177 research outputs found

    Implementation of a 200 MSps 12-bit SAR ADC

    Get PDF
    Analog-to-digital converters (ADCs) with high conversion frequency, often based on pipelined architectures, are used for measuring instruments, wireless communication and video applications. Successive approximation register (SAR) converters offer a compact and power efficient alternative but the conversion speed is typically designed for lower frequencies. In this thesis a low-power 12-bit 200 MSps SAR ADC based on charge redistribution was designed for a 28 nm CMOS technology. The proposed design uses an efficient SAR algorithm (merged capacitor switching procedure) to reduce power consumption due to capacitor charging by 88 % compared to a conventional design, as well as reducing the total capacitor area by half. Sampling switches were bootstrapped for increased linearity compared to simple transmission gates. Another feature of the low power design is a fully-dynamic comparator which does not require a preamplifier. Pre-layout simulations of the SAR ADC with 800 MHz input frequency shows an SNDR of 64.8 dB, corresponding to an ENOB of 10.5, and an SFDR of 75.3 dB. The total power consumption is 1.77 mW with an estimated value of 500 W for the unimplemented digital logic. Calculation of the Schreier figure-of-merit was done with an input signal at the Nyquist frequency. The simulated SNDR, SFDR and power equals 69.5 dB, 77.3 dB and 1.9 mW respectively, corresponding to a figure-of merit of 176.6 dB.FrÄn analogt till digitalt - snabba och strömsnÄla omvandlare Dagens digitala samhÀlle stÀller höga krav pÄ prestanda och effektivitet. I samarbete med Ericsson i Lund har en krets för signalomvandling utvecklats. Genom smart design uppnÄs hög hastighet och lÄg strömförbrukning som ligger i forskningens framkant. FrÄn analogt till digitalt Ett viktigt byggblock för telekommunikation och videoapplikationer Àr sÄ kallade A/D-omvandlare, som översÀtter mellan analoga signaler (till exempel ljud) och digitala signaler bestÄende av ettor och nollor. En vÀldigt effektiv metod för A/D-omvandling bygger pÄ sÄ kallad successiv approximation. Metoden innebÀr att signalen som ska omvandlas jÀmförs med en referensnivÄ, som stegvis justeras för att nÀrma sig signalens vÀrde. Till slut har man en tillrÀckligt god uppskattning av vÀrdet som ska mÀtas. Just en sÄdan omvandlare har utvecklats med höga krav pÄ hastighet och energiförbrukning. Detta gjordes genom datorsimuleringar av modeller som beskriver kretsen. ReferensnivÄn skapas ofta genom att styra ett nÀtverk som lagrar elektrisk laddning. Omvandlingens noggrannhet, eller upplösning, beror pÄ hur mÄnga nivÄer som finns tillgÀngliga det vill sÀga hur nÀra signalens vÀrde man kan komma. I den designade kretsen finns hela 4096 nivÄer! Det finns mÄnga kÀllor till osÀkerhet i systemet, bland annat hur exakta referensnivÄerna Àr och hur bra jÀmförelsen med insignalen kan göras. Eftersom dessa eventuellt kan leda till en försÀmring av omvandlingens noggrannhet mÄste alla delar i kretsen utformas med detta i Ätanke. Höga hastigheter Eftersom det krÀvs mÄnga steg för referensnivÄn att nÀrma sig signalens vÀrde Àr den maximala omvandlingshastigheten ofta begrÀnsad. Med teknikens utveckling öppnas nya möjligheter i takt med att mikrochippens enskilda komponenter blir snabbare. Modern forskning visar att omvandlare baserade pÄ successiv approximation kan uppnÄ hastigheter pÄ flera miljoner mÀtvÀrden varje sekund, vilket Àven den utvecklade kretsen klarar av. Effektiv design Nya metoder för successiv approximation möjliggör stora besparingar nÀr det gÀller effektförbrukning, till exempel genom att effektivisera upp- och urladdningen av nÀtverket. Genom smÄ Àndringar kunde nÀtverkets energiförbrukning minskas med över 90 % samtidigt som dess area halverades. Eftersom produktionskostnaden för integrerade kretsar Àr hög medför varje minskning av kretsens area att kostnaden sjunker

    Power and area efficient reconfigurable delta sigma ADCs

    Get PDF

    A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications

    Get PDF
    The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 mu m CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm(2), which means a pressure resolution of 1 Pa, while consuming 146 mu A from a 1.5 V power supply.This work has been funded by Marie Curie project SIMIC, Grant Agreement No. 610484, funded by grants from the European Union (Research Executive Agency) and TEC2014-56879-R of CICYT, Spain.Publicad

    Low Power and Small Area Mixed-Signal Circuits:ADCs, Temperature Sensors and Digital Interfaces

    Get PDF

    Design of Analog-to-Digital Converters with Embedded Mixing for Ultra-Low-Power Radio Receivers

    Get PDF
    In the field of radio receivers, down-conversion methods usually rely on one (or more) explicit mixing stage(s) before the analog-to-digital converter (ADC). These stages not only contribute to the overall power consumption but also have an impact on area and can compromise the receiver’s performance in terms of noise and linearity. On the other hand, most ADCs require some sort of reference signal in order to properly digitize an analog input signal. The implementation of this reference signal usually relies on bandgap circuits and reference buffers to generate a constant, stable, dc signal. Disregarding this conventional approach, the work developed in this thesis aims to explore the viability behind the usage of a variable reference signal. Moreover, it demonstrates that not only can an input signal be properly digitized, but also shifted up and down in frequency, effectively embedding the mixing operation in an ADC. As a result, ADCs in receiver chains can perform double-duty as both a quantizer and a mixing stage. The lesser known charge-sharing (CS) topology, within the successive approximation register (SAR) ADCs, is used for a practical implementation, due to its feature of “pre-charging” the reference signal prior to the conversion. Simulation results from an 8-bit CS-SAR ADC designed in a 0.13 ÎŒm CMOS technology validate the proposed technique

    A Low-Power, Low-Area 10-Bit SAR ADC with Length-Based Capacitive DAC

    Get PDF
    A 2.5 V single-ended 10-bit successive-approximation-register analog-to-digital converter (SAR ADC) based on the TSMC 65 nm CMOS process is designed with the goal of achieving low power consumption (33.63 pJ/sample) and small area (2874 ”m^2 ). It utilizes a novel length-based capacitive digital-to-analog converter (CDAC) layout to achieve low total capacitance for power efficiency, and a custom static asynchronous logic to free the dependence on a high-frequency external clock source. Two test chips have been designed and the problems found through testing the first chip are analyzed. Multiple improved versions of the ADC with minor variations are implemented on the second test chip for performance evaluation, and the test method is explained. Adviser: Sina Balkir and Michael Hoffma
    • 

    corecore