
Clemson University Clemson University 

TigerPrints TigerPrints 

All Theses Theses 

8-2018 

Waldo: Batteryless Occupancy Monitoring with Reflected Ambient Waldo: Batteryless Occupancy Monitoring with Reflected Ambient 

Light Light 

Harsh Desai 
Clemson University, harsh_sd@yahoo.com 

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses 

Recommended Citation Recommended Citation 
Desai, Harsh, "Waldo: Batteryless Occupancy Monitoring with Reflected Ambient Light" (2018). All Theses. 
3244. 
https://tigerprints.clemson.edu/all_theses/3244 

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for 
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact 
kokeefe@clemson.edu. 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3244?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3244&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Waldo: Batteryless Occupancy Monitoring with
Reflected Ambient Light

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Harsh Desai

August 2018

Accepted by:

Dr. Adam Hoover, Committee Chair

Dr. Jacob Sorber

Dr. Ian Walker



Abstract

Reliable and accurate room-level occupancy-tracking systems can enable many new advances

in sensors and applications of modern smart buildings. This allows buildings to be more capable of

adapting to the needs of their occupants in their day-to-day activities and better optimize certain

resources, such as power and air conditioning, to do so. Unfortunately, existing occupancy-tracking

systems are plagued by large size, high energy consumption, and, unsurprisingly, short battery

lifetimes.

In this paper, we present Waldo, a batteryless, room-level occupancy monitoring sensor that

harvests energy from indoor ambient light reflections, and uses changes in these reflections to detect

when people enter and exit a room. Waldo is mountable at the top of a doorframe, allowing for

detection of a person and the direction they are traveling at the entry and exit point of a room.

We evaluated the Waldo sensor in an office-style setting under mixed lighting conditions (natural

and artificial) on both sides of the doorway with subjects exhibiting varying physical characteristics

such as height, hair color, gait, and clothing. 651 number of controlled experiments were ran on 6

doorways with 12 individuals and achieved a total detection accuracy of 97.38%. Further, it judged

the direction of movement correctly with an accuracy of 95.42%. This paper also evaluates and

discusses various practical factors that can impact the performance of the current system in actual

deployments.

This work demonstrates that ambient light reflections provide both a promising low-cost,

long-term sustainable option for monitoring how people use buildings and an exciting new research

direction for batteryless computing.
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Chapter 1

Introduction

Understanding how people move, work, and live within a workplace or residence is essential

for enabling health, efficiency, and security applications in smart buildings. Appliances, computers,

lighting, heating and cooling systems can adapt their behavior depending on the number of occupants,

their needs, and the context of their interactions. Smart buildings can automatically identify indoor

traffic patterns, poorly-used space, and congested walkways, helping us better understand how people

interact with the indoor spaces they use. We can only achieve these benefits, if we can effectively

sense how people move indoors.

Unfortunately, current occupancy-tracking systems are large, expensive, and high-maintenance—

too expensive large-scale deployments and too high-maintenance for long-term use. Existing systems

use a variety of techniques, including ultrasound[15], images[24, 23], wearables[10], instrumented

objects[3], structural vibrations[20], and opportunistic data leaked from existing meters and security

systems[28]. Some gather identifiable information. Others require building remodeling, force users

to change their behavior, or require structural models of the building. For any of these solutions

to work, we must either provide wired power to the sensors (which is usually both expensive and

invasive), or use batteries which increase cost, environmental impact, and fire risk, and which must

be replaced every few years (even rechargeables).

In this paper we present Waldo (overview shown in Figure 1.1), an occupancy-monitoring

sensor that is low-cost and low-maintenance, preserves occupant privacy, and can operate for decades1

1Actual lifetimes depend on environmental conditions, enclosure quality, and rates of decay for silicon and other
circuit materials. Without the usual bottleneck (the battery), lifetimes of 10–50 years are realistic but not guaranteed.
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Figure 1.1: The overall system concept of Waldo, a batteryless, energy-harvesting, doorway mounted
occupancy tracking and person detection enabling system. This system uses reflective indoor lighting
to both power the system and detect person entry and exit activity to a room.

without wired power or batteries.

Like the UVa doorjamb sensor [15], Waldo attaches to the top of a door frame and monitors

movement in and out of the doorway. Unlike previous solutions, Waldo does not use active sensors (like

ultrasonic range finders), but instead senses movement using the same ambient light reflections that

power the sensor. Waldo harvests solar energy from indoor lights to power all operations, and uses a

combination of hardware and software techniques to detect human movement and direction as solar

energy availability changes. Waldo stores this information on device, and opportunistically transmits

occupancy information to a basestation using its radio.

Contributions:

1. We present a novel system design for unobtrusive, long-term, low-cost, zero-maintenance occupancy

tracking.

2. We explore design considerations for batteryless, intermittently-powered sensing systems for

detecting ephemeral events hthat can be broadly applied to other batteryless sensing applications.

3. An implementation, deployment, and evaluation of Waldo that explores the strengths and limita-

tions of our methods.
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Waldo is, to our knowledge, the first batteryless occupancy-monitoring system, and demonstrates

the potential and usefulness of long-lived, energy-harvesting, batteryless sensing operation in the

built environment. In this paper we present our design, a working prototype, and evaluation results

showing efficacy of the approach.
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Chapter 2

Batteryless People Sensing

Energy-harvesting batteryless sensors are critical to an affordable and sustainable Internet-

of-Things (IoT) and the future of smart buildings. Running wires to power new sensors and other

devices is expensive and not always feasible. On the other hand, batteries are expensive, bulky, and

often hazardous. Even rechargeable batteries wear out after a few years, and replacing trillions of

additional batteries every year would be both expensive and irresponsible. In contrast, batteryless

sensors powered entirely with harvested energy cost less, weigh less, and can operate for decades

with minimal maintenance and environmental impact.

However, batteryless sensing is challenging. Energy is stored in one or more small, cheap

capacitors to improve efficiency and responsiveness [12]. Harvested energy is variable and difficult to

predict. Power failures are common, interrupting computation and data processing, sensing, and

communication. Clocks reset and volatile memory is lost frequently, complicating a developer’s ability

to build robust and sophisticated applications.

Recent advances in checkpointing [21, 1], consistent execution [5, 18], timekeeping [14], energy

management [12], testing [11], and debugging [7] address key challenges, and have enabled new and

interesting applications: tracking building and appliance energy consumption [9, 4] and monitoring

greenhouses [12].

In spite of these improvements, current batteryless sensing applications are limited and

typically fall into one of two categories: those that depend on an RFID reader and those that

opportunistically detect valid, useful data whenever measured. Power failures and long outages make

it difficult or impossible to gather streams of uninterrupted data, inevitably resulting in an inferior
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quality performance when compared to reliably powered sensors. This has complicated the design

and deployment of such batteryless sensors in many areas and applications.

Occupancy-monitoring applications try to instrument buildings, people, or other indoor

elements, to get a better understanding of the number of people in a room. This information is the

baseline data for successful operation of smart building functions such as intelligent temperature and

HVAC control, efficiency monitoring, elderly tracking, and other applications. Existing occupancy

monitoring systems use many sensing techniques and deploy in many different form factors, with

doorway based sensing being one promising method [15, 17]. In this paper, we implement a doorway-

mounted batteryless sensor for occupancy monitoring and investigate the challenges posed by an

unreliable power supply to achieving a reasonable quality of sensing. We recognize three major

aspects to implement a successful sensing system with unreliable power:

Intermittence: Small energy storage combined with unpredictable energy harvesting means that

batteryless devices must be equipped to handle intermittent operation. Specifically, batteryless

occupancy sensing devices must be careful to (1) optimize operation to make best use of available

energy, (2) use ultra-low-power techniques and passive methods to perform the actual sensing and

support the applications, and (3) be failure resistant, gracefully handling power failures and returning

to deterministic states.

Energy harvesters as sensors: A sensing system traditionally consists of a dedicated sensor to

gather data, along with some form of processing and communication, powered from a reliable energy

source. We propose an alternative to this approach by inferring the signal from variations in the

harvested energy, instead of using that energy to power an explicit sensor.

For example, door-mounted occupancy sensors can harvest energy from indoor and ambient

lighting using solar panels pointed towards the floor or other reflective surfaces. Concurrently, this

energy is also a signal that can be processed to gain insight into the changing environment of the

building, the movement of people and objects, or even the time of day. We can use this correspondence

between energy and data to enable passive sensing and consequently, batteryless occupancy detection.

If a door-mounted entry and exit sensor has solar panels that point down towards the floor, a person

walking through the doorway would occlude the light, lowering the energy harvested for that point in

time. This event could be tracked passively, transforming the solar panels into practically free sensors.

This signal will be affected by the changing power draw of the system (an artifact of the I-V curves
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of solar panels) and will have a changeable resolution and magnitude depending on the incident

light intensity. These factors make the overall signal noisy. However, careful signal processing in the

energy constrained computational environment can provide useful information, freeing up energy

that would otherwise have been consumed by an explicit sensor (potentially expensive such as an

ultrasonic range finder).

Human and building confounds: Harvesting both energy and signal from solar panels introduces

confounding factors from the variability of lighting in buildings, and the variability of people and

their habits. Many buildings will have some well-lit rooms bordering dim hallways, or vice-versa.

Other rooms may have an abundance of natural light, while some have only artificial light. Also,

clothing, hair color, skin color, walking speed, and height will all affect and potentially change the

readings on the solar panel. Any system that promises robust occupancy monitoring using energy

harvesting must be able to handle these confounding factors.

Batteryless occupancy sensing has never been done; but can take advantage of a key

observation to provide reliable service—the reality that the applications’ harvested energy can also

be used a data stream that serves as a sensor. By taking advantage of the temporal locality of energy

harvesting and data in occupancy sensing, we can build a long-lived sensor that detects and identifies

the movement direction of people as they enter and exit rooms. In the following sections we discuss

Waldo, a novel sensing system that demonstrates the feasibility and utility of intermittently powered,

energy harvesting devices, for sensing in the sustainable future Internet-of-Things.
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Chapter 3

Waldo

Waldo is a slim, batteryless, occupancy monitoring sensor system mounted to the top of

a doorframe. It is powered by energy harvested from two arrays of indoor solar panels pointed

at the floor. The panels serve two roles: 1) energy harvester and 2) sensor. These panels gather

energy for computation, sensing, and signaling while also providing the signal that Waldo uses to

detect when a person walks through the doorway, in the form of variations in the harvested energy.

Waldo records the direction—entry or exit—of each doorway event and stores this information in

non-volatile memory for later transmission.

Design Goals: Unpredictable power availability coupled with confounding factors of human based

sensing make designing an intermittently powered occupancy sensor challenging. We designed Waldo

to meet the following design goals which address specific challenges:

1. Availability: Doorway events can occur at any time. While many intermittent sensors are

able to gather data opportunistically as energy is available, Waldo is designed to conserve its

harvested energy, so that it is available to detect ephemeral doorway events, whenever they

occur.

2. Accurate direction: In addition to detecting someone passing through the doorway, Waldo

uses angled solar panels to accurately determine their direction. This plays a crucial role in

inferring the occupancy of rooms and buildings.

3. Variable lighting conditions: Indoor lighting conditions can change over time, due to human

behavior and the relative movement of the sun. We have designed Waldo to work in a range
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of different lighting conditions by using detection circuits that respond to changes in light

level, independent of the absolute amount of light, as well as tuning mechanisms built into the

prototype.

4. Variable human characteristics: An effective occupancy sensor should work well in spite

of variations in clothing, hair, height, walking speed, and skin color. By focusing on changes in

total reflected light, Waldo is robust to these human variations.

5. Form factor: We want Waldo to be easy to deploy, to fit unobtrusively inside a door frame,

and avoid contact with doors (on frames with doors). We could harvest more energy by

wrapping Waldo around the doorframe, but the system would be more expensive, harder to

deploy, and more likely to interfere with doors, while changing the aesthetics of the doorway.

What Waldo is not. We also want to be clear about what Waldo is not. Waldo is not a security

device. Waldo helps building owners and managers understand how people move through buildings,

but it is not designed to thwart malicious behavior. We can easily trick Waldo with a flashlight

or reflective materials, and we can disable it completely by covering its solar panels or turning off

the lights. Users looking to prevent shenanigans or tomfoolery should use a different device. Users

looking for a long-lived, low-maintenance, best-effort batteryless occupancy sensor for monitoring

normal behaviors should read on.

An overview of the Waldo architecture is shown in Figure 3.1 and our Waldo prototype

device is shown in Figure 4.1. We detail our approach to meeting these design goals and answering

their associated challenges in the rest of the section — specifically we describe the Waldo architecture

and design, the detection mechanism, and the energy management operations.

3.1 Energy Harvesting and Management

Waldo takes advantage of the ubiquity of indoor light in homes and offices. Solar panels are

mounted to the top of the door frame, pointing down toward the floor—half tilted 20◦ inward and

half tilted 20◦ outward. Pointing the panels downward is not ideal for energy harvesting but effective

for detecting doorway events and provides a slim, easy-to-deploy form factor. The 20◦ tilt helps

Waldo determine walking direction, as a person will affect one half of the panels before the other.
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Figure 3.1: The Waldo architecture overview. Waldo uses the energy and signal from two sets of solar
panels to both power the sensor and detect people passing into and out of a doorway. Two detector
circuits each monitor half of the solar panels mounted in series that face inward, and outward in the
doorway. On detection, the detectors wake up the MCU to process, log, or communicate occupancy
information.

To maximize energy harvesting, we connect the two sets of solar panels—the inward-facing

set and the outward-facing set—in series. A series configuration conveniently combines the two panel

sets into a single power source, but we can’t directly measure the raw voltage on each set since

the sets lack a common reference ground1. Instead, we measure the voltage of the outward-facing

set alone, and the combination of the two sets. We could compute the inward panels’ voltage by

subtracting the two; however, we have found that we can skip this step and just compare the two

measurements directly, as shown in Figure 3.2, to determine walking direction.

1For a series connection, we connect the positive terminal of the first panel set to the negative terminal of the
second.
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Figure 3.2: These traces show example solar panel voltages and detector outputs over time when a
person walks through a Waldo-enabled doorway. The top traces show how the solar panel’s voltages
are deformed during the doorway event. The detector triggers are used to wake up the microcontroller
and detect events and their direction. The angling of the panels cause the inward facing and outward
facing detectors to trigger at different times depending on the direction the person is walking.

Waldo uses federated energy storage [12] to power its microcontroller and peripherals.

Harvested solar energy is fed into a common first-stage storage capacitor and then automatically

federated to its peripherals. Federating energy allows us to prioritize detection and computation

while saving up energy for more energy-expensive radio transmissions. It also improves harvesting

efficiency and allows separation of peripherals without fear that the microcontroller will lose power

due to a radio transmission. Waldo currently supports connections for two peripherals — a Texas

Instruments CC1101 radio and an extra slot for potential expansion to be used in future work.

3.2 Detection

When someone walks under Waldo, she blocks some of the reflected light hitting the solar

panels. In Figure 3.2, the “solar” traces on top shows how the voltage from the solar panels changes

during a doorway event.

In order to detect a doorway event, we could use an ADC to continuously measure the solar

panel voltage over time and analyze those readings to detect the presence and more importantly,
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direction of motion. Voltage levels and waveform shapes vary with lighting conditions, especially

when one side of the doorway has more natural light, and this approach would require sophisticated

signal analysis and prohibitive energy consumption.

Instead, Waldo uses a detection circuit that wakes up the microcontroller when it detects

a significant change in the solar panel voltage over a short period of time. This circuit consists of a

passive first-order capacitive filter connected to a nano-power comparator—producing a square wave

that transitions when the voltage increases or decreases faster than a set rate. These transitions

trigger interrupts that help Waldo detect when someone is passing through the doorway.

In order to determine movement direction, we use two detector circuits: one that detects

change on the outward-facing panels and another that detects change on the combined inward- and

outward-facing panels. When someone walks through the doorway, the detectors trigger at different

times, depending on the walking direction, as shown in Figure 3.2. Waldo compares the timing of

these detector interrupts to distinguish incoming and outgoing doorway events.

Removing light flicker. Many fluorescent indoor lights flicker at 60 Hz or higher—a much higher

frequency than the events Waldo is designed to detect. These flucturations can confuse the detection

circuit and produce false positives unless they are filtered out. We add a low-pass filter to remove

noise above 10 Hz from the solar panel signal.

Isolating harvesting from sensing. If connected directly, Waldo’s harvesting and event detection

circuits conflict in two important ways. First, the harvesting circuit stores harvested energy in a

100 µF capacitor—a size that ensures that Waldo can store enough energy for short-term tasks and

dampens the low-frequency voltage fluctuations that we need in order to detect doorway events.

Second, short-term power spikes from interrupt service routines and other computation cause high-

frequency dips in the solar voltage, which can confuse the detection circuits. We address both of

these challenges by adding an additional low-pass filter between the detection and harvesting circuits,

which isolates the solar panel from the load, and allows the solar panel voltage (after the initial flicker

filter) to fluctuate over a wider range in response to doorway events with less interference from the

storage capacitor, the microcontroller power draw, and the detector circuit power draw.

Detection algorithm: During normal operation, when Waldo is not in a doorway event, the MCU

remains in deep sleep. While in deep sleep, the MCU is only triggered awake by the detector circuits

going from high to low—designating the beginning of a doorway event, from the change in solar
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harvesting energy from the light occluded by a person walking through the doorway. Once triggered,

the MCU starts a timer (a few seconds), and records the time at which the interrupt occurred, then

goes into sleep mode, waking up throughout the doorway event to capture the length of time between

each detector’s status change (from HIGH to LOW and vice versa). Multiple interrupts often fire

during a single doorway event as the person does not block light to the panels in an exact and smooth

manner. The timer defines the boundaries for what will be considered part of the event.

Times are recorded for the first falling edge interrupt and the last recorded rising edge for

both solar panel groups. When the timer fires, both solar panel groups’ start and end times are

compared to determine the direction of the event (entry or exit), and the Waldo stores the detected

event in non-volatile memory.

In rare cases, only one detector detects the event. These events are reported as a partial

event, which doesn’t have direction information. Partial doorway events can occur when a person

walks by the doorway but not through it (close enough to interfere with one panel group).

3.3 Communication and Infrastructure

The data that Waldo collects about people walking through is stored in non-volatile memory

until it has enough energy to make a radio transmission. The current setup collects data for a certain

fixed number of events before it polls the radio to see if it is available. If there is energy, then it will

send statistics for the collected data, clearing its buffer. If the capacitor for the radio isn’t sufficiently

charged, it will go back to sleep and try again after each subsequent event. This way, we can keep

collecting data as events occur, and transmit it all to the base station when we have sufficient power

to do so.
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Chapter 4

Implementation

We have implemented a prototype Waldo sensor for evaluating our approach, including

custom hardware in the form of a Printed Circuit Board (PCB) (shown in Figure 4.1b), firmware for

managing the doorway sensing application, and a custom 3D printed doorway mounting system that

holds the assembled PCB and solar panels in a slim profile Figure 4.1a.

Hardware: Our prototype hardware integrates four (4) RL-55x70 solar panels (70.00mm x 55.00mm)

from Seeed and a custom printed circuit board (PCB) held together by a 3D-printed plastic enclo-

sure, detailed later in this section. The prototype’s hardware is composed of an MSP430FR6989

microcontroller from Texas Instrument’s (TI) FRAM line of ultra-low-power processors. The newest

FRAM-based MSP430s’ have several advantages over previous models: lower sleep-mode currents,

shorter wake-up latencies, and faster nonvolatile FRAM. Using the faster wake-up capabilities, Waldo

is driven entirely by interrupts and remains asleep most of the time to conserve energy when not

in use. The solar panels are connected in two banks, where each bank is made up of two panels

connected in parallel. Both these banks are connected in series with each other to increase the

harvesting voltage, allowing for greater volatility in voltage which makes it easier to recognize features

of the signal. This configuration provides enough current to power the circuit with sufficient voltage

levels for detection as well as powering the system. The detector circuitry is made using nano-power

TI TLV3691 comparators and a passive RC filter network. The RC filter network is tunable using

trim potentiometers pre-installation, or digital potentiometers in deployment. The Waldo PCB also

has a TI CC1101 radio for communication. The hardware used in the Waldo prototype, shown in

13



(a) 3D printed solar panel enclosure with angled slots for solar energy harvesters.

(b) Waldo prototype PCB.

Figure 4.1: Waldo implementation
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Figure 4.1b, is not prohibitively expensive or obtrusive. The total cost of the current prototype,

including all PCB, parts, assembly costs, and solar panels is $33.37 per unit if ordered in quantities

of 1000.

Firmware: The Waldo firmware implements the detection algorithm discussed in Section 3. Moni-

toring the interrupts from the detectors, and deducing the direction of motion upon triggering are the

main tasks of the system. The firmware is designed to be ultra low power even in active mode, and

has low computational complexity, offloading the bulk of the detection to the hardware circuits. The

Waldo firmware is composed of 398 lines of commented C code, compiling to a 2110 byte image. This

code size comprises only 1.6% of the available code space on the MSP430FR6989 (128KB), leaving

ample room for implementing custom tasks, recognizers, or multiprogramming operating systems.

Mechanical Design: The 3D printed mounting system (shown in Figure 4.1a) is made of PLA

plastics and contains the PCB, solar cells, and necessary wiring connecting them. Waldo’s 3D printed

enclosure measures 13.2 cm by 47.0 cm by 1.0 cm at its thickest point. The enclosure provides a

nesting place for the solar cells, pointing downward. The angle of the solar cell slots is set such that

some solar cells tend toward the entry, while the rest toward the exit.

All software, firmware, hardware schematics and layouts, and 3D printed mounting system

will be made freely available at publication time.
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Chapter 5

Evaluation

In order to evaluate the efficacy of our approach, we evaluated Waldo in two phases:

In the first phase, we ran experiments on multiple doorways, with different characteristics—

like light levels, flooring, heights of the doorways, and widths. For each experiment, we primarily

evaluated Waldo’s ability to detect someone passing through and determine the person’s movement

direction. In this phase, we also tested the systems robustness to human variations, like height,

clothing, and hair color by considering a diverse group of subjects. Our study was conducted on 6

different doorways with 12 different people for a total of 651 different doorway events (each person

walked through multiple times per doorway).1

In the second phase, we tried to push the limits of the device, examining the factors that

affect its accuracy, performance and availability. These factors included the effect of adverse lighting

conditions, walking speed and short delays between doorway events. We also investigated other

events that might get falsely detected as doorway events.

Methodology and Claims: The following experiments attempt to address the goals defined in

Section 3. We address system availability (Goal 1) by demonstrating the low power draw of the system

itself and the number of times it caught doorway events (and the number of doorway events missed)

for each doorway test. Further, we evaluated the accuracy in determining the direction (Goal 2) by

observing how often Waldo correctly determined walking direction. We explored variable lighting

conditions (Goal 3) by testing the device under 6 different doorways with diverse lighting conditions,

both typical and adverse. We address human variation (Goal 4) by evaluating different walking

1This study was approved by our Institutional Review Board.
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Doorway#
Light Level (lux) Flooring Enough Detection Direction
Inside Outside Inside Outside Light? Accuracy(%) Accuracy(%)

1 86 96* Tile Tile Yes 93.82 98.02
2 86* 64 Carpet Tile Yes 90.48 78.94
3 71 55 Carpet Tile Yes 100 98.11
4 96 111* Tile Tile Yes 100 98.11
5 55 55 Tile Tile Yes 99.1 94.59
6 55 71 Tile Tile Yes 100 96.08

7 40 71 Carpet Tile No - -
8 24 72 Carpet Tile No - -
9 24 55 Tile Tile No - -

Table 5.1: Evaluation results with 12 test subjects having variable heights, hair color, and clothing
as described in Section 5.1. We tested 9 different doorways, from which 6 had enough light to power
Waldo. We ran multiple people through each of these 6 doorways, noting the detection accuracy and
how many of the detected events had correct direction. These results show that an adequately-lit
Waldo occupancy monitor can accurately detect doorway events and their directions.
*Mixed Lighting — Combined natural and artificial light

speeds and the effect of clothing and hair color/hair covering on detection patterns. We claim

that (Goal 5), concerning form factor, is addressed by our prototype and slim mechanical design,

described in Section 4.

We also have attempted to test the limits of the device, by varying different factors to

see when the device stops working and generating conditions that can confound the sensor. We

acknowledge that these experiments are best effort, and cannot hope to cover all variability and

confounding factors of tracking of diverse persons and buildings, but they do give a broad sense of

the capabilities and limitations of Waldo.

To process and enable data collection in our experiments, we gather all electrical signal

measurements, except where specified otherwise, using the Saleae Logic 16 logic analyzer2, at a

sampling rate of 5KS/s. The analyzer has high impedance ADC’s allowing for unobtrusive monitoring

of all signals. This sampling rate is sufficient to detect events on the doorway, as we are monitoring

fairly slow-varying events. We manually recorded the direction of each doorway event as ground

truth to verify the accuracy of Waldo in event detection, compared with the results measured by the

logic analyzer. The light intensity levels were measured using the TSL2561 Light-to-digital converter

from Texas Advanced Optoelectronic Solutions.3

2https://www.saleae.com
3https://cdn-shop.adafruit.com/datasheets/TSL2561.pdf
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5.1 Normal Operation

Experiment Goals: This section presents a thorough testing of the Waldo sensor across multiple

different doorways with a diverse group of subjects. The goal of this evaluation is to understand

how well Waldo can perform occupancy monitoring. The definition of occupancy monitoring in

this context is detecting doorway events caused by people walking under the doorway, and further

detecting the direction of their movement.

Experiment Overview: We ran the experiment with twelve (12) different participants, with

different physical characteristics—heights ranging from 5’4” to 6’4” and hair color ranging from

blond to brown and black. Our test group included a wide range of clothing colors (light and dark)

and a variety of head coverings.

For this experiment, we affixed the Waldo prototype to the top of 6 different doorways. We

have summarized each doorway in Table 5.1, outlining details such as the light intensity levels on

both sides, type of flooring, etc. For each doorway, we maintained test subject diversity, in order

to characterize Waldo’s performance, independent of the characteristics of individual subjects. For

doorways with doors, the door remained open all through the experiments. Each participant walked

in and out of the room five times in each direction.

Results: The results of this experiment are shown in Table 5.1, where we tested the system on a

total of 651 individual events. Each event consists of one person walking through one doorway one

time. Waldo was successful in detecting doorway events, and also the direction people were traveling

through the doorway. It detected a total of 634 events out of 651, giving an overall detection accuracy

of 97.38%. Furthermore, it determined the walking direction correctly for a total of 605 events, which

is 95.42% of the total events detected. Waldo’s performance was consistent across all test subjects,

independent of human variations like height, hair color, and clothing.

5.2 Factors affecting Waldo’s operation

Experiment Goals: The effectiveness of Waldo in occupancy monitoring is demonstrated through

the experiments outlined in Section 5.1. In this section, we examine factors that affect Waldo’s

performance as an occupancy monitoring sensor. It would be impossible to exhaustively study all

possible combinations of every factor. Instead, in this section we explore how Waldo reacts to a
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variety of conditions and behaviors that it will encounter in actual deployments.

We explored the following factors:

5.2.1 Light intensity:

We tested the availability of Waldo on different doorways and have reported our findings

in Table 5.1. The solar panels powering Waldo are sensitive to light in the visible as well as the IR

spectrum. As a result, to provide a more complete analysis of the illumination around a doorway, we

could not rely simply on a lux meter, which only provides information about visible light. We used a

TSL2561 sensor that measures both mixed signal (visible and IR) data along with purely IR data,

and outputs the combined illumination value in lux. After analysing the data in Table 5.1, we can

see that our current prototype is fully functional on doorways with light levels above at least 55 lux

on both sides. An average room/hallway in an office-style setting has light levels around 70 lux,

which is sufficient to power the Waldo sensor. It is worth noting that we can customize Waldo for

exceptionally dark doorways either by increasing the number of solar panels without changing the

working of the system itself, or by employing input booster circuits like the ones used in CleanCut [6].

5.2.2 Walking Speed:

Waldo detects people walking under doorways based on the changes they cause in the amount

of energy harvested. This means that there exists a theoretical limit to how slowly someone can walk

through before their movement becomes imperceptible to the system. In order to evaluate this limit,

we asked test subjects to walk under the sensor at different speeds. In order to achieve an even speed,

we used a metronome to which the subjects could match their steps. With extremely slow walking

(slower than 1 ft/s), we did observe decreased accuracies. Waldo occasionally detected a slow-moving

doorway event as two events. No test subjects have yet been able to walk slowly enough to avoid

detection entirely. We don’t consider this to be a problem for Waldo, since in practice, people don’t

often move at such slow speeds.

5.2.3 Multiple people:

Section 5.1 showed the ability of Waldo to detect individual people walking through. A

practical consideration would be to consider the performance of Waldo when multiple people walk
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through.

In order to evaluate this, we tested two subjects walking through doorway #1 with varying

time delay between them. This gave us control over the time separation between two events, and

allowed us to examine how closely can two people walk in without being detected as one, quite large

person. We discovered that as long as two people have at least 3-4 seconds between them, Waldo can

accurately distinguish between them. This limitation is introduced due to the time required by the

solar panels to reset or stabilize before the next event can occur. A subsequent logical conclusion is

that if two people walk side-by-side, i.e.,with zero separation between them, the current setup of the

system is unable to detect them as two events.

5.2.4 The “Spotlight” effect:

A very interesting consequence of light-based detection is what we affectionately call the

spotlight effect. This effect appears in the presence of a very focused source of light that dominates

the illumination around the doorway, such as a spotlight or a west-facing window in late evening

when the sun blazes directly through. When someone walks across such a focused light source, even if

it’s far from the doorway, it is detected falsely by Waldo as someone walking through. This happens

because Waldo detects people based on a decrease in the harvested energy, which also occurs when

somenone momentarily blocks the focused source of light. Interestingly, we can see from Figure 5.1

that the raw output of the solar panels look sufficiently different for someone walking across the

focused source as compared to when someone walks through the doorway in presence of a focused

source. At present, Waldo is equipped to detect events with good accuracy. With further signal

processing, the difference between these events can be extracted so that such events will not cause

false triggers.

5.2.5 Detection Range/Walking across, not through:

Considering that Waldo uses the blocking of light to detect a person, there will be an influence

radius inside which a person starts affecting the harvested energy of the sensor. If someone walks by

across either side of the doorway, without entering the door, they will affect the sensor if they are

within the influence radius. We ran an experiment to determine this radius of influence, where the

subject was directed to walk by across on either side of the doorway at increasing distances from the
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sensor. We started with a distance of 1 feet and went up to 5 feet, in increments of 1 feet. For each

distance, we asked the subject to walk by multiple times and recorded how many false triggers were

detected. Our findings are presented in Figure 5.2. We have observed that for distances greater than

3 feet away from the doorway, there is a negligible chance of triggering false events.

It is interesting to note from Figure 5.2 that there is a distinguishable difference between

this event as compared to someone walking through the doorway. Since they are walking only on one

side of the doorway, their effect on both channels is not delayed by the angling of the solar panels, as

is the case with walking through. As with the “Spotlight” effect, we can extract this difference with

further signal processing and learning.

5.2.6 Lingering in the doorway:

Another situation that causes false triggers is when a person comes up to the doorway, but

simply pokes their head in. Upon evaluation, we discovered that as long as the person is poking their

head in the doorway, the solar panel output remains at a lower level, and when they exit, it rises back

again. Although the current system implementation isn’t equipped to differentiate between someone

passing through and someone lingering in doorway, there is a clear difference in the raw waveform

outputted by the solar panel. This case is similar to Section 5.2.5 in terms of being distinguishable

from a person walking through and with some careful, direct signal processing it is definitely possible

to differentiate between the actual and the confounding case.

5.3 Microbenchmarks

The more effective Waldo is at maintaining a low power state when idling, the more available

Waldo is for detecting doorway events and monitoring occupancy. We measured the current draw of

our Waldo prototype while it was mounted on doorway #1. The idle draw of the system was 18 µA,

showing that Waldo can survive in a doorway with minimal light and energy harvesting.
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Figure 5.1: These traces show the solar panel output in the presence of the “Spotlight” effect. The
top figure shows the response when someone walks across the “Spotlight”, while the bottom one
shows the response when someone walks through the door.
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Figure 5.2: This figure provides a comparison between a person walking through the doorway (top
two traces) versus walking aross or by the doorway on the outside. There is a clear delay between the
two solar panel channels when someone walks through, whereas the change is reflected simultaneously
when someone walks by.
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Chapter 6

Related Work

Waldo is closely related to other occupancy monitoring sensing systems—especially those

using doorway mounted sensor suites. Waldo also draws from the literature on sensing systems that

treat harvested energy as energy and data signal; deriving application information from the energy

source. We detail the work related to Waldo below.

Occupancy Monitoring Systems: Many exotic methods for occupancy detection, and movement

between rooms have been explored. Existing occupancy monitoring systems use ultrasound[15],

imaging[24, 23], wearables[10], instrumented objects[3], structural vibrations[20], and opportunistic

data leaked from existing meters and security systems[28]. Each of these systems proved accurate in

occupancy detection (and often provided further features such as activity and person recognition),

however, each suffered from the maintenance cost associated with battery powered systems. These

monitoring systems did not address the issue of the power source, as it is supposed to eliminate the

power load of the building and laborious work of replacing the battery for that type of device.

AURES [22] attempted to address this concern by using a rechargeable battery and a indoor

solar panel. AURES estimates the number of occupants in a room by using wide-band ultrasonic

signals. It needs to be installed in a central location on the room ceiling and near a light source

to function properly. AURES, as an energy-neutral system, features an extended lifetime using

energy harvesting to recharge a battery. However, all batteries wear out (usually in a few years)

meaning replacement is inevitable. Unlike Waldo, AURES is not installed on the doorway and is not

a batteryless and maintenance free device.
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CeilingSee [29] attempts to eliminate the extra power consumption of the monitoring tools

by alternating existing LED lighting fixtures between being light sources and sensors in a duty cycle

manner. It uses reflected light and machine learning to distinguish between the fixed objects in

the room and the rooms occupants, unlike Waldo that senses and harvests power simultaneously.

CeilingSee offers a promising direction for new buildings, where custom lighting installations present

an incremental cost. Applying CeilingSee to legacy installations (old buildings) would be expensive,

as this would include construction costs, computational infrastructure, and IT staff maintenance.

CeilingSee may also put extra constraints on how a building can be lighted.

Recent work focuses on using multiple data sources that feed into a machine learning model

to estimate the number of occupants in a building [8]. The number of WiFi devices is not enough to

monitor where one occupant may have multiple devices, using wired internet access, or not having

any device. This work eliminates this gap by monitoring utility data, such as water and electricity

consumption, weather temperature, and building functions and size along with the number of WiFi

devices. This work focuses on occupancy monitoring at the building level and is unlike Waldo, which

is designed to monitor occupancy at room level. Despite this approach, installing any hardware

is not required. It instead requires training in the occupancy estimation model for each building

individually due to the differences in buildings characteristics that affect the trained model.

Doorway Occupancy Monitoring: Closely related to Waldo are doorway occupancy monitoring

systems; the UVa Doorjamb sensor being the first significant work [15]. UVa Doorjamb enabled

room level tracking of people as they moved through a house, by way of ultra sonic range finders

mounted in the top of the doorway, pointing towards the ground. Doorjamb could differentiate

people by height, and detect direction of entry and exit into the doorway. Doorjamb was plugged

into an outlet, and used high power sensors to gather data, which was processed later. Recently,

SonicDoor [17]—an update to Doorjamb—was developed which identifies occupants by sensing their

body shape, movement and walking pattern using ultrasonic ping sensors embedded in the sides, and

top of the doorway. SonicDoor also senses user behaviors such as wearing a backpack or holding a

phone. Both of these techniques use reliable power or batteries and high powered sensors like the

ultra sonic range finder, Waldo uses energy harvesting and batteryless, passive detection techniques

to detect people walking through a doorway, informing occupancy detection.

Energy as Data Sensing: Waldo uses solar panels as the energy source and a sensor at the
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same time. This technique has been used in other systems rather than occupancy monitoring.

Monjolo [9] measures the AC loads consumption based on the harvested power from the AC load.

Also, Trinity [26]is designed to measure the airflow speed of air-conditioning based on the harvested

power from piezoelectricity that generated from the impact of air flow. DoubleDip [19] is another

monitoring system that adapted this technique to monitor the water flow through a pipe using

thermoelectric generator as a harvester and sensor. In tracking people activities, KEH-Gait [27] is

designed for healthcare authentication purpose by sensing the voltage level produced by two types of

kinetic harvesters (piezoelectric and electromagnetic), while powering the system at the same time.

Another attempt has been made to design a battery-free pedometer [16] by placing a piezoelectric

harvester inside a shoe and estimating the number of steps based on the amount of harvested energy.

Despite the fact that there is an indoor-sensing architecture that uses indoor solar-harvested

power [4], this architecture does not support the idea of using the energy harvesting source as the

data sensor, as used in Waldo. Waldo is the first batteryless energy harvesting occupancy monitoring

platform, that builds on other works by gathering energy and data from the harvester.

Batteryless, Transiently Powered Sensing: Waldo is not the first batteryless, transiently

powered sensing system. Recent work like HarvOS [2], Mayfly [13], and Ratchet [25] have explored

operating system and language level support for developing applications easily on batteryless devices

with frequent power failures. Other work has focused on energy management and storage techniques

to improve uptime and responsiveness of these systems: such as Federated Energy [12]. Each of

these systems inform our work, however, none have tackled the problem of batteryless occupancy

monitoring.
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Chapter 7

Discussion & Future Work

In this paper, we demonstrate that we can monitor how people use buildings without running

wires, without structural renovations, and without batteries. Our evaluation has presented the

performance of Waldo as a batteryless occupancy sensor, and we also have identified corner cases that

might confound the current version of the system. This section describes our future plans in terms of

making Waldo more robust and reliable. We also present some ideas for expansion of this project.

Improving robustness and reliability:

Waldo in its current version depends on sudden changes in the solar panel outputs in a fairly binary

manner. It triggers when there’s change and doesn’t when there isn’t. This allows it to detect people

walking through with high accuracy. However it becomes susceptible to false positives, as other

events might also cause a sudden change in the solar panel, for example when someone walks by the

side of the door. As discussed in Section 5, there is a visible difference between someone walking

through a doorway and a false positive. One of our goals for future work is to add direct signal

processing on the microcontroller so that it will be able to access the whole shape of the waveform,

and will not be reliant on the binary nature of the detector interrupts. This will enable Waldo to be

more successful in identifying people walking through the doorway with minimal false positives.

Adaptability:

We plan to make the system more dynamic and flexible by providing adjustable thresholds to the

detector circuit. This will equip Waldo with the ability to tune its sensitivity to problematic cases

such as darker lighting conditions. Another way we aim to improve the performance and adaptibility
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of Waldo would be to make use of learning algorithms. Our goal is to use learning for identifying

different events, separating the true positives from false ones, subsequently improving accuracy and

precision. We will introduce confidence indicators so that even in cases where it is comparatively

tougher to distinguish between those events, Waldo will be able to attach a confidence level to its

prediction, broadening the range of events it can identify. This is a feasible goal considering the

evident difference between those events.

Network of Waldos:

Waldo is not meant to be a standalone system in that it’s true potential is realized as a part of a

wider network of similar sensors. Different Waldos could exchange information to monitor occupancy

on a larger scale and also to improve individual performance. For example, if one sensor detects a

large amount of traffic heading into a hallway, but none of the other sensors detect activity, it is

likely that there might be some other factor that is confounding the first sensor and this knowledge

could be used to refine the learning model. Having a network of such batteryless sensors could also

enable the deployment of a more sophisticated, energy-efficient communication model than simply

broadcasting information opportunistically.

Additional sensors:

We also plan to expand the system in terms of sensing abilities by adding more sensors. These sensors

could provide various types of information such as RGB data, which could be used to semi-identify

the person walking through. This would help assign some uniqueness to each individual so that we

can better track their travel through rooms in a building without gathering identifiable information

that would require additional security considerations to be added to the system. We could also

opportunistically use an ultrasonic range finder in moments of high illumination to detect the height

of the person passing through.

Waldo can be expanded in many different ways, as demonstrated by these ideas.
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Chapter 8

Conclusions

This paper has presented Waldo, a batteryless, energy harvesting doorway mounted sensor

system for room level occupancy monitoring. Waldo uses its energy source—generated from an array

of solar cells—as data signal for detecting doorway movement, as well as the energy that powers

all activities. Waldo uses a novel, tunable, detection circuit that watches the energy harvesting

signal with the processor asleep, and it is the first batteryless occupancy monitoring system in

existence. We deployed Waldo on 6 doorways and found that it can detect single persons moving

through the doorways with a high overall detection accuracy of 97.38%. Our results show that Waldo

can differentiate between entry and exit of persons walking through the doorway for 95.42% of the

detected events. We also evaluated different factors that affect the performance of Waldo. There

are some events that confound the current version of Waldo into generating false positives, but we

have demonstrated inherent differences from the true positives i.e.,someone walking through the

door. This makes us confident that we can further improve the Waldo system to make it robust

to such events. We evaluated Waldo microbenchmarks that demonstrate Waldo is low power, and

efficient, able to harvest enough energy to power all activities, intermittently, while providing quality

of application. Waldo represents a first step towards robust and reliable occupancy monitoring

systems without batteries, using energy harvesting.
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