
Intermittent Computing: Challenges and
Opportunities∗

Brandon Lucia1, Vignesh Balaji2, Alexei Colin3, Kiwan Maeng4,
and Emily Ruppel5

1 Carnegie Mellon University, Department of ECE, Pittsburgh, PA, USA
2 Carnegie Mellon University, Department of ECE, Pittsburgh, PA, USA
3 Carnegie Mellon University, Department of ECE, Pittsburgh, PA, USA
4 Carnegie Mellon University, Department of ECE, Pittsburgh, PA, USA
5 Carnegie Mellon University, Department of ECE, Pittsburgh, PA, USA

Abstract
The maturation of energy-harvesting technology and ultra-low-power computer systems has led
to the advent of intermittently-powered, batteryless devices that operate entirely using energy
extracted from their environment. Intermittently operating devices present a rich vein of program-
ming languages research challenges and the purpose of this paper is to illustrate these challenges
to the PL research community. To provide depth, this paper includes a survey of the hardware
and software design space of intermittent computing platforms. On the foundation of these
research challenges and the state of the art in intermittent hardware and software, this paper
describes several future PL research directions, emphasizing a connection between intermittence,
distributed computing, energy-aware programming and compilation, and approximate comput-
ing. We illustrate these connections with a discussion of our ongoing work on programming for
intermittence, and on building and simulating intermittent distributed systems.

1998 ACM Subject Classification C.0 Hardware/Software Interfaces, D.4.5 Reliability

Keywords and phrases Intermittent computing, Energy-harvesting devices

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2017.8

1 Introduction

Recent years have seen a shift toward increasingly small and low-power computing devices
across a variety of application domains, including IoT devices [16], wearable, implantable, and
ingestible medical sensors [31, 19], infrastructure monitors [28], and small satellites [46, 2].
Advances in energy-harvesting technology [34, 26, 18, 27] have enabled applications that run
entirely using energy harvested from their environment without the restriction of tethered
power or maintenance requirements of a battery. These devices harvest and buffer energy
as it is available and operate when sufficient energy is banked. Operation in these devices
is intermittent because energy is not always available to harvest and, even when energy is
available, buffering enough energy to do a useful amount of work takes time. The hardware
of an intermittently operating device can include general purpose computing components,
such as a CPU or microcontroller (MCU), an array of sensors, and one or more radios for
communication. Typical devices contain volatile memory that loses its state on a power

∗ This work was funded by National Science Foundation grant CNS-1526342 and a gift from Disney
Research Pittsburgh.

© Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel;
licensed under Creative Commons License CC-BY

2nd Summit on Advances in Programming Languages (SNAPL 2017).
Editors: Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi; Article No. 8; pp. 8:1–8:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SNAPL.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Intermittent Computing: Challenges and Opportunities

Figure 1 Two energy-harvesting devices. RF-powered WISP Platform [34] (left) and our solar-
powered EDBsat single-board satellite (right).

failure, such as SRAM and DRAM, and non-volatile memory that retains its state on a power
failure, such as Flash and FRAM [42]. Figure 1 shows two energy-harvesting platforms.

Programmers of today’s intermittently operating devices use a typical, C-like embedded
programming abstraction despite a number of important differences between the intermittent
execution model and a typical embedded execution model. In particular, software running on
an intermittently operating device executes until energy is depleted and the device browns out.
When energy is again available, software resumes execution from some point in the history
of its execution, i.e., the beginning of main() or a checkpoint [33, 17, 24, 3, 4, 23, 9, 43].
The key distinction between a conventional execution and intermittent execution is that
a conventionally executing program is assumed to run to completion but an intermittent
execution must span power failures. To tolerate power failures that occur hundreds of times
per second, multiple layers of the system require an intermittence-aware design, including
languages, runtimes, and application logic.

This paper provides a survey of current research challenges in intermittent computing and
a vision for future intermittence research in the PL and systems community. To achieve that
goal, Section 2 describes several PL and systems challenges brought about by intermittent
computing. Section 3 describes the design space of intermittent computing devices, focusing
on hardware and software characteristics that are likely to affect future research. A goal of this
work is to show how intermittent computing brings together other areas of PL and systems
research, including, distributed computing and concurrency, energy-aware programming and
compilation, and approximate computing. Section 4 describes several programming languages
research directions that address intermittence. This paper is intended to inspire and equip
PL researchers to begin using and researching intermittent computing systems.

2 Intermittent Computing Challenges

Intermittent operation is an impediment to programming today’s intermittently operating
devices. The difficulty stems from the fact that an intermittent execution proceeds in bursts
when energy is available and includes periods of inactivity when energy is not available. This
succession of active and inactive periods is illustrated in Figure 2. Intermittent execution
makes control-flow unpredictable, compromises an application’s forward progress, leaves
memory inconsistent, leaves a device inconsistent with its environment, and complicates
device-to-device communication. We discuss these problems briefly and cite work exploring
them in depth.

Control-flow. To an executing program, resuming after a power failure is a discontinuity
in control-flow that is not explicitly expressed in source code. Programmers of intermittent
devices must deal with implicit control flows to potentially unpredictable points in an

B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel 8:3

H
a
rv

e
st

e
d
 E

n
e
rg

y

Turn offTurn on

Off Threshold Time

On Threshold

Compute

Figure 2 Intermittent execution. An intermittently-powered device executes its program in bursts
as energy is available.

execution’s history, such as a recent checkpoint [33, 24, 17, 23, 43] or the beginning of a
task [6, 9].

Some platforms (like the WISP [34]), always begin executing with the same quantum of
energy available and (in effect) do not recharge during execution1. If a restarted computation
cannot successfully reach a checkpoint or complete a computational task using the start-time
quantum of energy, then the system will unsuccessfully attempt to execute the same span of
code repeatedly, preventing the program from making meaningful progress. This “Sysiphean”
computation problem [33, 6] is particularly problematic in energy-starved environments.
Guaranteeing forward progress in intermittent execution models is an important, unsolved
challenge, especially for systems with explicit, statically-demarcated checkpoints and tasks.

Data consistency. Recent work [23] demonstrated that a naive combination of checkpointing
and direct access to non-volatile memory in an intermittent device [33, 24, 17] can lead to
memory inconsistencies. The key problem is that volatile state, such as the device’s registers,
stack, and global variables, are erased or rolled back to a previous state (e.g., a checkpoint)
when the power fails. In contrast, the byte-addressable, non-volatile storage retains its
values and those values may be inconsistent with the rolled-back volatile state. Keeping
the contents of both types of memory correct requires careful, expert-level programming
or system support [23, 9, 43] to ensure that non-volatile values are kept consistent with
frequently erased or reverted volatile values. Due to the limited supply of energy, the
time [23, 43, 33, 17] and space [9] cost of managing memory is a key factor that determines
the resources available to the application.

Environmental consistency. Like other embedded systems, intermittently operating devices
receive inputs from the outside world via sensors. Sensed data become stale and unusable
if they are buffered across a long time period without harvestable energy. Sensor accesses
intended to be atomic with one another may be split by a power failure, causing their
resultant data to be inconsistent with the device’s real environment. Prior work on system
support for intermittent task atomicity [9, 23] avoids this problem by letting the programmer
define tasks containing I/O that should re-execute atomically. Other work [11, 15] explicitly
tracks time to avoid staleness issues.

Concurrency. Sensors, peripheral devices, and collections of MCUs may all operate con-
currently as a single, intermittent device. As is common in embedded systems, concurrency
with sensors is largely interrupt-driven. For example, an MCU may request data from a

1 The recharge rate is non-zero, but negligible compared to the energy discharged during an execution
period.

SNAPL 2017

8:4 Intermittent Computing: Challenges and Opportunities

sensor, and a sensor may buffer and reply with data. Similarly, two MCUs may exchange
and compute on data in parallel. Concurrency control in such scenarios is complicated
by intermittent interruptions. If control-flow in one or more concurrent execution threads
is re-directed to an earlier point by an intermittent power failure, how should the system
manage the visibility in each thread of values produced by both threads? We are unaware
of existing work that specifically addresses concurrency and intermittence together. Most
existing intermittence research [9, 23, 43, 3, 4] assumes a single control thread and does not
define the behavior of operations that are concurrent with intermittent control threads.

Compounding the state management problem, the timing, precision, and frequency of
concurrent components are influenced by the availability of buffered and harvestable energy.
Energy-dependent concurrency control becomes especially complex in a device with federated
energy storage [14]. In a federated system, components charge and discharge their own
storage elements independently. As a result, each component becomes an intermittent
resource available at different times, depending on its energy supply and capacity. The
software must synchronize access to the intermittent resources, not only in the relative logical
time, but also in real physical time.

Distributed intermittent devices. Distributed collections of intermittently operating de-
vices must interact with one another via radio. Most work has focused on physical-layer
mechanisms to enable devices to communicate [22, 5]. We observe several reasons why
coordinating distributed intermittent devices is difficult, beyond the issues at the physical
layer. The cost of communicating is high: a fixed-length period of communication costs an
order of magnitude more energy than a similar period of computation [20, 12]. Deciding
when to incur the high cost of communication, and how much data to transmit or receive
is a delicate trade-off of energy for precision or functionality. Synchronizing a collection
of intermittently operating devices is an unsolved problem and a communication between
unsynchronized, intermittent end-points is only successful if both are coincidentally operating
for a long enough time, at the same time. A distributed intermittent system must gracefully
allow communication to fail very frequently.

3 The Intermittent System Design Space

The challenges in Section 2 are a consequence of the hardware and software design of the
energy-harvesting device. Exploring the design space is necessary to understand why pro-
gramming intermittent devices is challenging and to inform future PL research on intermittent
systems. The design space of intermittent devices is rich with inter-dependent hardware and
software components that dictate behavior and applicability. Our discussion focuses on three
design parameters: (1) energy harvesting and storage; (2) memory and execution models;
and (3) software development toolchain.

3.1 Energy Harvesting and Storage.
The behavior of a program running on an energy-harvesting device depends on a number of
factors: its energy-harvesting modality, energy storage mechanism, and power-on/power-off
behavior.

Energy Harvesting. Energy harvesters vary widely from device to device. Solar panels
deliver power proportional to their illuminated area. Solar harvesters with a compact form
factor (cm2) typically generate tens of µW to tens of mW of power. A device powered

B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel 8:5

by RF energy depends on the availability of radio waves in a specific frequency range.
Harvestable RF power varies from nW (ambient sources [22]) to µW (RFID-readers and
power transmitters [34, 37, 30]). Mechanical harvesters range from nW-scale buttons [27]
and sliders [18] to multi-Watt self-powered knobs [44].

In the simplest design the harvester output is connected directly to the load (i.e. MCU,
sensors). This design is only appropriate if the harvester’s current output matches the load’s
current draw (e.g., ~1 mA for a 4 MHz MSP430) and its voltage output is acceptable to the
load (e.g., 1.8-3.3 V). In such a design, the duration of an intermittent execution interval
equals the duration of the incoming energy burst. This design is rarely applicable, because
the harvester rarely matches the current and voltage of the load. Instead, the load is usually
decoupled from the harvester by an energy buffer, e.g. a capacitor. Hardware or software
controls charging and discharging of the storage element. As a result, intermittent execution
intervals are regularly periodic even if input energy is erratic.

Energy Storage. The energy buffering mechanism affects system and software behavior.
Power systems that decouple the load and harvester operate in repeated charge-discharge
cycles. First, the device accumulates energy, while consuming a negligible amount. With
sufficient energy stored, the device begins to operate until the energy is depleted. The energy
storage capacity, fixed at design time, determines the maximum amount of computation that
is possible without a power failure.

The energy storage mechanism is a key design parameter because it dictates a device’s
physical size. Designers may be volumetrically constrained by an application (e.g., in-
body devices [19]), limiting energy capacity and capability. Capacitors are cheap and
small but not energy-dense. Super-capacitors are an order of magnitude more dense, but
moderately larger and more costly. An energy harvester can also charge a small battery and,
unlike a capacitor that appreciably leaks energy, the battery will leak slowly, permitting
operation over long periods without harvestable energy. Batteries, however, have drawbacks.
Conventional batteries (e.g., coin-cells, AA) are heavy and fragile. Thin-film batteries are
light, but inapplicable in some harsh environments; e.g., suffering permanent failures in low-
temperatures space applications [46]. Batteries wear-out, reducing efficiency and requiring
replacement, which can be labor intensive or impossible in adversarial environments. Battery
chemistry makes assessing a battery’s remaining charge difficult. Voltage is a poor indicator
of a battery’s stored energy because capacity varies with wear, temperature, and workload.
In contrast, a capacitor’s voltage reflects its energy content, allowing hardware or software
to read the voltage and react to energy events, such as a full charge or an impending power
failure [33, 3, 8].

Energy Distribution. A device’s pattern of intermittent execution activity depends on
when energy accumulates and when it is consumed. Charge/discharge behavior can be
implicit in the hardware, or controlled explicitly by hardware or software logic. Absent
energy-distribution logic, a device will operate whenever its energy buffer’s voltage is within
operating range. However, relying on implicit on/off behavior is impractical because it leads
to thrashing: the storage element never has time to accumulate a significant amount of energy
before being drained. Instead, explicit on/off logic accumulates charge without consuming
energy up to a threshold energy level. With a capacitor as the storage medium, the energy
threshold level translates to a threshold capacitor voltage.

Two quantitative design parameters that lead to qualitative differences in system be-
havior are the turn-on and turn-off voltage thresholds. In some devices (e.g., WISP5 [45],

SNAPL 2017

8:6 Intermittent Computing: Challenges and Opportunities

Powercast [30]) the turn-on threshold is fixed in hardware to the maximum operating volt-
age. Setting the turn-on threshold to the maximum voltage makes the device turn on with
maximum energy stored. Other systems (e.g., WISP4 [34]) set the turn-on threshold to the
minimum operating voltage. Setting the turn-on threshold to the minimum voltage allows
software to control when the device starts operating. The software may put the processor to
sleep and periodically check the accumulated energy until the desired level is reached. With
this design, the system can spend only as much time charging as necessary for a particular
task. Symmetrically, the turn-off threshold may be fixed in hardware or managed by software.
By default, the turn-off threshold is the minimum operating voltage of the device, but a
deliberate design may turn off the device at a higher voltage. None of the above designs
is unconditionally superior to all others. Threshold settings qualitatively change the turn
on/turn off behavior and determine the intermittent execution intervals experienced by the
software.

Systems whose load consists of multiple components with separate power rails (e.g.,
discrete sensor or radio ICs, multiple processors), open a design choice of federating [14]
the energy storage into multiple isolated banks. In contrast to a shared energy buffer,
a federation of per-component buffers de-couples unrelated hardware components letting
each fail independently. Federated energy buffers do not necessarily charge in synchrony:
one component may accumulate sufficient energy to turn on at a time that is different
from and unpredictable to other components. Software on a federated platform faces the
inter-component concurrency challenge described in Section 2.

3.2 Memory system and execution model
The effect of a power failure on a system and the system’s resumption behavior follows from
the memory system and the mechanism for preserving progress in the execution model.

Memory system. The most general model of a device’s hardware includes both volatile
memory (e.g., SRAM and DRAM) and non-volatile memory (e.g., Flash, FRAM). On some
architectures [43] all main memory is non-volatile, leaving MCU-internal state (e.g., registers)
volatile. At the extreme of the design space are architectures where all memory and internal
processor state (including registers and microarchitectural structures) is non-volatile [21].
Converting volatile structures to non-volatile may eliminate some of the memory inconsistency
issues described in Section 2. However, fully non-volatile architectures and main memories
have two drawbacks. First, efficiency suffers, because the relatively low-latency, low-energy
volatile memory accesses become relatively high-latency, high-energy non-volatile memory
accesses. We measured and compared the energy cost of a volatile SRAM access to a
non-volatile FRAM access on a TI MSP430FR5969 MCU and found that the FRAM access
consumed 2-3x more energy on average. SRAM, with an access latency around 10ns is faster
than today’s FRAM, which has latency around 50-80ns [39]; however, with the often low
clock frequencies of low-power MCUs (around 8MHz), SRAM and FRAM accesses take a
single cycle [42]. Furthermore, a fully non-volatile architecture is at best a partial solution to
the problem of preserving progress across power failures, because some state is fundamentally
not “latchable” and must be re-initialized by executing code. For example, a MEMS sensor
must perform an initialization routine before it can be sampled.

Looking forward, it is likely that intermittently operating device designs will include
deeper, more complex memory hierarchies with a mixture of cache layers and non-volatility.
We anticipate that it will be important to adapt techniques for managing non-volatility
[47, 7, 29] to work in the energy, time, and memory constrained intermittent environment.

B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel 8:7

In particular, in the intermittent execution model, the recovery path is not exceptional but
common and must be efficient, in contrast to traditional applications of non-volatile memory
on servers or workstations.

Execution Model. The precise execution model of an intermittent device depends on how
software and hardware preserve progress and program state. Most intermittent systems
run “bare metal” programs, bypassing any operating system support to avoid unnecessary
time or energy cost. In typical “bare-metal“ embedded systems, without system support for
intermittent operation, a power failure erases volatile values and retains non-volatile ones.
Checkpoint-based models [43, 33, 17, 24] preserve register, stack, and global variable values,
including the program counter, and restore them after a power failure. As Section 2 discusses,
checkpoints alone leave memory inconsistent, necessitating multi-versioning models [23, 9, 43]
that also preserve and restore parts of non-volatile memory.

Without system support, after a power failure control flows to the program’s entry
point (i.e., main()). In checkpointing models [33, 17, 24, 43] execution resumes from a
compiler-inserted or dynamically-decided checkpoint. In a task-based model [23, 9], the
programmer explicitly deconstructs the program into tasks that execute atomically (and
idempotently). After a power failure, execution resumes from the beginning of the most
recently executed, statically-demarcated task boundary. Alternatively, some systems propose
to stop the execution when power failure is deemed to be imminent and save a checkpoint
then [3, 41, 4]. Without a progress latching mechanism, the application is limited to short,
uninterruptible “one-shot” tasks [6].

Models with statically defined tasks require some extra programmer effort, compared
to dynamic checkpoints. The advantage of a static task system is that the programmer
has more control over which regions of the code are atomic and idempotent. Control over
atomicity and idempotence is often important in code with application level requirements on
I/O operations (e.g., a temperature and pressure sensor must be read atomically, without an
intervening delay due to a power failure).

A system’s state and progress preservation strategy, as well as the way the programmer
expresses atomicity and idempotence constraints originate the control flow, data consistency,
and environmental consistency challenges described in Section 2.

3.3 Development Environment
The effect of the power system on the behavior of software on intermittent devices complicates
its development, testing, and debugging. Tools designed for continuously-powered systems
do not help find bugs that manifest only under particular power failure timings or test across
energy environments. Consequently, recent work proposed targeted tools for monitoring,
debugging, and profiling [8], energy tracing [13], and transferring code onto intermittent
devices [40, 1].

Our work on EDB [8], the Energy-interference-free Debugger, provided the first support
for passively monitoring and interactively debugging intermittently-operating devices with
assertions, breakpoints, and watchpoints. Debuggers available before EDB require the device
to be powered continuously, making it difficult to observe, diagnose, and fix system behavior
that only manifests when running on harvested energy. Working from this motivation, EDB
uses a combination of hardware support and a package of co-designed software libraries to
provide support for important debugging tasks during intermittent executions on energy-
harvesting devices. EDB’s key source of novelty is to avoid “energy-interference”, which is any
exchange of energy between the debugger and the target that could perturb the intermittent

SNAPL 2017

8:8 Intermittent Computing: Challenges and Opportunities

Measure
Energy Level

}

 for(…){

 sense(&s)

 ok=check(s)

 if(ok){

 i++

 data[i]=s

Trace Program
Events

Trace I/O
Events

}}
Energy Logging Event Logging I/O Logging

Code BreakpointsEnergy Breakpoints

Manipulate
Energy Level

Assertions
Energy Guards/
Instrumentation

Interactive
DebuggingD

eb
ug

gi
ng

Pr
im

iti
ve

s

Code/Energy Breakpoints

C
ap

ab
ili

tie
s

Active Mode Passive Mode

Figure 3 EDB’s capabilities and features [8].

execution, changing its behavior. EDB supports passive monitoring tasks, such as tracing
the device’s energy level, tracing manually inserted code markers, and tracing I/O operations
(such as RFID Rx/Tx). EDB also supports “active” tasks, including interactive, breakpoint
debugging, high-energy-cost instrumentation, and invasive data invariant checking. The key
to supporting energy-hungry “active” tasks is to compensate for energy consumed. Before an
active task, EDB checks the device’s energy level. After completing an energy-hungry active
task, EDB restores the device’s energy level to its level before the debugging task. With its
support for passive and active debugging and tracing, EDB is the first debugger to bring
necessary, basic debugging functionality to the intermittent computing domain. EDB is
available for release at http://intermittent.systems and Figure 3 (reproduced from [8])
shows an overview of EDB’s main capabilities.

Prior to EDB, Sympathy [32] addressed the challenges of debugging networks of sensor
nodes, although Sympathy did not address intermittent operation. Ekho [13] addressed the
lack of tools for measuring and reproducing energy conditions that vary over time. Energy
availability at a given time can be represented by a current-voltage (I-V) curve. Ekho records
a time-series of I-V curves in the field and replays them on-demand in the lab for reproducing
issues and examining the behavior across energy environments. To simplify deployment,
recent work [40, 1] developed a mechanism to reliably and efficiently transfer code (or other
data) to a device using the RFID protocol, while the device is intermittently-powered.

3.4 Programming Support
Few real programming language design efforts have targeted intermittent and energy-
harvesting devices. Eon [36] was the first language for an energy-harvesting system. Eon
did not explicitly target intermittence, but instead tried to gracefully degrade application
behavior with scarce energy. Eon gives a task a priority and tries to execute high priority
tasks more often, subject to energy constraints.

Our work on Chain [9] is the first language designed explicitly to deal with intermittence,
through a task-based control-flow abstraction and a channel-based abstraction for non-volatile
memory that maintains consistency via static multi-versioning. The key idea in Chain is
to decompose the program into a collection of tasks, which are annotated functions, and to
explicitly describe the flow of execution from one task to the next. Chain guarantees that,
even in the presence of power failures, tasks execute atomically. Tasks can exchange data
consistently using channels, which are Chain’s abstraction of non-volatile memory. A task
may only ever read from or write to a normal channel, but not both.

The “channel access exclusion” property of Chain’s channels ensure that regardless of the
presence or timing of power failures, a task’s inputs are always available (in its input channels)

http://intermittent.systems

B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel 8:9

Task T1

Task T2

Task T3

Task Sequencing

Channel Data-flow

Channel T1-T2

Channel T2-T3

C
ha

nn
el

 T
3-

T1

}

At
om

ic
 &

C
on

si
st

en
t

Figure 4 A schematic of a Chain program [9]. The program has three tasks that execute in
sequence and pass data to one another via channels.

and its outputs always have a place (in its output channels). Statically multi-versioning data
in channels allows a Chain implementation to arbitrarily re-start a task from its entry point
with a consistent memory state. Idempotently re-executing a task until an execution attempt
eventually completes makes the effects of a Chain task atomic, when a Chain task finally
completes. Moreover, Chain eliminates the need to save and restore any volatile state because
all volatile variables are required to be task-local, and initialized inside a task. Chain’s
unique memory abstraction, task-based control-flow, and freedom from costly checkpointing
mechanisms leads to a substantial performance improvement, compared to typical volatile
data checkpointing systems [33], and even non-volatile data versioning mechanisms [23].
Figure 4 (reproduced from [9]) shows a schematic view of a Chain program. A Chain reference
implementation is available for researchers at http://intermittent.systems, including
support libraries and example code to help get started building Chain applications for the
WISP [34] or other intermittent devices.

The development of languages, debuggers, program analyses, and testing tools, for
intermittent systems is an area of PL research open for contributions from the community.
The impact of this research is widespread use of battery-free, devices across a variety of
application domains.

4 Future Research Opportunities in Intermittent Computing

Intermittent computing is a promising, emerging PL research area. Next we outline our
work at the intersection of energy-awareness, distributed computing, and approximation in
intermittent systems.

4.1 Programming Intermittent Systems
Despite building momentum, existing approaches to programming intermittent devices have
several key drawbacks: (1) increased programmer effort [23, 9] to define tasks; (2) no
programmer guidance or optimization for sizing tasks [23, 9, 43]; (3) run time [43, 23]
and memory [9] overheads; (4) unsound inference of application-level properties (e.g., I/O
atomicity) [43]; (5) assumptions about memory volatility [43]. These limitations of prior
work motivate further study. Our ongoing work aims to address the above challenges with
new programming abstractions that minimize overheads, reduce programmer burden, while
retaining programmer control over atomicity.

We are developing a new task-based programming model, based on Chain [9], that
fundamentally departs from Chain’s static multi-versioning approach. Chain creates a
copy of each variable for each pair of tasks that communicate through that variable, which
introduces time and space overhead as well as programmer burden. Our new efforts avoid
multi-versioning using novel compiler analyses, dynamic multi-versioning, and a simple,

SNAPL 2017

http://intermittent.systems

8:10 Intermittent Computing: Challenges and Opportunities

efficient commit mechanism to keep data consistent. The key insight in our new work is that
it is possible to privatize a copy of data to a task, allowing safe access to copies that can be
stored in non-volatile memory, or in energy-efficient volatile buffers. Our initial experiments
with applications from Chain [9] including compressive sensor logging and data filtering
suggest that eliminating Chain’s static versioning and channel management overheads yields
up to 4x decrease in memory consumption and a 1.5x-7x performance improvement.

Energy-aware programming and compilation. With our new, task-based programming
model efforts, we are building energy-aware compiler support [10] to help the programmer
express tasks that are optimized to the underlying hardware. Assuming the common, “execute
with maximum charge” hardware model [34] described in Section 3, our compiler statistically
assesses whether a task’s energy cost exceeds the maximum charge level of the device. Such
a task would never complete and the compiler can automatically sub-divide the task, or
guide the programmer in sub-dividing the task. Our work represents only a point in the
energy-aware programming and compilation design space; intermittent systems warrant
further exploration in this area.

Approximate execution models. Approximate execution models offer an alternative ap-
proach to handling power failure. In task-based systems (e.g., Chain[9]), after a power failure,
previously executed instructions are re-executed. Re-execution burns time and energy in
order to complete the task and produce a result. In an approximate execution model, accu-
racy can be traded off instead of spending time and energy on re-execution, by abandoning
the interrupted task. Then, the challenge is to decompose the application into tasks and
prioritize the tasks such that the completion of any subset of tasks produces a meaningful
(approximate) result. For example, in an approximate motion detector, decomposed into tasks
spatially, only some regions of the image would be searched under poor energy conditions.
An alternative approximate execution model might reduce the cost of multi-versioning state
by accepting inconsistency in some of the data values.

4.2 Distributed Intermittent Systems
Building distributed systems of intermittent devices enables new battery-less applications,
e.g., sensing and actuation systems, computer vision [25], and swarms of tiny satellites [46, 2].
Realizing this vision demands that the PL community develop programming and system
foundations for distributed, intermittent systems. The difficulty of specifying a correct,
efficient distributed, intermittent system is compounded by the absence of development
tools, specification languages, memory abstractions, and execution models. Our ongoing
work focuses on intermittent distributed shared memory abstractions and simulator-based
developer support.

Distributed, intermittent shared memory. We are building the first energy- and intermittence-
aware, distributed shared-memory system. The key challenge, noted in Section 2, is that
a pair of intermittent devices can only interact when both are active. Our intermittent
distributed shared memory (iDSM) has a flat address space, with data spanned and replicated
across the nodes in a system (similar to continuously-powered DSMs) [38]. Our iDSM’s main
contribution is an energy- and intermittence-aware memory consistency mechanism.

Maintaining iDSM consistency is difficult because both nodes involved in a request for
data are rarely simultaneously powered. We address the problem by tracking request success
and failure and adapting nodes’ memory request behavior based on the likelihood of a

B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel 8:11

request’s success. If a node’s request for another node’s copy of a shared page frequently
fails, we throttle the rate of requests between those two nodes. Instead, when either node
makes a request, it prioritizes a different node with a higher historical success rate. This
communication policy is energy-aware and affects memory consistency. The energy-awareness
stems from the energy environment’s influence over nodes’ communication success rate. The
policy determines memory consistency because preferentially non-communicating nodes will
share updates less often, leaving data inconsistent for longer. Space- and time-dependent
energy-availability requires the system to distribute data replicas to avoid “stranding” data on
inaccessible nodes. iDSM research will benefit from PL contributions on new data consistency
and replication policies, latency-tolerant synchronization mechanisms, and domain-specific
language support for constraining how intermittent nodes interact.

Approximate, distributed, intermittent systems. Intermittent, distributed systems can
leverage approximate memory consistency to improve performance and ensure progress.
Assuming an iDSM with mutex locks, approximate locks with timeout-based release behavior
may help prevent deadlocks when a node holding a lock fails. The cost of deadlock-freedom
is the need to handle the effects of broken atomicity and potential inconsistency, which can
lead to errors or a crash. Such a synchronization mechanism might integrate with type
support [35] to ensure that critical program values are never corrupted, even at a cost in
performance or progress.

Simulating distributed, intermittent systems. We built a flexible simulation framework for
distributed, intermittent systems to help study the performance impact of energy-awareness
and approximation on our iDSM without the high engineering cost of a real hardware setup.
Our simulator consumes logged power traces (similar to Ekho [13]) to accurately model
intermittent power cycling in a simulated collection of distributed nodes. Our inter-node
communication model is flexible and currently models ambient backscatter broadcasts within
a small network [22]. The simulator models the iDSM memory space and private, per-node
scratchpad memory spaces, both of which are accessible through a simulator-defined interface.
A simulated node queues local and iDSM operations and attempts to dequeue and execute
operations on each reboot. iDSM operations traverse the network to the owner of requested
data, succeeding only when the requester and data owner are powered simultaneously. Our
simulator provides key insights into the communication and consistency characteristics of
our iDSM.

5 Conclusion

Intermittent, energy-harvesting computing devices promise important, future applications,
and a variety of future PL and computer systems research challenges. This paper provided a
survey of the challenges and the design space of intermittent devices, framing a vision for
future PL research into intermittent computing.

Acknowledgments. We thank the anonymous reviewers for their feedback and suggestions
to improve our manuscript.

References
1 Henko Aantjes, Amjad Y. Majid, Przemysław Pawełczak, Jethro Tan, Aaron Parks, and

Joshua R. Smith. Fast Downstream to Many (Computational) RFIDs. In IEEE INFOCOM

SNAPL 2017

8:12 Intermittent Computing: Challenges and Opportunities

2017 – The 36th Annual IEEE International Conference on Computer Communications,
May 2017.

2 Justin A. Atchison and Mason Peck. A millimeter-scale lorentz propelled spacecraft.
In AIAA Guidance, Navigation and Control Conference, August 2007. doi:10.2514/6.
2007-6847.

3 Domenico Balsama, Alex Weddell, Geoff Merrettt, Bashir Al-Hashimi, Davide Brunelli,
and Luca Benini. Hibernus: Sustaining computation during intermittent supply for energy-
harvesting systems. IEEE Embedded System Letters, 7(1):15–18, March 2015. doi:10.
1109/LES.2014.2371494.

4 D. Balsamo, A. S. Weddell, A. Das, A.R. Arreola, D. Brunelli, B.M. Al-Hashimi, G.V.
Merrett, and L. Benini. Hibernus++: A self-calibrating and adaptive system for transiently-
powered embedded devices. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(12):1968–1980, 2016. doi:10.1109/TCAD.2016.2547919.

5 Dinesh Bharadia, Kiran Raj Joshi, Manikanta Kotaru, and Sachin Katti. BackFi: High
throughput wifi backscatter. In SIGCOMM’15, pages 283–296, October 2015. doi:10.
1145/2785956.2787490.

6 Michael Buettner, Ben Greenstein, and David Wetherall. Dewdrop: An energy-aware task
scheduler for computational RFID. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), March 2011.

7 Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit
Jhala, and Steven Swanson. NV-Heaps: making persistent objects fast and safe with next-
generation, non-volatile memories. In 16th ACM Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 105–118, March 2015.

8 Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample. An energy-
interference-free hardware-software debugger for intermittent energy-harvesting systems.
In 21st ACM Intl. Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 577–589, April 2016.

9 Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable intermittent pro-
grams. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pages 514–530, October 2016.

10 Alexei Colin, Preeti Murthy, and Brandon Lucia. Cleancut: Static task boundary placement
for intermittent programs. In Workshop on Hilariously Low-Power Computing, April 2016.

11 Natacha Crooks, Youer Pu, Nancy Estrada, Trinabh Gupta, Lorenzo Alvisi, and Allen
Clement. TARDiS: A branch-and-merge approach to weak consistency. In International
Conference on Management of Data, June 2016. doi:10.1145/2882903.2882951.

12 G. de Meulenaer, F. Gosset, F.X. Standaert, and O. Pereira. On the energy cost of
communication and cryptography in wireless sensor networks. In 2008 IEEE International
Conference on Wireless and Mobile Computing, Networking and Communications, pages
580–585, Oct 2008. doi:10.1109/WiMob.2008.16.

13 Josiah Hester, Timothy Scott, and Jacob Sorber. Ekho: realistic and repeatable exper-
imentation for tiny energy-harvesting sensors. In 12th ACM Conference on Embedded
Networked Sensor Systems (SenSys’14), pages 330–331, November 2014. doi:10.1145/
2668332.2668382.

14 Josiah Hester, Lanny Sitanayah, and Jacob Sorber. Demo: A hardware platform for sep-
arating energy concerns in tiny, intermittently-powered sensors. In 13th ACM Confer-
ence on Embedded Networked Sensor Systems (SenSys’15), pages 447–448, November 2015.
doi:10.1145/2809695.2817847.

15 Josiah Hester, Kevin Storer, Jacob Sorber, and Lanny Sitanayah. Towards a language
and runtime for intermittently powered devices. In Workshop on Hilariously Low-Power
Computing, April 2016.

http://dx.doi.org/10.2514/6.2007-6847
http://dx.doi.org/10.2514/6.2007-6847
http://dx.doi.org/10.1109/LES.2014.2371494
http://dx.doi.org/10.1109/LES.2014.2371494
http://dx.doi.org/10.1109/TCAD.2016.2547919
http://dx.doi.org/10.1145/2785956.2787490
http://dx.doi.org/10.1145/2785956.2787490
http://dx.doi.org/10.1145/2882903.2882951
http://dx.doi.org/10.1109/WiMob.2008.16
http://dx.doi.org/10.1145/2668332.2668382
http://dx.doi.org/10.1145/2668332.2668382
http://dx.doi.org/10.1145/2809695.2817847

B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel 8:13

16 International Telecommunication Union. Overview of the internet of things. http://
handle.itu.int/11.1002/1000/11559, June 2012.

17 H. Jayakumar, A. Raha, and V. Raghunathan. QuickRecall: A low overhead HW/SW
approach for enabling computations across power cycles in transiently powered computers.
In Int’l Conf. on VLSI Design and Int’l Conf. on Embedded Systems, January 2014. URL:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6733152.

18 Mustafa Karagozler, Ivan Poupyrev, Gary Fedder, and Yuri Suzuki. Paper Generators:
Harvesting energy from touching rubbing and sliding. In ACM Symposium on User Interface
Software and Technology (UIST), October 2013. doi:10.1145/2501988.2502054.

19 Yoonmyung Lee, Gyouho Kim, Suyoung Bang, Yejoong Kim, Inhee Lee, Prabal Dutta,
Dennis Sylvester, and David Blaauw. A modular 1mm3 die-stacked sensing platform with
optical communications and multi-modal energy harvesting. In IEEE International Solid-
State Circuits Conference (ISSCC), pages 402–403, February 2012.

20 Ting Liu, Christopher Sadler, Pei Zhang, and Margaret Martonosi. ZebraNet. In 2nd Intl.
Conference on Mobile Systems, Applications and Services (MobiSys’04), pages 256–269,
June 2004. doi:10.1145/990064.990095.

21 Ting Liu, Christopher Sadler, Pei Zhang, and Margaret Martonosi. An energy-efficient
nonvolatile microprocessor considering software-hardware interaction for energy harvesting
applications. In Intl. Symposium on VLSI Design, Automation and Test (VLSI-DAT),
April 2016. doi:10.1109/VLSI-DAT.2016.7482577.

22 Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gollakota, David Wetherall, and
Joshua Smith. Ambient backscatter: wireless communication out of thin air. In SIG-
COMM’13, pages 39–50, October 2013. doi:10.1145/2534169.2486015.

23 Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution model
for intermittent systems. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 575–585, June 2015.

24 A. Mirhoseini, E. M. Songhori, and F. Koushanfar. Idetic: A high-level synthesis ap-
proach for enabling long computations on transiently-powered ASICs. In IEEE Perva-
sive Computing and Communication Conference (PerCom), March 2013. URL: http:
//aceslab.org/sites/default/files/Idetic.pdf.

25 Saman Naderiparizi, Zerina Kapetanovic, and Joshua R. Smith. Wispcam: An rf-powered
smart camera for machine vision applications. In Proceedings of the 4th International
Workshop on Energy Harvesting and Energy-Neutral Sensing Systems, ENSsys’16, pages
19–22, 2016. doi:10.1145/2996884.2996888.

26 Joseph Paradiso. Systems for human-powered mobile computing. In DAC, July 2006.
doi:10.1145/1146909.1147074.

27 Joseph Paradiso and Mark Feldmeier. A compact, wireless, self-powered pushbutton con-
troller. In Proceedings of the 3rd International Conference on Ubiquitous Computing (Ubi-
Comp’01), pages 299–304, September 2001.

28 Gyuhae Park, Tajana Rosing, Michael Todd, Charles Farrar, and William Hodgkiss. En-
ergy harvesting for structural health monitoring sensor networks. ASCE Journal of In-
frastructure Systems, 14(1):64–79, March 2008. doi:10.1061/(ASCE)1076-0342(2008)14:
1(64)#sthash.ULLx9D2h.dpuf.

29 Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persistency. In ISCA,
June 2014.

30 Powercast Co. Development Kits – Wireless Power Solutions. http://www.powercastco.
com/products/development-kits/. Visited July 30, 2014.

31 Proteus Digital Health. Proteus Discover. http://proteus.com, 2016.
32 Nithya Ramanathan, Kevin Chang, Rahul Kapur, Lewis Girod, Eddie Kohler, and Deborah

Estrin. Sympathy for the sensor network debugger. In Proceedings of the 3rd International

SNAPL 2017

http://handle.itu.int/11.1002/1000/11559
http://handle.itu.int/11.1002/1000/11559
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6733152
http://dx.doi.org/10.1145/2501988.2502054
http://dx.doi.org/10.1145/990064.990095
http://dx.doi.org/10.1109/VLSI-DAT.2016.7482577
http://dx.doi.org/10.1145/2534169.2486015
http://aceslab.org/sites/default/files/Idetic.pdf
http://aceslab.org/sites/default/files/Idetic.pdf
http://dx.doi.org/10.1145/2996884.2996888
http://dx.doi.org/10.1145/1146909.1147074
http://dx.doi.org/10.1061/(ASCE)1076-0342(2008)14:1(64)#sthash.ULLx9D2h.dpuf
http://dx.doi.org/10.1061/(ASCE)1076-0342(2008)14:1(64)#sthash.ULLx9D2h.dpuf
http://www.powercastco.com/products/development-kits/
http://www.powercastco.com/products/development-kits/
http://proteus.com

8:14 Intermittent Computing: Challenges and Opportunities

Conference on Embedded Networked Sensor Systems, SenSys’05, pages 255–267, New York,
NY, USA, 2005. ACM. doi:10.1145/1098918.1098946.

33 Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System support for long-
running computation on RFID-scale devices. In ASPLOS, March 2011. URL: https:
//spqr.eecs.umich.edu/papers/ransford-mementos-asplos11.pdf.

34 Alanson P. Sample, Daniel J. Yeager, Pauline S. Powledge, Alexander V. Mamishev, and
Joshua R. Smith. Design of an RFID-based battery-free programmable sensing platform.
IEEE Trans. on Instrumentation and Measurement, 57(11):2608–2615, November 2008.

35 Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and
Dan Grossman. Enerj: Approximate data types for safe and general low-power computation.
In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI’11, 2011. doi:10.1145/1993498.1993518.

36 Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan, Mark D. Corner,
and Emery D. Berger. Eon: A language and runtime system for perpetual systems. In
Proceedings of the 5th International Conference on Embedded Networked Sensor Systems,
SenSys’07, pages 161–174, 2007. doi:10.1145/1322263.1322279.

37 Tolga Soyata, lucian Copeland, and Wendi Heinzelman. Rf energy harvesting for embedded
systems: A survey of tradeoffs and methodology. IEEE Circuits and Systems Magazine,
16(1):22–57, February 2015. doi:http://dx.doi.org/10.1109/MCAS.2015.2510198.

38 Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of the
2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM’01, pages 149–160, 2001. doi:10.1145/383059.383071.

39 D. Takashima, S. Shuto, I. Kunishima, H. Takenaka, Y. Oowaki, and S. Tanaka. A sub-
40 ns random-access chain fram architecture with a 768 cell-plate-line drive. In IEEE
International Solid-State Circuits Conference (ISSCC), pages 102–103, February 1999. doi:
http://dx.doi./org/10.1109/ISSCC.1999.759147.

40 J. Tan, P. Pawełczak, A. Parks, and J.R. Smith. Wisent: Robust downstream communica-
tion and storage for computational rfids. In IEEE INFOCOM 2016 – 35th Annual IEEE
Int’l Conf. on Computer Communications, pages 1–9, April 2016.

41 Texas Instruments Inc. Intelligent system state restoration after power failure with compute
through power loss utility. http://www.ti.com/lit/ug/tidu885/tidu885.pdf, April
2015.

42 TI Inc. Overview for MSP430FRxx FRAM. http://ti.com/wolverine, 2014. Visited
July 28, 2014.

43 Joel Van Der Woude and Mathew Hicks. Intermittent computation without hardware
support or programmer intervention. In USENIX Conference on Operating Systems Design
and Implementation (OSDI), pages 17–32, November 2016.

44 Nicolas Villar and Steve Hodges. The Peppermill: A human-powered user interface device.
In Conference on Tangible, Embedded, and Embodied Interaction (TEI), January 2010.
doi:10.1145/1709886.1709893.

45 WISP. http://wisp5.wikispaces.com/, 2016.
46 Zac Manchester. KickSat: a tiny open-sourced spacecraft. http://kicksat.github.io,

2016.
47 Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. Kiln: Closing

the performance gap between systems with and without persistence support. In MICRO,
December 2013. URL: http://www.cse.psu.edu/~juz138/files/150-zhao.pdf.

http://dx.doi.org/10.1145/1098918.1098946
https://spqr.eecs.umich.edu/papers/ransford-mementos-asplos11.pdf
https://spqr.eecs.umich.edu/papers/ransford-mementos-asplos11.pdf
http://dx.doi.org/10.1145/1993498.1993518
http://dx.doi.org/10.1145/1322263.1322279
http://dx.doi.org/http://dx.doi.org/10.1109/MCAS.2015.2510198
http://dx.doi.org/10.1145/383059.383071
http://dx.doi.org/http://dx.doi./org/10.1109/ISSCC.1999.759147
http://dx.doi.org/http://dx.doi./org/10.1109/ISSCC.1999.759147
http://www.ti.com/lit/ug/tidu885/tidu885.pdf
http://ti.com/wolverine
http://dx.doi.org/10.1145/1709886.1709893
http://wisp5.wikispaces.com/
http://kicksat.github.io
http://www.cse.psu.edu/~juz138/files/150-zhao.pdf

	Introduction
	Intermittent Computing Challenges
	The Intermittent System Design Space
	Energy Harvesting and Storage.
	Memory system and execution model
	Development Environment
	Programming Support

	Future Research Opportunities in Intermittent Computing
	Programming Intermittent Systems
	Distributed Intermittent Systems

	Conclusion

