
Research Article
A Design That Incorporates Adaptive Reservation into
Mixed-Criticality Systems

Fei Guan, Long Peng, Luc Perneel, Hasan Fayyad-Kazan, and Martin Timmerman

Electronics and Informatics Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium

Correspondence should be addressed to Fei Guan; fei.guan@vub.ac.be

Received 18 September 2016; Revised 22 December 2016; Accepted 4 January 2017; Published 1 February 2017

Academic Editor: Basilio B. Fraguela

Copyright © 2017 Fei Guan et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a design and implementation of a Mixed-Criticality System (MCS) extended from 𝜇C/OS III. It is based on a
MCSmodel that uses an adaptive reservation mechanism to cope with the uncertainties in task execution times and to increase the
resource utilization in MCS. The implementation takes advantage of the tasks’ recent execution records to predict their required
computational resource in the near future and adjusts their reserved budget according to their criticality levels.The designed system
focuses on soft real-time tasks. An overrun tolerance algorithm is used to limit the deadline miss ratios between a rise to the
task’s actual consumption and the change to the amount of reservation. More than two criticality levels can be handled without
introducing obvious additional overhead at each added level.The case study evaluation demonstrates that the reserved resource for
each task is always close to its actual consumption; the tasks’ deadline misses are bounded by the different requirements specified
by the criticality levels; during overload conditions, high-criticality tasks are guaranteed to have sufficient resource reservation.
Although there is still room for improvement if it comes to processing overhead, this research brings some inspirations in both
modelling and implementation aspects of MCS.

1. Introduction

Embedded systems are in high numbers around us today.
They range from smart watches to flight control systems.
Among different types of embedded systems, some of them
do not permit for malfunctions as they could harm human
lives or the environment. Examples of these so called safety-
critical systems can be found in medical devices, aviation,
and transport industry. In the related industry standards, the
safety-critical functions are classified into multiple criticality
or safety levels in relation to the hazard they generate by
their failure (e.g., DO-178B, IEC 61508). The concept of a
Mixed-Criticality System (MCS) is therefore defined and
aims at a software platform that allow functions with different
criticality levels to coexist on a shared hardware platform [1].

The goal of a MCS is to only provide high levels of
reliability to the sole functions requiring it. A fair amount of
research has been devoted to this area. One comprehensive
overview is addressed in [2]. In general, three fundamental
research issues are considered important: the resource isola-
tion, the resource distribution and sharing among the isolated

parts, and the balance between isolation and sharing. A wide
range of resource kinds are involved in these topics, including
power and energy [3–8], communication bus and memory
access [9–20], and processor usage [21–42] in both the single-
and multiprocessors platforms.

The research in this paper is limited to the temporal
isolation and sharing problem on a single processor platform.
It has been a major focus in MCS research. The research
history in this area can be traced back to Vestal’s paper [1].
It was followed by a series of publications that covered both
processor resource distribution schemes with fixed priority
(FP) [24, 26–29, 31–39] and earliest deadline first (EDF) [21–
23, 25, 40–42] based scheduling in MCSs.

Not all of these studies use the same system model but
their defined models share some common features. In gen-
eral, a task is characterized bymultipleWCETvalueswith dif-
ferent levels of confidence. In order to avoid severe underuti-
lization of the resource, every task in the system executes with
a budget that equals its low-confidence WCET at the begin-
ning. Only when a given task with a high-criticality overruns
does the system raise the reservation of high-criticality tasks

Hindawi
Scientific Programming
Volume 2017, Article ID 3403685, 20 pages
https://doi.org/10.1155/2017/3403685

https://doi.org/10.1155/2017/3403685

2 Scientific Programming

to their high-confidenceWCETs and triggers operations such
as discarding low-criticality tasks, extending their deadlines,
lowering their priorities, or shrinking their execution times.

These models have certain limitations. The first issue is
related to WCET assessment. For time-randomised hard-
ware, defining different WCET budget with different confi-
dence levels can be done with probabilistic WCET (pWCET)
[44, 45]. But for time-deterministic hardware the existing
WCET estimation techniques (both static andmeasurement-
based techniques) can not associate the confidence levels with
the WCET estimates in an easy way [2]. Although recent
studies [46, 47] present that the pWCET can also be used
for time-deterministic hardware, the technique is immature
and limited to very simple systems [48]. Even for the time-
randomised platform which has the best fit for pWCET
techniques, there is a lack of trustworthiness of the provided
results due to their strong dependence on the assumptions
made in the measurement, particular hardware features, or a
number of other aspects [48]. Moreover, if the target task’s
execution time varies a lot from one instance to another,
which is highly possible due to the impact of unpredictable
environment and high complexity of the system, using offline
WCET estimates as a task’s bandwidth budget can cause low
resource usage [36, 49–51].

The second issue is about a pessimistic assumption that is
made in the general MCSmodels. In [52], Burns classifies the
event that a task executes longer than its expected WCET as
a fault. As defined in these models, all high-criticality tasks’
executionswill consume up to high-confidenceWCET values
after one high-criticality task encounters such a fault. As
pointed out by Easwaran and Shin [53], this is highly unlikely
to happen in practice if these tasks are independent of each
other. Therefore, the paralysation or service degradation of
low-criticality tasks based on this assumption is sometimes
overdone.

The third issue is that the traditional models do not take
into account the fact that at certain criticality level, sometimes
even the highest ones, the tasks can tolerate some deadline
misses. In a dual-criticality system, for example, a high-
criticality task should never miss a deadline according to the
classical assumption. However, as stated in [54], the industry
standards actually do not have specific definitions for the
relationship between deadline misses and critical failures. It
conceivable that a small number of deadline misses has little
or no effect on safety. If this is indeed the case, then avoiding
all the deadline misses is certainly too pessimistic and causes
a waste of resource.

In this paper, we design and implement a software
framework extended from 𝜇C/OS III. It introduces adaptive
reservation concept into the area of MCSs. Considering
the issues mentioned, the designed system supports a MCS
model different from the existing ones. It allows tasks to
have deadline misses within certain limits but still based on
the conjecture that the strictness of the timing constraints
lines up with the criticality levels of the tasks. Instead
of reserving resource according to several offline WCET
estimates, a prediction mechanism is adopted to calculate
the required computation resource for each task individually
during runtime. Whether the tasks’ requirements will be

fulfilled is determined by the admission control according
to their criticality levels and the system’s available resource.
In the overload condition, tasks are sacrificed in a reverse
order of criticality levels to release resource and maintain a
schedulable system. Until the prediction mechanism reacts
to a task’s resource consumption change, a slack (reserved
but unused processor bandwidth) distribution algorithm is
adopted to handle the budget overrun events and lower the
risk of deadline miss.

The organization of this paper is as follows. Section 2
provides an overview of related work; Section 3 introduces
notions and the MCS model adopted in this paper; Sections
4 and 5 describe all the services provided by the designed sys-
tem and the basic structure used for task isolation; Sections
6 to 10 explain the implementation details of these services;
Section 11 presents the case study evaluation results for this
framework; and Section 12 presents the final conclusions and
future work.

2. Related Work

In this section we first review the adaptive resource reserva-
tion and slack allocation algorithms in traditional real-time
systems, their potential in resolving the resource efficiency,
and overrun tolerance issues inMCS.Thenwe show the usage
of slack distribution algorithms in the context of MCS. At
last, we review one existing solution towards replacing the
greedy algorithms that simultaneously increase the budget for
all high-criticality tasks.

In traditional real-time systems, there is a vast literature
using the online admission control and adaptive reservation
to deal with the uncertainty of execution time and to avoid
the disadvantage of offlineWCET assessment. They compute
and adjust the budget of each task according to its actual
demand. Typical implementation employs feedback and
prediction mechanisms together with online schedulability
testing to measure and predict the resource reservations
during runtime [55–58]. This kind of technique has been
barely considered in the area of MCS. One possible reason
would be that there is always delay between the change
of demand and the system’s reaction towards the demand.
During the delay, overrun events can happen which in
turn cause deadline violations. Since critical tasks have high
standard for deadline satisfaction, additional endeavor needs
to be made for introducing this technique into MCS.

For handling the transient overrun faults as well as
increasing resource utilization in reservation based schedul-
ing, slack allocation algorithms have been studied [59–66].
These researches present that, by redistributing the reserved
but unused resource, most overrun events within each
reservation unit can be well handled without violating the
timing constraint. In our approach in particular, we adopt the
algorithm presented in [66] which claims to have better per-
formance than IRIS (Idle-time Reclaiming Improved Server)
[65], BEBS (Best-Effort Bandwidth Server) [60], GRUB
(Greedy Reclamation of Unused Bandwidth) [61], RBED
[62], CBS (Constant Bandwidth Server) [59], and CASH
(CApacity ScHaring) [66] in bounding deadline misses.

Scientific Programming 3

To take advantage of both adaptive reservation schemes
and slack allocation algorithms, some studies combine these
two techniques together, as is the case in our paper. In
[67–70], the authors present work that dynamically adapts
the reservation parameters on top of CBS [59]. In [71,
72], Palopoli et al. integrate a feedback control mechanism
together with ShRUB (Shared Reclamation of Unused Band-
width), a variant of GRUB [61]. This kind of approach has
certain benefit that it can avoid resource overallocationwith a
budget adapted to the needs and tolerate the budget overrun
until the system reacts to the measurements. Unfortunately,
since these mentioned works do not take into account the
notion of criticality levels, they are not directly applicable for
MCS.

Targeting for MCS, slack distribution algorithms have
already been adopted in multiple papers [25, 35, 36, 42, 51].
The basic idea of them is to let the low-criticality tasks execute
on the slack of the high-criticality tasks. In [35, 36], De Niz
et al. propose zero slack rate-monotonic scheduling and later
combine it with additional support for Quality-of-Service
(QoS) Resource Allocation Model. In [25], Park and Kim
introduce CBEDF (Criticality Based EDF) on top of EDF
scheduling. In [42], Lipari and Buttazzo reuse the policy of
GRUB [61] in MCS. In [51], Groesbrink et al. propose an
algorithm for QoS-aware system where slack is adaptively
allocated to tasks that can benefit from additional resource.

In order to replace the greedy algorithms that simulta-
neously increase the budget for all high-criticality tasks, one
approach is proposed by Gu et al. [73]. They partition tasks
into separate components. Then for tasks inside each com-
ponent, they define the fault tolerance limit by a number of
violations ofWCETs. Only when theWCET violations within
a component exceed the component’s expected limit are the
tasks in other components affected. Our work is different
from theirs in that it monitors each task individually and does
not rely on the correctness of the offline WCET estimation.

3. Model

In a MCS, we define an ordered set of criticality levels: 𝜒{𝜒1,. . . , 𝜒𝑚} (𝑚 ∈ 𝑁∗, 𝜒𝑖 ∈ 𝑁). A smaller 𝜒𝑖 represents a lower
criticality. Only periodic tasks are considered in this paper.
Each task 𝜏𝑖 is characterized by the criticality level, a relative
deadline𝐷𝑖, and a period 𝑇𝑖, where𝐷𝑖 = 𝑇𝑖.

The system predicts the requirement of a task by a
prediction mechanism during runtime and then grants the
task a budget 𝐶𝑖 for each release period 𝑇𝑖. Therefore, the
processor usage for each task is 𝑈𝑖 = 𝐶𝑖/𝑇𝑖. The major
differences between our model and general MCS models are
the following: the reserved resource does not equal the offline
WCET estimate and it ismodified adaptively and individually
for each task during runtime.

A set of tasks is said to be schedulable under EDF
scheduling if 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒 = ∑𝑈𝑖 ≤ 1. Otherwise, the tasks
will be suspended in a reverse order of criticality levels by
admission control until the scheduling is feasible.

The overall adaptive reservation process for a task 𝜏𝑖 is
shown in Figure 1. Upon the new job arrival of 𝜏𝑖, the system
first checks if 𝜏𝑖 has been suspended as a consequence of

Start

New instance (job)

The job is al-
lowed to execute?

Job execution

Fault tolerance

Reservation equals ac-
tual consumption?

Record actual consump-
tion and deadline miss

Require a new esti-

Estimation according
to execution records

Overload handling

End

New estimate equals

Yes

No

Yes

No

Yes

No

No

Yes

No

Yes

Specify i, estimation pa-
rameters associated with i,
Ti, the latest estimate of Ci

of i arrives?

Reserve Ci for the job

the current Ci?

mate value for Ci?

Figure 1: Flow chart for overall adaptive reservation process of 𝜏𝑖.

a processor overload condition. If it is not the case, then
a budget 𝐶𝑖 is reserved for it. During the job execution, if
the actual consumption does not equal the reserved budget𝐶𝑖, the fault tolerance service will be activated to deal with
the overrun problem or redistribute the reserved but unused
resource. When 𝜏𝑖 finishes the job execution in the current
release period, the system determines whether 𝐶𝑖 should be
replaced by a new estimation to apply from its next release
period. The decision is made according to 𝜏𝑖’s execution
records, the acceptable deadline miss ratio for a task at
criticality 𝜒𝑖, and the estimation interval defined by the user.
This estimation process also takes into account the acceptable
deadline miss ratio for a task at criticality 𝜒𝑖. With the new
estimated value of 𝐶𝑖, the system does an overall calculation
to predict whether the processor will be overloaded or if
enough resource will be released for suspended tasks if
any. According to these predictive calculations, the system
then suspends or reactivates tasks taking into account their
criticality levels. Such operations preferentially grant the
required budget to a higher criticality level.

The detailed design and implementation are described in
the following sections.

4 Scientific Programming

Reservation
based MCS Scheduler

Server
structure

Resource mon-
itoring and
allocation

Fault
tolerance

Resource
adaptation

Overload
handling

Figure 2: Services.

4. System Architecture

This section briefly describes all the services provided by the
described system and their connections with each other.

Required by the adaptive reservation process (Figure 1),
the system proposed provides the basic services that support
reservation based scheduling and the extended services that
are implemented above the basic ones and support adaptive
modification to the reserved budget of each task. Figure 2
shows all the services included in the design.

The basic services refer to task isolation, processor allo-
cation and resource monitoring, and general support for a
scheduler. The extended services refer to the fault tolerance,
resource adaptation, and overload handling.

Task isolation structure is used to ensure that each task
only has access to the processor bandwidth assigned to it.
This is the central idea of a reservation based system and its
purpose is to minimize the interferences among tasks that
are sharing the same hardware platform. As a result of task
isolation, each task belongs to a reservation unit, which is
called server in this design.

The processor allocation and monitoring service is
responsible for distributing a specific amount of resources
to a certain task (or server) and monitoring the actual
consumption of tasks’ executions.

The scheduler is what is used in scheduling the servers.
Instead of scheduling the tasks directly, a reservation based
system has global scheduler that can only see the servers.
Besides the algorithm design according to the selected
scheduling policy (e.g., EDF, FP), there are some general
supports needed for such a scheduler: the definition for server
queue data structure, the design of queuemanagementmech-
anism, the scheduling point selection, and the interaction
with the local scheduler of the underlying OS (𝜇C/OS in this
case).

The fault tolerance service is designed to tolerate the
transient overrun faults before any change to the budgets

assignment. It takes into account that servers other than the
one being overrun might have spare budget. Or the over-
loaded server itself will have spare budget in the following
execution. This kind of spare resource can be used to resolve
the overrun event which avoids a waste of resource on the
one hand and prevents performance lost on the other hand.
Besides that, this service also serves as the foundation for the
resource adaptation service. It loosens the requirement for
the budget values reserved for each server, meaning that as
long as the difference between the actual execution time and
the reserved budget is within a range, it is bearable by the
server. As a result, less conservative and more flexible budget
estimations are allowed.

The resource adaptation service is used for predicting and
adjusting servers’ budgets during runtime.The fault tolerance
service can handle occasionally overrun events and reduces
the wasted resource to a certain extent. This is under the
assumption that the reserved budget is not too much lower
than what is required in most real executions. If this is not
the case, then there would be serious problems. On the one
hand, a budget value which is being exceeded frequently will
greatly add to the fault handling cost. If these overrun events
are happening consecutively, there is even an accumulative
difficulty in handling them which will further increase the
risk of deadlinemiss. On the other hand, an overconservative
budget value can increase the resource lost, with or without
the fault tolerance mechanism. Even worse, overallocation to
one or several servers sometimes gives a false impression that
the system is overloaded. This is the major drawback when
usingWCETs as reserved budget values as in traditionalMCS
implementation.This stated condition motivates us to design
this resource adaptation service that dynamically changes the
budget value for every server via feedback control and online
estimation.

The system overload handling service is designed to be
activated when the system cannot provide required budget
for all the servers. This service supports the schedulability
test and budget reconfiguration with respect to the criticality
levels. The objective is to react quickly upon the overload
event and redistribute the resource to primarily consider
the demands of high-criticality tasks. The schedulability test
algorithms associated with this service highly depend on the
correction of the budget values provided by the resource
adaptation service.

5. Server Structure

Figure 3 shows the basic structure of the proposed system
with server support.The servers are scheduledwith the global
scheduler which refers to “scheduler” in Figure 2. In the
following paragraphs, the scheduler for the servers will be
denoted as global scheduler and the𝜇C/OS III’s schedulerwill
be denoted as local scheduler.

Two types of servers are implemented in this paper: the
periodic server and the idle server. The periodic servers
receive processor bandwidth from the resource allocator
periodically. The idle server only starts running when no
other server requires the processor resource.𝜇C/OS III has an
idle task which runs whenever there are no other tasks ready.

Scientific Programming 5

Resource monitor
Resource allocator
Global scheduler

Scheduler

Server 1

Processor

Scheduler Scheduler

Idle
server

· · ·

Server n

1 Ｃ＞Ｆ？Ｃ＞Ｆ？ Ｃ＞Ｆ？n

C/OS-III C/OS-III C/OS-III

Figure 3: Support for servers.

Ready

Pending

Running

Server create

Server delete

Server delete

System start/server switch

Idle task starts

Server preempted
New period release

Figure 4: Three basic states of a periodic partition.

In this design, both these two kinds of servers contain idle
task, but the idle server contains only the idle task.

Each task 𝜏𝑖 is assigned a periodic server 𝑆𝑖 which is
identified by a resource interface (𝑇𝑖, 𝐶𝑖, 𝜒𝑖). This interface
informs the global scheduler that the server houses a task
with criticality 𝜒𝑖 and its execution requirement is𝐶𝑖 in every
period 𝑇𝑖.

A server has three states as shown in Figure 4. It indicates
some basic movements from one state to another. A periodic
server is put into the ready state by calling the server-creation
function. The global scheduler is responsible for selecting
the server to be put into running state. The selected server
then will be switched in upon system start or server switch.
Any server that finishes the task’s execution will be put into
pending state.When a server’s remaining period reaches zero,
it is put back into the ready state. If the global scheduler
then detects that the newly released server has become the
most important (depends on EDF scheduling policy), it will
preempt the currently running server. In the meantime, the
currently running server will stay in the ready state and wait
until it becomes themost important again.The servers can be
deleted by calling the server delete function.

6. Resource Monitoring and Allocator

The resource monitoring of this framework can be divided
into three parts. The first is the heart beat resource monitor
(HBRM), which executes upon every system clock tick. Its
purpose is to keep track of the remaining budget of the active
server as well as the release time of each server’s new period.
When a system clock tick event occurs, it will be triggered
and will preempt the currently running task of the active
server. A server 𝑆𝑖 has a pair of counters (Π𝑖, Θ𝑖) indicating the
remaining period (relative deadline) and budget.Their initial
values equal (𝑇𝑖, 𝐶𝑖). The time unit for indicating the values
is the system clock tick. Every time the HBRM is triggered
by a system clock tick event, Π𝑖 is decreased by one. Once Π𝑖
reaches zero, server 𝑆𝑖 will be released, while when theHBRM
detects that 𝑆𝑖 is in the running state, Θ𝑖 will be decreased
by one. In the meantime, the queue to which this server
belongs will be updated depending on global scheduling
policy, fault tolerance policy, and resource adaptation policy.
The procedure is shown in Algorithm 1.

Figure 5 shows an example of a timing diagram of a peri-
odic server. The parts with dark background show the work
done by HBRM.More detailed description about the changes
of Θ𝑖 will be introduced later in the following sections.

The second part is the Server Idle Detection (AID). It
is used by us to detect 𝜏𝑖’s completion. From the moment
the idle task starts running, the system will know that
the current task 𝜏𝑖 has finished its execution. Then 𝜏𝑖’s
remaining budget Θ𝑖 (slack), if greater than one, is available
for redistribution among other servers. The redistribution
policy and its implementation is introduced in Section 8.

The third part is Per-server Budget Usage Recorder
(PBUR). In order to get the budget usage in each execution
of 𝑆𝑖, there are three possible ways:

(1) Using the remaining budget of 𝑆𝑖. Once the idle task
starts running, if the current server is not the idle
server, it indicates that 𝜏𝑖 has finished its executing.
Then the value of 𝐶𝑖 − Θ𝑖 is the budget actually used
by 𝜏𝑖.

(2) Similar to HBRM. When 𝑆𝑖 is the currently running
server, 𝑆𝑖.𝐵𝑢𝑑𝑔𝑒𝑡𝑇𝑖𝑐𝑘𝐶𝑜𝑢𝑛𝑡𝑒𝑟 is incremented upon
every system clock tick. Once the idle task starts run-
ning, 𝑆𝑖.𝐵𝑢𝑑𝑔𝑒𝑡𝑇𝑖𝑐𝑘𝐶𝑜𝑢𝑛𝑡𝑒𝑟 is saved as the budget
actually used by 𝜏𝑖.

(3) Using the hardware timer to mark the time 𝑡𝑖,active
that 𝑆𝑖 starts running, the time 𝑡𝑗

𝑖,preempted that 𝑆𝑖
is preempted for the 𝑗th time during the current
execution, the time 𝑡𝑗𝑖,resume that 𝑆𝑖 resumes after
the 𝑗th preemption, and the time 𝑡𝑖,complete that 𝜏𝑖
completes its execution. Assume that in one instance
of periodic server 𝑆𝑖 it is preempted 𝑛 times. The
actually used budget 𝐶󸀠𝑖 equals (𝑡𝑖,complete − 𝑡𝑖,active) −∑𝑛𝑗=1(𝑡𝑗𝑖,preempted − 𝑡𝑗𝑖,resume).

Our design chooses the third approach. The first has
the advantage of limited memory reading times. However, it
will be very complex to provide a budget reclamation and

6 Scientific Programming

Ticks

Time

System

HBRM

clock tick
Update

Budget reload Period reload

Preempted
Borrow

from future

Task
starts

running

Resume Si

Create Si
Pend Si

Release Si

Θi = Ci
Πi = Ti

Θi

Πi

(Πi, Θi)

Figure 5: Periodic server with heart beat resource monitor.

(1) procedureHBRM
(2) Update Remaining Budget(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑒𝑟V𝑒𝑟)
(3) Update Remaining Period(𝑆1, . . . , 𝑆𝑛)
(4) Update Queue(𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒)
(5) Update Queue(𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒)
(6) Update Queue(⋅ ⋅ ⋅)
(7) . . .
(8) end procedure

Algorithm 1

borrowing interface for the fault tolerance service, because
the remaining budget Θ𝑖 is influenced not only by 𝐶𝑖 but
also by the reclamation and borrowing slacks. The second is
a straightforward approach, but changing the variable’s value
after every clock tick event causes more overhead than the
other two approaches. In the implementation of the third
solution, a separate hardware timer is used other than the one
for the system clock tick. The resolution (42 ns) is set to be
higher than the system clock tick. Thus, it prevents a loss of
accuracy during statistical calculation.

7. Scheduler Support

There are four scheduling points for the global scheduler:
when a server is created; when a server in the ready state
is deleted; after HBRM’s execution; and when the idle task
starts running and the current server is not the idle server.
The pseudocode in Algorithm 2 shows the overall scheduling
process. It includes two steps: selection of the next running
server and selection of the next running task. The function𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒() selects the running server 𝑆𝑖. The detailed
procedure is shown in Algorithm 3. 𝐿𝑜𝑐𝑎𝑙 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒() repre-
sents the original scheduler of 𝜇C/OS III. It is called every
time after 𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒() and decides which one among𝜏𝑖 and 𝜏idle should run.

Algorithm 3 shows the global scheduler’s behaviour in
EDF scheduling (with no support for fault tolerance service).
It always selects the head item in the 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒
to be the next running server. If the head item in the𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 exists and is not the currently run-
ning server, a server switch will be implemented. The
local scheduler then switches to the corresponding server’s𝑇𝑎𝑠𝑘𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝑇𝑎𝑠𝑘𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 as defined in𝜇C/OS III
consists of a bitmap containing the priority levels that are
ready and a table containing pointers to all the tasks ready.

Doubly linked queues (𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒,𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒, etc.) are employed for global
scheduling. Each queue is a data structure of 𝑆𝐸𝑅𝑉𝐸𝑅 𝐿𝐼𝑆𝑇.
It consists of one pointer to the first server in the queue.
Correspondingly, a server’s basic data structure has three
fields as shown in the list below.

Server TCB {
∗PrevPtr;∗NextPtr;∗ServerListPtr;
...

};

Scientific Programming 7

NULL
NULL

NULL
NULL

ServerReadyQueue
Head

New released

Θ1 Θ2 Θ3

Θ3

Π1

Θ1

Π1

Π2 − Θ1

Θ2

Π2 − Θ1

Π3 − Θ1 − Θ2

Θi

Π3 − Θ1 − Θ2 − ΘiΠi − Θ1 − Θ2

server Si

Figure 6: Ready queue insertion example (Π1 ≤ Π2 < Π𝑖 ≤ Π3).

(1) procedure SCHEDULE
(2) Global Schedule()
(3) Local Schedule()
(4) end procedure

Algorithm 2

.𝑆𝑒𝑟V𝑒𝑟𝐿𝑖𝑠𝑡𝑃𝑡𝑟 is a pointer to a data entry of the queue
to which the server belongs. .𝑁𝑒𝑥𝑡𝑃𝑡𝑟 and .𝑃𝑟𝑒V𝑃𝑡𝑟 are used
for doubly linked queues.The last server in a queue .𝑁𝑒𝑥𝑡𝑃𝑡𝑟
points to𝑁𝑈𝐿𝐿.

Figure 6 presents an example of the insertion of a newly
released server 𝑆𝑖 into 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒, where EDF is the
global scheduling policy. A pair of integers, Π1 and Θ1, need
to be decremented upon system clock tick interrupt.

8. Fault Tolerance

The fault tolerance service relies on the resource monitor
HBRMandAID.The purpose is to handle the situationwhere
the task’s actual execution time exceeds the assigned budget
of the server to which it belongs. The implementation of this
service employs the BACKSLASH presented in [66] whose
main principles are summarised as follows:

(1) Allocate slack as early as possible.
(2) Allocate slack to the one with the earliest original

deadline.
(3) Allow borrowing against a server’s own future

resource reservations to complete the current execu-
tion. The server’s priority after borrowing is changed
to the one from which the resources are borrowed.

(4) Retroactively allocate slack to servers that have bor-
rowed from their current budget during their last
release period.

To implement the principles, other than𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒 and 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒, two more
queues are used: the server borrowing queue in ready state
(𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒) and the server borrowing
queue in pending state (𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒).

When the HBRM detects that the budget of the run-
ning server 𝑆𝑖 has been exhausted (Θ𝑖 = 0) while 𝜏𝑖’s

execution remains unfinished (as the second execution
period of 𝑆𝑖 indicated in Figure 5), 𝑆𝑖 will be put into
the 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒. Meanwhile, 𝑆𝑖 borrows from
its own future budget with an extended deadline (Θ𝑖 =𝐶𝑖, Π𝑖 = Π𝑖 +𝑇𝑖). Now, server 𝑆𝑖 simultaneously exists in two
queues 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 and 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒.𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒 is sorted with the servers’ real
deadlines and 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 is sorted with extended
deadlines. A different pair of pointers, .𝐵𝑟𝑤𝑁𝑒𝑥𝑡𝑃𝑡𝑟 and.𝐵𝑟𝑤𝑃𝑟𝑒V𝑃𝑡𝑟, are used in 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒 as
shown in the server’s data structure below.

Server TCB {
...∗BrwPrevPtr;∗BrwNextPtr;
...

};
When 𝜏𝑖 eventually finishes one execution, 𝑆𝑖 is put into

the 𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒 in order of real deadlines.
The queue arrangements are done after the AID by the idle
task and a schedule point is followed. In a different scenario
that 𝑆𝑖 is detected idle without borrowing, its remaining
budget Θ𝑖 will be distributed to other servers as slack. The
slack receiver is selected from 𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒,𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒, and 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒. The
overall process is expressed by Algorithm 4.

The slack donation is processed by Algorithm 5. The
head server 𝑆𝑟 in 𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒 is the first
one that has its remaining budget increased. Depending on
the value of Θ𝑖, 𝑆𝑟’s remaining budget can be increased by
up to the processor capacity that it consumed beyond 𝐶𝑟
during its last run. At the same time, Θ𝑖 is decreased by the
same amount. Then, if Θ𝑖 is still greater than zero, the next
available server in 𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑟r𝑜𝑤𝑄𝑢𝑒𝑢𝑒will increase
its remaining budget. Until 𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒 is
empty, the slack goes to the server in the ready queue that
has the shortest original deadline. After the slack donation
process, the head server in the 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 starts
running.

Comparedwith the example of the plain EDFdescribed in
Section 7, the ready queue management method is modified

8 Scientific Programming

(1) Function GLOBAL SCHEDULE()
(2) If 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑒𝑟V𝑒𝑟 = 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝐻𝑒𝑎𝑑𝑆𝑒𝑟V𝑒𝑟 then
(3) Return
(4) else if 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝐻𝑒𝑎𝑑𝑆𝑒𝑟V𝑒𝑟 =𝑁𝑈𝐿𝐿&&𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑒𝑟V𝑒𝑟 = 𝐼𝑑𝑙𝑒𝑆𝑒𝑟V𝑒𝑟 then
(5) Return
(6) else if 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝐻𝑒𝑎𝑑𝑆𝑒𝑟V𝑒𝑟 =𝑁𝑈𝐿𝐿&&𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑒𝑟V𝑒𝑟 ̸= 𝐼𝑑𝑙𝑒𝑆𝑒𝑟V𝑒𝑟 then
(7) CurrentRunningServer = IdleServer
(8) TaskReadyQueue = IdleServer.TaskReadyQueue
(9) else
(10) CurrentRunningServer = ServerReadyQueue.HeadServer
(11) TaskReadyQueue = CurrentRunningServer.TaskReadyQueue
(12) end of
(13) end function

Algorithm 3

(1) if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑒𝑟V𝑒𝑟 = 𝐼𝑑𝑙𝑒𝑆𝑒𝑟V𝑒𝑟 then
(2) Return
(3) else if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑒𝑟V𝑒𝑟 = 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒.𝐻𝑒𝑎𝑑𝑆𝑒𝑟V𝑒𝑟

then
(4) 𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒𝐼𝑛𝑠𝑒𝑟𝑡(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑒𝑟V𝑒𝑟)
(5) 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒𝑅𝑒𝑚𝑜V𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑒𝑟V𝑒𝑟)
(6) 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒𝑅𝑒𝑚𝑜V𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑒𝑟V𝑒𝑟)
(7) else if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑒𝑟V𝑒𝑟.Θ𝑖 > 0 then
(8) 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒𝑅𝑒𝑚𝑜V𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑒𝑟V𝑒𝑟)
(9) 𝑆𝑙𝑎𝑐𝑘 𝐷𝑜𝑛𝑎𝑡𝑖𝑜𝑛(Θ𝑖)
(10) end if

Algorithm 4

to be used together with this fault tolerance service, because
the exact time at which a server in the 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒
starts to run can no longer be predicted. After the mod-
ification, all the servers’ remaining periods in the ready
queue have to be decreased upon system clock tick. Figure 7
presents an insertion of a newly released server 𝑆𝑖 into
the 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 with the ready queue management
method which adapts to this fault tolerance policy.

9. Resource Adaptation

The resource adaptation service is designed to adaptively
change the reservation for each server during runtime.
It relies on the whole of the support from the resource
monitor HBRM, AID, and PBUR.The statistical tool adopted
here is Chebyshev’s inequality which is providing a simple
implementation possibility needed in our limited embedded
environment.

Based on Chebyshev’s inequality, for a positive number𝑘, a random variable 𝑋 with the standard deviation 𝜎, the
bound follows formula (1). 𝑃(|𝑋 − 𝑋| ≥ 𝑘𝜎) represents the
possibility that 𝑋’s value is not inside the bound. Since the
distribution of 𝑋 has equal lower and upper tails (Figure 8),

𝑘 can be estimated by (2). The budget’s upper bound here is
then estimated by (3):

𝑃 (󵄨󵄨󵄨󵄨󵄨𝑋 − 𝑋󵄨󵄨󵄨󵄨󵄨 ≥ 𝑘𝜎) ≤ 1𝑘2 , 𝑘 ≥ 1, (1)

𝑘 = √ 12 ∗ 𝑃 (𝑋 − 𝑋 ≥ 𝑘𝜎) , (2)

𝑋 = 𝑋 + √ 12 ∗ 𝑃 (𝑋 − 𝑋 ≥ 𝑘𝜎) ∗ 𝜎. (3)

The statistical calculation resource is the budget actually
used by 𝑁 successive past executions: {𝐶󸀠𝑖𝑗 | ∀𝑗 ∈ 𝑚 ≤ 𝑗 ≤𝑚 + 𝑁 − 1}, where 𝑗 donates the 𝑗th execution. We use (3)
to estimate the future budget (i.e., 𝐶𝑖 = 𝑋) and reassign the
result to each server as the new reservation budget.Themean
and standard deviation are calculated by

𝑋 = 1𝑁
𝑚+𝑁−1∑
𝑗=𝑚

𝐶󸀠𝑖𝑗,

𝜎 = √ 1𝑁 − 1 ∗ 𝑚+𝑁−1∑
𝑗=𝑚

(𝐶󸀠𝑖𝑗 − 𝑋)2.
(4)

Scientific Programming 9

(1) function SLACK DONATION(Θ𝑖)
(2) whileΘ𝑖 > 0 do
(3) 𝑆𝑟 = 𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒.𝐻𝑒𝑎𝑑𝑆𝑒𝑟V𝑒𝑟
(4) 𝑆𝑠 = 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒.𝐻𝑒𝑎𝑑𝑆𝑒𝑟V𝑒𝑟
(5) 𝑆𝑡 = 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝐻𝑒𝑎𝑑𝑆𝑒𝑟V𝑒𝑟
(6) if 𝑆𝑟 ̸= 𝑁𝑈𝐿𝐿 then
(7) if Θ𝑖 ≥ 𝐶𝑟 − Θ𝑟 then
(8) 𝐷𝑜𝑛𝑎𝑡𝑒 𝑆𝑙𝑎𝑐𝑘 𝐶𝑟 − Θ𝑟 𝑇𝑜 𝑆𝑟(Θ𝑟, Π𝑟)
(9) Θ𝑖 = Θ𝑖 − (𝐶𝑟 − Θ𝑟)
(10) 𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒𝑅𝑒𝑚𝑜V𝑒(𝑆𝑟)
(11) 𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒𝐼𝑛𝑠𝑒𝑟𝑡(𝑆𝑟)
(12) else
(13) 𝐷𝑜𝑛𝑎𝑡𝑒 𝑆𝑙𝑎𝑐𝑘 Θ𝑖 𝑇𝑜 𝑆𝑟(Θ𝑟, Π𝑟)
(14) Θ𝑖 = 0
(15) end if
(16) else if 𝑆𝑠 ̸= 𝑁𝑈𝐿𝐿 then
(17) if 𝑆𝑠 = 𝑆𝑡 then
(18) 𝐷𝑜𝑛𝑎𝑡𝑒 𝑆𝑙𝑎𝑐𝑘 Θ𝑖 𝑇𝑜 𝑆𝑠(Θ𝑠, Π𝑠)
(19) Θ𝑖 = 0
(20) else if Π𝑠 < 𝑃𝑠 then
(21) 𝐷𝑜𝑛𝑎𝑡𝑒 𝑆𝑙𝑎𝑐𝑘 Θ𝑖 𝑇𝑜 𝑆𝑠(Θ𝑠, Π𝑠)
(22) Θ𝑖 = 0
(23) else if Π𝑠 − 𝑃𝑠 < Π𝑡 then
(24) 𝐷𝑜𝑛𝑎𝑡𝑒 𝑆𝑙𝑎𝑐𝑘 Θ𝑖 𝑇𝑜 𝑆𝑠(Θ𝑠, Π𝑠)
(25) Θ𝑖 = 0
(26) else
(27) 𝐷𝑜𝑛𝑎𝑡𝑒 𝑆𝑙𝑎𝑐𝑘 Θ𝑖 𝑇𝑜 𝑆𝑡(Θ𝑡, Π𝑡)
(28) Θ𝑖 = 0
(29) end if
(30) else if 𝑆𝑡 ̸= 𝑁𝑈𝐿𝐿 then
(31) 𝐷𝑜𝑛𝑎𝑡𝑒 𝑆𝑙𝑎𝑐𝑘 Θ𝑖 𝑇𝑜 𝑆𝑡(Θ𝑡, Π𝑡)
(32) Θ𝑖 = 0
(33) else
(34) Θ𝑖 = 0
(35) end if
(36) end while
(37) 𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒𝐼𝑛𝑠𝑒𝑟𝑡(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑒𝑟V𝑒𝑟)
(38) end function

Algorithm 5

The configurable variables from the user side are 𝑃(𝑋 −𝑋 ≥ 𝑘𝜎) and 𝑁. A smaller 𝑃(𝑋 − 𝑋 ≥ 𝑘𝜎) can guarantee a
lower overrun rate as well as a higher preassigned budget. For
different𝜒𝑖, there is a corresponding𝑃𝑖. Normally they should
meet the condition that when 𝜒𝑖 > 𝜒𝑗, then 𝑃𝑖 > 𝑃𝑗.

With regard to the choice of the value of 𝑁, on the one
hand, it should be a relatively big number (≥30) to have a
better statistical precision. The execution frequency of the
statistical recalculation for 𝑆𝑖 is 1/(𝑁 ∗𝑇𝑖), which can also be
lowered by increasing 𝑁. On the other hand, since the point
at which 𝜏𝑖’s computation requirement dramatically changes
is not predictable, the longer the budget reestimation calcu-
lation interval, the higher the chance that a high overrun rate
will occur between two reestimation calculations. Examples
are shown in Figure 9(a). With low frequency, when a server𝑆𝑖’s budget requirement increases to a higher value only a
few release periods after 𝜏𝑖’s 2𝑁th execution, the earliest time
for it to receive a higher budget as a reaction to the increase

of actual consumption is almost 𝑁 release periods after.
Therefore, from 𝜏𝑖’s (2𝑁 + 1)th to 3𝑁th execution, 𝑆𝑖 might
suffer from a high overrun rate. With high frequency, the
duration of the overrun situationwill obviously be shortened.

In order to achieve better statistical precision and react
quickly upon changes, a solution with dynamic interval
between two budget estimation calculations is proposed.
Each time 𝜏𝑖 overruns its assigned budget (𝐶󸀠𝑖𝑗 > 𝐶𝑖), a
counter 𝑂V𝑒𝑟𝑟𝑢𝑛𝐶𝑡𝑟 will increase by one. From the moment
the overrun rate is higher than the expected percentage
(𝑃(𝑋 − 𝑋 ≥ 𝑘𝜎)), it triggers an immediate recalculation for
budget prediction. In Figure 9(b), for instance, after the 𝑚th
execution, the system arranges a recalculation after detecting
that 𝑂V𝑒𝑟𝑟𝑢𝑛𝐶𝑡𝑟/(𝑚 − 2𝑁) > (1 − 𝑃(𝑋 − 𝑋 ≥ 𝑘𝜎)). If
the overrun rate stays below 𝑃(𝑋 − 𝑋 ≥ 𝑘𝜎), the budget
estimation calculationwill happen every𝑁 executions, where𝑁 is configured by the user.

10 Scientific Programming

NULL
NULL

NULL

NULL

AgentReadyQueue
Head

New released
agent Ai

Θ2

Π2

Θ2

Π2

Θ3

Π3

Θ3

Π3

Θ1

Π1

Θ1

Π1

Θi

Πi

Figure 7: Ready queue insertion example (Π1 ≤ Π2 < Π𝑖 ≤ Π3).

Upper
tail

Lower
tail

X

P

X + k

Figure 8: Probability distribution, upper bound𝑋 + 𝑘𝜎.

Budget estima-
tion

actual consumption

calculation

Big estimation window

Small estima-
tion window

i ’sAn increase of

C
i2N

C
i3N

C
iN

C
ij

i ’s execution time samples

(a) Budget reestimation calculation on fixed intervals: The red arrows indicate the
earliest time for the system to react to the increase of 𝜏𝑖’s consumption when
configuring the system with small (below) and big estimation intervals (above)

Ĭ Ĭ

tual consumption

Budget estimation
calculation triggered
by overruns

Estimation window
configured by user

Regular budget
estimation cal-
culation event

C
i2NC

iN

i ’s execution time samples

i ’s ac-

C
ij

C
ij: the processor capacity

actually consumed during i ’s

m − 2N < N

C
im

C
i(m+N)

jth job execution

An increase of

(b) Dynamically triggered budget reestimation calculation

Figure 9: Budget reestimation calculations, 𝑥-axis denotes the number of execution time samples since the first job released by 𝜏𝑖; 𝑦-axis
denotes the processor capacity actually consumed during each job execution.

Scientific Programming 11

1 1 1 1 1 1 1 0

0123456Criticality level

CRITICALITY_DATA

7

Tasks at criticality 3 are allowed to
run

Tasks at criticality 0 are not allowed
to run

Figure 10: An 8-bit 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴.
Theproposed dynamic interval policy guarantees for each

task with criticality level 𝜒𝑖 the rate of overruns is bounded by𝑃𝑖.Therefore the rate of its deadlinemisses is also bounded by𝑃𝑖 in a nonoverload system.
The value of 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒 is modified upon each server

budget reassignment event with (5), where Δ𝐶𝑖 is the differ-
ence from the previously assigned budget

𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒 = 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒 + Δ𝐶𝑖𝑇𝑖 . (5)

10. System Overload Handling

The overload handling service serves the situation where
the resource adaptation service cannot assign the servers’
required budget due to system overload. It is designed to
respect the tasks’ criticality levels in a MCS. The idea is to
suspend low-criticality level tasks for some time in order to
make resources available for a high-criticality level task.

A 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴 entry is used to identify
whether servers at each criticality level are allowed (1) or not
(0) to run the housed tasks. The number of criticality levels
supported depends on the bit-size of 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴
which is limited by the processor data width. For example,
on a 32-bit processor, it can support up to 32 criticality
levels. If needed, this limitation can be easily overcome by
using several such data entries. With an 8-bit data entry the
criticalities are numbered from right to left as demonstrated
in Figure 10. Since for the time being the existing standards
consider no more than five criticality levels, one data entry
is enough. When the number of criticality levels is less than
the number of bits in 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴, several upper
bits are masked to 1 according to the difference of these two
numbers. Besides that, a vector 𝑆𝐸𝑅𝑉𝐸𝑅 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒[] is used
to store the amount of processor resources occupied by each
criticality level when they are allowed to run.𝑂V𝑒𝑟𝑙𝑜𝑎𝑑𝐻𝑎𝑛𝑑𝑙𝑒() is called after dynamic budget predic-
tion. Algorithm 6 presents the process, where 𝐶𝑖(𝑛+1) is the
newly calculated budget value,𝐶𝑖𝑛 is the current budget value
for 𝑆𝑖, and 𝑈𝑖(𝑛+1) = (𝐶𝑖(𝑛+1)/𝑇𝑖) 𝑈𝑖𝑛 = 𝐶𝑖𝑛/𝑇𝑖. Figure 11 is the
flow chart for the function 𝑂V𝑒𝑟𝑙𝑜𝑎𝑑𝐻𝑎𝑛𝑑𝑙𝑒().

We use special instructions: Count Leading Zeros (CLZ)
and Counting Tailing Zeros (CTZ), which can be found in
many processors, to speed up the overload handling process(𝑂V𝑒𝑟𝑙𝑜𝑎𝑑𝐻𝑎𝑛𝑑𝑙𝑒()).

When a system overload is detected, the first step is
using the CTZ instruction to count how many zeros are
there in a 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴 entry starting from the
right. For example, if 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴 is 8 bit, 0xFE
will result in 1 which identifies that the servers at criticality
zero already stopped running their tasks. Assume there are𝑙 tailing zeros (Figure 12); then the system adds the values
from 𝑆𝐸𝑅𝑉𝐸𝑅 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒[𝑙] to a budget sum. If the sum is
smaller than the overloaded processor resource, set the cor-
responding bit to zero in𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴.Then repeat
the steps until the sumvalue equals or is greater than the over-
loaded processor usage.The process is shown in Algorithm 7.
The corresponding part in Figure 10 is identified as 1.

When a server has a recalculated budget lower than
the current one, then this overload handling service first
uses CLZ instruction to count how many zeros are there
in ∼ 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴 from left. Assume there are 𝑚
leading zeros and 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴 is 𝑛 bit (Figure 13),
then criticality level 𝑛 − 1 − 𝑚 is the highest critical-
ity which is being stopped from running its tasks. Then,𝑆𝐸𝑅𝑉𝐸𝑅 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒[𝑛−1−𝑚]will be added to a sum. If the
sum is smaller than the spare processor resource, the 𝑛−1−𝑚
bit is set to be 1.Then repeat the steps until the sum is equal to
or greater than the spare processor resource. In another con-
dition that the one requiring resource cannot reclaim enough
processor bandwidth, it will suspend itself to avoid affecting
servers with higher criticalities.The process is shown inAlgo-
rithm 8.The corresponding part is identified as 2 in Figure 10.

This service adds an additional check(𝑆𝑒𝑟V𝑒𝑟𝑀𝑜𝑑𝑒𝐶ℎ𝑒𝑐𝑘()) upon each server’s execution; as soon
as it detects the corresponding bit in 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴
is modified, the servers will immediately stop or restart
the housed task and change the required budget. Being
suspended means the server has zero budget, but the system
still switches it from pending state to ready state at the
beginning of its periods. When the system tries to start the
tasks’ execution, 𝑆𝑒𝑟V𝑒𝑟𝑀𝑜𝑑𝑒𝐶ℎ𝑒𝑐𝑘() will detect that the
server is in the suspended mode and therefore put it back to
the pending state.

11. Performance Evaluation

In this section, the system’s performance in supporting MCS
is evaluated. The experiments are performed on a single core
ARM-based platform, Beaglebone Black. The processor runs
at a frequency of 1 GHz and the system’s clock tick frequency
is set to be 1 kHz (default value of 𝜇C/OS III).

Evaluation 1 measures the added overhead of server
switch, 𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒(), server budget and period update,
server queue arrangement, slack detection and donation, and
reserved budget calculation and prediction.

The overhead tests are based on the technique described
in [43]. A 32-bit DMtimer, which is a timing register of
AM3358, is used formeasuring the time intervals.The timer is
configured to run at 24MHz; the resolution of the evaluation
test results is 0.04 𝜇s. The results shown in this chapter are
rounded to the nearest 0.1 𝜇s (±0.1 𝜇s).This accuracy is about
three times faster than the tracing system overhead (see

12 Scientific Programming

(1) 𝑆𝐸𝑅𝑉𝐸𝑅 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒[𝜒𝑖] ← 𝑆𝐸𝑅𝑉𝐸𝑅 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒[𝜒𝑖] + (𝑈𝑖(𝑛+1) − 𝑈𝑖𝑛)
(2) if 𝐶𝑖(𝑛+1) > 𝐶𝑖𝑛 ∧ (𝑈𝑖(𝑛+1) − 𝑈𝑖𝑛) ≤ 1 − 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒 then
(3) 𝐶𝑖 ← 𝐶𝑖(𝑛+1)
(4) 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒 ← 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒 + (𝑈𝑖(𝑛+1) − 𝑈𝑖𝑛)
(5) Return
(6) else
(7) 𝑂V𝑒𝑟𝑙𝑜𝑎𝑑𝐻𝑎𝑛𝑑𝑙𝑒()
(8) end if

Algorithm 6

(1) 𝑠𝑢𝑚 ← 0, 𝑡𝑒𝑚𝑝 𝑑𝑎𝑡𝑎 ← 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴
(2) while 𝑠𝑢𝑚 < (𝑈𝑖(𝑛+1) − 𝑈𝑖𝑛) − (1 − 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒) do
(3) 𝑙 ← 𝐶𝑇𝑍(𝑡𝑒𝑚𝑝 𝑑𝑎𝑡𝑎)
(4) if 𝑙 = 𝜒𝑖 then
(5) break the loop
(6) end if
(7) 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑆𝐸𝑅𝑉𝐸𝑅 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒[𝑙]
(8) bit at position 𝑙 in 𝑡𝑒𝑚𝑝 𝑑𝑎𝑡𝑎 ← 0
(9) end while
(10) if 𝑙 = 𝜒𝑖 then
(11) 𝐶𝑖 ← 0
(12) bit at position 𝜒𝑖 in 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴 ← 0
(13) 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒 ← 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒 − 𝑈𝑖𝑛
(14) else
(15) 𝐶𝑖 ← 𝐶𝑖(𝑛+1)
(16) 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴 ← 𝑡𝑒𝑚𝑝 𝑑𝑎𝑡𝑎
(17) 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒 ← 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒 − (𝑠𝑢𝑚 − (𝑈𝑖(𝑛+1) − 𝑈𝑖𝑛))
(18) end if

Algorithm 7

Table 1: Tracing overhead test results.

Tracing overhead Result
Maximum 0.3 𝜇s
Minimum 0.2 𝜇s
Average 0.2 𝜇s
Table 1). The timer available is not synchronized with what
we want to measure.

Figure 14 shows the test methodology. For the operation
that needs to be tested, upon the start and the end of it,
two time stamps are obtained and put to local memory. All
the tested operations are related to scheduling and masked
from interrupts. So this test will not be delayed by interrupt
handlers. There is no task configured with higher priority
than the one being tested. So the difference of 𝑡1 and 𝑡2 is the
overhead caused solely by the tested operation.

Every test obtains more than 10000 samples making the
results sufficient for statistical analysing.

Figure 15 shows the test procedure for tracing overhead.
There is no operation between the two time stamp writing
actions, so the difference between 𝑡2 and 𝑡1 is the tracing
overhead. The aim of this test is to measure precisely the
tracing system overhead to enhance the overall accuracy.

Tracing system overhead is more hardware-related than
software-related. The sources of tracing system overhead are
timer register reading and memory writing

𝑡2 − 𝑡1 = 𝑂𝐻. (6)

The test result (Table 1) shows that there is only very
limited jitter in the overhead of the evaluation trace.

The overhead of an operation is obtained by subtracting
the minimum tracing overhead (Table 1) from the test result.

In Figure 16, we compare the overheads of server switch
when there are different numbers of servers. The results
indicate that the value is not related to the number of servers.
There is not much difference between the maximum and the
average overhead due to the fact that the test set is small
enough to fit into the cache. How the cache will affect the
performance is beyond the scope of this paper and will not
be discussed here.

In Figure 17, 𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒()’s overhead in two con-
ditions is shown. The values on the left hand side contain
no server switch time. These values are important due to
the fact that 𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒() is called upon every system
clock tick and most of the time it returns with no need
for switching between two servers. Here it has a value with
complexity 𝑂(1). The values on the right hand side show
what happens when the server switch time is not subtracted

Scientific Programming 13

(1) if ∼ 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴 = 0 then
(2) return
(3) end if
(4) 𝑠𝑢𝑚 ← 0, 𝑡𝑒𝑚𝑝 𝑑𝑎𝑡𝑎 ←∼ 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴
(5) while 𝑡𝑒𝑚𝑝 𝑑𝑎𝑡𝑎 ̸= 0 do
(6) 𝑚 ← 𝐶𝐿𝑍(𝑡𝑒𝑚𝑝 𝑑𝑎𝑡𝑎)
(7) 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑆𝐸𝑅𝑉𝐸𝑅 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒[𝑛 − 𝑚 − 1]
(8) if 𝑠𝑢𝑚 > (1 − 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒) + (𝑈𝑖𝑛 − 𝑈𝑖(𝑛+1)) then
(9) break the loop
(10) end if
(11) bit at position 𝑛 − 𝑚 − 1 in 𝑡𝑒𝑚𝑝 𝑑𝑎𝑡𝑎 ← 0
(12) end while
(13) 𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿𝐼𝑇𝑌 𝐷𝐴𝑇𝐴 ←∼ 𝑡𝑒𝑚𝑝 𝑑𝑎𝑡𝑎

Algorithm 8

Start

CRITICALITY_DATA,
SERVER_CPUUsage[]

Is any server being
currently suspended?

Is the released resource
enough for the reactivation
of any suspended server?

Increase
CRITICALITY_DATA

End

Is reclaiming resource
from lower criticality

servers possible?

CRITICALITY
_DATA _DATA

decrease
CRITICALITY

Yes

Yes

Yes

No

No

No

No

Yes

1

2

Ci(n+1) , Cin ,

Ci(n+1) < Cin?

Ci ← Ci(n+1)

Ci ← 0, decrease Ci ← Ci(n+1) ,

Figure 11: Flow chart for 𝑂Ve𝑟𝑙𝑜𝑎𝑑𝐻𝑎𝑛𝑑𝑙𝑒().

14 Scientific Programming

1 1 0 0CRITICALITY_DATA

0

The lowest criticality level of the
tasks that are currently allowed to

Criticality level l

· · · · · · · · ·

· · · · · ·

l zeros

l − 1

run in the system is l

Figure 12: CTZ in use of finding the lowest criticality level of the
tasks that are currently allowed to run in the system.

1 1 0 1 0 0

0 0 1 0 1 1

CRITICALITY_DATA

CRITICALITY_DATA

0

The highest criticality level of the
tasks that are currently not allowed

Criticality level n − 1

· · ·

· · ·

· · ·

· · ·

· · ·· · · n − m − 1

m zeros

to run in the system is n − m − 1

∼

Figure 13: CLZ in use of finding the highest criticality level of the
tasks that are currently prevented from execution.

from 𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒(). The maximum value occurs when
a currently running server is preempted by another newly
released server with a shorter deadline. Then the system
has to save the preempted server’s status before switching
between their task-ready lists.

Figure 18 shows the overhead caused by
the servers’ remaining budgets and periods
updating. It is not a constant value due to two
reasons: first, the 𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒 and𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒 added by the fault tolerance ser-
vice introduce uncertainty; second, every member’s remain-
ing period in the 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 needs to be decreased
instead of only the first member’s as in the simple EDF exam-
ple (Figure 6). The complexity of its maximum overhead is
then𝑂(𝑀) (𝑀 ≤ 𝑁), where𝑀 is the largest possible number
of servers that can be in the 𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 simultane-
ously and𝑁 equals the number of active servers in the system.

Figure 19 denotes the accumulated overhead
introduced by 𝑈𝑝𝑑𝑎𝑡𝑒 𝑄𝑢𝑒𝑢𝑒(𝑆𝑒𝑟V𝑒𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒),𝑈𝑝𝑑𝑎𝑡𝑒 𝑄𝑢𝑒𝑢𝑒(𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒), 𝑈𝑝𝑑𝑎𝑡𝑒 𝑄𝑢𝑒𝑢𝑒(𝑆𝑒𝑟V𝑒𝑟P𝑒𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒), and 𝑈𝑝𝑑𝑎𝑡𝑒 𝑄𝑢𝑒𝑢𝑒(𝑆𝑒𝑟V𝑒𝑟𝑅𝑒𝑎𝑑𝑦𝐵𝑜𝑟𝑟𝑜𝑤𝑄𝑢𝑒𝑢𝑒). Its maximum value is strongly
related to how many servers are created in the system.This is
as expected. The reason is that the 𝑈𝑝𝑑𝑎𝑡𝑒 𝑄𝑢𝑒𝑢𝑒() function
needs to go through the queues to find the right place to
insert the newly released servers or those whose budgets are
exhausted. The worst case happens when every server in the
queues is checked. Thus the complexity is 𝑂(𝑁), where 𝑁
equals the sum of the number of servers in ready state and in
pending state.

Test operation

Do repeatedly

Write trace t1 Write trace t2

Figure 14: Performance measurement methodology [43].

Do repeatedly

Write trace t1 Write trace t2

Figure 15: Tracing overhead test procedure [43].

6 9 123
Number of servers

0

1

2

3

O
ve

rh
ea

d
(

s)

Max.
Avg.

Figure 16: Server switch overhead.

Without server switch (Max.)
Without server switch (Avg.)

Max.
Avg.

6 9 123
Number of servers

0

1

2

3

4

5

6

7

8

O
ve

rh
ea

d
(

s)

Figure 17: Overhead of 𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒().

Scientific Programming 15

6 9 123
Number of servers

0.0

0.2

0.4

0.6

0.8

O
ve

rh
ea

d
(

s)

Max.
Avg.

Figure 18: Overhead caused by servers’ budgets and periods
updating.

6 9 123
Number of servers

Max.
Avg.

0

1

2

3

O
ve

rh
ea

d
(

s)

Figure 19: Accumulated overhead caused by𝑆𝑒𝑟Ve𝑟𝑄𝑢𝑒𝑢𝑒𝑈𝑝𝑑𝑎𝑡𝑒().

Figure 20 indicates the overhead introduced by AID and
slack donation.

Figure 21 shows the overhead in deciding a server’s budget
value in relation to the calculation interval (the amount
of execution records used in the prediction). The value
is highly dependent on the calculation interval. However,
when considering processor time (%), which equals (Absolute
Calculation Overhead/(Server𝑃𝑒𝑟𝑖𝑜𝑑∗𝑁𝑢𝑚𝑏𝑒𝑟 of Executions
Between each Calculation)) ∗ 100%, the values for different
calculation intervals are almost the same. For instance, for
a server that has a period equals 100ms, the adaptation
calculation will cost about 0.005% of the processor time,
regardless of how many execution records are taken into
account by the calculation. Therefore, if permitted by the

6 9 123
Number of servers

Max.
Avg.

0

1

2

3

4

5

6

7

O
ve

rh
ea

d
(

s)

Figure 20: AID + slack donation.

100 150 20050
Calculation interval (number of executions)

0

20

40

60

80

100

O
ve

rh
ea

d
(

s)

Max.
Avg.

Figure 21: Overhead for reserved budget value estimation.

system’s memory space, adopting a longer regular calculation
interval is a good choice in consideration of a better statistical
accuracy, and it will not increase the relative overhead.

Evaluation 2 detects, with our platform, whether the
fluctuation in a task’s computation requirement can be
effectively handled and whether the overrun faults can be
tolerated in a nonoverload system. For this evaluation, a task
is designed with variable consumption in each release period.
Its processor bandwidth consumption is generated following
a normal distribution with a 10% standard deviation from the
mean. By design, the value of the mean changes between the3000th and 3600th period, the 6000th and 7400th period,
and the 12000th and 14400th period. For our system, the
calculation parameter 𝑃((𝑋 − 𝑋) ≥ 𝑘𝜎) for this task is set
to be 10%. The regular calculation interval in the resource

16 Scientific Programming

Period number

Actual consumption
Reserved resource

2500020000150001000050000

10

15

20

25

30

35

40
Pr

oc
es

so
r u

sa
ge

 (%
)

(a)

Actual consumption
Reserved resource

0

5

10

15

20

25

30

35

40

Pr
oc

es
so

r u
sa

ge
 (%

)

14400

(14376, 18)

(14417, 18)

(14418, 22)

14420 14440 14460 1448014380
Period number

(b)

Figure 22: (a) Overall resource adaptation performance. (b) Partial enlarged view of (a): after the execution of the 14417th release period,
the resource monitor detects that 𝑂V𝑒𝑟𝑟𝑢𝑛𝐶𝑡𝑟/(𝑚 − 2𝑁 + 1) = 5/(14417 − 14376 + 1) = 11.9% > 10% and thus a new calculation event is
triggered immediately based on the dynamic calculation interval policy.

Table 2: Overruns and deadline misses.

Period number (∗1000th) 0–3 3–3.6 3.6–6 6–7.4 7.4–12 12–14.4 14.4–25 Total
OR (%) 0.57 2.2 0.50 0.71 0.39 0.88 0.56 0.60
DMR (%) 0 0 0 0 0 0 0 0

adaptation service is set as 50. The system is not overloaded
during the whole process.

The overrun ratios (ORs) and deadline missing ratios
(DMRs) in Evaluation 2 are shown in Table 2. The results
show that when the fluctuation appears (from the 3000th
to the 3600th release period, from the 6000th to the 7400th
release period, and from the 12000th to the 14400th release
period), the OR is higher. However, the overall OR is less
than 0.6%.The highest OR is detected in the period from the3000th to the 3600th execution and is still less than 3%. No
DMR event is detected.The bound, which is 10% for both OR
and DMR as defined, holds in the tested case.

Figure 22(a) presents the task’s actual consumption and
the assigned budget in 1–25000th release period. It shows that
if a big rise in the consumption lasts for a certain number
of periods, a change will be triggered to the assigned budget
value. The budget prediction follows the actual change cor-
rectly and rapidly. The partial enlarged view in Figure 22(b)
shows that when the OR gets too high, a reprediction event
will start immediately due to the dynamic calculation interval
policy.

Evaluation 3 detects the following: under overload condi-
tion, whether the system can guarantee the resource for high-
criticality tasks; when there is enough resource, whether the
low-criticality tasks can be restarted. The overheads caused
by𝑂V𝑒𝑟𝑙𝑜𝑎𝑑𝐻𝑎𝑛𝑑𝑙𝑒() and 𝑆𝑒𝑟V𝑒𝑟𝑀𝑜𝑑𝑒𝐶ℎ𝑒𝑐𝑘() are alsomea-
sured.The regular calculation interval in the resource adapta-
tion service is set as 100.There are four periodic tasks running

Table 3: Overview of the tasks being tested in Evaluation 3.

Task Period (ms) Criticality 𝑃((𝑋 − 𝑋) ≥ 𝑘𝜎)𝜏1 160 0 10%𝜏2 100 2 2%𝜏3 200 1 6%𝜏4 1000 0 10%

Table 4: ORs DMRs and SRs in Evaluation 3.

Task 𝜏1 𝜏2 𝜏3 𝜏4
OR (%) 0.16 0.15 0.68 0.49
DMR (%) 0 0 0 0
SR (%) 63 0 36 63

in this case study. Their criticality levels and corresponding𝑃((𝑋−𝑋) ≥ 𝑘𝜎) are listed in Table 3. 𝜏2 is predefined to have a
highly fluctuated resource consumption which causes system
overload at certain time point.The budgets for the suspended
tasks are set to be 2 clock ticks instead of zero for a better
observation and 𝑆𝐸𝑅𝑉𝐸𝑅 𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒[] values are adjusted
correspondingly.

In Evaluation 3, the tasks’ ORs, DMRs, and the ratios that
they are suspended (SRs) due to system overload are shown
in Table 4. During the time that the tasks are not suspended,
no deadline misses are detected for all the tasks.

Scientific Programming 17

Actual consumption
Reserved budget

100 200 300 400 5000
time (s)

0

5

10

15

20

25
Pr

oc
es

so
r p

er
ce

nt
ag

e (
%

)

Actual consumption
Reserved budget

100 200 300 400 5000
time (s)

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75

Pr
oc

es
so

r p
er

ce
nt

ag
e (

%
)

Actual consumption
Reserved budget

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Pr
oc

es
so

r p
er

ce
nt

ag
e (

%
)

100 200 300 400 5000
time (s)

Actual consumption
Reserved budget

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Pr
oc

es
so

r p
er

ce
nt

ag
e (

%
)

100 200 300 400 5000
time (s)

Figure 23: The actual consumption of 𝜏𝑖 and the reserved resource for each task. From top left to bottom right: 𝜏1, 𝜏2, 𝜏3, and 𝜏4.
Figure 23 indicates the changes of these four tasks’

actual consumption and assigned budgets across the time.
Different from Figure 22, in Figure 23 the 𝑥-axis denotes
the time instead of release period numbers. It shows that
small overrun faults can be tolerated for tasks with different
criticality levels; when an overload condition is detected, the
system can adapt quickly to the situation by suspending some
servers in the order of low-criticality to high-criticality and
ensure the task with the highest criticality, which is 𝜏2 in this
case, has enough resource; as soon as the system recovers
enough resource, the stopped servers start running again in
the order of high-criticality to low-criticality. From Figure 23
one can also tell that if offline WCET is used for the tasks’
budget value, 𝜏2 will receive processor bandwidth ≥47%,
while the other tasks with lower criticalities will be sacrificed
during the whole process.

Figure 24 indicates the overhead caused by the overload
handling service in Evaluation 3. Concluded from Figures 16,
17, 18, 19, 20, 21, and 24, the overall overhead caused by all the
services will not be greater than 2% of processor resource in
the worst case.

12. Conclusion and Future Work

This paper has presented a design that incorporates adaptive
reservation into a MCS. Based on the MCS model proposed,
a resource adaptation method is used to adaptively change
the reserved budget for each task and a slack distribution
policy is employed to handle overrun faults. As shown in the
evaluation, the overhead caused by the added layer does not
take more than 2% of the processor resource. We believe that
these values, although have space to be further lowered, are
still acceptable in many practical circumstances.

The case studies show the following: the tasks’ overrun
ratios and deadline misses are bounded by user’s predefined
values for each criticality level; the system is aware of the
available resource and guarantees lower criticality tasks a
good chance to receive their required resource; the resource
usage efficiency of the system is high during nonoverload
condition; upon system overload, the tasks with higher
criticality levels can always receive enough resource.

In future work, we want to improve the system by adding
criticality considerations in the fault tolerance service which

18 Scientific Programming

ServerModeCheck() OverloadHandle()

Max.
Avg.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

O
ve

rh
ea

d
(

s)

Figure 24: Overhead caused by overload handling.

means increasing the priority of higher criticality tasks in
receiving slacks. As defined by the adopted slack distribution
policy, only dynamic slack has been considered. In future
work, wewould like to also discover the potential applications
of static slack (unreserved resources). We also plan to extend
this work to other shared hardware resources, multiprocessor
systems, and distributed systems.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems
with varying degrees of execution time assurance,” in Pro-
ceedings of the 28th IEEE International Real-Time Systems
Symposium (RTSS ’07), pp. 239–243, December 2007.

[2] A. Burns and R. Davis, “Mixed criticality systems—a review,”
Tech. Rep., Department of Computer Science, University
of York, 2016, https://www-users.cs.york.ac.uk/∼burns/review
.pdf.

[3] M. Ali Awan, D. Masson, and E. Tovar, “Energy-aware task
allocation onto unrelated heterogeneous multicore platform for
mixed criticality systems,” in Proceedings of the 36th IEEE Real-
Time Systems Symposium (RTSS ’15), p. 377, IEEE, San Antonio,
Tex, USA, December 2015.

[4] S. Baruah and Z. Guo, “Mixed-criticality scheduling upon
varying-speed processors,” in Proceedings of the IEEE 34th
Real-Time Systems Symposium (RTSS ’13), Vancouver, Canada,
December 2013.

[5] F. Broaekaert, A. Fristsch, L. San, and S. Tverdyshev, “Towards
power-efficient mixed critical systems,” in Proceedings of the
9th Florian Broekaert, Laurent San, Agnes Fritsch (Thales Com-
munications & Security) Sergey Tverdyshev (SYSGO) OSPERT
Workshop, pp. 30–35, July 2013.

[6] P. Haririan and A. Garcia-Ortiz, “A framework for hardware-
based dvfs management in multicore mixed-criticality sys-
tems,” in Proceedings of the 10th International Symposium on
IEEE Reconfigurable Communication-Centric Systems-on-Chip
(ReCoSoC ’15), pp. 1–7, Bremen, Germany, 2015.

[7] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy
efficient DVFS scheduling for mixed-criticality systems,” in
Proceedings of the 14th International Conference on Embedded
Software (EMSOFT ’14), New Delhi, India, October 2014.

[8] X. Zhang, J. Zhan, W. Jiang, Y. Ma, and K. Jiang, “Design
optimization of security-sensitive mixed-criticality real-time
embedded systems,” in Proceedings of the 1st Workshop on Real-
Time Mixed Criticality Systems (ReTiMiCS ’13), 2013.

[9] A. Addisu, L. George, V. Sciandra, and M. Agueh, “Mixed
criticality scheduling applied to jpeg2000 video streaming over
wireless multimedia sensor networks,” in Proceedings of the 1st
Workshop on Mixed Criticality Systems (WMC ’13), and IEEE
Real-Time Systems Symposium (RTSS ’13), pp. 55–60, December
2013.

[10] H. Ahmadian and R. Obermaisser, “Time-triggered extension
layer for on-chip network interfaces in mixed-criticality sys-
tems,” in Proceedings of the 18th Euromicro Conference onDigital
System Design (DSD ’15), pp. 693–699, Madeira, Portugal,
August 2015.

[11] N. Audsley, “Memory architectures for NoC-based real-time
mixed criticality systems,” in Proceedings of the 1st Workshop on
Mixed Criticality Systems, pp. 37–42, IEEE, Vancouver, Canada,
December 2013.

[12] S. Baruah and A. Burns, “Achieving temporal isolation in
multiprocessor mixed criticality systems,” in Proceedings of the
2nd Workshop on Mixed Criticality Systems (WMC), RTSS, pp.
21–26, 2014.

[13] A. Burns, J. Harbin, and L. S. Indrusiak, “A wormhole NoC
protocol formixed criticality systems,” in Proceedings of the 35th
IEEE Real-Time Systems Symposium (RTSS ’14), pp. 184–195,
IEEE, Rome, Italy, December 2014.

[14] G. Carvajal and S. Fischmeister, “An open platform for mixed-
criticality real time ethernet,” in Proceedings of the IEEE Design,
Automation & Test in Europe Conference & Exhibition (DATE
’13), pp. 153–156, 2013.

[15] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele,
“Scheduling of mixed-criticality applications on resource-
sharing multicore systems,” in Proceedings of the 13th Interna-
tional Conference on Embedded Software (EMSOFT ’13), 15, 1
pages, Quebec, Canada, October 2013.

[16] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B.
D. de Dinechin, “Mixed-criticality scheduling on cluster-based
manycores with shared communication and storage resources,”
Real-Time Systems, vol. 52, no. 4, pp. 399–449, 2016.

[17] T. Hollstein, S. P. Azad, T. Kogge, and B. Niazmand, “Mixed-
criticality NoC partitioning based on the NoCDepend depend-
ability technique,” in Proceedings of the 10th International Sym-
posium on Reconfigurable and Communication-centric Systems-
on-Chip (ReCoSoC ’15), Bremen, Germany, July 2015.

[18] R. Obermaisser, Z. Owda, M. Abuteir, H. Ahmadian, and
D. Weber, “End-to-end real-time communication in mixed-
criticality systems based on networked multicore chips,” in
Proceedings of the 17th Euromicro Conference on Digital System
Design (DSD ’14), pp. 293–302, Verona, Italy, August 2014.

[19] W. Steiner, “Synthesis of static communication schedules for
mixed-criticality systems,” in Proceedings of the 14th IEEE Inter-
national Symposium on Object/Component/Service-Oriented

https://www-users.cs.york.ac.uk/~burns/review.pdf
https://www-users.cs.york.ac.uk/~burns/review.pdf

Scientific Programming 19

Real-Time Distributed Computing Workshops (ISORCW ’11), pp.
11–18, IEEE, Newport Beach, Calif, USA, March 2011.

[20] Y.-S. Kim and H.-W. Jin, “Towards a practical implementation
of criticality mode change in RTOS,” in Proceedings of the 19th
IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA ’14), September 2014.

[21] P. Ekberg and W. Yi, “Bounding and shaping the demand of
generalized Mixed-criticality sporadic task systems,” Real-Time
Systems, vol. 50, no. 1, pp. 48–86, 2014.

[22] S. Baruah, V. Bonifaci, G. D’Angelo et al., “Preemptive unipro-
cessor scheduling of mixed-criticality sporadic task systems,”
Journal of the ACM, vol. 62, no. 2, article 14, 2015.

[23] S. K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-
Spaccamela, S. van der Ster, and L. Stougie, “Mixed-criticality
scheduling of sporadic task systems,” in Algorithms—ESA
2011, vol. 6942 of Lecture Notes in Comput. Sci., pp. 555–566,
Springer, Heidelberg, Germany, 2011.

[24] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis
for mixed criticality systems,” in Proceedings of the 32nd IEEE
Real-Time Systems Symposium (RTSS ’11), pp. 34–43, Vienna,
Austria, December 2011.

[25] T. Park and S. Kim, “Dynamic scheduling algorithm and its
schedulability analysis for certifiable dual-criticality systems,”
in Proceedings of the 9th ACM International Conference on
Embedded Software, pp. 253–262, ACM, 2011.

[26] S. Baruah and B. Chattopadhyay, “Response-time analysis of
mixed criticality systems with pessimistic frequency specifica-
tion,” inProceedings of the IEEE 19th International Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA ’13), pp. 237–246, Taipei, Taiwan, August 2013.

[27] S. Baruah and A. Burns, “Implementing mixed criticality
systems in ada,” in Reliable Software Technologies—Ada-Europe
2011, pp. 174–188, Springer, 2011.

[28] S. Baruah, H. Li, and L. Stougie, “Towards the design of
certifiable mixed criticality systems,” in Proceedings of the 16th
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS ’10), pp. 13–22, April 2010.

[29] A. Burns and S. Baruah, Timing Faults and Mixed Criticality
Systems, Springer, Berlin, Germany, 2011.

[30] A. Burns and R. I. Davis, “Mixed criticality on controller area
network,” in Proceedings of the 25th Euromicro Conference on
Real-Time Systems (ECRTS ’13), pp. 125–134, IEEE, Paris, France,
July 2013.

[31] F. Dorin, P. Richard, M. Richard, and J. Goossens, “Schedula-
bility and sensitivity analysis of multiple criticality tasks with
fixed-priorities,” Real-Time Systems, vol. 46, no. 3, pp. 305–331,
2010.

[32] T. Fleming, Extending mixed criticality scheduling [Ph.D. thesis],
University of York, 2013.

[33] H.-M. Huang, C. Gill, and C. Lu, “Implementation and eval-
uation of mixed-criticality scheduling approaches for sporadic
tasks,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 13, no. 4, article 126, 2014.

[34] M.Neukirchner, P. Axer, T.Michaels, and R. Ernst, “Monitoring
of workload arrival functions for mixed-criticality systems,”
in Proceedings of the IEEE 34th Real-Time Systems Symposium
(RTSS ’13), pp. 88–96, Vancouver, Canada, December 2013.

[35] D. De Niz, K. Lakshmanan, and R. Rajkumar, “On the schedul-
ing of mixed-criticality real-time task sets,” in Proceedings of
the Real-Time Systems Symposium (RTSS ’09), pp. 291–300,
December 2009.

[36] D. De Niz, L. Wrage, A. Rowe, and R. R. Rajkumar, “Utility-
based resource overbooking for cyber-physical systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 13,
no. 5, article 162, 2014.

[37] V. Sciandra, P. Courbin, and L. George, “Application of mixed-
criticality scheduling model to intelligent transportation sys-
tems architectures,” ACM SIGBED Review, vol. 10, no. 2, p. 22,
2013.

[38] Q. Zhao, Z. Gu, and H. Zeng, “Integration of resource synchro-
nization and preemption-thresholds into EDF-based mixed-
criticality scheduling algorithm,” in Proceedings of the IEEE
19th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA ’13), pp. 227–236,
Taipei, Taiwan, August 2013.

[39] Q. Zhao, Z.Gu, andH.Zeng, “PT-AMC: integrating preemption
thresholds into mixed-criticality scheduling,” in Proceedings of
the Conference on Design, Automation and Test in Europe, pp.
141–146, EDA Consortium, 2013.

[40] H. Su and D. Zhu, “An elastic mixed-criticality task model and
its scheduling algorithm,” in Proceedings of the 16th Design,
Automation and Test in Europe Conference and Exhibition
(DATE ’13), March 2013.

[41] S. Baruah and S. Vestal, “Schedulability analysis of sporadic
tasks with multiple criticality specifications,” in Proceedings of
the 20th Euromicro Conference on Real-Time Systems (ECRTS
’08), pp. 147–155, IEEE, Prague, Czech Republic, July 2008.

[42] G. Lipari and G. Buttazzo, “Resource reservation for mixed
criticality systems,” in Proceedings of theWorkshop on Real-Time
Systems: The Past, The Present, and the Future, pp. 60–74, York,
UK, March 2013.

[43] F. Guan, L. Peng, L. Perneel, and M. Timmerman, “Open
source FreeRTOS as a case study in real-time operating system
evolution,” Journal of Systems and Software, vol. 118, pp. 19–35,
2016.

[44] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis of
probabilistic hard real-time systems,” in Proceedings of the 23rd
Real-Time Systems Symposium (RTSS ’02), pp. 279–288, Austin,
Tex, USA, December 2002.

[45] J. Hansen, S. Hissam, and G. A. Moreno, “Statistical-based
WCET estimation and validation,” in Proceedings of the 9th
International Workshop onWorst-Case Execution Time Analysis
(WCET ’09), June 2009.

[46] S. Altmeyer and R. I. Davis, “On the correctness, optimality and
precision of static probabilistic timing analysis,” in Proceedings
of the 17th Design, Automation and Test in Europe (DATE ’14),
IEEE, March 2014.

[47] F. J. Cazorla, E. Quiñones, T. Vardanega et al., “Proartis:
probabilistically analyzable real-time systems,” ACM Transac-
tions on Embedded Computing Systems (TECS), vol. 12, no. 2,
supplement, article 94, 2013.

[48] J. Abella, C. Hernandez, E. Quinones et al., “WCET analysis
methods: pitfalls and challenges on their trustworthiness,”
in Proceedings of the 10th IEEE International Symposium on
Industrial Embedded Systems (SIES ’15), pp. 39–48, Siegen,
Germany, June 2015.

[49] Y. Zhu and F. Mueller, “Feedback EDF scheduling exploiting
dynamic voltage scaling,” in Proceedings of the 10th IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS ’04), pp. 84–93, May 2004.

[50] A. Abbas, E. Grolleau, M. Loudini, and D. Mehdi, “A real-time
feedback scheduler for environmental energy harvesting,” in

20 Scientific Programming

Proceedings of the 3rd International Conference on Systems and
Control (ICSC ’13), Algiers, Algeria, October 2013.

[51] S. Groesbrink, L. Almeida, M. De Sousa, and S. M. Petters,
“Towards certifiable adaptive reservations for hypervisor-based
virtualization,” in Proceedings of the 20th IEEE Real Time and
Embedded Technology and Applications Symposium (RTAS ’14),
pp. 13–24, Berlin, Germany, April 2014.

[52] A. Burns, “Systemmode changes-general and criticality-based,”
in Proceedings of the 2ndWorkshop onMixed Criticality Systems
(WMC), RTSS, pp. 3–8, 2014.

[53] A. Easwaran and I. Shin, “Compositional mixed-criticality
scheduling,” in Processings of the 7th International Workshop on
Compositional Theory and Technology for Real-Time Embedded
Systems, Rome, Italy, December 2014.

[54] P. Graydon and I. Bate, “Safety assurance driven problem
formulation for mixed-criticality scheduling,” in Proceedings
of the 1st International Workshop on Mixed Criticality Systems
(WMC ’13), and IEEE Real-Time Systems Symposium (RTSS ’13),
pp. 19–24, December 2013.

[55] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control
real-time scheduling: framework, modeling, and algorithms,”
Real-Time Systems, vol. 23, no. 1-2, pp. 85–126, 2002.

[56] R. Santos, G. Lipari, E. Bini, and T. Cucinotta, “On-line
schedulability tests for adaptive reservations in fixed priority
scheduling,” Real-Time Systems, vol. 48, no. 5, pp. 601–634, 2012.

[57] O. Naseer, A. Shah, and A. A. Khan, “Feedback control
scheduling for crane control system,” in Proceedings of the 20th
Annual IEEE International Conference and Workshops on the
Engineering of Computer Based Systems (ECBS ’13), pp. 187–195,
IEEE, Scottsdale, Ariz, USA, April 2013.

[58] G. Buttazzo and L. Santinelli, “Adaptive mechanisms for
component-based real-time systems,” in Proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems
(AHS ’15), pp. 1–8, Montreal, Canada, June 2015.

[59] L. Abeni and G. Buttazzo, “Integrating multimedia applications
in hard real time systems,” in Proceedings of the 19th IEEE Real-
Time Systems Symposium (RTSS ’98), pp. 4–13, IEEE, 1998.

[60] S. Banachowski, T. Bisson, and S. A. Brandt, “Integrating best-
effort scheduling into a real-time system,” in Proceedings of the
25th IEEE International Real-Time Systems Symposium (RTSS
’04), Lisbon, Portugal, December 2004.

[61] G. Lipari and S. Baruah, “Greedy reclamation of unused
bandwidth in constant-bandwidth servers,” in Proceedings of the
12th Euromicro Conference on Real-Time Systems (RTS ’00), pp.
193–200, IEEE, Stockholm, Sweden, June 2000.

[62] S. A. Brandt, S. Banachowski, C. Lin, and T. Bissom, “Dynamic
integrated scheduling of hard real-time, soft real-time and non-
real-time processes,” in Proceedings of the 24th IEEE Interna-
tional Real-Time Systems Symposium (RTSS ’03), pp. 396–407,
December 2003.

[63] G. Bernat, I. Broster, and A. Burns, “Rewriting history to
exploit gain time,” in Proceedings of the 25th IEEE International
Real-Time Systems Symposium (RTSS ’04), Lisbon, Portugal,
December 2004.

[64] M. Caccamo, G. Buttazzo, and L. Sha, “Capacity sharing for
overrun control,” in Proceedings of the 21st IEEE Real-Time
Systems Symposium (RTSS ’00), pp. 295–304, August 2002.

[65] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo, “IRIS: a
new reclaiming algorithm for server-based real-time systems,”
in Proceedings of the 10th IEEE Real-Time and Embedded
Technology andApplications Symposium (RTAS ’04), pp. 211–218,
Toronto, Canada, May 2004.

[66] C. Lin and S. A. Brandt, “Improving soft real-time performance
through better slack reclaiming,” in Proceedings of the 26th
IEEE International Real-Time Systems Symposium (RTSS ’05),
December 2005.

[67] L. Abeni, L. Palopoli, and G. Buttazzo, “On adaptive control
techniques in real-time resource allocation,” in Proceedings of
the 12th Euromicro Conference on Real-Time Systems (ECRTS
’00), Sweden, Europe, June 2000.

[68] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis of
a reservation-based feedback scheduler,” in Proceedings of the
23rd IEEE Real-Time Systems Symposium (RTSS ’02), pp. 71–80,
Austin, Tex, USA, December 2002.

[69] D. Fontanelli, L. Greco, and L. Palopoli, “Soft real-time schedul-
ing for embedded control systems,” Automatica, vol. 49, no. 8,
pp. 2330–2338, 2013.

[70] G. Lipari and L. Palopoli, “Real-time scheduling: from hard to
soft real-time systems,” https://arxiv.org/abs/1512.01978.

[71] L. Palopoli, L. Abeni, T. Cucinotta, G. Lipari, and S. K. Baruah,
“Weighted feedback reclaiming for multimedia applications,”
in Proceedings of the IEEE/ACM/IFIP Workshop on Embedded
Systems for Real-TimeMultimedia (ESTIMedia ’08), pp. 121–126,
October 2008.

[72] T. Cucinotta, L. Abeni, L. Palopoli, and G. Lipari, “A robust
mechanism for adaptive scheduling of multimedia applica-
tions,”ACMTransactions on Embedded Computing Systems, vol.
10, no. 4, article 46, 2011.

[73] X. Gu, A. Easwaran, K.-M. Phan, and I. Shin, “Resource
efficient isolation mechanisms in mixed-criticality scheduling,”
in Proceedings of the 27th Euromicro Conference on Real-Time
Systems (ECRTS ’15), July 2015.

https://arxiv.org/abs/1512.01978

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

