the highest Q-value

8 end
9 Calculate reward as per Eq. (4.13)

10 Update the Q-table as per Eq. (4.16)

11 end

4.4 Evaluation

All experiments in evaluation were conducted in Matlab. Experiments place N =

30 devices randomly between 1 to 6 meters from the HAP. They have a battery
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capacity of 1 J. The antenna gain of the HAP and devices is set to 1 dBi and

6.1 dBi respectively. Experiments set ai and bi of the energy harvester to 0.014

and 150, respectively, and it is capable of harvesting at a maximum of 24 mW

[135]. The HAP operates at 915 MHz. The path loss exponent is 2.5. The noise

power spectral density N0 is set as -124 dBm/Hz. The channel bandwidth is 2 MHz.

Experiments consider 100 frames. The charging duration and data transfer duration

is respectively τc = τd = 0.5 s. The energy consumption of a sensor node to generate

a sample is 0.26 mJ [138]. This section studies (i) convergence of DQL algorithm

(ii) the number of devices, i.e., N , (iii) number of channels, i.e., M , and (iv) SNR

threshold ζ. In case (i), (ii), and (iii), the SNR threshold is fixed and set as 3 dB.

As for (i), (ii) and (iv), there are five channels.

DQL is compared against (i) Random Pick (RP): in each frame, the HAP

randomly selects at most M out of N devices, (ii) Round Robin (RR): the HAP

selects devices in turn, (iii) AoI-Greedy (AG): the HAP selects devices that have

the highest AoI to transmit with probability 1 − ϵ̂; otherwise, it selects devices

randomly. Note that the parameter ϵ̂ = 0.7 is fixed, and (iv) Perfect Information

Selection (PIS): the HAP knows when devices generate their sample and has the

perfect information of the battery state of devices and their uplink channel state.

In each frame, the HAP selects M devices with the freshest sample and are capable

of transmitting a packet. Hence, this rule yields the optimal result.

The first experiment studies the convergence of the proposed DQL algorithm.

The simulation runs for 400 iterations. Referring to Figure 4.6, the proposed DQL

algorithm converged. After converging, DQL outperforms RP, RR, and AG. This is

because, after converging, DQL selects devices that have sufficient energy frequently

to generate and update samples. This ensures the HAP receives more packets in

each frame and attains a lower average AoI.

The second experiment varies the HAP transmit power from 3 W to 5 W. Re-

ferring to Figure 4.7, the average AoI of DQL decreases by around 14%. This is

because devices accumulate energy quicker to generate and transmit their sample
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Figure 4.6: Convergence curve of DQL algorithm.

when the HAP has higher transmit power, i.e., 5 W. Their average AoI thus reduces.

Figure 4.8 shows the impact of device numbers. The average AoI of DQL is at

most 11% lower than RR when there are fewer than 40 devices. When there are

more than 40 devices, the average AoI of DQL is around 4.5% higher than RR.

Note that with more devices, the action space of the HAP increases exponentially.

Hence, there is an increased probability that DQL does not converge to the optimal

Q-table, which affects the resulting average AoI.

The number of uplink channels has an impact on performance. This is because

with more channels, the HAP receives more packets in each frame, which helps lower

the average AoI. This is confirmed in Figure 4.9, where the average AoI of AG, RP,

RR, DQL, and PIS decreases by around 35%, 45%, 33%, 39%, and 45% respectively.
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Figure 4.7: Average AoI versus HAP transmission power.
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Figure 4.8: Average AoI versus the number of devices.
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Figure 4.9: Average AoI versus the number of channels.

The last experiment studies varying SNR thresholds. Referring to Figure 4.10,

when ζ = 3 dB, the average AoI of DQL is 7%, 49%, and 19% lower than RR, RP,

and AG, respectively. At 15 dB, the average AoI of DQL is 48%, 57%, and 61%

lower than RR, RP, and AG, respectively. The gap between RR, AG, and DQL

increases when the SNR threshold increases from 3 dB to 15 dB. This is because

DQL does not select devices that are likely to experience a transmission failure,

which helps devices conserve energy. This allows the HAP to receive updates from

devices located further away more frequently. Therefore, DQL has a much lower

average AoI than RR, RP, and AG.

4.5 Conclusion

This chapter has outlined a decentralized learning-based algorithm called DQL that

allows a HAP to select devices without knowing their battery level and channel state.

The results show that the average AoI decreases with higher HAP transmit power,

number of channels, and higher SNR threshold. They also show that the average
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Figure 4.10: Average AoII versus SNR threshold.

AoI of DQL is 48%, 57%, and 61% lower than RR, RP, and AG, respectively.

A key assumption of DQL is that devices do not monitor multiple targets, espe-

cially when these targets have time-varying states. To this end, a research direction

is to consider how devices monitor these targets to ensure they capture the state of

targets. In this regard, it is necessary to consider the following cases: (i) one device

monitors multiple targets, and (ii) multiple devices that cooperate to monitor one

target. To this end, the next chapter addresses cases (i) and (ii) and outlines two

approaches that minimize the AoII of targets.
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Chapter 5

Minimizing Age of Incorrect Information

in RF-Charging WSNs

Age of Incorrect Information (AoII) is a new performance metric that addresses

the shortcomings of the AoI metric and error penalty functions that are used to

quantify status updates [139]. To this end, this chapter contributes to the growing

body of literature on AoII. It considers an RF-energy harvesting wireless sensor

network that monitors multiple targets. The aim is to compute the optimal sensor

activation schedule in order to minimize the average AoII of targets. Further, it

presents two reinforcement learning-based methods to determine the said activation

schedule.

To illustrate the research problem, consider the RF-charging network in Fig-

ure 5.1. There are three targets, two devices, and a HAP. Target T1 and T3 are

being monitored by device D1 and D2, respectively. On the other hand, target T2 is

monitored by device D1 and D2. For simplicity, this example assumes that each tar-

get has two states, i.e., ‘on’ and ‘off’. As shown in Figure 5.1, this example assumes

that, in the first frame, all targets are in the ‘on’ state. In the second frame, target

T1 remains in the ‘on’ state, while target T2 and T3 transition to the ‘off’ state.
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Good2D

Bad
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Figure 5.1: An example RF-charging network.

For devices, assume that device D1 only needs one frame to accumulate energy to

generate a sample, while device D2 needs two frames. This example considers two

uplink channel states, i.e., ‘Good’ and ‘Bad’. Specifically, an active device will suc-

cessfully transmit data to the HAP if the channel state is ‘Good’. Otherwise, data

transmission fails. As shown in Figure 5.1, in the first frame, the channel state of

D1 and D2 is ‘Good’ and ‘Bad’, respectively. In the second frame, device D1 has a

‘Bad’ channel while D2 has a ‘Good’ channel. In this example, initially, the HAP

does not store any state, and the HAP will update its stored state when it receives

data from devices. The AoII of targets increases by one at the start of each frame.

If the state stored at the HAP is consistent with a target, the HAP resets the AoII

of the target to zero at the end of a frame. Now consider the following cases: (i)
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Case-1: both devices D1 and D2 are inactive in the first frame and decide to be

active in the second frame. In this case, there is no device that transmits data suc-

cessfully in the first frame. In the second frame, device D2 transmits successfully.

Therefore, as shown in Figure 5.2, the state of target T1 that is stored at the HAP

is always different from the state at T1. In the second frame, the state of target T2

and T3 that is stored at the HAP is consistent with the actual state at target T2

and T3. The average AoII of targets per frame is calculated as 1+2+1+0+1+0
2·3 = 5

6
,

(ii) Case-2: Device D1 decides to be active in the first frame and be inactive in the

second frame. Device D2 decides to be inactive and active in the first and in the

second frame, respectively. In this case, device D1 transmits successfully in the first

frame, and device D2 transmits successfully in the next frame. Therefore, as shown

in Figure 5.2. In the first frame, the state of T3 at the HAP does not match the

actual state at target T3. Hence, the average AoII of targets per frame is calculated

as 0+0+0+0+1+0
2·3 = 1

6
.

HAP

   

  

  
1T -

   
3T O�

   
2T O�

Case-1

HAP

  
  

1T On On

   
3T O�

   
2T On O�

Case-2

   

  
1T On On

   
3T On O�

   
2T On O�

State at targets

-

-

- -

Figure 5.2: State evolution at three targets, and the state evolution at the HAP
for Case-1, which results in the highest average AoII, and for Case-2, which results
in the lowest AoII. In Case-1, the HAP receives an update from D2 in the second
frame. In Case-2, the HAP receives an update from D1 and D2 in the first and
second frame, respectively.

From the above example, the problem at the hand is to determine the best active

device set in each frame so as to minimize the average AoII. The main challenge is

that the battery state and channel state are unknown. Another challenge is that

both the HAP/scheduler and devices do not know the cooperation relation between

devices, i.e., they do not know two devices monitoring the same target.

The rest of this chapter is structured as follows. Section 5.1 shows the system
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model and formulates the problem. The proposed Decentralized Q-Learning (DQL)

algorithm is presented in Section 5.2 followed by State Space Free Learning (SSFL)

algorithm in Section 5.3. After that, Section 5.4 discusses results followed by the

conclusion in Section 5.5.

5.1 System Model

Let D = {D1, D2, . . . , DM} be a set of devices; each device is responsible for moni-

toring one or more targets. A HAP is responsible for charging these M devices via

RF and collecting samples from them. Time is slotted and each frame has index t.

There are T frames; each frame has a duration of one second, which means the term

power and energy are interchangeable.

In frame t, the HAP charges devices in D with transmit power P (in Watt)

and receives samples from devices via Orthogonal Frequency Division Multiplexing

(OFDM). Specifically, each device has a distinct channel for data upload.

In each frame, device Di selects one of the following actions: (i) sleep, or (ii)

active. Let ati be a binary variable, whereby it is set to ati = 1 if a device is active;

otherwise, ati = 0. Let st = {at1, at2, . . . , atM} be a vector that records the action of

devices in frame t. Let the z-th schedule be defined as sz = {st|t = 1, 2, . . . , T}. Let

S denote the collection of schedules.

This chapter assumes block fading. The uplink and downlink channel gain be-

tween the HAP and device Di in frame t is defined as gti0 and gt0i, respectively.

Specifically, the channel gain is as per the Log-distance path loss , which is calcu-

lated as per Eq (3.1). Note that this chapter assumes that devices are only aware of

their historical uplink CSI. The historical uplink CSI of device Di is denoted as gi0.

5.1.1 Targets

There are J targets; each target is indexed by j, and modeled by an N -state Markov

chain [140] {Xt}t∈T as shown in Figure 5.3; each state is indexed by n. Let the
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probability of staying in the same state be p, and the probability of transition from

state n to n̂ is pn,n̂. State transitions occur at the beginning of each frame. Let

Xj(t) denote the state of target j in frame t.

2

3

1 N
2,3

p

p

p

p
3,2p

3,1p

1,2p

1,3p

2,1p

Figure 5.3: An N -state Markov chain model.

5.1.2 Sampling and Buffer

An active device consumes es amount of energy to generate a sample before trans-

mission. It does not generate a new sample if its energy storage is lower than es.

Each device has a buffer that only stores the latest sample. At the end of one frame,

a device removes a successfully transmitted sample. Otherwise, it retains the sam-

ple. Let Bt
i ∈ {0, 1} denote the buffer state of device Di. Specifically, Bt

i = 1 if

device Di has a sample. Otherwise, Bt
i = 0.

5.1.3 Energy Model

Each device has an RF energy harvester [135] with a non-linear energy conversion

efficiency. Let eti be the amount of energy received by device Di in frame t, which is

calculated as per Eq (4.1), Eq (4.2), and Eq (4.3). Note that the received energy of

device Di in frame t, i.e., eti, is only available in frame t+ 1.

When a device, say Di, is active in frame t, i.e., ati = 1, and there is a sample
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in its buffer, i.e.,Bt
i = 1, it consumes all its available energy to transmit a sample.

Device Di saves its energy for future use if it decides to sleep or it does not have a

sample. Let Et
i be the energy storage of device Di at the end of frame t, which is

given as

Et
i =

 eti, ati = 1 ∧Bt
i = 1,

min(Bmax, E
t−1
i + eti), ati = 1 ∧Bt

i = 0 ∨ ati = 0,
(5.1)

where Bmax is the battery capacity.

In frame t, the energy consumption of device Di is zero if it decides to sleep or

its buffer is empty, i.e., Bt
i = 0. Note that Bt

i = 0 implies that device Di does not

generate a new sample in frame t. The energy consumption of Di equals its energy

level at the beginning of frame t, i.e., Et−1
i , if Di is active (ati = 1) and its buffer is

not empty (Bt
i = 1). Let êti(sz) be the energy consumption of device Di in frame t,

which is defined as

êti(sz) =

 Et−1
i , ati = 1 ∧Bt

i = 1,

0, ati = 1 ∧Bt
i = 0 ∨ ati = 0.

(5.2)

5.1.4 Transmission Model

When a device, sayDi, decides to be active (a
t
i = 1), it consumes es amount of energy

to generate a sample. It then uses its remaining energy to transmit its sample to the

HAP. If the energy level of Di is lower than es and there is a sample in its buffer, it

directly transmits the sample. The transmit power of Di in frame t is given as

pti =


Et−1

i − es, Et−1
i > es,

Et−1
i , Et−1

i < es ∧Bt
i = 1,

0, Et−1
i < es ∧Bt

i = 0 ∨ Et−1
i = es.

(5.3)

A device’s transmission fails if its Signal-to-Noise Ratio (SNR) at the HAP falls

below the threshold ζ. Let I ti ∈ {0, 1} denote whether device Di transmits data
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successfully in time frame t. We have

I ti =

 1,
ptig

t
i0

N0W
≥ ζ,

0,
ptig

t
i0

N0W
< ζ,

(5.4)

where N0 andW denotes noise spectral density and channel bandwidth, respectively.

5.1.5 Targets Coverage

Each device is able to monitor one or more targets. Let mj
i be a binary variable,

whereby it is set to mj
i = 1 if device Di monitors target j; otherwise, mj

i = 0. Let

mi = {m1
i ,m

2
i , . . . ,m

J
i } be a vector that records the targets that is monitored by

device Di. Let X
i
j(t) denote the state of target j as recorded by device Di at time t.

Let X̂ i
j(t) denote the state information of target J that is transmitted to the HAP

by device Di at time t, which is defined as

X̂ i
j(t) = I tim

j
iX

i
j(t). (5.5)

Note that X̂ i
j(t) = 0 implies that device Di does not monitor target j or device Di

does not transmit a packet to the HAP successfully.

5.1.6 State

The HAP only records the newest state information. For example, in the second

frame, the HAP receives two state information of target j. One from device D1

which is obtained in frame one and another from device D2 which is obtained in

frame two. The HAP then records the state information from device D2. Let X̂j(t)

be the state of target j at the HAP at the end of frame t, and let τ it be the generation

time of the packet updated by device Di in frame t. We have
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X̂j(t) =



X̂j(t− 1),
M∑
i=1

I ti = 0,

X̂1
j (t), τ 1t = max(τ 1t , τ

2
t , . . . , τ

M
t ) ∧ I t1m

j
1 ̸= 0,

X̂2
j (t), τ 2t = max(τ 1t , τ

2
t , . . . , τ

M
t ) ∧ I t2m

j
2 ̸= 0,

...

X̂M
j (t), τMt = max(τMt , τ 2t , . . . , τ

M
t ) ∧ I tMm

j
M ̸= 0.

(5.6)

An assumption is that a state mismatch occurs when the state at the HAP is

not the same as the state at a target, i.e., when X̂j(t) ̸= Xj(t). On the other hand,

the HAP has a consistent state of target j.

5.1.7 Age of Incorrect Information

The AoII of a target is defined as the number of frames that have elapsed since a

state mismatch exists between the HAP and a target [139]. Let ∆j(t) denote the

AoII of target j at the end of frame t. Let Vj(t) denote the index of the last frame

in which the HAP has a consistent state of target j. Specifically, ∆j(t) = (t−Vj(t))

when a state mismatch exists at the end of frame t, i.e., when X̂j(t) ̸= Xj(t).

Otherwise, ∆j(t) = 0. Formally, the term ∆j(t) denotes the AoII of target j at the

end of frame t is given as

∆j(t) = (t− Vj(t))I{Xj(t) ̸= X̂j(t)}, (5.7)

where I{Xj(t) ̸= X̂j(t)} is an indicator function that returns one and zero when

X̂j(t) ̸= Xj(t) and X̂j(t) = Xj(t), respectively

Let ∆sz
j (t) denote the AoII of target j at the end of frame t when devices use

schedule sz. Let ∆̄(sz) be the average AoII of J targets over T frames, which is

given as

∆̄(sz) =
1

JT

J∑
j=1

T∑
t=1

∆sz
j (t). (5.8)
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5.1.8 The Problem

The problem is to find a schedule in S to minimize the average AoII of J targets

over T frames. Mathematically,

min
sz ∈ S

Eφ

[
∆̄(sz)

]
, (5.9)

where φ is the joint distribution over random channel gains to/from each device.

The main challenge of the problem is that the HAP is incapable to collect the CSI

and battery state information of each device when there are many devices that exist

in a sensor network since the HAP has to send pilot signals. To address the afore-

mentioned challenge, this chapter proposes two distributed algorithms. Specifically,

the next section outlines a distributed Q-Learning algorithm followed by a state

space free learning algorithm.

5.2 Distributed Q-Learning Algorithm

The first solution is a Q-Learning (QL) based algorithm. It is a distributed protocol,

whereby each device acts independently. The basic idea is that, at the beginning

of a frame, each device decides its active probability according to its energy level,

buffer state, historical uplink channel state, and AoII of targets that are under its

sensing range. This means devices are not required to report their uplink channel

state, energy level, and buffer state to the HAP nor devices need to communicate

with one another. This helps devices save energy.

Next, Section 5.2.1 outlines a decision problem for devices. Specifically, each

device aims to select a probability to be active in each frame so as to minimize the

sum of AoII of targets. After that, Section 5.2.2 formulates the decision problem as

a Markov Decision Process (MDP).
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5.2.1 A Decision Problem

Each device aims to minimize the sum of AoII of its targets. Let the action of device

Di be â
t
i ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, where each value represents a probability to be

active. Let ∆̂t
i(â

t
i) be the sum AoII of targets that under the coverage of device Di

at the end of frame t when device Di selects â
t
i. Let ∆

t
j(â

t
i) denote the AoII of target

j at the end of frame t when device Di selects action â
t
i, which is defined as

∆̂t
i(â

t
i) =

J∑
j=1

mj
i∆

t
j(â

t
i). (5.10)

Let Rt
i be the difference between the AoII of targets of Di at the end of frame t− 1

and frame t, which is given as

Rt
i(â

t
i) = ∆̂t−1

i (ât−1
i )− ∆̂t

i(â
t
i). (5.11)

Formally, the problem of each device is to find the optimal action so as to maximize

the following long-term reward:

R = lim
T→∞

1

T
E[

T∑
t=1

Rt
i(â

t
i)], (5.12)

where the expectation is taken with respect to joint distribution of channel gains

between device Di and the HAP.

5.2.2 An MDP Model and DQL algorithm

An MDP is defined as a four tuple, i.e., {Ŝ, Â, T ,R}. Specifically, the notation

Ŝ and Â represents the state space and action space, respectively. The reward of

taking action ât in state ŝt is defined as R(ŝt+1|ŝt, ât). The transition probability

between state ŝt+1 and ŝt after taking action ât is defined as T (ŝt+1|ŝt, ât). A policy

π(ŝ), where s ∈ S, maps the state space to the action space. Then the problem

(5.12) can be modeled as an MDP as follows:
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1. State Ŝ: The state of a device consists of its energy level, its historical uplink

channel state information, its buffer state and summation AoII of targets that

under its monitor. Let sti denote the state of device Di in frame t, which is

expressed as ŝti = {Et−1
i , gi0, B

t
i ,

J∑
j=1

mj
i∆j(t)}.

2. Action Â: The action space is defined as Â = [0, 0.2, 0.4, 0.6, 0.8, 1], where

each element represents a certain probability to be active.

3. Transition probability T : The transition probability is unknown since this

chapter considers a model free approach.

4. Reward R: The reward of a device after taking an action in frame t is calcu-

lated as per 5.11.

Given above MDP model, this chapter applies the same DQL algorithm as chapter

4 to find the optimal policy, see details in Section 4.3.3.

5.3 State Space Free Learning (SSFL) Algorithm

The second solution is a reinforcement learning-based algorithm, called SSFL. Dif-

ferent from DQL, SSFL does not have a Q-table. Moreover, SSFL does not require

uplink channel state, energy level, and buffer state information; this saves on sig-

naling cost.

Let the action of device Di be ãi ∈ [0, 1
|ãi| , . . . , 1] where each value represents a

probability to be active in each frame over a given duration, i.e., K frames. Then,

define for device Di an action probability vector P̂i = {P̂i,0, P̂i,ãi , . . . , P̂i,1} where

P̂i,ãi denotes the probability that Di selects action ãi.

In SSFL, a device Di selects its action according to P̂i. Further, SSFL contains

Y learning iterations, and each learning iteration contains K frames. At the end of

each iteration, the action probability vector of a device will be updated following a

reinforcement learning model.
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The next section shows the reward formulation of SSFL and the update rule of

the so-called action probability vector followed by the detail of the SSFL algorithm.

5.3.1 Reward and Update Rule

Each device Di computes a reward as follows. Let ∆̃t
i(ã

y
i ) be the sum of AoII of

targets that are under coverage of Di at the end of frame t when device Di selects

action ãi in the y-th learning iteration. Let ∆t
j(ã

y
i ) denote the AoII of target j at

the end of frame t when Di selects active probability ãi in the y-th learning loop,

which is defined as

∆̃t
i(ã

y
i ) =

J∑
j=1

mj
i∆

t
j(ã

y
i ). (5.13)

Let ∆̃y
i (ã

y
i ) denote the sum of AoII of targets that is monitored by device Di

during the y-th learning loop, which is defined as

∆̃k
i (ã

y
i ) =

(y+1)K∑
t=yK

∆̃t
i(ã

y
i ), (5.14)

where the reward constructed by Di is the difference between the sum of AoII of

targets being monitored by device Di in the (y−1)-th iteration and that of the y-th

learning loop. The reward is given as

R̃y
i (ã

y
i ) = (∆̃y−1

i (ãy−1
i )− ∆̃y

i (ã
y
i )). (5.15)

The probability of selecting action ãi is updated as per the learning automata

model in [141]. Specifically, letting ã
′
i be the action that is not ãi, i.e., ã

′
i ̸= ãi

(ã
′
i ∈ [0, 1

|ãi| , . . . , 1]), the update rule of action probability vector P̂i is given as [142]

P̂i,ãi = P̂i,ãi + b · R̃y
i (ãi) · (1− P̂i,ãi), (5.16)

P̂i,ã
′
i
= P̂i,ã

′
i
− b · R̃y

i (ãi) · P̂i,ã
′
i
, (5.17)
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where the parameter b ∈ [0, 1] is the learning rate.

5.3.2 Algorithm Details

Algorithm-5.1 shows the steps of SSFL. Initially, a device Di initializes its action

probability vectors, see line 1. Specifically, at the beginning, each action has an equal

probability to be selected. In every K frames device Di selects its active probability

as per the ϵ-greedy strategy. In other words, with probability 1− ϵ̃ device Di selects

ãi with probability P̂i,ãi or it randomly selects its action with probability ϵ̃, as shown

from line 3 to line 8. Next, device Di calculates the reward of selecting an active

probability as per 5.15, and, then, device Di updates its action probability vector

as per 5.16 and 5.17, as shown in line 9 and 10.

Algorithm 5.1: SSFL algorithm for devices.

1 Initialize: action probability vector P̂i

2 for every K frames do
3 Generate random number z̃ ∈ [0, 1];
4 if z̃ ≤ ϵ̃ then
5 Randomly select an active probability

6 else

7 Select ãi with probability P̂i,ãi

8 end
9 Calculate reward as per Eq. (5.15)

10 Update the action probability vector as per Eq. (5.16) and (5.17)

11 end

5.4 Evaluation

The proposed DQL and SSFL algorithm are evaluated using Matlab. Experiments

are run over 1000 frames. There are 10 devices, 10 targets, and a HAP. Devices

are randomly placed 1 to 6 meters from the HAP. Each target is monitored by one

or more devices. The experiments study the following parameters: (i) transmission

power P , (ii) SNR threshold ζ, (iii) probability that a target stays in the same state,

i.e., p, and (iv) standard deviation µ, which governs the channel condition between
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the HAP and devices. Sensor nodes consume 0.26 mJ to obtain one sample [143].

The noise power spectral density N0 is -124 dBm/Hz [144]. The bandwidth W is

2 MHz. The operating frequency band of the HAP is 915 MHz as per [127]. The

antenna gain of the HAP and devices is set to 1 dBi and 6.1 dBi respectively [127].

The path loss exponent is 2.5. The battery of devices is initially empty and has a

capacity of 1 J. The maximum energy harvesting rate of devices is 24 mW [135].

The parameters ai and bi are set as per [135] to 0.014 and 150, respectively. The

proposed algorithms are compared against the following rules:

• Random Pick (RP): In each frame, each device randomly determines whether

it should be asleep or be active.

• Round Robin (RR): Devices become active in turn or in a round-robin

manner. This ensures each device has an equal number of turns to be active.

• ϵ-Greedy: A device selects to be active with probability ϵ in the following

cases: (i) it has sufficient energy to sample, and (ii) its buffer is not empty;

otherwise, it becomes active or enters sleep mode randomly.

• Perfect Information Selection (PIS): This rule yields the optimal result.

This is because each device knows the following information: (i) whether the

state information recorded in its buffer is consistent with the current state

of its monitored targets, and (ii) its battery state and uplink channel state.

In one frame, a device only selects to be active in the following cases: (i) it

has sufficient energy to sample and then transmit successfully, or (ii) the state

information recorded in its buffer is consistent with its monitored targets and it

has sufficient energy to transmit successfully. PIS does not experience energy

waste caused by transmission failures and ensures that the HAP obtains the

freshest state information of all targets at the end of each frame.
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5.4.1 Convergence

This experiment studies the convergence of DQL and SSFL algorithms. The simu-

lation of DQL and SSFL runs 400 and 1000, respectively. Referring to Figure 5.4

and Figure 5.5, the proposed DQL and SSFL algorithm achieve lower average AoII

than RR, RP, ϵ-Greedy after converging. This is because when using DQL and

SSFL, devices that have sufficient energy to sample and transmit will be active with

a higher probability, which helps the HAP obtain more state information updates

in each frame and results in a lower average AoII.
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Figure 5.4: Converge curve for DQL algorithm.

5.4.2 Charging Power

This experiment investigates the impact of charging power, i.e., P , on the average

AoII. Specifically, this experiment studies the following transmit power values (in

Watts): P ∈ {1, 2, 3, 4, 5}.

Figure 5.6, shows the average AoII of RP, RR, ϵ-Greedy, PIS, DQL, and SSFL
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Figure 5.5: Converge curve for SSFL algorithm.

when the HAP uses a different charging power. According to Figure 5.6, when the

transmission power of the HAP increases from 1 W to 5 W, the average AoII of

RP, RR, ϵ-Greedy, PIS, DQL, and SSFL decreases by around 68.8%, 74.1%, 73.1%,

80.4%, 80.3%, and 80.7%, respectively. The reason is that a higher charging power

P , i.e., 5 W, results in devices receiving more energy in each frame, which helps

devices accumulate sufficient energy to sample and transmit faster than when using

a low charging power, i.e., 1 W. This allows devices to update the state information

of their monitored targets to the HAP. According to Figure 5.6, the average AoII

of DQL and SSFL is around 4.6% and 10% higher than that of PIS, respectively.

This is because the DQL and SSFL algorithms do not have perfect uplink channel

state information of devices. Consequently, DQL and SSFL algorithms are unable

to reduce transmission failures to zero and have a higher average AoII.

Figures 5.7 and 5.8 show the numbers of successful packet transmissions achieved

by SSFL and DQL respectively when the charging power varies from 1 W to 5 W.

Referring to Figures 5.7 and 5.8, the number of successful packet transmissions
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Figure 5.6: Average AoII of RP, RR, ϵ-Greedy, PIS, DQL, and SSFL versus HAP
transmit power.

attained by DQL is around 4.2%, 4.0%, 5.6%, 3.0%, 4.8% higher than that of SSFL

when the charging power P increases from 1 W to 5 W. This is because for DQL,

devices select their probability of becoming active according to their energy level,

buffer state, and historical uplink channel state, which allows them to more accu-

rately judge when to be active. In contrast, SSFL does not consider such informa-

tion. Moreover, according to Figures 5.7 and 5.8, devices that are located close to

the HAP, i.e., {D1, D2, . . . , D5}, have a higher number of successful packet trans-

missions than devices located farther away from the HAP, i.e., {D6, D7, . . . , D1}.

This is because these devices have a higher received power, which results in higher

charging efficiency, meaning that they can obtain sufficient energy to sample and

transmit faster than devices located farther away. Moreover, devices that have a

high probability to have sufficient energy to sample and update the HAP will be

active when using DQL and SSFL. The faster rate of energy accumulation coupled

with DQL and SSFL helps devices that are close to the HAP to have a higher number
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of successful transmissions.
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Figure 5.7: Number of successful packet transmissions versus HAP transmit power
for the SSFL algorithm.

5.4.3 Signal-to-Noise Ratio Threshold

To study SNR threshold (in dB), i.e., ζ, on the average AoII, it is set to one of the

following values: ζ ∈ {3, 6, 9, 12, 15}.

Figure 5.9 shows the average AoII of RP, RR, ϵ-Greedy, PIS, and the proposed

two algorithms when considering different SNR thresholds. Referring to Figure 5.9,

when the SNR threshold varies from 3 dB to 15 dB, the average AoII of RP, RR,

ϵ-Greedy, PIS, DQL, and SSFL increases by around 53.6%, 54.8%, 77.8%, 11.4%,

23.4%, and 68.1%, respectively. The reason is that a higher SNR threshold, i.e.,

15 dB, results in devices needing more frames to accumulate sufficient energy to

transmit a packet to the HAP. This requires the HAP to have more frames to obtain
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Figure 5.8: Number of successful packet transmissions versus HAP transmit power
when using DQL.

a state information that is consistent with its monitored targets, which results in a

higher average AoII.

Referring to Figure 5.9, when ζ = 3 dB, the average AoII of SSFL is around

4.6% higher than that of DQL. At ζ = 15 dB, the average AoII of SSFL is about

42.2% higher than that of the DQL. The gap between DQL and SSFL increases

when the SNR threshold varies from 3 dB to 15 dB. This is because SSFL decides

the active probability of devices over a specific number of frames, i.e., 1000 frames,

instead of deciding the active probability in each frame according to the energy level

of devices and historical uplink channel state information. SSFL is thus incapable

of judging if a device has sufficient energy to transmit in one frame, which causes

more energy waste over the entire time horizon, i.e., 1000 frames, for ζ = 15 dB. For

devices located far from the HAP, their higher energy consumption requires them to

have more frames to successfully transmit a packet to the HAP. The result is that

the number of successful packet transmissions from devices located further from the

HAP decreases significantly when the SNR threshold increases from 3 dB to 15 dB.

This is confirmed in Figures 5.10 and 5.11. Specifically, when using SSFL and a
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Figure 5.9: Average AoII of RP, RR, ϵ-Greedy, PIS, DQL, and SSFL versus SNR
threshold.

SNR value of 3 dB, the numbers of successful packet transmissions from devices D6,

D7, D8, D9, and D10 are around 10.5%, 5.9%, 4.9%, 5.8%, and 8.1% lower than that

of DQL, respectively. When the SNR threshold increases to 15 dB and using SSFL,

the numbers of successful packet transmissions from devices D6, D7, D8, D9, and

D10 are 24.1%, 30.1%, 39.6%, 25%, and 37% lower than that of DQL, respectively.
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Figure 5.10: Number of successful packet transmissions versus SNR threshold when
using DQL.
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Figure 5.11: Number of successful packet transmissions versus SNR threshold when
using SSFL.
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5.4.4 State Transition Probability

This section studies the state transition probability of targets, i.e., parameter p.

Specifically, the experiment uses following p values: p ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

Figure 5.12 shows the average AoII of RP, RR, ϵ-Greedy, PIS, DQL, and SSFL

when considering the different values of parameter p. Referring to Figure 5.12,

when the value of p varies from 0 to 0.6, the average AoII of RP, RR, ϵ-Greedy,

PIS, DQL, and SSFL decreases by about 35.6%, 34.6%, 39.6%, 40.7%, 40.5%, and

35.1%, respectively. This is because a high p value, i.e., 0.6, means that in one

frame, targets will stay in the same state as the last frame with a high probability,

i.e., 60%. This means the AoII of a target has a high probability to stay at zero in

case no devices transmit successfully. This results in the AoII of targets under the

coverage devices that are located further away from the HAP having a low value.

This helps reduce the average AoII. In contrast, a low p value, i.e., zero, means

that in each frame targets will jump to a different state with a high probability, i.e.,

100%. This means that the state information that is recorded at the HAP has a

high probability to be different from the actual target state. This leads to a higher

average AoII.

Referring to Figures 5.13 and 5.14, the number of successful packet transmis-

sions is almost unaffected by the varying value of p. This is because the parameter

p does not influence the received energy of devices and the channel state between

devices and the HAP. This means that the energy accumulation and data transmis-

sion process are not influenced by the varying value of p. This results in a nearly

unchanged number of successful packet transmissions for PIS and DQL.
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Figure 5.12: Average AoII of RP, RR, ϵ-Greedy, PIS, DQL, and SSFL versus the
probability that a target stays in the same state.
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in the same state when using PIS algorithm.
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5.4.5 Channel Variation

The last experiment studies the influence of channel variation on the average AoII.

Specifically, this experiment studies the influence of variable µ, where µ value has a

value in the set {1, 2, 3, 4, 5}. Recall that the variable µ is the standard deviation

of variable X which relates to the severity of channel condition.

As shown in Figure 5.15, when the standard deviation µ increases from one to

five, the average AoII of RP, RR, ϵ-Greedy, PIS, DQL, and SSFL decreases by

about 10.2%, 21.0%, 13.4%, 13.6%, 9.6%, and 13.6%, respectively. This is because

µ = 5 results in a higher channel gain on average. This can be seen in Figure 5.16,

where the occurrence of large channel gains, i.e., greater than 0.00008, is much

higher than when µ = 1. This leads to an increase in charging power at devices, see

Figure 5.17. Consequently, devices are able to report the state of targets to the HAP

more frequently, which leads to a lower average AoII. According to Figure 5.15, the

gap between DQL and PIS increases from about 1.6% to 6.0% when the standard
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deviation changes from one to five. This is because a higher value corresponds to

severe channel conditions. In this case, the lack of perfect channel state information

causes a device using DQL to make incorrect decisions, i.e., selecting to be active

when its channel to the HAP is poor. This results in a higher average AoII.
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Figure 5.15: Average AoII of RP, RR, ϵ-Greedy, PIS, DQL, and SSFL versus stan-
dard deviation µ.
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5.5 Conclusion

This chapter has considered an active device set selection problem in an RF-charging

network where multiple devices are powered by a HAP and are responsible for mon-

itoring multiple targets. Its aim is to find the best set of active devices in each frame

so as to minimize the average AoII of targets. Further, it considers a challenging

issue whereby the HAP is unaware of the CSI and battery state of devices. To this

end, this chapter outlines two distributed algorithms, namely DQL and SSFL, to

determine the active device set in each frame. The simulation results show that by

activating devices when they have sufficient energy to sample and transmit DQL

and SSFL always achieve a lower average AoII than RP, RR, ϵ-Greedy. Moreover,

DQL achieves a lower average AoII than SSFL in all experiments since DQL makes

decisions according to the battery state and historical CSI of a device while SSFL

does not consider such information.
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Chapter 6

Conclusion

This thesis has addressed a number of challenging device selection problems in

energy-harvesting IoT networks. Specifically, as channel resources are limited, a

hybrid access point (HAP) can only select a subset of devices to transmit. The

main challenge, however, is that the search space or subsets of devices grow expo-

nentially with the number of devices. Another key challenge is that the HAP does

not have channel and energy level information when it selects devices to transmit in

each frame. To date, many solutions have been proposed to select devices in order

to optimize metrics such as sum rate. However, these solutions consider devices

powered by an ambient energy source such as wind and solar energy. In contrast,

this thesis considers devices with a dedicated RF energy source. In this respect, the

works that consider one or more dedicated energy sources assume that a scheduler

or HAP that has perfect channel gain or energy information of devices. However,

obtaining both information is impractical in large-scale networks because it requires

the HAP/scheduler to poll devices, which incurs high signaling and energy cost.

Motivated by the above gaps, this thesis aims to design centralized and decen-

tralized algorithms to select the best set of devices to sample and transmit in order

to maximize one of the following objectives: sum rate, age of information (AoI) or

age of incorrect information (AoII). This thesis first investigates device selection in a
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wireless powered communication network (WPCN) with imperfect channel and en-

ergy state information. To this end, Chapter 3 outlines two centralized algorithms,

namely cross-entropy algorithm and Gibbs+. The results show that both algorithms

are capable of selecting a good set of devices/sensors to transmit even though the

scheduler/hybrid access point has imperfect channel state information. Advanta-

geously, the proposed cross-entropy and Gibbs+ algorithms respectively achieve 99%

and 98% of the theoretical maximum throughput as computed by PIS, which has

perfect information.

The next studied device selection problem concerns AoI, which quantifies the

information freshness of samples collected by devices. In this respect, this thesis

considers the problem of optimizing information freshness in a network with RF-

energy harvesting wireless devices. A HAP charges these devices and instructs a

subset of devices to sample targets and transmit their samples to a HAP. Unlike

prior works, this thesis has considered a HAP without channel state information

of devices. To address this challenge, this thesis has outlined the first decentral-

ized reinforcement learning algorithms for the problem at hand. Specifically, it has

outlined a Distributed Q-Learning (DQL) algorithm that enables a HAP to select

devices without knowing their uplink channel state information and battery state.

DQL achieves at most 48%, 57%, and 61% lower average AoI than round robin,

random pick, and AoI-Greedy policy, respectively. The average AoI of DQL is only

around 7% higher than the optimal selection strategy that requires channel state

information and the energy level of devices.

Lastly, this thesis has studied minimizing AoII in a WPCN that consists of a

HAP and multiple energy harvesting devices. Devices are responsible for sensing

targets and transmitting the state of targets to the HAP. The HAP’s objective

is to minimize the AoII of targets. Unlike prior works, sensors/devices monitor

multiple targets, and the HAP does not have channel state information and energy

level of sensors/devices. To select devices without the said information, this thesis

has proposed a Distributed Q-Learning (DQL) algorithm and a State Space Free
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Learning (SSFL) algorithm. The results show that DQL and SSFL always achieve

a lower average AoII than round Robin, random pick, and ϵ-Greedy. The average

AoII of DQL and SSFL are only around 4.6% and 10% higher than the optimal

selection strategy, respectively.

There are many possible research directions. As discussed in Chapter 3, and

Chapter 4, when considering WPCNs, sensors/devices located far from a HAP re-

quire more time to accumulate sufficient energy to sample and transmit than devices

located close to the HAP. In this case, devices located close to the HAP will be se-

lected more frequently since they are more likely to have higher energy levels and

better channel states, which leads to a fairness problem. In this respect, a possible

solution is to employ a mobile HAP. A key problem is to maximize sum-rate by

jointly optimizing the trajectory of mobile hybrid access points and set of trans-

mitting devices. Another future work is to consider mobile targets such as vehicles.

The key research problem is to forecast the trajectories of mobile targets and select

the best set of devices to sample and transmit in order to minimize AoI or AoII of

targets.
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[60] P. Blasco and D. Gündüz, “Multi-access communications with energy harvest-

ing: A multi-armed bandit model and the optimality of the myopic policy,”

IEEE J. Sel. Areas Commun., vol. 33, pp. 585–597, Mar. 2015.

[61] O. M. Gul and M. Demirekler, “Average throughput performance of myopic

policy in energy harvesting wireless sensor networks,” Sensors, vol. 17, p. 2206,

Sept. 2017.

[62] O. M. Gul and E. Uysal-Biyikoglu, “A randomized scheduling algorithm for

energy harvesting wireless sensor networks achieving nearly 100% through-

put,” in IEEE WCNC, (Istanbul, Turkey), pp. 2456–2461, Apr. 2014.

[63] O. M. Gul and E. Uysal-Biyikoglu, “Achieving nearly 100% throughput with-

out feedback in energy harvesting wireless networks,” in IEEE ISIT, (Hon-

olulu, HI, USA), pp. 1171–1175, June 2014.

121



[64] O. M. Gul, “Asymptotically optimal scheduling for energy harvesting wireless

sensor networks,” in IEEE 28th Annual International Symposium on Per-

sonal, Indoor, and Mobile Radio Communications (PIMRC), (Montreal, QC,

Canada), pp. 1–7, Oct. 2017.

[65] O. M. Gul and M. Demirekler, “Asymptotically throughput optimal schedul-

ing for energy harvesting wireless sensor networks,” IEEE Access, vol. 6,

pp. 45004–45020, July 2018.

[66] J. Yang and J. Wu, “Online throughput maximization in an energy harvesting

multiple access channel with fading,” in IEEE ISIT, (Hong Kong, China),

pp. 2727–2731, Oct. 2015.

[67] M. Chu, H. Li, X. Liao, and S. Cui, “Reinforcement learning-based multiaccess

control and battery prediction with energy harvesting in IoT systems,” IEEE

Internet Things J., vol. 6, pp. 2009–2020, Sept. 2018.

[68] S. Luo, H. Zhang, Q. Li, and K. Wu, “Knowledge-assisted DRL for en-

ergy harvesting based multi-access wireless communications,” in IEEE 23rd

Int Conf on High Performance Computing & Communications; 7th Int

Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int

Conf on Dependability in Sensor, Cloud & Big Data Systems & Application

(HPCC/DSS/SmartCity/DependSys), (Haikou, Hainan, China), pp. 869–876,

Dec. 2021.

[69] D. Zhai, H. Chen, Z. Lin, Y. Li, and B. Vucetic, “Accumulate then transmit:

Multiuser scheduling in full-duplex wireless-powered IoT systems,” IEEE In-

ternet Things J., vol. 5, pp. 2753–2767, Mar. 2018.

[70] S.-M. Park, D.-Y. Kim, K.-W. Kim, and J.-W. Lee, “Joint antenna and device

scheduling in full-duplex MIMO wireless powered communication networks,”

IEEE Internet Things J., Oct. 2022.

122



[71] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should

one update?,” in IEEE INFOCOM, (Orlando, FL, USA), pp. 2731–2735, May

2012.

[72] M. A. Abd-Elmagid, H. S. Dhillon, and N. Pappas, “A reinforcement learning

framework for optimizing age of information in RF-powered communication

systems,” IEEE Trans. Commun., vol. 68, pp. 4747–4760, May 2020.

[73] S. Leng and A. Yener, “Learning to transmit fresh information in energy har-

vesting networks using supervised learning,” in 55th Asilomar Conference on

Signals, Systems, and Computers, (Pacific Grove, CA, USA), pp. 737–741,

Oct. 2021.

[74] M. Hatami, M. Leinonen, Z. Chen, N. Pappas, and M. Codreanu, “Asymp-

totically optimal on-demand AoI minimization in energy harvesting IoT net-

works,” in IEEE International Symposium on Information Theory (ISIT), (Es-

poo, Finland), pp. 922–927, July 2022.

[75] M. Hatami, M. Leinonen, and M. Codreanu, “Minimizing average on-demand

AoI in an IoT network with energy harvesting sensors,” in IEEE 22nd Interna-

tional Workshop on Signal Processing Advances in Wireless Communications

(SPAWC), (Lucca, Italy), pp. 1–5, Sept. 2021.

[76] M. Hatami, M. Leinonen, and M. Codreanu, “AoI minimization in status up-

date control with energy harvesting sensors,” IEEE Trans. Commun., vol. 69,

pp. 8335–8351, Sept. 2021.

[77] J. Feng, W. Mai, and X. Chen, “Simultaneous multi-sensor scheduling based

on double deep Q-learning under multi-constraint,” in IEEE/CIC Interna-

tional Conference on Communications in China (ICCC), (Xiamen, China),

pp. 224–229, July 2021.

123



[78] M. Hatami, M. Jahandideh, M. Leinonen, and M. Codreanu, “Age-aware sta-

tus update control for energy harvesting IoT sensors via reinforcement learn-

ing,” in IEEE 31st Annual International Symposium on Personal, Indoor, and

Mobile Radio Communications, (London, UK), pp. 1–6, Aug. 2020.

[79] N. Zhao, C. Xu, S. Zhang, Y. Xie, X. Wang, and H. Sun, “Status update

for correlated energy harvesting sensors: A deep reinforcement learning ap-

proach,” in IEEE WCSP, (Nanjing, China), pp. 170–175, Dec. 2020.

[80] L. Liu, X. Qin, X. Xu, H. Li, F. R. Yu, and P. Zhang, “Optimizing information

freshness in MEC-assisted status update systems with heterogeneous energy

harvesting devices,” IEEE Internet Things J., vol. 8, pp. 17057–17070, Dec.

2021.

[81] S. Leng and A. Yener, “An actor-critic reinforcement learning approach to

minimum age of information scheduling in energy harvesting networks,” in

IEEE ICASSP, (Toronto, Canada), pp. 8128–8132, June 2021.

[82] L. Cui, Y. Long, D. T. Hoang, and S. Gong, “Hierarchical learning approach

for age-of-information minimization in wireless sensor networks,” in IEEE 23rd

International Symposium on a World of Wireless, Mobile and Multimedia Net-

works (WoWMoM), (Belfast, United Kingdom), pp. 130–136, June 2022.

[83] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with

double Q-learning,” in Proceedings of the AAAI conference on artificial intel-

ligence, vol. 30, Mar. 2016.

[84] Q. He, G. Dán, and V. Fodor, “Joint assignment and scheduling for minimiz-

ing age of correlated information,” IEEE/ACM Trans. Networking, vol. 27,

pp. 1887–1900, Oct. 2019.

[85] W. Jin, L. Huang, and K. Chi, “Age of information minimization in wire-

less powered NOMA communication networks,” in IEEE 23rd International

124



Conference on High Performance Switching and Routing (HPSR), (Taicang,

Jiangsu, China), pp. 201–205, June 2022.

[86] M. A. Abd-Elmagid, N. Pappas, and H. S. Dhillon, “On the role of age of

information in the internet of things,” IEEE Commun. Mag., vol. 57, pp. 72–

77, Dec. 2019.

[87] M. J. Neely, “Stochastic network optimization with application to communica-

tion and queueing systems,” Synthesis Lectures on Communication Networks,

vol. 3, no. 1, pp. 1–211, 2010.

[88] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network:

Joint active and passive beamforming design,” in IEEE Global Communica-

tions Conference (GLOBECOM), (Abu Dhabi, United Arab), pp. 1–6, Dec.

2018.

[89] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelli-

gent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58,

pp. 106–112, Jan. 2020.

[90] M. Calvo-Fullana, J. Matamoros, and C. Antón-Haro, “Decentralized sparsity-

promoting sensor selection in energy harvesting wireless sensor networks,” in

24th European Signal Processing Conference (EUSIPCO), (Budapest, Hun-

gary), pp. 582–586, IEEE, Aug. 2016.

[91] P. Du, Q. Yang, Z. Shen, and K. S. Kwak, “Distortion minimization in wire-

less sensor networks with energy harvesting,” IEEE Commun. Lett., vol. 21,

pp. 1393–1396, Feb. 2017.

[92] M. Calvo-Fullana, J. Matamoros, and C. Antón-Haro, “Sensor selection and

power allocation strategies for energy harvesting wireless sensor networks,”

IEEE J. Sel. Areas Commun., vol. 34, pp. 3685–3695, Sept. 2016.

125



[93] M. Calvo-Fullana, J. Matamoros, C. Antón-Haro, and S. M. Fosson, “Sparsity-

promoting sensor selection with energy harvesting constraints,” in IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),

(Shanghai, China), pp. 3766–3770, Mar. 2016.

[94] M. Calvo-Fullana, J. Matamoros, and C. Antón-Haro, “Sensor selection in

energy harvesting wireless sensor networks,” in IEEE Global Conference on

Signal and Information Processing (GlobalSIP), (Orlando, FL, USA), pp. 43–

47, Dec. 2015.

[95] H. Uzawa, “Iterative methods for concave programming,” Studies in linear

and nonlinear programming, vol. 6, pp. 154–165, 1958.

[96] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted

ℓ1 minimization,” J.Fourier Anal. Appl., vol. 14, pp. 877–905, Oct. 2008.

[97] Y.-B. Chen, I. Nevat, P. Zhang, S. G. Nagarajan, and H.-Y. Wei, “Query-based

sensors selection for collaborative wireless sensor networks with stochastic en-

ergy harvesting,” IEEE Internet Things J., vol. 6, pp. 3031–3043, Oct. 2018.

[98] A. Hentati, E. Driouch, J.-F. Frigon, and W. Ajib, “Fair and low complexity

node selection in energy harvesting wireless sensor networks,” IEEE Syst. J.,

vol. 12, pp. 3796–3806, Dec. 2017.

[99] A. Hentati, E. Driouch, J.-F. Frigon, and W. Ajib, “Low complexity node

selection algorithms in MU-MIMO energy harvesting WSNs,” in IEEE 84th

Vehicular Technology Conference (VTC-Fall), (Montreal, QC, Canada), pp. 1–

5, Mar. 2016.

[100] P. Zhang, I. Nevat, G. W. Peters, F. Septier, and M. A. Osborne, “Spatial

field reconstruction and sensor selection in heterogeneous sensor networks with

stochastic energy harvesting,” IEEE Trans. Signal Process., vol. 66, pp. 2245–

2257, Feb. 2018.

126



[101] D. Guo, L. Tang, and X. Zhang, “Joint energy allocation and multiuser

scheduling in SWIPT systems with energy harvesting,” IET Communications,

vol. 14, pp. 956–966, Apr. 2020.

[102] R. Y. Rubinstein, “Combinatorial optimization, cross-entropy, ants and rare

events,” in Stochastic optimization: algorithms and applications, pp. 303–363,

Springer, 2001.

[103] P. Grover and A. Sahai, “Shannon meets tesla: Wireless information and

power transfer,” in IEEE international symposium on information theory,

(Austin, USA), pp. 2363–2367, July 2010.

[104] E. Boshkovska, R. Morsi, D. W. K. Ng, and R. Schober, “Power allocation and

scheduling for SWIPT systems with non-linear energy harvesting model,” in

IEEE International Conference on Communications (ICC), (Kuala Lumpur,

Malaysia), pp. 1–6, May 2016.

[105] D. Guo, L. Tang, and X. Zhang, “Optimal energy allocation and multiuser

scheduling in SWIPT systems with hybrid power supply,” in IEEE Globecom

Workshops (GC Wkshps), (Waikoloa, HI, USA), pp. 1–6, Dec. 2019.

[106] R. Morsi, D. S. Michalopoulos, and R. Schober, “Multiuser scheduling schemes

for simultaneous wireless information and power transfer over fading chan-

nels,” IEEE Trans. Wireless Commun., vol. 14, pp. 1967–1982, Dec. 2014.

[107] R. Morsi, D. S. Michalopoulos, and R. Schober, “Multi-user scheduling

schemes for simultaneous wireless information and power transfer,” in IEEE

International Conference on Communications (ICC), (Sydney, NSW, Aus-

tralia), pp. 4994–4999, June 2014.

[108] M. Chynonova, R. Morsi, D. W. K. Ng, and R. Schober, “Optimal multiuser

scheduling schemes for simultaneous wireless information and power transfer,”

127



in 23rd European Signal Processing Conference (EUSIPCO), (Nice, France),

pp. 1989–1993, Dec. 2015.

[109] I. Bang, S. M. Kim, and D. K. Sung, “Adaptive multiuser scheduling for simul-

taneous wireless information and power transfer in a multicell environment,”

IEEE Trans. Wireless Commun., vol. 16, pp. 7460–7474, Nov. 2017.

[110] Y. Kim, B. C. Jung, I. Bang, and Y. Han, “Adaptive proportional fairness

scheduling for swipt-enabled multicell downlink networks,” in IEEE Wire-

less Communications and Networking Conference (WCNC), (Marrakesh, Mo-

rocco), pp. 1–6, Apr. 2019.

[111] N. Zhao, F. R. Yu, and V. C. Leung, “Opportunistic communications in in-

terference alignment networks with wireless power transfer,” IEEE Wireless

Commun., vol. 22, pp. 88–95, Feb. 2015.

[112] V. Gupta and S. De, “Adaptive multi-sensing in EH-WSN for smart en-

vironment,” in IEEE Global Communications Conference (GLOBECOM),

(Waikoloa, HI, USA), pp. 1–6, Dec. 2019.

[113] V. Gupta and S. De, “Collaborative multi-sensing in energy harvesting wireless

sensor networks,” IEEE Trans. Signal Inf. Process. Networks, vol. 6, pp. 426–

441, June 2020.

[114] R. Song, Q. Wei, and W. Xiao, “ADP-based optimal sensor scheduling for

target tracking in energy harvesting wireless sensor networks,” Neural Comput.

Appl., vol. 27, pp. 1543–1551, June 2016.

[115] F. Liu, C. Jiang, S. Chen, and W. Xiao, “Multi-sensor scheduling for tar-

get tracking based on constrained ADP in energy harvesting wsn,” in 13th

IEEE conference on industrial electronics and applications (ICIEA), (Wuhan,

China), pp. 1579–1584, May 2018.

128



[116] F. Liu, W. Xiao, S. Chen, and C. Jiang, “Adaptive dynamic programming-

based multi-sensor scheduling for collaborative target tracking in energy har-

vesting wireless sensor networks,” Sensors, vol. 18, p. 4090, Nov. 2018.

[117] F. Liu, C. Jiang, and W. Xiao, “Multistep prediction-based adaptive dynamic

programming sensor scheduling approach for collaborative target tracking in

energy harvesting wireless sensor networks,” IEEE Trans. Autom. Sci. Eng.,

vol. 18, pp. 693–704, July 2020.

[118] C. Jiang, F. Liu, S. Chen, and W. Xiao, “Finite-horizon adaptive dynamic pro-

gramming for collaborative target tracking in energy harvesting wireless sensor

networks,” in Chinese Control And Decision Conference (CCDC), (Nanjing,

China), pp. 4731–4736, June 2019.

[119] P. J. Werbos, W. Miller, and R. Sutton, “A menu of designs for reinforcement

learning over time,” in Neural networks for control, vol. 3, pp. 67–95, MIT

press Cambridge, MA, 1990.

[120] H. Tabassum, E. Hossain, M. J. Hossain, and D. I. Kim, “On the spectral

efficiency of multiuser scheduling in RF-powered uplink cellular networks,”

IEEE Trans. Wireless Commun., vol. 14, pp. 3586–3600, Mar. 2015.

[121] M. Dimitropoulou, C. Psomas, and I. Krikidis, “k-th best device selection for

scheduling in wireless powered communication networks,” in IEEE Interna-

tional Conference on Communications (ICC), (Dublin, Ireland), pp. 1–6, June

2020.

[122] M. Dimitropoulou, C. Psomas, and I. Krikidis, “Generalized selection in wire-

less powered networks with non-linear energy harvesting,” IEEE Trans. Com-

mun., vol. 69, pp. 5634–5648, May 2021.

[123] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource allocation

in multiuser OFDM systems with wireless information and power transfer,” in

129



IEEE Wireless communications and networking conference (WCNC), (Shang-

hai, China), pp. 3823–3828, July 2013.

[124] H. Ko, H. Lee, T. Kim, and S. Pack, “Information freshness-guaranteed and

energy-efficient data generation control system in energy harvesting internet

of things,” IEEE Access, vol. 8, pp. 168711–168720, Sept. 2020.

[125] J. Yang, X. Wu, and J. Wu, “Optimal scheduling of collaborative sensing in

energy harvesting sensor networks,” IEEE J. Sel. Areas Commun., vol. 33,

pp. 512–523, Mar. 2015.

[126] Y. Li and K.-W. Chin, “Random channel access protocols for SIC enabled

energy harvesting IoTs networks,” IEEE Systems, vol. 15, pp. 2269–2280,

June 2020.

[127] Powercast, “P2110B 915 MHz RF powerharvester® receiver.”

https://www.powercastco.com/wp-content/uploads/2016/12/

P2110B-Datasheet-Rev-3.pdf/, 2016. [Online].

[128] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial on

the cross-entropy method,” Ann. Oper. Res., vol. 134, pp. 19–67, Feb. 2005.

[129] X. Li, X. Tang, C.-C. Wang, and X. Lin, “Gibbs-sampling-based optimization

for the deployment of small cells in 3G heterogeneous networks,” in IEEE

WiOpt, (Tsukuba, Japan), pp. 444–451, May 2013.

[130] R. Y. Rubinstein, “Optimization of computer simulation models with rare

events,” Eur. J. Oper. Res., vol. 99, pp. 89–112, May 1997.

[131] R. Rubinstein, “The cross-entropy method for combinatorial and continuous

optimization,” Methodol. Comput. Appl. Probab., vol. 1, pp. 127–190, Sept.

1999.

130

 https://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf /
 https://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf /


[132] Y. Qian, W. B. Haskell, A. X. Jiang, and M. Tambe, “Online planning for op-

timal protector strategies in resource conservation games,” in AAMAS, (Paris,

France), pp. 733–740, May 2014.

[133] Powercast, “P2110-EVB evaluation board for P2110 powerharvester®

receiver.” https://www.powercastco.com/wp-content/uploads/2016/11/

p2110-evb1.pdf/, 2015. [Online].

[134] B. Zhou and W. Saad, “Joint status sampling and updating for minimizing

age of information in the internet of things,” IEEE Trans. Commun., vol. 67,

pp. 7468–7482, July 2019.

[135] E. Boshkovska, D. W. K. Ng, N. Zlatanov, A. Koelpin, and R. Schober, “Ro-

bust resource allocation for MIMO wireless powered communication networks

based on a non-linear EH model,” IEEE Trans. Commun., vol. 65, pp. 1984–

1999, Feb. 2017.

[136] P. Sadeghi, R. A. Kennedy, P. B. Rapajic, and R. Shams, “Finite state Markov

modeling of fading channels-a survey of principles and applications,” IEEE Sig.

Proc. Mag., vol. 25, pp. 57–80, Sept. 2008.

[137] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, pp. 279–292,

May 1992.

[138] T. Bouguera, J.-F. Diouris, J.-J. Chaillout, and G. Andrieux, “Energy con-

sumption modeling for communicating sensors using LoRa technology,” in

IEEE Conference on Antenna Measurements & Applications (CAMA), (Swe-

den), pp. 1–4, Sept. 2018.

[139] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of incor-

rect information: A new performance metric for status updates,” IEEE/ACM

Trans. Networking, vol. 28, pp. 2215–2228, Oct. 2020.

[140] J. R. Norris, Markov chains. Cambridge university press, 1998.

131

 https://www.powercastco.com/wp-content/uploads/2016/11/p2110-evb1.pdf /
 https://www.powercastco.com/wp-content/uploads/2016/11/p2110-evb1.pdf /


[141] K. S. Narendra and M. A. Thathachar, “Learning automata-a survey,” IEEE

Trans. Syst. Man Cybern., pp. 323–334, July 1974.

[142] D. Sikeridis, E. E. Tsiropoulou, M. Devetsikiotis, and S. Papavassiliou,

“Energy-efficient orchestration in wireless powered internet of things infras-

tructures,” IEEE Trans. Green Commun. Networking, vol. 3, pp. 317–328,

June 2018.

[143] T. Bouguera, J.-F. Diouris, J.-J. Chaillout, and G. Andrieux, “Energy con-

sumption modeling for communicating sensors using LoRa technology,” in

IEEE CAMA, pp. 1–4, Sept. 2018.

[144] K. W. Choi and D. I. Kim, “Stochastic optimal control for wireless powered

communication networks,” IEEE Trans. Wireless Commun., vol. 15, pp. 686–

698, Sept. 2015.

132


	Data Collection and Information Freshness in Energy Harvesting Networks
	Abstract
	Acknowledgments
	Abbreviations
	1 Introduction
	1.1 Background
	1.2 Energy Harvesting
	1.2.1 RF Charging

	1.3 Research Statement
	1.3.1 Sum rate
	1.3.2 AoI
	1.3.3 AoII

	1.4 Contributions
	1.4.1 Sum Rate Maximization
	1.4.2 AoI Minimization
	1.4.3 AoII Minimization

	1.5 Publications
	1.6 Thesis Structure

	2 Literature Review
	2.1 Device selection in EH WSN
	2.1.1 Throughput Maximization
	2.1.2 Age of Information
	2.1.3 Distortion
	2.1.4 Quality of Service
	2.1.5 Multi-Objectives
	2.1.6 Others

	2.2 Summary

	3 Throughput Maximization in RF Charging Networks with Imperfect CSI
	3.1 System Model
	3.2 The Problem
	3.2.1 Analysis

	3.3 A Cross Entropy (CE) Algorithm
	3.4 A Gibbs Sampling Based Algorithm
	3.5 Evaluation
	3.5.1 Convergence
	3.5.2 Smoothing Parameter
	3.5.3 Sample Size
	3.5.4 Charging Power
	3.5.5 Number of Selected Devices
	3.5.6 Battery Leakage Rates
	3.5.7 Impact of Channel Variation

	3.6 Conclusion

	4 Age of Information Minimization in RF-Charging WSNs
	4.1 System Model and Problem
	4.1.1 Sampling and Buffer Model
	4.1.2 Energy Model
	4.1.3 Transmission Model and AoI
	4.1.4 The Problem

	4.2 A Markov Model
	4.3 A Distributed Q-Learning Algorithm
	4.3.1 A Decision Problem
	4.3.2 An MDP Model
	4.3.3 Q-Learning and DQL Algorithm

	4.4 Evaluation
	4.5 Conclusion

	5 Minimizing Age of Incorrect Information in RF-Charging WSNs
	5.1 System Model
	5.1.1 Targets
	5.1.2 Sampling and Buffer
	5.1.3 Energy Model
	5.1.4 Transmission Model
	5.1.5 Targets Coverage
	5.1.6 State
	5.1.7 Age of Incorrect Information
	5.1.8 The Problem

	5.2 Distributed Q-Learning Algorithm
	5.2.1 A Decision Problem
	5.2.2 An MDP Model and DQL algorithm

	5.3 State Space Free Learning (SSFL) Algorithm
	5.3.1 Reward and Update Rule
	5.3.2 Algorithm Details

	5.4 Evaluation
	5.4.1 Convergence
	5.4.2 Charging Power
	5.4.3 Signal-to-Noise Ratio Threshold
	5.4.4 State Transition Probability
	5.4.5 Channel Variation

	5.5 Conclusion

	6 Conclusion
	References
	Appendices

