131 research outputs found

    Sophisticated Batteryless Sensing

    Get PDF
    Wireless embedded sensing systems have revolutionized scientific, industrial, and consumer applications. Sensors have become a fixture in our daily lives, as well as the scientific and industrial communities by allowing continuous monitoring of people, wildlife, plants, buildings, roads and highways, pipelines, and countless other objects. Recently a new vision for sensing has emerged---known as the Internet-of-Things (IoT)---where trillions of devices invisibly sense, coordinate, and communicate to support our life and well being. However, the sheer scale of the IoT has presented serious problems for current sensing technologies---mainly, the unsustainable maintenance, ecological, and economic costs of recycling or disposing of trillions of batteries. This energy storage bottleneck has prevented massive deployments of tiny sensing devices at the edge of the IoT. This dissertation explores an alternative---leave the batteries behind, and harvest the energy required for sensing tasks from the environment the device is embedded in. These sensors can be made cheaper, smaller, and will last decades longer than their battery powered counterparts, making them a perfect fit for the requirements of the IoT. These sensors can be deployed where battery powered sensors cannot---embedded in concrete, shot into space, or even implanted in animals and people. However, these batteryless sensors may lose power at any point, with no warning, for unpredictable lengths of time. Programming, profiling, debugging, and building applications with these devices pose significant challenges. First, batteryless devices operate in unpredictable environments, where voltages vary and power failures can occur at any time---often devices are in failure for hours. Second, a device\u27s behavior effects the amount of energy they can harvest---meaning small changes in tasks can drastically change harvester efficiency. Third, the programming interfaces of batteryless devices are ill-defined and non- intuitive; most developers have trouble anticipating the problems inherent with an intermittent power supply. Finally, the lack of community, and a standard usable hardware platform have reduced the resources and prototyping ability of the developer. In this dissertation we present solutions to these challenges in the form of a tool for repeatable and realistic experimentation called Ekho, a reconfigurable hardware platform named Flicker, and a language and runtime for timely execution of intermittent programs called Mayfly

    Intermittent Computing: Challenges and Opportunities

    Get PDF
    The maturation of energy-harvesting technology and ultra-low-power computer systems has led to the advent of intermittently-powered, batteryless devices that operate entirely using energy extracted from their environment. Intermittently operating devices present a rich vein of programming languages research challenges and the purpose of this paper is to illustrate these challenges to the PL research community. To provide depth, this paper includes a survey of the hardware and software design space of intermittent computing platforms. On the foundation of these research challenges and the state of the art in intermittent hardware and software, this paper describes several future PL research directions, emphasizing a connection between intermittence, distributed computing, energy-aware programming and compilation, and approximate computing. We illustrate these connections with a discussion of our ongoing work on programming for intermittence, and on building and simulating intermittent distributed systems

    Waldo: Batteryless Occupancy Monitoring with Reflected Ambient Light

    Get PDF
    Reliable and accurate room-level occupancy-tracking systems can enable many new advances in sensors and applications of modern smart buildings. This allows buildings to be more capable of adapting to the needs of their occupants in their day-to-day activities and better optimize certain resources, such as power and air conditioning, to do so. Unfortunately, existing occupancy-tracking systems are plagued by large size, high energy consumption, and, unsurprisingly, short battery lifetimes. In this paper, we present Waldo, a batteryless, room-level occupancy monitoring sensor that harvests energy from indoor ambient light reflections, and uses changes in these reflections to detect when people enter and exit a room. Waldo is mountable at the top of a doorframe, allowing for detection of a person and the direction they are traveling at the entry and exit point of a room. We evaluated the Waldo sensor in an office-style setting under mixed lighting conditions (natural and artificial) on both sides of the doorway with subjects exhibiting varying physical characteristics such as height, hair color, gait, and clothing. 651 number of controlled experiments were ran on 6 doorways with 12 individuals and achieved a total detection accuracy of 97.38%. Further, it judged the direction of movement correctly with an accuracy of 95.42%. This paper also evaluates and discusses various practical factors that can impact the performance of the current system in actual deployments. This work demonstrates that ambient light reflections provide both a promising low-cost, long-term sustainable option for monitoring how people use buildings and an exciting new research direction for batteryless computing

    Hardware-software design of embedded systems for intelligent sensing applications

    Get PDF
    This Thesis wants to highlight the importance of ad-hoc designed and developed embedded systems in the implementation of intelligent sensor networks. As evidence four areas of application are presented: Precision Agriculture, Bioengineering, Automotive and Structural Health Monitoring. For each field is reported one, or more, smart device design and developing, in addition to on-board elaborations, experimental validation and in field tests. In particular, it is presented the design and development of a fruit meter. In the bioengineering field, three different projects are reported, detailing the architectures implemented and the validation tests conducted. Two prototype realizations of an inner temperature measurement system in electric motors for an automotive application are then discussed. Lastly, the HW/SW design of a Smart Sensor Network is analyzed: the network features on-board data management and processing, integration in an IoT toolchain, Wireless Sensor Network developments and an AI framework for vibration-based structural assessment

    Energy Harvesting for Residential Microgrid Distributed Sensor Systems

    Get PDF
    Microgrids are localized, independent power grids that can operate while connected to the larger electrical grid. These systems make intelligent decisions regarding power management and use an array of components to monitor power generation, consumption, and environmental conditions. While this technology can save end users money, the complexity of installation and maintenance has limited the adoption of microgrids in residential spaces. To simplify this technology for end users, the next evolution of microgrid components includes sensors that are wireless and ambiently powered. Even with a microgrid installed, significant energy is wasted in residential spaces. To address this loss, energy harvesting circuits can be incorporated into microgrid sensors, enabling them to recapture otherwise wasted environmental energy. Light, heat, radio frequency (RF) energy, mechanical energy, and 60 Hz noise from power lines are all abundant in most residential spaces and can be harvested to power microgrid components. Equipping microgrid sensors with energy harvesters simplifies the end user experience by eliminating the need for cable routing. Implementing energy harvesting techniques results in a microgrid that is easier to deploy, cleaner, and requires less maintenance. Developing this type of sensor is not only feasible, but sensible and can be constructed using off-the-shelf components. My research led me to conclude that the most effective strategy for designing an energy harvesting sensor is to combine energy harvesting technologies with battery power. By delegating smaller loads away from the harvesting integrated circuit (IC), its full harvesting potential is utilized, maximizing energy collection for the power-hungry transmitter. Simultaneously, a small coin-cell battery can sustain the remaining components, ensuring over a decade of functionality. This thesis explores the feasibility and design of a hybrid battery and energy harvesting sensor. The developed system block diagram allows for the swapping of components within each block, catering to the varying needs of the end user. The system is data and energy-aware, allowing it to make intelligent decisions regarding data transmission and enable communication as reliable as that of a traditional wire-line powered sensor. The hybrid sensor module underwent testing with a small monocrystalline solar cell as its energy source, delivering consistent power throughout the testing period. It accumulated surplus energy in a super capacitor storage unit, ensuring the system’s reliable operation even at night when the energy source was not available. While the tests utilized a photovoltaic (PV) cell, the design accommodates any energy harvesting source that can generate a minimum of 40 µW of power

    An autonomous and intelligent system for rotating machinery diagnostics

    Get PDF
    Rotating machinery diagnostics (RMD) is a process of evaluating the condition of their components by acquiring a number of measurements and extracting condition related information using signal processing algorithms. A reliable RMD system is fundamental for condition based maintenance programmes to reduce maintenance cost and risk. It must be able to detect any abnormalities at early stages to allow preventing severe performance degradation, avoid economic losses and/or catastrophic failures. A conventional RMD system consists of sensing elements (transducers) and data acquisition system with a compliant software package. Such system is bulky and costly in practical deployment. The recent advancement in micro-scaled electronics have enabled wide spectrum of system design and capabilities at embedded scale. Micro electromechanical system (MEMS) based sensing technologies offer significant savings in terms of system’s price and size. Microcontroller units with embedded computation and sensing interface have enabled system-on-chip design of RMD system within a single sensing node. This research aims at exploiting this growth of microelectronics science to develop a remote and intelligent system to aid maintenance procedures. System’s operation is independent from central processing platform or operator’s analysis. Features include on-board time domain based statistical parameters calculations, frequency domain analysis techniques and a time controlled monitoring tasks within the limitations of its energy budget. A working prototype is developed to test the concept of the research. Two experimental testbeds are used to validate the performance of developed system: DC motor with rotor unbalance and 1.1kW induction motor with phase imbalance. By establishing a classification model with several training samples, the developed system achieved an accuracy of 93% in detecting quantified seeded faults while consumes minimum power at 16.8mW. The performance of developed system demonstrates its strong potential for full industry deployment and compliance

    A Cross-Disciplinary Outlook of Directions and Challenges in Industrial Electronics

    Get PDF
    [EN] How to build a sustainable society in view of industrial electronics has been discussed from energy, information and communication technologies, cyber-physical systems (CPSs), and other viewpoints. This paper presents a cross-disciplinary view that integrates the fields of human factors, professional education, electronic systems on chip, resilience and security for industrial applications, technology ethics and society, and standards. After explaining the efforts and challenges in these fields, this paper shows a methodology for cross-disciplinary technology that integrates the technical committees in Cluster 4, Industrial Electronics Society. A project, which was launched in March 2022, implements a 'Proof of Concept' trial of the methodology.The work of Jinhua Sh was supported by JSPS Grant-in-Aid for Scientific Research B under Grant 22H03998 (Japan).She, J.; Guzman-Miranda, H.; Huang, V.; Chen, AC.; Karnouskos, S.; Dunai, L.; Ma, C.... (2022). A Cross-Disciplinary Outlook of Directions and Challenges in Industrial Electronics. IEEE Journal of Emerging and Selected Topics in Industrial Electronics (Online). 3:375-391. https://doi.org/10.1109/OJIES.2022.3174218375391

    Integration and characterisation of the performance of fifth-generation mobile technology (5g) connectivity over the University of Oulu 5g test network (5gtn) for cognitive edge node based on fractal edge platform

    Get PDF
    Abstract. In recent years, there has been a growing interest in cognitive edge nodes, which are intelligent devices that can collect and process data at the edge of the network. These nodes are becoming increasingly important for various applications such as smart cities, industrial automation, and healthcare. However, implementing cognitive edge nodes requires a reliable and efficient communication network. Therefore, this thesis assesses the performance of direct cellular (5G) and IEEE 802.11-based Wireless Local Area Network (WLAN) technology for three network architectures, which has the potential to offer low-latency, high-throughput and energy-efficient communication, for cognitive edge nodes. The study focused on evaluating the network performance metrics of throughput, latency, and power consumption for three different FRACTAL-based network architectures. These architectures include IEEE 802.11-based last mile, direct cellular (5G) backbone, and IEEE 802.11-based last mile over cellular (5G) backbone topologies. This research aims to provide insights into the performance of 5G technology for cognitive edge nodes. The findings suggest that the power consumption of IEEE 802.11-enabled nodes was only slightly higher than the reference case, indicating that it is more energy-efficient than 5G-enabled nodes. Additionally, in terms of latency, IEEE 802.11 technology may be more favourable. The throughput tests revealed that the cellular (5G) connection exhibited high throughput for communication between a test node and an upper-tier node situated either on the internet or at the network edge. In addition, it was found that the FRACTAL edge platform is flexible and scalable, and it supports different wireless technologies, making it a suitable platform for implementing cognitive edge nodes. Overall, this study provides insights into the potential of 5G technology and the FRACTAL edge platform for implementing cognitive edge nodes. The results of this research can be valuable for researchers and practitioners working in the field of wireless communication and edge computing, as it sheds light on the feasibility and performance of these technologies for implementing cognitive edge nodes in various applications
    • …
    corecore